
Energy-efficient many-core overlay architecture for

reconfigurable chips

March 2023

Riadh Ben Abdelhamid

Energy-efficient many-core overlay architecture for

reconfigurable chips

Graduate School of Science and Technology

Degree Programs in Systems and Information Engineering

University of Tsukuba

March 2023

Riadh Ben Abdelhamid

Acknowledgements

First and foremost, as a member of the FPGA team laboratory, where I spent the most unfor-

gettable 6 years of my life, first as a research student, then as a master student, and later as a

PhD candidate, I am extremely indebted and will be grateful for-life, towards my dear academic

advisor, Associate Professor Yoshiki Yamaguchi for his endless support, his infinite kindness, his

remarkable advices, and his exceptional leadership skills through which he kept me motivated

during the toughest times of this memorable journey.

I am truly grateful to the Ministry of Education, Culture, Sports, Science and Technology in

Japan, for granting me the reputable and generous MEXT scholarship, during my 6-year stay in

this amazing country.

Many thanks to all of the diplomatic staff of the Embassy of the republic of Tunisia in Japan,

for the continuous support of Tunisian students, and for their remarkable efforts to strengthen

the academic ties between Japan and Tunisia.

My sincere thanks and appreciations as well, goes to all the hardworking employees of the

prestigious University of Tsukuba, who never cease to kindly provide support for the foreign

students to fully focus on success and enjoy their study-abroad experience.

I would like to address my special thanks and appreciation to Professor Taisuke Boku, Professor

Tsutomu Maruyama, Professor Moritoshi Yasunaga and Professor Osamu Tatebe, for kindly

reviewing my PhD application.

Finally, I would love to express my heartfelt gratitude towards my parents for their sincere

prayers and heart warming unconditional love, my dear sisters for their kindness and affection,

my dear friends and all the special people that contributed to making my life and study abroad

experiences more enjoyable during my wonderful journey in Japan.

1

Abstract

Since the invention of the first programmable CPU (Central Processing Unit), the need for more

capable computing machines has been growing by leaps and bounds. This has captured attention

of both academics and industries alike, to tackle architecture and physical implementation issues

to reach unprecedented levels of computational performance and energy efficiency.

Consequently, new devices emerged to address the shortcomings of conventional processors. De-

vices such as GPU (Graphics Processing Unit) and FPGA (Field Programmable Gate Array)

came to existence and gathered attention as they shifted the previously stagnating computing

paradigms from general purpose domains to more application-specific ones, without compro-

mising circuit flexibility. In particular, FPGAs were introduced as chips that are capable to

be reconfigured after tape-out and that have a fine-grained nature allowing them to manipulate

data at the single-bit level. Nonetheless, the scaling of these VLSI (Very Large Scale Integration)

circuits is nearing to hit the power wall that is established by physical laws and as such, the need

for energy-efficient devices has been growing larger.

FPGAs are often praised as power-efficient devices, due to the flexible nature of their fabric

that allows post-tape-out reconfiguration, and which allows them to address specific computing

problems more efficiently. In contrast, these devices still retain a high programmability barrier

that even the most seasoned experts may find it difficult to overcome. Worse yet, the development

cycle of these devices is lengthy, iterative and cumbersome and complicated designs on top of

the largest FPGAs may even take months to see the light.

One interesting way to overcome these shortcomings is the abstraction of the FPGA hardware

resources and physical fabric details through what is vastly known as an FPGA overlay. Often-

times, the chosen level of abstraction and implementation methodology impact the outcomes,

in terms of computational efficiency, power dissipation, area utilization and energy efficiency.

Among the highest levels of abstraction is a processor-based overlay that exposes a software-like

interface, allowing the use of standard or custom HLL (High-Level Language) to program these

devices, while providing extremely shorter compilation or configuration times. This abstraction

extends to the way in which an FPGA should interact with a host system and access its memory

space, in what is called a heterogeneous computing platform.

Consequently, the work in this thesis proposes an energy-efficient many-core overlay archi-

tecture for reconfigurable chips. The proposed overlay architecture is code-named DRAGON

(Dynamically Reprogrammable Architecture for Gather-scatter Overlay Nodes) and aims to ad-

3

dress all of the previously stated concerns. In particular, DRAGON is designed through HDL

(Hardware Description Language) and its various micro-architecture implementations are specif-

ically tailored to the underlying target FPGA to minimize its resource utilization, maximize its

computational performance and boost its energy efficiency.

Besides, DRAGON proposes a custom ISA (Instruction Set Architecture) and is re-programmable

through C language, thus yielding a CPU-like compilation time. Furthermore, DRAGON extends

the modern RTL (Register Transfer Level) kernel abstraction provided by FPGA tools such as

Vitis and proposes a control model from within an OpenCL-based host, to seamlessly interact

with its memory space and transcend its boundaries.

Ultimately, the DRAGON architecture condenses multiple parallel processing paradigms in order

to minimize the overhead costs intrinsically related to overlays. Consequently, it achieves the

highest levels of computational performance and energy-efficiency as proven through an experi-

mental evaluation, using a set of stencil-based benchmarks.

Keywords : FPGA, Overlay, Energy Efficiency, DAE (Decoupled Access Execute), SIMD (Sin-

gle Instruction Multiple Data), VLIW (Very Large Instruction Word), Many-core, Architecture,

2D,3D,4D Mesh Interconnect, Reconfigurable High Performance Computing.

4

Contents

Acknowledgements 1

I Introduction and Background 22

1 Introduction 23

1.1 Issues and motivation . 26

1.2 Architecture aspects of FPGAs as compared to other accelerators 29

1.3 Specific target problems and proposed novel solutions 30

1.4 The attractive reason to use an FPGA overlay . 32

1.5 Research Goals . 32

1.6 Main Contributions . 34

1.7 Thesis structure . 36

2 Background 39

2.1 Introduction . 39

2.2 General FPGA Architecture . 39

2.2.1 Configurable Logic Blocks . 41

2.2.2 Embedded memories . 41

2.2.3 Digital Signal Processors . 42

2.3 Programming Methods . 43

2.3.1 Register Transfer Level . 43

2.3.2 High-Level Synthesis . 43

2.4 FPGA Design Flow . 44

2.4.1 Architecture Specification . 44

2.4.2 Hardware Design and optimization . 44

5

2.4.3 Functional Verification . 45

2.4.4 Synthesis . 45

2.4.5 Technology mapping . 45

2.4.6 Placement . 46

2.4.7 Routing . 46

2.4.8 Static Timing Analysis . 46

2.4.9 Bitstream Generation . 46

2.5 FPGA Overlay Architectures . 47

2.5.1 The motivation behind FPGA Overlays . 47

2.5.2 State-of-the-art FPGA Overlays . 48

2.5.3 The case of custom processor-based FPGA Overlay 51

2.6 Enhancing the programming model of FPGAs through software-based re-usability 53

2.7 EXACC Architecture, a base model for MITRACA and DRAGON 54

2.8 Summary . 56

3 Techniques and principles for energy-efficient FPGA-based many-core over-

lays 58

3.1 Introduction . 58

3.2 Background . 61

3.2.1 Power dissipation and energy consumption in FPGAs 61

3.2.2 A survey of techniques for energy-efficient FPGA-based design 62

3.3 Important metrics for energy efficiency evaluation 64

3.4 Levels of energy-efficiency improvement . 66

3.4.1 Instruction Set Architecture . 67

3.4.2 Micro-architecture and physical implementation 71

3.5 Summary . 75

II Software Part: Accelerator softwarization 76

4 The DRAGON Instruction Set Architecture 77

4.1 Energy-efficiency considerations for Instruction Set Architecture Design 77

4.2 The Memory Architecture . 78

6

4.3 Instruction Set Organization . 79

4.3.1 General R-Type instructions . 79

4.3.2 Immediate R-Type instructions (Pseudo-instructions) 82

4.3.3 C-Type instructions . 82

4.3.4 LM-Type instructions . 83

4.3.5 BM-Type instructions . 84

4.3.6 N-Type instructions . 86

4.3.7 Virtual relative placement of communication buffers 88

4.4 A summary of Instructions Opcodes . 89

4.5 More on the DRAGON ISA . 90

4.5.1 Pseudo-instructions and Further extensions 90

4.5.2 custom-precision computations . 92

4.6 Limitations and primary target application domains 92

4.7 Summary . 93

5 The Programming Model 94

5.1 Introduction . 94

5.2 Enhancing the RTL Kernel Model through re-usability 94

5.2.1 Background . 94

5.2.2 A re-usable bitstream of a software programmable overlay 95

5.2.3 Details of the overlay integration within the heterogeneous computing plat-

form . 98

5.2.4 Detailed control and execution flow . 99

5.3 Host-Side Programming . 101

5.4 FPGA-side Programming . 104

5.5 Machine Code Executable Generation . 105

5.6 Functional Verification Using Verilator . 107

5.7 Summary . 107

III Hardware Part: FPGA-based accelerator virtualization 109

6 The DRAGONMany-Core-Processor Overlay Architecture: A General Overview110

7

6.1 Introduction . 110

6.2 The DRAGON System-Level Architecture . 110

6.3 Parallel Processing Models . 112

6.3.1 The SIMD Execution Model . 112

6.3.2 The VLIW Instruction Model . 113

6.3.3 A Software-coupled Hardware-decoupled Access Execute Approach 113

6.4 The Controller . 114

6.4.1 The Sequencer . 114

6.4.1.1 The Instruction Memory . 115

6.4.1.2 The Control Unit . 115

6.4.1.3 Interfacing with a host . 116

6.4.2 The Direct Memory Access Engines . 116

6.5 The Accelerator . 117

6.5.1 The Broadcast Cluster: A Modular Approach 117

6.5.1.1 Broadcast Memories and Broadcast Memory Controller 117

6.5.2 The Processing Element . 118

6.5.2.1 The Dual Compute Slot . 119

6.5.2.2 The Memory Slot . 119

6.5.3 The Topology and Dimension of the Interconnect 120

6.6 Summary . 121

7 Baseline micro-architecture implementation of DRAGON 122

7.1 Introduction . 122

7.2 Micro-architecture of the baseline DRAGON . 122

7.3 The Sequencer . 123

7.4 The Instruction Memory . 125

7.5 The Broadcast Cluster . 126

7.6 The Broadcasting feature implementation . 127

7.7 The Processing Element . 128

7.8 The Multiply-ACcumulate Floating-Point-Unit . 130

7.9 Summary . 131

8

8 Enhancing the energy-efficiency through DRAGON2 and DRAGON2-CBmicro-

architecture implementations 132

8.1 Introduction . 132

8.2 Micro-architecture Enhancements . 133

8.2.1 Optimizing the GM-BM AXI-based data bus interface 133

8.2.2 Improving the MAC FPU through a deeper pipeline 133

8.2.3 Enhancing the PE through extended pipeline and optimized buffering . . . 134

8.2.3.1 The DRAGON2 PE . 134

8.2.3.2 The DRAGON2-CB PE (Compact Buffering PE) 135

8.2.4 The Compact Buffering Scheme . 137

8.2.4.1 A concept overview . 137

8.2.4.2 Read/Write ports adaptation . 138

8.2.4.3 Impact on the PE micro-architecture 140

8.3 FPGA-related Optimizations . 141

8.3.1 Enhancing design speed through deeper pipelining 141

8.3.2 Layout-aware floorplanning . 143

8.3.3 Reducing SLLs for lower power dissipation and enhanced scalability 144

8.3.4 Layout-aware interconnect generation . 146

8.4 Summary . 148

IV Results and Discussion 149

9 Experiments and Results 150

9.1 Introduction . 150

9.2 Evaluation Benchmarks and Setup . 150

9.2.1 Experimental Setup for the Baseline DRAGON Overlay 150

9.2.2 Experimental Setup for DRAGON2 and DRAGON2-CB 151

9.2.3 Experimental Evaluation . 151

9.2.3.1 Concepts of Iterative Stencil Computing 151

9.2.3.2 Evaluation Methodology . 153

9.2.3.3 Evaluation Metrics . 154

9

9.3 A comparative experimental study of the Baseline DRAGON and the DRAGON2

Overlays . 156

9.3.1 Effects of the introduced enhancements on resource utilization 157

9.3.2 Effects of the introduced enhancements on computational performance . . 158

9.3.3 Effects of the introduced enhancements on power efficiency 159

9.4 A comparative experimental study of the DRAGON2 and the DRAGON2-CB

Overlays . 160

9.4.1 Effects of the compact buffering scheme on resource utilization 161

9.4.2 Effects of the compact buffering scheme on computational performance . . 163

9.4.3 Effects of the compact buffering scheme on power efficiency 163

9.5 A Comparative scalability study of DRAGON2 (Regular Buffering) and DRAGON2-

CB (Compact Buffering) Overlays . 164

9.5.1 Impact of the compact buffering scheme on the clock frequency 165

9.5.2 A study of area (hardware resource utilization) and scalability 166

9.5.3 A study of performance, EPR and scalability 167

9.5.4 A study of power efficiency and scalability 170

9.5.5 Bandwidth and scalability . 172

9.5.6 Impact on executable code size . 173

9.5.7 Modeling benefits and costs in N-dimensional interconnects 174

9.6 Summary . 176

10 Summary and discussion 177

10.1 Introduction . 177

10.2 DRAGON, DRAGON2 and DRAGON2CB overlays, a summary 177

10.2.1 General Differences . 177

10.2.2 FPGA-side Programming differences . 179

10.2.2.1 An example program on the Baseline DRAGON overlay 179

10.2.2.2 Compact Buffering impact on the programming of DRAGON2-CB179

10.2.2.3 Multi-threading impact on the programming of both DRAGON2

and DRAGON2-CB . 182

10.2.2.4 The DRAGON2-CB sliding window program details explained . . 183

10.3 Comparison with related works . 185

10

10.3.1 FPGA-based works . 186

10.3.2 CPU-based works . 190

10.3.3 GPU-based works . 190

10.4 Summary . 191

V Conclusion 192

11 Conclusion 193

11.1 A summary of achievements and contributions . 193

11.1.1 General contributions and achievements 193

11.1.2 Detailed contributions and achievements 194

11.2 Benefits to the community and examples of application domains 196

11.2.1 Summary of qualitative results . 196

11.2.2 FPGA-based accelerator for heterogeneous computing 197

11.2.3 ASIC possibility with uncapped capabilities 197

11.2.4 Bridging the gap with millions of software users 198

11.2.5 Paving the way towards new discoveries 198

11.2.6 Towards a highly-efficient AI accelerator 198

Annex 1 200

Annex 2 207

Bibliography 209

11

List of Figures

1.1 General goals of the work in this thesis as extracted from its title. 28

1.2 Aspects goals of the proposed architecture as compared to problem-specific hard-

ware implementations and other proposed overlay architectures. 31

2.1 General architecture of Xilinx DSP modules. 42

2.2 FPGA abstraction through the proposed overlay. 51

2.3 Design complexity using different hardware design approaches. 53

3.1 Overview of the hidden impact of the EPR on energy overhead. 60

3.2 The impact of design abstraction levels on power reduction [1],[2]. 67

3.3 Overlapping of compute and data movement operations using a single clock cycle

instruction issue. 69

4.1 The DRAGON Memory architecture. 78

4.2 Possible source operands for R-Type instruction execution. 81

4.3 Example source and destination of broadcast and local memory transfers. 85

4.4 Example of virtual relative locations of communication buffers and data exchange

directions for scatter/gather operations, with a 2D Mesh interconnect. 88

4.5 The DRAGON Instruction formats [3]. 91

5.1 Overview of the proposed dynamically re-programmable approach. . 96

5.2 Overlay Integration within a heterogeneous computing platform [3]. 98

5.3 DRAGON host-side/FPGA-side memory space mapping. 99

5.4 Example of the execution flow on the FPGA-based overlay. 100

5.5 Abstracting the DRAGON overlay as an OpenCL function. 103

5.6 VLIW in action: more operations with less instructions. 104

12

6.1 The DRAGON system level general architecture. 111

6.2 The DRAGON sequencer general architecture. 115

6.3 The DRAGON Broadcast Cluster general architecture. 117

6.4 The DRAGON PE general architecture. 118

7.1 Micro-architecture of the Baseline DRAGON overlay [3, 4]. 123

7.2 Micro-architecture of the Sequencer [3]. 124

7.3 Micro-architecture of the Instruction Memory [3]. 125

7.4 Micro-architecture of the Broadcast Cluster [3]. 126

7.5 Micro-architecture implementation of the two-level broadcasting feature. 128

7.6 Micro-architecture of the Processing Element [3]. 129

7.7 Micro-architecture of the Multiply-ACcumulate Floating-Point-Unit (MAC FPU)

[3]. 130

8.1 The micro-architecture of the MAC FPU of the implemented DRAGON2 and

DRAGON2-CB overlays [4]. 133

8.2 The micro-architecture of the Processing Element of the implemented DRAGON2

overlay [4]. 135

8.3 The micro-architecture of the Processing Element of the implemented DRAGON2-

CB overlay [4]. 136

8.4 Example of compact buffering implementation on the DRAGON2-CB overlay with

2D, 3D and 4D interconnects. 139

8.5 The impact of compact buffering (DRAGON2-CB) versus regular buffering (DRAGON2)

on the PE multiplexing logic and the required amount of BRAM-based neighbor-

communication buffers [4]. 140

8.6 Interconnect limitation in SLR boundaries due to the unbalanced requirement on

the number of SLLs. 144

8.7 Example wiring between processing elements in a 2D or a 3D or a 4D Mesh

interconnect [4]. 147

9.1 Concepts of grid partitioning, tiles mapping and halo points exchange through

communication buffers in stencil computations [4]. 152

13

9.2 Double-precision Sustained Performance of the DRAGON2 overlay as compared

to the Baseline DRAGON [4]. 158

9.3 Double-precision Power Efficiency of the DRAGON2 overlay as compared to the

baseline DRAGON [4]. 160

9.4 Double-precision Sustained Performance of the DRAGON2-CB overlay as com-

pared to DRAGON2 [4]. 162

9.5 Double-precision Power Efficiency of the DRAGON2-CB overlay as compared to

DRAGON2 [4]. 164

9.6 Achieved clock speed of DRAGON2 and DRAGON2-CB for 2D, 3D and 4D in-

terconnects with varied overlay size configurations [4]. 165

9.7 Percentage of resource utilization of the proposed DRAGON2-CB (with COM-

PACT buffering) as compared to DRAGON2 (with REGULAR buffering), for

multiple overlay size configurations and with varied dimensions (2D, 3D and 4D)

of the Mesh interconnect [4]. 167

9.8 Resource utilization of the proposed DRAGON2-CB (with COMPACT buffering)

as compared to DRAGON2 (with REGULAR buffering), for multiple overlay size

configurations and with varied dimensions (2D, 3D and 4D) of the Mesh intercon-

nect [4]. 168

9.9 Double-precision floating-point performance scalability and Effective to peak Per-

formance Ratio, using 2D, 3D and 4D Jacobi benchmarks. A side-by-side compari-

son between DRAGON-2CB (COMPACT buffering) and DRAGON2 (REGULAR

buffering) [4]. 169

9.10 Double-precision floating-point performance scalability and Effective to peak Per-

formance Ratio, using 2D, 3D and 4D Laplace benchmarks. A side-by-side com-

parison between DRAGON-2CB (COMPACT buffering) and DRAGON2 (REG-

ULAR buffering) [4]. 169

9.11 Effect of the compact buffering scheme on the obtained Power Efficiency with 2D,

3D and 4D Laplace and Jacobi stencil benchmarks [4]. 171

9.12 HBM2 bandwidth for Read and Write operations [4]. 172

9.13 2D (left) and 3D (right) stencil tiles inside a local memory of a PE and their corner

points that require extra clock cycles in order to be exchanged with adjacent PEs

[4]. 174

14

10.1 Emulation of a sliding window cyclic buffer. Multiple operations may be embedded

into a single VLIW instruction (e.g. compute&store to LM + scatter/gather

to/from neighboring PEs + load from LM) [4]. 180

15

List of Tables

2.1 Review of some previous parallel processing overlays [3]. 48

2.2 State-of-the-art spatially configured vs time-multiplexed overlays [5] 48

2.3 Comparison between DRAGON (this work), MITRACA [6, 7] and EXACC [8]

architectures. 55

4.1 The mode instruction field behavior and mnemonics for pseudo-instructions. . . . 81

4.2 The source input operands with each opsrc instruction field entry. 81

4.3 The mode instruction field behavior in a STBM instruction and mnemonics for

pseudo-instructions. 85

4.4 The NSG instruction md bit field behavior and mnemonics for pseudo-instructions. 87

4.5 The source communication buffer with each nsrc instruction field entry. 87

4.6 The DRAGON base Instruction Set categories, opcodes and their behavior [3]. . . 89

9.1 Environment setup for the experimental evaluation of the Baseline DRAGON

overlay [3]. 151

9.2 Environment setup for the experimental evaluation of DRAGON2 and DRAGON-

2CB [4]. 151

9.3 Equation models of the software benchmarks used in the experimental evaluation

[3, 4], [9, 10]. 154

9.4 Comparison of the resource utilization between the proposed DRAGON2 and the

Baseline DRAGON from [3]. Both overlays are implemented in a 3-by-3 BCs con-

figuration (144 PEs), using a 2D-Mesh interconnect and the same regular buffering

scheme [4]. 157

9.5 Resource utilization of the DRAGON2-CB overlay which adopts the proposed

compact buffering scheme as compared to the DRAGON2 overlay which uses the

regular buffering scheme [4]. 162

16

9.6 Overlay configurations and related stencil sizes used in the scalability analysis [4]. 166

9.7 Cost of the compact buffering on the size (in Bytes) of the generated binary code

for 2,3 and 4D Jacobi and Laplace benchmarks [4]. 174

9.8 Number of required BRAMS in each interconnect dimension and the related clock

cycle and code size overhead [4]. 175

10.1 Comparison between the baseline DRAGON overlay [3], DRAGON2 and DRAGON2-

CB overlays [4]. 178

10.2 Comparison of the Double-Precision Sustained Performance, Power Efficiency

and the EPR with other related works [4]. 185

10.3 Comparison of the Single-Precision Sustained Performance, Power Efficiency

and the EPR with other related works [4]. 187

17

18

Acronyms

AI Artificial Intelligence.
ALU Arithmetic and Logic Unit.
API Application Programming Interface.
ASIC Application-Specific Integrated Circuit.
AXI Advanced eXtensible Interface.

BC Broadcast Cluster.
BM Broadcast Memory.
BMC Broadcast Memory Controller.
BRAM Block Random Access Memory.

CISC Complex Instruction Set Computer.
CLB Configurable Logic Block.
CMOS Complementary metal–oxide–semiconductor.
CNN Convolutional Neural Network.
CPI Cycles Per Instruction.
CPU Central Processing Unit.
CU Control Unit.

DAE Decoupled Access Execute.
DCS Dual Compute Slot.
DMA Direct Memory Access.
DNA Deoxyribonucleic Acid.
DRAGON Dynamically Reprogrammable Architecture

for Gather-scatter Overlay Nodes.
DRAM Dynamic Random Access Memory.
DSP Digital Signal Processor.

ECC Error Correcting Code.
EPR Effective-to-peak Performance Ratio.
EXACC EXtreme ACCelerator.

FF Flip Flop.
FIFO First In First Out.
FMAC Floating-Point Multiply-ACcumulate Unit.
FPGA Field Programmable Gate Array.
FU Functional Unit.

GM Global Memory.
GPU Graphics Processing Unit.

19

HBM High-Bandwidth Memory.
HDL Hardware Description Language.
HLL High-Level Language.
HLS High-Level Synthesis.
HPS Hard Processor System.

IM Instruction Memory.
ISA Instruction Set Architecture.

LM Local Memory.
LUT LookUp Table.

MAC FPU Multiply-ACcumulate Floating-Point Unit.
MIMD Multiple Instruction Multiple Data.
MITRACA Manycore Interlinked Torus Reconfigurable

Accelerator Architecture.
MOSFET Metal–Oxide–Semiconductor Field-Effect

Transistor.
MS Memory Slot.

NoC Network on Chip.

OOP Object-Oriented Programming.

PCIe Peripheral Component Interconnect Express.
PE Processing Element.
PE ID Processing Element IDentifier.

RAM Random Access Memory.
RISC Reduced Instruction Set Computer.
RTL Register Transfer Level.

SDP Simple Dual Port.
SIMD Single Instruction Multiple Data.
SLL Super Long Line.
SLR Super Logic Region.
SoC System on Chip.
SP Sustained Performance.
SSI Stacked Silicon Interconnect.
STA Static Timing Analysis.

TPP Theoretical Peak Performance.

URAM Ultra Random Access Memory.

VHDL Very High-Speed Integrated Circuit Hardware
Description Language.

20

VLIW Very Large Instruction Word.
VLSI Very Large Scale Integration.

XML Extensible Markup Language.

21

Part I

Introduction and Background

22

Chapter 1

Introduction

Since the very first invention of instruction-set micro-processor devices, the quest for increasing

their computational performance has never been completed. As such, computer scientists relent-

lessly investigated novel programming models and paradigms to tackle performance degradation

issues encountered by computing devices. Consequently, parallel processing of data has become

a hot research topic that triggered a wave of innovative computer architectures and computing

approaches, to deal with the ever growing nature of applications.

Since then, parallel processing paradigms such as VLIW (Very Large Instruction Word) [11],

SIMD (Single Instruction Multiple Data) [12], and DAE (Decoupled Access Execute) [13] have

emerged to target specific bottlenecks preventing mainstream CPUs (Central Processing Units)

from reaching their peak computational performance. For example, the SIMD execution model

aims to batch-process multiple data with a single control instruction, thus, reducing memory

requirements for instructions and removing the redundant hardware control logic, in parallel

processing applications such as image processing [14, 15, 16]. In this paradigm, multiple cores or

PEs (Processing Elements) apply the same operation (dictated by the instruction) to multiple

different data, that are stored into their respective local memories [12]. Besides, the VLIW

approach aims to solve control issues in parallel processors by providing a single large instruction,

that stacks multiple smaller instruction packets, that are executed in parallel in each core or PE

[11]. On the other hand, the DAE approach is quite unique in the sense that it aims at increasing

the overall system performance by decoupling the data flow control path from the execution

path, usually, through providing a memory interface and low-level programming of two separate

23

instruction domains [13]. The first deals with data movement back and forth between the GM

(Global Memory) and the execution cores. The second deals with the execution itself, performed

by these cores. Through this scheme, it ensures, to some extent, the removal of data starvation

issues, where execution units have to wait for the data to be available, in order to execute

operations on them.

These innovative solutions were complemented by the invention of novel ISAs (Instruction Set

Architectures) or the addition of modern extensions to the already existing ones. Consequently,

new instructions have been constantly added to catch up with the demanding nature of com-

puting applications. In particular, some complete portions of specialized instructions have been

introduced to enhance further the performance capabilities of computing devices. For example

AVX [17], NEON [18], and VIS [19], among others, were proposed to accelerate multimedia

applications.

Nonetheless, architectures based on instruction-sets offer a convenient flexibility that allows to

address a wide range of applications. A Turing-complete ISA can solve about any computing

problem it may encounter. However, performance and energy-efficiency issues may arise alongside

the programming flexibility. Whether ISA-based processing machines are the best to address

modern day computing problems is a subject to debate. In fact, these are facing multiple

bottlenecks, namely, the memory wall and the power wall and that highlights their limitations.

Added to that, the slow down of Moore’s Law, that is another issue facing them. In fact, Gordon

Moore, who was the Intel company co-founder, has predicted that the amount of transistors that

can be condensed in a chip will nearly double after every two years, [20]. The physical proprieties

of semiconductor-based chips will soon hit a power wall where the dissipated energy per square

millimeter sets a limit on the amount of transistors that may actually fit inside the same area.

Certainly, manufacturing technology process known as technology node, is extending the lifespan

of Moore’s law, through the miniaturisation of transistor size, that is reaching unprecedented

levels, that appear to be soon nearing the landmark of a one nanometer.

The quest for better computational performance and improved management of energy require-

ments, has paved the road to the invention of dedicated computer devices that are more efficient

when targeting specific types of computation. Among these, GPUs (Graphics Processing Units)

have emerged as the defacto chip for image processing, and are heavily used in gaming arena.

24

Nowadays, their use case scenarios have been extended to target demanding scientific computing

applications, where the more conventional CPU devices, may struggle to perform, as equally

well. These devices use smaller and simpler processing cores as compared to CPUs. This allowed

GPUs to incorporate a huge amount of computing cores that made them more capable of target-

ing parallel processing applications in shorter amounts of time and led to the creation of novel

programming approaches that challenge even the most seasoned software programming experts.

Nonetheless, GPUs have kept most of the general architectural concepts used to build CPUs, and

as such, they are facing most of the issues that have been encountered prior to their existence. In

fact, the transistor integration rate is still slowing down while the underlying chips are requiring

more and more power. The memory wall is also another heavy-weight issue that must be dealt

with. While, modern day GPUs have packed HBM (High-Bandwidth Memory) technology within

their chip offerings, still, their architectures intrinsically suffer from inefficient management of

the higher memory bandwidth offered by this technology. Certainly, programming tools and

compilers evolved to assist extracting the highest possible performance or the lowest energy con-

sumption, however, limitations arise with control-heavy programs, which hinders the capabilities

of such devices to underwhelming levels of performance and energy-efficiency.

To optimize their energy-efficiency, computing devices need not only to consume less power, but

also to efficiently use that power. To achieve this goal, the sustained computational performance

should optimally be equal to the TPP (Theoretical Peak Performance). In modern era of power-

hungry applications such as Big Data and AI (Artificial Intelligence), the main limiting factor

for such a goal, is unarguably the inefficient flow of data between memories (where they reside)

and the execution units (where operations need to be performed on them).

Here, I reached what I believe is the most interesting computing device that has ever been

invented to-date : FPGA (Field Programmable Gate Array). These devices have long been

similar to white canvas where designers may use HDL (Hardware Description Language) such

as SystemVerilog, Verilog or VHDL (Very High-Speed Integrated Circuit Hardware Description

Language) to create a custom circuitry that is tailored for a specific kind of computation.

This concept allowed the efficient use of the underlying FPGA structure, to create near-flawless

movements of data, use custom-precision data-types, and orchestrate better the overall execution

while effectively reducing the energy consumption. Furthermore, the white-canvas-nature of

25

FPGAs has triggered researchers into proposing efficient reconfigurable computing architectures

based on data-oriented paradigms such as data-flow processors [21, 22, 23] and systolic arrays

[24, 25, 26, 27].

1.1 Issues and motivation

FPGAs are often praised for their energy-efficiency as compared to the more conventional com-

puting devices such as GPUs and CPUs. Therefore, they offer a valuable asset for researchers

and industries alike, either for use as a viable computing device alternative or as a vessel to

conduct cutting-edge fundamental theory of computation research.

Where FPGAs really shine, is in the extensive customisation possibilities they offer. For example,

the bit width of data can be freely manipulated. As such, it can be extended for a better

accuracy [28] or shortened to the bit-level for an improved energy-efficiency and/or performance

[29, 30]. Moreover, almost any type of interconnect can be implemented to improve the flow

of data between different execution units and/or memories. Examples including tightly-coupled

architectures [31, 32], direct and indirect networks [33], different degrees and topologies [34,

35, 36] may be adopted to address about any specific computation need. Furthermore, the

execution units can be customised as well. In fact, the implemented circuitry can adopt either a

homogeneous model, where all the execution units behave in the same manner and manage the

same kind of instructions, or, it can adopt a heterogeneous model where these execution units

differ in nature, and may address different data types or different kinds of computation.

Nonetheless, FPGAs have grown in size and complexity and their general architecture is no

more the homogeneous matrix of hardware logic blocks it once was. In fact, modern FPGAs

have become the sum of small to middle-size FPGAs called dies, that are connected by scarce

wires. These dies may be also not completely uniform as they may contain more or less resources

of certain kinds compared to others, such as HBM2 memory banks, to say the least, which

are mostly condensed in a single die, while absent in the others [37]. Consequently, the low-

level programming and the physical mapping of the output circuitry have become an extremely

complicated process for hardware designers. These, alongside the lengthy iterations of place-

and-route and the time-consuming process of functional verification, are among the key factors

26

that are limiting the practical use of FPGAs. In fact, while there is a soaring demand on FPGAs

from industrial and academic organizations alike, these highly-versatile devices remain still far

from mainstream adoption.

To simplify the FPGA programming task, HLS (High-Level Synthesis) came to the rescue, as

an alternative to the ever complicated and burdensome design process based on HDL (Hardware

Description Language). This approach allows programming FPGAs using HLLs (High-Level

Languages), such as C or C++. Consequently, the HLS-based methodology has managed to

attract designers with a software background, in particular, those with a minimal knowledge

of hardware aspects and physical fabric details. Effectively, this approach has dramatically

reduced the design and verification times, even when used with the largest FPGAs. However, it

still requires all of the lengthy mapping steps, including synthesis, physical implementation and

bitstream generation, every time a new design has to be generated.

Another bright solution consists of hiding FPGA hardware resource details and creating a higher

abstraction model, using a stacked layered structure, with a configuration interface that allows

easier management of FPGA resources and shorter configuration time. This approach is vastly

known as an FPGA overlay.

Several overlay architectures have been proposed and implemented on top of FPGAs. A notice-

able variety appears in their nature and use cases. For example, some of these are of a fine-grained

nature while the others are of a coarse-grained one, even more, some are software-programmable,

while others are hardware-configured.

Nevertheless, while most of the previously proposed overlays investigate interesting architec-

tural features and performance benefits, some more complicated topics were rarely covered or

remain untapped, such as the integration within a heterogeneous computing platform, the use of

more accurate floating-point precisions or even the introduction of custom ISA for reconfigurable

devices.

The work in this thesis, aims to bring FPGA closer to the masses while addressing the previously

stated concerns and leveraging the general benefits of such a device, through the adoption of the

promising overlay approach. In particular, the kind that allows software programming using own

custom-designed ISA.

As a result, this thesis entitled ”Energy-efficient many-core overlay architecture for reconfigurable

27

chips” presents DRAGON (Dynamically Reprogrammable Architecture for Gather-scatter Over-

lay Nodes), that is in fact a many-core processor-based FPGA overlay architecture. DRAGON

is based on a custom-design ISA (Instruction Set Architecture) and is primarily targeting 64-bit

long integer as well as double-precision floating-point computations. In particular, DRAGON

aims to provide both an energy-efficient architecture with a relatively high computational per-

formance as well as an easy-to-use methodology to integrate such kind of FPGA overlay into a

heterogeneous platform, where a host system, may control the execution of the FPGA overlay

using the well established OpenCL framework. Fig. 1.1 shows some of the different research goals

encompassed into the thesis title and gives a glimpse on what will be presented and discussed in

the subsequent chapters.

Figure 1.1: General goals of the work in this thesis as extracted from its title.

28

1.2 Architecture aspects of FPGAs as compared to other

accelerators

FPGAs have different characteristics from other architectures like CPUs and GPUs. This section

shows the differences between FPGAs and GPUs, which can be listed as follows.

• Circuit flexibility and custom granularity FPGA devices consist of multiple hardware

resources and on-chip memories that can be interconnected and configured to realize custom

spatial and/or temporal compute architectures. For example, FPGAs can be designed to

specifically address computations that require a higher precision (128-bit and higher) or

lower precisions (down to the bit level). GPUs focus on thread-level computation with

multiple compute units. The optimized design lets a single GPU have a larger number

of computing units but rigid on-chip memory interconnects and an architectural hierarchy

with fixed data paths and granularity (64-bit, 32-bit, 16-bit, etc.). That’s FPGAs are

intended to be highly flexible in direct hardware computation compared to GPUs.

• Reconfiguration The reconfigurability of FPGAs proposes hardware-level optimization

for target applications. It can be realized by maintaining, partly modifying, or entirely

re-designing the FPGA-based circuit. In contrast, the hardware circuit of a GPU is fixed.

• Power efficiency A large silicon device with high working frequency dissipates consid-

erable power, such as GPUs and FPGAs with HBM. However, FPGAs have proposed

hardware-level direct computation, which optimizes data flow and reduces data transfer

among processing elements. For example, bit shift operation can be entirely replaced by a

wiring connection, which reduces power consumption dramatically.

• Connection with an external device FPGAs can directly connect external peripherals,

such as memories, buses, and network devices, via high-speed serial interfaces. It enables

low-latency data transfer among multiple devices, minimizing data communication admin-

istration. Thus, one application of FPGAs will be an acceleration chip that includes a

network bridge function toward low latency communication. GPUs also have a special bus

like NVLink, but it focuses on only GPU communication, not other devices.

29

• Computational performance

GPUs were primarily designed to process graphics including image and video data. These

devices are extremely efficient by their nature to perform this kind of computation and

gradually evolved to further target complex numerical simulations and scientific comput-

ing applications. This is mainly backed by their architecture which consists of thousands

of concurrently-operating ALUs (Arithmetic and Logic Units), that are coupled with ex-

tremely fast memory accesses and large register files. In contrast to FPGAs, these devices

can operate above the 1 GHz range of clock frequency. As a result, the raw computational

performance of GPUs is significantly higher than that of FPGAs.

• Programming

While complicated when compared to CPUs, programming GPUs is still extremely simpler

than programming FPGAs. Compilers can translate HLL (High-Level Language)-based

user code into machine executables in an extremely short time. Whereas, FPGA circuits

are designed using HDL (Hardware Description Language) or HLS (High Level Synthesis)

which require lengthy steps of synthesis, placement and routing until the very last step of

bitstream generation.

Nonetheless, despite the high raw computational performance of GPUs, their sustained per-

formance may remain significantly lower in many scenarios, which harms the resulting power

efficiency and encourages the exploration of FPGA devices backed by their appealing features

that are described earlier.

1.3 Specific target problems and proposed novel solutions

To implement energy-efficient computing circuits running on an FPGA, designers often tend to

use the flexible nature of FPGAs that allows them to create specialized computing datapaths,

interconnect, and memory hierarchy, which is dedicated to efficiently solve target problems.

While this approach mostly achieves the optimal outcome in terms of computational performance

and/or energy efficiency, it remains limited to the specifically targeted problem, and simply

changing a few parameters may require redesigning whole portions of the circuit and falls back

30

My	Hybrid	approach
Dedicated	Hardware

Other	overlays

Performance

Power	Efficiency

Effective-to-peak
Performance	Ratio

Flexibility

Designing	speed

Figure 1.2: Aspects goals of the proposed architecture as compared to problem-specific hardware
implementations and other proposed overlay architectures.

to the long and fastidious task of the lengthy hardware implementation. On the other hand,

most overlay architectures often sacrifice computational performance and energy efficiency for

the sake of the re-usability as well as the convenience that comes with a shorter design process.

Here, Fig. 1.2 depicts the goal of this work, which is to try to maximize the benefits from

both approaches by adopting an overlay architecture that eases the programming of FPGAs and

shortens the design time while adopting specialized architecture and micro-architecture aspects

that allow it to maintain relatively high computational performance and energy efficiency as

compared to specialized hardware implementations that are restricted to a given problem with

fixed parameters.

Moreover, the integration of FPGAs in a computing platform that is controlled by a host system

may be challenging and requires low-level knowledge of PCIe firmware and operating system

drivers. Here, this work builds upon an existing RTL kernel flow proposed by Xilinx and pro-

poses an enhanced version that allows seamless integration of an overlay within a heterogeneous

31

computing platform. The enhanced approach consists of leveraging the OpenCL task model-

ing of an FPGA design, by exploiting the built-in PCIe infrastructure and interconnect to send

instructions along with data from a host system to the FPGA-based overlay, which allows repro-

gramming the overlay using the same bitstream file. This leads to the possibility of re-using the

same bitstream to target a different set of problems without any need for reconfiguration.

1.4 The attractive reason to use an FPGA overlay

The programming of FPGAs requires hardware detail knowledge and the mastery of circuit

designs often at the gate level. As a result, it is an unwanted task by non-hardware experts who

prefer the use of more convenient devices such as GPUs and CPUs. An overlay offer an abstract

view of the physical fabric of an FPGA which simplifies the programming task at the extent of

the chosen abstraction level. To render FPGAs more friendly towards software programmers, a

software-programmable overlay adopts the right level of abstraction. To realize this goal, this

overlay may adopt a many-core processor-based architecture that enables the efficient use of

compute resources while providing a software interface to eventual users.

1.5 Research Goals

The work in this thesis aims to achieve several goals, including the design of an energy-efficient

overlay architecture with both performance and versatility in mind. The proposed architecture

is expected to provide a software programmable interface through a custom-design ISA and to

offer the possibility to be seamlessly integrated within a heterogeneous computing platform. The

expected design should be efficiently implemented into the target FPGA to maximize its per-

formance and energy-efficiency. Afterwards, the reconfiguration process consists on recompiling

software code and deploying it into the overlay while re-using the original bitstream. Conse-

quently, it can dramatically simplify the process of using FPGAs and shorten their configuration

time as well as design cycle, while maintaining the flexibility to address a multitude of computing

applications. The general objectives may be summarized as follows:

• To bridge the gap between software developers and reconfigurable devices such as FPGAs,

32

through an efficient programming model based on a many-core custom instruction-set over-

lay architecture, as well as through a simple control approach based on an OpenCL kernel

abstraction.

• To maintain the attractive aspects of a task-specific hardware circuit, in terms of energy

efficiency and computational performance, while offering the flexibility to target different

use cases.

• To adopt architectural (Software and hardware aspects) and micro-architectural (hardware

implementation) features that allow the proposed overlay to achieve the previously stated

goals, in particular, achieving a relatively high energy efficiency.

The detailed objectives may be summarized as follows:

• To survey the state-of-the-art overlay architectures and categorize them in terms of ab-

straction level , configuration method and application goals.

• To design an Instruction Set Architecture for an energy-efficient and high-performance

software-programmable FPGA overlay architecture.

• To provide an efficient method to translate high-level programming code and constructs

(that may be based on HLLs such as the C language), into machine code that can be

executed by the target FPGA overlay.

• To design an efficient memory architecture and leverage key parallel processing capabilities

for the proposed overlay architecture.

• To provide a novel methodology to integrate the proposed overlay within a heterogeneous

computing platform.

• To provide and study a preliminary evaluation of the proposed architecture through a

baseline FPGA prototype.

• To enhance the scalability, boost the energy-efficiency and tackle the issues related to the

FPGA implementation, by optimising the design mapping to the underlying target FPGA.

33

1.6 Main Contributions

The major contributions of this work may be summarized as follows:

• The design of a custom ISA from a clean slate. The proposed ISA is tightly connected to

hardware implementation and assumes a memory architecture consisting of three layered

levels. Besides, this ISA supports VLIW paradigm by stacking two instructions into a

larger VLIW one. Generally, one packet controls the execution of operations using two

operands, while the other packet controls the memory operations such as loads and stores

and the data movements such as the scatter and gather operations. The goal of such an

approach is the efficient overlapping of data movements with the effective computations.

• The design of a highly modular and energy-efficient many-core overlay architecture that

targets reconfigurable chips such as FPGAs. The proposed architecture was given the code-

name of DRAGON (Dynamically Reprogrammable Architecture for Gather-scatter Overlay

Nodes). The proposed DRAGON overlay architecture adopts a custom-design ISA, and

leverages a multitude of parallel processing paradigms such as VLIW and SIMD. It also

adopts a particular implementation of the DAE (Decoupled Access Execute) approach.

• A seamless and practical approach to integrate the proposed FPGA overlay architecture

into a heterogeneous computing platform, by leveraging the Xilinx RTL kernel implemen-

tation methodology. The proposed approach allows the control of processor-based overlays

through an OpenCL-based host.

• A versatile PE (Processing Element) architecture that is split into two slots to support the

adopted VLIW paradigm. The first slot performs the execution of operations, on either

64-bit double-precision floating-point numbers or 64-bit long integers. The second slot

efficiently manages memory operations (Load/Stores) and other data movements (data

broadcast, scatter/gather) between the different nodes (PEs) of the many-core overlay.

• A preliminary mapping of the DRAGON architecture into the target FPGA, to collect and

study multiple evaluation metrics (Peak performance, power-efficiency, EPR (Effective-

to-peak Performance Ratio)), as well as the issues arising from the underlying FPGA

34

implementation (scalability, max clock speed, number of nodes, interconnect degree), that

may hinder the capabilities of the overlay. The implementation named Baseline DRAGON

overlay achieves an EPR of 89.9% in a 5-point Jacobi stencil computation benchmark which

is more than 4 times the EPR obtained with the same benchmark on an Intel Core i9 9900K

(20.9%).

• A buffered, point-to-point interconnect architecture, with a base 2D-Mesh topology, that

is scalable as well as expandable to higher dimensions.

• A C-based API (Application Programming Interface) that translates mixed C and assembly

code into executable machine language, to benefit from existing C compilers instead of

designing a custom one.

• Several enhancements of the preliminary DRAGON PE micro-architecture, that include an

efficient compact buffering model that reduces the BRAM memory resource utilization by

nearly 50% in the proposed many-core overlay and consequently improves its scalability.

• Enhanced micro-architecture FPGA implementations of the DRAGON overlay architec-

ture, named DRAGON2 and DRAGON2-CB (DRAGON2-CB includes the proposed Com-

pact Buffering scheme), that takes into consideration the specific traits of the target FPGA

(Alveo U280) [37] and exploits them efficiently. The introduced enhancements unlocked the

scalability and the true performance and energy-efficiency on the target FPGA. For exam-

ple, the enhanced DRAGON2-CB achieves 139.72 GFLOPS, 145.62 GFLOPS and 105.77

GFLOPS, in 2D, 3D and 4D Jacobi stencil benchmarks (double-precision), respectively.

Compared to the baseline DRAGON overlay, the enhanced DRAGON2-CB manages to

deploy double the amount of PEs, and improves both the sustained computational perfor-

mance and the power efficiency by more than 4 times.

• A study of the general limitations that face the interconnect and overlay scalability on

multi-region FPGAs. Subsequently, a mathematical formulation is provided to obtain the

optimal data bus width connecting each GM (Global Memory) bank (that was implemented

as HBM (High-Bandwidth Memory) bank) to its corresponding BC (Broadcast Cluster),

to maximize the use of inter-die wires without compromising the overlay scalability.

35

• An in-depth comparative study of DRAGON2 and DRAGON2-CB, on multiple overlay

configurations using various N-D interconnect degrees (where N=2, 3 or 4) and various sizes

(different amounts of PEs), to evaluate the benefits and costs of the introduced compact

buffering model.

1.7 Thesis structure

This thesis is structured into five different parts with a total of eleven chapters:

• Part I. Introduction and Background

Chapter 1: Introduction

This chapter provides a general introduction to the work in this thesis. This chapter states

the issues and motivations behind this work, and follows with a summary of research goals

and contributions, as well as a detailed outline of the chapters presented in this thesis.

Chapter 2: Background

This chapter presents an overview of the research background. It presents the modern

FPGA architectures and their programming methodologies, provides an introduction to

the concept of an overlay as well as a literature overview of the previously proposed overlay

architectures. Besides, this chapter introduces as well the EXACC [8] and the MITRACA

(Manycore Interlinked Torus Reconfigurable Accelerator Architecture) [6, 7] architectures

that led to the current DRAGON architecture presented in this thesis.

