
A Study of High Performance Multiple-Precision 

Integer Multiplication and Division Using  

SIMD Instructions 

 

 

 

 

 

 

March  2023 

 

Takuya Edamatsu 



A Study of High Performance Multiple-Precision 

Integer Multiplication and Division Using  

SIMD Instructions 

 

 

Graduate School of Science and Technology 

Degree Programs in Systems and Information Engineering 

University of Tsukuba 

 

March  2023 

 

Takuya Edamatsu 
 



Abstract

Arithmetic operations are the most basic calculations and are versatile enough to be used
in all fields. Among arithmetic operations, multiplication and division are relatively expen-
sive due to their complexity. Modern central processing units can quickly perform 64-bit
arithmetic operations, even division. However, higher-precision arithmetic operations can-
not be performed with a single instruction. Instead, they must be solved in software. These
operations are most commonly used in cryptography and computer algebra processing.

Single instruction, multiple data (SIMD) instructions process multiple data in parallel
with a single instruction. Most modern processors support 128- and 256-bit-wide SIMD
instructions. The latest processors support 512-bit-wide instructions, which allows, for
example, eight 64-bit integers to be processed simultaneously. Thus, SIMD instructions
have the potential to process large integer operations at high speed.

However, current SIMD instructions do not hold the carry that occurs when addition is
performed. Large integer multiplication and division result in many addition operations,
which generate many carries. Therefore, the carry problem cannot be ignored when using
SIMD instructions. One way to solve this problem is to pre-convert the numerical rep-
resentation of the input. Specifically, a large integer can be represented using a smaller
number of bits by means of the reduced-radix representation. Reducing the number of bits
creates space to accumulate the carries. The accumulated carries are processed at the end
of the calculation, allowing the rest of the calculation to be processed in parallel with SIMD
instructions.

This thesis combines the reduced-radix representation with 512-bit-wide SIMD instruc-
tions to speed up large integer multiplication and division. The target instructions are Intel
Advanced Vector Extensions-512 (AVX-512) on Intel processors and Arm Scalable Vec-
tor Extension (SVE) on Arm processors. Programs implemented for these processors are
executed and compared in terms of execution time with the GNU Multiple Precision Arith-



metic Library (GMP), a library that performs large integer operations using scalar instruc-
tions.

For large integer multiplication with AVX-512, the basic instruction set AVX-512F
(Foundation) and the integer sum-of-products instruction set AVX-512IFMA (Integer Fused
Multiply-Add) are used. The basic multiplication algorithm (Basecase method) and the
Karatsuba method are applied to these instructions. Xeon Phi Knights Landing (KNL) pro-
cessors and Cannon Lake microarchitecture processors are used in the performance evalu-
ation to compare the implemented program and GMP. The results show that the program
with AVX-512F applied to the Basecase method improved performance by up to 2.5x on
KNL and that the program with AVX-512IFMA applied to the Karatsuba method improved
performance by up to 2.97x on Cannon Lake.

Arm’s SIMD instruction set, SVE, was similarly applied to large integer multiplication.
Since this instruction set has instructions that perform 64-bit multiplication, this study pro-
poses an algorithm to keep the reduced-radix representation consistent. In the performance
evaluation, an implementation program that combines this algorithm and the SVE instruc-
tion set is run on Fujitsu’s A64FX processor. The program is compiled in two modes: one
the Fujitsu compiler-based trad mode and the other the Clang/LLVM-based clang mode.
The performance gains are up to 36% with trad mode compilation and up to 31% with
clang mode compilation compared with GMP.

For large integer division, AVX-512IFMA instructions are used. A multiplication-based
division algorithm with inverses can be applied for this task. Because AVX-512IFMA takes
only 52 bits of the multiplication operand, it is necessary to properly handle the carry to
ensure correct calculation. However, handling the carry is not an essential part of the calcu-
lation and should be avoided as much as possible. Therefore, this thesis proposes a division
algorithm that is more suitable for SIMD instructions. In the performance evaluation, the
execution time for large integer division with various operand sizes is measured on a Can-
non Lake processor. The results show an average performance improvement of 25% to
35% over GMP.

These results demonstrate that SIMD instructions and the reduced-radix representation
can be used to accelerate large integer multiplication and division. In the future, high-
speed large integer multiplication and division can be performed using SIMD instructions
on various computers.



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Reduced-Radix Representation . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 SIMD Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Intel AVX-512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Arm SVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Large Integer Multiplication Using Intel AVX-512 10
3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Multiplication Using AVX-512F . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Basecase Multiplication . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

AVX-512 Instructions for Implementation . . . . . . . . . . . . . . 14
Fixed-Length Multiplication Module . . . . . . . . . . . . . . . . 15
Distribution of Partial Products . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . 20
Instruction Count Comparison . . . . . . . . . . . . . . . . . . . . 20
Execution Time Comparison . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



3.3 Multiplication Using AVX-512IFMA . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Karatsuba Multiplication . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

AVX-512 Instructions for Implementation . . . . . . . . . . . . . . 27
Implementation of Multiplication Kernel . . . . . . . . . . . . . . 31

3.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . 33
Comparison with Basecase Multiplication . . . . . . . . . . . . . . 33
Comparison with Related Works . . . . . . . . . . . . . . . . . . . 35
Comparison with GMP . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Large Integer Multiplication Using Arm SVE 40
4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Multiplication Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Reduced-Radix Representation . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Basecase Multiplication . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Shifted Basecase Multiplication . . . . . . . . . . . . . . . . . . . 43

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Arm SVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Conversion of Reduced-Radix Representation . . . . . . . . . . . . 47
4.3.3 Multiplication Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Comparison of Execution Times . . . . . . . . . . . . . . . . . . . 52

4.5 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Large Integer Division Using Intel AVX-512 58
5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Basecase Division . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Checking OurDiv3by2 . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Divide-and-Conquer Division . . . . . . . . . . . . . . . . . . . . 67

ii



5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 AVX-512 Instructions for Implementation . . . . . . . . . . . . . . 70
5.3.2 Basecase Division . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.3 Our Div3by2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4 Divide-and-Conquer Division . . . . . . . . . . . . . . . . . . . . 74
5.3.5 Implementation Summary . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.1 Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.2 Comparing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.3 GNU MP Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusion 84
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Acknowledgments 89

References 90

iii



List of Figures

3.1 Overview of mm512 permutexvar epi32 processing. . . . . . . . . . 15
3.2 Process on line 8 in Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Naive 2,048-bit multiplication. It is necessary to loop through 100 pairs. . . 17
3.4 896-bit fixed-length module used in 2,048-bit multiplication. Since there

are only nine pairs here, the number of loops is reduced compared with that
in Figure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Use of arrays of partial products. . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Pseudo code with arrays of partial products. . . . . . . . . . . . . . . . . . 19
3.7 Execution time of multiplication function in proposed program and GMP

6.1.2 for 512- to 3,584-bit operands. . . . . . . . . . . . . . . . . . . . . . 22
3.8 Execution time of multiplication function in proposed program and GMP

6.1.2 for 4,096- to 7,168-bit operands. . . . . . . . . . . . . . . . . . . . . 23
3.9 Multiplication using Basecase method (left) and Karatsuba method (right). . 27
3.10 Overview of vpmadd52luq processing. . . . . . . . . . . . . . . . . . . 28
3.11 Overview of vpermw processing. . . . . . . . . . . . . . . . . . . . . . . 30
3.12 Overview of vpsrlvw processing. . . . . . . . . . . . . . . . . . . . . . 31
3.13 Calculation of AB large integer multiplication using Karatsuba method. . . 32
3.14 Execution time for Karatsuba and Basecase methods for 512- to 12,288-bit

operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.15 Execution time for Basecase method for 1,024- to 4,096-bit operands com-

pared with related works. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.16 Execution time for multiplication function using AVX-512IFMA for 1,024-

to 6,144-bit operands compared with GMP. . . . . . . . . . . . . . . . . . 37
3.17 Execution time for multiplication function using AVX-512IFMA for 7,168-

to 12,288-bit operands compared with GMP. . . . . . . . . . . . . . . . . . 38

iv



4.1 Overview of EXT when op1, op2, and an immediate value of 3 are passed. 46
4.2 Overview of conversion from 64-bit representation to 56-bit representation.

Two of the total eight words are shown. The values of the indices from 56
to 63 are all zeros, so for example, if 63 is specified, the data after shuffling
will be zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Overview of conversion from 56-bit representation to 64-bit representation.
Two of the total eight words are shown. . . . . . . . . . . . . . . . . . . . 48

4.4 Overview of our implementation of Basecase multiplication kernel. In this
figure, both the multiplier and multiplicand are four words. . . . . . . . . . 50

4.5 Execution times of proposed method and GMP for 1,024-bit to 7,168-bit
operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Execution times for proposed method and GMP for 8,192-bit to 14,336-bit
operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Comparison of integer multiplication execution time for programs com-
piled in trad mode and with combination of trad and clang modes (hybrid). . 56

5.1 Overview of valignq process when passing two zmm registers (a and b)
and an immediate value 6. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Overview of carry process with AVX-512 using an optimistic approach. . . 73
5.3 Execution times associated with the Basecase and divide-and-conquer meth-

ods when n = 384. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Execution times associated with the Basecase and divide-and-conquer meth-

ods when n = 512. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Execution times associated with the Basecase and divide-and-conquer meth-

ods when n = 640. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

v



Chapter 1

Introduction

1.1 Background

Single instruction, multiple data (SIMD) instructions process multiple data in parallel with
a single instruction. This enables parallel computing at finer granularity than that achieved
using multiprocessing. Intel MMX, announced in 1996 [1], was the first widely used SIMD
instruction set for general desktop computers. This instruction set has eight 64-bit registers
(MM0 - MM7) and can process two 32-bit integers, four 16-bit integers, or eight 8-bit
integers with a single instruction. The AltiVec extension for the PowerPC was used for
media processing applications [2]. Later, Intel processors with Streaming SIMD Extensions
(SSE) became available [3]. This instruction set allows SIMD operations using 128-bit-
wide registers, but it processes only four 32-bit single-precision floating-point numbers.
The variety of instructions was increased in SSE2 and SSE3. The SSE2 instruction set can
handle two 64-bit double-precision floating-point numbers, two 64-bit integers, and four
32-bit integers. SSE evolved into Advanced Vector Extensions (AVX) [4], which includes
256-bit-wide vector operations, and then to AVX-512, which includes 512-bit-wide vector
operations. SSE 4.2 implements instructions for strings (String and Text New Instructions
(STTNI)). Its performance has been evaluated [5].

AVX-512 was initially used in central processing units (CPUs) for servers (e.g., Intel
Xeon Phi Knights Landing architecture [6]). It is now also used in CPUs for desktop
computers, such as Skylake and Ice Lake. SIMD instructions have evolved over a long
period of time, becoming available in CPUs for general use. Instructions have been added
to AVX-512 for cryptography [7] and deep learning [8].
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The A64FX [9], an Arm processor developed by Fujitsu, and the AWS Graviton 3
can execute Scalable Vector Extension (SVE) instructions. This instruction set provides
features that enable vector-length-agnostic (VLA) programming [10]. It supports SIMD
instructions ranging in length from 128 bits to 2,048 bits. The A64FX and the AWS Gravi-
ton 3 are currently used in servers. Desktop computers based on the AArch64 architecture,
such as those with the Apple M1 processor, are becoming more popular. Therefore, al-
though SVE instructions are currently available for server processors such as the A64FX,
it is likely that general-purpose Arm processors will eventually be able to execute these
instructions.

SIMD instructions are suitable for computer arithmetic, such as multiplication and di-
vision. In a multi-precision calculation, the same operation is often performed on multiple
data due to the large number of elements. SIMD instructions are a good match for this task.
Since multiplication and division are more complex and time-consuming than addition and
subtraction, it is important to optimize them. Large integer arithmetic, which cannot be
handled by a single instruction in a typical processor, is used in cryptography, such as
Rivest-Shamir-Adleman (RSA) cryptography [11] and elliptic curve cryptography [12],
and computer algebra systems, such as Maxima [13] and Wolfram Mathematica [14].
There are libraries, such as the GNU Multiple Precision Arithmetic Library (GMP) [15],
for high-speed arbitrary-precision arithmetic. GMP is implemented with scalar instruc-
tions for arithmetic calculations. Mathematica performs multi-precision operations using
GMP [16]. SIMD instructions can process more data than can scalar instructions and thus
have the potential to be faster for large integer multiplication and division.

A graphics processing unit (GPU) can be used to process large integer arithmetic oper-
ations at high speed. GPUs are used not only for graphics applications such as ray tracing,
but also for large-scale computing applications, especially for machine learning. Several
studies have performed large integer calculations on GPUs [17] [18]. Since GPUs have a
very large number of cores, they are especially suitable for large computations. However,
unlike CPUs, GPUs are not available in every computer. Furthermore, the range of operand
sizes that can be processed at high speed differs between CPUs and GPUs. Running large
integer arithmetic operations on the CPU thus allows large computations to be executed
on any computer. As mentioned above, it is expected that desktop CPUs with wide SIMD
instructions such as AVX-512 and SVE will become increasingly common. This thesis
demonstrates that large integer multiplication and division can be computed at high speed
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on any computer using SIMD instructions.

1.2 Objective

The objective of this thesis is to improve the performance of large integer multiplication
and division by using SIMD instructions on CPUs.

Multiplication using AVX-512 and SVE is first implemented and evaluated. There are
several multiplication instructions included in these instruction sets, each with different
properties. For example, AVX-512IFMA takes only 52 bits of the multiplication operand
and SVE can retrieve the upper word of a 64-bit multiplication. Therefore, in this thesis,
implementation methods and algorithms tailored to the characteristics of each instruction
are proposed.

Next, division using AVX-512 is implemented and evaluated. For large integer division,
the effect of AVX-512IFMA on execution time is evaluated for a method for computing
large integer division that uses multiplication instead of division instructions. In addition,
since the division algorithm is more complex than the multiplication algorithm, imple-
mentation methods and algorithms for making vectorization more efficient using SIMD
instructions are proposed.

For both multiplication and division, the calculations are performed using the reduced-
radix representation. The speedup effect of this representation on multiplication and divi-
sion is evaluated. The implementations are run on the target processors and their perfor-
mance is compared with that of GMP in terms of execution time. This thesis mainly focuses
on naive algorithms and assumes that the implementations are run in a single thread on a
single core. Therefore, the main target operand size will be thousands to tens of thousands
of bits. In this range, performing calculations with multi-core and multi-thread has a large
overhead associated with it. However, once SIMD instructions speed up the essential part
of the computation, the concept can be applied to computation in range where paralleliza-
tion is required. As another application, in situations where multiple large integers are
processed in parallel, such as in matrix calculations, the per-core speedup also contributes
to overall speedup. These evaluations confirm that SIMD instructions can speed up large
integer multiplication and division.
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1.3 Contributions

The main contributions of this thesis are as follows.
First, it is shown that Intel AVX-512 instructions, in particular AVX-512IFMA, speed

up large integer multiplication.
Second, it is shown that Arm SVE instructions also speed up large integer multipli-

cation. An algorithm that uses the reduced-radix representation is proposed for ordinary
multiplication instructions (i.e., not special instructions such as AVX-512IFMA). This al-
gorithm is shown to be faster than GMP. This also suggests that Intel processors are not the
only ones capable of speeding up large integer arithmetic operations.

Third, it is shown that AVX-512 can also speed up large integer division. An algo-
rithm that is better suited to SIMD instructions than are conventional division algorithms is
proposed. This algorithm is shown to be faster than GMP’s division function.

Finally, it is shown that the reduced-radix representation facilitates the use of SIMD
instructions for computing large integer multiplication and division. Although the con-
version to this representation requires additional processing, it is shown that the resulting
arithmetic operations are faster than those of GMP because they take full advantage of
SIMD instructions.

In summary, it is shown that SIMD instructions speed up the multiplication and division
of large integers. For both multiplication and division, the advantage of the implementation
based on SIMD instructions increases with increasing operand size. Therefore, algorithms
based on these instructions should outperform arbitrary-precision arithmetic libraries such
as GMP. Large integer multiplication and division using SIMD instructions can be pro-
cessed at high speed on a lot of computers, which could speed up various processes.

1.4 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 describes the reduced-radix rep-
resentation and SIMD instructions. Chapter 3 describes large integer multiplication us-
ing AVX-512 instructions. Two instruction sets are covered here, namely AVX-512F and
AVX-512IFMA. Chapter 4 describes large integer multiplication using SVE instructions.
Chapter 5 describes large integer division using AVX-512 instructions. Finally, Chapter 6
concludes this thesis and discusses future work.
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Chapter 2

Preliminaries

2.1 Reduced-Radix Representation

First, the representation of large integers used in this study is discussed. An n-word integer
A is expressed as follows:

A =
n−1∑

i=0

aiβ
i,

where ai is a word value and β depends on the bit width of one word (e.g., 264 in arrays
of 64-bit integers). Since this study is concerned with unsigned integers, large integers are
stored in unsigned integer arrays in the implementation. In this thesis, large integers are
divided into 32- or 64-bit/word units for multiplication and division. The 64-bit/word unit
case is discussed in this section.