Chapter 3: Techniques and principles for energy-efficient FPGA-based many-

core overlays

This chapter presents an overview of techniques and principles that are often involved in

the design of energy-efficient digital circuits with an emphasis on instruction-set many-core

processor-based FPGA overlays. It reports some of the most important state-of-the-art

techniques for lowering the power dissipation as well as the energy consumption in general

digital circuits and provides an introduction to the metrics used in this thesis to achieve

the goal of a good energy-efficiency, in the proposed many-core overlay architecture.

36

• Part II. Software Part: Accelerator softwarization

Chapter 4: The DRAGON Instruction Set Architecture

This chapter presents the details of the proposed custom-designed DRAGON ISA. This

chapter illustrates the different categories of instructions and then gives a detailed descrip-

tion of each separate opcode. It also serves as an introduction of the general abstract

concepts that can guide the various micro-architecture implementations, including an ex-

planation of the memory architecture and its different levels. This chapter also discusses

further extensions of the Instruction Set as well as the use of pseudo-instructions.

Chapter 5: The Programming Model

This chapter explains the detailed programming model of DRAGON. The explanation

extends to different categories such as the host-side and the FPGA-side. It also explains

the extended RTL kernel model used for the control of the overlay and its integration into a

heterogeneous computing platform. Moreover, this chapter presents the methodology used

to generate binary executable code from HLLs such as the C language. Finally, it discusses

functional verification of the DRAGON overlay using Verilator.

• Part III. Hardware Part: FPGA-based accelerator virtualization

Chapter 6: The DRAGON Many-Core-Processor Overlay Architecture: A

General Overview

This chapter introduces the general architecture overview of the proposed DRAGON many-

Core overlay as well as its different hardware building blocks. This chapter also serves as

a basis for the different micro-architectures, which will be discussed in the chapters that

follow.

Chapter 7: Baseline micro-architecture implementation of DRAGON

This chapter presents the baseline micro-architecture implementation that serves for the

preliminary evaluation. Mainly, this chapter summarizes the work presented in [3].

Chapter 8: Enhancing the energy-efficiency through DRAGON2 and

DRAGON2-CB micro-architecture implementations

37

This chapter presents an enhanced micro-architecture implementation of the DRAGON

overlay and its PE, as well as a novel compact buffering scheme that is used to improve

the scalability of the overlay and its interconnect degree. Moreover, FPGA-specific im-

plementation guidelines are presented and discussed in this chapter. Mainly, this chapter

summarizes the work presented in [4].

• Part IV. Results and Discussion

Chapter 9: Experiments and Results

This chapter explains the evaluation methodology as well as the experimental setup.

The evaluation involves the use of multiple micro-architecture implementations (Baseline

DRAGON, DRAGON2 and DRAGON2-CB) and provides a scalability study as well as a

comparison between these different implementations, mainly, based on resource utilization,

achieved clock speed, computational performance, power efficiency and Effective-to-peak

Performance Ratio.

Chapter 10: Summary and discussion

This chapter gives a summary of the key differences between the three micro-architecture

implementations as well as some of the most important related results. This chapter also

discusses the impact of micro-architecture enhancements on programmability. Ultimately,

this chapter provides a discussion based on the comparison with related state-of-the-art

works.

• Part V. Conclusion

Chapter 11: Conclusion

This chapter concludes the work in this thesis, mainly, by summarizing the major contri-

butions and achievements.

38

Chapter 2

Background

2.1 Introduction

This chapter introduces the general architecture of FPGAs and describes the hardware resources

populating their physical fabric. Then, it explains their programming approaches using low-

level RTL design as well as high-level synthesis methodologies. Then, it gives an overview

of the different steps required to implement a design on an FPGA ranging from architecture

specification to the last step of bitstream generation. Moreover, techniques related to raising

the abstraction level of FPGAs are presented in this chapter, including the concept of overlays.

Subsequently, a survey of previous efforts related to FPGA overlay design and a classification

of these overlays is presented and discussed. Furthermore, this chapter introduces some of the

related works, including the EXACC and the MITRACA overlay architectures that led to the

current work.

2.2 General FPGA Architecture

FPGA are reconfigurable chips that allow static configuration as well runtime reconfiguration.

Recent FPGA architectures such as Xilinx Ultrascale series provide support for partial config-

uration as well, where a configuration frame targets specific portions of the device. Basically,

configuration allows changing the behavior of a design either statically or during run-time, by

loading a stream of binary ’0’s and ’1’s through dedicated pins, to change the ’state’ of the

FPGA, including the wiring between its building blocks, or the behavior of these blocks.

39

Traditionally, thanks to their appealing properties, such as flexibility and abundance of hardware

resources, FPGA devices have been exploited to accelerate specific types of computations, that

would otherwise struggle to perform well in conventional computing devices such as GPU or

CPUs. Among these, applications like DNA (Deoxyribonucleic Acid) sequencing [38, 39, 40,

41, 42], CNN (Convolutional Neural Network) inference acceleration [43, 44, 45, 46], image

processing [47, 48, 49, 50], high-precision arithmetic [28], and stencil computing [51, 52] have

been accelerated using FPGA devices.

Moreover, several researches investigated the deployment of FPGAs on the cloud [53, 54, 55,

56, 57, 58]. FPGAs are often praised for their energy efficiency, when compared to conventional

static architectures such as GPUs and CPUs, which boosts their appealing aspect for deployment

as an alternative computing device in data centers [59, 60, 61].

While GPUs and CPUs are flexible computing devices that can be relatively easy to program

and build applications for, they have static architectures, where the functionality is fixed in

post-production and the data can only flow in the pre-determined paths. In contrast, FPGA

devices are capable of splitting and re-routing these paths, in post-production, through the

reconfiguration of their interconnect switches. Furthermore, they can also be reprogrammed

during runtime through partial reconfiguration or dynamic scheduling of in-FPGA configuration

frames targeting its time-multiplexed DSP modules. Consequently, new hardware architecture

can be generated every time an FPGA is reconfigured.

Modern-day FPGA devices consist of four basic building blocks, namely, CLBs (Configurable

Logic Blocks), hardened blocks (such as BRAM (Block Random Access Memory), URAM (Ultra

Random Access Memory), DSP (Digital Signal Processor) [62, 63], etc.), input/output blocks

and interconnection resources.

The combination of these reconfigurable hardware resources, offer an adaptive hardware platform

that can be reshaped and tailored to address specific computational workloads. Consequently,

this allows FPGAs devices to substantially reduce power consumption and increase the compu-

tational performance.

In the following subsections, a brief description is given for some of the basic, yet mostly used

FPGA hardware resources.

40

2.2.1 Configurable Logic Blocks

A CLB (Configurable Logic Block) is the base building block in FPGAs and is the main hardware

resource that supports the logic reconfiguration aspect of these devices.

For example, in Xilinx FPGAs, it may include multiple-input LUTs (LookUp Tables) and a

bunch of registers called FFs (Flip Flops).

The LUT modules can be used to implement basic logic by controlling their output as a function

of locally stored input combinations. These modules can also be concatenated to form distributed

memories that can hold larger data widths. Moreover, they can be configured as shift registers,

multiplexers, or any logic functionality with respect to the available number of inputs [64].

2.2.2 Embedded memories

Modern FPGAs offer multiple different resources that can be used as embedded on-chip memories.

Embedded on-chip memories can be formed using various available FPGA hardware resources

such as BRAMs, URAMs [65, 66], LUTs and FFs (registers).

For example, A combination of multiple LUTs can generate memories known as distributed

RAMs (Random Access Memories).

FPGAs also embed an abundant number of FFs, that may provide storage for single-bit values or

be combined to provide larger memory storage capability, at the cost of increased area utilization.

Besides, URAMs provide a high-capacity on-chip memory storage that can hold up to 256 Kb

of data or 288 Kb when counting ECC (Error Correcting Code).

Nonetheless, URAMs are generally less flexible then BRAMs, because of their fixed input width

that must be a minimum of 64-bit wide (72-bit with ECC). However, multiple URAMs can be

combined to accept larger input widths and build larger memory storage capacity.

On the other hand, BRAMs provide more flexibility than URAMs, by allowing byte-enabled

writes and providing support for multiple input widths. They can also be combined to accept

larger input widths and build larger memory storage capacity. However, a single BRAM offer

significantly lower storage capacity than URAMs (Up to 36 Kb per BRAM).

Finally, FPGA also contain on-board large storage based on DRAM (Dynamic Random Access

Memory) while some recent FPGAs offer on-chip HBM memories.

41

2.2.3 Digital Signal Processors

Figure 2.1: General architecture of Xilinx DSP modules.

A DSP (Digital Signal Processor) is one of the most important building blocks of modern day

FPGAs. It raises the fine-granularity of FPGAs in specific locations, by combining multiple

coarse-grained compute units into a single hardened computing unit.

A typical architecture example of this module is depicted by Fig. 2.1 which depicts the basic

blocks of a DSP48E2 that can be found in Ultrascale and Ultrascale+ series of Xilinx FPGAs.

The DSP48E2 itself, is a full-fledged computing unit that was investigated by previous works and

used as a base processing element to implement complete processing arrays [67, 68]. It has also

been used in other innovative ways to implement NoC (Network on Chip) (Network-On-Chip)

routers [69].

Besides its capacity to perform additions and multiplications, the DSP48E2 module also embeds

a 48-bit inputs ALU (Arithmetic and Logic Unit) that provides support for bitwise operations

(such as logical AND, OR, XOR, etc.) and which can be used as well in a packed SIMD manner,

effectively performing more operations per clock cycle, using smaller input widths such as a quad

12-bit operands or dual 24-bit operands [63].

Xilinx constantly provides enhancements to its DSP modules. For example, it upgraded the

DSP capabilities of the DSP48E1 in the Virtex series [62] to the DSP48E2 in the Ultrascale and

42

ULtrascale+ series of FPGAs [63]. Among these upgrades, a widened multiplier input width

from 25x18 to 27x18.

2.3 Programming Methods

2.3.1 Register Transfer Level

HDL-based design has been the conventional method to program FPGAs. Several HDL pro-

gramming languages have been widely used by academics and industries alike, namely, VHDL,

Verilog and SystemVerilog which provides extensive capabilities compared to its ancestor the

Verilog language.

More recently, and with the scaling of VLSI circuits to billions of transistors per chip, the tradi-

tional HDL-based programming languages started to slow down design efforts and productivity

due to the lack of support for modern programming approaches.

This led to the creation of more capable languages such as Chisel [70] that offers more flexibility

and higher abstraction levels, including the use of functional programming and advanced OOP

(Object-Oriented Programming) concepts.

The HDL-based approach offers hardware designers means to accurately control their designs

behavior at the logic gate level. This level of control yields optimal results and allows rela-

tively fine-tuning the design netlists to optimize the quality of results, with respect to resource

utilization, timing and dissipated power.

2.3.2 High-Level Synthesis

HDL-based designs require lengthy, complex and iterative processes of verification, as well as

deep knowledge about low-level physical details that are burdensome for non-hardware experts.

In a fast-paced technology market, most corporations are looking for means to accelerate their

software workloads, without compromising their productivity. In this context, HDL-based de-

sign may become outdated as it is reaching its productivity limits. Innovative research efforts

such as [71], have introduced an alternative more abstract way to address the FPGA program-

ming methodology, through the HLL friendly tool called HLS. This new approach targets a large

43

community of software designers willing to use FPGAs but not ready to take the leap towards

HDL-based tools. As such, it has become possible to use HLLs such as C and C++ and frame-

works such as OpenCL to create FPGA-based designs, which dramatically shortens the design

cycles and provide substantial productivity boost. Several commercially available tools such

as Vivado HLS and Vitis, offered by Xilinx, support HLS-based design and offer programming

models that raise further the abstraction level of FPGA hardware.

2.4 FPGA Design Flow

This section presents the traditional design cycles when programming FPGA circuits.

2.4.1 Architecture Specification

At first, an FPGA designer must define the specification of a given problem in a concise manner

that would consequently lead to the high-level description of the eventual solution to that prob-

lem, or in other words, the circuit architecture. Often time, the original problem is split into

smaller ones that may be addressed separately, in a divide-and-conquer manner. Almost always,

the problem definition consists on providing a plain description that is understandable in human

language and which states clearly and concisely the requirements and constraints of a certain

FPGA design. Later on, it is the task of hardware design architects to turn this description into

high-level schematics of the target solution. These schematics are a mean to get the original

human-language specifications closer to the final hardware implementation of the desired circuit.

2.4.2 Hardware Design and optimization

Defining the problem and its architectural specifications leads to the next step in the design

cycle, that is the translation of these specifications into a circuit description, either using an HLS-

based approach or a HDL-based one. This step includes sub-steps of optimizations related to the

specification constraints such as the desired operating clock frequency, the peak performance to

be achieved and the limitations on power dissipation or resources utilization.

During the hardware design phase, it is often common to iterate into this same cycle, while

introducing several optimizations that aim to achieve, to a certain extent, the preliminary goals

44

such as reducing the power dissipation of the design, improving its speed or even minimizing its

area.

2.4.3 Functional Verification

It is often common that misinterpretations of the original problem happen during the hardware

design cycle. Consequently, every designer must ensure that the hardware description he provides

reflects correctly the desired behavior stated by the problem specification. In order to achieve

this goal, functional verification must be conducted. In this step, test scenarios often called

test-benches, provide some constrained random inputs that are fed to the design under test, in a

way that mostly reflects the expected design inputs. The goal of these tests is to ensure that the

system provides the same expected outputs as those stated by the original problem specification.

This design step is among the most important because it may revert the design cycle back to

previous steps. Oftentimes, this is also the most effort- and time-consuming section of the entire

design flow.

2.4.4 Synthesis

Synthesis is the step in which a given hardware design description is translated into an actual

circuit made of basic logic gates, on-chip memories and wires that connect them all. Often,

hardware compilers called synthesizers, may introduce further optimizations, in which, they may

remove redundant signals and logic, or at the opposite, duplicate them, for example, to solve

fan-out issues. The remaining subsequent steps of the FPGA design flow belong to a larger

embodying step called the FPGA implementation.

2.4.5 Technology mapping

At this step, the netlist generated after synthesis will be mapped into logic elements that actually

exist on the target FPGA, such as LUTs and DSPs. Several transformations are conducted by

the implementation tools to allow this mapping.

45

2.4.6 Placement

The Placement step consists of reserving a physical hardware resource in a certain location on the

FPGA to the equivalent technology-mapped netlist resource. Placement can be timing-driven,

in which case, the wiring distance between the hardware resources will be accounted for, in

particular, for critical paths, at the eventual cost of increasing the wire length of the remaining

less critical paths.

2.4.7 Routing

The routing process consists of establishing the connections between the previously allocated

hardware resources during the placement step. This step involves the use of interconnection

resources available on the target FPGA such as switches and multiplexers, or through hardware

resources such as LUTs. Alongside placement, routing is among the longest two parts of the

entire FPGA design flow, and despite the dramatic advances on both software algorithms and

hardware computing performance, these two steps remain the bottleneck of the whole design

process.

2.4.8 Static Timing Analysis

STA (Static Timing Analysis), consists of checking if timing requirements are met in all the

paths of a given design netlist. It may be conducted, after synthesis, placement or routing steps.

Typically, the STA checks verify that there are neither negative slacks nor violations on setup

and hold times. The successful STA verification leads to timing closure, which indicates that a

given design is capable of operating at the desired clock speed.

2.4.9 Bitstream Generation

Here comes bitstream generation, which is the final step that concludes the design flow and

creates the FPGA design image. A bitstream is the FPGA configuration stream of ’1’s and ’0’s,

that maps the hardware image on FPGA by configuring its interconnection switches and logic

blocks. Basically, FPGAs are reconfigurable devices because they allow the ”rewiring” of their

hardware resources in post-production, by downloading a new bitstream into their configuration

46

memory. This memory holds the logic state of the desired FPGA circuit when it is powered-on.

2.5 FPGA Overlay Architectures

The general idea of overlay abstraction as well as the particular case of processor-based FPGA-

overlays is explained in this section. Furthermore, a survey of the state-of-the-art previously

proposed overlays will be subsequently presented.

2.5.1 The motivation behind FPGA Overlays

FPGAs are reconfigurable devices that allow the implementation of different circuits based on

different configuration bitstreams. The traditional method of programming such devices is based

on hardware description languages such as Verilog which allow the translation of high-level

architecture definitions into hardware circuits. While this approach yields the best outcome

for a given set of design goals such as performance, energy efficiency or area utilization, it

remains extremely difficult for non-hardware experts and requires deep understanding of FPGA

physical fabric details. The more leading-edge approach of programming FPGAs consists of using

HLS (High-Level Synthesis) that simplifies the design task by providing more powerful software

constructs to translate the architecture specification into a circuit netlist. Nonetheless, both

approaches still require long iterations of architecture definition as well as netlist generation and

implementation on a given target FPGA. Moreover these two programming approaches fall back

to the lengthy FPGA compilation times, mainly caused by the placement and the routing steps,

during the implementation phase. Worse yet, failure to meet certain constraints such as speed,

area or power, requires incremental iterations of the same lengthy steps towards achieving the

design goals.

It is no secret that all of the previously stated steps make the FPGA design cycle as a whole,

lengthy and cumbersome. In particular, placement and routing require tremendous computa-

tional effort and the corresponding processing duration grows considerably with the increase in

design complexity or/and FPGA size. This repels the vast majority of software designers and

consequently keeps FPGAs far away from mainstream adoption.

Arguably, the most interesting way to abstract FPGAs hardware details and ease their utilization

47

is to use an overlay architecture. The general approach of an overlay is to provide one or

more additional layers that hide the low-level details of the FPGA and allow a more simplified

programming model. Oftentimes, the underlying abstraction level of such an overlay depends on

several trade-offs that may heavily impact the design goals. Generally, the higher this abstraction

level, the less optimal the circuit outcome, in terms of speed, area and/or power dissipation. To

reduce the impact of such an abstraction, careful design methodologies and guidelines must be

strictly followed. The next chapter provides insights into some examples of these guidelines,

towards the software/hardware co-design of an energy-efficient many-core overlay architecture.

2.5.2 State-of-the-art FPGA Overlays

Table 2.1: Review of some previous parallel processing overlays [3].

Ref Year Name FPU ALU Topology

General-purpose
[72] 2012 reMORPH None variable 2D Mesh
[73] 2013 TILT 32-bit None Crossbar
[74] 2015 SIMD-Octavo None 36-bit SIMD Lanes

/Mesh
[75] 2016 GRVI None 32-bit 2D Torus
[76] 2019 2GRVI None 64-bit 2D Torus

Application-specific
[52] 2010 SCMA 32-bit None 2D Mesh
[51] 2014 SSA 32-bit None 1D Torus

x 1D Mesh
Hybrid approach

Ours 2020 DRAGON 64-bit 64-bit N-D
Mesh/Torus

Table 2.2: State-of-the-art spatially configured vs time-multiplexed overlays [5]

Spatially configured time-multiplexed
Year name Year name
2006 QUKU[77] 2011 Heracles[78]
2010 IF[79] 2011 CARBON[80]
2011 VDR[81] 2012 reMORPH[72]
2012 ZUMA[82] 2016 GRVI Phalanx[75]
2015 DSP-based[67] 2017 MIPS Overlay[83]

Thanks to their appealing advantages, FPGA-overlays represent a hot research topic where

several ideas have been investigated and proposed. A survey about FPGA-based overlays was

48

proposed in [5] and based on their FUs (Functional Units) run-time configurability, it suggested a

classification of these overlays as being either time-multiplexed or spatially configured. When the

FUs can dynamically adapt their behavior during run-time, the corresponding overlay belongs

to the time-multiplexed category, otherwise, it is called a spatially-configured overlay. Some

examples of state-of-the-art overlays in both these two categories are presented in Table 2.2 based

on the survey proposed in [5]. Another detailed classification based on application flexibility is

given by Table 2.1.

ZUMA [82] is an example overlay that is spatially-configured. This is an open-source overlay de-

signed for portability. To achieve this goal, it proposes a virtual FPGA with a fine granularity on

top of the commercial FPGA and which is pre-compiled with the implementation tools provided

from the FPGA vendor. This allows ZUMA to abstract low-level details of FPGAs by acting as

a compatibility layer that provides a standard physical view regardless of what lies beneath it.

Nevertheless, the overhead cost of implementation area limits its use for large scale designs.

Besides, overlays that have the ability of dynamically changing their functionality or allow hard-

ware reconfiguration during run-time belong to the category of time-multiplexed overlays as per

the classification proposed by [5].

More than a few tens of billions of transistors may be packed into current large-sized FPGAs,

allowing them to provide a million or more LUTs and thousands of DSP blocks along with hun-

dreds Mb of on-chip memory storage capacity. Hence, these features combined offer a convenient

platform with a sufficient size to implement relatively large arrays of time-multiplexed overlays

in the form of 32-bit or 64-bit instruction-set processors. Consequently, this motivated the in-

vestigation of such a possibility and has led to interestingly innovative many-core processing

systems examples. Among these, an FPGA overlay code-named GRVI Phalanx [75], that is a

massively parallel many-core processor based on an extremely small footprint 32-bit RISC-V PEs

that operate at 375 MHz and use about 320 LUTs with a reported total of 400 PEs that were

implemented on a Xilinx KU040 (Kintex Ultrascale) FPGA device.

A seemingly more recent update of the GRVI Phalanx project, code-named 2GRVI Phalanx [84]

uses a larger FPGA device that is equipped with HBM memories and succeeded to deploy 1332

PEs that are based on a 64-bit version of the RISC-V ISA. These PEs maintain a small footprint

of just 400 LUTs.

49

Nonetheless while both the 32-bit [75] and the 64-bit [84] versions of these many-core processing

systems provide the possibility of adding custom accelerators, their current implementations lack

the support for floating-point operations.

Besides, another interesting overlay that targets area reduction is the reMORPH overlay [72] that

has a remarkably efficient resource utilization. In fact, this overlay is able to target relatively

small FPGAs thanks to its small FUs (Functional Units) that use, each, a single DSP, three

BRAMs, 41 FFs and 196 LUTs. For example, fourty tiles were deployed on a relatively small-

sized Xilinx FPGA (Spartan 6). reMORPH uses the internal structure of the DSP module to

map its proposed 5-stage ALU which allowed it to reach a clock speed of 400 MHz.

Generally, floating-point capable PEs tend to consume significantly larger amount of hardware

resources as compared to those uniquely supporting integer operations. This is particularly

true in high precisions where mantissas are larger and their multiplications consume more area

which in turn negatively impacts the operating clock speed. To avoid the increased area cost

and save sufficient amount of resources to deploy a larger number of PEs, most of the reported

works focused on supporting integer-only operations. While this is convenient from the view

point of implementation, it narrows the domain of applications that can be addressed by the

underlying integer-only overlay. For example, scientific computations require the use of real

numbers that are approximated in computers with adequate precision, through the floating-

point representation. This kind of representation requires specific hardware to perform basic

operations on the underlying data.

To address this requirement, the work in [52] proposed a systolic computational-memory array

(SCMA) that ditches integer operation support to provide dedicated support for floating-point

operations along with a sufficient flexibility through a minimal programming capability. The

proposed architecture targets numerical simulations based on finite difference methods. However,

the support for floating-point calculation remains limited to 32-bit single-precision data which

seems to be a design compromise between target applications and underlying hardware (to save

more resources). The overlay proposed in [52] managed to deploy 192 PEs that can operate at

106 MHz on an Altera Stratix II FPGA.

Other research such as the work in [51] proposed the Scalable Streaming Array (SSA) that is a

systolic architecture scalable to a multi-FPGA system. SSA cascades multiple Pipelined-Stage

50

Modules (PSMs) that can perform stencil calculation for each iteration and are programmed

using a domain specific language. Nonetheless, both the works in [52] and [51] lack support

for integer-based operations and their support for floating-point data remains limited to 32-bit

single-precision.

Compared to the state-of-the-art proposed overlays, the work in this thesis aims to leverage

benefits from architectures and hardware implementation techniques that are specific to a given

application domain, while maintaining sufficient flexibility through a rich and extendable custom

instruction set. The proposed instructions primarily offer support for both 64-bit long integer

and double-precision floating-point numbers, through separate execution units from a hardware

micro-architecture perspective.

2.5.3 The case of custom processor-based FPGA Overlay

Figure 2.2: FPGA abstraction through the proposed overlay.

A processor-based FPGA overlay follows a special kind of hardware abstraction through the

adoption of a software programming layer. This kind of overlay belongs to the time-multiplexed

category.

51

In general an overlay is built using multiple layers that provide gradual abstraction of FPGA

hardware resources with the aim to facilitate their programming. An example overview of such

a layered abstraction of the physical FPGA is depicted by Fig. 2.2.

At the bottom layer resides all kind of hardware resources that constitute the FPGA fabric.

A processor-based overlay adds a layer of PEs that can perform various operations on input

data by executing decoded software instruction. This creates a ”softwarized” version of the

FPGA where a designer can safely ignore the implementation details below this layer. Here, my

proposed overlay architecture implements this layer as a many-core array of PEs that can be

interconnected through a given degree and topology to exchange the data between each other

in a direct manner. The design of this array of PEs can be performed with the help of HDL

(Verilog, SystemVerilog, etc.) or HLS (C, C++) languages. Nonetheless, HDL-based design

often provides the best quality of results that ensure optimal resource utilization, fast operation

and reduced power dissipation.

On the top of this many-core layer, an interface layer may provide a bridge to communicate with

a host system to download non-processed data and software instructions into the FPGA fabric

or store back the results of data processing into the host memory. This can be realized through a

PCIe (Peripheral Component Interconnect Express) interface with the help of low-level firmware

programming, or just by efficiently leveraging the infrastructure provided by the FPGA vendor.

Using such an abstraction, an FPGA overlay may be controlled from a host system by simply

offloading tasks using the created host-FPGA interface. These off-loaded tasks are written using

instructions that can be interpreted by the many-core layer of the overlay.

A high-level C, C++ or OpenCL-based program can be compiled on the host to provide an

executable that allows a host CPU to offload tasks in forms of specifically targeted instructions

to the FPGA-overlay. The high-level program also can allow the host system to move data back

and forth to/from the FPGA overlay.

Ultimately, this thesis proposes a software-programmable overlay that can be reprogrammed

using custom instruction-set opcodes that are abstracted as prototype functions and inlined in

a standard C program. The proposed overlay can also be controlled from a host system through

an OpenCL program.

52

Figure 2.3: Design complexity using different hardware design approaches.

2.6 Enhancing the programming model of FPGAs through

software-based re-usability

Fig. 2.3 illustrates the traditional and leading-edge approaches of programming and controlling

FPGA devices, as well as my proposed simplified approach.

Traditionally, reconfigurable devices such as FPGAs are programmed using HDL languages

(VHDL, Verilog, SystemVerilog, etc.) which offer an abstract description of desired circuit func-

tionality through careful definition of concurrent processes and individual signals. While this

methodology often provides the most optimal outcomes in terms of area, power dissipation and

computational performance, it is beset with serious design concerns. For example, the complex

nature of low-level architecture definition requires deep understanding of hardware resources on

the target devices as well as expertise in the back-end implementation including gate-level be-

havior and physical mapping. Oftentimes, this unnecessarily stretches the design cycle time and

slows down the time-to-market for many products. Besides, the implementation itself is lengthy

and iterative as it requires multiple synthesis, placement and routing rounds until the design

53

achieves its specified goals.

On the other hand, the leading-edge approach consists of ditching HDL languages for the

designer-friendly HLLs such as C and C++. This approach shortens the design cycle dura-

tion thanks to a more elevated abstraction of the underlying hardware and the use of more

powerful constructs offered by HLLs. As such, this approach allows for easier problem definition

through high-level descriptions of circuit state without diving into the details of low-level logic.

While this approach significantly shortens the design time, it falls back to the pitfalls of HDL-

based designs as it requires to re-apply all the lengthy steps of synthesis, placement, routing and

bitstream generation, possibly multiple times until design goals are met.

Vendors such as Xilinx offer a powerful approach of controlling FPGA devices , through RTL

kernel (for HDL-based designs) or HLS kernel (for HLS-based designs) abstractions, which pro-

vide all the infrastructure of host-based control and PCIe-based communication between a host

computer and an FPGA. Despite facilitating the control and communication tasks, these ap-

proaches do not directly allow design re-usability and changing even the smallest parameters

would require re-implementing a modified design and generating a new bitstream before loading

it again into the FPGA device.

Here, my proposition consists of two steps. The first step would be to design a software-

programmable overlay architecture using the traditional HDL approach for extracting the best

outcomes in terms of area, speed, power efficiency and performance. The second step consists

of packaging the overlay using a compatible interface with the RTL kernel model, which allows

OpenCL-based data and instructions transfers (from a host), without requiring to reload a new

bitstream, resulting in a re-usable and significantly simpler programming model, which will be

explained with further details in Chapter 5.

2.7 EXACC Architecture, a base model for MITRACA

and DRAGON

The work in this thesis is originally inspired by the EXACC (EXtreme ACCelerator) architecture

[8] and the MITRACA (Manycore Interlinked Torus Reconfigurable Accelerator Architecture)

[6, 7].

54

Table 2.3: Comparison between DRAGON (this work), MITRACA [6, 7] and EXACC [8] archi-
tectures.

DRAGON (this work) MITRACA[6, 7] EXACC [8]

VLIW parallelism Yes Yes No

SIMD parallelism Yes Yes Yes

Fused Mul-ACc Yes Yes No

Interconnect degree Up to 4D 3D 2D

ISA DRAGON ISA MITRACA ISA based on
designed from scratch designed from scratch GRAPE-DR [85]

Control custom Control MITRACA ISA based on
Method Unit (unified with separate CPU separate CPU

the DRAGON ISA)

PE architecture Register-Memory (allows Register-Memory (allows Register-Register
operations on) operations on) (Load-Store)

broadcasted data) broadcasted data)

Largest PE count 288 256 16
(FPGA-based)

Data Broadcast through a through a direct connection
(from BM) dedicated controller dedicated controller

Data collection direct connection through sampler direct connection
(to BM) and controller

Source of data RF or LM float RF RF only
(that is or Comm. buffers or integer RF

stored to BM) or ALU or FPU

Source of data RF or LM float RF RF only
(that is scattered or Comm. buffers or integer RF
to other PEs) or ALU or FPU through Comm. register through C. register

Broadcast dimension 2D 1D 1D
(Broadcast Block dim)

The EXACC architecture had been discussed in the feasibility study of the Japanese flagship

computer system [86]. The proposed architecture was evaluated on a software simulator [87]

and a hardware emulation by FPGA [8]. In [8], an FPGA emulated a small-size EXACC that

includes a 4x4 array of PEs connected by a 2D-Mesh network topology. The underlying ISA

(Instruction Set Architecture) was based on the GRAPE-DR architecture [85].

In 2018, the MITRACA architecture was recreated based on the EXACC architecture and inher-

ited the two-part aspect of the overall design consisting of an Accelerator and Controller parts.

The skeleton framework of MITRACA adopted the same concept as the EXACC while enabling

the computation of multiple operands, including communication registers that stored inputs di-

rectly from each neighboring PE. Besides, a custom-design ISA was developed from scratch,

which proposed a completely redesigned programming model with an aggressive VLIW approach

explicitly exposing the parallelism to the programmer. Furthermore, the micro-architecture im-

55

plementation of MITRACA deployed a considerably larger amount of PEs compared to the work

in [8] (256 PEs against just 16). While the larger FPGA target allowed this level of scaling, the

architecture’s scalability was the main reason for achieving that milestone.

On the other hand, an early version of the DRAGON architecture was proposed in [88]. How-

ever, the underlying controller architecture had not been determined yet. Besides, the overlay

programming was much more complicated as its PE micro-architecture contained two ALUs and

two FPUs, which was reduced to one for each in subsequent iterations in [3, 4].

Ultimately, the DRAGON overlay architecture proposed in this thesis, was inspired by the

work in [8], and is a continuation of the previous research efforts of [6, 7, 88]. The DRAGON

ISA was completely redesigned and the Controller part ditched the master processor previously

adopted in EXACC and later in MITRACA, to implement a custom CU (Control Unit) that

communicates with the sequencer to issue the SIMD instruction streams. Moreover, it maintained

the possibility of performing operations directly on operands coming from the BM (Broadcast

Memory) while improving the original broadcast block architecture by proposing a more modular

and scalable broadcast cluster architecture, that consists of 4x4 arrays of PEs and broadcast

memories consisting of 16 banks, each. DRAGON creates pairs of PE, BM bank and implements

the broadcasting feature on a 2D block instead of 1D block in the original EXACC and MITRACA

architectures. Better yet, the broadcasting feature is implemented in a two-level approach that

allows to implement two types of broadcast using the base ISA and may be extended to implement

custom broadcasting models using further ISA extensions.

Table 2.3 summarizes the notable differences between EXACC [8], MITRACA [6, 7] and DRAGON

[88, 3, 4] architectures.

2.8 Summary

This chapter explains mainstream FPGA architecture and programming methodologies, includ-

ing HDL-based and HLS-based design approaches. It also introduces the concept of FPGA

overlay and the necessity for such an approach to bridge the gap between non-hardware experts

and the adoption of FPGA as a mainstream computing device. This chapter also summarizes the

state-of-the-art FPGA overlays and categorizes them based on multiple architecture and micro-

56

architecture properties. Furthermore, this chapter discusses the case of a custom processor-based

overlay and the way to enhance the programming model of FPGAs as an eventual alternative to

the shortcomings of previously proposed works. Finally, this chapter introduces the DRAGON

overlay and provides a brief summary of the origins of DRAGON, including the MITRACA and

EXACC architectures.

57

Chapter 3

Techniques and principles for

energy-efficient FPGA-based many-core

overlays

3.1 Introduction

When the first computer chips came to existence, the main focus was to increase their compu-

tational performance through incremental innovative approaches. Nonetheless, the increase in

circuit sizes and the miniaturization of manufacturing technology nodes has driven computer

chips to hit a power wall where the heat dissipation from electrical power consumption has be-

come an inhibiting factor towards further scaling of the number of transistors that may fit into

a single die. As a result, energy efficiency has become a serious concern for chip manufacturers

and computer architects alike. While several factors may contribute to the evaluation of how

efficiently a circuit consumes energy, this thesis narrows down these factors to the following three

pillars that will be explained and discussed in detail in the subsequent sections.

• Computational Performance This includes both the TPP (Theoretical Peak Perfor-

mance) and the SP (Sustained Performance). The TPP is a metric that measures how fast

a system can perform computations in an ideal setup where there is no overhead due to

data movements for example. On the other hand, the SP measures how fast these com-

putations are performed in a real scenario, including all possible overheads. For example,

58

in high-performance computing, both TPP and SP are measured through the number of

floating-point operations per second noted as FLOPS or FLOP/s.

In a software programmable many-core overlay, the term TPP refers to the peak compu-

tational performance of such an overlay. Here, the TPP is computed in a similar manner

to the work in [51], by multiplying the amount of operations that can be performed by a

PE in each clock cycle, the total amount of PEs and the operating clock frequency of the

overlay. The corresponding equation that computes the TPP is given in section 3.3.

• Energy and power efficiency The power efficiency of a given computer system can be

measured by dividing its SP by the corresponding consumed power and is expressed in

FLOPS/W or FLOP/s/W. On the other hand, the energy efficiency is usually expressed

in FLOP/Joule. The energy efficiency can in fact be deduced from the power efficiency

because 1 W is equal to 1 Joule/s. Therefore, it is common for the energy efficiency to

be used interchangeably with the power efficiency, because they mostly reflect the same

intent. The power efficiency’s equation will be given in section 3.3.

• EPR The Effective-to-peak Performance Ratio was used in [9] to indicate the ratio between

actual performance and peak performance. This terminology is used here to indicate the

ratio between SP and TPP in a software-programmable many-core overlay context which

indicates the related computational efficiency (the detailed definition of SP and TPP is

given in the beginning of this section, and their equations are given in section 3.3). This

metric relates to how efficiently the real computation is performed and how close it comes

to nearing the TPP. Nonetheless, this metric hides another important meaning in disguise.

It can in fact, give an idea of the percentage amount of overhead that needs to be reduced to

approximately achieve the best possible energy efficiency in a system. The EPR’s equation

will be given in section 3.3.

The work in [1], uses the term intrinsic energy to define the lower bound on the energy needed

to perform a computation assuming an ideal system with optimal dedicated datapaths resulting

in near zero energy overhead, implicitly hinting on a system operating at its maximal theoretical

performance.

59

Figure 3.1: Overview of the hidden impact of the EPR on energy overhead.

In an ideal system, the shortest execution time is obtained when the system achieves 100% of

its TPP and is shown as T1 in Fig. 3.1. The ideal minimal energy consumption is limited by T1

as shown in Fig. 3.1 and is the closest match to the definition of intrinsic energy in [1].

In contrast, a real system exhibits multiple causes of energy overhead. Arguably, the most im-

portant reason is the energy consumed when moving the data to/from the computing blocks

while not performing the desired computation in the mean time. In instruction-set-based sys-

tems, this data movement increases the number of instructions without increasing the number

of performed operations, resulting in an increased execution time (reduced SP) and an increased

energy consumption.

Therefore, when designing an instruction-set-based processing system, the EPR can add a valu-

able information that complements the power efficiency metric by showing to which extent the

overhead energy has been reduced, by means of reducing the execution time, assuming the average

overhead power remains constant. Mainly, this energy consumption reduction is a direct result

of the execution time reduction that can be achieved by limiting the effect of data movements

on energy through an efficient overlapping with the effective computations, at the instruction set

60

architecture level. As a result, a higher EPR would implicitly hint at a more efficient use of the

available energy.

3.2 Background

3.2.1 Power dissipation and energy consumption in FPGAs

In CMOS (Complementary metal–oxide–semiconductor) -based digital circuits, the overall power

dissipation can be split into static and dynamic parts. The static power is the result of standby

current flow in CMOS transistors and the leakage power due to the reverse-bias current of

the formed diode in MOSFET (Metal–Oxide–Semiconductor Field-Effect Transistor) transistor’s

semiconductor junctions [1]. On the other hand, the dynamic power is the result of short circuit

power and the capacitive load power. The short circuit power originates when complementary

MOSFET transistors (n-type and p-type MOSFETs) in a CMOS circuit are briefly behaving as

closed switches and pass a short circuit current during switching transitions [1]. On the other

hand, the capacitive load power is the result of charge and discharge of circuit capacitance, due

to clock toggling [1].

In general, the dynamic power dissipation accounts for the vast majority of the overall power

in CMOS digital circuits which includes FPGAs, however, this remains depending on multiple

factors, among which, the resource utilization percentage of the overall device or the operating

clock frequency. The work in [89] estimates the dynamic power dissipation in a range of 85% to

90% of the overall power. While this estimation might be outdated (from the year 2000), more

recent data still report a high percentage of dynamic power dissipation in FPGAs. For example,

It has been reported (on the year 2015) that a Cyclone V SoC (System on Chip) [90], which

consists of an FPGA and a HPS (Hard Processor System), dissipates 23% of its power in the

HPS part (both dynamic and static) whereas the FPGA part dissipates the remaining as 69%

dynamic power and 8% static power. Besides, the work in [91] reports dynamic power percentages

nearing 90% when increasing the FPGA utilization. Nonetheless, the work in [89] provides a first

order approximation of the dynamic power Pdyn shown in Eq. 3.1, where freq is the clock speed

(expressed in Hz), V is the supply voltage of the circuit (expressed in Volt), C is the capacitance

that is charged or discharged during a transition activity (expressed in Farad) and finally α is

61

the the probability that such a transition occurs. Reducing the value of any component of this

equation may reduce the power dissipation but not necessarily improve the energy efficiency.

In fact, reducing the supply voltage increases signal delays which degrades the computational

performance, similarly reducing freq decreases as well the computational performance which

leads in both cases to an increase of the execution time and degrades the energy efficiency.

Consequently, the most logical approach to decrease the dynamic power and hence the overall

power dissipation would be to reduce the overall capacitance (in particular routing capacitance)

as well as the probability that undesirable transitions occur [89].

Pdyn = α×C×V2 × freq (3.1)

In this thesis, the term power dissipation refers to the average total power that is the sum

of both static and dynamic power, and its value will be obtained by the reports generated by

the FPGA vendor software analysis tools (Vitis and Vitis analyzer), that are used to profile the

FPGA during run-time. These software tools allow obtaining highly accurate execution time and

reports of power dissipation by inserting and monitoring extra profiling logic into the FPGA-

based user-provided designs. The obtained execution time of a given application running on an

FPGA, can be used later to compute the corresponding energy consumption which is simply the

product of that time by the average power dissipation. The execution time is used as well to

compute the energy efficiency or the power efficiency of the underlying FPGA circuit, as will be

explained further in the experimental evaluation chapter.

3.2.2 A survey of techniques for energy-efficient FPGA-based design

The aim for energy efficient FPGA overlays faces many challenges, notably because it is not the

only target to achieve. In fact, the computational performance is another equally important goal

that should not be discarded. Often, a high computational performance would eventually increase

the power efficiency and consequently the energy efficiency of a given design assuming it slightly

increases or better maintains a constant average power dissipation. Nonetheless, the increase

in the computational performance involves multiple factors, among which, raising the circuit

clock speed, that can cause the power dissipation to be increased considerably. Consequently,

62

empirical evaluation may be the best indicator of the effectiveness of any given energy-oriented

design approaches. Besides improving computational performance, a designer may recur to low-

power design techniques without compromising the computational performance.

• Techniques proposed for digital CMOS circuits in general Several works surveyed

and summarized multiple guidelines for low-power design of digital CMOS circuits. For

example, the work in [89] presented general design flow techniques to achieve this goal.

It proposed three abstraction levels for power reduction, namely, system, architecture and

technological levels. First, at the system level, the proposed techniques include system

partitioning, scheduling and compression methods. Second, at the architecture level, these

techniques include parallel hardware and hierarchical memories. Finally, at the technolog-

ical level, it suggested reducing supply voltage, on-chip routing and control of the clock

frequency. Furthermore, the work in [89] discussed other techniques that aim to reduce

undesirable switching activity, such as clock control or the use of gray code counters, for

example, for program counters among others, that are known to change the state of a single

bit at each increment, which effectively minimizes transitions.

The work in [92] particularly surveyed architecture-level power- and energy-efficient design

techniques, among which, it reported instruction issue width optimization and pipeline

balancing [93], clock gating [94, 95, 96], power gating [97], instruction queue resizing [98,

99, 100] and register file access optimization [101].

• Techniques proposed specifically for reconfigurable chips Some of the previously

reported techniques, such as power gating are only applicable in full-custom chips such as

ASICs, where a designer exercises a full control over all design aspects. A reconfigurable

chip such as an FPGA is a semi-custom device where the physical resources are already

available and unless this feature has been accounted for, it remains not possible to apply.

Subsequently, the work in [102] presented some low-power-oriented techniques that are

applicable in an FPGA context. Among these techniques, the reduction of dynamic power

on clock scheme through clock gating at chip, design or RTL level, as well as the reduction of

global resource power through the reduction of fanout and signal loads on global networks.

Another interesting technique is to reduce the power dissipated by the implemented logic for

63

example by removing glitches through balanced paths or through using gray code counters

and optimized encoding of FSM (Finite State Machine) state transitions. The work in

[102] also reported two other techniques targeting FPGA-based soft-processors, namely,

specialized instruction-set extensions [103] as well as the recoding of instructions coupled

with power-aware scheduling schemes [104].

Despite being an interesting feature, low-power is not always equal to energy-efficient. This is

particularly true in instruction-set processors where faster processors may dissipate more power

but perform computations in significantly shorter time, thus, consuming less energy and leading

to a higher energy efficiency. Consequently, the work in this thesis, aims first at shortening

execution time of software applications by the means of a high computational Sustained Perfor-

mance (this implies a high EPR which results in a reduced energy overhead). Then, through

micro-architecture enhancements, that aim at lowering the average power dissipation. Conse-

quently, further details on the techniques that allow to achieve these goals will be discussed in

later sections.

3.3 Important metrics for energy efficiency evaluation

• Computational Performance [GFLOPS]:

The TPP represents the upper bound in computational performance of a given computer

system. It defines the theoretical (ideal) performance limit of such a system, in which case

all of its compute elements are fully used to perform useful computations at every clock

cycle, while new data are always available at every input operand.

In a programmable many-core overlay architecture where multiple processing elements

operate concurrently, the TPP can be expressed as Eq. 3.2, where Freq is the operating

clock frequency in Hz, NPE the number of PEs and NFLOPs is the amount of floating-point

operations that can be executed in a single PE at every clock cycle.

TPP [FLOPS] = NPE × NFLOPs [FLOPs]× Freq [Hz] (3.2)

For example, assuming that this programmable many-core overlay operates at 200 MHz

64

(Freq [Hz] = 200 x 106) and contains four PEs (NPE = 4) where each PE embeds a floating-

point multiply and add unit that is capable of performing one addition plus one multipli-

cation (NFLOPs = 2) at every tick of the clock signal, based on Eq. 3.2, the TPP can be

evaluated as in Eq. 3.3.

TPP [FLOPS] = 4 [PEs]× 2 [FLOPs]× 200 [MHz] = 1.6 [GFLOPS] (3.3)

In practice, the SP, that is the real computational performance, is dependent on the target

application as well as the computer system architecture. One way to compute the SP is to

first measure the wall clock time (Twall clock time) from the start until the end of a program

execution, then manually compute the number of useful computations performed during

this time (#FLOPs). Consequently, SP can be obtained through Eq. 3.4.

SP [FLOPS] =
#FLOPs [FLOPs]

Twall clock time [s]
(3.4)

Often, since the SP is relative to the underlying application, the TPP is used instead as

a measure of the computational performance of computer devices, whereas the SP is used

when computing the power-efficiency under a specific workload.

• Power Efficiency [GFLOPS/W]:

The Power Efficiency as its name suggests indicates how well a computer system consumes

power under a specific computational workload. It is expressed as the ratio of sustained

(real) performance to the average power consumed by the underlying computation. As

such, it can be expressed by Eq. 3.5 where POWER is expressed in Watt (W). In FPGA

devices, the value of POWER for a design can be captured during run-time by enabling

the related power profiling switches using software tools such as Vitis (for Xilinx FPGA).

Power Efficiency [FLOPS/W] =
SP [FLOPS]

POWER [W]
(3.5)

The energy efficiency is often used interchangeably with the term power efficiency to ex-

press the same intent. The energy efficiency is typically expressed in [FLOPs]/[Joule]

65

(FLoating Point Operations per Joule) and can be easily derived from the power efficiency

knowing that 1 [Watt] = 1 [Joule/second]. In other words, [FLOPs]/[Joule] is similar to

[FLOPS]/[W].

• EPR [%]:

The Effective-to-peak Performance Ratio can be obtained through Eq. 3.6.