For large integer multiplication, the partial products obtained by multiplying individual
words are added. A 128-bit partial product is obtained from word-by-word multiplication.
For example, for an x86 Intel processor with scalar instructions, the partial product obtained
from the MUL instruction is divided into a high part and a low part and stored in two 64-bit
registers [19]. The registers that contain the appropriate partial products are then added.
Since each register has 64 bits, the result of the addition may be 65 bits. This means that
if a carry occurs, the value will not fit in the register and thus an erroneous calculation
result would be obtained. This is not much of a problem if the calculation is being done
with scalar instructions because another status flag is used to hold the carry (i.e., the carry
is not lost). For Intel processors, the EFLAGS register holds the carry flag (CF) [19].
For Arm processors, the Processor State (PSTATE) holds the carry flag (C) [20]. When
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adjacent partial products are added, an ADC instruction, which performs the addition of the
two registers and the carry condition flag to get the correct calculation result, is executed.
However, SIMD instructions such as AVX-512 and SVE do not have registers that hold
such carries. They do not have an ADC-like instruction and thus carries generated by the
normal ADD instruction disappear [19] [21]. Therefore, it is necessary to carefully consider
carry propagation when using SIMD instructions.

One way to solve these problems is to not perform multiplication on all 64 bits. That
is, each operand is converted into a representation with fewer than 64 bits prior to mul-
tiplication. In this approach, a word is represented as a value using, for example, 56 or
52 bits and the remaining upper bits are set to zero. With this representation, called the
reduced-radix representation [22], a carry does not exceed the width of the register (it is
stored in the upper bits). The upper bits are used to store the carries generated during the
addition of partial products. Thus, if partial products are added using the reduced-radix
representation with the same radix, the sum can be computed without losing carries (until
there is no more space to hold them). Furthermore, since borrows can be stored using the
same process, subtraction can be performed as well.

This representation increases computational efficiency. In general, when addition with
a carry is performed on a word, it is difficult to vectorize the operation because there is a
data dependency between a word and the subsequent word. In [23], methods for detecting
overflow without the EFLAGS register are described. If these methods are applied to SIMD
instructions, overflow can be detected to prevent bit loss. However, since these detection
methods are carried out for every addition, the cost increases as the number of words in-
creases. For n-word multiplication, the computational complexity of this process is O(n2)

and thus the total cost is very large for large n. This representation, however, allows us
to conduct parallel processing using SIMD instructions because the carries are not lost.
The accumulated carries are processed only when there is no more space to hold carries
or when all partial products have been added. The computational complexity for carries
is O(n), which is lower than that of the above process. For the former case, the carries
are processed because any further addition will result in their loss. However, this process-
ing may affect the execution time for large integer multiplication operations and should
be avoided as much as possible. Therefore, it is better to make the radix fit the target in
advance, especially if the scale of the target operation is so small that the execution time is
very short.
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The feasibility of using the reduced-radix representation is now discussed. If an 8-
bit space can be created by reducing each word from 64 bits to 56 bits, 255 (= 28 −
1) times 56 bits + 56 bits can be executed to accumulate carries. Generally, when two
n-word multi-precision integers are multiplied, n − 1 additions are performed at most.
Therefore, it is theoretically possible to perform multiplication without carry propagation
up to a maximum of 256 (= 28) words (i.e., 56 bits × 28 = 14,336 bits). With a similar
assumption for a 52-bit representation, a multiplication of 212,992 (= 52 × 264-52) bits in
the 252-radix representation may exceed the capacity of the remaining 12 bits as a result
of adding partial products. However, this size is so large that the computation time for
the multiplication itself is also long. Therefore, for a multiplication that exceeds this size,
it is reasonable to assume that the execution time to clear the 12-bit carries during the
calculation of the multiplication is sufficiently small relative to the overall execution time.

In summary, the reduced-radix representation prevents carry loss and enables paral-
lelization via SIMD instructions. This representation is thus used for multiplication and
division operations in this thesis.

2.2 SIMD Instructions

2.2.1 Intel AVX-512

Intel AVX-512 is a set of 512-bit-wide SIMD instructions [24] that can handle eight 64-
bit double-precision and 16 32-bit single-precision floating point instructions, as well as
eight 64-bit and 16 32-bit integers. AVX-512 can thus deal with more data at a given time
than can 128-bit SSE instructions or 256-bit AVX instructions. Furthermore, AVX-512
has more containers (32 zmm registers) than do SSE and AVX, and thus AVX-512 has
the potential to reduce the replacement of register data and memory data due to register
insufficiency (i.e., register spilling). In addition, eight mask registers (k0 - k7) are available
in AVX-512, allowing selective processing of the data in the registers. It is possible to
vectorize the processing of loops that contain conditional statements, which is difficult to
achieve with SIMD instructions. Knights Corner, the processor generation before Knights
Landing, includes a set of 512-bit vector instructions called Intel IMCI (Initial Many Core
Instructions) [25]. Although Intel IMCI is similar to AVX-512, it is not directly compatible.

AVX-512 has evolved to be able to execute many types of instruction. For example,
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AVX-512F (Foundation) was initially offered as a basic instruction set, but later it became
capable of executing more granular instructions such as DQ (Doubleword and Quadword),
BW (Byte and Word), and VBMI (Vector Byte Manipulation Instructions), and also of
performing multiply-and-accumulate operations such as IFMA (Integer Fused Multiply-
Add). Recently, domain-specific instructions such as GFNI (Galois Field New Instructions)
have also been included [26].

For AVX-512 instructions, the code presented here uses the Intel intrinsic instructions,
which are C style functions that provide access to AVX-512, AVX, SSE, and MMX [27].
These built-in functions, instead of assembly code, can be used to manipulate SIMD in-
structions, which increases the readability and availability of source code. Intrinsic func-
tions, which can be compiled using GCC (the GNU compiler collection) or the Intel com-
piler, prevent register misassignment due to the manual writing of assembly code (i.e., the
compiler assigns all registers). In particular, the Intel compiler considers dependencies and
optimizes instructions for a processor to execute instructions collectively in one cycle. In
summary, the intrinsic functions allow SIMD instructions to be manipulated faster, more
accurately, and more effectively than can be achieved by writing lower-level code.

2.2.2 Arm SVE

Arm SVE is an instruction set for the Arm AArch64 architecture [28]. In this instruction
set, 32 scalable vector registers (Z registers) and 16 predicate registers (P registers) are
available. These registers are similar to the zmm and mask registers in AVX-512, respec-
tively. The critical difference is that the vector length of the AVX-512 instruction set is
fixed at 512 bits, whereas SVE scalable registers can be from 128 to 2,048 bits wide. This
flexibility allows bit-width-independent code to be written and executed on another SVE-
supported processor without recompilation. The A64FX processor, the target processor in
this thesis, is capable of executing 512-bit-wide SIMD instructions. SVE has the basic in-
structions available. The scope of this thesis covers the processing that can be done with
AVX-512, with the exception of AVX-512IFMA.

SVE instructions can be implemented using intrinsic functions similar to those for
AVX-512 [21]. These functions can be treated in the same way as C functions to use the
desired SIMD instructions. However, because SVE intrinsic functions are well-defined, it
is necessary to specify the data type more strictly than is done for AVX-512. Furthermore,
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with the exception of some instructions, the predicate registers must be passed explicitly
even if they do not need to be masked.
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Chapter 3

Large Integer Multiplication Using Intel
AVX-512

This chapter focuses on large integer multiplication using Intel AVX-512. AVX-512 opera-
tions are applied to the reduced-radix representation and the implementation is evaluated on
an Intel Xeon Phi processor and the Cannon Lake microarchitecture. Although the number
of bits is limited, a kernel that can multiply variable-length operands rather than specialized
operands is implemented. This chapter describes two types of implementation, one using
AVX-512F and the other using AVX-512IFMA.

3.1 Related Works

Several studies have attempted to speed up large integer arithmetic processing using Intel’s
SIMD instructions.

A program that applies SSE2 to the reduced-radix representation was compared with a
naive implementation based on simple scalar operations on an Intel Pentium 4 processor
[22]. A speedup of approximately 10.7x was achieved by using SSE2. Gueron and Kras-
nov implemented a multiplication program with AVX2 instructions and the reduced-radix
representation for modular arithmetic [29]. They patched the program into OpenSSL [30]
and evaluated the processing of RSA cryptography with the Intel Software Developer Em-
ulator (SDE). The program achieved a reduction of approximately 50% in both the number
of instructions and the number of cycles compared with the original OpenSSL. Moreover,
AVX instruction sets have been used for modular arithmetic in the context of polynomi-
als. AVX2, a 256-bit-wide SIMD instruction set, and AVX-512 have yielded performance
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improvements of about 5x and 10x, respectively, over scalar instructions [31]. Keliris and
Maniatakos implemented large integer multiplication with AVX-512F instructions using a
229-radix representation to avoid carry propagation as much as possible [32]. When the
number of words exceeded a certain threshold, carries were cleaned up. They also evalu-
ated the kernel on the SDE in terms of the number of instructions. In their paper, the SDE
was used to emulate computation on a Knights Landing processor. Although cleanup pro-
cessing was carried out, a 1.16x improvement in performance was still recorded compared
with GMP in the context of 2,048-bit multiplication.

Several studies have evaluated AVX-512IFMA as well. Gueron and Krasnov evalu-
ated multiplication using AVX-512IFMA [33]. In their research, as well as in [32], the
number of bits per word was reduced to prevent carry propagation. Since no processor
was available that could execute AVX-512IFMA at the time their study was conducted,
the implementation was evaluated using the Intel SDE in terms of instruction count. Large
integer multiplication with four sizes, namely 1,024, 2,048, 3,072, and 4,096 bits, was eval-
uated. The performance evaluation focused on implementations that used the conventional
AVX-512F, GMP, and AVX-512IFMA. Despite the conversion to the reduced-radix repre-
sentation and the conversion back to a normal representation, the number of instructions
for 4,096-bit multiplication was about one-eighth that for GMP and about one-quarter that
for AVX-512F. Looking at another aspect, AVX-512IFMA has also been used to speed
up modular squaring [34]. A study implemented squaring with Montgomery multiplica-
tion [35] (referred to as Almost Montgomery Squaring in [34]). Further evaluation in terms
of latency, throughput, and number of instructions revealed that the implementation using
AVX-512IFMA instructions was the most effective. The authors concluded that Almost
Montgomery Squaring is faster than the conventional calculation of modular exponentia-
tion and that AVX-512IFMA instructions have the potential to speed up the calculation of
modular exponentiation.

In other related research, SIMD instructions, such as SSE, AVX, and AVX-512, were
applied to large integer arithmetic, with excellent results. However, no research has mea-
sured the execution time for large integer multiplication with AVX-512 and the reduced-
radix representation on a real processor. In [32] and [33], which are the most relevant to the
present study, the authors used the SDE and measured only the number of instructions be-
cause no processor was available at the time. Since Intel Xeon processors that can execute
AVX-512 instructions decrease their operating frequency by several hundred megahertz at
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high AVX frequencies [36], the time taken for one cycle is different compared with that
for scalar instructions. Thus, a program with AVX-512 instructions cannot be simply com-
pared with a program without AVX instructions in terms of the number of instructions. In
this chapter, the execution time is measured.

3.2 Multiplication Using AVX-512F

This section describes large integer multiplication based on AVX-512F, which contains
basic operations. For AVX-512F, the multiplier and multiplicand specified as the argument
of the kernel are arrays of 32-bit unsigned integers.

3.2.1 Basecase Multiplication

The Basecase multiplication algorithm [37], which is the most basic multiplication algo-
rithm, is used here. The Basecase multiplication algorithm is implemented using vector
operations, making it different from algorithms that use scalar operations.

Algorithm 1 Basecase multiplication in radix 2N based on vector operations

Input: A =
m−1∑
k=0

akβk, B =
n−1∑
k=0

bkβk

Output: C = A× B :=
m+n−1∑
k=0

ckβk

1: i← 0
2: while i < n do
3: j ← 0
4: while j < m do
5: a← [aj, aj+1, aj+2, . . . , aj+(VLEN−1)]
6: for k = 0 to VLEN−1 do
7: c← [cj+k, cj+k+1, cj+k+2, . . . , cj+k+(VLEN−1)]
8: c← c+ a× bi+k

9: end for
10: j ← j +VLEN
11: end while
12: i← i+VLEN
13: end while
14: convert C back to 2N -radix representation
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Algorithm 1 is the Basecase multiplication kernel with vector operations. Note that
the multiplier and multiplicand are radix β = 228 (N = 28) for AVX-512F here. In
addition, since AVX-512 is used, VLEN = 8. In the implemented program, c is stored in
an appropriate position in memory after line 8. For the next round, the kernel loads partial
products shifted by one word to c and repeats the processing loop. AVX-512 instructions
are used on lines 5, 7, and 8 since these lines contain vector calculations.

In the present study, since the reduced-radix representation is used, it is assumed that
both the multiplier and multiplicand are within 7,168 bits and thus the kernel runs the
loop without carry processing. After the loops, C is a radix 264 number due to 32-bit
multiplication and thus C must be converted back into a radix 2N number.

Algorithm 2 Conversion of α-radix number into β-radix number

Input: X =
m+n−2∑
k=0

xkαk

Output: C =
m+n−1∑
k=0

ckβk

1: for i = 0 to m+ n− 3 do
2: ci ← xi mod β
3: d← xi/β
4: xi+1 ← xi+1 + d
5: end for
6: cm+n−2 ← xm+n−2 mod β
7: cm+n−1 ← xm+n−2 / β

Algorithm 2 describes the process of converting an α-radix number into a β-radix num-
ber. In this paper, α = 264, β = 228, and d is the carry. Although there is a modular
operation on line 2, ci can be readily calculated by an AND operation with β−1 because β
is a power of two. Concretely, the AND operation is applied to xi and 0xfffffff (= 228− 1).
Similarly, the division on line 3 can be dealt with by a shift operation, namely a 28-bit right
shift. After loop processing, only the last word of X remains. Then, the results of the mod-
ular and division operations are stored in cm+n−2 and cm+n−1, respectively. This process
is sequential when scalar instructions are used because of the data dependency between a
word and its neighboring words.
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3.2.2 Implementation
AVX-512 Instructions for Implementation

The major AVX-512F intrinsic functions and their corresponding instructions used in the
proposed kernel are given below. Here, epi and epu denote extended packed integer and
extended packed unsigned integer, respectively, and the last number indicates the number
of bits.

mm512 mul epu32

Multiply the lower 32 bits of an unsigned 64-bit integer and store the result as an
unsigned 64-bit integer in the destination register. This function is converted into
vpmuludq.

mm512 add epi64

Add 64-bit integers. Its instruction is vpaddq. If a carry occurs through this instruc-
tion, the overflowed bit is lost.

mm512 permutexvar epi32

Shuffle the contents of the source register according to the index register. This func-
tion is paired with vpermd. This instruction shuffles 32-bit integers and generates
the bi+k-vector on line 8 of Algorithm 1.

When an intrinsic function of an AVX-512 instruction is used with the C language,
m512 type variables are declared. When these variables are passed to the function, the

registers that contain its value are specified for the corresponding AVX-512 instruction. To
execute the AVX-512 instruction, no special C code is needed for reading from memory
to the register or writing from the register to memory. The C compiler manages all of
the instructions. Therefore, SIMD operations such as AVX-512 can be handled without
worrying about registers. In this thesis, variables of type m512i are declared because
integers are used.

Figure 3.1 describes the mm512 permutexvar epi32 (vpermd) process used to
generate a bi+7 vector as an example. Actually, the zeros in the intermediate container
are also the shuffling indices and thus bi is stored in the white parts of the destination
register in Figure 3.1. However, they have no effect on processing in the kernel because
vpmuludq does not use the white parts. This instruction is used to multiply each element
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Figure 3.1: Overview of mm512 permutexvar epi32 processing.

of the multiplicand vector by one element of the multiplier. If one element is simply copied
to the entire zmm register, this process can be accomplished by reading an element from
the array of multipliers and broadcasting the element. AVX-512F provides an equivalent
function, namely mm512 set1 epi32 (vpbroadcastd). However, memory reads for
each loop of Algorithm 1 would result in high latency. Therefore, data are loaded for the
zmm register width before the innermost loop is entered. Then, vpermd retrieves the
necessary data from the register. This method reduces the number of memory accesses.

Figure 3.2 describes the computation on line 8 in Algorithm 1 through three intrinsic
functions, as mentioned above. In this figure, c′ terms are the partial products before mul-
tiplication and c terms are the calculation results. As shown, the calculation of the eight
partial products is computed in three instructions.

Fixed-Length Multiplication Module

In this paper, a multiplication program for flexible-length operands is implemented. In the
multiplication of multi-precision integers, the kernel itself does not know the number of ar-
gument words in advance because the kernel is not implemented for fixed-length operands,
and thus the kernel must be able to handle variable-length multipliers and multiplicands.
To achieve this with a naive implementation, the kernel runs two for loops that correspond
to the length of each operand. However, the numbers of branches and arithmetic operations
increase with the square of the number of words in the operands. AVX-512 instructions can

15



Figure 3.2: Process on line 8 in Algorithm 1.

handle 224 bits (= 28 bits × 8 words) simultaneously with a 228-radix representation, and
hence an n-bit multiplication has $n/224%2 branches. As an example, Figure 3.3 describes
the combination of multiplied elements in 2,048-bit multiplication with a simple implemen-
tation. The top and bottom sets of elements (i.e., a0−73 and b0−73, respectively) indicate the
2,048-bit numbers. There are 100 pairs of elements, and thus the kernel executes 100 loops
in this example. The overhead due to forks should be minimized for optimization. If the
number of branches involved in the loop can be reduced, the overhead will also be reduced.

To handle this issue for flexible-length operands, a small-scale module that multiplies
fixed-length operands is implemented and called repeatedly. Since this module is invoked
in the interface function that users actually call, users are not conscious of the module. Its
argument size is locked so that the number of multiplications in this module is also locked.
It is possible to unroll the loop and optimize the implementation within it. In this section,
the implemented module collectively computes 32 words of each operand. For example,
the module deals with 896 bits (= 28 bits × 32 words) at once. This module originally
runs for 16 loops, but they are all unrolled. Consequently, there are no branches in the
module. n-bit multiplication processes $n/896%2 loops. Figure 3.4 displays a diagram of
the element combinations in 2,048-bit multiplication using the 896-bit fixed-length module
as an example. In this multiplication, the module is called nine times in total. Therefore,
this figure indicates that the module has 91 fewer loops compared with the example in
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Figure 3.3: Naive 2,048-bit multiplication. It is necessary to loop through 100 pairs.

Figure 3.4: 896-bit fixed-length module used in 2,048-bit multiplication. Since there are
only nine pairs here, the number of loops is reduced compared with that in Figure 3.3.

Figure 3.3 and that it can deal with flexible-length multiplication.

Distribution of Partial Products

The internal implementation of the module explained in the previous section is discussed
here. The kernel calculates the partial products in loops in Algorithm 1 while shifting
the partial product by one word. However, there is a data dependency between the c on
line 8 and the c on line 7 of the next for iteration. Hence, until the process on line 8 is
completed, the program cannot execute the next for iteration. Subsequently, a stall occurs,
preventing pipeline parallelism. According to [22], two arrays (t and u) for partial products
are prepared. t and u contain the partial products from even and odd words, respectively,
of a multiplier B and are independent of each other. Concretely, the kernel can avoid a stall
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Figure 3.5: Use of arrays of partial products.

because it stores data in t on line 8 and loads data from u on line 7 of the next for iteration.
The same is true even if t and u are exchanged. Therefore, the kernel can be executed in
parallel through pipeline processing.

Figure 3.5 summarizes multiplication with partial product arrays. Since VLEN = 8,
p, q, . . . , w arrays are prepared and A × bi+k (0 ≤ k ≤ 7) is stored in the array. When all
processing is complete, the values of those arrays are added at the appropriate locations.
Finally, the function returns the multiplication result.

A naive implementation is as follows.

1. Load operand data from memory into p.

2. Calculate p+ a× bi.

3. Store p in memory.

Partial products q, r, . . ., and w are processed in the same way. However, there are data
dependencies between steps 1 and 2 and between steps 2 and 3 and hence stalls occur
between these steps. For any set of arrays, the naive implementation prevents pipeline
parallel processing.

To overcome this problem, a design that collectively deals with multiple partial products
instead of single arrays one by one is adopted. Figure 3.6 shows pseudo code that handles
multiple arrays as a group. Eight arrays are divided into four groups: {p, q}, {r, s}, {t, u},
and {v, w}. These independent containers can be arranged such that dependency-free pro-
cesses can be inserted between the loading, product-sum, and storage stages. Specifically,
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Figure 3.6: Pseudo code with arrays of partial products.

the codes for q that have no dependency on p are inserted between lines 1 and 3 and be-
tween lines 3 and 5 in this code. This avoids stalls and conceals latency compared with the
naive implementation.

The eight arrays can be divided in other ways, such as into eight sets (one by one),
two sets, and one set. That is, ({p}, {q}, {r}, {s}, {t}, {u}, {v}, {w}), ({p, q, r, s},
{t, u, v, w}), and ({p, q, r, s, t, u, v, w}), respectively. As mentioned above, if eight arrays
are divided into eight sets (i.e., naive implementation), then pipeline parallel processing
of the kernel cannot be performed. The other methods also increase stall. For example,
when four variables are handled at once, three independent code sections can be inserted
between lines 1 and 3 in Figure 3.6. Similarly, when eight variables are handled at once,
seven independent code sections can be inserted. Although these methods increase pipeline
parallelism compared with that obtained with four groups, stalls occur because there are
more multiple memory accesses. In particular, in the middle stage, several load instructions
are performed immediately after multiple store instructions. For example, when eight sets
are used, the kernel processes eight stores and eight loads and performs a memory access
16 times. As a result, the number of stalls increases. Based on the output from the Intel
compiler assembler for each grouping, the smallest number of stalls is achieved when the
eight elements are grouped into four sets. Therefore, it can be concluded that the eight
partial products are best processed in four groups.
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3.2.3 Evaluation
Evaluation Environment

To evaluate performance, a host computer with an Intel Xeon Phi 7250 (Knights Landing)
CPU (1.40 GHz) and 16 GB MCDRAM + 96 GB DDR4 memory running the CentOS 7.3
operating system was used. In the evaluation, unless otherwise noted, MCDRAM through
numactl [38] was used. The cluster mode of Knights Landing is quadrant mode. The exper-
imental programs were implemented in the C language and compiled using the Intel C com-
piler icc version 17.0.1 with the -O3 -xMIC-AVX512 -fno-alias -std=c99

options. SDE version 8.12.0 was used to count instructions. The comparison target was
GMP version 6.1.2, which was built with icc. All programs were executed on a single
core with a single thread. The multiplier and multiplicand, which are arguments of the
large integer multiply function, were generated by the rand function. The system time was
used as the random seed.

Instruction Count Comparison

The instruction count for the function designed in the previous sections was measured.
Table 3.1 shows the instruction count for GMP 6.1.2, the program in [33], the program
in [32], and the proposed program. The exact numbers of instructions were not reported
in [33] and thus the values for this program were estimated from the reported graphs. In the
table, Ratio is the ratio of the number of instructions for the given program to that for the
proposed program, and KNL denotes Knights Landing. The values for the proposed pro-
gram tend to be proportional to the number of operand bits. Compared with [33], there are
large differences for all operand sizes. The program in [33] is optimized for 1,024-, 2,048-,
3,072-, and 4,096-bit operands. In contrast, the proposed program handles each operand
size as flexibly as possible. Therefore, the observed differences are mainly attributed to dif-
ferences in flexibility. Focusing on GMP and KNL, for the 512- and 1,024-bit operations,
the number of instructions for the proposed program is lower than that for GMP and higher
than that for KNL [32]. Despite the small operand, the instruction count for the proposed
program is large because the number of instructions for converting back to a normal repre-
sentation (i.e., the last line in Algorithm 1) is high. For the 2,048- and 4,096-bit operations,
the proposed program uses the fewest instructions. For KNL, the carry processing cost
increases with increasing number of words and thus the instruction count also increases.
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Table 3.1: Number of instructions for proposed implementation, GMP 6.1.2, [33], and [32]
Size (bit) Our KNL [32] Ratio GMP Ratio AVX-512F [33] Ratio

512 2093 1405 0.67 7334 3.50 - -
1024 4023 3493 0.87 10886 2.71 750 0.19
2048 7985 11055 1.38 24867 3.11 2200 0.28
3072 12712 - - 46971 3.70 4200 0.33
4096 18292 43657 2.39 62405 3.41 7800 0.43

Table 3.2: Number of instructions and execution time for GMP 6.1.2 and GMP 5.1.3 in [32]
Size (bit) GMP 6.1.2 [inst] GMP 5.1.3 [inst] GMP 6.1.2 [us] GMP 5.1.3 [us]

512 7334 4652 1.218 1.227
1024 10886 6452 3.024 3.115
2048 24867 12841 8.825 9.267
4096 62405 30247 26.619 32.325

Furthermore, the cleanup function in [32] affected this result. For GMP, the number of
instructions tends to be large because scalar operations are used.

The number of instructions for GMP 6.1.2 becomes enormous as the operand size in-
creases. The values obtained in this experiment deviate from those for GMP 5.1.3 in [32].
Table 3.2 compares their instruction counts and execution times. The number of instruc-
tions for GMP 6.1.2 is about twice that for GMP 5.1.3. In GMP 6.1.2, gmpn addmul 1

is called many times inside the mpz mul function, which performs multiple-precision in-
teger multiplication. On the other hand, gmpn addmul 1 is either not called or called
only a few times in GMP 5.1.3. Although the instruction count in version 6.1.2 is large, a
comparison of execution times shows that this version is slightly faster than version 5.1.3.
From these results, it can be concluded that a small number of instructions does not nec-
essarily lead to a short execution time and that a comparison in terms of the number of
instructions alone is insufficient.

Execution Time Comparison

Unfortunately, the AVX-512F program in [33] uses AVX-512BW and AVX-512VL instruc-
tions and thus it cannot be executed on the Knights Landing processor. In this section, the
execution times of the proposed implementation and GMP are compared. Figures 3.7 and
3.8 show graphs of the execution time for the proposed implementation and GMP. The pro-
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Figure 3.7: Execution time of multiplication function in proposed program and GMP 6.1.2
for 512- to 3,584-bit operands.

gram time for the proposed implementation consists of Kernel, Calloc, Split, and Combine.
Split is the conversion to the reduced-radix representation, and Combine is the reverse pro-
cess. Although the proposed program is inferior to GMP in terms of performance at 512
bits, it is superior to GMP at 1,536 bits or more. These programs have approximately the
same execution time at 1,024 bits. The maximum performance improvement rate is approx-
imately 2.5x. The result at small operand sizes can be explained by the time of calloc
for partial products and the conversion function accounting for most of the total execution
time. For operand sizes of 512 bits to 1,536 bits, the time for conversion and allocation
account for approximately half of the total execution time.

There is almost no difference in processing time between 1,024- and 1,536-bit operands,
2,048- and 2,560-bit operands, 3,072- and 3,584-bit operands, 4,608- and 5,120-bit operands,
5,632- and 6,144-bit operands, and 6,656- and 7,168-bit operands. This is due to the fixed-
length multiplication module described in Section 3.2.2. With radix 228, this module calcu-
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Figure 3.8: Execution time of multiplication function in proposed program and GMP 6.1.2
for 4,096- to 7,168-bit operands.

lates multiplication for 896-bit operands each time it is called (i.e., the module deals with
multipliers and multiplicands of 896 bits at once). Therefore, for example, the processing
times for 2,048- and 2,560-bit multiplication that satisfies 1,792 (= 896 × 2) < n ≤ 2688
(= 896× 3) in n-bit multiplication are roughly equivalent.

The execution time of the proposed program increases significantly for 6,656-bit or
higher operation. After this point, the total amount of data in arrays for the partial products
and the converted 228-radix number exceeds 32 KB. Hence, it can be concluded that the
delay could have been caused by the insufficient capacity of the L1 cache on the processor
used in this experiment.

3.2.4 Conclusion

In this section, a multiplication program that can flexibly deal with variable-length operands
with AVX-512F instructions and the reduced-radix representation was implemented and
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evaluated on the Knights Landing architecture. Furthermore, two methods for accelerating
large integer multiplication were proposed. The first method is to implement a module spe-
cialized for fixed-length multiplication and repeatedly call this module to support flexible-
length multiplication. This method allows the loop to be unrolled and optimized. The
second method is to divide the partial product arrays to reduce stall as much as possible.
Based on an evaluation, GMP is superior to the proposed program for 512-bit operands.
However, for 1,024-bit or higher operands, a performance improvement in terms of execu-
tion time of up to approximately 2.5x compared with GMP was achieved. A speedup of
the multiplication of large variable-length integers was also achieved.

When multiplying small operands, the cost of converting a number and allocating mul-
tiple arrays affects the total execution time. Moreover, although AVX-512 handles eight
64-bit integers with vector operations, it is not simply 8x faster than GMP, which uses
scalar operations. Even taking into consideration the above-mentioned conversion and al-
location cost, the total cost appears to be no more than eight times that of GMP. Therefore,
the present study suggests that scalar operations are sufficiently fast and that vector instruc-
tions are not necessarily faster than scalar instructions. Nevertheless, experiments on the
Xeon Phi Knights Landing processor showed that AVX-512F effectively accelerates large
integer multiplication.

3.3 Multiplication Using AVX-512IFMA

AVX-512F instructions enable the execution of basic operations such as 512-bit-wide SIMD
addition, multiplication, and floating-point fused multiply-add (FMA). Processors with the
Cannon Lake microarchitecture enable the execution of AVX-512IFMA instructions. This
allows integer multiplication and addition to be processed in one instruction.

Herein, the performance of large integer multiplication using the reduced-radix rep-
resentation and AVX-512IFMA instructions is evaluated on a processor with the Cannon
Lake microarchitecture. The Karatsuba method is additionally implemented in this section.

3.3.1 Karatsuba Multiplication

In this section, the Karatsuba multiplication algorithm [39] is implemented. Algorithm 3
shows the Basecase method, which is called inside the Karatsuba method.
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Algorithm 3 BasecaseMultiply [37]

Input: A =
m−1∑
i=0

aiβi, B =
n−1∑
j=0

bjβj

Output: C = A · B :=
m+n−1∑
k=0

ckβk

1: C ← A · b0
2: for j ← 1 to n− 1 do
3: C ← C + (A · bj)βj

4: end for
5: return C.

Algorithm 4 KaratsubaMultiply

Input: A =
n−1∑
i=0

aiβi, B =
n−1∑
j=0

bjβj

Output: C = AB :=
2n−1∑
k=0

ckβk

1: if n ≤ n0 then
2: Borrow process
3: return BasecaseMultiply(A,B)
4: end if
5: k ← $n/2%
6: (A0, B0) := (A,B) mod βk

7: (A1, B1) := '(A,B) / βk(
8: (A2, B2) := (A0 − A1, B0 − B1)
9: C0 ← KaratsubaMultiply(A0, B0)

10: C1 ← KaratsubaMultiply(A1, B1)
11: C2 ← KaratsubaMultiply(A2, B2)
12: return C := C0 + (C0 + C1 − C2)βk + C1β2k.
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Algorithm 4 shows the Karatsuba multiplication kernel. The asymptotic computational
complexity of the Karatsuba method is O(nlog2 3) ≈ O(n1.585) and that of the Basecase
method is O(n2), where n is the number of operand words. Before KaratsubaMultiply
is called for the first time, n is adjusted such that it is always even until n satisfies n ≤
n0. If the number of words in the multiplier and multiplicand is less than or equal to
n0 in Algorithm 3, BasecaseMultiply is called and the function returns. The essence of
Algorithm 4 is as follows:

1. A and B are split into halves, denoted as A0, A1 and B0, B1, respectively,

2. the two lower parts, the two upper parts, and (A0−A1) and (B0−B1) are multiplied
separately, and

3. the partial products are added at the appropriate position.

The Karatsuba method is based on the following equations.

(A0 − A1)(B0 − B1) = A0B0 + A1B1 − A0B1 − A1B0 (3.1)

A0B1 + A1B0 = A0B0 + A1B1 − (A0 − A1)(B0 − B1) (3.2)

Equation (3.1) shows the usual multiplication of AB when A and B are split into
(A0, A1) and (B0, B1). In this expression, it is necessary to obtain four independent partial
products, namely A0B0, A1B1, A0B1, and A1B0, to calculate AB. However, in equation
(3.2), A0B1 + A1B0 can be obtained by calculating (A0 − A1)(B0 − B1) after calculating
A0B0+A1B1. In other words, if the final additions are executed appropriately, it is possible
to obtain AB through three multiplications.

64×82 in decimal format is used as an example. Figure 3.9 shows the 64×82 process for
the Basecase method (left) and the Karatsuba method (right). With the Basecase method,
5,248 is obtained by performing four multiplications, namely 4× 2, 6× 2, 4× 8, and 6× 8.
With the Karatsuba method, 5,248 is obtained by performing three multiplications, namely
4× 2, 6× 8, and (4× 2+6× 8)− (6− 4)(8− 2). The Karatsuba method yields the correct
results even if either or both of A0−A1 and B0−B1 are negative. Therefore, the Karatsuba
method can be used to obtain the same result as that obtained using the Basecase method
but with fewer multiplications. The Karatsuba method appears somewhat more complex
for such a simple example. However, in computational terms, multiply instructions are
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Figure 3.9: Multiplication using Basecase method (left) and Karatsuba method (right).

more expensive than addition and subtraction. Furthermore, for multi-precision integer
multiplication, the number of multiply instructions is high. Thus, reducing this expensive
operation is important for decreasing execution time.

Since lines 3, 8, and 12 in Algorithm 4 can be vectorized, AVX-512 instructions are
used for these processes. A and B are in the 252-radix redundant representation and the
arguments of BasecaseMultiply must be within the 52-bit representation. Therefore, be-
fore BasecaseMultiply is called, the borrows generated in A0 − A1 and B0 − B1 must be
processed. Borrows need not be handled for non-subtracted arguments because no borrows
occur for these arguments. Therefore, line 2 of Algorithm 4 can be skipped to avoid un-
necessary processing in these cases. In the proposed implementation, because the length of
operands A and B is pre-adjusted such that the highest word of A1 and B1 is zero, the case
of (A0 − A1) and (B0 − B1) becoming negative is avoided as much as possible. If one of
the two subtractions is expected to result in a negative value, the order of the subtraction
can be switched to avoid the negative value and then (C0 + C1 − C2) can be changed to
(C0 + C1 + C2) as appropriate.