EPR [%] =
SP [FLOPS]

TPP [FLOPS]
(3.6)

The concept of the EPR is illustrated in Fig. 3.1. The EPR can be a good indicator of how

optimized is the computer architecture but also it can implicitly hint on how optimally

the related energy is being used. At the theoretical peak performance, the execution time

is minimal and so is the related consumed energy, assuming a constant average power

dissipation. Thus, by maximizing the sustained performance to an extent close to the

theoretical peak, the overhead energy is reduced by minimizing the total execution time

which leads to a more efficient use of energy. For example, an EPR of 90% indicates

that 90% of the execution time had been dedicated solely to useful computations, whereas

only the remaining 10% of that time had been spent on non-compute operations, such as

initialization, data movements between processing elements and memory loads or stores.

3.4 Levels of energy-efficiency improvement

Energy-oriented design improvements heavily impact the energy efficiency of FPGA overlays.

The related impact degree varies depending on the level at which these improvements were

introduced. In general, this degree tends to be more visible when the abstraction level is higher.

Based on the reference [2], the work in [1], showed these abstraction levels and the general extent

at which it can be possible to reduce circuit power as can be seen in Fig. 3.2.

In digital circuits such as ASICs (Application-Specific Integrated Circuits), energy-oriented de-

sign techniques can be applied at all these levels thanks to the full-custom nature of these circuits

where a designer intervenes in all the product life-cycle processes. In contrast, reconfigurable

chips such as FPGAs are semi-custom devices, where the circuit is pre-fabricated and only a

66

Figure 3.2: The impact of design abstraction levels on power reduction [1],[2].

limited set of changes can be applied in post-layout, through the process of reconfiguration. As

such, ASIC-only energy-saving techniques such as power-gating, among others, are not applica-

ble to these devices. Worse yet, maintaining a high-degree of application flexibility through an

overlay-based abstraction of FPGAs, sacrifices some other possible paths for saving energy, such

as when inferring logic through high-level HDL-based circuit descriptions, instead of manually

instantiating FPGA blocks like DSPs which prohibits the use of power-saving switching logic

inside of these blocks, such as the one disabling the use of internal multipliers when not required.

In this section, the two levels of energy-efficiency improvements in the proposed many-core over-

lay architecture, are presented and discussed. The first is the ISA (Instruction Set Architecture)

level which provides the hardware/software interface, and the second is the micro-architecture

which concerns the RTL-based description and the corresponding physical implementation.

3.4.1 Instruction Set Architecture

• Optimal multi-aspect encoding of instructions ISA design is a complicated task

that involves in-depth computer architecture knowledge and expertise. The encoding of

instructions fields, such as their width and relative placements inside the instruction plays

an important role in the ease of use and the ease of micro-architecture implementation of

an ISA. It may also have an impact on the power outcome of such an implementation. For

67

example, preserving the position of a certain field across different types of instructions,

simplifies the decoding logic and reduces its related circuit size. Furthermore, it can reduce

issues related to critical paths for signals with a high fanout such as the immediate fields,

across different implementations [105].

Besides, most available commercial or open-source ISAs are designed in a device agnos-

tic way. That is, these ISAs are not designed to address a specific device with the pre-

assumption of constrained resources. Hence, prior to the design of energy-efficient ISAs,

that are targeting FPGA devices, it is important to study the proprieties of their building

blocks, such as their on-chip memories. In particular, these memories exhibit similar power

consumption trends, whereas their storage spaces are fully or partially used. Hence, it

makes sense to fully use their storage capacity to the fullest extent possible without com-

promising other aspects of the overall ISA design such as the full width of the instruction

which should be minimized to reduce programs memory footprint. Xilinx FPGAs provide

two kinds of the largest capacities of on-chip memories in FPGA devices called BRAMs

and URAMs. These two kind of memories can hold up to 512 (29) and 4096 (212) 64-bit

data, respectively. They also can be used to implement register files and local memories in

a processing element design. As such, using a direct addressing mode, it has been decided

to implement the DRAGON ISA with a 12-bit-width field for local and broadcast mem-

ory addresses and 8-bit-width fields for the Register File (a 9-bit-width field would have

increased the instruction width to more than 64-bit width which complicates the storage

of instructions).

Furthermore, instruction-set based FPGA-overlays are mostly used to address limited set

of applications, therefore, it is advised to keep a limited number of base ISA instruction

opcodes, while providing a way to ISA extensions, to increase application flexibility through

the possibility of more complex operations. Consequently, the limited number of opcodes

reduces the decoding and execution resources which positively impacts the energy efficiency

across different circuit implementations.

• Efficient ISA-level overlapping of computation and data movements

To maintain the energy consumption near its ideal minimal level shown in Fig. 3.1, it is

68

Figure 3.3: Overlapping of compute and data movement operations using a single clock cycle
instruction issue.

necessary to minimize the application execution time. The processing time of a compu-

tation depends upon the operating clock frequency, the number of issued instructions per

clock cycle and the total number of instructions required. While the increase in frequency

improves the computational performance, it may inadvertently increase the dynamic power

consumption due to the increased switching activity in CMOS transistors. The impact of

increasing the clock speed on energy consumption is a matter of empirical experiments and

can not be easily identified analytically. Therefore, to minimize the execution time the

focus should be mostly on reducing the overhead energy by the means of minimizing the

overall number of computation clock cycles. This can be achieved by the parallel issue of

concurrently executed instructions through a custom VLIW (Very Large Instruction Word)

approach [11]. The other option would be to allow single instructions to perform multiple

concurrent operations. A possible scenario would consist of fusing computations with data

movement operations, resulting in a significant reduction of the overall number of instruc-

tions that leads to considerable gain in energy efficiency. Furthermore, to avoid spending

more clock cycles waiting for new data to be available into the register file, the common

VLIW approach can allow simultaneous Load operations, through a separate instruction in

69

the second VLIW packet, together with the ongoing compute and store operations in the

first VLIW packet instruction. This first packet may also allow the concurrent scattering of

computed results towards neighboring processing elements as well as collecting their output

data into local dedicated communication buffers. This approach also dramatically reduces

the execution time by means of direct neighbor-to-neighbor data transfers, instead of the

lengthy cycles using multi-memory-level transfers. These concepts are illustrated in Fig.

3.3.

• Efficient memory architecture Data movement is a major bottleneck for performance

and energy efficiency. While several computing models, such as systolic arrays and data

flow architectures, managed to alleviate its impact, it remains one of the hardest com-

puter architecture problems in instruction-set processor design. In this context, an efficient

memory architecture would reduce the negative impact of moving data between the global

memory where it originally resides and the compute blocks where the useful work (com-

putation) is performed. The work in [1] lists double buffering among the techniques that

allow a smooth transfer of data in a pipelined manner to hide undesirable latencies that

would otherwise decrease the computational performance and increase the execution time

which leads to an increased loss of energy. The EXACC architecture [8] implements an ef-

ficient memory architecture consisting of three levels (Global, Broadcast, Local) where the

intermediate level (Broadcast) acts as a mean of double buffering. The proposed DRAGON

architecture builds upon this memory model and provides ISA support (through a special

LDBM instruction) allowing the intermediate Broadcast memories to act as an intermediate

DMA (Direct Memory Access) engine to move a whole chunk of data from BMs (Broad-

cast Memories) to LMs (Local Memories) in a single instruction, which allows the PEs to

perform useful computations on existing data stored on the RegisterFile for example, while

new data is being loaded into their LMs.

• Multi-source operands As opposed to the CISC (Complex Instruction Set Computer)

architectures, a RISC (Reduced Instruction Set Computer) architecture prohibits direct

operations on memory operands and moves the data from memory to the Register File prior

to operation execution. In the context of many-core processors, this increases the overall

70

energy consumption by introducing undesirable latencies. The proposed DRAGON ISA

alleviates this issue by adopting an aggressive model that lies in between CISC and RISC,

that allows direct operations on communication buffers used as a mean to temporarily store

exchanged data between neighboring PEs, in a manner bypassing the multi-memory-level

transfer of data that can be found in several many-core-based processing architectures such

as GPUs [106].

3.4.2 Micro-architecture and physical implementation

• Spatial parallel execution The execution time is an important factor for energy con-

sumption of computer systems. In fact, reducing the computation time while maintaining

the same average power consumption would lead to an improved energy efficiency. Among

the most effective execution time reduction techniques is the parallel processing of data. In

modern day computing, the most used forms of parallel processing from Flynn’s taxonomy

[107] are SIMD and MIMD (Multiple Instruction Multiple Data). In particular, the first is

known to be the more energy efficient option as it will consume less power because of the

shared instruction stream that shrinks the memory requirements to store program instruc-

tions and also because of the significantly simpler control scheme that removes redundant

logic [12].

• DSP Utilization: Modern large FPGAs such as the one in [37] offer a relatively large

amount of DSP blocks [63]. These resources are capable of performing several kinds of

computations including addition, multiplication and bit-wise operations while using a tiny

fraction of the overall system power. Oftentimes, the implementation tools automatically

map the described circuit behavior to these resources to minimize the design size and

improve its performance. Nonetheless, poor HDL-based circuit description can instruct

the tool to use other resources such as LUTs (LookUp Tables) which complicates routing,

enlarges the design size, and increases its power consumption. Therefore, it is necessary

to understand and follow the vendors guidelines for automatically inferring DSP resources

to implement a desired functionality. This implies proper HDL coding that allows the

software tool to easily capture the intended circuit behavior and successfully map it to

71

DSP blocks instead of LUTs. It is also possible to force the tool (at the possible extents)

to utilize these DSP blocks for certain functions by adding a special pragma (* use dsp =

”yes” *) at the RTL level. This is especially useful when the granularity of the computation

is considerably large, such as in double-precision floating-point computations.

• Fanout Reduction In a digital circuit, it is common for a single output source signal of

one logic block to be connected to multiple destination inputs of other logic blocks. For

example, in the case of a SIMD architecture, a single instruction stream signal has to be

connected to several processing elements. This leads to the Fanout concept, defined by the

number of terminal destinations that are fed by a single source signal. In FPGA devices,

there are typically two types of routing resources, global and non-global. The global ones are

implemented in a well defined tree-structure that shortens the overall delays and therefore

they are usually dedicated to clock and reset signals usage. On the other hand, the non-

global ones are usually used by all other signals. Depending on the FPGA structure, there

are thresholds where a high-fanout signal may create congestion and complicate routing

resulting in poor quality of results, reduced clock speed and increased power consumption

due to the increased capacitive load of the resulting long connection wires. While it may be

possible to use global route resources for high-fanout non-clock and non-reset signals, it is

usually not recommended or restricted to a minimum threshold because it would adversely

lead to higher delays. It is common for routing tools to automatically solve this kind of

issues by promoting a high-fanout signal to a global signal that uses global routing resources

or by simply replicating the gate that drives this signal. However, the outcome result is not

guaranteed, especially for large designs that can easily suffer from congestion. Therefore, it

is more efficient to address this problem manually at the RTL level, by manually replicating

high-fanout signals or by guiding the tool through specific pragmas.

• Pipelining Multi-level combinatorial logic can lead to unbalanced delays between the

different signals arriving at the inputs of a destination logic gate. These undesired delays

may unnecessarily introduce a power-consuming switching activity, that is called a glitch

[108]. The work in [109] reports, based on [110], that this kind of issue can be responsible

for up to 70% of the overall power consumption in ASIC circuits. The work in [109]

72

also reports that this percentage can be easily surpassed in FPGA devices and shows an

example 32x32 non-pipelined multiplier where the consumed power due to glitches accounts

for about 96.9% of the overall power consumption.

In a digital circuit, the critical path, that is the path with the longest delay between

two registers dictates the operating clock speed of the full circuit. To improve this speed,

designers often recur to a well-known technique called pipelining, which consists of splitting

the critical path further, by inserting intermediate registers, in order to reduce the logical

levels between both ends of the original path. The work in [109] suggests that pipelining can

be used to reduce the occurrence of glitches and hence the related power consumption. In

fact, reducing the amount of logic between two registers can effectively reduce the spurious

switching probability in a given circuit. The study in [109] backs its claim by showing the

impact of pipelining on the dynamic glitching power in a multiplier circuit. As a result,

it shows that an 8-stage 32x32 pipeline multiplier can cut the dynamic glitch power by

almost 50%. Nonetheless, while pipelining reduces the glitching activity, it increases the

number of functional transitions. The work in [109] suggests that to effectively reduce the

overall dynamic power, it is necessary that the reduction in glitch transitions out-weights

the increase in valid transitions which is the case for large designs including their example

of the 32x32 multiplier.

In many-core instruction-set processor designs, there are several opportunities to apply

pipelining where the benefits can lead to reducing the dynamic power consumption due to

glitches but also to improving the circuit performance. For example, a pipelined processing

element can benefit from temporal parallelism where multiple separate instructions can

be partially executed in the same clock cycle through different portions of the pipeline

stages. Furthermore, pipelining can provide more flexibility to the FPGA synthesis tool

to introduce retiming, which is a technique that consists of balancing signal path delays

by moving registers forward or backward in the related path. Another scenario would be

to pipeline large width data buses, in particular, those connected to off-chip or on-chip

memories, in order to simplify the routing task, achieve better operating clock speed and

reduce the dynamic power resulting mainly from glitches.

73

• Design considerations for HBM-enabled multi-die FPGAs Modern FPGAs are the

sum of small to middle-sized dies stacked into a single chip by means of SSI (Stacked

Silicon Interconnect) technology. These dies are called SLRs (Super Logic Regions) in

Xilinx FPGAs and the wires between them called SLLs (Super Long Lines) [111] are scarce

and consume more power than those inside the regions because of their size. Interconnects

are responsible for an important part of the power dissipation in FPGAs. The work in

[102] reports that they dissipate at least 34% and 60% of leakage and dynamic power,

respectively. Therefore, it is recommended to avoid crossing the SLR regions or reduce the

use of SLLs at the extents possible. In particular, for many-core overlay designs with a

3D interconnect degree and a balanced PEs distribution across SLR regions, it is possible

to achieve this goal by keeping the interconnect wires for the 3rd dimension inside a single

region by the means of a properly designed modular implementation and its related layout.

While a balanced PEs distribution across regions leads to efficient resource utilization and

enhanced scalability, it is offset by the fact that many HBM-enabled FPGAs implement

their HBM memory banks solely in the bottom region. This complicates the process of

connecting these memories to their end-buffers that may be placed into different dies and

imposes the use of SLLs as a means of physical data transport. As such, it is necessary

to analyze the relationship between a balanced logic distribution across regions and the

efficient bandwidth utilization, to strike the best deals in terms of scalability, computational

performance and power efficiency.

• Manual floorplan The architecture definition of a given circuit provides a clear view on

the proximity of functional blocks (such as PEs) to each others, as well as the relative length

of wires that interconnect them. Meanwhile, the synthesis tools may alter the architectural

specification view without modifying its intended functionality, by combining or splitting

design blocks. Worse yet, the implementation tools may put relatively close blocks from

the architectural point of view, far apart in the physical placement on an FPGA. This

leads to a serious problem. In fact, it complicates the routing process which results in

larger delays, degraded performance and increased power dissipation. To solve this issue,

it is highly recommended that the designer provides placement constraints to assist the

74

implementation tools during placement step. This ensures maintaining a relatively close

circuit view to the previously defined abstract architecture view. As such, a designer may

define physical area boundaries on the FPGA to host parts of the design elements. A

typical example would be to use what is called Pblocks in Xilinx FPGAs. Moreover, it is

possible to use vendor pre-defined Pblocks, in the context of multi-die FPGAs, to pass the

desirable placement constraints information during the pre optimization step, right after

synthesis, to instruct the tools to map a large portion of a design into a specific chip die.

• Low memory footprint for inter-PE data exchange In the context of a tightly-

connected many-core architecture, increasing the amount of adjacent PEs can significantly

increase the number of communication buffers that are used to efficiently exchange data be-

tween these neighbouring PEs. These buffers consume energy and may limit the scalability

of the overall system due to the lack of sufficient on-chip memory resources. Consequently,

an efficient utilization of such kind of resources should aim at reducing the overall mem-

ory footprint without compromising the computational performance, thus, leading to an

improved energy efficiency by means of area and power minimization.

3.5 Summary

This chapter introduced several concepts that will guide the design of the many-core overlay

architecture proposed in this thesis. This chapter defines the common metrics used to evaluate

the computational performance, the power (and energy) efficiency as well as the computational

efficiency (EPR). Moreover, several state-of-the-art techniques that can be applied to improve the

energy efficiency were surveyed and reported. Ultimately, specific techniques that were applied

in this work have been presented and explained in detail.

75

Part II

Software Part: Accelerator

softwarization

76

Chapter 4

The DRAGON Instruction Set

Architecture

4.1 Energy-efficiency considerations for Instruction Set

Architecture Design

The design of an ISA generally imposes several trade-offs in terms of flexibility, performance,

code density, specialization, and energy efficiency. Often times, these trade-offs are mostly ad-

dressed in the micro-architecture (implementation) level because most of ISAs have been pro-

posed decades ago and have been since frozen to allow compatibility with their large body of

software applications. While most of the existing ISAs are commercial and may require a paid

license and/or royalties, such in the case of the ARM ISA, RISC-V has been proposed as the

Linux of hardware because it is possible to use it in an open source manner. Despite the attrac-

tive features of RISC-V, such as its modularity and the possibility to extend its base instructions,

it may be better suited for ASIC implementation rather than reconfigurable chips, in particular

from an energy efficiency perspective. In fact, an ASIC implementation has full control over

all aspects of power optimizations, including at the physical implementation of cells and man-

ufacturing technology process. In contrast, an FPGA provides access to a subset of what an

ASIC can manipulate and as such energy-aware optimizations can only be accessed in higher

levels of abstraction. Consequently, most considerations would be addressed in the architecture

and micro-architecture levels and would primarily address optimizations of the dynamic energy

77

consumption rather than the static one. Besides, the RISC-V ISA adopts a RISC architecture

that is capable of executing computational instructions whose operands are incoming solely from

the Register File which may limit the overall performance outcome. As explained in previous

chapter, it is important to maximize the sustained performance close to its theoretical peak to

minimize energy consumption overhead. While it may be possible to achieve this goal using the

RISC-V ISA, it would still require heavy micro-architecture design efforts (for example an Out

Of Order implementation with macro-operation fusing) that would significantly increase the re-

source utilization and power consumption without the proportional increase in performance. For

these reasons, it has been decided to implement the DRAGON ISA from a clean slate, in a way

that would be better suited to achieve performance and energy efficiency goals on reconfigurable

chips such as FPGAs.

4.2 The Memory Architecture

Figure 4.1: The DRAGON Memory architecture.

The proposed DRAGON ISA adopts a memory architecture model that consists of three levels,

namely, in ascending order: The LM (Local Memory), The BM (Broadcast Memory) and on

the last level the GM (Global Memory). Fig. 4.1 depicts these levels and their interactions.

In fact, the GM has the largest storage that holds both program instructions and data, while

BM interfaces between LM and GM to decouple data movements from execution. The GM is a

64-bit addressable memory, while LM is 12-bit addressable. The BM is implemented in a banked

manner. A single BM bank is 12-bit addressable and each LM memory can write its data to

78

a single BM bank. However, in a broadcast cluster, the whole BM banks address space can

be accessed by all PEs and therefore by all LMs, through a broadcasting feature which allows

directing a specific BM bank data to all the PEs of the same broadcast cluster.

4.3 Instruction Set Organization

In this section, the different categories of instructions and their general structure is depicted and

explained. Some instructions that belong to the same category may slightly differ in structure. In

other words, some bit fields may be used by some instructions and not others, despite belonging

to the same category. The partial text in these bit fields may contain ”|un” which means can

be unused, depending on the instruction. Bit fields that contain only un are currently unused,

regardless of the instruction, but can be reserved for future extensions.

NOP

63 58 57 0

0x0 0x0

The NOP instruction stands for ”No Operation” and is a special one that do not belong to any

particular category. It can be used as a filling packet in a VLIW implementation where one or all

of the instruction packets should perform no operation. It simply advances the execution time

by one clock cycle without impacting the logic state of the processing system.

4.3.1 General R-Type instructions

63 58 57 50
49

48
47 36

35

32
31 20 19 12 11 4 3 0

opcode src1 md lmaddr|un off|un bmaddr|un src2|un rdst|ndst|un opsrc

The general R-Type instruction category performs an operation on two operands and outputs

the results according to the instruction fields md (mode) and opsrc (operand source). The

first operand always comes from a location in the register file which has 256 different locations

and is addressed by the instruction field src1. Depending on the opsrc instruction field, the

second operand can come from a location in the register file addressed by the src2 instruction

79

field, from a location in the communication buffers (up to eight different buffers corresponding to

eight different PE neighbors can be selected through opsrc), or from a location in the broadcast

memory addressed by bmaddr (Broadcast Memory Address).When opsrc is set to 0xF, the

off (broadcast offset) instruction field, selects the BM bank from which the data located in the

corresponding bmaddr location should be broadcasted to all PEs in the Broadcast Cluster.

Otherwise, each BM bank data is broadcasted only to its corresponding PE. In total, in a

broadcast cluster there are exactly 16 PEs and 16 BM banks and every PE can be connected to

up to 8 PE neighbors.

When the md field is set to 0b00 the result of the operation is stored back to the register file in

its location addressed by rdst (register file destination). When the md field is set to 0b01 the

result of the operation is stored into the local memory addressed by the lmaddr field. Otherwise,

when the md is set to either 0b10 or 0b11, the operation result is scattered towards PE neighbors

and stored into their corresponding communication buffer. In this case, the rdst field becomes

the ndst (Neighbor Destination) which sets the direction of data scattering.

Table 4.1 and Table 4.2 summarize the different possible combinations with each R-Type op-

code. Besides, by using the pseudo-instruction extension mnemonics in these tables, it is possible

to define 48 different operation for each base R-Type instruction, in the form of (without the

parenthesis):

(opcode-mnemonic).(opsrc-extension-mnemonic).(mode-extension-mnemonic)

For example, an ADD instruction can have 48 pseudo-instructions. When the the opsrc

is set to 0b1111 and the md field is set to 0b00, the resulting pseudo-instruction becomes :

ADD.BMBR.SRF.

In the base DRAGON instruction set there are 13 different R-Type base instructions. Given that

there are 48 different combination per base R-Type instruction, a total of 624 different R-Type

operations can be performed.

In general, the R-Type instructions are able to perform operations using the ALU (Arithmetic

and Logic Unit) or MAC FPU (Multiply-ACcumulate Floating-Point Unit), with two operands.

The first operand always comes from the output of the RegisterFile, selected by the instruction

field src1, while the second operand can have multiple input sources. These sources can be either

an immediate value, provided by the imm instruction field, the second output of the RegisterFile

80

mode behavior pseudo-instruction
(md) extension mnemonic
0b00 Store result into register file SRF
0b01 Store result into LM SLM
0b10 Scatter result to neighbor PEs SNPE
0b11 Store result into LM and scatter to neighbor PEs SNPE

Table 4.1: The mode instruction field behavior and mnemonics for pseudo-instructions.

opsrc second input operand pseudo-instruction
source location extension mnemonic

0b0000 register file RF[src2] RF

0b0001 immediate value (from two VLIW slots) - imm{imm1[63:48],imm2[47:0]}
0b0010 Broadcast Memory BM[bmaddr] BM
0b1111 Broadcast Memory BM[off][bmaddr] BMBR

0b0011 North Neighbor Buffer N-FIFO output NNB
0b0100 West Neighbor Buffer W-FIFO output WNB
0b0101 East Neighbor Buffer E-FIFO output ENB
0b0110 South Neighbor Buffer S-FIFO output SNB

0b0111 Remote North Neighbor Buffer RN-FIFO output RNNB
0b1000 Remote West Neighbor Buffer RW-FIFO output RWNB
0b1001 Remote East Neighbor Buffer RE-FIFO output RENB
0b1010 Remote South Neighbor Buffer RS-FIFO output RSNB

Table 4.2: The source input operands with each opsrc instruction field entry.

Figure 4.2: Possible source operands for R-Type instruction execution.

that is selected by the src2 instruction field, the data provided from one of the broadcast memory

banks as well as any of the data stored into the communication buffers. Fig. 4.2 depicts the

possible operand inputs for the case of a 2D interconnect, embedding four communication buffers.

A higher interconnect degree would increase the number of communication buffers sources. The

81

baseline ISA supports data exchange with up to eight neighboring PEs.

4.3.2 Immediate R-Type instructions (Pseudo-instructions)

63 58 57 50
49

48
47 36 35 20 19 12 11 4 3 0

opcode src1 md lmaddr|un imm[63:48] un rdst|ndst|un 0x1

When the opsrc instruction field is set to 0x1, the second operand of an R-Type instruction

becomes an immediate operand input whose explicit value is stored using both VLIW packets.

The first packet contains the Upper 16 bits of the 64-bit immediate value in instruction[35:20],

effectively replacing the off and bmaddr instruction fields. The lower 48 bits of the 64-bit

immediate value reside in instruction[47:0] of the second 64-bit packet of the 128-bit VLIW

instruction.

It is worth noting that the instructions involving immediate operations in the R-type format

do not have separate opcodes. In fact, in order to reduce the instruction count and simplify

overall operation and implementation, an architectural choice was made for not deploying any

new opcodes for the register-immediate operations (where first operand comes from register file

while second operand is an immediate value) and instead using these special instructions by

fixing the opsrc bit field to 0x1 and possibly using pseudo-instructions.

Because they are destined to the Execution Slot of the VLIW PE, R-Type instructions should

be packed only into the first VLIW instruction packet slot.

4.3.3 C-Type instructions

The C-Type instructions are control instructions that are executed on the controller part with

impacts that may reach the accelerator part (the controller-side of the broadcast memories)

through RDGMEM and WRGMEM instructions. The C-Type regroups just five base

instructions, namely, REPEAT, BNZ, RDGMEM, WRGMEM, and STOP instructions.

These instructions have a fixed opcode equal to 0b111111 and use the funct instruction field

instead to distinguish each operation.

82

TheREPEAT instruction performs a loop for a number of iterations specified by the instruction

bit fileds it[19:12] and it[11:0] which are concatenated to create a 20-bit iterations value.The

REPEAT instruction should be followed by the instructions inside the desired loop and then

enclosed by the BNZ instruction, which branches to the loop body when the decremented

number of iterations is different than zero. Otherwise, the BNZ exit the loop body and the

normal operation of the program continues outside the loop.

The RDGMEM instruction allows moving a block of data from the Global Memory to the

Broadcast Memories through the AXI protocol. The bs (burst size) instruction field instructs

the desired number of data bursts to be moved. DRAGON is tightly connected to hardware

implementations and therefore it assumes the programmer knows the AXI bus width that con-

nects the DMA to the Broadcast Memories. On the Accelerator side, the data is written to the

Broadcast Memories using the offset marked by bmoff (bmoffset) bit field.

The WRGMEM instruction uses the bs (burst size) and bmoff bit fields in the same way

explained for the RDGMEM instruction. However, The WRGMEM is used in the oppo-

site direction of data transfer. That is a WRGMEM instruction moves data from Broadcast

Memories to the Global Memory.

The GM is addressed by 64-bit address pointers. Therefore, both the RDGMEM and the

WRGMEM instructions occupy the full dual-packet VLIW slot because they use direct ad-

dressing mode and specify the GM offset directly on the instruction. The first packet contains

the upper 32-bit GM offset marked by the gmoff bit field, whereas the second VLIW packet

contains the lower 32-bit GM offset on its lower 32 bits.

63 58 57 52 51 44 43 32 31 0

0x3F funct bs | un bmoff | un gmoff(MSB) | un

| it[19:12] | it[11:0]

4.3.4 LM-Type instructions

LM-Type instructions regroup local memory loads (LD opcode) and stores (ST opcode). A LD

instruction loads data from the address location lmaddr of LM to the register file destination

address rdst.In addition, with the exception of rdst field, all instruction fields marked as un

83

are unused bit fields.

63 58 57 48 47 36 35 20 19 12 11 4 3 0

opcode un lmaddr un src2|un rdst|un un

In the case of a ST instruction, the 64-bit data stored into the register file address location

marked by the instruction field src2 is stored into the local memory address location marked by

the bit field lmaddr. In addition, with the exception of src2 field, all instruction fields marked

as un are unused bit fields.

Because they are destined to the Memory Slot of the VLIW PE, LM-Type instructions should

be packed only into the second VLIW instruction packet slot.

4.3.5 BM-Type instructions

63 58 57 50
49

48
47 36

35

32
31 20 19 12 11 4

opcode mask|un md lmaddr|un off|un bmaddr src2|un d count|un

BM-Type instructions regroup broadcast memory loads (LDBM opcode) and stores (STBM

opcode). The data stored into BM using the STBM instruction, may be incoming either from an

address location inside the local memory or the Register File, depending on the md instruction

bit field, as shown in Table 4.3. The first is addressed through the lmaddress instruction bit

field, the second through src2 instruction bit field. The target address location into BM is

marked by the bmaddr instruction bit field. The remaining bit fields containing un are unused

by the STBM instruction.

On the other hand, the LDBM instruction can provide a DMA-like behavior by transferring a

burst of data to the LM, through a single instruction call. The d count (data count) field of

the instruction, dictates the amount of the data to be copied from BM to LM. The lmaddr and

bmaddr instruction bit fields set the base addresses of LM and BM, respectively. The data can

be broadcasted from a specific BM bank to all PEs by setting the lower bit of md (mode) to 0b1

and setting the off (BrOffset) instruction bit field to the corresponding BM bank (For example,

84

Figure 4.3: Example source and destination of broadcast and local memory transfers.

0b0000 for bank 0, 0b0001 for bank 1 and so on). The mask (Mask load) instruction bit field

allows masked data transfers to a specific range of PEs inside the broadcast cluster. That is only

a subset of PEs will store the incoming data from BM into their LMs, by comparing their PE

IDs to the value specified by mask. The starting PE of this masked range is instructed by the

lower four bits of mask, whereas the number of PEs to be targeted, counting from the starting

PE, is dictated by the upper four bits.

Table 4.3 summarizes the different possible combinations of the BM-Type STBM opcode.

Besides, by using the pseudo-instruction extension mnemonics in this table, it is possible to

define two different operations for each base BM-Type STBM instruction, in the form of

(without the parenthesis):

STBM.(mode-extension-mnemonic)

For example, an STBM.SLM instruction will copy data from LM into BM, while an STBM.SRF

instruction will copy data from the register file into BM.

Nevertheless, because they are destined to the Memory Slot of the VLIW PE, BM-Type in-

structions should be packed only into the second VLIW instruction packet slot.

mode behavior pseudo-instruction
(md) extension mnemonic
0b11 Copy data from LM to BM SLM

0b0x or 0bx0 Copy data from register file to BM SRF

Table 4.3: The mode instruction field behavior in a STBM instruction and mnemonics for
pseudo-instructions.

Fig. 4.3 depicts most of the possible directions of data transfers using LM-type and BM-type

instructions. In summary, a LD instruction loads data from LM to RegisterFile, a ST instruction

stores the data from the second output of the RegisterFile to LM, a LDBM instruction loads a

chunk of data from broadcast memory banks to LMs and finally a STBM instruction stores the

85

data from LM or RegisterFile into the corresponding BM memory bank.

4.3.6 N-Type instructions

63 58 57 50
49

48
47 36 35 20 19 12 11 4 3 0

opcode un md|un lmaddr|un un src2|un ndst|un nsrc|un

TheN-Type instructions regroup four different PE neighbor-communication instructions, namely,

NST, NPASS, NSG, and BFLUSH.

The NST (Neighbor STore) is an N-Type instruction that takes the data output of a specific

communication buffer, selected through the nsrc bit field, and stores it into the local memory

address marked by the lmaddr bit field. The DRAGON architecture supports up to four different

PE direct neighbors and four different remote PE neighbors, however, it is up to the designer to

select the interconnect topology and number of both direct and remote connected PEs, knowing

that DRAGON supports up to eight connected neighbors for each PE. The detailed values for

nsrc, their corresponding meaning and their pseudo-instruction extension mnemonics are given

in Table 4.5. In summary, the NST instruction uses only the opcode, lmaddr and nsrc bit

fields.

The NPASS (Neighbor PASS) is an N-Type instruction that allows passing data from one PE

to its neighbor. It adds the ndst to the bit fields used by NST. In fact, it allows to read the

output of a neighbor communication buffer, selected through the nsrc bit field, in accordance

with the Table 4.5. Then, the read value will be stored into the corresponding communication

buffer of the neighboring PE, that is selected based on the ndst (neighbor destination) bit field.

The BFLUSH (Buffer Flush) is another N-Type instruction, that is very useful in the context

of FPGA implementation. It contains only the opcode and the ndst bit fields. The latter is

used for flushing the corresponding communication buffer by resetting its write and read pointers

to zeros.

The last N-Type instruction is NSG (Neighbor Scatter Gather). This instruction allows scat-

tering data towards neighboring PEs, while in the same time, gathering incoming data from

86

the neighboring PEs into the corresponding communication buffer. The md (mode) bit field

dictates the source for the data to be scattered as shown in Table 4.4. In addition, by using

the pseudo-instruction extension mnemonics in this table, it is possible to define four different

operations for each base N-Type NSG instruction, in the form of (without the parenthesis):

NSG.(mode-extension-mnemonic)

mode behavior pseudo-instruction
(md) extension mnemonic
0b00 Scatter data from ALU output SA
0b01 Scatter data from FPU output SF
0b10 Scatter data from LM output SLM
0b11 Scatter data from RF output SRF

Table 4.4: The NSG instruction md bit field behavior and mnemonics for pseudo-instructions.

Besides, because they are destined to the Memory Slot of the VLIW PE, all of the N-Type

instructions should be packed only into the second VLIW instruction packet slot.

nsrc data to be stored or passed pseudo-instruction
source location extension mnemonic

0b0000 North Neighbor Buffer N-FIFO output NNB

0b0001 West Neighbor Buffer W-FIFO output WNB

0b0010 East Neighbor Buffer E-FIFO output ENB

0b0011 South Neighbor Buffer S-FIFO output SNB

0b0100 Remote North Neighbor Buffer RN-FIFO output RNNB

0b0101 Remote West Neighbor Buffer RW-FIFO output RWNB

0b0110 Remote East Neighbor Buffer RE-FIFO output RENB

0b0111 Remote South Neighbor Buffer RS-FIFO output RSNB

Table 4.5: The source communication buffer with each nsrc instruction field entry.

Ultimately, the eight bits of ndst instruction field, in the descending range [7:0], correspond to

the Remote South, Remote East, Remote West, Remote North, South, East, West, North, PE

neighbors, respectively. Setting any bit of the ndst bit field will scatter the previously read data

into the direction of the PE neighbor that corresponds to the position of that bit. The sender PE

will write the data coming from the opposite direction of scatter operation into its corresponding

communication buffer. That is when scattering for example to North PE, it will write incoming

data from its South neighbor into its South buffer. The ndst field has the same behavior also in

R-type instructions.

87

4.3.7 Virtual relative placement of communication buffers

Figure 4.4: Example of virtual relative locations of communication buffers and data exchange
directions for scatter/gather operations, with a 2D Mesh interconnect.

An example showing the relative placement of communication buffers and how they are connected

to adjacent PEs in a 2D interconnect, is depicted by Fig. 4.4.

The PEs scatter and gather data to/from their neighbors using specific instructions such as N-

type instructions (for example NSG instructions which literally means Neighbor-Scatter-Gather).

The R-type instructions (register-based compute instructions) can also perform a combined scat-

tering and gathering of data while performing a computation using the ALU or FPU.

A PE can scatter and gather data to/from any of its neighbors as depicted by Fig. 4.4. A simple

example of data flow between PEs connected through a 2D interconnect, can be described as

follows:

When PEi,j scatters data to the East direction, PEi,j+1 store it in its ’W FIFO’ communication

buffer. Subsequently, PEi,j would gather data from PEi,j-1 in its own ’W FIFO’ communication

buffer. Similarly, when PEi,j scatters its data to the North direction, this data will be stored into

the ’S FIFO’ communication buffer of PEi-1,j. At the same time, PEi,j will store the gathered

input data from its South neighbor PEi+1,j in its own ’S FIFO’ communication buffer . Ulti-

mately, higher interconnect degrees establish extra remote connections with each PE to support

88

additional directions for exchanged data, while adopting the same concepts of the flow of data

between PEs in a 2D interconnect.

4.4 A summary of Instructions Opcodes

Table 4.6: The DRAGON base Instruction Set categories, opcodes and their behavior [3].

Mnemonic Opcode Behavior description

NOP 0b000000 No operation
LDimm 0b001001 Load 64-bit value in the RegisterFile

Data processing (64-bit Integer), R-Type
ADD 0b000001 Integer addition
SUB 0b000010 Integer subtraction
AND 0b000011 Bitwise logical AND
OR 0b000100 Bitwise logical OR
XOR 0b000101 Bitwise logical XOR
SLL 0b000110 Shift Logical Left
SRL 0b000111 Shift Logical Right
MUL 0b001000 Multiply lower 32 bits of both operands
Data processing (Double-precision Floating-Point), R-Type
FADD 0b010000 Floating-point addition
FSUB 0b010001 Floating-point subtraction
FMUL 0b010010 Floating-point multiplication

FMACCA 0b010000 Floating-point Multiply-Add-Accumulate
FMACCS 0b010101 Floating-point Multiply-Subtract-Accumulate

BM memory transfer operations, BM-Type
LDBM 0b100010 Load Data from BM to LM
STBM 0b100011 Store data from PE to BM

Register-LM memory transfers, LM-Type
LD b100000 Load from LM into Register File
ST b100001 Store from Register File to LM

Neighbor communication operations, N-Type
NSG 0b110000 Scatter/Gather to/from adjacent PEs
NST 0b110001 Store from an input buffer into LM

NPASS 0b110010 PASS data from an input buffer to adjacent PE
BFLUSH 0b110011 Reset read/write pointers of fifo input buffers

Controller-scope-limited instructions, C-Type, opcode=0b111111
funct

REPEAT 0b000001 Loop for a number of iterations
BNZ 0b000010 Check loop counter then branch if not zero

RDGMEM 0b000011 Configures DMA to pass data from GM to BM
WRGMEM 0b000100 Configures DMA to pass data from BM to GM

STOP 0b000101 Flags the end of a program

89

As a general categorization, the DRAGON instructions are organized according to their type

which depends mainly on the VLIW slot they are destined to (execute or memory slot). The

R-Type instructions should be on the first packet of the dual-packet VLIW instruction, while

LM-Type, BM-Type and N-Type instructions should be on the second packet of the dual-

packet VLIW instruction. In a typical micro-architecture implementation, the PE is split into

two slots. The first executes computational instructions (R-Type) and the second manages

memory operations and data movements (BM-Type, LM-Type and N-Type).

Table 4.6 summarizes the different categories of the DRAGON instruction set, while Fig. 4.5

depicts the different formatting of the several categories of instructions.

4.5 More on the DRAGON ISA

4.5.1 Pseudo-instructions and Further extensions

DRAGON offers a tremendous amount of configurations for the base instruction set, which

considerably increases the number of operations that can be performed. For example, there are

only 13 R-Type instructions, however, there are 4 different combinations of the md bit field and

another 12 different combinations of the second source input operand through the opsrc bit field.

Consequently, there is a total of 48 different combinations for each single R-Type instruction,

when adding the possibilities offered by the opsrc and md instruction bit fields. This elevates

the count of R-Type pseudo-instructions to 624 different possible operations.

Besides, throughout all instruction formats depicted by Fig. 4.5, there are multiple empty bit

fields marked as ”unused”. These bit fields can allow future extensions and specialization of

instructions.

Furthermore, the opcode is coded on 6 bits which offers a total of 64 different combinations of

instructions, among which, only 24 are currently used (counting the C-Type fixed opcode as

one of these). This means, there are 40 opcodes that are still available for future extensions of

the non-control instructions. On the other hand, the C-Type control instructions use just five

combination of the funct bit field and therefore, there is a total of 59 different combinations

available for extending this category of instructions.

90

op
co

de
m

od
e

Br
O

ff
se

t
6

bi
ts

2
bi

ts
4

bi
ts

op
co

de
m

od
e

6
bi

ts
2

bi
ts

op
co

de
m

od
e

Br
O

ff
se

t
6

bi
ts

2
bi

ts
4

bi
ts

O
pc

od
e

6
bi

ts

O
pc

od
e

6
bi

ts

O
pc

od
e

m
od

e
un

us
ed

6
bi

ts
2

bi
ts

4
bi

ts

O
pc

od
e

m
od

e
Br

O
ff

se
t

6
bi

ts
2

bi
ts

4
bi

ts

O
pc

od
e

m
od

e
6

bi
ts

2
bi

ts

O
pc

od
e

Fu
nc

tio
n

6'
b1

11
_1

11
6

bi
ts

O
pc

od
e

Fu
nc

tio
n

6'
b1

11
_1

11
6

bi
ts

O
pc

od
e

Fu
nc

tio
n

6'
b1

11
_1

11
6

bi
ts

4'
b0

00
1

AD
DS

T,
 S

U
BS

T,
 A

N
DS

T,
 O

RS
T,

 X
O

RS
T,

 S
LL

ST
, S

RL
ST

, M
U

LS
T,

 F
AD

DS
T,

 F
SU

BS
T,

 F
M

U
LS

T,
 F

M
AC

CA
ST

,
FM

AC
CS

ST
 (p

se
ud

o
in

st
ru

ct
io

ns
)

Sr
c1

Lm
ad

dr
Bm

ad
dr

un
us

ed

8
bi

ts
8

bi
ts

8
bi

ts
12

 b
its

16
 b

its

12
 b

its
12

 b
its

8
bi

ts
8

bi
ts

RD
G

M
EM

, W
RG

M
EM

ite
ra

tio
ns

un
us

ed
20

 b
its

N
Ds

t
Ne

ig
hb

or
 co

m
m

un
ica

tio
n

op
er

at
io

ns
:

N
ST

, N
PA

SS
, N

SG
, B

FL
U

SH

8
bi

ts
12

 b
its

[C
-T

yp
e]

[N
-T

yp
e]

un
us

ed
Lm

ad
dr

un
us

ed
Sr

c2
N

Sr
c

4
bi

ts
AD

Di
, S

U
Bi

, A
N

Di
, O

Ri
, X

O
Ri

, S
LL

i,
SR

Li
, M

U
Li

 (
ps

eu
do

 in
st

ru
ct

io
ns

),
LD

im
m

Sr
c1

Lm
ad

dr
im

m
ed

ia
te

M
SB

 /
 im

m
ed

ia
te

LS
B

(S
LO

T2
)

O
PS

rc

Re
gi

st
er

 d
at

a
op

er
at

io
ns

:
[R

-ty
pe

]
Sr

c1
Lm

ad
dr

Bm
ad

dr
O

PS
rc

8
bi

ts

un
us

ed
RD

st

8
bi

ts
8

bi
t

12
 b

its
12

 b
its

Sr
c2

RD
st

Br
oa

ca
st

 M
em

or
y

op
er

at
io

ns
:

ST
BM

[B
M

-ty
pe

]

RD
st

O
PS

rc

[L
M

-ty
pe

]
un

us
ed

Lm
ad

dr
un

us
ed

un
us

ed
10

 b
its

12
 b

its
16

 b
its

12
 b

its
LD

Sr
c2

8
bi

ts

Lo
ca

l M
em

or
y

op
er

at
io

ns
:

ST

N
Ds

t
8

bi
ts

4
bi

ts

un
us

ed
Lm

ad
dr

un
us

ed
un

us
ed

10
 b

its
12

 b
its

24
 b

its
8

bi
ts

4
bi

ts

Bm
ad

dr
8

bi
ts

12
 b

its
12

 b
its

8
bi

ts

Bm
ad

dr
Sr

c2
un

us
ed

8
bi

ts
12

 b
its

12
 b

its
 8

 b
its

12
 b

its
un

us
ed

Lm
ad

dr

BM
O

ff
se

t
12

 b
its

52
 b

its

N
O

P,
 A

DD
, S

U
B,

 A
N

D,
 O

R,
 X

O
R,

 S
LL

, S
RL

, M
U

L,
 F

AD
D,

 F
SU

B,
 F

M
U

L,
 F

M
AC

CA
, F

M
AC

CS

da
ta

_c
ou

nt
12

 b
its

un
us

ed

Bu
rs

t S
iz

e
G

M
O

ff
se

tM
SB

/G
M

O
ff

se
tL

SB
(S

LO
T2

)
8

bi
ts

32
 b

its
ST

O
P

un
us

ed

32
 b

its

16
 b

its
8

bi
ts

8
bi

ts
4

bi
t

co
nt

ro
lle

r o
pe

ra
tio

ns
:

RE
PE

AT
, B

N
Z

LD
BM

M
as

k_
lo

ad
Lm

ad
dr

Figure 4.5: The DRAGON Instruction formats [3].

91

Moreover, when the broadcasting is enabled on R-Type instructions, the src2 bit field is unused

and therefore the lower bits value 0b0000 is fixed for the current broadcast scheme, whereas 15

other combinations can be used for different broadcasting schemes that can be proposed in

different extensions that may address specific kinds of computation.

Furthermore, there are only 12 used combinations of the opsrc bit field in R-Type instructions;

the remaining possible four combinations are reserved for further extensions of the base DRAGON

ISA.

To allow consistent behavior with further ISA extensions, all the unused bit fields in each in-

struction must be fixed to all-zeros value.

4.5.2 custom-precision computations

The DRAGON ISA intrinsically supports double-precision floating-point and 64-bit long integer

compute operations. Nonetheless, the DRAGON ISA targets reconfigurable chips and as such

micro-architectural choices and hardware configuration may partially alter the ISA to support

custom-precisions with respect to the instruction formatting. In other words, the DRAGON

instructions dictates the memory locations and the target operations, however the hardware

configuration can set the width of data inside these memories. In fact, through specific hardware

implementations of the PE, it is possible to incorporate a packed SIMD behavior inside a compute

instruction by performing two single-precision or four half-precision floating-point computations,

using a single compute instruction. For example, when the original width of data is set to 64-bit

across all memories and input operands, it is possible to pack two 32-bit operands or four 16-bit

operands within these data and accordingly split the original MAC FPU and ALU into two or

four units, capable of performing the computations that are adequate to the reduced precisions.

4.6 Limitations and primary target application domains

The DRAGON Instruction set provides a minimal set of opcodes that offer sufficient flexibility

to address different kinds of computations. The primary target of DRAGON consists of parallel

processing problems with an intensive data exchange behavior between neighboring processing

elements such as those found in stencil-based calculations. Other applications such as vector or

92

matrix multiplications may be mapped in a way that benefits from the broadcasting feature in

each broadcast cluster which minimizes the bandwidth requirement. The multiply-accumulate

opcode allows the efficient implementation of operations such as convolutions. Nonetheless,

DRAGON remains a SIMD architecture and therefore it can achieve its best performance and

efficiency only when targeting applications that can be processed in a parallel manner and max-

imize the utilization of its multiply-and-accumulate instructions.

Applications that can not be processed in parallel due to irregular memory accesses or condi-

tional divergent executions on PEs require the implementation of a predication scheme or a more

sophisticated masking scheme (the baseline ISA supports a limited set of masking in broad-

cast memory load operations). To provide even more flexibility and target a larger range of

applications, DRAGON was designed to accept further instruction set extensions.

4.7 Summary

In this chapter, the DRAGON base ISA is presented and details about each instruction and its

related opcode, formatting and expected behavior were described. Besides, some instructions

offer some specialization, beyond their opcodes, and therefore, a naming convention has been

proposed for pseudo-instructions which may facilitate the programming task.