3.3.2 Implementation
AVX-512 Instructions for Implementation

Before AVX-512IFMA can be executed, vpmuludq should be used to perform large in-
teger multiplication. However, this instruction takes a 32-bit multiplier and a 32-bit mul-
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Figure 3.10: Overview of vpmadd52luq processing.

tiplicand to make 64-bit partial products in parallel. AVX-512DQ instructions introduced
vpmullq, which takes two 64-bit integer operands. However, vpmullq returns only the
lower 64-bit part of a 128-bit integer obtained by multiplication. There is no way to ob-
tain the upper 64-bit part. Therefore, AVX-512IFMA instructions offer the following three
advantages over vpmuludq and vpmullq.

• They take operands larger than 32 bits.

• They calculate addition and multiplication in one instruction.

• They return both the low and high partial products.

AVX-512IFMA instructions are thus useful for multi-precision integer multiplication.
Figure 3.10 shows integer multiply-add operations using vpmadd52luq, an AVX-

512IFMA instruction. The upper two registers b and c in this figure are the operands used
for multiplication and the lower register a is the operand used for addition. Each element
of b and c uses only the lower 52 bits as its operand; the remaining 12 bits are not used.
Therefore, the white part in the figure is not involved in multiplication. The a used for
addition is computed with 64 bits for each element.

The two intrinsic functions of the AVX-512IFMA instructions used in this research are
the ones given in [27].
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mm512 madd52lo epu64( m512i a, m512i b, m512i c)

Calculate multiply-add in 512-bit-wide SIMD registers. This function is converted
into vpmadd52luq. Multiply packed unsigned 52-bit integers b and c and get 104-
bit intermediate products. Then, add 52-bit integer a and the 104-bit intermediate
products and generate results. This function (instruction) returns the lower 52 bits of
the result.

mm512 madd52hi epu64( m512i a, m512i b, m512i c)

The same as mm512 madd52lo epu64 except that it returns the upper 52 bits of
the results. This function is converted into the vpmadd52huq instruction.

AVX-512 instructions are also used for the conversion to the reduced-radix represen-
tation and the multiplication kernel. The AVX-512BW instruction performs 8- and 16-bit
integer operations. The AVX-512VBMI instruction performs 8-bit integer operations that
cannot be performed by the AVX-512BW instruction. It consists mainly of 8-bit permu-
tation instructions. These instructions are used specifically for element-by-element shift
operations and permutation operations. Until the AVX-512BW and VBMI instructions
were available, only 32- or 64-bit shift and permutation instructions could be executed us-
ing AVX-512F instructions. However, to convert from a 64-bit representation to a 52-bit
representation and vice versa, operations with a small granularity of Byte or Word units
are required. It was difficult to implement parallel conversion processing using AVX-512F
instructions. To avoid the requirement of Byte- or Word-level granularity using AVX-512F
instructions, gather and scatter instructions can be used. However, these instructions re-
quire non-continuous memory access, resulting in high latency. With the AVX-512BW
and VBMI instructions, it is now possible to perform the conversion to the reduced-radix
representation and the inverse conversion in parallel and efficiently.

The following four instructions are used in this study: vpsrlvw and vpsllvw for the
right- and left-shift instructions, respectively, and vpermw and vpermb for the permuta-
tion instructions for Word and Byte units, respectively (16- and 8-bit operations, respec-
tively).

Figure 3.11 shows an overview of the behavior of the vpermw instruction, a permu-
tation instruction in AVX-512BW. The upper register is a 512-bit register that serves as
the source of permutation data, and the middle register is an index register that indicates
which data are taken. The permutation procedure performed by the vpermw instruction is
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Figure 3.11: Overview of vpermw processing.

as follows:

1. divide the 512-bit data source into 32 16-bit parts (a0, a1, . . . , a31);

2. store a number from 0 to 31 that indicates a necessary element in each 16-bit space
of the index register;

3. copy data aj from the source register to each space of the destination register accord-
ing to the index j specified in the previous step.

The AVX-512VBMI instruction vpermb operates with a granularity of eight bits with 64
divisions in the above procedure.

Figure 3.12 shows an overview of the behavior of the vpsrlvw instruction, a right-
shift instruction in AVX-512BW. The upper register is a 512-bit source register and the
middle register contains count values that indicate how many shifts are to be performed.
Based on the number (from 0 to 15) stored in each element of the count register, the corre-
sponding element of the data source is shifted to the right. The space vacated by the shift
is filled with zeros. That is, the white portion of the destination register represents zero.

To use the four instructions above, the following intrinsic functions are used.

mm512 permutexvar epi16 ( m512i idx, m512i a)
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Figure 3.12: Overview of vpsrlvw processing.

Perform permutation operations on 16-bit integers using 512-bit-wide SIMD regis-
ters. This function is converted into a vpermw instruction.

mm512 permutexvar epi8 ( m512i idx, m512i a)

Similar to the above function, it performs permutation but with 8-bit granularity.

mm512 srlv epi16 ( m512i a, m512i count)

Right-shift each corresponding element of vector a by the numerical value stored
in each element of vector count. This function is converted into the vpsrlvw
instruction.

mm512 sllv epi16 ( m512i a, m512i count)

Same as mm512 srlv epi16 except that each element of vector a is left-shifted.
This function is converted into the vpsllvw instruction.

Implementation of Multiplication Kernel

Multi-precision integer multiplication is implemented using the Karatsuba method, as stated
in subsection 3.3.1. Lines 6 and 7 of Algorithm 4 require modular arithmetic and division,
respectively. However, since a large integer is expressed with 64-bit unsigned integer ar-
rays, (A0, B0) is passed the start address of each operand and (A1, B1) is given the midpoint
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Figure 3.13: Calculation of AB large integer multiplication using Karatsuba method.

address of the arrays. Therefore, modular arithmetic and division can be performed by ma-
nipulating the address references.

Since subtractions are performed on line 8 of Algorithm 4 and vectorization is possible,
these processes are vectorized. Borrows as well as carries can be accumulated because of
the reduced-radix representation. Subtraction can thus be performed without concern for
data dependencies. Unfortunately, AVX-512IFMA instructions ignore the upper 12 bits of
the operand, which store the borrows. Hence, BasecaseMultiply cannot be used with the
borrows without a cleanup done in advance. Line 2 is skipped in the case of non-subtracted
arguments and BasecaseMultiply (i.e., ((A0, B0) and (A1, B1))) is performed. This avoids
unnecessary processing. In this study, splitting was done only once. This is because as
the number of divisions increases, the number of operands to be subtracted also increases,
resulting in an increase in the ratio of cleanup processing to the total.

On line 12 of Algorithm 4, (C0 + C1 − C2) is calculated and each partial product is
added to the appropriate place, as shown in Figure 3.13. Finally, the result C is obtained.
In these processes, SIMD instructions are vectorized using AVX-512 instructions. As noted
in subsection 3.3.1, the Karatsuba method requires fewer multiplications compared with the
Basecase method.
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3.3.3 Evaluation
Evaluation Environment

For evaluation, a host computer with an Intel Core i3-8121U (2.2 GHz, 2 Cores, 4 Threads,
Cannon Lake microarchitecture) and 4 GB DDR4 memory running the Ubuntu Server
18.04.2 LTS operating system was used. All of the proposed experimental programs were
implemented in the C language and compiled using icc version 19.0.4.243 with the -O3
-Wall -xCANNONLAKE -mtune=cannonlake -std=c99 options. The compar-
ison targets were programs in [33], the implementation in Section 3.2, and GMP version
6.1.2. These programs were also built with icc. In the evaluation, all programs were exe-
cuted on a single core with a single thread. Multiplication was performed 3,000 times and
the execution time was averaged. To generate the multiplier and multiplicand, the rand
function was used. The system time was used as the random seed.

Comparison with Basecase Multiplication

As discussed, a large integer multiplication kernel was implemented here using the Karat-
suba method. Although the amount of computation for the Karatsuba method is smaller
than that for the Basecase method, the latter has shorter execution times if the operand size
is small because the former uses Basecase multiplication several times. Therefore, the exe-
cution times of the algorithms are compared. The results of this comparison can be used to
determine the optimal size for switching between the Karatsuba and Basecase algorithms.
Indeed, GMP switches algorithms according to operand size.

Figure 3.14 compares the execution times for various operand sizes between the Karat-
suba and Basecase methods with AVX-512F (interrupted due to the limitation of the 228-
radix representation) and AVX-512IFMA. Since both methods use the reduced-radix rep-
resentation, the execution time of the multiplication kernel is of concern here.

With the Basecase method, AVX-512IFMA is faster than AVX-512F at all sizes. With
the Karatsuba method, the execution times for AVX-512IFMA and AVX-512F are sim-
ilar for small sizes. Although AVX-512F is superior to AVX-512IFMA at 2,048 bits,
AVX-512IFMA is faster at larger sizes. The Karatsuba method with AVX-512IFMA re-
quires borrow processing according to line 2 in Algorithm 4. In contrast, this method
with AVX-512F does not need borrow processing because vpmuludq takes all 32 bits of
32-bit operands whereas vpmadd52l(h)uq takes only 52 bits of 64-bit operands. The
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Figure 3.14: Execution time for Karatsuba and Basecase methods for 512- to 12,288-bit
operands.

AVX-512IFMA-specific overhead for small operand sizes cannot be ignored, especially for
operations faster than one microsecond. Furthermore, due to the overhead, the kernel with
AVX-512IFMA divides one operand into two parts, whereas that with AVX-512F splits it
into up to four parts. This is because the former increases the number of times that extra
borrow processing is performed with increasing number of partitions. Therefore, there is
also a difference between the two instruction sets in terms of actual complexity for a given
operand. However, AVX-512IFMA deals with 416 (= 52 × 8) bits in multiplication and
addition in one instruction whereas AVX-512F deals with 224 (= 28 × 8) bits in multipli-
cation and requires vpaddq for addition. Thus, AVX-512IFMA is faster for larger sizes
despite the overhead.

With AVX-512IFMA, the Basecase method was faster than the Karatsuba method for
small operand sizes (from 2,048 to 6,144 bits). However, when the operand size was large
(from 8,192 to 12,288 bits), the Karatsuba method was faster. Because the Basecase method
has a computational complexity of O(n2) for multiplication and O(n) for load/store, where
n is the number of operand words, the execution time increases with operand size even if
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AVX-512IFMA instructions are used. On the other hand, although the Karatsuba method
reduces the complexity of multiplication to three-quarters that for the Basecase method, ad-
dition and subtraction with a computational complexity of O(n) are executed on lines 8 and
12 of Algorithm 4. The load/store processes for addition and subtraction are also performed
separately from the multiplication and thus the Karatsuba method requires more memory
operations than does the Basecase method. In addition, since the Karatsuba method with
AVX-512IFMA also performs extra borrow processing, the performance improvement rate
decreases relative to the Basecase method for a given instruction.

In summary, with AVX-512IFMA, the Basecase method is faster when the size of the
multiplier and multiplicand is small because the Karatsuba method cannot ignore the over-
head due to the extra borrow processing, function calls, and load/store. For larger operands,
however, the Karatsuba method is faster than the Basecase method. Based on the results of
this experiment, the Basecase method should be switched to the Karatsuba method when
the operand size is 7,168 bits or more.

Comparison with Related Works

The proposed implementation is compared with the program in [33] and the implementa-
tion in Section 3.2. Figure 3.15 shows a visualization of the differential execution times.
The execution times for the implementation in Section 3.2 and the proposed method consist
of Kernel, Split, and Combine. “Split” refers to the conversion from a 264-radix number to
a 252-radix number in the proposed approach and from a 232-radix number to a 228-radix
number for AVX-512F. “Combine” refers to the opposite conversion.

First, compared with AVX-512F, the proposed approach was faster at all operand sizes,
with an improvement in performance of up to approximately 3.07x. This result indicates
that AVX-512IFMA is superior to AVX-512F for large integer multiplication in terms of
execution time. Furthermore, there are also differences in the execution times for Split and
Combine between the proposed implementation and AVX-512F. The proposed program for
conversion was implemented with AVX-512BW and AVX-512VBMI. Thus, AVX-512BW
and AVX-512VBMI are also useful for accelerating the program.

Second, the program in [33], which was also implemented with AVX-512IFMA, is
superior to the proposed program, although the execution times are similar. The AVX-
512IFMA program in [33] is specialized for 1,024-, 2,048-, 3,072-, and 4,096-bit operands,
and the code for Split, Combine, carry processing, and Kernel is in one module, which is
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Figure 3.15: Execution time for Basecase method for 1,024- to 4,096-bit operands com-
pared with related works.

similar to a monolithic kernel design. They are hard-coded for the target sizes. Therefore,
the program in [33] was implemented using registers as much as possible to avoid memory
access. In contrast, the proposed programs for Split, Combine, carry processing, and Ker-
nel are implemented independently. These modules are called to support various operand
sizes, which is similar to a microkernel design. Due to the modularization, there are costs
associated with size-dependent branches, memory access overhead for calling modules, and
load/store data. Especially for processing that takes less than one microsecond, the execu-
tion time of this overhead cannot be ignored. In light of this difference, a monolithic design
for large integer multiplication with AVX-512IFMA is very fast for certain applications. In
short, AVX-512IFMA has the potential to accelerate multiplication operations.

Comparison with GMP

The execution time of GMP and the proposed implementation for 1,024 to 12,288 bits was
compared (Figures 3.16 and 3.17). Based on the results in Section 3.3.3, the proposed
program is compared with GMP using the Basecase method in Figure 3.16 and the Karat-
suba method in Figure 3.17. The execution times for 1,024 bits are almost equal and the
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Figure 3.16: Execution time for multiplication function using AVX-512IFMA for 1,024-
to 6,144-bit operands compared with GMP.

proposed program is superior to GMP for larger operand sizes. Although Kernel process-
ing is faster than GMP at 1,024 bits, with the addition of Split and Combine processing,
GMP is slightly faster. However, for other sizes, the proposed implementation is faster
even with Split and Combine processing. An improvement of up to approximately 2.97x
was obtained. GMP does not use SIMD instructions for multiplication, and thus this result
suggests that vector instructions are faster than scalar instructions for large integer multipli-
cation. This confirms that AVX-512IFMA instructions effectively speed up multi-precision
integer multiplication.

3.3.4 Conclusion

In this section, multi-precision integer multiplication was speeded up by utilizing the reduced-
radix representation and AVX-512IFMA. Furthermore, to speed up multiplication for large
operand sizes, a multi-precision integer multiplication program was implemented using al-
gorithms with the Karatsuba method and the conventional Basecase method. Since this
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Figure 3.17: Execution time for multiplication function using AVX-512IFMA for 7,168-
to 12,288-bit operands compared with GMP.

study focuses on general-purpose multiplication, the program was designed to handle vari-
ous operand sizes with an emphasis on flexibility. The implemented program was evaluated
on a processor with the Cannon Lake microarchitecture and its performance was compared
with that of the implementation in Section 3.2, [33] and GMP in terms of execution time.

Compared with AVX-512F (Section 3.2), the proposed program was faster at all operand
sizes; a performance improvement of up to approximately 3.07x was obtained. Further-
more, the results showed that AVX-512BW, AVX-512VBMI, and AVX-512IFMA effec-
tively speed up calculation. The program in [33], which uses AVX-512IFMA, was faster
than the proposed program at all sizes. This was mainly caused by the difference in the
implementation of the multiplication kernel (monolithic design versus microkernel-like
design). This experiment indicates that AVX-512IFMA instructions allow extremely fast
multiplication for specialized applications. Finally, although the execution times for the
proposed program and GMP were similar when the operand size was 1,024 bits, the pro-
posed program was faster for multiplication with operand sizes of 2,048 bits or more. A
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performance improvement of up to approximately 2.97x was obtained. In summary, it was
shown that AVX-512IFMA can speed up large integer multiplication.
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Chapter 4

Large Integer Multiplication Using Arm
SVE

The application of AVX-512 instructions to large integer multiplication was explored in
the previous chapter, and it was found that these instructions are particularly effective for
large operand sizes. Nowadays, Arm processors can also execute SIMD instructions with a
vector length of 512 bits (Arm Scalable Vector Extension (SVE)) on A64FX processors [9].
However, it is not yet clear whether SVE, which has similar potential, is effective for such
multiplication processes. Therefore, in the present chapter, SVE will be applied to large
integer multiplication, and its performance will be evaluated to determine if it is as effective
as AVX-512.

4.1 Related Works

Several studies have implemented and evaluated algorithms that use SVE. For example,
SVE has been applied to sorting [40]. It was found that SVE sorting is faster than the GNU
C++ Standard Template Library (STL) sorting method, with a performance improvement
of about 5x for small-scale sorting and about 4x for large-scale sorting on an A64FX pro-
cessor. SVE has also been applied to numerical computation. One study [41] applied SVE
to the Basic Linear Algebra Subprograms (BLAS) [42] and compared its performance with
that of Neon (Arm’s 128-bit-wide SIMD instruction set). The results of simulator-based
evaluations showed that SVE was faster in most cases for a 128-bit width. Furthermore, for
SVE with a 2,048-bit width, a performance improvement of up to 17.77x over Neon was
obtained, indicating that SVE accelerates these calculations. SVE has also been applied to
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deep neural networks (DNNs). One study [43] used SVE to vectorize the convolution, gen-
eral matrix multiply (GEMM), and other processes required in image processing and bench-
marked their system using tinyDNN neural network frameworks such as AlexNet [44] and
ResNet [45]. Evaluation using an emulator indicated a speedup of more than 10x over the
scalar version for all models.

SIMD instructions (especially AVX-512) have been applied to large integer operations
and have been evaluated in real environments. For example, AVX-512F and IFMA have
been applied to large integer multiplication in the previous chapter. For AVX-512F, the im-
plemented program was run on the Intel Xeon Phi Knights Landing architecture and com-
pared to GMP. A performance gain of up to approximately 2.5x was observed. For AVX-
512IFMA, evaluations conducted on the Intel Cannon Lake microarchitecture showed that
it was approximately 2.97x faster than GMP. One study [46] applied AVX-512 to modular
multiplication. Compared with GMP, the implementation yielded a 3.2x higher throughput
for a 1,024-bit calculation on an Intel Xeon Gold processor.

As shown above, SIMD instructions such as AVX-512 and SVE accelerate various
computation tasks. In particular, AVX-512 instructions have been shown to be faster than
scalar instructions for large integer multiplication. However, it is unclear whether SVE,
which has similar potential, accelerates such multiplication. In this study, we apply SVE to
large integer multiplication and evaluate the performance of our approach on the A64FX
processor, which can execute 512-bit-wide SIMD instructions.

4.2 Multiplication Algorithm

4.2.1 Reduced-Radix Representation

First, we discuss the multiplier and multiplicand used in this study. Since this study is con-
cerned with unsigned integers, we store the multiplier and multiplicand in 64-bit unsigned
integer arrays.

In this study, the radix is set to 256 (i.e., a 64-bit word is converted to a 56-bit word).
This value was chosen for two reasons. The first is that it is convenient to perform the
conversion using SVE instructions. Since 56 × 8 = 448 = 64 × 7, converting seven 64-
bit words yields eight 56-bit words. SVE can execute a 512-bit-wide (64 bits × 8 words)
SIMD instruction. Seven words of data will not exceed the width of the vector after the

41



conversion. During the conversion process, we can access memory in word units, which
simplifies pointer handling. The second reason is that eight bits are sufficient for storing
carries in this study. For a 56-bit representation, 255 (= 28 − 1) carries can be stored.
Since this is equivalent to performing a multiplication of 256 (= 28) words, multiplication
of up to 14,336 (= 56 bits × 28 words) bits can be computed without loss of carries. Note
that the Karatsuba method [39] is likely to be faster for this number of bits, as indicated
by experiments with AVX-512IFMA in the previous chapter. Therefore, it is reasonable to
assume that there is little need to reduce the number of bits to fewer than 56 for Basecase
multiplication. We thus adopt a 56-bit reduced-radix representation in this study.

4.2.2 Basecase Multiplication

In this chapter, Algorithm 3 is basically used for Basecase multiplication [37]. As noted
in Section 4.2.1, β = 256 in this study. The main loop is represented as a single loop.
However, a for loop that corresponds to the word length of A is actually executed inside
that loop. Thus, the computational complexity of this method is O(n2).

Regarding SIMD instructions, the multiplication on the first line of Algorithm 3 and the
multiplication and addition on the third line can be implemented as vector operations using
SVE. The multiplication by βj on the third line depends on the memory storage location
and thus can be realized by appropriate pointer manipulation.

However, a problem arises when the reduced-radix representation is applied to ordinary
multiplication instructions. AVX-512IFMA provides the instructions vpmadd52luq and
vpmadd52huq, which take 52 bits for the multiplier and multiplicand and return the lower
and upper 52 bits, respectively [19]. In other words, the target data are consistently in a
reduced-radix representation from the input to the output. SVE, on the other hand, has no
such instruction. Instead, it provides a SIMD instruction for ordinary 64-bit multiplication.
There are two instructions in SVE, namely MUL and MULH, that return the lower and upper
64 bits of a 64-bit multiplication, respectively. We obtain a 112-bit partial product for a 56-
bit calculation. For normal SVE multiplication instructions, the lower 64 bits and the upper
48 bits are returned, which makes it impossible to proceed with the calculation correctly
since these values are no longer 256-radix numbers. This problem does not need to be
considered in a full 64-bit calculation and is unique to the reduced-radix representation.
Therefore, we need additional processing compared with AVX-512IFMA.
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4.2.3 Shifted Basecase Multiplication

In this section, we discuss solutions to the problems related to the reduced-radix represen-
tation described in the previous section. The core of the problem is that when the normal
64-bit multiplication instruction is applied to a value represented by 56 bits, the lower word
of the partial product will be larger than 56 bits (64 bits) and the upper word will be smaller
than 56 bits (48 bits). Thus, we need to adjust these words to make them 56-bit values.

Algorithm 5 ShiftedBasecaseMul

Input: A =
m−1∑
i=0

aiβi
r, B =

n−1∑
j=0

bjβj
r , βr = 2p, β = 2max, βs = 2(max−p)/2, p < max, max−p

is even
Output: C = A · B :=

m+n−1∑
k=0

ckβk
r

1: A′ ←
m−1∑
i=0

a′iβ
i
r :=

m−1∑
i=0

aiβsβi
r

2: B′ ←
n−1∑
j=0

b′jβ
j
r :=

n−1∑
j=0

bjβsβj
r

3: C ← 0
4: for j ← 0 to n− 1 do
5: for i ← 0 to m− 1 do
6: cL ← (ai · bj) mod βr

7: cH ← (a′i · b′j)/β
8: C ← C + cLβi+j

r + cHβi+j+1
r

9: end for
10: end for
11: return C.

Algorithm 5 describes a method that solves this problem. βr, β, and βs are all as-
sumed to be powers of two and max is the bit width of the multiplication instruction (64
in this study). The inputs A and B are the multiplier and multiplicand, respectively, both
in reduced-radix representation (p = 56 in this study). To correctly obtain the upper part
of the partial product in this algorithm, the original A and B multiplied by βs should be
calculated separately before the loop is entered. In the actual process, this is done by shift
operations, so max−p must be even. The calculation of the lower word of the partial product
on line 6 is simple. The lower 56 bits are obtained from the remainder of the multiplication.
For the upper word on line 7, we multiply the two pre-computed values described above.
For example, since p = 56 and max = 64 in this study, a′i and b′j are 60 bits each and their
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lower four bits are zero. The partial product obtained by these multiplications is 120 bits,
where the lower eight bits are filled with zeros (i.e., the product is shifted eight bits to the
left). Therefore, by removing the lower 64 bits from the product, we get the correct upper
56 bits. Since cL and cH obtained by these operations are both 56-bit representations, we
can proceed with the large integer multiplication.

The advantage of this algorithm is that it is relatively easy to implement with SIMD
instructions. Although an instruction that returns the upper word of a partial product is
required for multiplication, only two other basic instructions are required, namely a word-
by-word shift and an AND operation. Therefore, it is likely that this technique can be
applied to other architectures as long as instructions that correspond to MUL and MULH of
SVE are available.

4.3 Implementation

4.3.1 Arm SVE

Arm SVE is an instruction set for the Arm AArch64 architecture [28]. In this instruction
set, 32 scalable vector registers (Z registers) and 16 predicate registers (P registers) are
available. These registers are similar to the zmm and mask registers in AVX-512, respec-
tively. The critical difference is that the vector width for the AVX-512 instruction set is
fixed at 512 bits, while the SVE scalable registers can be from 128 to 2,048 bits wide. This
flexibility allows us to write bit-width-independent code and execute it on another SVE-
supported processor without recompilation. The A64FX processor, the target processor in
this study, is capable of executing 512-bit-wide SIMD instructions.

One implementation method for explicitly using SVE instructions is to use intrinsic
functions. This allows appropriate processing by treating them in the same manner as C
functions to use the desired SIMD instruction. When using these functions, we use special
data types for SVE. For example, svuint64 t is used for a vector of unsigned 64-bit
integers and svfloat64 t is used for a vector of 64-bit floating-point numbers. The
predicate register should be of type svbool t. For AVX-512 type declarations for zmm
registers, the only information required is the bit width and whether the value is an integer
or a floating-point number (e.g., m512i for a 512-bit-wide integer vector). Therefore,
we need to make specific type declarations according to the internal data type in SVE.
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Next, we describe the main instructions used in this study. The intrinsic functions used
here are listed below [21].

1. svmul n u64 x(svbool t pg, svuint64 t op1, uint64 t op2)

2. svmulh n u64 x(svbool t pg, svuint64 t op1, uint64 t op2)

3. svadd u64 x(svbool t pg, svuint64 t op1, svuint64 t op2)

4. svlsl n u64 x(svbool t pg, svuint64 t op1, uint64 t op2)

5. svand n u64 x(svbool t pg, svuint64 t op1, uint64 t op2)

6. svext u64(svuint64 t op1, svuint64 t op2, uint64 t imm3)

7. svtbl u8(svuint8 t data, svuint8 t indices)

8. svreinterpret u8 u64(svuint64 t op)

The ” x” at the end of some functions indicates that the return value of a Z register at
the point where the predicate register is inactive (i.e., 0) is unknown. There are two other
variations of the predicate register, namely ” m” and ” z”, which specify the behavior of
the element in the register when inactive; they indicate that the element is to be merged
with the first input and set to zero, respectively. The ” n ” in the middle of some function
names indicates that the trailing argument is a scalar value. In SVE’s built-in functions,
scalar values can be passed in place of vector values. When this happens, the scalar value
is applied to all elements of the other vector operand. Finally, the ”u64” in a function
indicates the data type of the element in the vector argument, which explicitly determines
the type to be processed.

(1) and (2) perform 64-bit multiplication (MUL and MULH, respectively) and (3) per-
forms 64-bit addition (ADD). In particular, MULH returns the upper 64 bits of a 128-bit
partial product obtained by 64-bit multiplication. When A64FX became available, there
were no such instructions in AVX-512; only AVX-512DQ (Doubleword and Quadword)
included the instruction that returns the lower 64 bits (vpmullq). MULH allows us to per-
form larger integer multiplication with 64-bit-wide multiplications. As described in Section
4.2.1 regarding the ADD instruction, if the addition results in a carry, the carry is lost; the
same is true for vpaddq in AVX-512. (4) and (5) show the left shift and AND operations
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Figure 4.1: Overview of EXT when op1, op2, and an immediate value of 3 are passed.

(vpsllq and vpandq in AVX-512), respectively. Here, a scalar value is specified as the
second operand in both cases. These instructions can also perform element-by-element
shift and AND by passing a vector instead. (6) is an instruction that concatenates the el-
ements from two Z registers. The position used for the concatenation depends on the last
argument imm3. Figure 4.1 shows the behavior when 3 is passed to imm3 of this instruc-
tion. In this case, the third and subsequent elements of op1 are first taken out and filled in
starting with the zeroth element in the output. Next, the remaining three words of the out-
put are taken from the zeroth element of op2 and filled in. The equivalent behavior of this
instruction in AVX-512 is valignq. Furthermore, as the third argument ”imm” suggests,
this value must be an immediate value (i.e., non-variable value). (7) is a shuffle instruction,
which takes the element at the position specified in indices from data and stores it in
the output. Since u8 is specified here, we can shuffle in bytes. When this is executed on an
Intel processor, the vpermb instruction is applicable, which requires the AVX-512VBMI
(Vector Byte Manipulation Instructions) instruction set. Finally, (8) is used to explicitly
convert the type of an element in a vector. Here, the interpretation is changed from 8 words
of uint64 to 64 words of uint8. For AVX, the main requirement for the arguments to be
passed to the intrinsic function is whether the elements are integers or floating-point num-
bers; in the case of integers, the number of bits is not a concern. However, as mentioned
above, SVE intrinsics have a well-defined data type, so we need to use functions such as
(8) to adapt them to the instructions.

As described above, within the scope of this study, the instructions available in AVX-
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Figure 4.2: Overview of conversion from 64-bit representation to 56-bit representation.
Two of the total eight words are shown. The values of the indices from 56 to 63 are all
zeros, so for example, if 63 is specified, the data after shuffling will be zero.

512 are also available in SVE. In addition, SVE has the potential to speed up large integer
multiplications because it can execute instructions such as MULH that do not exist in AVX-
512.

4.3.2 Conversion of Reduced-Radix Representation

This section describes the implementation of conversion and inverse conversion to the
reduced-radix representation described in Section 4.2.1. In this study, 64-bit words are
converted to 56-bit words, which is a decrease of eight bits and can thus be achieved by
byte-by-byte manipulations.

Figure 4.2 shows an overview of the conversion from a 64-bit representation to a 56-bit
representation using SIMD instructions. Although eight words are processed simultane-
ously (the vector length is 512 bits), this figure shows only two words for simplicity. The
gray data are the original and converted data. The white area is filled with zeros. One
block represents one byte. The green data are the indices required by the TBL instruction
((7) described in Section 4.3.1). First, only seven words should be loaded from the original
data, since the data after conversion to the reduced-radix representation are exactly eight
words (the width of the vector), as described in Section 4.2.1. To achieve this, we utilize
the predicate register. By setting the first seven words of this register to active (i.e., 1), we
read only the active words and set the rest to zero. To create this predicate register data,
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Figure 4.3: Overview of conversion from 56-bit representation to 64-bit representation.
Two of the total eight words are shown.

several enum svpattern variables are provided for SVE programming. For our pur-
poses, we created the predicate register using SV VL7 through the svptrue pat b64

function. The trailing word of the data obtained by this process is zero. However, the data
are used to fill the top byte of each word with zeros after conversion to a reduced-radix rep-
resentation. Next, to allow shuffling on a byte-by-byte basis, we use svreinterpret to
allow the data in the vector to be treated as uint8. We then use the TBL instruction to move
the data to a 56-bit representation of each word and finally store the data. By following
these steps, we can perform vector parallel conversion with SVE. Since AVX-512 also has
mask instructions, this conversion technique is feasible.

We next describe the inverse conversion from a 56-bit representation to a 64-bit repre-
sentation. Figure 4.3 shows an overview of the process. As shown in the figure, the policy
of moving data to the appropriate position in bytes using the TBL instruction remains the
same. The obvious difference is the way the last word on the output side is handled. The
final word should normally be zero because the data become seven words when reverted to
the 64-bit normal representation. However, as in the case of loading during a 56-bit con-
version, the predicate register can be used to store the data as zeros in the corresponding
part. Thus, we can proceed with the conversion in parallel by SVE.
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4.3.3 Multiplication Kernel

Here, we describe our implementation of the multiplication kernel. Since SVE does not
have special instructions such as AVX-512IFMA, and instructions are provided to process
ordinary 64-bit multiplication in parallel, we implemented the Algorithm 5 method. In
this study, we target arbitrary-precision integer multiplication so the design is as flexible as
possible (unlike an implementation for fixed-length multipliers and multiplicands). There-
fore, we implemented a fixed-length multiplication module that matches the vector length.
This module can be called repeatedly to accommodate long operand lengths. Since the
SVE of the A64FX processor is 512 bits wide, we implemented a module that performs an
eight-word multiplication.

First, we describe the SVE implementation of the Algorithm 5-specific processing. The
first and second lines of processing are multiplications by powers of two, so they can be
realized by left shift operations. In this study, we left-shift each word by four bits with
the LSL instruction ((4) in Section 4.3.1) to the Z register containing the multiplicand A

to obtain A′. Since some SVE intrinsic functions allow passing scalar values as operands
and MUL and MULH also allow this, for B we pass bj shifted by four bits to the left. Next,
we discuss the computation of the partial product c. On line 6 of Algorithm 5, cL takes the
lower 56 bits of the 112-bit partial product. We compute this with the MUL instruction with
the usual operands ai and bj . Since the obtained product is 64 bits, the AND instruction of
SVE is used to AND each word with 256− 1 and extract 56 bits. For cH on line 7, we need
the upper 56 bits of the partial product. We perform a MULH calculation with operands
a′i and b′j shifted to the left in advance. In Algorithm 5, although the modular operation
is performed by β, since the MULH instruction automatically truncates the lower 64 bits
of the partial product, we can obtain the upper 56 bits of the product without additional
processing. With the above processing, latency is kept low because the shift and AND
instructions in this algorithm can be processed without using memory.

A straightforward implementation of Algorithm 5 would involve memory access, es-
pecially for the processing on line 8. Since the computational complexity of the Basecase
multiplication is O(n2), it is expected that accessing memory for that amount of time would
result in enormous latency. However, in this implementation, the sizes of the multiplier
and multiplicand passed to the module are known in advance, so we can customize our
implementation. Figure 4.4 shows an overview of the Basecase multiplication kernel im-
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Figure 4.4: Overview of our implementation of Basecase multiplication kernel. In this
figure, both the multiplier and multiplicand are four words.

plemented in this study. The two gray blocks are the input multiplier and multiplicand and
the orange blocks below show the partial products. Although the vector length is shown
here as four words for simplicity, the actual implementation is calculated with eight words
to match the SVE of the A64FX processor. Ci is a partial product of A× bi. The subscripts
L and H indicate a result of multiplication obtained by MUL and MULH, respectively.

Note that the partial products can be grouped except for those of the first and last
multiplications. The partial products in the three groups outlined in blue in the figure
((C0H , C1L), (C1H , C2L), and (C2H , C3L)) are stored in the same location. They can be
simply added using SIMD operations. Therefore, it is convenient to calculate these two
partial products at the same time.