The proposed ISA aims to achieve the goals of an energy efficient architecture through a multitude

of attractive approaches. For instance, it allows the overlap of multiple operations within the

same instruction and allows direct data transfers with adjacent processing elements as well as

direct operations on data stored into their communication buffers, which may considerably reduce

the energy cost related to data movements in general.

93

Chapter 5

The Programming Model

5.1 Introduction

This chapter provides the necessary details to understand the DRAGON programming model.

A system level overview is given to explain the methodology adopted for interfacing the overlay

within a heterogeneous computing platform. While this methodology is specific to the target

FPGA family, it should provide sufficient information to generalize to other devices. This chapter

also shows, through a particular example, the general approach adopted to use the DRAGON

assembly opcodes to program the underlying many-core overlay in C or C++ languages and

the methodology to build binary executables while relying on mainstream C/C++ compilers.

Moreover, examples extracted from an OpenCL-based program are explained to show how the

DRAGON overlay can be controlled from an OpenCL-based host. Finally, the use of Verilator

in the functional verification process is also described in detail.

5.2 Enhancing the RTL Kernel Model through re-usability

5.2.1 Background

The DRAGON overlay offers a convenient approach for non-hardware experts intending to offload

compute tasks from a host system to FPGA accelerators. Basically, overlays can hide FPGA

hardware details, by stacking higher abstraction layers that provide designers with simplified

views of the underlying physical fabric. Nonetheless, the integration within a heterogeneous

94

platform and the management of the data communication between a host and an FPGA, through

an independent or a shared memory space, introduces increased levels of design complexity

that keep FPGAs away from mainstream adoption. For example, adopting a PCIe (Peripheral

Component Interconnect express) as a means of interconnecting an FPGA with a host, requires

extensive expertise and deep knowledge of the underlying communication protocol as well as

low-level firmware program details that are usually complicated to debug and maintain.

To overcome these issues, the work in this thesis builds upon an existing framework and tran-

scends it by introducing a novel approach that allows to further abstract the interfacing with a

host in an effective and re-usable manner.

5.2.2 A re-usable bitstream of a software programmable overlay

Xilinx Vitis offers a way to control accelerators through an OpenCL function that models a

carefully packaged FPGA design. Vitis supports accelerated FPGA kernels that are designed

in both HLS (HLS kernel flow) or RTL (RTL kernel flow) and provides the necessary details

describing the interface to the kernel flow [112]. In contrast to HLS-based kernels, the use of

RTL kernels may require cumbersome low-level FPGA implementation details. Examples of

these details include the manual management of memory interfaces and control through AXI

protocol, as well as the knowledge of clocks, reset, and specific interrupt signals.

Moreover, RTL kernels are often optimized and implemented for a fixed problem which limits

their re-use. In contrast, the work in this thesis aims at transcending the RTL kernel model

by implementing an ”RTL kernel overlay model” that implements the infrastructure that allows

PCIe-based communication between a host and an FPGA, while providing an overlay-based RTL

kernel that can be dynamically re-programmed using software instructions.

Fig. 5.1 illustrates the proposed model that harnesses the benefits of the RTL kernel flow

model provided by the FPGA vendor while adding a layer of software re-programmability to the

kernel that is implemented on the FPGA side. Moreover, this model proposes a methodology to

manipulate the host-based OpenCL task offload, by including the transfer of software instructions

alongside non-processed data in the offload process.

The RTL kernel flow is used to implement RTL-based FPGA designs. On the host side, this

95

Figure 5.1: Overview of the proposed dynamically re-programmable approach.

design is seen as a software function, that can be called in a host-based program as a standard

OpenCL task. As such, the RTL kernel flow imposes packaging the design as an IP (Intellectual

Property) with an interface that corresponds to the one expected by Vitis [112]. This FPGA-

based interface must contain an external memory interface alongside scalar control signals whose

details are explained in later sections.

On the other hand, the software function model that abstracts the RTL kernel design should have

96

pointer and scalar arguments that match the global memory banks (which can be implemented

either using HBM2 memory or general on-chip memories such as URAM) start addresses and

control signals in the interface of the packaged DRAGON overlay design. This overlay is carefully

designed using SystemVerilog language to achieve high quality of results. Xilinx Vitis is used to

package the design following the RTL kernel flow, then later synthesize, implement and generate

the FPGA bitstream file, which relies on Xilinx Vivado in the background.

Besides, the DRAGON overlay is a custom ISA software programmable overlay. Consequently, a

software program is written using C or C++ languages and inlines the DRAGON ISA assembly

level opcode functions within. These are C-based functions that abstract each opcode function-

ality and serve as an API (Application Programming Interface) to program DRAGON. Each

call of one of these functions from a C/C++ program will output the equivalent hexadecimal

expression of the underlying opcode alongside the following instruction fields. Therefore, the

compilation and subsequent separate execution of this program on a host platform will generate

the executable file that needs to be transferred alongside non-processed data to the FPGA side.

A standard C or C++ compiler can be used for compiling this program prior to generating the

executable file whose contents will be loaded in the IM (Instruction Memory) of DRAGON.

On the host side, an OpenCL program is written to connect the host to the target FPGA.

OpenCL buffers have to be created in a way that matches the used global memory buffers on

the RTL-kernel packaged DRAGON overlay. The OpenCL function that models the overlay is

enqueued for execution which will send the non-processed data as well as the overlay program in-

structions to the connected FPGA, execute these instructions on the DRAGON overlay and then

store the processed data results back into the corresponding previously allocated host buffers.

Should new non-processed data and new program instructions be loaded into the FPGA, the

same bitstream can be re-used and the FPGA need not to be reconfigured. In the background,

Xilinx Vitis provides the necessary infrastructure to use the PCIe-based communication between

the host and the FPGA.

97

5.2.3 Details of the overlay integration within the heterogeneous

computing platform

The scalar arguments of the software function abstracting the DRAGON overlay design are the

parameters that allow the configuration of this overlay, such as a request to reload program

instruction from the GM to the IM, or the total size in bytes of these instructions. These

scalar arguments can be transferred from the host to the overlay Control Unit through an AXI-

Lite Interface. In addition, more scalar arguments can be defined in the software function to

implement custom-defined behavior of the overlay, however, they should be accounted for in the

implemented Control Unit.

The DRAGON overlay implements an AXI4-compliant master interface that is used for data

exchange with the GM. The DRAGON overlay is also packaged as an RTL kernel alongside its

XML (Extensible Markup Language)-based interface definition file which provides information

about the top level RTL module interface.

Figure 5.2: Overlay Integration within a heterogeneous computing platform [3].

The Vitis framework automatically creates the FPGA shell (static region) that implements the

AXI interconnect between the provided AXI4 design interfaces and the global memory (can be

implemented as HBM memory) banks. In addition, the PCIe DMA is automatically created as

the required infrastructure to allow data movement between the host-side and the FPGA-side

as depicted by Fig. 5.2. While depicted as separate in Fig. 5.2, the input and output data may

actually share the same buffers.

The remaining FPGA area is called the dynamic region and is the part of the FPGA that can

be used by the designer to freely place the RTL kernel and its different modules. In contrast,

98

Figure 5.3: DRAGON host-side/FPGA-side memory space mapping.

the static region is a private area, inaccessible directly to the designer.

On the host side the OpenCL creates buffers to hold the data that need to be exchanged with

the FPGA side. Standard RTL kernels are not software-programmable and therefore need only

to exchange input and output data with the host side. In contrast, DRAGON is software-

programmable, therefore, it exploits the RTL kernel model by allocating a buffer in Output-only

mode to transfer the instructions that will be executed by the overlay without needing to reload

a new bitstream file for every new application.

An example mapping between host buffers and FPGA GM banks is depicted by Fig. 5.3.

The OpenCL program can transfer both instructions and input data from its host-side buffers

to the FPGA-side DRAGON overlay packaged as an RTL kernel.

5.2.4 Detailed control and execution flow

Fig. 5.4 shows a detailed example of operation for the implemented control and execution

methodology.

The operation of DRAGON can be started by enqueuing the equivalent DRAGON OpenCL

software function (OpenCL task) for execution. When this task is granted permission by the

99

Figure 5.4: Example of the execution flow on the FPGA-based overlay.

host to start execution, after the data allocated in the host-side buffers are transferred to the GM

(into the FPGA), a start signal (a single-bit register) is set into an AXI-Lite control interface (on

the FPGA) that is subsequently sent to the DRAGON Control Unit to launch the boot sequence

waking the overlay from its idle state.

The boot sequence allows downloading program instructions from the GM into the IM. Nonethe-

less, in situations where the program is already stored in the IM and has to be reused, this boot

sequence can be bypassed, by setting a corresponding scalar control argument in the OpenCL

software function that models the overlay interface.

After the boot step has finished, the Control Unit jumps to the normal-execution state of the

overlay, where a program pointer is incremented to read instructions from the IM, decode them

and then issue the different decoded streams for execution.

100

Following RDGMEM instructions, the data can be moved from the GM through DMAs to their

corresponding BMs, processed into the accelerator part and finally, the results of the computation

are stored back to GM, using WRGMEM instructions.

The end of program execution is signalled when a STOP instruction is encountered. At that

time, the DRAGON Control Unit notifies the host about data processing completion by setting

a specific register in an AXI-Lite control interface. This allows the host to move back the results

of the computation from the GM memory banks (which can be implemented using HBM, DRAM

or even URAM memories) to its corresponding previously allocated buffers.

5.3 Host-Side Programming

Fig. 5.5 shows the mapping between the host and FPGA buffers using the abstract model of the

RTL kernel overlay through an OpenCL prototype function and its pointer and scalar arguments.

The use of FPGAs in heterogeneous computing platforms is gaining momentum as these devices

have proved to be a potential accelerator for multiple kinds of workloads. While FPGA vendors

provide support for the integration of FPGAs in such platforms, their proposed model provide

limited support for programmable accelerators. Mainly, their model consists of an accelerator

running on the FPGA-side and a control program running on the host-side. The control program

recognizes the external memory interface of the accelerator and transfers the non-processed data,

instructs the accelerator to process them and then transfers back the processed data to the host-

side memory.

The DRAGON execution model leverages this approach to provide a general methodology to

control programmable accelerators, without worrying about low-level implementation details.

As such, alongside the memory buffers for non-processed data, the control program on the host-

side, allocates an extra OpenCL buffer, on the FPGA, in read-only mode, for the program

instructions that need to be executed by the programmable FPGA-based accelerator (here the

DRAGON overlay).

For example, line 4 to 6 of Listing 5.1 show how to allocate data buffers that will be used by global

memory to transfer data for each broadcast cluster’s broadcast memory banks. These buffers can

be read or written into by the DRAGON overlay and therefore a CL MEM READ WRITE

101

Listing 5.1: Creating OpenCL memory buffers on the FPGA side

1 // These commands will allocate memory on the FPGA. The cl::Buffer objects can

2 // be used to reference the memory locations on the device.

3 // Creating Buffers

4 for (int it=0;it<nBCs;it++){

5 OCL_CHECK(err, buffer_rw[it] = cl::Buffer(context, CL_MEM_READ_WRITE |

CL_MEM_EXT_PTR_XILINX |CL_MEM_USE_HOST_PTR,sizeof(DATATYPE) * dataSize, &

inoutBufExt[it], &err));

6 }

7

8 //program bank

9 //-----------------------

10 OCL_CHECK(err, buffer_rw_hex_prog = cl::Buffer(context, CL_MEM_READ_ONLY |

CL_MEM_EXT_PTR_XILINX |CL_MEM_USE_HOST_PTR,sizeof(uint32_t) * ProgSizeWords, &

outBufExt_hex_prog, &err));

Listing 5.2: Setting the DRAGON kernel arguments

1 // Setting the DRAGON kernel Arguments

2 // ---

3 int n=0;

4 bool prog_reload = RELOAD;

5 //scalar arguments

6 OCL_CHECK(err, err = krnls.setArg(n, prog_reload));

7 OCL_CHECK(err, err = krnls.setArg(++n, ProgSizeBytes));

8 //pointer arguments

9 for (int it=0;it<nBCs;it++){

10 OCL_CHECK(err, err = krnls.setArg(++n, buffer_rw[it]));

11 }

12 OCL_CHECK(err, err = krnls.setArg(++n, buffer_rw_hex_prog));

13 // ---

Listing 5.3: Moving data between FPGA and the host and invoking the DRAGON kernel for
execution

1 // Copy input data to DRAGON Global Memory

2 // ---

3 OCL_CHECK(err, err = q.enqueueMigrateMemObjects(

4 {buffer_rw, //data buffers

5 buffer_rw_hex_prog}, //instruction buffer

6 0 /* 0 means from host*/));

7 q.finish();

8

9 // Invoking the DRAGON kernel

10 // ---

11 OCL_CHECK(err, err = q.enqueueTask(krnls));

12 q.finish();

13 std::cout<<"passed queue"<<std::endl;

14

15 // Copy Computed Result from DRAGON Global Memory in the FPGA to Host Local Memory

16 // --

17 OCL_CHECK(err, err = q.enqueueMigrateMemObjects(

18 {buffer_rw,buffer_rw_hex_prog},

19 CL_MIGRATE_MEM_OBJECT_HOST));

20 q.finish();

102

Figure 5.5: Abstracting the DRAGON overlay as an OpenCL function.

flag was selected. In contrast, the extra buffer allocated for transferring program instructions

to the programmable DRAGON overlay sets a read-only flag (CL MEM READ ONLY flag)

(line 10 of Listing 5.1).

In this model, the DRAGON overlay is considered as an OpenCL (RTL-based) kernel. Therefore,

prior to kernel call and execution, a number of arguments must be set by the host. Examples of

these arguments are given by Listing 5.2 and indicate whether DRAGON needs to reboot (reload

program instructions from GM) (line 6 of Listing 5.2), provide the total size of the program in

Bytes (line 7 of Listing 5.2), and provide the list of base pointers for each FPGA-based GM

memory bank for data (line 9 to 11 of Listing 5.2) and instructions (line 12 of Listing 5.2).

Then, the OpenCL host code copies the non-processed data and instructions to the GM memory

on the FPGA-side (line 3 to 7 of Listing 5.3), invokes the DRAGON kernel for execution (line

11 and 12 of Listing 5.3), and finally, copies back the processed data from the FPGA-side to the

103

host-side memory (line 17 to 20 of Listing 5.3).

5.4 FPGA-side Programming

Figure 5.6: VLIW in action: more operations with less instructions.

The DRAGON ISA extends the RISC (Reduced Instruction Set Computer) register-register

approach by proposing a more inclusive model that allows operations on multiple operand sources.

For example, this model offers the possibility of operation on operands that are incoming from the

register file outputs, but also other sources, including neighboring PEs (through communication

buffers), or the broadcast memories of the local PE cluster.

The memory locations on each instruction, use direct addressing mode and together with register

locations they are transferred after instruction decoding to each PE in the overlay, through

dedicated instruction streams. The DRAGON overlay executes SIMD instructions and therefore

it targets parallel processing applications. The adopted SIMD model dictates that the same

instructions are broadcasted to every PE that execute the underlying operations on either the

locally stored data or even the cluster shared data stored in the broadcast memories. This implies

104

that the program is agnostic to the number of BCs in the overlay (consequently the amount of

PEs as well); thus, increasing the overlay size (amount of BCs) would not impact the size of the

executable code, provided the problem size scales proportionally.

Moreover, The VLIW design approach boosts parallel processing capabilities by combining mul-

tiple packets of instructions into a single larger instruction. Furthermore, these packets may in

turn, combine multiple operations that are executed in the same clock cycle. A basic VLIW

micro-architecture model was proposed in [3] and [4] and it proposes two packets, one for mem-

ory operations and the other for compute instructions. The goal is the efficient overlapping of

memory operations and data transfers with effective computations. Using this approach allows

the sustained performance to reach levels near its theoretical peak and significantly reduces the

overhead time of data movement which improves the energy-efficiency. For example, Fig. 5.6 il-

lustrates a scenario of this overlap where the cycle-time cost related to the data transfers between

PEs and the load-store data movements, can be hidden by combining these operation with other

effective computations. As a result, the PE can effectively perform six operations (Multiply and

accumulate is counted as two operations) using a single large VLIW instruction that contains

two packet instructions.

5.5 Machine Code Executable Generation

Developing a compiler that targets a new ISA is a complex task, in particular, if the target

micro-architecture adopts a VLIW programming model. Instead, it is possible to rely on ex-

isting C compilers such as GNU GCC to generate machine code for DRAGON, by embedding

its instruction opcodes into high-level C-functions whose arguments are the bit fields of each

instruction. Consequently, a typical DRAGON program is written in C language and uses its

high-level constructs while in-lining DRAGON ISA instructions within.

To allow this possibility, all C-based function prototypes describing the low-level assembly in-

structions have been written and collected in a single header file. These prototypes shift the

input arguments into their specific position into the instruction. An extra argument has been

added to all these function to write the translated function hexadecimal sequence outcome into

the DRAGON executable output file. An example prototype function of the ADD opcode is

105

Listing 5.4: An example prototype function of the ADD opcode

1

2 //-----Add content of regs RSRC1 and RSRC2 and store sum in RDST----------------------

3 inline void ADD(unsigned long RSRC1, unsigned long MODE, unsigned long LMADDR, unsigned

long BROFFSET, unsigned long BMADDR,unsigned long RSRC2,unsigned long RDST,unsigned

long OPSRC, ofstream& f){

4 unsigned long ADDopcode = opADD ;

5 INSTRUCTION = (ADDopcode<<58) | (RSRC1<<50) | (MODE<<48) | (LMADDR<<36)|(BROFFSET

<<32) | (BMADDR<<20) | (RSRC2<<12) | (RDST<<4) | OPSRC;

6 INSTR_MSB = INSTRUCTION >> 32 ;

7 INSTR_LSB = INSTRUCTION & (0x00000000FFFFFFFF) ;

8 f << std::hex << std::setw(8) << std::setfill('0')<< INSTR_LSB <<endl;

9 f << std::hex << std::setw(8) << std::setfill('0')<< INSTR_MSB <<endl;

10 }

shown in Listing 5.4. In this listing, the generated instruction is split into two 32-bit MSB and

LSB parts. This is to facilitate the functional verification using Verilator, which deals with large

bit fields as chunks of 32 bits.

Later, every inline call of a given opcode into the main C program, is expected to write the

translated binary sequence to the same file. After the C program is compiled using a standard

C compiler, it generates an executable program that, once executed, will provide the final file,

containing hexadecimal instructions that can be executed by the DRAGON overlay. The hex-

adecimal instructions contained in this file may be later transferred to the FPGA overlay through

the dedicated OpenCL buffer.

An example showing the use of these C-based functions that abstract the assembly opcode,

inside a C program, can be seen in line 2,4,6 and 8 of Listing 10.1. The compilation of the C

program including these functions and its subsequent execution would write the hexadecimal

instructions resulting from each call to a C-based opcode function, into a separate file (f). This

file represents the executable file containing all the instructions that will be sent to the DRAGON

overlay through the dedicated OpenCL buffer. These instructions will be later loaded from the

corresponding FPGA GM buffer (can be implemented in an HBM bank) to the IM where they

can be later read, and decoded by the Control Unit of the DRAGON overlay, for subsequent

operations execution.

106

5.6 Functional Verification Using Verilator

FPGA debugging capabilities are limited by the set of options available from each vendor. In

the context of many-core processors, tracking and debugging functional issues may quickly be-

come infeasible with direct emulation on target FPGA due to the lack of infrastructure or extra

resources to store intermediate execution results. Verilator is a powerful tool that is often used

by chip companies for modeling and early verification purposes. This tool translates a fully

synthesizable Verilog code (SystemVerilog is mostly supported as well) into a C++ clock-cycle-

based model, that can provide levels of magnitude in simulation speed against event-based HDL

simulators. Furthermore, it facilitates the debug process by offering the entire arsenal of C++

high-level constructs to write advanced testing scenarios. Verilator was heavily used during the

process of HDL-based design of DRAGON, to keep track of functional issues. These issues may

mostly arise during the AXI-based data transfer (read and write operations) between the BM

and the GM banks. To avoid these issues, two C-based prototype functions were created to

emulate the behavior of AXI slave memories (GM banks which can be implemented in HBM

banks) and connected to the top module interface of DRAGON.

As such, it became possible to execute machine code on DRAGON using Verilator, before com-

piling the design sources to an FPGA bitstream and executing it directly on the target hardware.

5.7 Summary

This chapter summarizes the programming model concepts from different perspectives, including

host-side control, FPGA-side programming, executable code generation as well as the functional

verification of the proposed overlay using high-level CPP-based test-benches. In summary, the

host controls the operation of the DRAGON overlay through an OpenCL-based program. The

host manages the allocation of memory buffers and then provides the necessary means to transfer

non-processed data along with the executable instructions to the FPGA-based DRAGON overlay

which executes these instructions, processes these data and later notifies the host about the

processing completion and transfers back the processed data from GM banks to the corresponding

memory buffers in the host-side. The generation of executable instructions of DRAGON consists

of creating a C-based program, where the DRAGON ISA opcodes are inlined through the use

107

of C-based opcode function prototypes. Compiling and executing this program will cause the

C-based opcode functions to write the contents of each instruction in hexadecimal format to a

special file that will be used as an executable input to the DRAGON overlay in subsequent steps.

108

Part III

Hardware Part: FPGA-based

accelerator virtualization

109

Chapter 6

The DRAGON Many-Core-Processor

Overlay Architecture: A General

Overview

6.1 Introduction

This chapter introduces the general architecture overview of the proposed DRAGON many-Core

overlay as well as its different hardware building blocks. This chapter also serves as a basis for

the different micro-architectures, which will be discussed in the chapters that follow.

6.2 The DRAGON System-Level Architecture

DRAGON (Dynamically Reprogrammable Architecture for Gather-scatter Overlay Nodes) is a

software-programmable many-core-processor overlay architecture targeting reconfigurable chips

and aiming for both high computational performance and high energy-efficiency. A general

overview of DRAGON is depicted by Fig. 6.1. The architecture itself is split between two major

parts operating in tandem, namely, the Controller and the Accelerator.

The Controller orchestrates the execution by controlling the array of PEs (Processing Elements)

implemented in the Accelerator. The Controller’s main modules are the Sequencer depicted by

Fig. 6.2 and the DMA (Direct Memory Access) engine whose detailed behavior is explained

in subsequent sections. First, the Controller loads program instructions from the GM (Global

110

Figure 6.1: The DRAGON system level general architecture.

Memory) into the IM (Instruction Memory). Then, it decodes these instructions and issues

multiple dedicated instruction streams towards the Accelerator and the DMA. The Controller

also moves the data back and forth between the Accelerator and the GM through one or more

DMA engines. The exact operation on these DMAs is specified by a particular type of instructions

called C-Type, that is discussed in Chapter 4. The Controller also allows optional interfacing

with a host system.

On the other hand, the Accelerator is an array of PEs, that are clustered in groups called BCs

(Broadcast Clusters). A BC embeds a 4x4 array of PEs, that are connected through some

interconnect topology of some dimension, that is extended further by connecting PEs across the

BCs as well. Nonetheless, almost any topology and dimension of interconnect can be adopted

unless the required number of connected neighbors to a certain PE exceeds eight, which is a

limitation set by the current base DRAGON ISA.

The BCs provide a memory interface called BM (Broadcast Memory) that acts as a buffer that

111

interfaces the GM and the array of PEs inside each BC cluster. This buffer decouples data

accesses to GM from the execution operation on the PEs.

6.3 Parallel Processing Models

6.3.1 The SIMD Execution Model

The SIMD (Single Instruction Multiple Data) parallel processing paradigm is adopted by the

DRAGON overlay architecture. This approach is one of the four classes of computing as defined

by Flynn’s taxonomy [107, 113].

In the SIMD paradigm a single instruction is broadcasted towards multiple Processing Elements

that will concurrently execute it, using different sets of data that are stored locally [12].

Many reasons motivated the adoption of this paradigm. First of all, the fine-grained nature of

FPGA is a great fit for such paradigm. In fact, FPGAs offer several kind of hardware resources

that are duplicated in hundreds or thousands of modules (such as memories, LUTs and DSPs).

These modules are spread across its physical fabric, mostly in a similar structure. These modules

can effectively be combined and used to execute similar operations on different data.

Moreover, the programming model is attractive due to its efficiency, and ease of use. In fact, the

hardware parallelism is exposed to the programmer and allows multiple applications to benefit

from a straightforward mapping of software instructions to hardware compute units.

Finally, and most importantly, the SIMD paradigm simplifies hardware design implementations

by requiring a substantially reduced amount of control signals and logic and consequently it

allows these designs to deploy more computing blocks and efficiently utilize the available FPGA

resources, thus, effectively boosting the overall energy-efficiency. In fact, the removal of redun-

dant control logic is the main reason for resource utilization and power consumption reduction.

From a software perspective, most of the large-scale computational workloads, adopt this paradigm

for the improved throughput and the ease of programming.

112

6.3.2 The VLIW Instruction Model

The VLIW (Very Large Instruction Word) model consists of issuing multiple instructions in

packets combined in turn into a single larger one, that is capable of performing several concurrent

operations in the same clock cycle.

This paradigm is rather considered a micro-architectural design approach rather than a parallel

processing architectural style[11]. The instruction parallelism in VLIW-based processors is ex-

plicitly exposed to the software designer at the architecture level. In fact, instead of relying on

the compiler to re-organize the assembly-level operations to extract the instruction-level paral-

lelism, the VLIW design philosophy relies on the programmer to efficiently schedule and issue

tasks for execution on the VLIW processor. This certainly makes programming more challeng-

ing and requires deep understanding of the hardware architecture, however it allows extremely

efficient utilization of the underlying hardware parallel processing capabilities

Here, The VLIW style of DRAGON consists of partitioning the instruction into two packets that

are destined to be executed concurrently by two different slots in the PE.

The first slot in a DRAGON PE performs purely computational instructions, while the second

slot performs data management between PE neighbors and local memory operations. Conse-

quently, this adopted VLIW style, improves the energy-efficiency by providing performance levels

close to the theoretical peak, through efficient overlapping of computations and data movements.

6.3.3 A Software-coupled Hardware-decoupled Access Execute Ap-

proach

In many-core processing systems, the performance bottleneck is not the computation itself, but

rather the movements of data between their memory locations and their respective execution

units. The DRAGON programming model aims to solve this bottleneck through efficient sepa-

ration of the execution logic from the data movement management logic. To realize this goal,

the DAE (Decoupled Access Execute) paradigm is adopted.

This approach was proposed in [13] and suggested adopting a pair of split streams of instructions

that use hardware-based queues for interacting with each other. At that time, this approach

provided a substantial decoupling of data movements and execution. Nonetheless, for modern-

113

day complexity level of many-core processors, it may be quite challenging for both hardware and

software designers alike to implement such an approach. In fact, the decoupling of execution and

data movement through two different kind of instruction streams would require relying on one

or more separate compilers to generate the different executable binary code for each stream.

Worse yet, the same paper states that in the probable unfortunate event where a deadlock occurs,

the program requires a purge and a deadlock error is raised and flagged.

In contrast, while DRAGON implements a similar model, it proposes an improved logic that

avoids these issues while keeping the benefits of decoupling data access from execution.

In fact, DRAGON combines both control streams into the same program while effectively decou-

pling the hardware part responsible for the execution, from the one responsible for data transfers

to/from global memory. Thus, the suggested name of a Software-coupled Hardware-decoupled

Access Execute Approach. In this approach, the same sequencer issues both sides instruction

streams, where one stream controls the execution process on the accelerator side, while the other

stream configures the DMA engines to allow the accelerator to access the input data.

Consequently, this proposed model guarantees deadlock-free synchronization between both sides

instructions streams, while the executable binary can be generated through a single program

compiler. Better yet, this removes the need for hardware queues by using the same unified

program to control the intermediate data buffer through the use of dual-sided BMs (Broadcast

Memories) that can be randomly accessed by both the Controller or the Accelerator.

6.4 The Controller

6.4.1 The Sequencer

The sequencer is the brain of the Controller part and regroups the CU (Control Unit) and the

IM (Instruction Memory). The program instructions to be executed by DRAGON are located

in the IM and are initially loaded from GM (Global Memory) through a DMA (Direct Memory

Access) engine, that is configured and controlled by the CU. Here, the detailed operation of the

sequencer will be explained by revealing the behavior of all of its components.

114

Figure 6.2: The DRAGON sequencer general architecture.

6.4.1.1 The Instruction Memory

The IM (Instruction Memory) holds the program instructions that are loaded from the GM.

Micro-architecture hardware implementations are free to set the size and the number of ports

of the IM, however, they must ensure that the IM can be read through a Program Pointer and

for the best performance, that the output of a certain address location of the IM should be at

least 128-bit-wide to hold at least two 64-bit instruction packets in a dual-packet VLIW manner.

It is possible to output a fewer bit width and consequently be forced to cascade the output

instructions, however, this comes at the cost of degrading the CPI (Cycles Per Instruction) of the

underlying implementation. It is also necessary that the IM provides a means to write program

instructions, through either a manually-controlled or a cache-controlled write port. Other details

of the hardware implementation are at the concern of the designer’s micro-architecture choices.

6.4.1.2 The Control Unit

The CU (Control Unit) is the heart of the Sequencer and performs the most important tasks

such as loading the IM with program instructions, booting the overlay and decoding and issuing

different instruction streams to the different receivers. For example, C-Type instructions are

115

handled differently than other types because the related decoded streams are executed solely by

modules inside the Controller part.

6.4.1.3 Interfacing with a host

The overlay architecture can be run in a stand-alone mode, or be interfaced with a host. The

CU implementation should manage either mode of deployment. In the case of a host-interfaced

implementation, the CU allows the control of the overlay from within the host and exposes its

GM memory space to it. Details of the implementation of either modes of operation are left to

the free choices of the micro-architecture designer.

6.4.2 The Direct Memory Access Engines

A DMA (Direct Memory Access) is a moving engine for blocks of contiguous data. In fact, it can

move data between a specific GM bank and the corresponding broadcast cluster’s BM banks.

The DMA is a major contributor to the high efficiency of DRAGON by freeing the sequencer

time when moving data back and forth between the Accelerator and the Controller.

While the detailed operation allows some micro-architecture design freedom, the general behavior

is that it can accept specific configuration frames from the sequencer’s Control Unit. These

configuration frames instructs the DMA about the amount of data that needs to be transferred

(the number of byte bursts through the AXI protocol), the direction of the transfer (either a

write or a read operation), as well as the BM and GM offset addresses.

DRAGON is a SIMD architecture where every operation is executed in a parallel manner. The

DMA engines are no exception. It is necessary that the micro-architecture implementation pro-

vides the base pointer for each GM region that is connected to a BC. Typically, the GM memory

space is divided in different regions implemented as separate banks that are each connected to

a unique BC. Besides, a special DMA engine can be used to load the program instructions from

the GM into the IM.

116

6.5 The Accelerator

6.5.1 The Broadcast Cluster: A Modular Approach

Figure 6.3: The DRAGON Broadcast Cluster general architecture.

6.5.1.1 Broadcast Memories and Broadcast Memory Controller

DRAGON adopts a modular design with different layers of different granularity. In the lowest

level resides the PE which has the lowest memory level as well, the LM. The PEs are grouped in an

array of 4x4 PEs, in a 2D grid structure and typically interconnected through a 2D-Mesh topology.

These PEs, together with the BMs (Broadcast Memories) and the BMC (Broadcast Memory

Controller) form the BC (Broadcast Cluster). This modular structure enhances the maintenance

of DRAGON micro-architecture implementations and eases targeting FPGA architectures with

multiple dies, by simplifying the mapping of BCs to a given die. Fig. 6.3 depicts the general

architecture of the BC. In fact, a BC accepts two separate streams of instructions from the

sequencer. One instruction stream is destined to each PE for execution in a SIMD manner, while

the other is further decoded by the BMC, that issues subsequent control signals to the PEs and

manage the flow of data between these PEs and their respective BM banks, in the BC side. The

117

sequencer issue another instruction stream that configures the DMA to transfer data back and

forth between the other side of the BM banks and the GM. Besides, the BM is implemented in

a banked manner and there are sixteen banks in total in each BC, where each BM bank has a

12-bit address pointers to access them with a read or write operation.

6.5.2 The Processing Element

Figure 6.4: The DRAGON PE general architecture.

The DRAGON PE is expected to process the stream of VLIW instructions coming from the

sequencer. Therefore, the PE matches the structure of packets in this stream. The VLIW

instruction typically embeds both a computational and a memory operation instruction packets

and therefore a PE is structured into slots that manage each type of instruction. These two slots

are called Memory Slot and Dual Compute Slot and a typical architecture is illustrated by Fig.

6.4.

The DRAGON PE ensures the execution of the decoded and statically scheduled VLIW instruc-

tions that are split into two packets consisting of memory and computational operations using

64-bit-wide data. The DRAGON PE supports both 64-bit integer and floating-point double-

precision operations as well as local data movement between register file and local memory as

well as specialized neighbor communication instructions.

118

The number of pipeline stages is a matter of micro-architecture implementation choices, however

the broadcast memory controller has to account for such number to ensure the synchronized

operation with the data it broadcasts to the PE.

6.5.2.1 The Dual Compute Slot

The DCS (Dual Compute Slot) shown in Fig. 6.4, is one of the two compartments of the

DRAGON PE and it ensures the execution of 64-bit integer operations using the ALU (Arith-

metic and Logic Unit). It also allows computations using double-precision floating-point format,

through a custom MAC FPU (Multiply-ACcumulate Floating-Point Unit). These two units share

the same input operands and therefore the compute operation output must be pass through a

multiplexer that selects the active unit output in a given clock cycle.

Moreover, as detailed later in the DRAGON instruction set architecture, the result of the com-

putation is not always written back to the register file. In fact, it can be broadcasted to other

PE neighbors and/or directly written to local memory, therefore, another multiplexer is required

to select the input data to write in the register file destination register. Furthermore, DRAGON

allows operations not only using register operands but also other inputs such as data incoming

from broadcast memories, immediate values, or communication buffers that store the gathered

data from the PE neighbors.

6.5.2.2 The Memory Slot

The MS (Memory Slot) implements a set of communication buffers whose pointers are managed

in a circular buffer FIFO (First In First Out) -based manner.

In contrast to the DCS which performs purely computational instructions, the MS manages data

movement operations such as :

• LM loads and stores

• BM loads and stores

• passing data that are stored in communication buffers to a PE neighbor

• Scattering data from either the local memory, the register file or one the outputs of either

119

the ALU or the FPU, to PE neighbors and gathering incoming data into the respective

communication buffer.

It is possible to perform a computation, store its result into the LM while loading a datum from

LM into the register file , thanks to the multiple-issue of instructions using the VLIW model.

While DRAGON decodes and concurrently executes two instructions inside the DCS and MS

slots, it allows more operations to be performed per clock cycle. In fact a single VLIW instruction

packet can for example, provide the result of a computation through the ALU or the FPU, store

the result to LM, scatter the result to neighboring PEs, gather the incoming data from these

neighbors and loads a new datum from LM into the register file. This boosts the efficiency level

of the PE, in particular by reducing the performance cost of data movements, by overlapping

memory transfers with effective computations.

Besides, every MS contains a PE ID (Processing Element IDentifier) that allows selective data

transfers from BM to LM through a masking scheme that compares this PE ID with the mask

issued by the BMC after decoding the original mask contained into the MS instruction.

6.5.3 The Topology and Dimension of the Interconnect

The DRAGON overlay adopts a tightly-coupled architecture model where all PEs can exchange

locally stored data through a direct interconnection network. The DRAGON interconnect is

based upon a switchless topology, where each PE represents a single node that is connected

to a set of adjacent neighbor nodes. The network interconnect degree, defines the number

of these neighbors for each PE. The DRAGON interconnect network also adopts a buffered

approach that allows storing the exchanged data between adjacent local and distant connected

PEs. As such, directional communication buffers behaving in a circular buffer FIFO manner,

allow each PE to store data incoming from multiple neighbors or scatter the local data to these

neighbors. Depending on the implementation interconnect topology and degree, the number

of neighbors may differ. However, the base DRAGON overlay allows connections with up to

eight PE neighbors, as this is an architectural limitation of the underlying base instruction set

architecture presented in Chapter 4. This limitation also takes into consideration the scarcity of

physical wires, known as SLLs (Super Long Lines) and which connect die regions known as SLRs

120

(Super Logic Regions) in multi-die FPGAs [111]. For example, in the case of HBM-enabled

multi-die FPGAs, these wires must be used to connect HBM banks to their respective BCs,

and as such these wires may quickly become a bottleneck for implementation scalability of the

DRAGON overlay, both regarding its size (number of deployed PEs) and its interconnect degree.

Nevertheless, it has been shown in [4] how a micro-architecture implementation of the DRAGON

overlay architecture is capable of implementing a 3D degree of interconnect or even a 4D degree,

which provide six and eight connected PE neighbors for each node, respectively.

Regardless of the target FPGA architecture, and from a pure architectural perspective, each PE

has to embed a specific number of data communication buffers, depending on the degree of the

desired interconnect topology.

For example, a 2-D-Mesh/Torus interconnect requires four communication buffers to store the

input data coming from four directions, namely, North, West, East and South PEs neighbors.

Moreover, in a 3-D-Mesh/Torus topology, two extra communication buffers are required to ac-

commodate the two additional remote PEs connections, which elevates the total number of

communication buffers to six (four from local neighbors and two from remote neighbors).

Furthermore, in a 4-D-Mesh/Torus topology, an added two extra communication buffers are

required to accommodate the two additional remote PEs connections, which elevates the total

number of communication buffers to eight (four from local neighbors and four from remote

neighbors).

6.6 Summary

This chapter presented a general overview of the DRAGON many-core overlay architecture. The

description begins by introducing the different parallel processing paradigms adopted by the

proposed architecture. Then, it dives into system level details such as the architectural split

between the Accelerator and the Controller, while providing a brief description of their internal

structures. This chapter also provides an example of a typical processing element architecture

and the way it should handle the adopted VLIW programming approach. Ultimately, this chapter

serves as a basis to the subsequent micro-architecture implementations presented in Chapter 7

and Chapter 8.

121

Chapter 7

Baseline micro-architecture

implementation of DRAGON

7.1 Introduction

This chapter presents the baseline micro-architecture implementation that serves for the base

preliminary evaluation. Mainly, this chapter summarizes the work presented in [3]. As such, the

micro-architecture presented in this chapter is labeled the Baseline DRAGON. Subsequently, the

details of its micro-architecture implementation on the target FPGA [37] will be presented and

discussed in the following sections.

7.2 Micro-architecture of the baseline DRAGON

This section presents the Baseline DRAGON micro-architecture implementation details. Here,

Fig. 7.1 illustrates an overview of such an implementation, in which it depicts two major parts

that operate in tandem. The first major part is the Controller that orchestrates overall oper-

ation by decoding and issuing SIMD instruction streams, through its sequencer module. The

Controller, implements as well DMA engines that ensure programmed data transfers between

the GM banks and their respective BMs in the Accelerator part which is the core computing

part of DRAGON. This Accelerator consists of multiple duplicated clusters that contain each an

array of 16 PEs, 16 BM banks, and a BMC (Broadcast Memory Controller) that acts in turn as a

partially local DMA between BMs and each PE’s local memory. The PEs perform the execution

122

Figure 7.1: Micro-architecture of the Baseline DRAGON overlay [3, 4].

of the SIMD instruction stream provided by the the Sequencer. The BMs are in fact intermediate

buffers between GM banks and LMs, and are connected through DMAs in the Controller side,

and BMC in the Accelerator side. The program instructions are loaded from their dedicated

GM bank into the IM (Instruction Memory), through a dedicated DMA engine. The host uses

the PCIe infrastructure provided by the FPGA vendor (Xilinx) RTL kernel model to move data

back and forth between the FPGA device and its host computer.

7.3 The Sequencer

The Sequencer is the key component of the Controller part. Fig. 7.2 illustrates the main modules

of this component. Among these, it shows the IM that stores program instructions, the AXI

(Advanced eXtensible Interface) Lite Control Interface that interfaces the FPGA device with

the host through the exchange of configuration parameters and interrupt signals, and finally the

CU (Control Unit) that plays an orchestrating role for all of the operations inside the overlay,

including the central task of reading/decoding program instructions from the IM and issuing

multiple SIMD decoded instruction streams towards PEs, DMAs and BMCs.

123

Figure 7.2: Micro-architecture of the Sequencer [3].

The host-side call of the OpenCL prototype function that abstracts the DRAGON overlay sets

a special register bit in the AXI Lite Control Interface. When, this bit is set, a start signal is

generated and instructs the CU to start the overlay operation by either entering into a boot

sequence that loads new program instructions from their GM bank into the IM, or by jumping

directly into the normal operation mode where reloading program instructions is not required and

the same program is re-used instead. The selection of either modes, depends on the configuration

parameter set by the user in the host OpenCL overlay abstraction function. In case of the first

mode of operation (boot sequence), another required parameter indicates the memory size of the

program (in Bytes). After the completion of the boot sequence, the overlay moves to normal

operation state. In this state, the CU manages the reading of program instructions from the IM

by updating the value of the PC (Program Counter). The read instructions are then decoded

and new control signal streams are issued, at every clock cycle, towards their corresponding

recipients. In fact, a total of three streams are generated. The first is a VLIW stream containing

two packets that are sent for execution on the MS and DCS slots of each PE, respectively. The

second is a configuration frame used to control the operation of the DMA engines such as read or

write mode and the amount of data to be moved. The third is sent to the BMC to synchronize

its operation with the PEs, change the broadcasting mode, and control the flow of data between

BMs and LMs.

The special C-Type control instructions are solely executed in the Controller part. For example,

124

these instructions manage program loops where seven levels of nesting are supported in the

Baseline DRAGON micro-architecture implementation. The completion of data processing is

detected when an instruction having the STOP opcode is encountered. This should indicate

that all program instructions have been executed and all the processed data was written into

their corresponding GM banks. In this situation, an interrupt signal is generated which sets a

dedicated register bit in the AXI Lite Control Interface, notifying the host that the processed

data is ready to be copied to their corresponding host buffers.

7.4 The Instruction Memory

Figure 7.3: Micro-architecture of the Instruction Memory [3].

The IM allows the storage of program instructions that are loaded from the dedicated GM bank

during the boot sequence. It is implemented using the largest capacity on-chip memory resource

on the FPGA that is the URAM memory. It offers 512 KiB of storage thanks to the use of 16

physical URAM memory blocks. These are logically arranged into eight blocks that are each

providing 128 bit output and allowing the storage of 4096 128-bit VLIW instructions (2 x 64-bit

slots). An example of such an implementation is illustrated by Fig. 7.3.

125

In this implementation, a memory row contains 8 128-bit VLIW instructions (a total of 1024

bits). The CU reads instructions by generating a PC that allows to point to the equivalent IM

location address. This PC consists of two parts, the LP (Line Pointer) that indicates the row

in which the instruction resides and the OP (Offset Pointer) that indicates which of the 8 logic

partitions contains that instruction, and is used as a selector to the 8x128-bit input multiplexer.

The data on the output of this multiplexer is subsequently sent to the CU for decoding.

Nonetheless, this physical arrangement of the URAM memories was selected to maximize the

storage bandwidth by matching the implemented AXI data bus width (1024-bit data bus). In

fact, these memories are implemented in a dual-port mode which provides in total 1024-bit inputs

arranged as 16 64-bit data input ports connected directly to the 1024-bit AXI data bus. An equal

number of 64-bit data output ports is also connected to the bank select Mux (multiplexer) shown

in Fig. 7.3. This bandwidth maximization allows shortening the boot sequence program load

time during which the GM dedicated program bank (HBM bank on the FPGA) is active. As

such, it effectively reduces the related energy consumption.

7.5 The Broadcast Cluster

Figure 7.4: Micro-architecture of the Broadcast Cluster [3].

126

The parallel nature of DRAGON is manifested through different aspects. First the use of a

banked GM implementation which allows a fast parallel-access to data either during write or

read operation. Then through the modular implementation of relatively small clusters (BCs)

that embed each an array of 4x4 tightly-connected SIMD operating PEs. Ultimately, through

the splitting of the operation of these PEs by adopting a VLIW model where two slots may

perform different kinds of operations (data movements and pure computations). These PEs are

2D-Mesh interconnected and each can exchange its local memory data with the respective BM

bank through the BMC. The BM acts as an intermediate buffer that links between LMs and GM

banks. To reduce the eventual energy overhead caused by data movements, it is necessary to

maximize the bandwidth of BMs while ensuring a minimal on-chip memory resource utilization,

to reduce the area size and the related power dissipation. As such, every BC implements a total

of 16 URAMs, one for each BM, so that each PE is connected with a respective BM from one

side, while the other BM side is connected to the DMA-BM AXI-based 1024-bit data bus (16 x

64-bit), as depicted by Fig. 7.4.This allows separate concurrent accesses to BM banks from both

Accelerator and Controller sides (PE-side and GM-side), which facilitates a double buffering

pipelined approach to move the data more efficiently, in either directions. For an even enhanced

efficiency, the BMC is able to act as a half duplex DMA that manages bulk data transfers from

BM to LM following a call to an LDBM instruction.

7.6 The Broadcasting feature implementation

The base DRAGON ISA offers the possibility of broadcasting a single data from any BM bank to

all the PEs inside a BC. This data broadcasting may be useful to reduce bandwidth requirements

in multiple applications such as vector-matrix multiplication. The DRAGON ISA also offers the

possibility of extension towards other schemes of data broadcasting that can be used in other

specific applications. Moreover, this broadcasting feature allows the access to the combined full

memory space of all the BM banks, when loading data into a specific LM. For example, when

broadcasting is not required (not selected by the programmer), each BM bank outputs data

solely to its respective LM with the same PE ID (Processing Element IDentifier). On the other

hand, when the broadcast feature is selected, any single BM bank output, among all the 16

127

Figure 7.5: Micro-architecture implementation of the two-level broadcasting feature.

existing banks, may be broadcasted to each PE in the BC. This is extremely useful for it helps

reduce the memory bandwidth requirement by 16 times. This implies, it can reduce the time to

move shared data into each local memory by 16 times as well, resulting in a significant decrease

in energy consumption. Fig. 7.5 illustrates a typical micro-architecture implementation of this

feature through a two stage multiplexing logic. The first stage selects a single BM bank output

among the 16 available banks through an offset selector that is obtained from the instruction

field ”BrOffset” in Fig. 4.5. A second multiplexing stage is implemented using 16 2-input

multiplexers. When the Broadcast feature is set in a program instruction, the output from the

first stage multiplexer is broadcasted to all PEs of the same BC. Otherwise, every BM bank

output is sent solely to the respective PE with the corresponding PE ID.

7.7 The Processing Element

The PE architecture and micro-architecture are key elements in the quest towards an energy-

efficient FPGA-based many-core overlay. The Baseline DRAGON PE, depicted by Fig. 7.6,

adopts an implementation with a total of seven pipeline stages. Pipelining is a critical ingredient

for performance as it allows temporal parallelism, in addition to boosting the operating clock

speed by reducing the logic levels and shortening critical paths. The logic levels reduction not

only improves the computational performance but it contributes as well to the minimization of

128

Figure 7.6: Micro-architecture of the Processing Element [3].

glitches that are responsible for a large part of the power dissipation in digital CMOS circuits.

Moreover the Baseline DRAGON PE provides two slots (Dual Compute Slot and Memory Slot)

that ensure the concurrent execution of the decoded VLIW packets, which results in an efficient

overlapping of data movements such as memory loads and stores with the effective computations

on the DCS slot. For example, A PE is capable of performing a computation through its FPU,

scatter the result to neighboring PEs, while loading new data from BM to LM or from LM to

the Register File.

These computation are performed with the help of the 64-bit integer ALU and the double-

precision MAC FPU. The RTL-based description of the MAC FPU, whose details are illustrated

by Fig. 7.7, uses pragmas to ensure the utilization of DSP modules instead of distributed logic

(LUTs) for the multiplication operation which results in a more compact area that leads in turn

to a reduced power dissipation. In addition, the compact implementation leads as well to a better

routing quality which translates to better timing as well as better computational performance

outcome. Besides, the LM is implemented using the URAM memory resource which provides a

12-bit addressable space for 4096 64-bit different locations. This LM is capable of concurrent

load and store to/from the Register File. Furthermore, the large capacity Register File provides

129

256 64-bit locations, which leads to the reduction of unnecessary data movements to/from the

LM, and results in a reduced overall energy consumption.

Nevertheless, the low-latency single-cycle multiplication operation is a limiting factor for clock

speed while neighbor communication buffers implemented in separate BRAMs are a limiting

factor for scalability and for increasing the degree of interconnect beyond 2D. These limitations

will be further discussed in the experimental evaluation chapter, while the key improvements will

be presented in detail, through the enhanced micro-architectures in the subsequent chapter.

7.8 The Multiply-ACcumulate Floating-Point-Unit

Figure 7.7: Micro-architecture of the Multiply-ACcumulate Floating-Point-Unit (MAC FPU) [3].

The MAC FPU in the Baseline DRAGON overlay is implemented as a cascade of a single-

cycle multiplier followed by a single-cycle adder, both performing operations on double-precision

floating-point data operands. The goal is to provide a low-latency unit that mainly supports

addition, subtraction and accumulation through a call to fused multiply-accumulate instructions.

In this implementation, the MAC FPU adopts truncation as the default rounding mode, to

simplify the required computation by resulting in fewer logical levels. This results in turn in a

minimal resource utilization and consequently a minimal power dissipation.

The MAC FPU adds a multiplexer and extra logic that performs some transformations on the

input operands of the adder part. For example, it can invert the sign of the second operand to

perform a subtraction operation, either on the pre-multiplication inputs or on the accumulated

result. Besides, to uniquely perform a multiplication operation, the multiplication result is

forwarded to the second operand input of the adder whereas the first operand takes zero as an

130

input.

7.9 Summary

This chapter introduced the Baseline micro-architecture implementation of the DRAGON overlay

architecture on the target FPGA in the Alveo U280 acceleration board[37]. This chapter provided

the micro-architecture details for the sequencer, the Instruction Memory, the Broadcast Cluster

and its broadcasting feature, the Processing Element and the Multiply-Accumulate Floating-

Point Unit. The related implementation results will be presented in detail in Chapter 9.

131

Chapter 8

Enhancing the energy-efficiency

through DRAGON2 and

DRAGON2-CB micro-architecture

implementations

8.1 Introduction

The DRAGON2 micro-architecture adopts the same system level architecture of the Base-

line DRAGON overlay that is depicted by 7.1. However, DRAGON2 is an enhanced micro-

architecture implementation of DRAGON that is heavily optimized for the target FPGA [37].

As such, it benefits from layout-aware floorplan and fine-tuned placement. The AXI-based in-

terconnect that links the DMA engines to the GM has been improved following a mathematical

formulation that was established to strike the best balance between scalability and AXI data

bus width, taking into consideration the scarcity of the wires between the different regions of

the target FPGA. Moreover, the communication buffers are improved through the adoption of a

new scheme named compact buffering which is implemented in the compact buffering version of

DRAGON named DRAGON2-CB. In addition, the clock speed has been nearly doubled by in-

creasing the number of pipeline stages in each of the MAC FPU and the PE micro-architectures.

Besides, an additional registering of signals across the FPGA regions has been added and ac-

counted for in the PE implementation by adding a compensation stage as a second write-back

132

stage. Finally, all these enhancements allowed scaling the overlay in size by increasing the num-

ber of deployed PEs which is doubled as compared to the Baseline DRAGON. Furthermore, the

scalability of the overlay in terms of degree of the interconnect has also been improved and made

DRAGON2 and DRAGON2-CB able to adopt 3D and 4D dimensions of connectivity alongside

hosting larger amounts of the improved PEs.

8.2 Micro-architecture Enhancements

8.2.1 Optimizing the GM-BM AXI-based data bus interface

The Baseline DRAGON overlay implemented a 1024-bit AXI data bus that connects each GM

HBM2 bank to a set of 16 BM banks in each broadcast cluster. As a result the 1024 bits can be

exactly divided into 16 64-bit data, and the BM banks can be written to, simultaneously, at each

AXI transaction beat. The simplicity of such an implementation came at the cost of an increased

routing difficulty that limited the overall scalability, because it was bottle-necked by the scarce

wires connecting the different dies inside the FPGA. In contrast, the Broadcast Cluster in the

DRAGON2 and DRAGON2-CB overlay implementations, reduces the size of the AXI-data bus

to just 256 bits, while introducing a multiplexing control logic to match the original behavior.

Furthermore, the AXI-data bus has been pipelined to outperform the clock speed obtained in

the Baseline DRAGON overlay implementation.

8.2.2 Improving the MAC FPU through a deeper pipeline

Figure 8.1: The micro-architecture of the MAC FPU of the implemented DRAGON2 and
DRAGON2-CB overlays [4].

The Baseline DRAGON micro-architecture implementation suffered multiple performance and

energy efficiency bottleneck. In the baseline implementation, the MAC FPU provided support for

133

a single-clock-cycle multiplication and a single-clock-cycle accumulation operations. Despite this

low-latency advantage, the resulting computational performance remained limited, because of the

multiple logic levels required by these computations, which limited the achievable operating clock

speed. Furthermore, these multiple logic levels increased the probability of spurious transition

activity known as glitches, which leads to increased power dissipation and energy consumption.

To enhance the MAC FPU implementation, its pipeline depth has been extended to a total of

four stages for the multiplication and another four stages for the accumulation operations. As

such, the number of logic levels at every pipeline stage has been reduced significantly, which

led to shorter paths that in turn allowed it to achieve higher operating clock speed as well a

reduction in power dissipation related to glitches.

The enhanced MAC FPU detailed pipeline operations are illustrated by Fig. 8.1. The default

rounding mode re-uses truncation that was previously implemented in [3], to reduce the number

of logic levels and related hardware resources, resulting in a more compact implementation.

8.2.3 Enhancing the PE through extended pipeline and optimized

buffering

8.2.3.1 The DRAGON2 PE

The enhanced PE micro-architecture of the DRAGON2 overlay is depicted by Fig. 8.2. The

introduced enhancement consists of extending the number of pipeline stages for a higher operating

speed and reduced dynamic glitch power as a result of shorter paths and decreased logic levels

between stages.

In this micro-architecture, an extra (MEMory3) pipeline stage was added near the local memory

output that is destined to drive data towards the broadcast memory or the neighboring PEs.

While not shown in Fig. 8.2, the data path connecting the output of a PE to the input of an

adjacent one was shortened through the insertion of a pipeline register, providing more freedom

to the routing tool and resulting in better overall speed and reduced capacitive load power related

to the length of the underlying wires.

To maintain the synchronization between PEs, an additional write-back stage was inserted, as a

compensation for the introduced delay on neighbor-incoming data signals, that is a result of the

134

Figure 8.2: The micro-architecture of the Processing Element of the implemented DRAGON2
overlay [4].

extra pipeline register described earlier.

Besides, the ALU operation has been extended through an additional pipeline stage. This

allowed the integer multiplication to be implemented with an additional clock-cycle, resulting in

an improved operational speed and reduced glitching power.

In total, the new PE micro-architecture in the DRAGON2 overlay embeds 15 stages as compared

to just 7 in the baseline version, taking into consideration the extended pipeline of the MAC FPU

(8 stages).

8.2.3.2 The DRAGON2-CB PE (Compact Buffering PE)

Fig. 8.3 illustrates the new micro-architecture of the DRAGON2-CB PE which benefits from the

Compact Buffering (CB) as compared to the DRAGON2 PE.

While seemingly abundant in large FPGA devices, the amount of hardware resources remains rel-

atively a limitation for scalability. In fact, different kinds of hardware resources may be available

in different amounts. It is therefore important to balance the utilization of the different kinds of

135

Figure 8.3: The micro-architecture of the Processing Element of the implemented DRAGON2-
CB overlay [4].

resources with regards to their availability on a target device. In particular, the DRAGON2 PE

implements communication buffers as separate BRAMs and uses 4,6 and 8 BRAMs for designs

with 2,3 and 4D interconnects, respectively. Clearly, this implementation choice may become a

bottleneck for scalability (deploying more PEs), especially in a higher degree of interconnect.

To solve this issue, the DRAGON2-CB PE, shown in Fig. 8.3, maintains most of the aspects of

the DRAGON2 PE while it implements an enhanced buffering scheme called Compact Buffering,

that will be explained later. In this scheme, the DRAGON2-CB uses 1, 2 and 3 BRAMs for

designs with 2,3 and 4D interconnects, respectively, resulting in a significant decrease of on-chip

memory utilization, reduced power and nearly similar performance levels as will be shown in the

experimental evaluation chapter.

136

8.2.4 The Compact Buffering Scheme

8.2.4.1 A concept overview

The compact buffering scheme aims at reducing the number of BRAMs used by communication

buffers to exchange the data between neighboring PEs. This reduction aims to maintain a good

scalability of the overlay without compromising the computational performance.

The compact buffering technique consists of grouping multiple communication buffers into a

single BRAMs and efficiently scaling the used amount of BRAMs along the increase in the

dimension of interconnect, to maintain an acceptable bandwidth for write operations, instead

of implementing each communication buffer into its own BRAM. Since the proposed scheme is

targeting a software-programmable many-core overlay architecture, parallel write operations to a

single BRAM port should be handled by the user through the DRAGON ISA software instructions

by deferring concurrent writes to an ulterior clock cycle while saving the corresponding data into

the Local Memory that provides a relatively large capacity backup storage.

Fig. 8.4 shows the proposed scheme for 2D, 3D and 4D interconnects, along with the control

logic for write operation and an example of memory space mapping for each communication

buffer dedicated for each direction of data transfer with neighboring PEs.

An interesting approach to implement multi-channel FIFOs in a single BRAM has been proposed

in [114], however the mere adaptation by allocating memory space of all communication buffers

into a single BRAM is simply not efficient enough to maintain sufficient bandwidth for a high

computational performance outcome, in particular with 3D and 4D interconnects. In fact, the

work in [114] proposes the utilization of registers to buffer parallel incoming data which are then

written in-order in a sequential manner. In contrast, the proposed compact buffering allows more

flexibility by using the Local Memory of the PE as a larger backup storage while the DRAGON

ISA provides the necessary software support to handle write operations in the order chosen

by the programmer. Furthermore, the target sub-buffer write address of BRAMs is obtained

directly from the multiplexed write pointers and do not require the addition of input channel

information as these pointers are incremented within the address range of the allocated respective

sub-buffers. Moreover, the use of a full FIFO for communication buffers is over-provisioned as

the software implementation may remove the need to check status flags and thus simplify the

137

hardware implementation. As a result, communication buffers have been implemented as circular

buffers with a simplified control scheme that removes the status flag checks and the underlying

logic resources. While in a 2D interconnect, all circular buffers were implemented in a single

BRAM, higher dimensions of interconnect gradually increase the number of BRAMs to maintain

a high computational performance when compared to a regular buffering scheme as will be shown

in the experimental study related to DRAGON2-CB in Chapter 9. Consequently, the compact

buffering approach reduces the required number of BRAMs from 4, 6 or 8 to 1, 2 or 3 in 2D, 3D

or 4D interconnects, respectively.

8.2.4.2 Read/Write ports adaptation

A BRAM in SDP (Simple Dual Port) mode [115], has two ports, one for reading and another

for writing 64-bit data. The write port consists of three inputs, namely, a write enable (wren),

a 64-bit write data input (wrdata) and a write address input (wrADDr). These inputs are

depicted by Fig. 8.4. The mapping of more than one FIFO-based buffer in a single BRAM

requires external multiplexing and control logic to manage the write and read operations. The

work in [114] provides a general control scheme for mapping multi-channel FIFO into a single

BRAM. Nonetheless, the use of circular buffers in this thesis instead of full FIFOs, simplifies the

overall control logic for example by removing unnecessary hardware for checking status flags. A

write to a given sub-buffer is instructed by software instructions. The decoded instruction issues

an 8-bit write signal where each bit is mapped to a write enable for a specific communication

buffer. The DRAGON ISA description provides the necessary details on this mapping. The write

operation also selects which data input from adjacent PEs is forwarded to the data input of each

BRAM and which corresponding write pointer is forwarded to its write address. After every

write request, the corresponding write pointer for each communication buffer is automatically

incremented until it hits the maximum allowed value dictated by the allocated memory space,

where it is reset to the initial location within the allocated address range of the corresponding

sub-buffer into the BRAM.

The read scheme from communication buffers follows a similar control approach, however no

enable signal is required. In fact, only one input (data address) and one output (data output)

are required. The control management of read pointers is similar to that of write pointers.In

138

Figure 8.4: Example of compact buffering implementation on the DRAGON2-CB overlay with
2D, 3D and 4D interconnects.

other words, these pointers are incremented automatically after each read request and mapped

to the address input of a BRAM read port through a multiplexer controlled by a read signal

provided by the decoded instruction that requires reading data from a given communication

buffer.

139

Figure 8.5: The impact of compact buffering (DRAGON2-CB) versus regular buffering
(DRAGON2) on the PE multiplexing logic and the required amount of BRAM-based neighbor-
communication buffers [4].

8.2.4.3 Impact on the PE micro-architecture

Using a 2D-Mesh interconnect, the PE can exchange data with its neighbors, in four directions,

namely, North (N), South (S), East (E) and West (W). In the Baseline DRAGON [3] and in the

enhanced DRAGON2 [4], a total of four BRAMs are used, where each uniquely implements a

communication buffer for a given direction. The data outputs of these four BRAMs require a

64-bit five-input multiplexer (one input from RegFile + four from BRAMs in the MS part of the

PE) as well as a 64-bit seven-input multiplexer (the output of this multiplexer drives the second

operand of the ALU and FPU, in the DCS slot of the processing element), as depicted by the

right side of Fig. 8.5.

Here, the use of fewer BRAMs, thanks to the compact buffering scheme, reduces the number

of inputs of these multiplexers, resulting in a simplified hardware implementation as illustrated

in the left side of Fig. 8.5 which also depicts similar benefits when extending the interconnect

dimension to 3D or 4D.

140

8.3 FPGA-related Optimizations

8.3.1 Enhancing design speed through deeper pipelining

The operating clock speed plays a central role in the achievable computational performance. To

reach the highest levels of circuit speed, it is mandatory to shorten signal delays and reduce

logical levels by breaking further the circuit critical paths through additional pipeline registers.

In particular, it is mandatory to consider the technology related to the target FPGA, including

the relative location of its HBM memory banks as well as its multi-die nature.

For the best quality of results, it is necessary to apply deeper pipelining at the RTL level.

This can be enhanced further by guiding the FPGA vendor synthesis and implementation tools

through pragmas introduced in the HDL sources and strategies adopted during implementation

phase.

A static timing analysis was conducted on the Baseline DRAGON overlay and has shown multiple

targets for improving overall design speed on the target HBM-enabled multi-die FPGA. Among

these, the large-width AXI data bus connecting the BM with the GM, the non-registered PE-to-

PE links as well as the high-fanout instruction stream that cross the SLR boundaries and lead

to a limited operating clock speed.

• Pipelining the GM-BM AXI bus In the target FPGA [37], there are three SLR regions,

where only the bottom region (SLR0) contains HBM memory banks as shown in Fig. 8.6.

That means the longest and most critical path will connect one HBM memory bank to

a BC that resides on the top SLR region (SLR2), unavoidably crossing two SLR-to-SLR

boundaries. The Baseline DRAGON overlay did not introduce any pipeline to the AXI

data bus connecting HBM banks with the BM of each BC and therefore it resulted in a

limited operating clock speed and relatively low performance and power efficiency of the

overall implementation. The AXI protocol [116] prohibits the use of combinatorial paths

between input signals and output signals. This introduced an increased level of complexity

when pipelining the underlying data bus for the AXI read or write channels. To comply

with the specification, it is necessary to decouple the ready/valid handshake interface sides

by inserting pipeline registers that allow back-to-back data transfers without the insertion

141

of a combinatorial path. This can be achieved thanks to the use of a skid buffer, also called

Carloni buffer [117] which can be implemented through the use of registers to perform

the function of a tiny memory-footprint FIFO that contains two unique locations for data

storage.

For the longest AXI-based control and data paths going all the way from HBM banks on

SLR0 to BCs on SLR2, six pipeline stages have been inserted to break them further and

allow better timing results. The corresponding pipeline skid buffers have been placed as

follows: One close to each HBM2 bank, one close to each BC and two around each of the

two SLR-to-SLR crossings. All other AXI-based paths that do partially cross the SLR

boundaries or do not cross them at all, benefit as well from the same number of pipeline

stages to keep the synchronization between all the AXI-based paths.

• Pipelining the PE-to-PE interconnection for optimized SLR crossing When two

adjacent PEs are located in two different SLR regions the data signals connecting them

must cross an SLR boundary region. In the Baseline DRAGON, this connection was direct,

that is, there were no registers to pipeline the underlying critical paths.

The DRAGON2 (and DRAGON2-CB) micro-architecture solves this issue by inserting a

pipeline stage that breaks these paths further, shortens the related wire delays and provides

more flexibility for the place-and-route tool. To compensate for the extra clock cycle needed

to transfer the data between PEs, an extra write-back stage has been added to each PE as

illustrated in Fig. 8.2 and Fig. 8.3.

• Pipelining the high-fanout instruction stream bus The decoded instruction streams

sent from the Controller to all PEs as well as to all BMCs (Broadcast Memory Controllers)

are high-fanout signals that complicate routing and increase the power dissipation. Worse

yet, these signals unavoidably cross the SLR boundaries which introduces an increased

complexity in routing them to their destination.

To alleviate these issues, manual replication of these signals has been introduced to reduce

their fanout, and multiple pipeline stages have been introduced to reduce the impact on

wire delays when crossing SLR boundaries. Both enhancements have been introduced at

142

the RTL level, leading to an improved routability which reflected positively on the resulting

timing outcome.

8.3.2 Layout-aware floorplanning

An optimal routing of FPGA resources leads to the best outcome in terms of speed, area and

power and is consequently a critical step in the design flow. Routing depends heavily on prior

placement of resources. In fact, optimal placement leads to optimal routing and a sub-optimal

placement complicates the routing step and increases path delays which in turn increases power

dissipation and degrades timing.

• Guiding placement using Relative Location pragmas To guide the placement tool

towards achieving good quality of results, Relative LOCation (RLOC) pragmas have been

inserted into HDL sources to map specific modules or signals to the desired location in the

chip. These pragmas instruct the placement tool on the relative location of PEs, BCs as

well as AXI-related skid buffers, using a a 2D virtual grid with X and Y positions.

• Guiding placement using pre-optimisation step script The RLOC pragmas assist the

placement tool into positioning blocks and modules relatively to each others. Subsequently,

this should be followed by additional information regarding the physical placement on the

actual hardware. To achieve this increased level of control over the placement outcome,

a guiding script is added to the Vivado tool during the pre-opt design step. In fact, this

script aims at maintaining and passing placement information, prior to the optimisation of

the design netlist by Vivado.

The placement guiding script benefits from the Vitis-established bounded regions called

”pblocks” and uses RegEx (Regular Expression) expressions to place signals and modules

into dedicated SLR regions that are delimited by these pblocks. An example from this script

is shown in Listing 8.1. In this example, BCs (BRCLUSTER instance) are constrained to

be mapped to a given SLR region, given a design that adopts a 3-by-3 BCs configuration.

143

Listing 8.1: An example of some contents of a ¡pre opt design¿ step placement guidance script
[4].

1 add_cells_to_pblock [get_pblocks pblock_dynamic_SLR0]

2 [get_cells -hierarchical -filter NAME=~*/dragon_top_inst/accelerator_inst/gen_rows[*]

.gen_cols[0].BRCLUSTER*]

3 add_cells_to_pblock [get_pblocks pblock_dynamic_SLR1]

4 [get_cells -hierarchical -filter NAME=~*/dragon_top_inst/accelerator_inst/gen_rows[*]

.gen_cols[1].BRCLUSTER*]

5 add_cells_to_pblock [get_pblocks pblock_dynamic_SLR2]

6 [get_cells -hierarchical -filter NAME=~*/dragon_top_inst/accelerator_inst/gen_rows[*]

.gen_cols[2].BRCLUSTER*]

8.3.3 Reducing SLLs for lower power dissipation and enhanced scal-

ability

Figure 8.6: Interconnect limitation in SLR boundaries due to the unbalanced requirement on the
number of SLLs.

HBM-enabled multi-die FPGAs, such as the one embedded in the Xilinx Alveo U280 data-center

acceleration card [37], consists of three dies that are called SLR (Super Logic Region) which are

packaged in a single chip and connected to each other using special wires called SLLs (Super Long

Lines) [111]. While the the three SLRs contain a comparable amount of hardware resources, the

144

HBM memory banks reside uniquely in the bottom region SLR0.

To achieve an optimal resource utilization, an overlay must span the exact amount of PEs across

the three SLR regions. Optimally, the number of HBM banks in all three regions would be equal.

Nevertheless, the unbalanced distribution of HBM memory banks creates a bottleneck regarding

the amount of SLL wires required to connect them to each cluster of PEs. In fact, the amount

of SLLs required to connect HBM banks to clusters residing in SLR1 and SLR2 is double the

amount of SLLs required to connect them to clusters residing only in SLR2, which is a limiting

factor for the overlay’s scalability, as shown in Fig. 8.6.

The overlay contains multiple BCs that are organized in a NCOL columns by NROW rows config-

uration. An equal amount of BCs is placed into each SLR region, where each BC interfaces with

a corresponding HBM bank through an AXI4 bridge.

The available amount of SLLs in the target FPGA is equal to 23,040 and can be computed using

Eq.8.1, where NLagColSLL is the amount of SLLs in every Laguna column (equal to 1,440), NLagCol

is the amount of Laguna columns in every clock region (equal to 2) and NClkReg is the amount

of clock regions in every SLR, next to the boundary crossing, (equal to 8).

NSLL available = NLagColSLL × NLagCol × NClkReg. (8.1)

The overlay’s Controller part is placed in the bottom SLR0 and uses DMA engines and an AXI

interface to exchange data between BMs and their corresponding HBM memory banks. The vast

majority of wires in the AXI interface are used by the data buses in the write and read channels.

this means the number of wires required to exchange data is approximately 2×WAXIBus where

WAXIBus is the bus width in one direction of transfer.

Furthermore, additional SLL wires are required to exchange data between BCs, nearby SLR

boundaries. The exact number of these wires is defined by the topology and degree of the

interconnect. For example, in a 2D-Mesh interconnect, every pair of BCs residing on both sides

of an SLR boundary crossing, contains 4 PEs facing each other on each side. Each pair of PEs is

connected through a 64-bit input and another 64-bit output. In this case, WRow-based-InterconnectBus

evaluates to 512 (which is 2 x 64 x 4).

Fig. 8.7 shows how this value will be quadrupled in the case of a 4D-Mesh interconnect. The

145

number of required SLLs (NSLL required) is defined by the SLR0-to-SLR1 crossing bottleneck (as-

suming BCs are evenly placed in every SLR) which leads to Eq.8.2 (where NSLR is the amount

of available SLRs and is equal to 3 in the target FPGA).

NSLL required ≥ NROW ×
[
WRow-based-InterconnectBus + (NSLR − 1)× (2×WAXIBus ×

NCOL

NSLR

)

]
. (8.2)

Eq.8.2 leads to Eq.8.3 that defines the AXI data bus upper bound width, considering the number

of dies (NSLR), the cluster configuration (NROW and NCOL) and the interconnect bus width

(WRow-based-InterconnectBus).

WAXIBus ≤
[
1

2

]
×

[
NSLR

NSLR − 1

]
×

[
NSLL available − (NROW ×WRow-based-InterconnectBus)

NROW × NCOL

]
. (8.3)

Knowing the available number of SLLs and SLRs in a given HBM-enabled multi-die FPGA

target, the analysis of Eq.8.3 allows to deduce the maximal AXI data bus width for a given

configuration of BCs. As a result, the 1,024-bit width of the AXI data bus has been decreased

to 256-bit width, leading to an optimal overlay scalability as will be shown in the experimental

evaluation in Chapter 9.

8.3.4 Layout-aware interconnect generation

The number of neighbors that can directly exchange data with a given PE defines the dimension

of the overlay’s interconnect. An example showing the connections between PEs in 2D, 3D and

4D-Mesh interconnects is depicted by Fig. 8.7, for an overlay consisting of 9 BCs (9x16 PEs).

• 2D-Mesh interconnect Here, all BCs (and all PEs) are mapped into a 2D virtual grid

structured as 3x3 BCs (12x12 PEs). Every PE can directly exchange data with the sur-

rounding four neighboring PEs in the N (North), S (South), E (East) and W (West)

directions, as depicted by Fig. 8.7.

• 3D-Mesh interconnect Here, an extra 3rd dimension is added to the interconnect. The

overlay is logically re-organized in a 3D grid consisting of 3 2D-grids (a 2D grid is logi-

cally structured as 4x12 PEs), where each 2D grid spans three SLR regions. The direct

2D connection between BCs belonging to the same SLR region is now replaced with re-

146

Figure 8.7: Example wiring between processing elements in a 2D or a 3D or a 4D Mesh inter-
connect [4].

mote connections alongside the RN (Remote North) and RS (Remote South) horizontal

directions, as shown in Fig. 8.7.

The horizontal layout of RN and RS neighbors is explicitly chosen to avoid SLR crossing

by keeping the remote connections inside the same SLR. This allows to maintain an equal

147

amount of SLL wires as compared to that used in the 2D interconnect. Ultimately, in this

3D configuration, the 9-BC (144-PE) overlay is configured as 1x3x3 BCs (4x12x3 PEs).

• 4D-Mesh interconnect Here, an extra 4th dimension is added to the interconnect. This

replaces the existing link between each pair of PEs that are facing each others alongside the

SLR boundary by remote connections following the vertical direction illustrated in Fig. 8.7,

where each PE is now connected to a RE (Remote East) neighbor and RW (Remote West)

neighbor. Ultimately, in this 4D configuration the 9-BC (144-PE) overlay is configured as

1x1x3x3 BCs (4x4x3x3 PEs).

8.4 Summary

This chapter summarizes the key micro-architecture enhancements implemented by DRAGON2

and DRAGON2-CB, that led to performance and power-efficiency improvements over the Base-

line DRAGON overlay implementation on the target FPGA [37]. Among these enhancements, a

novel compact buffering scheme has been introduced that reduces the memory footprint of com-

munication buffers to nearly 50%. Moreover, the DRAGON2 overlay benefits from a manually

designed floorplan that is aware of the different regions in the FPGA as well as the scarce number

of wires connecting these regions. Furthermore, the operating clock speed has been improved

due to the deeper pipeline of the PE and its MAC FPU. The related implementation results will

be presented in detail in Chapter 9.

148

Part IV

Results and Discussion

149

Chapter 9

Experiments and Results

9.1 Introduction

This chapter presents the evaluation methodology of the DRAGON architecture and its different

micro-architecture implementations. The benchmarks used for the experimental evaluation are

presented in detail, then, experimental results including computational performance, power-

efficiency, EPR, and scalability are provided and discussed, showing the effects of the introduced

enhancements on the different micro-architecture implementations.

9.2 Evaluation Benchmarks and Setup

9.2.1 Experimental Setup for the Baseline DRAGON Overlay

The baseline DRAGON overlay is implemented on the Alveo U280 Xilinx data center acceleration

card [37] and achieves 130 MHz (144 PEs and 2D-Mesh interconnect).

The Alveo U280 card used in the experiments, contains a multi-die HBM2-enabled FPGA with

three SLRs (Super Logic Regions) and 8 GB on-chip HBM2 memories that are split into two

4GB-stacks, with a total of sixteen banks in each stack.

Table. 9.1 provides the setup details of the experimental environment.

150

Table 9.1: Environment setup for the experimental evaluation of the Baseline DRAGON overlay
[3].

CPU Intel Core i9-9900K CPU
(FPGA Host) 3.60GHz (8 cores, TDP=95W)

OS (Operating system) Ubuntu
(FPGA Host) 18.04.1 LTS

Compiler (FPGA Host) g++(7.5.0) (with -fopenmp -O3 -mavx2)

Accelerator Alveo U280 Data Center Accelerator Card [37]
FPGA Compiler Xilinx Vitis 2020.2 (64-bit)

CPU Intel Core i5-6360U CPU
(PC Host) 2.00GHz (2 cores, TDP=15W)

Operating system (PC Host) MacOS Catalina 10.15.6
Compiler (PC Host) clang++(10.0.1) (with -fopenmp -O3 -mavx2)

Table 9.2: Environment setup for the experimental evaluation of DRAGON2 and DRAGON-2CB
[4].

CPU Intel Core i9-9900K CPU 3.60GHz (8 cores)
(Host) 64GB DDR4 RAM

OS (host) Ubuntu 18.04.1 LTS

FPGA Alveo U280 Data Center Accelerator Card [37]

Framework Xilinx Vitis 2020.2 (64-bit)

Compiler Vivado 2020.2 (64-bit)

Vivado Opt design Place design Route design Physical Opt design

Strategies ExploreWithRemap ExtraTimingOpt NoTimingRelaxation ExploreWithAggressiveHoldFix

9.2.2 Experimental Setup for DRAGON2 and DRAGON2-CB

The experimental evaluation of DRAGON2 and DRAGON2-CB micro-architecture implementa-

tions is performed using the same target FPGA [37], that was used also for the evaluation of the

Baseline DRAGON overlay. Details of the setup used for the experimental evaluation are given

by Table 9.2. Here, Xilinx Vitis was used to compile the various design versions of DRAGON2

and DRAGON2-CB that are using different amount of PEs and interconnect degrees.

9.2.3 Experimental Evaluation

9.2.3.1 Concepts of Iterative Stencil Computing

Iterative stencil computing belongs to a special algorithm category where the data can be or-

ganized in a grid that has N-dimensional structure of multiple points. These points depend on

their surrounding neighbor points with respect to a particular pattern that is known as a stencil.

151

Figure 9.1: Concepts of grid partitioning, tiles mapping and halo points exchange through com-
munication buffers in stencil computations [4].

Applications based on the successive iterative update of stencils are commonly used in scientific

computations such as the numerical simulation of physical phenomena. Example applications

include weather forecasting, computational fluid dynamics [118], tsunami simulation [119]. Other

more mainstream applications include as well the processing of image data [120].

The basic computation consists of successively iterating over each point in the original grid by

updating their values based on coefficients that are multiplied with the neighboring points in

their vicinity that belong to the corresponding stencil pattern.

Laplace and Jacobi equations are model examples of such computations. The 2D version of these

examples have a star-shaped stencil, where a central point depends on its surrounding points, in

the North, East, South and West directions as depicted by Fig. 9.1.(a). The iterative update

model of such equations for N-dimensional grid, where N=2,3 or 4, can be seen in Table 9.3.

In fact, these equations will be implemented as assembly-based programs that are compiled for

different grid sizes, in order to be used later for the experimental evaluation of the proposed

many-core overlay architecture.

Each of these equations has been implemented in a C program that uses embedded DRAGON

ISA assembly opcodes. An example 2D grid of points is illustrated by Fig. 9.1.(a). The original

152

grid points for each benchmark, has been logically split into multiple tiles as depicted by Fig.

9.1.(b) and physically mapped to a corresponding PE (stored in its local memory) as shown

in Fig. 9.1.(c). Here, the boundaries of each tile (also called halo points [121]) need to be

exchanged with neighboring PEs during the stencil point updates due to the dependence of these

points to their neighbors residing in a separate adjacent PE. This can be ensured through the

use of neighboring communication buffers (as depicted by Fig. 9.1.(d)), which allows the direct

data transfer between PEs, without the need of sending dependent data across all levels of the

underlying memory hierarchy.

While Fig. 9.1.(a) shows an example of a 2D grid of stencil points, other stencil problems may

be structured in a 3D grid or even have a higher dimension. Nevertheless, the principles of

grid decomposition and mapping to multiple PEs, as well as the halo data exchange between

PEs through communication buffers remains the same in the implemented benchmarks whose

equations are shown in Table 9.3.

9.2.3.2 Evaluation Methodology

The experimental evaluation aims to study the outcomes of the Baseline DRAGON overlay imple-

mentation and to analyze the effects of the subsequent improvements that were introduced in the

DRAGON2 and DRAGON2-CB micro-architecture implementations. The evaluation also inves-

tigates the overlay computational efficiency (EPR), computational performance, power-efficiency

as well as scalability. The evaluation approach consists of three steps that are addressed in an

incremental order. The first evaluation step aims to perform a comparative study between the

baseline DRAGON micro-architecture and the enhanced DRAGON2 micro-architecture (Both

micro-architectures adopt the exact regular buffering model), to study and quantify the impact

of the introduced enhancements.

Subsequently, the costs as well as the benefits of the introduced compact buffering model (in

the DRAGON2-CB micro-architecture) are studied in a comparative manner with the regular

buffering scheme (in the DRAGON2 micro-architecture), which constitutes the second step of

the evaluation methodology.

The study on both two first steps evaluates the same size overlay (144 PEs) interconnected

through a 2D-Mesh topology, from the viewpoint of performance, power efficiency and resource

153

utilization.

For a fair comparison, the same overlay configuration is used during the first two evaluation

steps. That is all the micro-architecture implementations of the Baseline DRAGON, DRAGON2

and DRAGON2-CB are evaluated using an overlay implementation with a 2D-Mesh interconnect

and a total of 9 Broadcast Clusters (9x16 PEs).

Finally, the last step consists of an in-depth scalability study that includes a comparison of

the computational performance, hardware resource utilization, power efficiency, and code size,

between the enhanced DRAGON2 micro-architecture and the further-enhanced DRAGON2-CB

micro-architecture that adopts an improved buffering scheme.

For the experimental evaluation, the stencil computing benchmarks presented in Table 9.3 have

been translated into machines codes that can be executed on each version of the implemented

overlays.

Table 9.3: Equation models of the software benchmarks used in the experimental evaluation
[3, 4], [9, 10].

Benchmark Equation #Mul-OPs#Mul-Acc-OPs#OPSB

2D LaplaceU t+1
i,j = (1/4)× (U t

i−1,j + U t
i+1,j + U t

i,j−1 + U t
i,j+1) 1 3 7

2D Jacobi U t+1
i,j = cWEST .U

t
i−1,j + cEAST .U

t
i+1,j 1 4 9

+cCENTER.U
t
i,j + cNORTH .U t

i,j−1 + cSOUTH .U t
i,j+1

3D LaplaceU t+1
i,j,k = (1/6)

×(U t
i−1,j,k + U t

i+1,j,k + U t
i,j−1,k + U t

i,j+1,k + U t
i,j,k−1 + U t

i,j,k+1) 1 5 11

3D Jacobi U t+1
i,j,k = cWEST .U

t
i−1,j,k + cEAST .U

t
i+1,j,k + cCENTER.U

t
i,j,k 1 6 13

+cNORTH .U t
i,j−1,k + cSOUTH .U t

i,j+1,k

+cREMOTE−NORTH .U t
i,j,k−1 + cREMOTE−SOUTH .U t

i,j,k+1

4D LaplaceU t+1
i,j,k,l = (1/8)× (U t

i−1,j,k,l + U t
i+1,j,k,l + U t

i,j−1,k,l + U t
i,j+1,k,l 1 7 15

+U t
i,j,k−1,l + U t

i,j,k+1,l + U t
i,j,k,l−1 + U t

i,j,k,l+1)

4D Jacobi U t+1
i,j,k,l = cWEST .U

t
i−1,j,k,l + cEAST .U

t
i+1,j,k,l + cCENTER.U

t
i,j,k,l 1 8 17

+cNORTH .U t
i,j−1,k,l + cSOUTH .U t

i,j+1,k,l

+cREMOTE−NORTH .U t
i,j,k−1,l + cREMOTE−SOUTH .U t

i,j,k+1,l

+cREMOTE−WEST .U
t
i,j,k,l−1 + cREMOTE−EAST .U

t
i,j,k,l+1

9.2.3.3 Evaluation Metrics

To obtain the power dissipation as well as the wall-clock-time relative to the execution of each

benchmark, dynamic profiling has been enabled through Vitis prior to the bitstream generation

of each overlay (FPGA compilation). Then, during runtime, Vitis generates reports containing

these information which can be examined through the Vitis Analyzer tool.

154

Later, the collected power dissipation and wall-clock-time results for each benchmark on each

overlay hardware configuration, can be used to obtain the related sustained computational per-

formance using Eq. 9.3, the related power efficiency using Eq. 9.4 and the related EPR using

Eq.9.5.

The TPP (Theoretical Peak Performance) may be computed using Eq.9.1. The terms in Eq.

9.1 hint that increasing the computational performance can be achieved either by increasing the

operating clock frequency (FREQ), the amount of Broadcast Clusters (NBC) and/or the amount

of PEs in each BC (NPE/BC). The coefficient ’2’ in Eq. 9.1 comes from the fact that each

PE can implement two operations that are a floating-point multiplication and a floating-point

accumulation (addition), at every clock cycle.

TPPDRAGON [FLOPS] = 2× NPE/BC × NBC × FREQ [Hz] (9.1)

The amount of operations required to update each single stencil point #OPSB [FLOPs] (for each

stencil benchmark with a given dimension) is provided in Table 9.3. It consists of the sum of

the number of multiply-accumulate operations (#Mul-Acc-OPS [FLOPs]) multiplied by 2 (since

each multiply and accumulate operation count as a multiplication and a subsequent addition)

and the number of multiplications (#Mul-OPs [FLOPs]).

The total amount of operations required by any benchmark to complete the update of all stencil

points is computed by Eq.9.2 where Niters is the amount of all required update iterations for

each stencil point, SizeTile is the partition size of the smaller tiles that form together the original

stencil grid and which are stored in each PE’s local memory, and NPE is the total amount of PEs

in the implemented overlay.

#OPSDRAGON [FLOPs] = Niters ×#OPSB [FLOPs]× SizeTile × NPE (9.2)

Following the equation Eq. 3.4, the Sustained Performance of DRAGON is given by Eq. 9.3

where Twall clock time is the time to complete the update of all the stencil points from the original

input grid. This includes the time to read non-processed data and the time to write it back when

it is fully processed. This wall-clock-time is collected from runtime profiling report and checked

through the Vitis Analyzer software tool.

155

SPDRAGON [FLOPS] =
#OPSDRAGON [FLOPs]

Twall clock time [s]
(9.3)

Following the equation Eq. 3.5, the power efficiency of DRAGON is based on Eq. 9.4 and is

computed by dividing the Sustained Performance (obtained from Eq. 9.3) by its average power

dissipation POWER [W], that is collected, for each benchmark, from its corresponding runtime

power profiling report and checked through the Vitis Analyzer software tool.

Power-EfficiencyDRAGON [FLOPS/W] =
SPDRAGON [FLOPS]

POWER [W]
(9.4)

Ultimately, the EPR of DRAGON is based on Eq. 3.6 and computed as the ratio of the Sustained

Performance of DRAGON SPDRAGON [FLOPS] to its Theoretical Peak Performance TPPDRAGON

[FLOPS] as shown in Eq. 9.5.

EPRDRAGON [%] =
SPDRAGON [FLOPS]

TPPDRAGON [FLOPS]
(9.5)

Note that the equations presented in this section target the DRAGON overlay in general which

indeed apply to the Baseline DRAGON overlay, the DRAGON2 as well as the DRAGON2-CB

overlays.

9.3 A comparative experimental study of the Baseline

DRAGON and the DRAGON2 Overlays

The DRAGON2 micro-architecture aims to improve the shortcomings of the Baseline DRAGON

micro-architecture. Here, the results of both implementations are presented in a comparative

manner, with regards to area (resource utilization), Sustained Performance and Power Efficiency.

This comparison aims to fairly highlight the effects of the applied enhancements; therefore,

the implemented DRAGON2 overlay kept the same number of PEs (144 PEs) and the same

interconnect degree and topology (2D-Mesh) that were used in the Baseline DRAGON that was

proposed in [3].

156

9.3.1 Effects of the introduced enhancements on resource utilization

Table 9.4: Comparison of the resource utilization between the proposed DRAGON2 and the
Baseline DRAGON from [3]. Both overlays are implemented in a 3-by-3 BCs configuration (144
PEs), using a 2D-Mesh interconnect and the same regular buffering scheme [4].

PE BC (16 PEs) OVERLAY (9 BCs) (OVERLAY+FPGA shell)

DRAGON: 2 Baseline 2 Baseline 2 Baseline 2 Baseline

LUT 2231 3297 36631 54134 352161 505202 514406 657622

LUT 251 296 4075 4736 36774 58835 53688 86205
mem

REG 3020 1815 55449 29574 546802 281765 737745 531152

BRAM 6 5 96 80 864 720 1070 940

URAM 1 1 32 32 304 304 304 304

DSP 13 13 208 208 1872 1872 1876 1876

A comparison summary of resource utilization of both the DRAGON2 and the baseline DRAGON

overlays is reported by Table 9.4.

While the amount of used URAMs remains identical between both overlays, the number of

used BRAMs has slightly increased. In fact, two BRAM memories are used to implement the

RegisterFile of DRAGON2 as compared to the baseline version that adopts a mix of a single

BRAM coupled with distributed memories. This design choice saves area by reducing other

resources such as LUTs and LUTmems, leading to a more compact implementation that aims to

decrease the power dissipation.

Besides, the DRAGON2 implements an eight-stage pipelined MAC FPU as compared to the

two-stage pipeline of this unit in the baseline version. Consequently, the deeper pipeline allowed

the enhanced MAC FPU to use the same amount of DSP resources albeit in a more efficient

manner, in particular for the multiplication part, where LUT-based logic used to sum partial

products is now appended to the internal multiplication path inside the DSP48E2 instances of

the FPGA.

Compared to the Baseline DRAGON, the number of LUTs in the DRAGON2 overlay is dramat-

ically reduced, mainly, as a result of the more compact two-BRAM RegisterFile implementation

and the deeper pipeline of the enhanced MAC FPU micro-architecture.

Nonetheless, the amount of utilized registers (REGs) has considerably increased, as a direct

157

result of the PE pipeline that has been stretched from seven stages in the baseline DRAGON to

fifteen stages in the DRAGON2 micro-architecture implementation.

9.3.2 Effects of the introduced enhancements on computational per-

formance

10
20
30
40
50
60
70

48x48 points 96x96 points

10
20
30
40
50
60
70

10 102 103 104

192x192 points

r of iterations

10 102 103 104

384x384 points

r of iterations

Baseline DRAGON (Laplace)
Corei9 (Laplace)

DRAGON2 (Laplace)

Baseline DRAGON (Jacobi)
Corei9 (Jacobi)

DRAGON2 (Jacobi)

Figure 9.2: Double-precision Sustained Performance of the DRAGON2 overlay as compared to
the Baseline DRAGON [4].

The DRAGON2 micro-architecture introduces several enhancements to the Baseline DRAGON

architecture, namely, a deeper MAC FPU pipeline (eight stages compared to two in the Base-

line DRAGON), a deeper PE pipeline (fifteen stages compared to seven stages in the Baseline

DRAGON), a multi-stage pipeline GM-BM AXI data bus (six stages compared to no pipeline

stages in the Baseline DRAGON). These enhancements combined allowed the operating clock

speed to more than double (from 130 MHz in the Baseline DRAGON to 276 MHz in DRAGON2).

Consequently, this drove the DRAGON2 overlay to more than a 100% increase in Sustained Per-

formance as can be seen in Fig. 9.2.

158

The experimental evaluation of the computational performance in both overlays (DRAGON

and DRAGON2) is based on the 2D Laplace and 2D Jacobi benchmarks, whose equations are

presented in Table 9.3. These benchmarks are iterative stencils, therefore, the experiments were

conducted using different number of iterations (10, 100, 1,000 and 10,000). Moreover, these

benchmarks are also two-dimensional, therefore, the original problem grid sizes (48x48, 96x96,

192x192 and 384x384) were split into multiple equally-sized 2D tiles that were stored in each

PE’s local memory.

A higher number of iterations or a larger 2D tile size leads to better hiding the initial and final

overhead cost of moving the respective initial non-processed and final processed data. Thus, it

results in achieving near optimal Sustained Performance. Nonetheless, the larger HBM AXI data

bus width on the Baseline DRAGON overlay helps it reach its optimal Sustained Performance,

faster than the DRAGON2 overlay.

Ultimately, Fig. 9.2 includes as well the results of an Intel Core i9 CPU (9900K) running the

same benchmarks[3] and serving as a reference. These results were obtained using software

implementations that were optimized for parallel processing, thanks to the use of OpenMP

directives and compilation flags that infer the use of AVX2 instructions.

9.3.3 Effects of the introduced enhancements on power efficiency

The double-precision power efficiency of DRAGON2-CB as compared to DRAGON2, for 2D

Jacobi and 2D Laplace stencil benchmarks, is depicted by Fig. 9.3, for multiple grid sizes and

multiple number of compute iterations.

For a reference with equivalent benchmarks using a CPU-based optimized software implemen-

tation, I included the results obtained with an Intel Core i9 9900K, for the same grid sizes and

number of update iterations. The CPU-based equivalent programs were designed using OpenMP

while enabling the highest optimizations and the use of AVX2 instructions during compilation

[3].

The extended pipeline in the enhanced PE micro-architecture has reduced the logic levels in

each stage which reduced the probability of glitches and their consequent power dissipation and

also allowed targeting higher clock speeds (two times higher than the Baseline DRAGON), which

159

1

2

3

48x48 points 96x96 points

1

2

3

10 102 103 104

192x192 points

r of iterations

10 102 103 104

384x384 points

r of iterations

Baseline (Laplace)
Corei9 (Laplace)

 (Laplace)

Baseline (Jacobi)
Corei9 (Jacobi)

 (Jacobi)

Figure 9.3: Double-precision Power Efficiency of the DRAGON2 overlay as compared to the
baseline DRAGON [4].

drove the computational performance to slightly more than two times improvement. Besides,

the reduction of the AXI data bus that connects each Global Memory bank (implemented us-

ing a HBM bank) to its corresponding Broadcast Cluster, from 1,024 bits to 256 bits, in each

data transfer direction (read/write), has significantly reduced the inter-die wires utilization in

DRAGON2 as compared to the baseline version.