Also note that in the example in this figure, the length of the result of the module does
not always exceed eight words. The first and last partial product vectors (C0L and C3H) can
cover just that eight-word range. Therefore, we accumulate the partial products in these two
vectors until we finish the computation in the module. Specifically, we first load the already
computed partial products in memory, which are in the same range as C0L and C3H , into the
two Z registers. Next, we calculate C0L and C3H and add them to the loaded values. Then,
we calculate C0H and C1L and add them together to obtain a new partial product. After
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the partial product is adjusted to the appropriate position, it is added to C0L and C3H and
accumulated. This procedure is also performed for (C1H , C2L) and (C2H , C3L). Finally,
after accumulating all the products, we store C0L and C3H at their original locations in
memory.

For the implementation of adjusting partial products to the proper position of C0L and
C3H described above, we used a Z register with all elements set to zero and the EXT in-
struction. For example, for the partial product of C0H +C1L, since it is shifted one word to
the left relative to C0L, we execute EXT with the zero register in op1, the partial product
in op2, and 3 in imm3. Note that here the vector length is assumed to be set to 4, so an
immediate value of 3 is correct. The partial product is shifted to a position where it can
be added to the upper three words of C0L. On the other hand, for the accumulation for
C3H , with the partial product in op1, the zero register in op2, and 3 in imm3, we obtain
the remaining accumulated word. Thus, although this implementation requires the execu-
tion of some additional instructions for a word-by-word shift, this process does not access
memory and thus does not incur load/store costs.

The implementation of a fixed-length multiplication module has some advantages. We
know the size of the inputs and outputs, so we can unambiguously unroll the loop pro-
cess. Furthermore, the only memory access that occurs when processing the module is
the loading of the operands and source data and the storing of the final partial product.
This minimizes the latency caused by memory access. Unfortunately, because the amount
of shift specified in the EXT instruction must be an immediate value, our implementation
assumes that an eight-word multiplication is performed (i.e., only for 512-bit-wide SIMD
instructions). Therefore, we cannot take advantage of the vector length flexibility of SVE.
However, if it were possible to specify the shift amount in this instruction by a value in a
register, we would be able to implement a more flexible implementation.

Once all module calls are completed and the final product is obtained, we process the
carries accumulated in the reduced-radix representation. Because of the data dependencies
between adjacent words and the possibility of carry propagation, we perform this process-
ing sequentially with scalar instructions.
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4.4 Evaluation

4.4.1 Evaluation Environment

In this study we ran our program on an A64FX [9] (Arm v8.2-A + SVE) processor. The
operating system was Red Hat Enterprise Linux 8. We compiled our experimental programs
implemented in the C language with fcc version 4.8.0 in Fujitsu Development Studio. We
always specified -Kfast as a compile option. Two binaries were created by specifying
either -Nnoclang (trad mode) or -Nclang (clang mode). The comparison target was
GMP [15] version 6.2.1. This library was also built with fcc. However, since GMP
could not be compiled with the -Nnoclang option for compatibility reasons, we built it
in only clang mode. We performed multiplications 5,000 times using the proposed method
and GMP and averaged their execution times. We set the multiplier and multiplicand to
random numbers (the system time was used as the random seed).

4.4.2 Comparison of Execution Times

In this section we evaluate the run times of our program (trad and clang modes) and GMP
for various operand sizes. We specified the multiplier and multiplicand sizes to be from
1,024 to 14,336 bits.

Figure 4.5 shows a comparison of the execution times for various operand sizes (1,024
to 7,168 bits). The vertical axis is the execution time (µs) and the horizontal axis is the
number of bits of the multiplier and multiplicand. For the proposed method, clang mode
is marginally faster at 1,024 bits and comparable at 2,048 bits and trad mode is faster for
operands larger than 3,072 bits. GMP is clearly faster at 1,024 bits and slightly faster than
the proposed method at 2,048 bits. However, above 3,072 bits, our approach outperforms
GMP. The reason GMP is faster for smaller sizes is because of the overhead of using SVE
instructions. Moreover, to use these instructions, a multiplier and multiplicand must be
converted to the reduced-radix representation, which accounts for a large percentage of the
conversion time.

A comparison of execution times for operand sizes of 8,192 to 14,336 bits (the upper
limit) is shown in Figure 4.6. Our implementations are faster than GMP in all cases in this
range, with trad mode being faster than clang mode. These results show that large integer
multiplication performed using SVE is faster than that performed using GMP, especially
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Figure 4.5: Execution times of proposed method and GMP for 1,024-bit to 7,168-bit
operands.

when the operand size is large. Regarding the percentage of performance improvement
over GMP, the trad mode and clang mode programs showed gains of up to 36% and 31%,
respectively. GMP is implemented with scalar (not SIMD) instructions and is highly opti-
mized for large integer multiplication. Therefore, these results indicate that SVE (SIMD)
instructions accelerate such multiplication.

SVE on Arm processors does not provide as much performance improvement as does
AVX-512IFMA on Intel processors. One reason for this is the difference in instruction la-
tency. The latency of the AVX-512IFMA integer multiply-add instructions (vpmadd52huq
and vpmadd52luq) is 4 cycles on an Ice Lake microarchitecture [27]. On the other hand,
for SVE, the latency is 9 cycles for MUL (MULH) and 4 cycles for ADD on the A64FX ar-
chitecture [47]. Thus, the latency is 3.25 times higher for SVE than for AVX-512IFMA in
the calculation of the partial product at a single location. Another factor is the number of
instructions. AVX-512IFMA performs multiplication and addition in a single instruction,
whereas SVE computes them separately. In addition, we need to perform additional AND
and shift operations to apply Algorithm 5. Therefore, when calculating with SVE, more
instructions are required to be executed compared with those for AVX-512IFMA, which af-
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Figure 4.6: Execution times for proposed method and GMP for 8,192-bit to 14,336-bit
operands.

fects the execution time. If instructions such as AVX-512IFMA were implemented in SVE,
our approach would be faster since it would no longer be necessary to use the Algorithm 5
technique.

The difference between the execution time of our program and that of GMP decreases
with increasing operand size. As the operand size increases, GMP switches to an asymp-
totically faster multiplication algorithm such as the Karatsuba method or the Toom–Cook
method [48]. GMP thus algorithmically speeds up as the operand size increases. Our
implementation, on the other hand, uses the Basecase algorithm consistently and thus the
difference in execution time becomes smaller with increasing operand size. However, since
our program is still superior in the range of operand size in this study, the SVE instruction
set accelerates large integer multiplication.

GMP is faster when the multiplier and multiplicand are small because our implemen-
tation requires processing that is specific to SIMD instructions. When performing large
integer multiplication, we convert the reduced-radix representation before and after com-
puting the multiplication kernel and allocate memory to store the representation values.
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Table 4.1: Comparison of total execution time and kernel execution time for multiplication
for various operand sizes.

# of bits trad (all) trad (kernel) ratio clang (all) clang (kernel) ratio
1024 1.84 0.64 0.35 1.78 0.64 0.36
2048 2.54 1.37 0.54 2.54 1.42 0.56
3072 3.61 2.34 0.65 3.73 2.51 0.67
4096 5.55 4.27 0.77 5.90 4.64 0.79
5120 7.13 5.81 0.82 7.65 6.43 0.84
6144 9.08 7.78 0.86 9.80 8.51 0.87
7168 12.28 11.00 0.90 13.34 12.16 0.91
8192 14.82 13.47 0.91 16.37 14.98 0.92
9216 17.51 16.27 0.93 19.22 18.09 0.94

10240 20.62 19.24 0.93 22.54 21.52 0.95
11264 25.82 24.30 0.94 28.42 27.28 0.96
12288 29.39 27.54 0.94 32.63 31.37 0.96
13312 33.40 31.31 0.94 36.83 35.80 0.97
14336 39.23 37.47 0.96 43.51 42.87 0.99

However, these tasks are unnecessary for scalar processing (such as that used by GMP).
This additional processing increases the execution time. Table 4.1 compares the execution
time for the entire multiplication function and the kernel only. As shown, the kernel ac-
counts for a small percentage of the total execution time when the number of bits is small;
the percentage increases as the operand size increases. Therefore, in situations where the
input and output are known in advance to be in a 56-bit representation, our approach can
outperform GMP even for small operand sizes.

Referring to the results for 1,024 bits in Table 4.1, the execution time for the kernel
alone is the same for trad and clang modes, but the overall processing time is faster for
clang mode. Similarly, for the results for 2,048 bits, the kernel alone is faster for trad
mode, even though the overall execution time is the same for the two modes. Thus, the
program compiled in trad mode is overall the fastest in our performance evaluation, with
the program compiled in clang mode being faster for some operations. Figure 4.7 compares
the processing time for programs compiled in trad mode and with a combination of trad
and clang modes (hybrid program). For the hybrid program, we specified trad mode for the
multiplication kernel and clang mode for everything else based on the results in Table 4.1.
This comparison shows that the hybrid program is faster than that compiled in trad mode,

55



Figure 4.7: Comparison of integer multiplication execution time for programs compiled in
trad mode and with combination of trad and clang modes (hybrid).

which was faster than GMP in Figures 4.5 and 4.6. This result indicates that the reason
why the program compiled in trad mode was faster than that compiled in clang mode in
most cases was because it was more compatible with the multiplication kernel, which was
the dominant factor in the total execution time.

In summary, the SVE instructions enabled faster processing of large integer multipli-
cation than that achieved by GMP. The execution time depended on the compilation mode,
with trad mode found to lead to a shorter total processing time. The program compiled in
clang mode was still faster than GMP.

4.5 Conclusion and Future Works

This study aimed to accelerate large integer multiplication for Arm processors. We used
512-bit-wide SVE instructions of the A64FX processor to speed up multiplication. We used
the reduced-radix representation technique, which reduces the number of bits per word
to accumulate carries, in order to increase vector parallelism. In addition, we proposed
and implemented an algorithm that allows Basecase multiplication to be computed using
a multiplication instruction that is longer than the bit length of a word in the reduced-
radix representation. In the performance evaluation, we compared the running time of the
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implemented program with that of GMP, an arbitrary-precision arithmetic library. Even
though GMP was faster for operands up to 2,048 bits, our SVE implementation was faster
for larger operand sizes for both trad and clang compile modes. The performance gains
were up to 36% in trad mode and up to 31% in clang mode. The above results show that
SVE instructions have the potential to speed up large integer multiplication.

The most basic multiplication algorithm, Basecase multiplication, was implemented in
this study. Faster multiplication algorithms such as the Karatsuba method [39] and the
Toom–Cook [48] method will be implemented and evaluated for a large range of operand
sizes in future studies.

In addition, the SVE2 instruction set has been introduced [49]. One of the instructions
in this set targets large integer arithmetic and includes instructions that perform addition
with a carry (ADCLB and ADCLT). These instructions may solve the carry problem that
arises when SIMD instructions are used. Furthermore, once this problem is solved, we will
be able to perform large integer multiplication without the reduced-radix representation,
thus eliminating the need for conversion processing. We will implement a method com-
bines SVE and SVE2 instructions and compare its performance with the method that uses
only SVE and GMP.

The A64FX processor can execute 512-bit-wide SIMD instructions, whereas SVE in-
structions can handle up to 2,048 bits. A larger bit width should allow faster calculations,
especially when the multiplier and multiplicand sizes are large. Therefore, we will evaluate
the performance of our approach on processors that can execute instructions with larger bit
widths.
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Chapter 5

Large Integer Division Using Intel
AVX-512

Since division, which is one of the most basic arithmetic operations, is much more ex-
pensive than multiplication in terms of computation time, speeding up division processing
can be expected to yield important benefits. Currently, general x86 processors support up
to 128-bit integer division instruction sets that concatenate two 64-bit registers and divide
them by a 64-bit integer for scalar instructions. SIMD instructions are useful tools for fast
large integer division computation because such instructions can process multiple data in
parallel, and thus have the potential to perform various calculations faster than scalar in-
structions. Furthermore, since one way to reduce division costs is to replace the division
operation with a multiplication operation, AVX-512IFMA greatly increases the possibility
of speeding up both the division and multiplication of large integers.

With the above background in mind, this research aimed to accelerate large integer
division using SIMD instructions, primarily AVX-512IFMA. To achieve this, several extant
algorithmic calculations were implemented.

5.1 Related Works

The most basic division algorithm, introduced by Knuth [50], adjusts quotients one-by-
one based on a candidate quotient and the remainder derived from it. One process that is
asymptotically faster than classical division instructions is divide-and-conquer [51], which
are algorithms that split divisors and dividends into several parts, and then recursively di-
vide each part. These algorithms, which are particularly effective when both the divisor
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and dividend are somewhat long, also work well with large integer multiplications that are
asymptotically fast because the quotient obtained by the recursive call is also a large integer,
which means it can more easily incorporate the Karatsuba multiplication algorithm [39].

The first study in which the recursive method was incorporated achieved a speed level
that was more than twice that of classical division when the word length was long. How-
ever, later, Burnikel’s study pointed out that although this method is fast, it does not always
yield the correct quotient [52]. Instead, Burnikel proposed a revised divide-and-conquer
algorithm in which division was performed in a way that made it possible to obtain the cor-
rect quotient. They showed that a division of about 832 bits (250 decimal digits) could be
computed on a SPARC architecture about twice as fast as could be achieved via the basic
algorithm.

For calculating the divisions of very large integers, the Newton–Raphson method, which
calculates an approximation of a reciprocal of a divisor by iteration and then multiplies it by
a dividend to obtain a quotient, is effective. Additionally, by using the Karp and Markstein
trick [53] in this method, the final quotient can be obtained without calculating the recip-
rocal in the last iteration. Another approach is the Barrett reduction process [54], which is
similar to the Newton–Raphson method that mainly uses multiplication instead of division
to obtain a quotient and remainder. More specifically, it calculates the multiplier m such
that dividing by 2k yields the quotient instead of the divisor n. That is,

m

2k =
1
n
.

This method reduces dividing costs because the division is done by a power of two and
allows computers to perform calculations via right-shifting.

Several other studies have applied large integer division to computers as well. For
example, for the most basic algorithm, one proposed method calls for improving the cal-
culation process of dividing three words by two words via a small-scale inverse that makes
it more efficient [55]. In an evaluation in which it was applied to AMD Opteron and In-
tel Core 2 processors, it was found that this method could reduce the number of cycles
by 15% and 40% for the former and latter processors, respectively, in comparison to con-
ventional implementation results. Meanwhile, Harvey [56] focused on the middle product
and attempted to improve the efficiency of the Katasuba multiplication applied in divide-
and-conquer algorithms. More specifically, this process first considers the middle process
in terms of polynomials and then, applies to integers. This study also proposed a method
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of treating carries as special and adding them to the calculation separately. The results
obtained by applying this method and measuring the execution time showed performance
improvements of more than 20% over GMP for calculations involving approximately 300
to 1,000 words.

Later, an improved version based on the above middle-product study, in which the
divisor was truncated to a certain length in order to compute an approximation of a quotient,
was proposed [57]. When this process is applied, the obtained quotient is used to calculate
a middle product using the Karatsuba method, after which corrections for the quotient and
middle product result are performed. The divide-and-conquer process used in that study
is based on a slightly different method of dividing 2n-1 words by n words. The execution
time for 2n-word / n-word with this algorithm on an AMD Opteron was approximately
15% to 20% faster when compared to GMP within n = 966.

Although some studies have evaluated performance levels in a domain-specific context
(e.g., dividing a long integer by a single word [58] [59]), few studies have focused on
using an arbitrary precision integer division to evaluate performance values, and no division
studies that were evaluated using SIMD instructions have been identified, even though
vectorization with SIMD instructions could potentially speed up computer arithmetic more
than scalar instructions.

It should also be noted that many multiplication, addition, and subtraction operations
are also performed inside large integer divisions, as will be discussed in this chapter. More
specifically, since this research aims to speed up large integer division by vectorizing, a
divide-and-conquer algorithm is implemented, in addition to naive division while targeting
large integer sizes up to about 100,000 bits. Theoretically, the middle product method has
the potential for use in fast Karatsuba multiplication, but from the vectorization point of
view, there are many calculations that SIMD instructions cannot handle well and thus can
have non-negligible impacts on performance levels. For example, it requires numerous
branches as well as irregular multiplications and additions, which are not problems for
scalar instructions. However, this middle product method has yet to be applied to GMP.

With the above points in mind, this chapter describes the implementation of a large
integer division function that uses the normal Karatsuba method and vector instructions and
then discusses a comparison of its performance in relation to GMP (scalar instructions).
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5.2 Division Algorithm

In this study, a n+m-word dividend A and a n-word divisor B are represented as follows:

A =
n+m−1∑

i=0

aiβ
i, B =

n−1∑

j=0

bjβ
j,

where ai and bj are one word and β is 264. When considering a division A/B, the B is
always assumed to be normalized. A normalized B means that B satisfies β/2 ≤ bn− < β.
If an input B is not normalized, A and B are multiplied by 2k so that B is normalized. In
other words, A and B are simply shifted to the left until the above condition is satisfied.
Here, it should be noted that when the operands are left-shifted, the remainder R obtained
from the calculation will ultimately be unnormalized (i.e., it will be shifted to the right by
the same amount).