All these factors have led to approximately three times Power Efficiency improvement as com-

pared to the baseline DRAGON as can be seen in Fig. 9.3

9.4 A comparative experimental study of the DRAGON2

and the DRAGON2-CB Overlays

The DRAGON2-CBmicro-architecture aims to enhance further the DRAGON2 micro-architecture,

thanks to a compact buffering scheme that aims to improve the power-efficiency by means of

160

lowering the power dissipation as a result of reduced utilization of BRAMs. Here, the results

of both implementations are presented in a comparative manner, with regards to area (resource

utilization), Sustained Performance and Power Efficiency (energy efficiency). This comparison

aims to fairly highlight the effects of the applied enhancements; therefore, the implemented

DRAGON2-CB overlay kept the same number of PEs (144 PEs) and the same interconnect de-

gree and topology (2D-Mesh) that were used in the DRAGON2 overlay proposed in [4], as well

as the baseline DRAGON overlay that was proposed in [3].

9.4.1 Effects of the compact buffering scheme on resource utilization

The compact buffering scheme dramatically reduces BRAM utilization in the DRAGON2-CB

overlay. In fact, the amount of BRAM used for the implementation of four communication

buffers with the four neighbouring PEs, can be reduced from four to only one.

As a result, the number of BRAMs per PE is reduced from six to just three, knowing that the

RegisterFile maintains the same implementation that consumes two BRAMs. That means the

amount of BRAM is halved in all of the PEs as compared to the DRAGON2 overlay implemen-

tation, as can be seen in Table 9.5.

The light-weight buffering scheme also reduces the amount of used registers. In fact, the single

output of a BRAM in the compact buffering version as compared to the four BRAM outputs in

the regular buffering version, leads to a single data operand to be pipelined (registered) instead

of four, when passing the Decode stage to the first Execute stage as shown in Fig. 8.3 and Fig.

8.2.

Nonetheless, while the multiplexing logic has been simplified in the first stage of execution, due

to the single possible operand coming from the BRAM, the amount of LUTs remains comparable

between the DRAGON2 and DRAGON2-CB implementations because of the added logic in the

BRAM upstream side, to handle the multiplexing logic for read and write operations related to

each internal communication buffer.

161

Table 9.5: Resource utilization of the DRAGON2-CB overlay which adopts the proposed compact
buffering scheme as compared to the DRAGON2 overlay which uses the regular buffering scheme
[4].

PE BC (16 PEs) OVERLAY (9 BCs) OVERLAY+FPGA shell

DRAGON: 2 2-CB 2 2-CB 2 2-CB 2 2-CB

LUT 2231 2235 36631 37824 352161 361361 514406 533626

LUTmem 251 243 4075 3947 36774 35615 53688 52529

REG 3020 2787 55449 51714 546802 514158 737745 732245

BRAM 6 3 96 48 864 432 1070 638

URAM 1 1 32 32 304 304 304 304

DSP 13 13 208 208 1872 1872 1876 1876

10

20

30

40

50

60

70

48x48 points 96x96 points

35

40

45

50

55

60

65

70

10 102 103 104

192x192 points

/s
]

 of ations

10 102 103 104

384x384 points

 of ations

DRAGON2 (L
DRAGON2-CB (La

DRAGON2 (J
DRAGON2-CB (J

Figure 9.4: Double-precision Sustained Performance of the DRAGON2-CB overlay as compared
to DRAGON2 [4].

162

9.4.2 Effects of the compact buffering scheme on computational per-

formance

A slight drop in the computational performance of the DRAGON2-CB is observed as compared

to the DRAGON2 (71.15 GFLOPS as compared to 71.21 GFLOPS with a 2D Jacobi benchmark

for a grid size of 384x384), as depicted by Fig. 9.4.

This is in fact due to the use of compact buffering which imposes separate instruction issue of

corner data scattering towards neighboring PEs. Since a tile stored in the local memory of a PE

has four corner stencil points, four extra clock cycle are required to scatter these data towards

North, East, South and West PE neighbors, due to the single write port available in the BRAM

holding the four communication buffers of each direction of transfer.

Since only four points need separate clock cycle to issue the additional scattering instructions,

the impact of this added time on the performance may be reduced further when increasing the

tile size, which reduces the percentage of time lost in the extra scattering operation as compared

to the total time to update all of the tile’s points, for a given update iteration.

9.4.3 Effects of the compact buffering scheme on power efficiency

The DRAGON2-CB adopts a similar micro-architecture as compared the DRAGON2 overlay

with the exception of a light-weight buffering scheme. Hence, it inherits all of the improve-

ments that were introduced in the DRAGON2 as compared to the Baseline DRAGON micro-

architecture.

The adopted compact buffering scheme reduces the BRAM utilization of the DRAGON2-CB.

In fact, a single BRAM is used to implement communication buffers in the 2D interconnect as

compared to four BRAMs in DRAGON2 with the same degree of interconnect. When counting

the overall BRAM utilization on the FPGA (including FPGA shell), the amount is reduced from

1070 to just 638 for the 144-PE overlay implementation, which can be seen in Table 9.5).

As a result the power efficiency of the 144-PE DRAGON2-CB is improved by around 12%

(with the 2D Jacobi benchmark for a grid size of 384x384) as compared to that of the 144-PE

DRAGON2 overlay, with a 2D interconnect, which can be seen in 9.5, where DRAGON2-CB and

DRAGON2 achieve at best 3.37 GFLOPS/W and 2.99 GFLOPS/W, respectively.

163

0.5

1

2

3

48x48 points 96x96 points

1.5

2

2.5

3

10 102 103 104

192x192 points

Number of iterations

10 102 103 104

384x384 points

Number of iterations

DRAGON2 (Laplace)
DRAGON2-CB (Laplace)

DRAGON2 (Jacobi)
DRAGON2-CB (Jacobi)

Figure 9.5: Double-precision Power Efficiency of the DRAGON2-CB overlay as compared to
DRAGON2 [4].

9.5 A Comparative scalability study of DRAGON2 (Reg-

ular Buffering) and DRAGON2-CB (Compact Buffer-

ing) Overlays

In this section, an in-depth analysis of the costs and benefits of the compact buffering scheme is

given through an extensive comparison study of the DRAGON2-CB overlay that implements such

a scheme and the DRAGON2 overlay that implements a regular buffering scheme. This study

explores the scalability of each micro-architecture and reports detailed findings, mainly about

the area impact (resource utilization), computational performance, power-efficiency (energy-

efficiency) and EPR.

164

180

220

260

300 4D
300 288 288

272
291 291 287

269 260 248

200

180

220

260

300 3D

 [
M
H
z
]

292 287 276 274
293 291 290 278 278 270

180

220

260

300

16 48 96 144 192 240 288

2D

291 294
276 274 270

 (COMP

294 290 294
277 273 270 273

Figure 9.6: Achieved clock speed of DRAGON2 and DRAGON2-CB for 2D, 3D and 4D inter-
connects with varied overlay size configurations [4].

9.5.1 Impact of the compact buffering scheme on the clock frequency

The compact buffering scheme requires less BRAMs and thus less BRAM outputs. As a re-

sult, the large multiplexers of the regular -buffering-PE are simplified as can be seen in Fig.

8.5. Nonetheless, extra control and multiplexing logic is now moved upstream to manage the

read/write operations of each communication buffer. Therefore, a scalability study has been

conducted to quantify and analyze the impact on the operating clock speed of the overlay.

This study consists of increasing the number of PEs for each implementation using either 2D,

3D or 4D interconnect and reporting the obtained clock frequency after a successful bitstream

generation, for both regular and compact buffering versions (DRAGON2 and DRAGON2-CB

overlays, respectively).

The reported results are illustrated in Fig. 9.6 which shows a similar trend of operating clock

speed on both types of buffering. In fact, while a negligible difference still exists, it is most likely

due to the non-determinism of the synthesis and implementation software tool (Vivado).

Interestingly, during run-time the reported design clock speeds has been truncated down to the

nearest multiple of five, as noticed through the FPGA runtime profiling reports. For instance,

these reports show that a design bitstream capable of operating at 294 MHz will be provided a

290 MHz clock during runtime, while another design that can achieve 300 MHz would maintain

165

its same clock speed.

9.5.2 A study of area (hardware resource utilization) and scalability

Table 9.6: Overlay configurations and related stencil sizes used in the scalability analysis [4].

2D-Mesh (Tile size=32x32) 3D-Mesh (Tile size=8x8x12) 4D-Mesh (Tile size=4x4x3x10)

Number BC PE Total BC PE Total BC PE Total
of PEs config config stencil size config config stencil size config config stencil size

16 1x1 4x4 128x128 1x1x1 4x4x1 32x32x12 1x1x1x1 4x4x1x1 16x16x3x10

48 1x3 4x12 128x384 1x3x1 4x12x1 32x96x12 1x1x1x3 4x4x1x3 16x16x3x30

96 2x3 8x12 256x384 1x3x2 4x12x2 32x96x24 1x1x2x3 4x4x2x3 16x16x6x30

144 3x3 12x12 384x384 1x3x3 4x12x3 32x96x36 1x1x3x3 4x4x3x3 16x16x9x30

192 4x3 16x12 512x384 1x3x4 4x12x4 32x96x48 1x1x4x3 4x4x4x3 16x16x12x30

240 5x3 20x12 640x384 1x3x5 4x12x5 32x96x60 1x1x5x3 4x4x5x3 16x16x15x30

288 3x6 12x24 384x768 1x6x3 4x24x3 32x192x36 1x1x3x6 4x4x3x6 16x16x9x60

Ideally, the utilization of any kind of hardware resource on an FPGA-based design should main-

tain equal percentages for optimal scalability. In other words, an over-utilization ratio for a

specific kind of hardware resources would result in a poor scalability that will be delimited by

this most consumed resource. The BRAM resources were in fact the bottleneck for scalability, in

the Baseline DRAGON as well as the DRAGON2 overlays. In these overlays, a higher intercon-

nect degree coupled with an increased number of PEs, has led to consuming BRAMs significantly

faster as compared to other kind of hardware resources. This is indeed visible through a faster

slope depicting the percentage of BRAMs used to implement the regular buffering in Fig. 9.7.

This bottleneck is even more significant in the overlays having a higher degree of interconnect

(3D and 4D versions), where a larger number of BRAMs is required. In some situations, the lack

of sufficient resources, needed to meet this requirement, prohibited the deployment of a higher

number of PEs.

The DRAGON2-CB benefits from the compact buffering model that effectively reduces the

number of BRAMs used to implement communication buffers in 2D, 3D or 4D interconnects. This

led to enhancing the DRAGON2-CB overlay scalability and spared sufficient BRAMs resources

to be used along with a higher number of PEs and/or a higher degree of interconnect, as shown

in Fig. 9.7 and Fig. 9.8 which suggest a better utilization balance and a linear increase trend in

166

10
20
30
40
50
60
70
80
90
100

4D

10
20
30
40
50
60
70
80
90
100

3D

n

 [
%
]

10
20
30
40
50
60
70
80
90
100

16 48 96 144 192 240 288

2D

 of PEs (with COMPACT g)

10
20
30
40
50
60
70
80
90
100

4D

10
20
30
40
50
60
70
80
90
100

3D

10
20
30
40
50
60
70
80
90
100

16 48 96 144 192 240 288

2D

 of PEs (with REGULAR ng)

LUT REG BRAM URAM DSP

Figure 9.7: Percentage of resource utilization of the proposed DRAGON2-CB (with COMPACT
buffering) as compared to DRAGON2 (with REGULAR buffering), for multiple overlay size
configurations and with varied dimensions (2D, 3D and 4D) of the Mesh interconnect [4].

terms of the absolute utilized amount of the depicted kinds of hardware resources.

9.5.3 A study of performance, EPR and scalability

The Sustained Performance results are reported in Fig. 9.9 and Fig. 9.10 and are computed based

on Eq. 9.3 that involves the wall clock time results obtained from the benchmarks execution

profiling reports that were generated by Vitis during runtime. The different configurations for the

Broadcast Clusters and their Processing Elements, for each interconnect degree are summarized

in Table 9.6. Moreover, this table reports the amount of stencil points of each tile, as well as

their total amount in each given dimension, based on the total number of tiles that is equal to

167

100

300

500

700

900

1100

1300

1500

16 48 96 144 192 240 288

4D

100

300

500

700

900

1100

1300

1500

16 48 96 144 192 240 288

3D

100

300

500

700

900

1100

1300

1500

16 48 96 144 192 240 288

2D

Number of PEs (with COMPACT buffering)

100

300

500

700

900

1100

1300

1500

16 48 96 144 192 240 288

4D

100

300

500

700

900

1100

1300

1500

16 48 96 144 192 240 288

3D

100

300

500

700

900

1100

1300

1500

16 48 96 144 192 240 288

2D

Number of PEs (with REGULAR buffering)

LUT (1000s)
LUTmem (100s)

REG (1000s)
BRAM

URAM
DSP (10s)

Figure 9.8: Resource utilization of the proposed DRAGON2-CB (with COMPACT buffering) as
compared to DRAGON2 (with REGULAR buffering), for multiple overlay size configurations
and with varied dimensions (2D, 3D and 4D) of the Mesh interconnect [4].

the total amount of PEs in each configuration. The total number of stencil update iterations

in each benchmark is set to 10,000. To study the scalability of the proposed architecture, the

total amount of stencil points is increased alongside the increase in the amount of Processing

Elements. A nearly linear speedup can be observed in Fig. 9.9 for N-D Jacobi stencil benchmarks

and in Fig. 9.10 and for N-D Laplace stencil benchmarks, where N=1,2 or 3. Nonetheless, a

performance saturation can be seen for both 4D benchmarks, in the 288-PE DRAGON2-CB

overlay with a 4D interconnect. This saturation is caused by the degradation of the operating

clock frequency (The operating clock achieves 200 MHz, after about 30 hours of implementation

time, from which 25 hours were consumed during the routing step alone). In fact, the growing

168

10
30
50
70
90
110
130
150

10

30

50

70

90

91.81 91.81 91.81 91.81 91.81 91.81 91.81

10
30
50
70
90
110
130
150

10

30

50

70

90

94.36 94.36 94.36 94.36

10
30
50
70
90
110
130
150

10

30

50

70

90

 [
%
]

91.93 91.93 91.93 91.93 91.93 91.93 91.93

10
30
50
70
90
110
130
150

10

30

50

70

90

 [
%
]

.78 .78 .78 .78 .78

10
30
50
70
90
110
130
150

16 48 96 144 19 0 8

10

30

50

70

90

 ACT ing)

89.84 89.84 89.84 89.84 89.84 89.84 89.84

 ACT)

10
30
50
70
90
110
130
150

16 48 96 144 192 240 288

10

30

50

70

90

 (REGULAR ing)

89.91 89.91 89.91 89.91 89.91 89.91

 (REGULAR)

Figure 9.9: Double-precision floating-point performance scalability and Effective to peak Per-
formance Ratio, using 2D, 3D and 4D Jacobi benchmarks. A side-by-side comparison between
DRAGON-2CB (COMPACT buffering) and DRAGON2 (REGULAR buffering) [4].

10
30
50
70
90
110
130
150

10

30

50

70

90

90.82 90.82 90.82 90.82 90.82 90.82 90.82

10
30
50
70
90
110
130
150

10

30

50

70

90

93.66 93.66 93.66 93.66

10
30
50
70
90
110
130
150

10

30

50

70

90

 [
%
]

90.61 90.61 90.61 90.61 90.60 90.60 90.60

10
30
50
70
90
110
130
150

10

30

50

70

90

 [
%
]

91.58 91.58 91.58 91.58 91.58

10
30
50
70
90
110
130
150

16 96 192 0 288

10

30

50

70

90

 ACT ing)

87.31 87.31 87.31 87.31 87.31 87.31 87.31

 ACT)

10
30
50
70
90
110
130
150

16 96 192 0 288

10

30

50

70

90

 (REGULAR ing)

87.39 87.39 87.39 87.39 87.39 87.39

 (REGULAR)

Figure 9.10: Double-precision floating-point performance scalability and Effective to peak Per-
formance Ratio, using 2D, 3D and 4D Laplace benchmarks. A side-by-side comparison between
DRAGON-2CB (COMPACT buffering) and DRAGON2 (REGULAR buffering) [4].

169

number of PEs coupled with a growing degree of interconnect, increases the amount of wires

that cross the SLR boundary regions and complicates the routing due to the scarcity of the SLL

wires connecting the multiple die regions on the FPGA.

Besides, the DRAGON2-CB implementation aims to improve the power efficiency (energy effi-

ciency) by reducing the power dissipation through a reduction of the amount of required BRAMs,

while maintaining comparable Sustained Performance results with the DRAGON2 overlay (that

uses a regular buffering scheme) by maintaining a comparable EPR.

The EPR results are reported in Fig. 9.9 and Fig. 9.10) and are computed based on Eq. 9.5

that derives from Eq. 9.3 and Eq. 9.1. Fig. 9.9 and Fig. 9.10) show that the EPR maintains

nearly the same value when increasing the amount of PEs for a given interconnect dimension

which confirms a good performance scalability. The range of variation of the obtained EPR

remains near constant within a two decimal digits of precision. The high EPR is a reflection of

the high computational efficiency of the architecture where a small percentage of the theoretical

peak performance is lost in operations that are not involved in the computation such as data

movements.

Nonetheless, the extra clock cycles required by the DRAGON2-CB compact buffering scheme

to scatter the corner points of a tile of stencil points in each PE, slightly reduce the EPR as

compared to the regular buffering used by the DRAGON2 overlay. However, this slight reduction

is still acceptable knowing the obtained advantages in terms of power efficiency that will be shown

in the next subsection.

9.5.4 A study of power efficiency and scalability

The power efficiency results are reported in Fig. 9.11 and are computed based on Eq. 9.4 that

involves the power dissipation results obtained from the power profiling reports generated by

Vitis during runtime.

The physical layout aware floorplanning and guided placement allowed the DRAGON2 and

DRAGON2-CB with a 3D interconnect to avoid crossing SLR boundaries to connect PEs in

the added third dimension. This has led to a SLL wire utilization that is similar to the same

overlays that use a 2D interconnect as can be seen in Fig. 8.7. As a result, the obtained

170

1

2

3

4

14
4
19
2
24
0

S
/W
]

1

2

3

4

14
4
19
2
24
0

1

2

3

4

14
4
19
2
24
0

GO (Laplace)
GO B (Laplace)

GO (J
GO B (J

Figure 9.11: Effect of the compact buffering scheme on the obtained Power Efficiency with 2D,
3D and 4D Laplace and Jacobi stencil benchmarks [4].

power efficiency results are comparable despite the 2D version having a slightly better outcome,

due to the localized short inter-PE connections as compared to the long connections with the

remote-neighbor PEs, in the 3D version.

While the added remote connections for the 3rd dimension in the 3D interconnect can be kept

inside the same SLR region, the additional remote connections for the 4th dimension in the 4D

interconnect have to cross the boundaries between SLR regions and consequently heavily use the

available SLL wires.

In addition to increasing the power dissipation, the excessive use of the inter-region wires, in

particular for large-size overlays with more than 192 PEs, complicates routing which limits the

operating clock speed and harms the computational performance. The combined effects translate

to a degraded power efficiency (energy efficiency). Consequently, the power efficiency of the

4D DRAGON2-CB appears to saturate at slightly above 3.5 GFLOPS/W at sizes beyond 192

PEs, while the 2D and 3D versions of the same sizes seem able to further grow above the 4.2

GFLOPS/W mark.

Thanks to the compact buffering scheme, the DRAGON2-CB has a reduced overall BRAM

utilization that leads to a reduced power dissipation and offers not only a better scalability when

171

compared to the DRAGON2, but also an improved power efficiency (energy efficiency). This

improvement becomes more visible in Fig. 9.11 when the amount of implemented PEs or the

underlying interconnect degree are increased.

9.5.5 Bandwidth and scalability

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 3 6 9 12 15 18
 0

 20

 40

 60

 80

 100

 120

T

r BCs

 bank bandwidth
 bank W bandwidth
Total bandwidth
Total W bandwidth

Figure 9.12: HBM2 bandwidth for Read and Write operations [4].

The memory bandwidth of write and read operations for HBM memory banks are obtained by

enabling data profiling during implementation and extracting the results from the generated

reports. These results correspond to the DRAGON2-CB implementation with a 2D interconnect

and a total of 18 BCs. Nonetheless, only the number of BCs impacts these results since the

degree of interconnect or the used buffering scheme are only internal to the Accelerator part

and do not affect the BM-GM AXI-based data transfer. The memory bandwidth results are

illustrated by Fig. 9.12.

Each BC is connected to its corresponding HBM memory bank in a peer-to-peer manner, which

allows memory bandwidth scalability alongside an increase in the size of the overlay (increase

of the number of BCs). Here, the AXI-based data bus has a 256-bit width and can transfer 32

Bytes or four 64-bit data each single beat, with a maximum of 128 beats per transaction which

corresponds to the limits of 4,096 Bytes related to the AXI protocol specification.

Nevertheless, the achieved HBM memory bandwidth findings shown in Fig. 9.12 are in-par with

the equivalent burst size results that can be found in previous works such as [122].

172

9.5.6 Impact on executable code size

The DRAGON2-CB adopts a compact buffering scheme that reduces the number of BRAMs

but also the related bandwidth, since all the communication buffers used to transfer data with

adjacent neighbors in the 2D space share the same BRAM write port. As a result, issuing a data

scattering operation into two different directions among North, South, East or West, will take

two different clock cycles instead of one.

An example of these data are the corner points of a stencil tile shown in Fig. 9.13. To handle

this situation, two VLIW instructions are required to be issued, one for each direction of data

transfer. The additional VLIW instruction is used because an extra clock cycle is needed by the

BRAM to write another 64-bit input data coming from a different neighbor. The added VLIW

instruction is also coded in 16 Bytes (128 bits or the sum of two 64-bit slots). Consequently, the

four corner points in the 2D tile shown in Fig. 9.13 require 4x16 Bytes (64 Bytes) of instruction

memory space which corresponds to the difference shown in Table 9.7 for 2D-interconnect overlay

mapping the 2D stencil tiles into each LM.

A stencil problem with a higher dimension is mapped to an overlay with the same degree of

interconnect to obtain the highest possible performance and power efficiency. Fig. 9.13 shows

that a 3D tile consists in fact of multiple 2D tiles stacked together. Consequently the four corner

stencil points in the 2D tile have now increased by a3 times which is the added 3rd dimension

of the 3D tile shown in Fig. 9.13. This means the total number of corner points that need to

be scattered into two directions has been multiplied by a3. As a result, 4xa3 added extra cycles

and extra VLIW instructions are required to perform the corner data transfers. Here, the 3D

tile has the dimensions (8x8x12) that corresponds to (a1, a2 and a3), respectively. Therefore,

the difference in code size between DRAGON2 (Regular Buffering with 3D interconnect) and

DRAGON2-CB (Compact Buffering with 3D interconnect) is reported in Table 9.7 and is equal

to 768 (which is the multiplication product of 64 by a3).

In a similar manner, the data of the 4D benchmarks are decomposed into smaller 4D tiles that

are stored in each PE’s LM. Here, the original 2D four corner points requiring four separate clock

cycles to issue four additional VLIW instructions (one for each corner point) are now multiplied

by the added 3rd and 4th dimensions which correspond to 3 and 10, respectively, as shown in

173

Table 9.7.

Ultimately, it is interesting to note that scaling the compute resources (deploying a larger number

of BCs) do not affect the code footprint that maintains a constant size, regardless of the size of

the overlay. This size can change though when modifying the size of the data tiles inside LMs.

Table 9.7: Cost of the compact buffering on the size (in Bytes) of the generated binary code for
2,3 and 4D Jacobi and Laplace benchmarks [4].

2D-Mesh (Tile size = 32x32) 3D-Mesh (Tile size = 8x8x12) 4D-Mesh (Tile size = 4x4x3x10)

Benchmark compact regular Difference compact regular Difference compact regular Difference

Laplace 89632 89568 64 100544 99776 768 89312 87392 1920

Jacobi 106080 106016 64 112960 112192 768 97120 95200 1920

9.5.7 Modeling benefits and costs in N-dimensional interconnects

A stencil point can have a shape formed with its neighboring points that belong to 1D, 2D, 3D

or further high dimensional space [123]. Table 9.8 provides a summary of the benefits as well as

the costs related to the application of the compact buffering scheme in the underlying overlay

for a given dimension of its interconnect, based on the implementation results with 2D, 3D and

4D interconnects. A generalization model is provided as well by extrapolating these findings

to interconnects having a higher N-D dimension, based on careful analysis of the partitioning

of N-D grid into N-D tiles and the impact of the exchange of corner points in these tiles with

analogy to the 2D and 3D tiles that are shown in Fig. 9.13..

a1

a2

a2

a1
a3

Figure 9.13: 2D (left) and 3D (right) stencil tiles inside a local memory of a PE and their corner
points that require extra clock cycles in order to be exchanged with adjacent PEs [4].

After decomposing a 2D stencil problem space into multiple smaller 2D tiles, the boundaries of

each of these tiles has to be exchanged with the respective neighbors. In particular, the corner

174

Table 9.8: Number of required BRAMS in each interconnect dimension and the related clock
cycle and code size overhead [4].

Stencil Benchmark interconnect #BRAMS #BRAMS required extra program size
and its dimension of (compact) (regular) cycles cost
dimension DRAGON2 (buffers) (buffers) (per iteration) (in Bytes)

2 D (Laplace/Jacobi) 2 D 1 4 4 64

3 D (Laplace/Jacobi) 3 D 2 6 4× a3 64× a3

4 D (Laplace/Jacobi) 4 D 3 8 4× a3 × a4 64× a3 × a4

N D (Laplace/Jacobi) N D N-1 2N 4×
∏N

i=3 ai 64×
∏N

i=3 ai

points of each tile has to be exchanged with exactly two neighbors. Using the compact buffering

scheme, a single 64-bit write port is available on the BRAM containing the four communication

buffers that exchange these data with the adjacent PEs; Therefore, corner point data has to

transferred during two clock cycles instead of simultaneously in the same clock cycle. The 2D

tile has a1 × a2 dimensions which are duplicated a3 times to form a 3D tile for a 3D stencil

problem. When using a 3D interconnect, an additional BRAM is used which provides an extra

write port and the cost to transfer corner points to neighbors remains the same as in 2D. These

points need four additional clock cycles to be scattered towards the neighboring PEs because of

the unique 64-bit write port in each BRAM.

Consequently, an increased degree of the interconnect is required to handle an increased problem

dimension without degrading its performance. This leads to a formulation of the required extra

clock cycles to transfer corner points in an N-D stencil problem, using an N-D interconnect, at

each iteration of the computation. This formulation can be seen in Table 9.8 where
∏N

i=3 ai is

the product of all added dimensions to the original 2D space.

Ultimately, in a 2D problem space mapped to an overlay with a 2D interconnect, the extra

VLIW instructions that handle the scattering of corner points require an additional memory

space of 4x16 Bytes (64 Bytes). Hence, a N-D problem that is mapped to an overlay with a

N-D interconnect, would require 64 ×
∏N

i=3 ai Bytes, taking into consideration the additional

dimensions that duplicate the four corner points of the original 2D space.

175

9.6 Summary

The DRAGON overlay architecture has various different implementations on the target FPGA

[37], namely, the Baseline DRAGON, the DRAGON2 and the DRAGON2-CB overlays. Through

the iterative process of building and implementing different micro-architecture features, issues

related to the target FPGA started arising, such as the scarcity of wires between the multiple

regions in a multi-die FPGA or even the lack of sufficient hardware resources for a specific archi-

tectural block. This chapter summarizes, the differences between the various implementations

of DRAGON, and provides an in-depth study on each version as well as the impact of each

micro-architecture enhancement based on an extensive experimental evaluation.

176

Chapter 10

Summary and discussion

10.1 Introduction

This chapter summarizes the micro-architectural differences between three implementations of

the proposed overlay, namely, the Baseline DRAGON, DRAGON2 and DRAGON2-CB. The

summary shows specific micro-architecture implementation choices and reports the best achieved

results (for the largest size implementation of these overlays). Besides discussing the experimental

outcome of these micro-architecture choices, this chapter also discusses their impact on the

programming aspect where the corresponding level of complexity may be increased. Ultimately,

a comparison with other studies and their achieved results is presented and thoroughly discussed.

10.2 DRAGON, DRAGON2 and DRAGON2CB overlays,

a summary

10.2.1 General Differences

Table 10.1 highlights the main variations among the different implemented versions of the overlay,

namely, the baseline version (Baseline DRAGON), the improved version (DRAGON2) and the

improved version enhanced further with the compact buffering scheme (DRAGON2-CB).

In fact, the Baseline DRAGON micro-architecture implementation has a limited scalability due

to the use of a large 1,024-bit AXI data bus that uses DMA engines to connect the GM banks

(mapped to HBM banks) with the BM banks of each BC in a peer-to-peer manner. The subse-

177

Table 10.1: Comparison between the baseline DRAGON overlay [3], DRAGON2 and DRAGON2-
CB overlays [4].

Baseline DRAGON [3] DRAGON2 [4] DRAGON2-CB [4]
Vivado Implementation Default Manually optimized Manually optimized

ISA DRAGON ISA DRAGON ISA DRAGON ISA
ALU pipeline depth 1 2 2
FPU pipeline depth 2 8 8

FPU execution single-thread multi-thread (4) multi-thread (4)
Communication buffers standard standard compact

PE pipeline depth 7 15 15
GM-BM AXI bus width 1024-bit 256-bit 256-bit

Interconnect degree 2D 2D 3D 4D 2D 3D 4D

#PE (largest overlay) 144 240 192 144 288 288 288

Fmax∗ 130 270 274 272 273 275 200

EPR 89.90 89.91 92.78 94.36 89.84 91.93 91.81

SP [GFLOPS] (Jacobi) 33.66 116.53 96.19 73.37 139.72 145.62 105.77

P.eff [GFLOPS/W] (Jacobi) 0.94 3.57 3.15 2.61 4.33 4.24 3.64
∗ This is the achieved clock speed of the generated bitstream. The Vitis runtime may slightly reduced it to
a multiple of 5. For example, 272 MHz becomes 270 MHz during runtime, while 275 MHz remains the same.

quent reduction of this data bus width from 1,024 bits to 256 bits provided a better scalability

which resulted in the possibility to deploy double the number of PEs as compared to the baseline

implementation (288 PEs as compared to 144 PEs, respectively).

The deeper pipeline in the MAC FPU of DRAGON2 and DRAGON2-CB imposed a multi-

threaded programming approach to extract the best possible compute unit utilization and as

such introduced some complexity in programmability. The compact buffering of DRAGON2-CB

allows to overcome the scarcity of BRAM resources and allows maintaining the number of PEs

in the largest implementation, through 2D, 3D and 4D interconnects. Nonetheless, deploying

288 PEs with a 4D interconnect struggles to maintain the same range of operating clock speed,

due to increased routing complexities, and achieves just 200 MHz. While the compact buffering

in DRAGON2-CB solves one of the issues facing the scalability of the system, it slightly reduces

the achieved EPR as compared to the non-compact buffering version in DRAGON2. Despite the

slight decrease in EPR, the DRAGON2-CB remains the superior micro-architecture implemen-

tation, thanks to the enhanced scalability that allows it to deploy more PEs on the target FPGA

and achieve a better double-precision computational performance and power efficiency.

178

10.2.2 FPGA-side Programming differences

10.2.2.1 An example program on the Baseline DRAGON overlay

DRAGON adopts attractive architectural aspects to alleviate the cost of data movements on

energy consumption and computational performance.

At the system level, it decouples GM accesses from the executed compute instructions, thanks

to a custom DAE (Decoupled Access Execute) model.

At the PE level, the architecture allows efficient overlapping of computations with local memory

and/or inter-PEs data transfers, thanks to an efficient ISA VLIW encoding that encompasses

multiple operations able to be issued in a single clock cycle (For example, two computations

such as a multiplication followed by an accumulation and concurrently perform a load from local

memory, a store to local memory, as well as scatter and gather data to/from adjacent PEs).

This provides the possibility of emulating a cyclic buffer into the RegisterFile that allows the

implementation of the sliding window scheme [124] that can be found in applications such as

image processing. Fig. 10.1 shows an example that is used in a 2D stencil computing benchmark

and that implements this cyclic buffer scheme, through the area marked as ”active region”. This

active region contains the stencil point subject to computation and consists of three lines. The

top and bottom lines contain the surrounding North and South points that are used in the

calculation, whereas the central line contains the East and West surroundings of the point to be

updated. New points data are continuously prefetched from local memory, in a concurrent and

cyclic manner along with the update of points from the central line.

A part of the actual program implementation of this cyclic buffer using the DRAGON VLIW

instructions is shown through Listing 10.1. This shows a portion from a program that runs on

the Baseline DRAGON overlay and performs the mean computation of a stencil point based

on its four surrounding North, East, South and West points. In other words, This implements

the computations of a 2D Laplace benchmark and makes use of the powerful VLIW concept to

efficiently overlap computations with data movements.

10.2.2.2 Compact Buffering impact on the programming of DRAGON2-CB

Listing 10.1 shows a part of the 2D Laplace benchmark that performs the mean computation

179

Listing 10.1: Using VLIW instructions to implement a sliding stencil cyclic buffer in the Register
File of the baseline DRAGON [4].

1 //---LEFT-----------

2 FMUL(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2L, RDST, OPSRCL, f); NOP(f); //VLIW

SLOT1 : FMUL instruction. and VLIW SLOT2 : NOP instruction

3 //---RIGHT-----------

4 FMACCA(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2R, RDST, OPSRCR, f); NOP(f);

5 //--DOWN---------

6 FMACCA(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2D, RDST, OPSRCD, f); NOP(f);

7 //--UP------

8 FMACCA(RSRC1, MODE, LMADDR, BROFFSET, BMADDR, RSRC2U, NDST, OPSRCU, f); LD(LMADDRLD,

RDSTLD, f);

9 //---

10 LMADDRLD = (LMADDRLD + 1) % sizeLMdata;

11 RDSTLD = (RDSTLD + 1) % sizeRFdata;

12 LMADDR = (LMADDR + 1) % sizeLMdata;

13 i = i + 1; // increment to jump to the next point in the stencil tile

Figure 10.1: Emulation of a sliding window cyclic buffer. Multiple operations may be embedded
into a single VLIW instruction (e.g. compute&store to LM + scatter/gather to/from neighboring
PEs + load from LM) [4].

for a given stencil point using VLIW instructions. The equivalent program that targets the

DRAGON2-CB micro-architecture is shown in Listing 10.2.

To improve the operating speed and reduce glitching, DRAGON2 stretches the MAC FPU

pipeline from two stages to eight stages. DRAGON2-CB introduces further enhancement by

adopting a compact buffering scheme that reduces the BRAM utilization, thus, leading to reduced

area and power dissipation, better energy efficiency and improved scalability.

In contrast, these enhancements come at the cost of an increased difficulty to program the

overlay using the same instructions. Simply looking at the size of the two equivalent programs

180

Listing 10.2: Using VLIW instructions to implement a sliding stencil cyclic buffer in the Register
File of the DRAGON2-CB [4].
1 //---LEFT-----------

2 if (j==0){ //First pass on the four-point chunk, Operation : Multiply each point by the same stencil

coefficient (C_west)

3 FMUL(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2L, RDST, OPSRCL, f); // VLIW SLOT1 ; MODE

=0b01 means no scatter towards adjacent PEs

4 LD(LMADDRLD, RDSTLD, f); // VLIW SLOT2 ; Load 64bit data from LM @address LMADDRLD to

RegisterFile @address RDSTLD

5 LMADDRLD = (LMADDRLD + 1) % sizeLMdata; //Local Memory Load address, used for sliding window

6 RDSTLD = (RDSTLD + 1) % sizeRFdata; } //Register File target address for LOAD, used for sliding

window

7 //---RIGHT-----------

8 if (j==1) //Second pass on the four-point chunk, Operation : Multiply and Accumulate each point by the

second stencil coefficient (C_east)

9 {FMACCA(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2R, RDST, OPSRCR, f);
10 NOP(f);}
11 //--DOWN---------

12 if (j==2) //Third pass on the four-point chunk, Operation : Multiply and Accumulate each point by the

third stencil coefficient (C_south)

13 {FMACCA(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2D, RDST, OPSRCD, f);
14 NOP(f);}
15 //--UP------

16 if (j==3){ //Fourth pass on the four-point chunk, Operation : Multiply and Accumulate each point by the

fourth stencil coefficient (C_north)

17 if ((NDST==NDST UP)||(NDST==NDST UP and RIGHT)||(NDST==NDST UP and LEFT)){
18 FMACCA(RSRC1, MODE, LMADDR, BROFFSET, BMADDR, RSRC2U, NDST UP, OPSRCU, f); //First

update and scatter towards North (Up) direction only

19 NOP(f);
20 } else if ((NDST==NDST DOWN)||(NDST==NDST DOWN and RIGHT)||(NDST==NDST DOWN and LEFT

)){//First update and scatter to South (Down) direction only

21 FMACCA(RSRC1, MODE, LMADDR, BROFFSET, BMADDR, RSRC2U, NDST DOWN, OPSRCU, f);
22 NOP(f);
23 } else { //update and do not scatter data if the current point is not on boundary

24 FMACCA(RSRC1, MODE, LMADDR, BROFFSET, BMADDR, RSRC2U, NDST, OPSRCU, f);
25 NOP(f);
26 }
27 if (((i+1)%data line==0) && ((NDST==NDST UP and RIGHT) || (NDST==NDST DOWN and RIGHT))){ //

for example for a 32x32 tile the 'data_line' is equal to 32 //if the current point is a corner

point then add an extra data scatter towards West (Left) and East (Right) neighbors.

28 NOP(f);
29 NSG(0b10, LMADDR−data line+1, RSRC2, NDST LEFT, NSRC, f); //scatter the left corner point to

LEFT PE direction

30 NOP(f);
31 NSG(0b10, LMADDR, RSRC2, NDST RIGHT, NSRC, f); //scatter the right corner point to RIGHT PE

direction

32 }
33 LMADDR = (LMADDR + 1) % sizeLMdata; //Local Memory address to store updated points

34 }//---------------Managing loop indexes inside the tile and the chunk of four-point set

35 if ((i+1)%4==0) { // Check if the current pass covered all points in the four-point chunk

36 if (j!=3) { //Operations on the four-point chunk not completed

37 j=j+1 ; // move operation index to next direction (j is the operation index which defines the next

coefficient (C_east, C_west, C_north or C_south))

38 i=i−3; } // before multiply_and_accumulate with a new coefficient, reset the point index to the

start of the four-point chunk

39 else { j=0 ; i=i+1; } } //reset operation index to multiply operation (FMUL) and jump to a new four-

point chunk.

40 else //still inside the same four-point chunk

41 { i=i+1; } // move point index to next point (i is the point index)

181

in Listing10.1 and Listing 10.2 hints to the added complexity.

In fact, the introduced compact buffering in DRAGON2-CB adopts a single BRAM with a

unique write port to store data incoming from the four neighboring PEs in the 2D interconnect.

As such, corner points of the 2D tiles (shown in Fig. 9.1.(b)) that were previously scattered in

the same clock cycle, now require two clock cycles and an extra VLIW instruction must be issued

to perform the additional scattering of data (line 27 to 32 of Listing 10.2).

10.2.2.3 Multi-threading impact on the programming of both DRAGON2 and

DRAGON2-CB

DRAGON2 and DRAGON2-CB micro-architectures stretched the MAC FPU pipeline to eight

stages. In particular, they stretched the accumulation pipeline to four stages which imposes the

use of multi-threading for a full use of the compute capacity. That means populating the pipeline

with a chunk of four points at a time instead of performing point by point computations.

Listing 10.2 shows this effect where the (i) index points to the global position of the stencil tile’s

point under update, whereas the (j) index indicates the ongoing pass atop the chunk of four

points under update.

A 2D Laplace stencil point update is equivalent to the mean computation of the four surrounding

points. In the Baseline DRAGON, this is ensured through a single multiplication of one surround-

ing point by the value 0.25 (1/4) that is followed subsequently by three multiply-and-accumulate

operations.

In contrast, the DRAGON2 and DRAGON2-CB micro-architectures have to fully populate the

accumulation pipeline stages in order to extract the highest possible performance; therefore, four

(j) passes are required over all the surrounding North, South, East and West directions (j =

0,1,2 and 3). At first (j=0), four multiplications with 0.25 have to be performed for each point

in the four contiguous stencil points. Then, at each iteration (j=1 or 2 or 3), four multiply-and-

accumulate operations follow in a consecutive manner to perform the stencil point update for

the current active direction.

182

10.2.2.4 The DRAGON2-CB sliding window program details explained

Following the 2D Laplace equation in Table 9.3, the update of each stencil point for a given

time iteration requires summing together the multiplication of each of its surrounding points

by a constant coefficient (0.25). Listing 10.2 shows the example of a part of a C-based software

program implementation of the 2D Laplace computation, that targets the DRAGON2-CB overlay.

Here, a multiplication by the left neighboring point (line 3) is followed by three multiply-and-

accumulate operations for each of the surrounding points (of the stencil point being updated),

in the remaining directions (line 9 for right neighboring point, line 13 for bottom neighboring

point, and line 18,21 or 24 for top neighboring point).

A global index (i) and a pass index (j) are used to track the global position of each point and the

corresponding neighbor direction to be used in the stencil update, respectively. In fact, when (j)

equals 0, this indicates that the current multiplication operation involves the neighbor point in

the left direction. When (j) equals 1,2 or 3, this indicates a multiply-and-accumulate operation

that involves the neighbor point that is in the right, down or up directions, respectively.

In every FMUL (multiplication) or FMACCA (multiply-accumulate) operation, the argument

RSRC2(.) indicates the address of the neighbor point on the RegisterFile, where (.) can be L for

Left, R for Right, D for Down or U for Up. Using the global index (i) of each stencil point that

is under update, RSRC2(.) is pre-computed (not shown in Listing 10.2)), to provide the address

in the RegisterFile that contains the neighbor point from the (.) direction (L, R, D or U).

Nonetheless, not all surroundings points are stored in the RegisterFile. In fact, the boundary

points are stored from previous iterations into the communication buffers. Therefore, the argu-

ment OPSRC(.) (where (.) can be L,R,D or U) selects the second operand for the computation

(the first is the output of RegisterFile pointed by the address RSRC1). In fact, this argument is

pre-computed and selects the second operand from the RegisterFile for neighboring stencil points

that are involved in the computation and reside inside the tile boundaries, otherwise, it will select

the data operand from the corresponding communication buffer to the current direction.

At every start of a point update, a new point is loaded from LM address (LMADDRLD) (line

4 of Listing 10.2) to the RegisterFile address (RDSTLD), just after the trailing position of the

active region shown in Fig. 10.1 (marked by the purple color).

183

The first FMUL (line 3 of Listing 10.2) and LD (line 4 of Listing 10.2) are actually two instruction

packets that are embedded inside the same VLIW instruction, from the view point of micro-

architecture implementation, where these two packets target slot1 (Dual Compute Slot) and

slot2 (Memory Slot) of the PE, respectively.

The (MODE) instruction field in R-Type instruction may allow storing the result of a compu-

tation into the local memory at the location pointed by the content of (LMADDR) field which

is then incremented at the end of each of the four-point chunk update (line 33 of Listing 10.2).

Here, the (LMADDR) also may loop back to its initial value at every new time iteration to re-

update the stencil points, when its limit is reached (sizeLMdata which corresponds to the total

number of points in the tile stored into LM). The (MODE) value is pre-computed according to

the current (i) position index and is used in the FMACCA operations (line 18,21 and 24 of 10.2).

The lines 35 to 41 in Listing 10.2 show how to manage the global index position of each point

(i) and the current direction of the neighbor point involved in the stencil update (j), which later

select the corresponding operation to be performed for the update of a given stencil point. Here,

when the index of the following point indicated by (i+1) belongs to the contiguous range of the

four points under update (line 40 of Listing 10.2), the direction of the surrounding neighbor point

involved in the update operation that is indicated by index (j) remains unchanged. Otherwise,

two different cases may be encountered (line 35 of Listing 10.2). The first case happens when the

update of the points in the current four contiguous points is not fully completed for the given

pass (line 36 of Listing 10.2). In this case, the index (j) is incremented (line 37 of Listing 10.2) to

perform a new multiplication and accumulation (FMACCA) operation using the next direction

of the surrounding points of the current stencil point that is under update. Moreover, the index

(i) is reset to the position of the first point in the four-point chunk (line 38 of Listing 10.2), to

start a new pass of multiplication and accumulation on the next neighbor points direction. The

other case is when all of the points in the contiguous four-point chunk have been completely

updated for the given pass. Here, the index (j) is reset to zero and a new set of four contiguous

points will be updated after the increment of the index (i) (line 39 of Listing 10.2). Ultimately,

the arguments BROFFSET and BMADDR are unused in the FMUL and FMACCA instructions

from the program shown in Listing 10.2.

184

10.3 Comparison with related works

Table 10.2: Comparison of the Double-Precision Sustained Performance, Power Efficiency and
the EPR with other related works [4].

Ref [9] [9] [10] [125] OursOMP Ours

Year 2016 2016 2019 2012 2022 2022

Type FPGA FPGA FPGA GPU CPU FPGA

Device DE5 395-D8 Nallatech385 GTX580 Core i9 9900K Alveo U280

2
D

L
a
p
la
c
e Perf. [GFLOPS] - - 115 - 50.91 135.79

P.Eff [GFLOPS/W] - - - - 0.53 4.20

EPR [%] - - - - 22.09 87.31

2
D

J
a
c
o
b
i Perf. [GFLOPS] 27.3 40.9 104 49.5 66.87 139.72

P.Eff [GFLOPS/W] - - - - 0.7 4.33

EPR[%] - - - - 29.02 89.84

3
D

J
a
c
o
b
i Perf. [GFLOPS] 27.2 40.7 74 50 43.4 145.62

P.Eff [GFLOPS/W] - - - - 0.45 4.24

EPR[%] - - - - 18.83 91.93

4
D

J
a
c
o
b
i Perf. [GFLOPS] - - - - 50.2 105.77

P.Eff [GFLOPS/W] - - - - 0.52 3.64

EPR[%] - - - - 21.78 91.81
OMP Programs use OpenMP and are compiled using g++(7.5.0) (with -fopenmp -O3 -mavx2).

This section provides a quantitative comparative study with related state-of-the-art works. The

work in this thesis mainly targets double-precision computations. Nonetheless, a single-precision

implementation for the 288-PE DRAGON2-CB overlay was investigated as well. This was

achieved by splitting the PE data-path into two parallel 32-bit ALUs and FPUs using the same

RegisterFile width that packs two 32-bit data in every 64-bit register location. All other aspects

of the overlay architecture are maintained the same in both precisions. The single-precision

DRAGON2-CB overlay operates at 275 MHz with the 2D-Mesh interconnect, 270 MHz with the

3D-Mesh interconnect and 240 MHz with the 4D-Mesh interconnect.

This section reports and discusses some of the previous works that are most relevant to the

work in this thesis. The related results are reported in Table 10.2 (double-precision results) and

Table 10.3 (single-precision results) and cover aspects such as the computational performance,

the power efficiency as well as the Effective-to-peak Performance Ratio (EPR). In addition, these

two tables include the results obtained with the 288-PE DRAGON2-CB implementations. Here,

an additional digit of precision is revealed into the DRAGON obtained results that were reported

185

in Table 8 and 9 in [4] with only one digit precision after the decimal point, to provide a uniform

precision with two digits after the decimal point. Moreover, Table 10.2 and Table 10.3 report

results obtained using a single chip, be it a FPGA, a CPU or a GPU, for a fair comparison.

10.3.1 FPGA-based works

The work in reference [51] proposes a streaming and programmable architecture specifically

designed for solving Jacobi-like stencil computations. While the proposed architecture is scalable

on multi FPGAs, only the obtained results for a single-FPGA are reported in Table 10.3.

The PE architecture in reference [51] embeds one constant memory and another addressable

memory. The constant memory is used for storing the coefficients involved in the computation

of each stencil point. On the other hand, the addressable memory acts as a buffer that is used to

exchange data with neighboring PEs, or to store the results of computation for a given iteration

update. The data-path of this PE contains eight-stage pipeline with a total of five computational

stages dedicated for the multiplication and accumulation operations. These operations are per-

formed thanks to the FMAC (Floating-Point Multiply-ACcumulate Unit) unit. The design of this

unit has inspired the architecture of the proposed MAC FPU (Multiply-ACcumulate Floating-

Point Unit) in this thesis, which offers additional instructions and targets 64-bit double-precision

instead of 32-bit single-precision floats. Therefore, the proposed MAC FPU micro-architecture in

the DRAGON2 and DRAGON2-CB overlays, has an eight-stage pipeline from which four stages

are dedicated to the accumulation step, in contrast to the two stages of accumulation that were

implemented in the FMAC of [51]. The additional stages aim to improve timing outcome by

reducing the increased amount of logic levels in the 64-bit version.

The work in reference [126] proposed a stencil calculation acceleration approach that consists of

a queue of streaming computational blocks that are called SST (Streaming Stencil Timestep).

While, the proposed method achieves a nearly linear speedup alongside an increase in the amount

of implemented SSTs in 2D and 3D Jacobi benchmarks, its scalability seems to be limited by the

benchmark dimension. In fact, the BRAM memory resource seems to be the main cause that is

limiting scalability for a 3D Jacobi calculation, as shown by the related resource utilization report

in [126]. In contrast, the DRAGON2-CB overlay adopts an efficient compact buffering scheme

that efficiently uses BRAM resources, which leads to a good overall scalability. As a result, a

186

similar amount of 288 PEs was implemented with either a 2D or 3D interconnects, which has

led the 2D and the 3D Jacobi benchmarks to achieve comparable performance results on the 2D

and 3D interconnect versions of the DRAGON2-CB, respectively.

Table 10.3: Comparison of the Single-Precision Sustained Performance, Power Efficiency and
the EPR with other related works [4].

Ref [51] [126] [9] [9] [127] [10] [128] [9] [123] [9] [129] [129] Ours

Year 2014 2015 2016 2016 2018 2019 2021 2016 2018 2016 2018 2018 2022

Type FPGA FPGA FPGA FPGA FPGA FPGA FPGA CPU CPU GPU GPU GPU FPGA

Device EP3SL XC7VX DE5 395-D8 ADM- Nallatech XC7VX Core i7 Xeon GTX Tesla Tesla Alveo
150 485T PCIE-KU3 385 485T 4960X E5-2630 960 P100 V100 U280

2
D

L
a
p
la
c
e Perf. [GFLOPS] - - 181.9 175.7 - 659 - 31.7 - 73.8 - - 276.61

P.Eff [GFLOPS/W] - - - - - 13.1 - - - - - - 8.77

EPR [%] - - 92.8i 11.7i - 48.2A - 18.3C - 3.2 - - 87.31

2
D

J
a
c
o
b
i Perf. [GFLOPS] 34 23.6 133.3 237.8 90.04 763 160.81 65.9 - 164.1 - - 284.62

P.Eff [GFLOPS/W] 0.8 - - - - 15.1 7.1 - - - - - 8.82

EPR[%] 87.4 - 68i 15.8i - 55.8A - 38.1C - 7.1 - - 89.84

3
D

J
a
c
o
b
i Perf. [GFLOPS] 31.9 2.63 111.3 193.3 83.98 628 66.06 - - - 1205.3 2111 285.96

P.Eff [GFLOPS/W] 0.71 - - - - 11 3.33 - - - 6.4 8.1 8.50

EPR[%] 83.9 - 59.3i 12.8i - 45.9A - - - - 12.9P 13.4V 91.93

4
D

J
a
c
o
b
i Perf. [GFLOPS] - - - - - - - - 70.65 - - - 253.85

P.Eff [GFLOPS/W] - - - - - - - - 0.74 - - - 7.79

EPR[%] - - - - - - - - 64.22X - - - 91.81
CI recalculated and updated the EPR value given in [9] based on the official Intel data [130] that provides the peak performance
of the Core i7-4960X.
iThe reported EPR is based on a TPP that corresponds to what the authors claim as the peak performance of the underlying
FPGA.
AEPR is computed in the same way as the authors previous work in [9] and thus it is based on a TPP that corresponds to
the peak performance of the underlying FPGA which can be retrieved in [131].
XEPR is computed based on the official Intel data [132] that provides the peak performance of the Xeon E5-2630.
PEPR is computed based on the official Nvidia data [133] that provides the peak performance of the Tesla P100 PCI-E.
VEPR is computed based on the official Nvidia data [134] that provides the peak performance of the Tesla V100 SXM2.

The work in reference [9] proposes a streaming architecture that is based on an OpenCL pro-

gramming approach, to accelerate stencil computing models. It consists of chained compute

blocks called PCMs (Pipelined Computing Module). These PCMs consist as well of several

PEs accepting input data in a cascaded manner thanks to shift-registers. Here, the amount

of PCM modules is equal to the amount of stencil iterations that are computed in a parallel

manner. The DRAM memory is equivalent to a global memory and is connected only to the

first and last PCMs in the cascade, to provide the input of non-processed data and store back

the completed result of processed data, respectively. This approach achieved impressive results

peaking at 237.8 GFLOP/s for a single-precision computational performance on a 2D Jacobi

stencil benchmark. On a 2D Laplace stencil benchmark with the same precision it managed to

187

hit an EPR of 92.8%. Using a double-precision implementation, the obtained results were sig-

nificantly reduced as can be seen in Table 10.2. While the DSP-based hardened multipliers were

used for the multiplication operations, ALMs (Adaptive Logic Module) were used to implement

the addition operations, as claimed by the authors in reference [9]. Therefore, the increased size

of exponent and mantissas in double-precision quickly becomes an area bottleneck due to the

significant use of ALMs in such an implementation. Moreover, The DSPs of the Stratix V FPGA

[135] contained in the DE395-D8 (1963 DSPs) and DE5 (256 DSPs) boards, have multipliers

capable of performing multiplication operations with variable precisions with inputs widths up

to 27x27. Hence, a single-precision multiplication of two 23-bit mantissas would be performed by

a single DSP multiplier, whereas a double-precision multiplication of two 52-bit mantissas would

either be implemented by multiple DSPs, or otherwise, a single DSP that takes multiple clock

cycles for computing the partial products. Consequently, this may explain the performance drop

using double-precision floating-point data.

Nonetheless, despite the fact that the work in reference [9] adopts a specifically-tailored hardware

implementation to compute stencil models, it is still significantly outperformed by the proposed

overlay architecture in this thesis, that manages to achieve better sustained performance in 2D

and 3D Jacobi stencil benchmarks, as can be seen in 10.2 (double-precision results) and Table

10.3 (single-precision results).

An apparently newer version of the work in [9] is proposed in reference [10] and is implemented

on a larger FPGA (Arria 10 GX1150 [131]) with an enhanced implementation as compared to the

originally proposed architecture. Here, the work in reference [10] benefits from the increased peak

performance that reaches 1366 GFLOPS which allowed the sustained performance to be increased

in a single-precision 2D Jacobi stencil benchmark to reach 763 GFLOPS. This jump in perfor-

mance is mainly due to the availability of DSPs that can implement hardened single-precision

floating-point additions and multiplications. While these hardened DSPs allowed the work in

[10] to outperform the sustained performance obtained by the overlay architecture proposed in

this thesis, the lack of support for double-precision operations caused the related performance in

[10] to be locked at a significantly lower performance of 104 GFLOPS.

Besides, SODA was another work proposed in [127] that consists of an automated framework

targeting FPGA implementation of stencil calculations. SODA generates data-flow optimized

188

architectures from a high-level parameter description of a stencil computing model. As a re-

sult, it outputs FPGA-based HLS kernels in C++ language and a host-based API (Application

Programming Interface) based on OpenCL (Open Computing Language). While the proposed

overlays in this thesis adopt a similar programming model split into an OpenCL-based host and

an FPGA-based kernel, they provide a more optimized HDL-based kernel implementation that

is hand-tuned through guided placement and manual physical floorplan, in addition to hand-

picked implementation strategies. Moreover the proposed kernel in this thesis that is based on a

software-programmable overlay architecture, provides higher flexibility and a better re-usability

scheme thanks to the possibility of addressing various computing models by simply downloading

new program instructions while maintaining the same kernel bitstream file.

The work proposed in reference [128] investigated the efficient FPGA-based stencil computing

implementations, through a library of components that are designed in HDL and offer the pos-

sibility of customization. The proposed stencil accelerator design consists of serially chained

computational blocks (named SST). While the proposed approach to accelerate the stencil com-

putations consists of cascaded computing blocks that seem to offer a good scalability, the related

resource utilization increases alongside an increase in the number of iterations to update the

stencil points.

In contrast to this undesired effect, the DRAGON architecture, across all of its micro-architecture

implementations, maintains a fixed resource utilization when increasing the number of stencil

update iterations, thanks to its software aspect that allows managing loops with the help of

dedicated instructions.

In addition, the performance results provided in [128] were normalized as compared to a multi-

thread CPU reference. To obtain the absolute numbers of these results, one of the normalized

reported values have been compared with its original performance value that was given by the

work in [51]. The deduced corresponding single FPGA result for the work in [128] is reported in

Table 10.3.

189

10.3.2 CPU-based works

The work in reference [123] proposes a domain-specific language that allows generating opti-

mized and high-performance code for stencil computations from higher level abstractions. The

performance outcomes of such an approach were investigated in [123] for stencil benchmarks

with multiple dimensions. For example, a single CPU node achieves a performance of about 7

Giga stencil/s (as was approximately deduced from a given performance graph), for a 4D Jacobi

stencil benchmark based on single-precision floats.

Based on the number of operations required to update each stencil point, which the authors in

[123] claim to be the sum of eight additions and two multiplications, the corresponding perfor-

mance in [GFLOPS] has been computed and reported in Table 10.3.

While a direct comparison with this implementation is difficult because of the lack of sufficient

implementation details, the related results are reported here to serve as reference for CPU-based

implementations.

10.3.3 GPU-based works

The DRAGON2-CB overlay achieves better computational performance when compared to GPUs

from previous generations, namely, the GTX960 and GTX580 GPUs. For example, the GTX960

GPU has a peak performance of around 2.3 TFLOPS using 32-bit single-precision floats [9].

However, it provides a small fraction of this peak when it comes to 64-bit double-precision

computations as its original peak performance is divided by a factor of 32 due to the ratio of

double-precision cores that amount to 1/32 of the single-precision cores, which leads to a peak

double-precision performance of about 72 GFLOPS.

Nonetheless, GPU sizes has been growing at a significant rate due to the advances in technology

manufacturing process and the reduction of transistor sizes. As a result, the computational

performance of these devices has been increased dramatically for single- and double-precision,

but so did their power dissipation. An example is given by the work in [129] which reports the

power efficiency and sustained performance results for the NVidia V100 and P100 GPUs using

single-precision floats.

Knowing that the double-precision peak performance of these two GPUs are nearly half of those

190

achieved by single-precision floats, and with the assumption that the same EPR can be perfectly

achieved in double-precision computations, the reported results in [129] for the power efficiency

and the sustained performance of these devices will be simply divided by two. This would

lead to a performance of 602.65 GFLOPS and 1055.5 GFLOPS and a power efficiency of 3.2

GFLOPS/W and 4.05 GFLOPS/W, for P100 and V100 GPUs, respectively. While these results

still outperform the DRAGON2-CB in terms of sustained performance, the power efficiency

results can be slightly improved.

10.4 Summary

In this chapter, I presented a summary of differences between the provided three micro-architecture

implementations of this work, namely, the Baseline DRAGON, DRAGON2 and DRAGON2-CB

micro-architectures. I reported the best achieved results (for the largest size implementation

of these overlays) and discussed the various impacts of the micro-architecture enhancements.

Ultimately, I provided a comparison with other state-of-the-art related works where I discussed

details of their corresponding implementations and achieved results.

191

Part V

Conclusion

192

Chapter 11

Conclusion

Reconfigurable chips such as FPGAs offer a convenient solution for energy-efficient computing,

thanks to their flexibility to implement customized circuits and interconnections which reduces

the impact of data movement on energy consumption. Despite this appealing advantage, these

chips remain difficult to program or use with a host-based platform and many software pro-

grammers find themselves unable to efficiently and easily harness the benefits of such devices.

Furthermore, the abstraction of an FPGA using an overlay architecture comes with significant

overhead costs that often negatively impact its computational performance, energy efficiency and

resource utilization.

The work in this thesis proposes an energy-efficient many-core overlay architecture for

reconfigurable chips that aims to solve these issues. Here, a summary of the achieved contribu-

tions is presented along with the expected societal impacts and examples of possible applications

that may benefit from the work proposed in this thesis.

11.1 A summary of achievements and contributions

11.1.1 General contributions and achievements

To address the general research objectives presented earlier, the work in this thesis proposes the

DRAGON overlay architecture. A summary of the major contributions achieved thanks to the

proposed overlay architecture are presented as follows:

• The proposed overlay architecture adopts a custom-design ISA that provides a software pro-

193

grammability layer on top of the FPGA fabric to bridge the gap with millions of software

programmers. This layer also facilitates the control and integration within a heterogeneous

host-based computing platform. Furthermore, a novel general methodology to use pro-

grammable overlay architectures within this kind of platforms is proposed by leveraging

and extending the low-level infrastructure provided by the FPGA vendor. This allows the

overlay to be abstracted as a standard OpenCL task which provides a simple yet efficient

model to control and use FPGA devices for the acceleration of computations.

• The proposed overlay achieves high levels of computational performance and energy-efficiency

as compared to the state-of-the-art hardware-specific implementations of similar applica-

tions. The high computational performance and energy efficiency levels are achieved with-

out compromising re-usability. That is the proposed overlay can be reprogrammed, through

different software programs to address various computing applications without the need of

redesigning the underlying circuit.

• To extract the highest levels of computational performance and energy efficiency from the

target FPGA while minimizing the overhead costs intrinsically related to overlays, the

proposed work in this thesis implements a custom-design ISA and leverages multiple exist-

ing parallel processing paradigms such as SIMD, VLIW and DAE and combines them to

create a unique highly-efficient many-core-processor FPGA overlay architecture. As a re-

sult, for the same benchmarks, the proposed overlay (for example with the DRAGON2-CB

micro-architecture) outperformed all of the previous double-precision-based implementa-

tions, using a single chip. It also outperformed all previous single-chip, single-precision

implementations that target Xilinx FPGAs.

11.1.2 Detailed contributions and achievements

A preliminary micro-architecture named the Baseline DRAGON overlay has been introduced

and its FPGA implementation has been carefully investigated to study the various issues facing

the achievement of the different research objectives. While the Baseline DRAGON achieved an

impressive EPR that is over 87% for a complex stencil computing application, simply relying on

the default settings of the FPGA compiler led to an implementation that unfairly capped the

194

performance and energy-efficiency potentials of DRAGON.

Issues related to achieving higher clock speed, scaling the overlay size and the degree of the inter-

connect, or improving the energy efficiency, have been investigated, identified, and then, separate

solutions have been proposed and implemented through two enhanced micro-architecture imple-

mentations named DRAGON2 and DRAGON2-CB.

The first identified issue was the scarcity of inter-die wires called SLLs. Since the target FPGA

(ALVEO U280) has all its HBM2 memory banks located into a single SLR region, moving data

between the Global Memory (residing in HBM2 banks) and the Broadcast Memories (residing

in different SLRs), required the use of a significant amount of SLLs. Therefore, first I targeted

a model where the BC distribution is balanced across SLRs. Then, I provided a mathematical

formulation that is based on the physical layout configuration of BCs, in the underlying overlay

implementation, to obtain the optimal AXI data bus width, that maximizes the utilization of

SLLs, with respect to the limited availability of inter-die wires. As a result, I found that a data

bus not exceeding 256 bits in width, leads to an improved scalability of both the overlay size and

the interconnect degree, of the implemented DRAGON2 and DRAGON2-CB overlays.

The second identified issue is the significant amount of BRAMs that are required to imple-

ment the communication buffers, particularly, for larger degrees of the interconnect. As such,

I introduced a buffering model called Compact Buffering, that consists of using one BRAM to

host circular buffers on the 2D space and gradually increasing the amount of BRAMs for each

added dimension, while sharing the memory space inside each BRAM between the multiple in-

put directions, to store incoming data from the different neighboring PEs with support from

the underlying ISA. This buffering model aims at efficiently using BRAM resources to improve

scalability and provide the ability of extending the interconnect degree to higher dimensions

while nearly maintaining the same EPR. Consequently, the BRAM utilization was reduced to

nearly 50%, and more PEs were deployed using this scheme, particularly, in the 4D version of

the interconnect, effectively boosting the DRAGON overlay scalability, and improving its overall

performance and energy-efficiency.

Besides, the clock speed was a limiting factor of performance and power-efficiency. Therefore,

I introduced deeper pipelines in the PE, MAC FPU and AXI data buses, which led to mostly

doubling the original clock speed (130MHz to more than 270 MHz in most configurations) and

195

improving the energy efficiency in the overall design.

The combined micro-architecture and technology-related improvements that were proposed and

implemented, have led to around 2x in performance increase and 3x in power-efficiency improve-

ment over the Baseline DRAGON overlay, with the exact degree of the interconnect (2D) and

the exact amount of PEs (144). Moreover, the improved scalability has led to deploying more

PEs which resulted in around 4x improvements in the overall performance and power-efficiency

over the Baseline DRAGON overlay.

Ultimately, the enhanced DRAGON2-CB that leverages the Compact Buffering technique, re-

markably achieves, at best, EPRs of 89.84%, 91.93% and 91.81%, in 2D, 3D and 4D Jacobi bench-

marks, respectively. The corresponding double-precision performance reaches 139.72 GFLOPS,

145.62 GFLOPS and 105.77 GFLOPS, while the power-efficiency achieves more than 4 GFLOP-

S/W, in double-precision and more than 8 GFLOPS/W in single-precision, in 2D and 3D inter-

connects with a slight drop in the 4D version due to the decreased operating clock speed that

reduced the computational performance.

11.2 Benefits to the community and examples of applica-

tion domains

11.2.1 Summary of qualitative results

In summary, the proposed many-core overlay architecture achieves impressive EPR figures, com-

parable energy efficiency results to the high-end GPUs and relatively high computational perfor-

mance as compared to the previous FPGA-based dedicated designs and overlays. The proposed

architecture has been proven to scale really well alongside an increase in compute resources. As

such, the computational performance has shown a near linear speedup. In addition, the achieved

power-efficiency has shown a considerable improvement as well. Moreover the EPR remained

almost constant when increasing the amount of PEs which proves that the architecture scales

well and maintains the same performance ratio to its theoretical peak in larger design sizes.

196

11.2.2 FPGA-based accelerator for heterogeneous computing

The DRAGON architecture achieves impressive results that are only capped by the size of a

single FPGA device. This may be overcome with larger FPGA sizes or the expansion of the

underlying architecture to clusters of multiple FPGAs, based on the proven DRAGON scalability.

As such, DRAGON may become the base building block of next generation accelerators based

on reconfigurable devices. Besides, the proposed OpenCL-based control of the many-core overlay

architecture, makes it even easier to achieve this goal, by offering a GPU-like model of integration

within a heterogeneous computing platform. Furthermore, the proposed ISA in this work is

designed with the possibility of extension making it an attractive approach to maintain and

upgrade the capabilities of such an accelerator in the future systems. Besides, the proposed

overlay provides comparable or even higher energy efficiency compared to dedicated solutions

without sacrificing its flexibility and hence it contributes to reduce the impact of higher energy

consumption on the environment, making it an attractive alternative for green computing.

11.2.3 ASIC possibility with uncapped capabilities

While the proposed architecture is primarily destined for reconfigurable chips such as FPGA,

the underlying ISA and the proposed micro-architectures in this work, may be used to tape-out

a full-fledged ASIC device, where the area and speed limitations are more controllable and less

capped. As a result, the raw computational performance of GPUs may be matched while the

high EPR that is related to the architecture and that is nearing 90% across several benchmarks

may push the sustained performance farther than traditional accelerators, hence, unlocking its

real potential. Moreover, it remains possible to specialize the proposed overlay towards a par-

ticular kind of application through micro-architectural enhancements, such as adopting novel

interconnect topologies, or through the architecture itself thanks to the possibility of ISA exten-

sions, effectively allowing DRAGON to become a vessel for hardware and software design space

exploration towards future research efforts on building high-performance and energy-efficient

architectures.

197

11.2.4 Bridging the gap with millions of software users

In the future, the proposed overlay architecture as well as its seamless integration methodology

into a heterogeneous computing platform, aims to bring millions of software programmers closer

to FPGAs and allow them to harness its capabilities without facing the traditional challenges

that a hardware expert may encounter during the programming or the control of such devices.

11.2.5 Paving the way towards new discoveries

The experimental evaluation based on a set of stencil benchmarks showed promising results

which implies that DRAGON may be used in scientific applications that are based on these

kinds of stencil calculations, such as the numerical simulation of the Poisson equation (which is a

generalized form of the Laplace equation) or the diffusion equation. For example, the ISA support

for high degrees of interconnects provides a solid means to eventually address high-dimensional

problems such as the classical 3D wave equation [136] or the relativistic 4D wave equation [137],

in the four-dimensional space-time of Minkowski [138]. As such, the proposed overlay may be

used for the simulation of physical phenomena with applications in astrophysics, electrodynamics

and computational fluid dynamics which may pave the way towards new discoveries.

11.2.6 Towards a highly-efficient AI accelerator

The high EPR figures of the proposed architectures in stencil based benchmarks shows a promise

for applications in AI (Artificial Intelligence) where a high sustained performance may be main-

tained near the theoretical peak resulting in a very efficient computing accelerator. Basically,

AI applications such as CNN, are split into two major computations, convolutions and matrix

multiplications. The convolution operations exhibit a similar computational pattern as stencil

applications which hints that DRAGON may be investigated to target such kind of applications.

Besides, the broadcasting feature of DRAGON is inherited from the EXACC[8] architecture

which had the acceleration of matrix multiplication operations in sight. As such, it may perform

such computations with a reduced bandwidth requirement, since a single data can be broadcasted

to multiple PEs to perform a multiplication or a multiply-and-accumulate operations backed by

the MAC FPU. The architectural support of these two key CNN operations (convolution and

198

matrix multiplication) makes DRAGON an attractive architecture to investigate the acceleration

of such kind of workloads.

199

Annex 1: Assembly Example on the

DRAGON2-CB: 2D Laplace benchmark

(C program embedding C-based

DRAGON ISA assembly opcode

functions)

1

2 #include <stdlib.h>

3 #include "functions.h"

4 #include <vector>

5 #include "time.h"

6 #include <cstdint>

7 #include <iostream>

8 #include <sstream>

9 #include <fstream>

10

11 using namespace std;

12

13 //number of stencil points in one dimension of the tile

14 #define data_line 32

15 //total number of points in one tile (to be stored in LM)

16 #define data_count data_line*data_line

17

18 #define READ_LATENCY 150

19 #define WRITE_LATENCY 150

20

21

22 unsigned long NDST_UP = 0b00000001; //=> write to up direction

23 unsigned long NDST_LEFT = 0b00000010; //=> write to left direction

24 unsigned long NDST_RIGHT = 0b00000100; //=> write to right direction

25 unsigned long NDST_DOWN = 0b00001000; //=> write to down direction

26 unsigned long NDST_UP_and_LEFT = 0b00000011; //=> write to up and left direction

27 unsigned long NDST_UP_and_RIGHT = 0b00000101; //=> write to up and right direction

28 unsigned long NDST_DOWN_and_LEFT = 0b00001010; //=> write to down and left direction

29 unsigned long NDST_DOWN_and_RIGHT = 0b00001100; //=> write to down and right direction

30

31 unsigned long OPCODE = 0x0;

32 unsigned long RSRC1 = 0x0;

33 unsigned long MODE = 0x0;

34 unsigned long UNUSED = 0x0;

35 unsigned long BROFFSET = 0x0;

36 unsigned long BMADDR = 0x0;

37 unsigned long RSRC2 = 0x0;

200

38 unsigned long RDST = 0x0;

39 unsigned long OPSRC = 0x0;

40 unsigned long IMMEDIATEMSB= 0x0;

41 unsigned long IMMEDIATELSB= 0x0;

42 unsigned long LMADDR = 0x0;

43 unsigned long NDST = 0x0;

44 unsigned long MASKLOAD = 0x0;

45 unsigned long DATACOUNT = 0x0;

46 unsigned long NSRC = 0x0;

47 unsigned long FUNCT = 0x0;

48 unsigned long ITERATIONS = 0x0;

49 unsigned long BURSTSIZE = 0x0;

50 unsigned long BMOFFSET = 0x0;

51 unsigned long GMOFFSETMSB = 0x0;

52 unsigned long GMOFFSETLSB = 0x0;

53 unsigned long INSTRUCTION = 0x0;

54 unsigned int INSTR_LSB = 0x0;

55 unsigned int INSTR_MSB = 0x0;

56

57

58 unsigned long LMADDRLD = 0x0;

59 unsigned long RDSTLD = 0x0;

60 unsigned long RSRC2U = 0x0;

61 unsigned long RSRC2L = 0x0;

62 unsigned long RSRC2R = 0x0;

63 unsigned long RSRC2D = 0x0;

64

65 int main(int argc, char **argv){

66 unsigned int iters;

67 iters = atoi(argv[1]);

68 string itersize = "_"+std::to_string(iters)+"iter";

69 string dimsize = std::to_string(data_line)+"x"+std::to_string(data_line);

70 //executable file that contains instructions that will be stored in IM

71 ofstream f;

72 string filename = "2Dlaplace"+dimsize+itersize+".txt";

73 f.open(filename, ios::out);

74 //--

75 // program start

76 //--

77 NOP(f);

78 Bflush(0xFF,f);

79 //--

80 //load constant in register file addr 255,

81 //value 0.25 = 0x3FD0 0000 0000 0000

82 IMMEDIATEMSB = 0x3FD0;

83 IMMEDIATELSB = 0x000000000000;

84 RDST = 255;

85 LDimm(IMMEDIATEMSB, IMMEDIATELSB, RDST, f); //equivalent to 2 slots

86 //--

87 //move an array of 16 32x32 64bit data from GM to BMs (16 PEs per BC)

88 //--

89 BURSTSIZE = 128;

90 BMOFFSET = 0;

91 GMOFFSETMSB = 0;

92 GMOFFSETLSB = 0;

93 for (int i=0; i<32;i++){

94 RDGMEM(BURSTSIZE,BMOFFSET,GMOFFSETMSB,f);

95 RDGMEM(0,0,GMOFFSETLSB,f);

96 //--

97 ITERATIONS = READ_LATENCY; //cycles to complete transaction

98 REPEAT(ITERATIONS,f);

99 NOP(f);

100 //--

101 BNZ(f);

102 NOP(f);

103 //--

104 NOP(f);

105 NOP(f);

106 BMOFFSET = BMOFFSET+32;

107 GMOFFSETLSB = GMOFFSETLSB+128*32; //128 beats * 32 Bytes (4096Bytes)

108 }

109 //the cycles required are finished

110 //--

111 //--

201

112 // load data from BM to LM

113 MASKLOAD = 0xF0; //load data from PE0 to PE15

114 MODE = 0; //no broadcast

115 LMADDR = 0;

116 BROFFSET = 0;

117 BMADDR = 0;

118 DATACOUNT = data_count-1;

119 NOP(f);

120 LDBM(MASKLOAD,MODE,LMADDR,BROFFSET,BMADDR,DATACOUNT,f);

121 //--

122 //--

123 //the cycles required for RDGMEM are finished

124 //--

125 ITERATIONS = 1024; //cycles to complete transaction

126 REPEAT(ITERATIONS,f);

127 NOP(f);

128 //--

129 BNZ(f);

130 NOP(f);

131 //--

132 NOP(f);

133 NOP(f);

134 //--

135 //the cycles required for LDBM are finished

136 //--

137 //---

138 //--

139 //scatter first row of data to up direction

140 //--

141 MODE = 0b10; //scatter from LM

142 RSRC2 = 0x0; //not used here

143 NSRC = 0x0; //not used here

144 NDST = 0b00000001; // write to up direction

145 LMADDR= 0x0; //base address

146 for (int i=0; i<data_line;i++){

147 NOP(f);

148 NSG(MODE, LMADDR, RSRC2, NDST, NSRC, f);

149 LMADDR++;

150 }

151 //--

152 //scatter last row of data to down direction

153 //--

154 MODE = 0b10; //scatter from LM

155 RSRC2 = 0x0; //not used here

156 NSRC = 0x0; //not used here

157 NDST = 0b00001000; // write to down direction

158 LMADDR= data_line*(data_line-1); //base address

159 for (int i=0; i<data_line;i++){

160 NOP(f);

161 NSG(MODE, LMADDR, RSRC2, NDST, NSRC, f);

162 LMADDR++;

163 }

164 //--

165 //scatter first col of data to left direction

166 //--

167 MODE = 0b10; //scatter from LM

168 RSRC2 = 0x0; //not used here

169 NSRC = 0x0; //not used here

170 NDST = 0b00000010; // write to left direction

171 LMADDR= 0; //base address

172 for (int i=0; i<data_line;i++){

173 NOP(f);

174 NSG(MODE, LMADDR, RSRC2, NDST, NSRC, f);

175 LMADDR+=data_line;

176 }

177 //--

178 //scatter last col of data to right direction

179 //--

180 MODE = 0b10; //scatter from LM

181 RSRC2 = 0x0; //not used here

182 NSRC = 0x0; //not used here

183 NDST = 0b00000100; // write to right direction

184 LMADDR= data_line-1; //base address

185 for (int i=0; i<data_line;i++){

202

186 NOP(f);

187 NSG(MODE, LMADDR, RSRC2, NDST, NSRC, f);

188 LMADDR+=data_line;

189 }

190 //--

191 //boundaries are now scattered to buffers

192 //--

193 // load 2 line of data from LM to regfile

194 LMADDR = 0;

195 RDST = 0;

196 for (int i=0; i<(2*data_line);i++){

197 NOP(f);

198 LD(LMADDR, RDST, f);

199 LMADDR++;

200 RDST++;

201 }

202

203 for (int i=0; i<16;i++){ //15 cycles latency

204 NOP(f);

205 NOP(f);

206 }

207 //

208 //--

209 //--

210 //start updating and iterating the stencils

211 //--

212 //1st stencil corner top left to 64th stencil bottom right

213 //--

214 //--

215 REPEAT(iters,f);

216 NOP(f);

217 //--

218 RSRC1 = 255; //addr for constant 0.25

219 BROFFSET = 0x0; //not used here

220 BMADDR =0x0; //not used here

221 RDST = 0; //not used here

222 NDST = 0b00000011; //scatter to up and left dirs

223 unsigned long sizeLMdata = data_line*data_line;

224 unsigned long sizeRFdata = data_line*4;

225

226 unsigned long OPSRCU = 0;

227 unsigned long OPSRCR = 0;

228 unsigned long OPSRCD = 0;

229 unsigned long OPSRCL = 0;

230

231 RSRC2U = 0;

232 RSRC2R = 1;

233 RSRC2D = data_line;

234 RSRC2L = 0;

235

236 LMADDR = 0;

237 LMADDRLD = 2*data_line;

238 RDSTLD = 2*data_line;

239

240 int i = 0;

241 int j = 0;

242

243 while (i< sizeLMdata){

244

245

246 RSRC2R = ((i%sizeRFdata)+1) & 0xFF;

247 RSRC2L = ((i%sizeRFdata)-1) & 0xFF;

248

249 if ((i%sizeRFdata)>=data_line) {

250 RSRC2U = ((i%sizeRFdata)-data_line) & 0xFF;

251 } else {

252 RSRC2U = ((i%sizeRFdata)+(3*data_line)) & 0xFF;

253 }

254

255 if ((i%sizeRFdata)<=((3*data_line)-1)){

256 RSRC2D = ((i%sizeRFdata)+data_line) & 0xFF;

257 } else {

258 RSRC2D = ((i%sizeRFdata)-(3*data_line)) & 0xFF;

259 }

203

260

261 // select destination buffer if in boundaries

262 if (i==0){ // TOP LEFT CORNER

263 MODE = 0b11; //store to LM and broadcast to neighbors

264 NDST = NDST_UP_and_LEFT;

265 OPSRCU = 0b0011;

266 OPSRCR = 0b0000;

267 OPSRCD = 0b0000;

268 OPSRCL = 0b0100;

269 } else if ((i > 0) && (i < (data_line-1))) { // TOP ROW WITHOUT CORNERS

270 MODE = 0b11; //store to LM and broadcast to neighbors

271 NDST = NDST_UP;

272 OPSRCU = 0b0011;

273 OPSRCR = 0b0000;

274 OPSRCD = 0b0000;

275 OPSRCL = 0b0000;

276 } else if (i==(data_line-1)) { // TOP RIGHT CORNER

277 MODE = 0b11; //store to LM and broadcast to neighbors

278 NDST = NDST_UP_and_RIGHT;

279 OPSRCU = 0b0011;

280 OPSRCR = 0b0101;

281 OPSRCD = 0b0000;

282 OPSRCL = 0b0000;

283 } else if ((i % data_line) == 0 && (i !=(data_line*(data_line-1)))) { // LEFT COLUMN

284 MODE = 0b11; //store to LM and broadcast to neighbors

285 NDST = NDST_LEFT;

286 OPSRCU = 0b0000;

287 OPSRCR = 0b0000;

288 OPSRCD = 0b0000;

289 OPSRCL = 0b0100;

290 } else if (((i+1) % data_line) == 0 && (i < ((data_line*data_line)-1))) { // RIGHT COLUMN

291 MODE = 0b11; //store to LM and broadcast to neighbors

292 NDST = NDST_RIGHT;

293 OPSRCU = 0b0000;

294 OPSRCR = 0b0101;

295 OPSRCD = 0b0000;

296 OPSRCL = 0b0000;

297 } else if (i==(data_line*(data_line-1))) { // BOTTOM LEFT CORNER

298 MODE = 0b11; //store to LM and broadcast to neighbors

299 NDST = NDST_DOWN_and_LEFT;

300 OPSRCU = 0b0000;

301 OPSRCR = 0b0000;

302 OPSRCD = 0b0110;

303 OPSRCL = 0b0100;

304 } else if ((i > (data_line*(data_line-1))) && (i < ((data_line*data_line)-1))) { //BOTTOM ROW WITHOUT

CORNERS↪→
305 MODE = 0b11; //store to LM and broadcast to neighbors

306 NDST = NDST_DOWN;

307 OPSRCU = 0b0000;

308 OPSRCR = 0b0000;

309 OPSRCD = 0b0110;

310 OPSRCL = 0b0000;

311 } else if (i==((data_line*data_line)-1)) { //BOTTOM RIGHT CORNER

312 MODE = 0b11; //store to LM and broadcast to neighbors

313 NDST = NDST_DOWN_and_RIGHT;

314 OPSRCU = 0b0000;

315 OPSRCR = 0b0101;

316 OPSRCD = 0b0110;

317 OPSRCL = 0b0000;

318 } else { //internal data

319 MODE = 0b01; //store to LM

320 NDST = 0b00000000;

321 OPSRCU = 0b0000;

322 OPSRCR = 0b0000;

323 OPSRCD = 0b0000;

324 OPSRCL = 0b0000;

325 }

326

327 //---LEFT-----------

328 if (j==0){

329 FMUL(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2L, RDST, OPSRCL, f);

330 LD(LMADDRLD, RDSTLD, f);

331 LMADDRLD = (LMADDRLD + 1) % sizeLMdata;

332 RDSTLD = (RDSTLD + 1) % sizeRFdata;

204

333 }

334 //---RIGHT-----------

335 if (j==1){

336 FMACCA(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2R, RDST, OPSRCR, f);

337 NOP(f);

338 }

339 //--DOWN---------

340 if (j==2){

341 FMACCA(RSRC1, 0b01, LMADDR, BROFFSET, BMADDR, RSRC2D, RDST, OPSRCD, f);

342 NOP(f);

343 }

344 //--UP------

345 if (j==3){

346 if ((NDST==NDST_UP) || (NDST==NDST_UP_and_RIGHT) || (NDST==NDST_UP_and_LEFT)){

347 FMACCA(RSRC1, MODE, LMADDR, BROFFSET, BMADDR, RSRC2U, NDST_UP, OPSRCU, f);

348 NOP(f);

349

350 } else if ((NDST==NDST_DOWN) || (NDST==NDST_DOWN_and_RIGHT) || (NDST==NDST_DOWN_and_LEFT)){

351 FMACCA(RSRC1, MODE, LMADDR, BROFFSET, BMADDR, RSRC2U, NDST_DOWN, OPSRCU, f);

352 NOP(f);

353 } else {

354 FMACCA(RSRC1, MODE, LMADDR, BROFFSET, BMADDR, RSRC2U, NDST, OPSRCU, f);

355 NOP(f);

356 }

357

358 if (((i+1)%data_line==0) && ((NDST==NDST_UP_and_RIGHT) || (NDST==NDST_DOWN_and_RIGHT))){

359 NOP(f);

360 NSG(0b10, LMADDR-data_line+1, RSRC2, NDST_LEFT, NSRC, f);

361 NOP(f);

362 NSG(0b10, LMADDR, RSRC2, NDST_RIGHT, NSRC, f);

363 }

364

365 LMADDR = (LMADDR + 1) % sizeLMdata;

366 }

367 //---

368 //check if the current chunk of four point is processed

369 //as required by the multithreaded computation

370 //for populating the four stage accumulation pipeline

371 //---

372 if ((i+1)%4==0)

373 {

374 if (j!=3)

375 {j=j+1;i=i-3;}

376 else

377 {

378 j=0;

379 i=i+1;

380 }

381 }

382 else

383 {i=i+1;}

384 //---

385 }

386 //--

387 BNZ(f);

388 NOP(f);

389 //--

390 NOP(f);

391 NOP(f);

392 //--

393 //---

394 // store data from LM to BM

395 MODE = 0b11; //store from LM

396 LMADDR = 0;

397 BMADDR = 0;

398 RSRC2 = 0; //not needed here

399 for (int i=0;i<(data_line*data_line);i++){

400 NOP(f);

401 STBM(MODE, LMADDR, BMADDR, RSRC2, f);

402 LMADDR++;

403 BMADDR++;

404 }

405 //--

406 REPEAT(16,f);

205

407 NOP(f);

408 //--

409 BNZ(f);

410 NOP(f);

411 //--

412 NOP(f);

413 NOP(f);

414 //

415 //--

416 //--

417 //write back results

418 //32 * 128 beat in total (maximum is 128 beat per burst)

419 //--

420 // write data from BM to GM

421 BURSTSIZE = 128;

422 BMOFFSET = 0;

423 GMOFFSETMSB = 0;

424 GMOFFSETLSB = 0;

425 for (int i=0;i<32;i++){

426 WRGMEM(BURSTSIZE,BMOFFSET,GMOFFSETMSB,f);

427 WRGMEM(0,0,GMOFFSETLSB,f);

428 //--

429 ITERATIONS = WRITE_LATENCY; //cycles to complete transaction

430 REPEAT(ITERATIONS,f);

431 NOP(f);

432 //--

433 BNZ(f);

434 NOP(f);

435 //--

436 NOP(f);

437 NOP(f);

438 BMOFFSET = BMOFFSET+32;

439 GMOFFSETLSB = GMOFFSETLSB+128*32;

440 }

441 //--

442 //the cycles required are finished

443 //--

444 //--

445 STOP(f);

446 NOP(f);

447 //--

448 // program end

449 //--

450 f.close();

451

452 exit(EXIT_SUCCESS);

453 }

454

455

206

Annex 2: Laplace’s equation in two,

three and four dimensions

Let us assume we have a given second-order partial differential equation f(x, y) defined as

∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2
= 0. (11.1)

Eq.11.1 is known as Laplace’s equation. To compute a second-order derivative of f(x, y) given

on a 3-point stencil (xi−1, xi, xi+1) following the x-axis, the first derivatives of the first-order

accuracy at the intervals (xi−1, xi) and (xi, xi+1) are:

∂f(x, y)

∂x

∣∣∣∣
x
i+1

2
yi

=
f(xi+1, yi)− f(xi, yi)

∆x
(11.2)

∂f(x, y)

∂x

∣∣∣∣
x
i− 1

2
yi

=
f(xi, yi)− f(xi−1, yi)

∆x
(11.3)

, where ∆x is the unit interval. Then, using Eqs. 11.2 and 11.3, the second derivatives can be

obtained as

∂2f(x, y)

∂x2

∣∣∣∣
xiyi

=
1

∆x

{
∂f(x, y)

∂x

∣∣∣∣
x
i+1

2
yi

−∂f(x, y)

∂x

∣∣∣∣
x
i− 1

2
yi

}

=
1

∆x

{
f(xi+1, yi)− f(xi, yi)

∆x
− f(xi, yi)− f(xi−1, yi)

∆x

}
=

1

∆x2
{f(xi+1, yi) + f(xi−1, yi)− 2f(xi, yi)} (11.4)

In the same manner, the second-order derivative of f(x, y) on a 3-point stencil (yi−1, yi, yi+1) is

∂2f(x, y)

∂y2

∣∣∣∣
xiyi

=
1

∆y2
{f(xi, yi+1) + f(xi, yi−1)− 2f(xi, yi)} (11.5)

207

Here, provided ∆x = ∆y = h, these Eqs.11.1, 11.4, and 11.5 can derive the second order finite-

difference for the Laplacian of 2D functions as

1

h2
{f(xi+1, yi) + f(xi−1, yi) + f(xi, yi+1) + f(xi, yi−1)− 4f(xi, yi)} = 0 (11.6)

With an added fourth dimension z, the 3D Laplace equation can be expressed as:

∂2f(x, y, z)

∂x2
+

∂2f(x, y, z)

∂y2
+

∂2f(x, y, z)

∂z2
= 0. (11.7)

Also, with an added fourth dimension w, the 4D Laplace equation becomes:

∂2f(x, y, z, w)

∂x2
+

∂2f(x, y, z, w)

∂y2
+

∂2f(x, y, z, w)

∂z2
+

∂2f(x, y, z, w)

∂w2
= 0. (11.8)

By adding the second order derivatives for z and w dimensions, respectively, and provided ∆x =

∆y = ∆z = ∆w = h, it is sufficient to add the terms for the added dimensions and the second

order finite-difference for the Laplacian of 3D functions becomes:

1

h2
{f(xi+1, yi, zi) + f(xi−1, yi, zi) + f(xi, yi+1, zi) + f(xi, yi−1, zi)

+ f(xi, yi, zi+1) + f(xi, yi, zi−1)− 6f(xi, yi, zi)} = 0 (11.9)

and the second order finite-difference for the Laplacian of 4D functions becomes:

1

h2
{f(xi+1, yi, zi, wi)+f(xi−1, yi, zi, wi)+f(xi, yi+1, zi, wi)+f(xi, yi−1, zi, wi)+f(xi, yi, zi+1, wi)+

f(xi, yi, zi−1, wi) + f(xi, yi, zi, wi+1) + f(xi, yi, zi, wi−1)− 8f(xi, yi, zi, wi)} = 0 (11.10)

208

Bibliography

[1] Heinrich Meyr Tilman Glökler. Design of Energy-Efficient Application-Specific Instruction

Set Processors. Springer New York, NY, 2004. doi:https://doi.org/10.1007/b105292.

[2] M.J. Irwin. Low power design for Systems on a Chip, Sep 1999. Tutorial at the 12th

Annual IEEE International ASIC/SOC Conference.

[3] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. A Highly-Efficient and

Tightly-Connected Many-Core Overlay Architecture. IEEE Access, 9:65277–65292, 2021.

doi:10.1109/ACCESS.2021.3074171.

[4] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. A Scalable Many-Core

Overlay Architecture on an HBM2-Enabled Multi-Die FPGA. ACM Trans. Reconfigurable

Technol. Syst., 16(1), jan 2023. doi:10.1145/3547657.

[5] Xiangwei Li and Douglas Maskell. Time-Multiplexed FPGA Overlay Architectures: A

Survey. ACM Transactions on Design Automation of Electronic Systems, 24:1–19, 07

2019. doi:10.1145/3339861.

[6] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. MITRACA: Manycore In-

terlinked Torus Reconfigurable Accelerator Architecture. In 2019 IEEE 30th International

Conference on Application-specific Systems, Architectures and Processors (ASAP), volume

2160-052X, pages 38–38, 2019. doi:10.1109/ASAP.2019.00-35.

[7] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. MITRACA: A Next-

Gen Heterogeneous Architecture. In 2019 IEEE 13th International Symposium on Em-

bedded Multicore/Many-core Systems-on-Chip (MCSoC), pages 304–311, 2019. doi:

10.1109/MCSoC.2019.00050.

209

https://doi.org/https://doi.org/10.1007/b105292
https://doi.org/10.1109/ACCESS.2021.3074171
https://doi.org/10.1145/3547657
https://doi.org/10.1145/3339861
https://doi.org/10.1109/ASAP.2019.00-35
https://doi.org/10.1109/MCSoC.2019.00050
https://doi.org/10.1109/MCSoC.2019.00050

[8] Takahiro Ito, Yoshiki Yamaguchi, Yuetsu Kodama, Junji Yamamoto, Yaoko Nakagawa,

Taisuke Boku, and Mitsuhisa Sato. D-6-9 A Study of an ExtremeSIMD Architecture

Implemented by an FPGA. In Proceedings of the IEICE General Conference, volume 2015,

page 73. The Institute of Electronics, Information and Communication Engineers, Feb

2015. URL: https://ci.nii.ac.jp/naid/110009944858/en/.

[9] H. M. Waidyasooriya et al. OpenCL-Based FPGA-Platform for Stencil Computation and

Its Optimization Methodology. IEEE Transactions on Parallel and Distributed Systems,

28(05):1390–1402, May 2017. doi:10.1109/TPDS.2016.2614981.