5.2.1 Basecase Division

Algorithm 6 shows the most basic division process [37]. In general terms, it divides
two A words by one B word from the top of A. For each of these divisions, whether or
not the calculated candidate quotient qj is correct is determined. More specifically, it is
determined whether or not the remainder r = A− qB is negative. If it is negative, then the
quotient is too large. In such cases, qj is decremented by one, B is added to r, and these
checks and adjustments are repeated until r becomes a positive value. At first glance, the
cost of this while loop in line 11 appears to be high. However, since B is normalized,
it takes just two loops, at most, to finish [50]. When computing r in an actual calculation,
in-place subtractions for A can be performed.

To implement this algorithm straightforwardly, division instructions would normally
be used. However, since division instructions are generally more expensive than addition,
subtraction, and multiplication instructions, the proposed algorithms [55] provide a way to
avoid them. Algorithm 7 shows how to divide three dividend words by two divisor words
without using a division instruction. The inverse v used in this algorithm is obtained based
on the Newton iteration expressed in the following equation:

xk+1 = xk(2− xkd).

A particular feature of this algorithm is not only that it does not use division instructions,
it avoids the costly full multiplication processes as much as possible and instead uses the
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Algorithm 6 BasecaseDiv [37]

Input: A =
n+m−∑

i=
aiβi, B =

n−∑
j=

bjβj, β/2 ≤ bn− < β

Output: Q = 'A/B(, R = A mod B
1: if A ≥ Bβm then
2: qm ← 1
3: A← A− Bβm

4: else
5: qm ← 0
6: end if
7: for j from m− 1 downto 0 do
8: qj∗ ← '(an+jβ + an+j−)/bn−(
9: qj ← min(qj∗, β − 1)

10: A← A− qjBβj

11: while A < 0 do
12: qj ← qj− 1
13: A← A+Bβj

14: end while
15: end for
16: return Q =

m∑
k=

qkβk, R = A.
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Algorithm 7 Div3by2 [55]
Input: 〈u, u, u〉, 〈d, d〉, v with β/2 ≤ d < β, 〈u, u〉 < 〈d, d〉,

v = '(β − 1)/〈d, d〉( − β
Output: q = '〈u, u, u〉/〈d, d〉(, 〈r, r〉 = 〈u, u, u〉 mod 〈d, d〉

1: 〈q, q〉 ← vu

2: 〈q, q〉 ← 〈q, q〉+ 〈u, u〉
3: r ← (u − qd) mod β
4: 〈t, t〉 ← dq
5: 〈r, r〉 ← (〈r, u〉 − 〈t, t〉 − 〈d, d〉) mod β

6: q ← (q + 1) mod β
7: if r1 ≥ q0 then
8: q ← (q − 1) mod β
9: 〈r, r〉 ← (〈r, r〉+ 〈d, d〉) mod β

10: end if
11: if 〈r1, r0〉 ≥ 〈d1, d0〉 then
12: q ← (q + 1)
13: 〈r, r〉 ← 〈r, r〉 − 〈d, d〉
14: end if
15: return q, 〈r, r〉.

lower half product to proceed with the calculation. In addition, adjustment of the quotient
in Algorithm 6 has been made simpler so a quotient can now be obtained with an error of (at
most) 1 in this context [60]. In this process, the while statement in Algorithm 6 has been
removed and replaced with a maximum of two if statements. The second if statement is
applied when the first if statement fails to predict the quotient. However, according to the
study that proposed the Div3by2 algorithm, the possibility of hitting this if statement is
very low.

This algorithm made it possible to proceed with the division more efficiently than is
possible with the BasecaseDiv. However, it is still somewhat inefficient when considered
from the perspective of vectorization using SIMD instructions because the propagation of
a carry from the least significant word must be taken into consideration when using SIMD
instructions. For example, carries have to be dealt with after each second and sixth line of
Algorithm 7, which computes the candidate quotient q. When using AVX-512IFMA, if
any word in the q vector becomes 53 bits due to a carry, it cannot be calculated correctly
with this instruction (e.g., qd in Line 3 of Algorithm 7). However, the carry process
inhibits efficient computation and should be reduced as much as possible.
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Here, when mathematically considering lines 3 to 5 of this Algorithm 7, since u, u,

d, d and q1 are all positive values,

r = u − qd − nβ (n ≥ 0) (5.1)

〈t, t〉 = dq (5.2)

〈r, r〉 = {((u − qd − nβ)β + u)

− dq − (dβ + d)}− n′β (n′ ≥ 0)

= (u − (q + 1)d)β + u − (q + 1)d − (n+ n′)β

= (uβ + u)− (dβ + d)(q + 1)− (n+ n′)β. (5.3)

The presence of q1 + 1 in equation (5.3) means that the increment in Line 6 of Algorithm
7 can be performed in advance. However, when q1 = β − 1, (q1 + 1) mod β becomes 0,
but q1 + 1 does not become 0 in equation (5.3). Thus, when q1 .= β − 1, the sixth line of
Algorithm 7 can be moved to after the second line. Moreover, moving Line 6 also modifies
the computation of 〈r, r〉 which becomes:

〈r, r〉 ← (〈u, u〉 − 〈d, d〉 × q) mod β.

The only exception to this is when q = β − 1, which is quite unlikely to occur. At this
time, 〈d, d〉 × q will become 0. On the other hand, since 〈d, d〉 in the fifth line of
Algorithm 7 is subtracted independently of the value of q, the case when q = β − 1 must
be considered as a special pattern. In this case,

r = u − (β − 1)d − nβ

= u + d − (n+ d)β

〈t, t〉 = d(β − 1)

〈r, r〉 = {((u + d − (n+ d)β)β + u)

− d(β − 1)− (dβ + d)}− n′β

= (u − d)β + u − (n+ n′ + d)β
. (5.4)

Equation (5.4) means that when q = β − 1 , 〈r, r〉 can be computed with only one sub-
traction. Therefore, the computation of 〈r, r〉 at this time becomes as follows:

r ← (u − d) mod β

r ← u.
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Based on these results, a modified version of the three-word / two-word division algorithm
is proposed that is easier to process with SIMD instructions than Algorithm 7. The modified
algorithm is given in Algorithm 8.

Algorithm 8 OurDiv3by2
Input: 〈u, u, u〉, 〈d, d〉, v with β/2 ≤ d < β, 〈u, u〉 < 〈d, d〉,

v = '(β − 1)/〈d, d〉( − β
Output: q = '〈u, u, u〉/〈d, d〉(, 〈r, r〉 = 〈u, u, u〉 mod 〈d, d〉

1: 〈q, q〉 ← vu

2: 〈q, q〉 ← 〈q, q〉+ 〈u, u〉
3: q ← (q + 1) mod β
4: if q = 0 then
5: r ← (u − d) mod β
6: r ← u

7: else
8: 〈r, r〉 ← (〈u, u〉 − 〈d, d〉 × q) mod β

9: end if
10: if r1 ≥ q0 then
11: q ← (q − 1) mod β
12: 〈r, r〉 ← (〈r, r〉+ 〈d, d〉) mod β

13: end if
14: if 〈r1, r0〉 ≥ 〈d1, d0〉 then
15: q ← (q + 1)
16: 〈r, r〉 ← 〈r, r〉 − 〈d, d〉
17: end if
18: return q, 〈r, r〉.

One of the advantages of this method is that it sometimes makes it possible to calculate
the quotient q with only one carry process. In the conventional method, the carry process
of q must always be done twice (after the second line and before the 15th line of Algorithm
7). For the former, the carries are settled to correctly calculate the multiplication operation,
such as qd, and for the latter to return the final quotient due to the increment in line 6.
The carry process should be avoided as much as possible when using SIMD instructions
because of the data dependency requirement. On the other hand, in the proposed method,
even though carries have to be dealt with for multiplication operations, if the if statements
for adjusting q are false, q can be simply returned and the correct quotient can be obtained
without dealing with carries.
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Table 5.1: Values of OurDiv3by2 when q1 overflows
line variable high low
2 〈q1, q0〉 0xfffffffffffff 0x1867e2b09a9ff
3 q1 0x0
5 r1 0x41c9b2a5ea8b7
6 r0 0x09ceb67587638

Another advantage of this method is that it reduces the number of subtraction opera-
tions. More precisely, it replaces them with additions and fuses them into the multiplica-
tion operations. This not only makes the process simpler, it also makes it possible to utilize
AVX-512IFMA more effectively. In actual processing, calculation of the upper half product
of the dq in 〈d, d〉 × q is omitted. Furthermore, even though it is true that the number
of branches by the if statement increases by one compared to the original Div3by2, the
merits of the proposed method outweigh this disadvantage. That is because AVX-512 has
instructions that simultaneously compare eight words. Therefore, OurDiv3by2, which uses
branches, maintains a higher data parallelism yield than the carry process. Furthermore,
one branch is lighter than sequentially processing eight words of carries, resulting in faster
processing in total. This algorithm, which is the core of the division calculations in this
study, is called repeatedly when dividing large integers. Specifically, lines 8 to 14 of Al-
gorithm 6 are replaced with the proposed algorithm and calculations are then performed.
Improving the efficiency of this calculation contributes directly to speeding up large integer
divisions.

5.2.2 Checking OurDiv3by2

In the previous section, a modified version of the original Div3by2 was proposed. GMP
uses Algorithm 7, and lines 3 through 6 of this algorithm are modified. Therefore, specific
values are used to determine if the calculation results of lines 3 through 9 of the proposed
algorithm are the same as the original. If they match, then they are equivalent to GMP.

To accomplish this, a pattern where q1 overflows (special pattern) is first examined,
where 〈u2, u1, u0〉 = 0xe399b726e66e9796eedbb3d40209ceb67587638 and 〈d1, d0〉 =
0xe399b726e66ea37a53b1552b4b. Tables 5.1 and 5.2 show the values that are assigned to
each line of the algorithms. Since both algorithms are processed the same up to the second
line, the description starts from the second line. Note that, when “high” is assigned, it refers
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Table 5.2: Values of Div3by2 when q1 overflows
line variable high low
2 〈q1, q0〉 0xfffffffffffff 0x1867e2b09a9ff
3 r1 0x5d08a4e223aec
4 〈t1, t0〉 0x37a53b1552b4a 0xc85ac4eaad4b5
5 〈r1, r0〉 0x41c9b2a5ea8b7 0x09ceb67587638
6 q1 0x0

Table 5.3: Values of OurDiv3by2 when q1 does not overflow
line variable high low
2 〈q1, q0〉 0x93514f3f7a3d5 0x895898791788b
3 q1 0x93514f3f7a3d6
8 〈r1, r0〉 0xb2b150afe8638 0x6220c6a7c9aae

Table 5.4: Values of Div3by2 when q1 does not overflow
line variable high low
2 〈q1, q0〉 0x93514f3f7a3d5 0x895898791788b
3 r1 0xba06918e68b68
4 〈t1, t0〉 0x494bacf000d4f 0x368b9a08adf83
5 〈r1, r0〉 0xb2b150afe8638 0x6220c6a7c9aae
6 q1 0x93514f3f7a3d6

to the upper part of the two words. These results show that the final q1, q0, r1, and r0 values
are consistent between the two algorithms.

Next, a case where q1 does not overflow (which is the pattern in most cases) is examined,
where 〈u2, u1, u0〉 = 0x6d5bdbcdd56bd1b291ebdb68c8180acdc339428 and 〈d1, d0〉 =
0xbe0993ee7f7e07f5e6d12c19f7. Tables 5.3 and 5.4 show that, here as well, the final
values are in agreement. The values in these tables are the same as those obtained by the
actual GMP calculation method.

5.2.3 Divide-and-Conquer Division

In the previous section, the most basic division algorithms were discussed. However, when
considering a 2n-word / n-word division, the computational complexity of this algorithm
is O(n2). This means that doubling n roughly quadruples the division execution time.

Divide-and-conquer division [52] algorithms are asymptotically faster than Basecase
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Algorithm 9 RecursiveDiv [52]

Input: A =
n−∑
i=

aiβi, B =
n−∑
j=

bjβj, β/2 ≤ bn− < β

Output: Q = 'A/B(, R = A mod B
1: k ← 'n/2(
2: if k is odd or n ≤ DIV LIMIT then
3: return (Q,R)← BasecaseDiv(A,B)
4: end if
5: A ← A/βk, A ← A mod βk

6: (Q, R′)← Div3by2Long(A, B)
7: A ← R′βk + A

8: (Q, R)← Div3by2Long(A, B)
9: Q← Qβk +Q

10: return (Q,R).

division algorithms. Algorithm 9 shows the divide-and-conquer division algorithm labeled
RecursiveDiv, which is based on extending the word length in line 8 of Algorithm 6, where
two words are divided by one. In other words, it is a method for recursively proceeding
with the division by considering it as 2n-word / n-word. When the number of words in the
divisor becomes less than DIV LIMIT, Basecase division is performed. In the main body
of this algorithm, A is regarded as four parts. Specifically,

A = Aβ
3k + Aβ

2k + Aβ
k + A,

where k = n/4. First, the top three parts are divided by B, after which the remainders
(R and R) obtained from this calculation are combined with the remaining A and di-
vided by B as follows:

Q=
Aβ2k + Aβk + A

B
,

Q=
Rβ2k +Rβk + A

B
.

These calculations are an extension of the calculation of dividing three words by two words.
Algorithm 10 shows the computation of 3n-word / 2n-word. This is also considered by
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Algorithm 10 Div3by2Long [52]

Input: A =
n−∑
i=

aiβi, B =
n−∑
j=

bjβj, β/2 ≤ bn− < β

Output: Q = 'A/B(, R = A mod B
1: A ← A/βn, A ← A mod βn

2: B ← B/βn, B ← B mod βn

3: (Q,R′)← RecursiveDiv(A, B)
4: A ← R′βn + A

5: R← A −QB

6: if R < 0 then
7: Q← Q− 1
8: R← R +B
9: if R < 0 then

10: Q← Q− 1
11: R← R +B
12: end if
13: end if
14: return (Q,R).

splitting A in the same way as RecursiveDiv as follows:

A = Aβ
2n + Aβ

n + A,

B = Bβ
n +B,

Q =
Aβn + A

B
.

For quotient Q, since Algorithm 9 can be used to divide 2n words by n words, Recursive-
Div is again called recursively. The overall computational complexity of the divide-and-
conquer division depends on the internal use of the multiplication operation; specifically,
O(M(n)log(n)), where M(n) stands in for the complexity of an n-word multiplication
algorithm. For a mid-range multiplication operation, the Karatsuba method [39] is used.
When the operand size increases, the k-way Toom–Cook method [48] and the method
based on a Fast Fourier Transform [61] multiplication are used. In this study, the Karat-
suba method is applied to large integer multiplication operations.
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Figure 5.1: Overview of valignq process when passing two zmm registers (a and b) and
an immediate value 6.

5.3 Implementation

5.3.1 AVX-512 Instructions for Implementation

In this section, instructions will be introduced that are particularly important for the imple-
mentation discussed in this research.

The first and most important instruction is AVX-512IFMA, which takes three operands
in total and computes a 104-bit intermediate result by adding a 64-bit integer to a result of
multiplying two 52-bit integers. It is necessary to use two instructions (vpmadd52huq
and vpmadd52luq) to get the complete result of this calculation; the former to get the
upper 52 bits of the 104 bits, and the latter to get the lower 52 bits [19]. As a result, a
numerical expression with a radix of 252 is required to perform calculations using this in-
struction set. However, since multiplying large integers involves numerous multiplication
and addition operations, it is more convenient to calculate them in the reduced-radix repre-
sentation. In addition, since large integer multiplication works well with AVX-512IFMA,
which can perform addition and multiplication operations simultaneously, these instruc-
tions were used in many of the implementations in this research. The second is valignq,
which takes two zmm registers and one immediate value [19]. Figure 5.1 shows an example
process of valignq. This instruction first concatenates the two zmm registers to obtain an
intermediate result of 1,024 bits, and then right-shifts this result by 64n (0 ≤ n ≤ 7) bits.
Finally, it stores the lower 512 bits of the shifted result in a zmm register. In other words,
it can shift the data by word units. A valignq instruction makes it possible to adjust the
position for additions of intermediate results within a large integer multiplication or for the
addition of carries. The third is the comparison instruction vpcmpuq [19]. This instruction
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performs 64-bit unit comparisons in parallel and stores the results in a mask register. If the
result is true, a bit is set to the corresponding position. At the assembly level, the specific
behavior is determined by the fourth immediate value argument. The following eight types
can be specified: equal (EQ), less than (LT), less than or equal (LE), false (FALSE), not
equal (NEQ), greater than or equal (NLT), greater than (NLE), or true (TRUE).

In terms of implementation, the following intrinsic functions were used to implement
the instructions introduced above. m512i is a type that indicates an integer 512-bit zmm
register.

• mm512 madd52hi epu64 ( m512i a, m512i b, m512i c)

• mm512 madd52lo epu64 ( m512i a, m512i b, m512i c)

• mm512 alignr epi64 ( m512i a, m512i b, const int imm8)

• mm512 cmpeq epu64 mask ( m512i a, m512i b)

As for the compare instruction, the above “cmpeq” function shows one of the eight, which
indicates equal. While at the assembly level it needs to be specified by an immediate value,
which can be determined at the C/C++ level by its function name.