[10] H. M. Waidyasooriya and M. Hariyama. Multi-FPGA Accelerator Architecture for Stencil

Computation Exploiting Spacial and Temporal Scalability. IEEE Access, 7:53188–53201,

Apr 2019. URL: https://doi.org/10.1109/ACCESS.2019.2910824.Accessedon:Feb26,

2021., doi:10.1109/ACCESS.2019.2910824.

[11] Joseph Fisher, Paolo Faraboschi, and Cliff Young. Embedded computing: a VLIW approach

to architecture, compilers and tools. 01 2005.

[12] T. Sterling, M. Anderson, and M. Brodowicz. High performance computing: Modern sys-

tems and practices. MorganKaufman., Cambridge, MA, 2018.

[13] James E. Smith. Decoupled Access/Execute Computer Architectures. ACM TOCS,

2(4):289–308, November 1984. URL: https://doi.org/10.1145/357401.357403.

Accessedon:Feb26,2021., doi:10.1145/357401.357403.

[14] Francisco J. Jaime, Javier Hormigo, Julio Villalba, and Emilio L. Zapata. New SIMD

instructions set for image processing applications enhancement. In 2008 15th IEEE In-

ternational Conference on Image Processing, pages 1396–1399, 2008. doi:10.1109/ICIP.

2008.4712025.

[15] Samuel Antão and Leonel Sousa. Exploiting SIMD extensions for linear image processing

with OpenCL. In 2010 IEEE International Conference on Computer Design, pages 425–

430, 2010. doi:10.1109/ICCD.2010.5647672.

210

https://ci.nii.ac.jp/naid/110009944858/en/
https://doi.org/10.1109/TPDS.2016.2614981
https://doi.org/10.1109/ACCESS.2019.2910824. Accessed on: Feb 26, 2021.
https://doi.org/10.1109/ACCESS.2019.2910824. Accessed on: Feb 26, 2021.
https://doi.org/10.1109/ACCESS.2019.2910824
https://doi.org/10.1145/357401.357403. Accessed on: Feb 26, 2021.
https://doi.org/10.1145/357401.357403. Accessed on: Feb 26, 2021.
https://doi.org/10.1145/357401.357403
https://doi.org/10.1109/ICIP.2008.4712025
https://doi.org/10.1109/ICIP.2008.4712025
https://doi.org/10.1109/ICCD.2010.5647672

[16] Wei Miao, Qingyu Lin, Wancheng Zhang, and Nan-Jian Wu. A Programmable SIMD

Vision Chip for Real-Time Vision Applications. IEEE Journal of Solid-State Circuits,

43(6):1470–1479, 2008. doi:10.1109/JSSC.2008.923621.

[17] Intel. Intel Advanced Vector Extensions Programming Reference. https://www.intel.

com/content/dam/develop/external/us/en/documents/36945. Last accessed July 7,

2021.

[18] ARM. Introducing NEON Development Article. https://developer.arm.com/

documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/

NEON-instructions. Last accessed July 7, 2021.

[19] M. Tremblay, J.M. O’Connor, V. Narayanan, and Liang He. VIS speeds new media pro-

cessing. IEEE Micro, 16(4):10–20, 1996. doi:10.1109/40.526921.

[20] Intel. Moore’s Law and Intel Innovation. https://www.intel.co.jp/content/www/jp/

ja/history/museum-gordon-moore-law.html. Last accessed Sep 29, 2022.

[21] Youngsoo Kim, Shrikant Jadhav, and Clay S. Gloster. Dataflow to Hardware Synthesis

Framework on FPGAs. In 2016 International Symposium on Computer Architecture and

High Performance Computing Workshops (SBAC-PADW), pages 91–96, 2016. doi:10.

1109/SBAC-PADW.2016.24.

[22] Giuseppe Natale, Marco Bacis, and Marco Domenico Santambrogio. On How to Design

Dataflow FPGA-Based Accelerators for Convolutional Neural Networks. In 2017 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), pages 639–644, 2017. doi:10.

1109/ISVLSI.2017.126.

[23] John Teifel and Rajit Manohar. An Asynchronous Dataflow FPGA Architecture. IEEE

Trans. Comput., 53(11):1376–1392, nov 2004. doi:10.1109/TC.2004.88.

[24] Chan, Long Chan. Implementing FPGA-optimized Systolic Arrays using 2D Knapsack and

Evolutionary Algorithms. Master’s thesis, 2022. URL: http://hdl.handle.net/10012/

17969.

211

https://doi.org/10.1109/JSSC.2008.923621
https://www.intel.com/content/dam/develop/external/us/en/documents/36945
https://www.intel.com/content/dam/develop/external/us/en/documents/36945
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://doi.org/10.1109/40.526921
https://www.intel.co.jp/content/www/jp/ja/history/museum-gordon-moore-law.html
https://www.intel.co.jp/content/www/jp/ja/history/museum-gordon-moore-law.html
https://doi.org/10.1109/SBAC-PADW.2016.24
https://doi.org/10.1109/SBAC-PADW.2016.24
https://doi.org/10.1109/ISVLSI.2017.126
https://doi.org/10.1109/ISVLSI.2017.126
https://doi.org/10.1109/TC.2004.88
http://hdl.handle.net/10012/17969
http://hdl.handle.net/10012/17969

[25] C.H. Dick. FPGA based systolic array architectures for computing the discrete Fourier

transform. In 1996 IEEE International Symposium on Circuits and Systems. Circuits and

Systems Connecting the World. ISCAS 96, volume 2, pages 465–468 vol.2, 1996. doi:

10.1109/ISCAS.1996.541747.

[26] Mahendra Vucha and Arvind Rajawat. Design and FPGA Implementation of Systolic Array

Architecture for Matrix Multiplication. International Journal of Computer Applications,

26, 07 2011. doi:10.5120/3084-4222.

[27] Martin Langhammer, Sergey Gribok, and Gregg Baeckler. High Density 8-Bit Multiplier

Systolic Arrays For Fpga. In 2020 IEEE 28th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 84–92, 2020. doi:10.1109/

FCCM48280.2020.00021.

[28] Naohito Nakasato, Hiroshi Daisaka, and Tadashi Ishikawa. High Performance High-

Precision Floating-Point Operations on FPGAs Using OpenCL. In 2018 International

Conference on Field-Programmable Technology (FPT), pages 262–265, 2018. doi:10.1109/

FPT.2018.00049.

[29] Jiabao Gao, Qingliang Liu, and Jinmei Lai. An Approach of Binary Neural Network

Energy-Efficient Implementation. Electronics, 10(15), 2021. URL: https://www.mdpi.

com/2079-9292/10/15/1830, doi:10.3390/electronics10151830.

[30] Chen Wu, Mingyu Wang, Xinyuan Chu, Kun Wang, and Lei He. Low-Precision Floating-

Point Arithmetic for High-Performance FPGA-Based CNN Acceleration. ACM Trans.

Reconfigurable Technol. Syst., 15(1), nov 2021. doi:10.1145/3474597.

[31] Arif Irwansyah, Vishnu P. Nambiar, and Mohamed Khalil-Hani. An AES Tightly Coupled

Hardware Accelerator in an FPGA-based Embedded Processor Core. In 2009 International

Conference on Computer Engineering and Technology, volume 2, pages 521–525, 2009.

doi:10.1109/ICCET.2009.248.

[32] Masato Yoshimi, Ryu Kudo, Yasin Oge, Yuta Terada, Hidetsugu Irie, and Tsutomu Yoshi-

naga. An FPGA-Based Tightly Coupled Accelerator for Data-Intensive Applications. In

212

https://doi.org/10.1109/ISCAS.1996.541747
https://doi.org/10.1109/ISCAS.1996.541747
https://doi.org/10.5120/3084-4222
https://doi.org/10.1109/FCCM48280.2020.00021
https://doi.org/10.1109/FCCM48280.2020.00021
https://doi.org/10.1109/FPT.2018.00049
https://doi.org/10.1109/FPT.2018.00049
https://www.mdpi.com/2079-9292/10/15/1830
https://www.mdpi.com/2079-9292/10/15/1830
https://doi.org/10.3390/electronics10151830
https://doi.org/10.1145/3474597
https://doi.org/10.1109/ICCET.2009.248

2014 IEEE 8th International Symposium on Embedded Multicore/Manycore SoCs, pages

289–296, 2014. doi:10.1109/MCSoC.2014.47.

[33] Antoniette Mondigo, Tomohiro Ueno, Kentaro Sano, and Hiroyuki Takizawa. Comparison

of Direct and Indirect Networks for High-Performance FPGA Clusters. In Applied Reconfig-

urable Computing. Architectures, Tools, and Applications: 16th International Symposium,

ARC 2020, Toledo, Spain, April 1–3, 2020, Proceedings, page 314–329, Berlin, Heidelberg,

2020. Springer-Verlag. doi:10.1007/978-3-030-44534-8_24.

[34] Marcello Pivanti, F. Schifano, and Hubert Simma. An FPGA-based Torus Communication

Network. page 038, 06 2011. doi:10.22323/1.105.0038.

[35] Ahmad Al-Allaf. An FPGA-based Fault Tolerance Hypercube Multiprocessor DSP System.

18:69–83, 01 2010.

[36] Ka-Ming Keung. A study of on-chip FPGA system with 2D mesh network. PhD thesis,

2010.

[37] Xilinx. Alveo U280 Data Center Accelerator Card, Feb 2021. https://www.xilinx.com/

products/boards-and-kits/alveo/u280.html#specifications. Last accessed June 7,

2021.

[38] Ernst Houtgast, Vlad-Mihai Sima, and Zaid Al-Ars. High Performance Streaming Smith-

Waterman Implementation with Implicit Synchronization on Intel FPGA using OpenCL. In

2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE),

pages 492–496, 2017. doi:10.1109/BIBE.2017.000-6.

[39] Nikolaos Alachiotis, Simon A. Berger, and Alexandros Stamatakis. Accelerating Phylogeny-

Aware Short DNA Read Alignment with FPGAs. In 2011 IEEE 19th Annual International

Symposium on Field-Programmable Custom Computing Machines, pages 226–233, 2011.

doi:10.1109/FCCM.2011.13.

[40] Lorenzo Di Tucci, Kenneth O’Brien, Michaela Blott, and Marco D. Santambrogio. Archi-

tectural optimizations for high performance and energy efficient Smith-Waterman imple-

213

https://doi.org/10.1109/MCSoC.2014.47
https://doi.org/10.1007/978-3-030-44534-8_24
https://doi.org/10.22323/1.105.0038
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://doi.org/10.1109/BIBE.2017.000-6
https://doi.org/10.1109/FCCM.2011.13

mentation on FPGAs using OpenCL. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017, pages 716–721, 2017. doi:10.23919/DATE.2017.7927082.

[41] Riadh Ben Abdelhamid and Yoshiki Yamaguchi. A Block-Based Systolic Array on an

HBM2 FPGA for DNA Sequence Alignment. In Fernando Rincón, Jesús Barba, Hayden

K. H. So, Pedro Diniz, and Julián Caba, editors, Applied Reconfigurable Computing. Ar-

chitectures, Tools, and Applications, pages 298–313, Cham, 2020. Springer International

Publishing.

[42] Mohammed Alser, Taha Shahroodi, Juan Gómez-Luna, Can Alkan, and Onur Mutlu.

SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs,

GPUs, and FPGAs. CoRR, abs/1910.09020, 2019. URL: http://arxiv.org/abs/1910.

09020, arXiv:1910.09020.

[43] Peng Lei, Jiawei Liang, Zhenyu Guan, Jun Wang, and Tong Zheng. Acceleration of FPGA

Based Convolutional Neural Network for Human Activity Classification Using Millimeter-

Wave Radar. IEEE Access, 7:88917–88926, 2019. doi:10.1109/ACCESS.2019.2926381.

[44] Wenjin Huang, Huangtao Wu, Qingkun Chen, Conghui Luo, Shihao Zeng, Tianrui Li,

and Yihua Huang. FPGA-Based High-Throughput CNN Hardware Accelerator With High

Computing Resource Utilization Ratio. IEEE Transactions on Neural Networks and Learn-

ing Systems, 33(8):4069–4083, 2022. doi:10.1109/TNNLS.2021.3055814.

[45] Mengshu Sun, Pu Zhao, Mehmet Gungor, Massoud Pedram, Miriam E. Leeser, and X. Lin.

3D CNN Acceleration on FPGA using Hardware-Aware Pruning. 2020 57th ACM/IEEE

Design Automation Conference (DAC), pages 1–6, 2020.

[46] Hongxiang Fan, Xinyu Niu, Qiang Liu, and Wayne Luk. F-C3D: FPGA-based 3-

dimensional convolutional neural network. 2017 27th International Conference on Field

Programmable Logic and Applications (FPL), pages 1–4, 2017.

[47] S.C. Chan, H.O. Ngai, and K.L. Ho. A programmable image processing system using

FPGA. In Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS

’94, volume 2, pages 125–128 vol.2, 1994. doi:10.1109/ISCAS.1994.408921.

214

https://doi.org/10.23919/DATE.2017.7927082
http://arxiv.org/abs/1910.09020
http://arxiv.org/abs/1910.09020
http://arxiv.org/abs/1910.09020
https://doi.org/10.1109/ACCESS.2019.2926381
https://doi.org/10.1109/TNNLS.2021.3055814
https://doi.org/10.1109/ISCAS.1994.408921

[48] Mohammad I. AlAli, Khaldoon M. Mhaidat, and Inad A. Aljarrah. Implementing image

processing algorithms in FPGA hardware. In 2013 IEEE Jordan Conference on Applied

Electrical Engineering and Computing Technologies (AEECT), pages 1–5, 2013. doi:10.

1109/AEECT.2013.6716446.

[49] Hayato Hagiwara, Kenichi Asami, and Mochimitsu Komori. Real-time image processing

system by using FPGA for service robots. In The 1st IEEE Global Conference on Consumer

Electronics 2012, pages 720–723, 2012. doi:10.1109/GCCE.2012.6379964.

[50] Faraz Bhatti and Thomas Greiner. FPGA Hardware Design for Plenoptic 3D Image Pro-

cessing Algorithm Targeting a Mobile Application. In ICASSP 2021 - 2021 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7863–7867,

2021. doi:10.1109/ICASSP39728.2021.9414690.

[51] Kentaro Sano et al. Multi-FPGA Accelerator for Scalable Stencil Computation with

Constant Memory Bandwidth. IEEE Transactions on Parallel and Distributed Systems,

25(3):695–705, 2014. doi:10.1109/TPDS.2013.51.

[52] Kentaro Sano et al. FPGA-Array with Bandwidth-Reduction Mechanism for Scalable and

Power-Efficient Numerical Simulations Based on Finite Difference Methods. ACM TRETS,

3(4), Nov 2010. doi:10.1145/1862648.1862651.

[53] Xiuxiu Wang, Yipei Niu, Fangming Liu, and Zichen Xu. When FPGA Meets Cloud: A

First Look at Performance. IEEE Transactions on Cloud Computing, 10(2):1344–1357,

2022. doi:10.1109/TCC.2020.2992548.

[54] Zhuangdi Zhu, Alex X. Liu, Fan Zhang, and Fei Chen. FPGA Resource Pooling in Cloud

Computing. IEEE Transactions on Cloud Computing, 9(2):610–626, 2021. doi:10.1109/

TCC.2018.2874011.

[55] Abid Farhan, Raafat Aburukba, Assim Sagahyroon, Mohammed Elnawawy, and Khaled

El-Fakih. Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters.

IEEE Access, 10:96909–96929, 2022. doi:10.1109/ACCESS.2022.3204866.

215

https://doi.org/10.1109/AEECT.2013.6716446
https://doi.org/10.1109/AEECT.2013.6716446
https://doi.org/10.1109/GCCE.2012.6379964
https://doi.org/10.1109/ICASSP39728.2021.9414690
https://doi.org/10.1109/TPDS.2013.51
https://doi.org/10.1145/1862648.1862651
https://doi.org/10.1109/TCC.2020.2992548
https://doi.org/10.1109/TCC.2018.2874011
https://doi.org/10.1109/TCC.2018.2874011
https://doi.org/10.1109/ACCESS.2022.3204866

[56] Stuart Byma, J. Gregory Steffan, Hadi Bannazadeh, Alberto Leon-Garcia, and Paul Chow.

FPGAs in the Cloud: Booting Virtualized Hardware Accelerators with OpenStack. In 2014

IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing

Machines, pages 109–116, 2014. doi:10.1109/FCCM.2014.42.

[57] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized FPGA Accelerators

for Efficient Cloud Computing. In 2015 IEEE 7th International Conference on Cloud

Computing Technology and Science (CloudCom), pages 430–435, 2015. doi:10.1109/

CloudCom.2015.60.

[58] Guohao Dai, Yi Shan, Fei Chen, Yu Wang, Kun Wang, and Huazhong Yang. Online

scheduling for FPGA computation in the Cloud. In 2014 International Conference on Field-

Programmable Technology (FPT), pages 330–333, 2014. doi:10.1109/FPT.2014.7082811.

[59] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,

Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Her-

bordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub Szefer, Ahmed Sanaullah,

and Russell Tessier. The Future of FPGA Acceleration in Datacenters and the Cloud.

ACM Trans. Reconfigurable Technol. Syst., 15(3), feb 2022. doi:10.1145/3506713.

[60] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkersdorf. En-

abling FPGAs in Hyperscale Data Centers. In 2015 IEEE 12th Intl Conf on Ubiq-

uitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and

Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Com-

munications and Its Associated Workshops (UIC-ATC-ScalCom), pages 1078–1086, 2015.

doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199.

[61] Jagath Weerasinghe, Raphael Polig, Francois Abel, and Christoph Hagleitner. Network-

attached FPGAs for data center applications. In 2016 International Conference on Field-

Programmable Technology (FPT), pages 36–43, 2016. doi:10.1109/FPT.2016.7929186.

[62] Xilinx. 7 Series DSP48E1 Slice User Guide. https://www.xilinx.com/support/

documentation/user_guides/ug479_7Series_DSP48E1.pdf. Last accessed Sep 20, 2022.

216

https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1109/CloudCom.2015.60
https://doi.org/10.1109/CloudCom.2015.60
https://doi.org/10.1109/FPT.2014.7082811
https://doi.org/10.1145/3506713
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
https://doi.org/10.1109/FPT.2016.7929186
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

[63] Xilinx. UltraScale Architecture DSP Slice User Guide. https://www.xilinx.com/

support/documentation/user_guides/ug579-ultrascale-dsp.pdf. Last accessed Sep

20, 2022.

[64] Xilinx. UltraScale Architecture Configurable Logic Block User Guide, Feb 2017. https://

www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf.

Last accessed Dec 16, 2019.

[65] Xilinx. UltraScale Architecture Memory Resources. https://www.xilinx.com/support/

documentation/user_guides/ug573-ultrascale-memory-resources.pdf. Last ac-

cessed Dec 16, 2019.

[66] Xilinx. UltraRAM: Breakthrough Embedded Memory Integration on UltraScale+ De-

vices, June 2016. https://www.xilinx.com/support/documentation/white_papers/

wp477-ultraram.pdf. Last accessed 16 Dec 2019.

[67] Abhishek Kumar Jain, Suhaib A. Fahmy, and Douglas L. Maskell. Efficient Overlay

Architecture Based on DSP Blocks. In 2015 IEEE 23rd Annual International Sympo-

sium on Field-Programmable Custom Computing Machines, pages 25–28, 2015. doi:

10.1109/FCCM.2015.15.

[68] Abhishek Kumar Jain et al. Throughput oriented FPGA overlays using DSP blocks. In

2016 Design, Automation Test in Europe Conference Exhibition, pages 1628–1633. IEEE,

2016.

[69] Kumar H B Chethan and Nachiket Kapre. Hoplite-DSP: Harnessing the Xilinx DSP48

multiplexers to efficiently support NoCs on FPGAs. In 2016 26th International Conference

on Field Programmable Logic and Applications (FPL), pages 1–10, 2016. doi:10.1109/

FPL.2016.7577317.

[70] J. Bachrach et al. Chisel: Constructing hardware in a Scala embedded language. In

DAC Design Automation Conference 2012, pages 1212–1221, June 2012. doi:10.1145/

2228360.2228584.

217

https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/white_papers/wp477-ultraram.pdf
https://www.xilinx.com/support/documentation/white_papers/wp477-ultraram.pdf
https://doi.org/10.1109/FCCM.2015.15
https://doi.org/10.1109/FCCM.2015.15
https://doi.org/10.1109/FPL.2016.7577317
https://doi.org/10.1109/FPL.2016.7577317
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584

[71] Kavya et al Shagrithaya. Enabling development of OpenCL applications on FPGA plat-

forms. In 2013 IEEE 24th International Conference on Application-Specific Systems, Ar-

chitectures and Processors, pages 26–30, 2013. doi:10.1109/ASAP.2013.6567546.

[72] K. Paul, C. Dash, and M. S. Moghaddam. reMORPH: A Runtime Reconfigurable Archi-

tecture. In 2012 15th Euromicro Conference on Digital System Design, pages 26–33, Sep.

2012. doi:10.1109/DSD.2012.111.

[73] Kalin Ovtcharov, Ilian Tili, and J. Gregory Steffan. TILT: A multithreaded VLIW soft

processor family. In 2013 23rd International Conference on Field programmable Logic and

Applications, pages 1–4, 2013. doi:10.1109/FPL.2013.6645553.

[74] Charles Laforest and Jason Anderson. Microarchitectural Comparison of the MXP and

Octavo Soft-Processor FPGA Overlays. ACM Transactions on Reconfigurable Technology

and Systems, 10:1–25, 05 2017. doi:10.1145/3053679.

[75] Jan Gray. GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator Accelerator. In

Proc. FCCM, pages 17–20, Washington, DC, USA, May 2016. doi:10.1109/FCCM.2016.

12.

[76] Jan Gray. 2GRVI Phalanx: A 1332-Core RISC-V RV64I Processor Cluster Array with an

HBM2 High Bandwidth Memory System, and an OpenCL-like Programming Model, in a

Xilinx VU37P FPGA [WIP Report]. Denver, CO, USA, Nov 2019.

[77] Sunil Shukla, Neil Bergmann, and Juergen Becker. QUKU: A Coarse Grained Paradigm

for FPGAs. 01 2006.

[78] M. A. Kinsy, M. Pellauer, and S. Devadas. Heracles: Fully Synthesizable Parameter-

ized MIPS-Based Multicore System. In 2011 21st International Conference on Field Pro-

grammable Logic and Applications, pages 356–362, Sep. 2011. doi:10.1109/FPL.2011.70.

[79] James Coole and Greg Stitt. Intermediate fabrics: Virtual architectures for circuit porta-

bility and fast placement and routing. In Proceedings of the Eighth IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthesis, pages

13–22, 01 2010. doi:10.1145/1878961.1878966.

218

https://doi.org/10.1109/ASAP.2013.6567546
https://doi.org/10.1109/DSD.2012.111
https://doi.org/10.1109/FPL.2013.6645553
https://doi.org/10.1145/3053679
https://doi.org/10.1109/FCCM.2016.12
https://doi.org/10.1109/FCCM.2016.12
https://doi.org/10.1109/FPL.2011.70
https://doi.org/10.1145/1878961.1878966

[80] Alexander Brant. Coarse and fine grain programmable overlay architectures for FPGAs,

2013. https://dx.doi.org/10.14288/1.0073573.

[81] Davor Capalija and Tarek Abdelrahman. Towards Synthesis-Free JIT Compilation to

Commodity FPGAs. In 2011 IEEE 19th Annual International Symposium on Field-

Programmable Custom Computing Machines, pages 202 – 205, 06 2011. doi:10.1109/

FCCM.2011.25.

[82] Alexander Brant and Guy Lemieux. ZUMA: An Open FPGA Overlay Architecture. In 2012

IEEE 20th International Symposium on Field-Programmable Custom Computing Machines,

pages 93–96, 04 2012. doi:10.1109/FCCM.2012.25.

[83] Chethan Kumar H B, Prashant Ravi, Gourav Modi, and Nachiket Kapre. 120-Core Mi-

croAptiv MIPS Overlay for the Terasic DE5-NET FPGA Board. In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA

’17, page 141–146, New York, NY, USA, 2017. Association for Computing Machinery.

doi:10.1145/3020078.3021751.

[84] Jan Gray. 2GRVI Phalanx: W.I.P Towards kilocore RISC-V FPGA Ac-

celerators with HBM2 DRAM. http://fpga.org/wp-content/uploads/2019/08/

HotChips31-2GRVI-Phalanx-poster.pdf. Last accessed Dec 16, 2019.

[85] Jun Makino, Kei Hiraki, and Mary Inaba. GRAPE-DR: 2-Pflops massively-parallel com-

puter with 512-core, 512-Gflops processor chips for scientific computing. In Proceedings

of the 2007 ACM/IEEE Conference on Supercomputing, 2007. doi:10.1145/1362622.

1362647.

[86] A feasibility study for future HPCI system with an extreme accelerator, A working group

for future HPCI system promotion, Mar 2013. https://www.mext.go.jp/b_menu/shingi/

chousa/shinkou/028/shiryo/1332667.htm. Last accessed Dec 27, 2022.

[87] Yuetsu Kodama, Yoshiki Yamaguchi, Naohito Nakasato, Junichiro Makino, Taisuke Boku,

and Mitsuhisa Sato. A Study of Extreme SIMD Accelerator, August 2013. Japanese.

219

https://dx.doi.org/10.14288/1.0073573
https://doi.org/10.1109/FCCM.2011.25
https://doi.org/10.1109/FCCM.2011.25
https://doi.org/10.1109/FCCM.2012.25
https://doi.org/10.1145/3020078.3021751
http://fpga.org/wp-content/uploads/2019/08/HotChips31-2GRVI-Phalanx-poster.pdf
http://fpga.org/wp-content/uploads/2019/08/HotChips31-2GRVI-Phalanx-poster.pdf
https://doi.org/10.1145/1362622.1362647
https://doi.org/10.1145/1362622.1362647
https://www.mext.go.jp/b_menu/shingi/chousa/shinkou/028/shiryo/1332667.htm
https://www.mext.go.jp/b_menu/shingi/chousa/shinkou/028/shiryo/1332667.htm

[88] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. Condensing an overload of

parallel computing ingredients into a single architecture recipe. In 2020 IEEE 31st Interna-

tional Conference on Application-specific Systems, Architectures and Processors (ASAP),

pages 25–28, 2020. doi:10.1109/ASAP49362.2020.00013.

[89] Paul Havinga and Gerard Smit. Design techniques for low-power systems. Journal of

Systems Architecture, 46:1–21, 08 2000. doi:10.1016/S1383-7621(98)00057-5.

[90] Intel. Cyclone V SoC Power Optimization, Sep 2015. https://www.intel.com/content/

www/us/en/docs/programmable/683713/current/fpga-power-consumption.html.

Last accessed Feb 8, 2023.

[91] Arash Farhadi Beldachi and Jose L. Nunez-Yanez. Run-time power and performance scaling

in 28 nm FPGAs. IET Computers & Digital Techniques, 8(4):178–186, 2014. doi:https:

//doi.org/10.1049/iet-cdt.2013.0117.

[92] Ivan Ratković, Nikola Bezanic, Osman S. Unsal, Adrián Cristal, and Veljko M. Milutinovic.

Chapter One - An Overview of Architecture-Level Power- and Energy-Efficient Design

Techniques. Adv. Comput., 98:1–57, 2015.

[93] R.I. Bahar and S. Manne. Power and energy reduction via pipeline balancing. In Proceedings

28th Annual International Symposium on Computer Architecture, pages 218–229, 2001.

doi:10.1109/ISCA.2001.937451.

[94] Hai Li, S. Bhunia, Y. Chen, T.N. Vijaykumar, and K. Roy. Deterministic clock gating

for microprocessor power reduction. In The Ninth International Symposium on High-

Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings., pages 113–122,

2003. doi:10.1109/HPCA.2003.1183529.

[95] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: speculation control for energy

reduction. In Proceedings. 25th Annual International Symposium on Computer Architecture

(Cat. No.98CB36235), pages 132–141, 1998. doi:10.1109/ISCA.1998.694769.

[96] J.L. Aragon, J. Gonzalez, and A. Gonzalez. Power-aware control speculation through se-

lective throttling. In The Ninth International Symposium on High-Performance Computer

220

https://doi.org/10.1109/ASAP49362.2020.00013
https://doi.org/10.1016/S1383-7621(98)00057-5
https://www.intel.com/content/www/us/en/docs/programmable/683713/current/fpga-power-consumption.html
https://www.intel.com/content/www/us/en/docs/programmable/683713/current/fpga-power-consumption.html
https://doi.org/https://doi.org/10.1049/iet-cdt.2013.0117
https://doi.org/https://doi.org/10.1049/iet-cdt.2013.0117
https://doi.org/10.1109/ISCA.2001.937451
https://doi.org/10.1109/HPCA.2003.1183529
https://doi.org/10.1109/ISCA.1998.694769

Architecture, 2003. HPCA-9 2003. Proceedings., pages 103–112, 2003. doi:10.1109/HPCA.

2003.1183528.

[97] Zhigang Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose.

Microarchitectural techniques for power gating of execution units. In Proceedings of

the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat.

No.04TH8758), pages 32–37, 2004. doi:10.1145/1013235.1013249.

[98] Alper Buyuktosunoglu, David Albonesi, Stanley Schuster, David Brooks, Pradip Bose, and

Peter Cook. A Circuit Level Implementation of an Adaptive Issue Queue for Power-Aware

Microprocessors. In Proceedings of the 11th Great Lakes Symposium on VLSI, GLSVLSI

’01, page 73–78, New York, NY, USA, 2001. Association for Computing Machinery. doi:

10.1145/368122.368807.

[99] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power requirements of instruction

scheduling through dynamic allocation of multiple datapath resources. In Proceedings.

34th ACM/IEEE International Symposium on Microarchitecture. MICRO-34, pages 90–

101, 2001. doi:10.1109/MICRO.2001.991108.

[100] D. Folegnani and A. Gonzalez. Energy-effective issue logic. In Proceedings 28th Annual

International Symposium on Computer Architecture, pages 230–239, 2001. doi:10.1109/

ISCA.2001.937452.

[101] Jungwook Kim, Seong Tae Jhang, and Chu Shik Jhon. Dynamic Register-Renaming

Scheme for Reducing Power-Density and Temperature. In Proceedings of the 2010 ACM

Symposium on Applied Computing, SAC ’10, page 231–237, New York, NY, USA, 2010.

Association for Computing Machinery. doi:10.1145/1774088.1774134.

[102] Naresh Grover and M. K.Soni. Reduction of Power Consumption in FPGAs - An Overview.

International Journal of Information Engineering and Electronic Business, 4:50–69, 10

2012. doi:10.5815/ijieeb.2012.05.07.

[103] P. Biswas, S. Banerjee, N. Dutt, P. Ienne, and L. Pozzi. Performance and energy benefits

of instruction set extensions in an FPGA soft core. In 19th International Conference on

221

https://doi.org/10.1109/HPCA.2003.1183528
https://doi.org/10.1109/HPCA.2003.1183528
https://doi.org/10.1145/1013235.1013249
https://doi.org/10.1145/368122.368807
https://doi.org/10.1145/368122.368807
https://doi.org/10.1109/MICRO.2001.991108
https://doi.org/10.1109/ISCA.2001.937452
https://doi.org/10.1109/ISCA.2001.937452
https://doi.org/10.1145/1774088.1774134
https://doi.org/10.5815/ijieeb.2012.05.07

VLSI Design held jointly with 5th International Conference on Embedded Systems Design

(VLSID’06), pages 6 pp.–, 2006. doi:10.1109/VLSID.2006.131.

[104] Robert G. Dimond, Oskar Mencer, and Wayne Luk. Combining Instruction Coding

and Scheduling to Optimize Energy in System-on-FPGA. In 2006 14th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines, pages 175–184, 2006.

doi:10.1109/FCCM.2006.31.

[105] Andrew Waterman. Design of the RISC-V Instruction Set Architecture. PhD thesis, EECS

Department, University of California, Berkeley, Jan 2016. http://www2.eecs.berkeley.

edu/Pubs/TechRpts/2016/EECS-2016-1.html. Last accessed 16 Dec 2019.

[106] Nvidia. NVIDIA TESLA V100 GPU ARCHITECTURE, Aug 2017. https://images.

nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.

pdf. Last accessed Dec 3, 2022.

[107] M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transactions

on Computers, C-21(9):948–960, Sep. 1972. doi:10.1109/TC.1972.5009071.

[108] Lei Cheng, Deming Chen, and Martin D.F. Wong. GlitchMap: An FPGA Technology

Mapper for Low Power Considering Glitches. In 2007 44th ACM/IEEE Design Automation

Conference, pages 318–323, 2007.

[109] Rollins, Nathaniel Hatley. Reducing power in FPGA designs through glitch reduction.

Master’s thesis, 2007. URL: https://scholarsarchive.byu.edu/etd/1105.

[110] Shen, Ghosh, Devadas, and Keutzer. On average power dissipation and random pattern

testability of CMOS combinational logic networks. In 1992 IEEE/ACM International

Conference on Computer-Aided Design, pages 402–407, 1992. doi:10.1109/ICCAD.1992.

279338.

[111] Xilinx. UltraFast Design Methodology Guide for the Vivado Design Suite.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/

ug949-vivado-design-methodology.pdf. Last accessed Dec 16, 2019.

222

https://doi.org/10.1109/VLSID.2006.131
https://doi.org/10.1109/FCCM.2006.31
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.1109/TC.1972.5009071
https://scholarsarchive.byu.edu/etd/1105
https://doi.org/10.1109/ICCAD.1992.279338
https://doi.org/10.1109/ICCAD.1992.279338
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug949-vivado-design-methodology.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug949-vivado-design-methodology.pdf

[112] Xilinx. Vitis High-Level Synthesis User Guide, Dec 2022. https://docs.xilinx.com/r/

en-US/ug1399-vitis-hls/Interfaces-for-Vitis-Kernel-Flow. Last accessed Dec 27,

2022.

[113] R. Duncan. A survey of parallel computer architectures. Computer, 23(2):5–16, Feb 1990.

doi:10.1109/2.44900.

[114] Zhipeng Gong, Tefang Chen, Fumin Zou, Li Li, and Yingxi Kang. Implementation of Multi-

channel FIFO in One BlockRAM with Parallel Access to One Port. Journal of Computers,

9, 05 2014. doi:10.4304/jcp.9.5.1193-1200.

[115] Xilinx. UltraScale Architecture Memory Resources, February 2021. https://www.xilinx.

com/support/documentation/user_guides/ug573-ultrascale-memory-resources.

pdf. Last accessed June 20, 2021.

[116] AXIprotocol. AMBA AXI and ACE Protocol Specification, 2013. https://developer.

arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/

Single-Interface-Requirements/Basic-read-and-write-transactions/

Handshake-process?lang=en.

[117] Mustafa Abbas and Vaughn Betz. Latency Insensitive Design Styles for FPGAs. In 2018

28th International Conference on Field Programmable Logic and Applications (FPL), pages

360–3607, New York, NY, USA, 2018. IEEE. doi:10.1109/FPL.2018.00068.

[118] Changdao Du et al. FPGA-Based Computational Fluid Dynamics Simulation Architecture

via High-Level Synthesis Design Method. In Fernando Rincón et al., editors, Applied

Reconfigurable Computing. Architectures, Tools, and Applications, pages 232–246. Springer

International Publishing, 2020.

[119] Antoniette Mondigo et al. Scalability Analysis of Deeply Pipelined Tsunami Simulation

with Multiple FPGAs. IEICE Transactions on Information and Systems, E102.D:1029–

1036, 05 2019. doi:10.1587/transinf.2018RCP0007.

[120] Johannes Pekkilä et al. Scalable communication for high-order stencil computations using

CUDA-aware MPI, 2021. arXiv:2103.01597.

223

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Interfaces-for-Vitis-Kernel-Flow
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Interfaces-for-Vitis-Kernel-Flow
https://doi.org/10.1109/2.44900
https://doi.org/10.4304/jcp.9.5.1193-1200
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process?lang=en
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process?lang=en
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process?lang=en
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Single-Interface-Requirements/Basic-read-and-write-transactions/Handshake-process?lang=en
https://doi.org/10.1109/FPL.2018.00068
https://doi.org/10.1587/transinf.2018RCP0007
http://arxiv.org/abs/2103.01597

[121] T. Sterling et al. High performance computing: Modern systems and practices, pages 294–

295. Morgan Kaufmann, 2018.

[122] Zeke Wang et al. Shuhai: Benchmarking High Bandwidth Memory On FPGAS. In IEEE

International Symposium on Field-Programmable Custom Computing Machines, pages 111–

119. IEEE, 2020. doi:10.1109/FCCM48280.2020.00024.

[123] Mariem Saied. Automatic code generation and optimization of multi-dimensional stencil

computations on distributed-memory architectures. PhD thesis, University of Strasbourg,

Strasbourg, France, 2018.

[124] Jeremy Fowers et al. A Performance and Energy Comparison of FPGAs, GPUs, and

Multicores for Sliding-Window Applications. In ACM/SIGDA International Symposium

on Field Programmable Gate Arrays, page 47–56. ACM, 2012. doi:10.1145/2145694.

2145704.

[125] Justin Holewinski et al. High-Performance Code Generation for Stencil Computations on

GPU Architectures. In ACM International Conference on Supercomputing, page 311–320.

ACM, 2012. doi:10.1145/2304576.2304619.

[126] Riccardo Cattaneo et al. On How to Accelerate Iterative Stencil Loops: A Scalable

Streaming-Based Approach. ACM Trans. Archit. Code Optim., 12(4), dec 2015. doi:

10.1145/2842615.

[127] Yuze Chi et al. SODA: Stencil with Optimized Dataflow Architecture. In International

Conference on Computer-Aided Design, ICCAD ’18, New York, NY, USA, 2018. Associa-

tion for Computing Machinery. doi:10.1145/3240765.3240850.

[128] Enrico Reggiani et al. Enhancing the Scalability of Multi-FPGA Stencil Computations via

Highly Optimized HDL Components. ACM Trans. Reconfigurable Technol. Syst., 14(3),

aug 2021. doi:10.1145/3461478.

[129] Hamid Reza Zohouri et al. Combined Spatial and Temporal Blocking for High-Performance

Stencil Computation on FPGAs Using OpenCL. In ACM/SIGDA International Symposium

224

https://doi.org/10.1109/FCCM48280.2020.00024
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1145/2304576.2304619
https://doi.org/10.1145/2842615
https://doi.org/10.1145/2842615
https://doi.org/10.1145/3240765.3240850
https://doi.org/10.1145/3461478

on Field-Programmable Gate Arrays, page 153–162. ACM, 2018. doi:10.1145/3174243.

3174248.

[130] Intel. APP Metrics for Intel Microprocessors Intel Core Processor, 2021.

https://www.intel.com/content/dam/support/us/en/documents/processors/

APP-for-Intel-Core-Processors.pdf. Last accessed December 23, 2021.

[131] Intel. Intel Arria 10 Product Table, 2020. https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf. Last ac-

cessed December 23, 2021.

[132] Intel. APP Metrics for Intel Microprocessors Intel Xeon Processor, 2021.

https://www.intel.com/content/dam/support/us/en/documents/processors/

APP-for-Intel-Xeon-Processors.pdf. Last accessed December 23, 2021.

[133] Nvidia. NVIDIA Tesla P100 GPU ACCELERATOR, Oct 2016. https:

//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/

nvidia-tesla-p100-PCIe-datasheet.pdf. Last accessed Dec 23, 2021.

[134] Nvidia. NVIDIA V100 TENSOR CORE GPU, Jan 2020. https://images.nvidia.com/

content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.

pdf. Last accessed Dec 23, 2021.

[135] Intel. Stratix V Device Overview, 2020. https://www.mouser.com/datasheet/2/612/

stx5_51001-1099064.pdf. Last accessed December 23, 2021.

[136] Gokhan Apaydin and Levent Sevgi. Wave Propagation Inside Three-Dimensional Rectan-

gular Waveguide, pages 79–88. 2018. doi:10.1002/9781119432166.ch7.

[137] Paul Adrien Maurice Dirac. Relativistic wave equations. Proceedings of the Royal Society

of London. Series A - Mathematical and Physical Sciences, 155(886):447–459, 1936.

URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1936.0111,

arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1936.0111,

doi:10.1098/rspa.1936.0111.

225

https://doi.org/10.1145/3174243.3174248
https://doi.org/10.1145/3174243.3174248
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Core-Processors.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Core-Processors.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.mouser.com/datasheet/2/612/stx5_51001-1099064.pdf
https://www.mouser.com/datasheet/2/612/stx5_51001-1099064.pdf
https://doi.org/10.1002/9781119432166.ch7
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1936.0111
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1936.0111
https://doi.org/10.1098/rspa.1936.0111

[138] Gowri Shankar Ramaswamy and F. Sagayaraj Francis. The idea of spacetime in conceptual

knowledge. In 2014 IEEE International Conference on Computational Intelligence and

Computing Research, pages 1–4, 2014. doi:10.1109/ICCIC.2014.7238354.

226

https://doi.org/10.1109/ICCIC.2014.7238354

	Acknowledgements
	I Introduction and Background
	Introduction
	Issues and motivation
	Architecture aspects of FPGAs as compared to other accelerators
	Specific target problems and proposed novel solutions
	The attractive reason to use an FPGA overlay
	Research Goals
	Main Contributions
	Thesis structure

	Background
	Introduction
	General FPGA Architecture
	Configurable Logic Blocks
	Embedded memories
	Digital Signal Processors

	Programming Methods
	Register Transfer Level
	High-Level Synthesis

	FPGA Design Flow
	Architecture Specification
	Hardware Design and optimization
	Functional Verification
	Synthesis
	Technology mapping
	Placement
	Routing
	Static Timing Analysis
	Bitstream Generation

	FPGA Overlay Architectures
	The motivation behind FPGA Overlays
	State-of-the-art FPGA Overlays
	The case of custom processor-based FPGA Overlay

	Enhancing the programming model of FPGAs through software-based re-usability
	EXACC Architecture, a base model for MITRACA and DRAGON
	Summary

	Techniques and principles for energy-efficient FPGA-based many-core overlays
	Introduction
	Background
	Power dissipation and energy consumption in FPGAs
	A survey of techniques for energy-efficient FPGA-based design

	Important metrics for energy efficiency evaluation
	Levels of energy-efficiency improvement
	Instruction Set Architecture
	Micro-architecture and physical implementation

	Summary

	II Software Part: Accelerator softwarization
	The DRAGON Instruction Set Architecture
	Energy-efficiency considerations for Instruction Set Architecture Design
	The Memory Architecture
	Instruction Set Organization
	General R-Type instructions
	Immediate R-Type instructions (Pseudo-instructions)
	C-Type instructions
	LM-Type instructions
	BM-Type instructions
	N-Type instructions
	Virtual relative placement of communication buffers

	A summary of Instructions Opcodes
	More on the DRAGON ISA
	Pseudo-instructions and Further extensions
	custom-precision computations

	Limitations and primary target application domains
	Summary

	The Programming Model
	Introduction
	Enhancing the RTL Kernel Model through re-usability
	Background
	A re-usable bitstream of a software programmable overlay
	Details of the overlay integration within the heterogeneous computing platform
	Detailed control and execution flow

	Host-Side Programming
	FPGA-side Programming
	Machine Code Executable Generation
	Functional Verification Using Verilator
	Summary

	III Hardware Part: FPGA-based accelerator virtualization
	The DRAGON Many-Core-Processor Overlay Architecture: A General Overview
	Introduction
	The DRAGON System-Level Architecture
	Parallel Processing Models
	The SIMD Execution Model
	The VLIW Instruction Model
	A Software-coupled Hardware-decoupled Access Execute Approach

	The Controller
	The Sequencer
	The Instruction Memory
	The Control Unit
	Interfacing with a host

	The Direct Memory Access Engines

	The Accelerator
	The Broadcast Cluster: A Modular Approach
	Broadcast Memories and Broadcast Memory Controller

	The Processing Element
	The Dual Compute Slot
	The Memory Slot

	The Topology and Dimension of the Interconnect

	Summary

	Baseline micro-architecture implementation of DRAGON
	Introduction
	Micro-architecture of the baseline DRAGON
	The Sequencer
	The Instruction Memory
	The Broadcast Cluster
	The Broadcasting feature implementation
	The Processing Element
	The Multiply-ACcumulate Floating-Point-Unit
	Summary

	Enhancing the energy-efficiency through DRAGON2 and DRAGON2-CB micro-architecture implementations
	Introduction
	Micro-architecture Enhancements
	Optimizing the GM-BM AXI-based data bus interface
	Improving the MAC FPU through a deeper pipeline
	Enhancing the PE through extended pipeline and optimized buffering
	The DRAGON2 PE
	The DRAGON2-CB PE (Compact Buffering PE)

	The Compact Buffering Scheme
	A concept overview
	Read/Write ports adaptation
	Impact on the PE micro-architecture

	FPGA-related Optimizations
	Enhancing design speed through deeper pipelining
	Layout-aware floorplanning
	Reducing SLLs for lower power dissipation and enhanced scalability
	Layout-aware interconnect generation

	Summary

	IV Results and Discussion
	Experiments and Results
	Introduction
	Evaluation Benchmarks and Setup
	Experimental Setup for the Baseline DRAGON Overlay
	Experimental Setup for DRAGON2 and DRAGON2-CB
	Experimental Evaluation
	Concepts of Iterative Stencil Computing
	Evaluation Methodology
	Evaluation Metrics

	A comparative experimental study of the Baseline DRAGON and the DRAGON2 Overlays
	Effects of the introduced enhancements on resource utilization
	Effects of the introduced enhancements on computational performance
	Effects of the introduced enhancements on power efficiency

	A comparative experimental study of the DRAGON2 and the DRAGON2-CB Overlays
	Effects of the compact buffering scheme on resource utilization
	Effects of the compact buffering scheme on computational performance
	Effects of the compact buffering scheme on power efficiency

	A Comparative scalability study of DRAGON2 (Regular Buffering) and DRAGON2-CB (Compact Buffering) Overlays
	Impact of the compact buffering scheme on the clock frequency
	A study of area (hardware resource utilization) and scalability
	A study of performance, EPR and scalability
	A study of power efficiency and scalability
	Bandwidth and scalability
	Impact on executable code size
	Modeling benefits and costs in N-dimensional interconnects

	Summary

	Summary and discussion
	Introduction
	DRAGON, DRAGON2 and DRAGON2CB overlays, a summary
	General Differences
	FPGA-side Programming differences
	An example program on the Baseline DRAGON overlay
	Compact Buffering impact on the programming of DRAGON2-CB
	Multi-threading impact on the programming of both DRAGON2 and DRAGON2-CB
	The DRAGON2-CB sliding window program details explained

	Comparison with related works
	FPGA-based works
	CPU-based works
	GPU-based works

	Summary

	V Conclusion
	Conclusion
	A summary of achievements and contributions
	General contributions and achievements
	Detailed contributions and achievements

	Benefits to the community and examples of application domains
	Summary of qualitative results
	FPGA-based accelerator for heterogeneous computing
	ASIC possibility with uncapped capabilities
	Bridging the gap with millions of software users
	Paving the way towards new discoveries
	Towards a highly-efficient AI accelerator

	Annex 1
	Annex 2
	Bibliography