5.3.2 Basecase Division

Large integers are represented in 64-bit unsigned long arrays. Since AVX-512IFMA takes
52-bit operands for multiplication, large integers should be converted into the reduced-radix
representation of that length per word before starting a division. Moreover, regardless of
whether the target algorithm is a Basecase or divide-and-conquer division, a divisor B must
be normalized as a prerequisite. Therefore, A and B are adjusted so that B is normalized
in a 52-bit representation. To accomplish this, the number of missing bits in the most
significant word bn−1 is precomputed in order to satisfy the β/2 ≤ bn−1 < β condition
when large integers are converted from a 64-bit to a 52-bit representation. Next, A and B

are entirely shifted to the left by the value obtained from that precomputation, and then
convert to the reduced-radix representation. After the division, the remainder is shifted to
the right by the same amount because it needs to be unnormalized, and then convert both
the quotient and remainder back to the normal 64-bit representation.
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Focusing on the BasecaseDiv algorithm, the inverse of the divisor needs to be calcu-
lated in advance. In this study, since β = 252×8 in Div3by2 is considered, the reciprocal is
calculated for 416 bits, which is represented as a fixed-point number. To obtain this value,
the Newton–Raphson method is used. Since it is known that at least 416 bits are sufficient
for the Div3by2 algorithm, it can be implemented specifically. Furthermore, since a zmm
register is 512 bits wide, the calculation can be performed using only zmm registers, and
associated memory access costs can be circumvented.

The cores of the BasecaseDiv algorithm are the Div3by2 and in-place subtractions to
A in the main loop. The Div3by2 algorithm handles the selection of the candidate quotient
qj and its adjustment. For the qjB computation, since it is known that the qj length is eight
words, a fixed-length module can be implemented and called repeatedly in order to make
its computation more efficient. In this module, eight words are multiplied by eight words.
More specifically, one zmm register is multiplied by another, which makes it easy to store
the results in some registers during the calculation.

It also allows limitation of memory accesses for loading operands and storing the final
result. Furthermore, since it is also known that the qj determined by the Div3by2 is used re-
peatedly in this multiplication operation, passing the zmm register storing qj directly to that
module allows for more memory access reduction. During multiplication and subtraction
operations in A− qjB, since carries and borrows are accumulated due to the reduced-radix
representation, the calculations can be performed with SIMD instructions without worrying
about those processes. When the subtractions are finally completed, the carries are dealt
with for the first time, and the process moves to the next loop.

5.3.3 Our Div3by2

Next, the core OurDiv3by2 algorithm is focused on. The operands ui, di, and v each have
416-bit precision (52bits× 8 words). That is, as a function, it divides 1,248 bits by 832 bits.
In this function, multiplication is done twice (in line 1 and line 8) in Algorithm 8. In both
cases, since the operand lengths are fixed, specialization can be implemented. This allows
the calculation results to be accumulated in zmm registers, as described above. In addi-
tion, since it is a small-scale multiplication, all the calculations were unrolled to make the
process more efficient. The only other arithmetic operations are addition and subtraction,
which can also store results in registers without memory access. Thus, essentially, this
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Figure 5.2: Overview of carry process with AVX-512 using an optimistic approach.

function only accesses memory when loading arguments and storing calculation results.
However, exceptions may occur when calculations are implemented using SIMD instruc-
tions. More specifically, when carries are processed from the least significant word, carry
propagation may occur, thereby resulting in data dependency that makes vectorization dif-
ficult. Fortunately, however, such occurrences are unlikely because they would mean that
their neighboring words already have values of almost 252 − 1. Therefore, an optimistic
approach (see below for details) was adopted and the carry process was implemented with
AVX-512 instructions for OurDiv3by2.

Figure 5.2 shows an overview of the carry process. The blue and orange areas represent
52-bit-wide data and a 12-bit-wide carry, respectively. The white areas in the registers
contain zeros. This approach simultaneously acquires the carries of all eight words stored
in a zmm register and adds them to the neighboring words. The carry acquisition itself is
very simple, using the vpsraq instruction to shift 52 bits to the right. Next, the AND
operation vpandq is passed at 252 − 1 to clear the carries from the original data. To add
the carries to the next word, the valignr instruction shifts them to the left by one word
and then adds them using vpaddq. Finally, the next process checks to see if there are any
carries left. If any remain, it means that the value is greater than 252 − 1. The vpcmpuq
instruction can then be used to detect values greater than 252 − 1 in the zmm register. If
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the output is not zero (even though the probability is very low), scalar instructions are used
to deal with the propagating carries, which are processed sequentially in memory. After
sequential processing, the memory output is loaded back into the zmm register and the next
process is performed. In this way, eight carry words can essentially be calculated in most
cases using five instructions. Moreover, since it can be done entirely in registers, it is faster
than scalar instructions.

The comparisons of the values in lines 10 and 14 of Algorithm 8 can also be completed
in the registers. In this Div3by2 context, a comparison of the two most significant words is
sufficient in most cases. Therefore, it is usually completed by determining whether or not
the most significant bit of the output of the vpcmpuq is set with the NLT flag. However,
since there are some cases where the first words are the same, and the lower words are
different, a comparison instruction is executed with the EQ flag at the same time. The
following procedure is performed to check the most significant bits of the two outputs of
EQ and NLE (for example, eq and gt, respectively) as the target bit to determine if A ≥ B:

1. If eq is 0xff, it means A = B and True is returned.

2. If the target bit of eq is 0, the same position of gt is checked, and returns True if 1,
False if 0.

3. Otherwise, the target bit is changed to one lower and the procedure returns to step 2.

The third step is rarely executed. For the two-word comparison in line 14 of Algorithm 8,
the program first checks if r1 = d1 by comparing the EQ flags. If this is the case, the above
procedure is run for r0 and d0. If not, r1 and d1 are targeted. However, the former pattern
seldom occurs.

5.3.4 Divide-and-Conquer Division

With some optimizations, it is possible to efficiently perform computations with SIMD
instructions in the Basecase division algorithm. However, as the operand size increases,
the execution time increases due to computational costs. Therefore, the divide-and-conquer
algorithm is also implemented for larger sizes. Basically, this algorithm is applied when
the size of B is larger than 320 words (i.e., 52 bits × 320 words = 16,640 bits) and set
this threshold. However, when the length of A is relatively short compared to B (e.g.,
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1.5n-word / n-word), the length of the quotient is correspondingly short, and the Basecase
division process can process it faster within the range covered in this study. Therefore,
in such cases, the Basecase algorithm is used to perform a division even if it exceeds the
threshold.

There are two reasons for setting the threshold (DIV LIMIT in Algorithm 9) at 320.
The first is because it is computationally convenient. The decision to perform recursive
processing depends on the divisor size. The maximum size targeted in this research is
1,024 words in a 64-bit representation, which would be 1,261 words if converted to a 52-
bit representation. This number is close to 1,280 (= 320 × 4), and since 1,280 (or more
specifically, 320) is a multiple of 64, it is convenient for optimization in terms of splitting
and memory alignment.

Second, from the perspective of memory access latency, the Basecase division function
employs in-place arithmetic for efficient computation. This function is also used in divide-
and-conquer, which requires recursive processing to proceed so that the original data is
not overwritten. Therefore, when calculating the Basecase in divide-and-conquer, the tar-
get values are copied to other memory areas in advance before calculation. For example,
taking the first reason into consideration, if DIV LIMIT = 160, the calculation is finally
divided into eight parts when the divisor is 1,024 words in a 64-bit representation. How-
ever, this also increases the number of memory allocation, release, and copy operations,
which increases latency in non-essential operations. For these two reasons, DIV LIMIT =
320 was adopted in this study.

The first job of the divide-and-conquer algorithm is to calculate 2n-word / n-word.
However, a general division is not always applicable in this form. Furthermore, even though
this method works well when the length of A is less than or equal to twice the length of
B, issues can occur that make division difficult, such as when dividing 2n+1 words by n

words. Moreover, even if the lengths of the A and B inputs are 2n and n, respectively, they
may change to the form 2n+1-word / n-word as a result of the left shift of A and B after
normalizing. Therefore, it is necessary to be flexible when dealing with this issue in order to
correctly calculate using divide-and-conquer division. To resolve this, the apparent size of
A and B are extended to be 2n and n using zeros. If the most significant word side is filled
with zeros, since the condition that B is normalized is not satisfied, the least significant
word side is filled. Let the original word lengths of A and B be a and b, respectively,
and the scaling number be s. When a > 2b, since if 2(b+ s) ≥ a+ s, then it becomes
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computable by divide-and-conquer,

2(b+ s) ≥ a+ s,

s ≥ a− 2b.

Here, A and B should be shifted to the left by at least a−2b words. Furthermore, from
the perspective of using SIMD instructions, it is more convenient if each operand length
remains a multiple of the vector length (eight words in the case of AVX-512) even if the
operands are split by recursion. Therefore, taking into consideration the number of recur-
sions, scaling s, and vector length, the final length of A is adjusted, and A and B are then
shifted to the left so that A does not exceed twice the length of B.

For certain dividend lengths, this scaling method can be used alone to perform the
divide-and-conquer process at high speed. However, for example, for 3n-word / n-word,
the above scaling results in a calculation of 4n-word / 2n-word. This means that the divisor
size is doubled, and there are numerous non-essential calculations. In this case, even if
the algorithm is asymptotically fast, the effective performance level will be low. One way
to deal with this issue is to treat the calculation as a large Basecase division and apply
the divide-and-conquer process in each Basecase loop [52]. That is, taking 3n-word / n-
word as an example, 2n words are divided by the n word twice from the top. In this way,
when the A length becomes somewhat long relative to B, it can efficiently be calculated by
calling the divide-and-conquer division multiple times based on the Basecase method.

Next, RecursiveDiv and Div3by2Long are called alternately until the length of the di-
vided block falls below the threshold, and then let them recurse. Although the condition
in the second line of Algorithm 9 that includes the size k is odd, since k is adjusted so
that it is always even by taking into consideration the aforementioned vector length, only
the threshold (320 words as mentioned above) is used in the implementation. Furthermore,
even though lines 7 and 9 of Algorithm 9 and line 4 of Algorithm 10 all appear to be
performing an addition process, each addition operand is, in fact, placed in an adjacent
memory location and is independent of the others. Therefore, the processes are actually
completed by calculating in-place for R′ and Q. Here, it should be noted that the QB

calculation in line 5 of Algorithm 10 is a multiple precision integer multiplication. It is
also known that the multiplier and multiplicand are both the same size and large enough to
permit the application of the divide-and-conquer method. Therefore, the Karatsuba method
is used to compute them, which is asymptotically faster than naive multiplication [37].
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5.3.5 Implementation Summary

Our implementation for large integer division was described in sections 5.3.2 through 5.3.4.
This section provides a summary of the three division methods implemented in this study.

1. Basecase
The core part is OurDiv3by2, which divides 24 words by 16 words in a 52-bit rep-
resentation. Since the size of the OurDiv3by2 computation is known, the design is
such that, to the greatest extent possible, the computation can be done using only
registers.

2. Divide-and-conquer with scaling technique
The usual divide-and-conquer algorithm, which generally performs 2n / n calcula-
tions. If the size of an input dividend is larger than twice the size of a divisor, it is
adjusted to perform an apparent 2n / n calculations by using zeros to expand the size
of both values beforehand.

3. Basecase-based divide-and-conquer
A method in which lines 8-14 of Algorithm 6 are replaced by divide-and-conquer.
This method is used to avoid increasing non-essential computations when the size of
the divisor and the dividend become too large as a result of applying the divide-and-
conquer process with the scaling technique.

5.4 Evaluation

5.4.1 Evaluation Environment

For evaluations, a host machine equipped with an Intel Core i3-8121U (Cannon Lake mi-
croarchitecture) was used, and all experimental programs were implemented in the C lan-
guage and compiled through an Intel oneAPI DPC++ Compiler icx version 2021.2.0.
The evaluation comparison target was the GNU Multiple Precision Arithmetic Library
(GMP) [15] version 6.2.1, which was compiled by the same compiler. A single core and a
single thread were used to run and evaluate the programs and a system time seeded rand
function was used to generate the divisor and dividend. To evaluate performance levels in
terms of execution time, the target functions were executed 5,000 times and obtained the
average times.
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Figure 5.3: Execution times associated with the Basecase and divide-and-conquer methods
when n = 384.

5.4.2 Comparing Algorithms

The algorithms that were implemented in section 5.3 were applied to the division function
of this study. As a basic premise, as mentioned in subsection 5.3.4, the algorithms are
switched between the Basecase and divide-and-conquer processes based on 320 words in
a 52-bit representation for the divisor word length B. Next, since two divide-and-conquer
methods (scaling and Basecase-based) were used, rough estimates of the size at which the
algorithms would be switched are made.

Figures 5.3, 5.4, and 5.5 show execution time comparisons for the three methods when
the input divisor size is set to 384, 512, and 640 words, respectively. The vertical axis is the
execution time (us), and the horizontal axis is the dividend size A (e.g., 2n implies 1,024
words in 64-bit representation in Figure 5.4). Basecase-based DC shows the Basecase
algorithm with lines 8 - 14 in Algorithm 6 replaced with the divide-and-conquer process,
while DC with scaling shows the divide-and-conquer algorithm using the scaling technique.
The reason why the blue line is almost constant from 2.2n to 3n is that the 2n-word / n-
word divide-and-conquer division is performed twice. In other words, 3n-word / n-word is
calculated in all of these ranges.

From these graphs, it can be seen that when the size of A is equal to or less than 2.4n,
the scaling method is fastest in Figures 5.4 and 5.5, which means this method is effective for
some large divisions. However, for larger sizes, the proportion of non-essential calculations
increases as the scale increases further. As a result, it is by far the slowest of the three
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Figure 5.4: Execution times associated with the Basecase and divide-and-conquer methods
when n = 512.

methods in that range. It can also be seen that when n ≥ 512, the other divide-and-conquer
method is fast enough to compensate for it and that this method is the fastest, especially
for sizes 2.6n and above. It should also be noted that when the size of A is around 2.5n,
the execution times for all three methods are almost the same, and while the pure Basecase
method tends to be the fastest, the differences are just a few microseconds. On the other
hand, at n = 384, even though the Basecase method is faster in the middle range, there are
some areas where the divide-and-conquer process is faster. In other words, the larger the
value of n, the more effective the divide-and-conquer method is in speeding up the process.
Based on the above results and for the sake of simplicity, the divide-and-conquer method
was used when the size of A became 2.5 times larger than B. Strictly speaking, although
the Basecase method is faster around this point, from the viewpoint of arbitrary precision
division, the divide-and-conquer process can be calculated more efficiently as the size of B
increases. At the same time, however, these results show that even the Basecase algorithm
is fast enough for certain sizes, especially in Figure 5.3.

5.4.3 GNU MP Comparisons

For the comparisons discussed in this section, GMP’s mpz fdiv qr was used, which is
an arbitrary precision division function that computes both a quotient and remainder. It
should be noted that the implemented division function includes conversion from a 64-bit
to a 52-bit representation, normalization (including the scaling process described above),
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Figure 5.5: Execution times associated with the Basecase and divide-and-conquer methods
when n = 640.

Table 5.5: Execution times for 1.5n-word / n-word division.
n Proposed (Full) Proposed (Kernel) Ratio GMP Ratio

32 1.11 1.05 0.94 0.67 1.65
64 2.04 1.93 0.94 1.99 1.02

128 4.37 3.85 0.88 6.07 0.72
256 13.33 12.13 0.91 18.43 0.72
512 45.60 42.35 0.93 54.84 0.83

1024 164.67 157.40 0.95 158.88 1.03

division kernel, unnormalization, and reversion back to a 64-bit representation; all of which
are included in the measurement. For large integers, an upper limit of 2,560 words (i.e.,
163,840 bits) was set for the length of the dividend A passed to the implemented functions.
Since the implementation targets arbitrary-precision division operations, measurements for
various sizes were conducted. More specifically, 1.5n-word, 2n-word, 2.5n-word, 3n-
word, and 4n-word were divided by n-word, where n is the word length of the divisor
B.

Table 5.5 shows execution time comparisons when the A length is 1.5 times the B

length. Proposed (Full), Proposed (Kernel), and GMP represent the execution time (us) for
the entire division process, kernel processing (i.e., without the AVX-512-specific process of
52-bit and 64-bit conversion), and GMP, respectively. Ratio indicates the ratio to Proposed
(Full). Here, it can be seen that, for smaller sizes, GMP was clearly faster at n = 32 and
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Table 5.6: Execution times for 2n-word / n-word division.
n Proposed (Full) Proposed (Kernel) Ratio GMP Ratio

32 1.36 1.25 0.92 1.26 1.08
64 2.76 2.60 0.94 3.87 0.71

128 7.58 7.04 0.93 12.07 0.63
256 24.15 23.30 0.96 36.17 0.67
512 67.59 64.24 0.95 109.53 0.62

1024 208.55 199.22 0.96 316.47 0.66

Table 5.7: Execution times for 2.5n-word / n-word division.
n Proposed (Full) Proposed (Kernel) Ratio GMP Ratio

32 1.68 1.62 0.97 1.86 0.90
64 3.71 3.47 0.94 5.63 0.66

128 10.77 10.06 0.93 17.68 0.61
256 35.52 33.42 0.94 54.37 0.65
512 131.03 124.81 0.95 163.53 0.80

1024 409.45 395.05 0.96 472.23 0.87

2% faster at n = 64. This is because the calculation scale is too small for the division with
AVX-512 and due to the specific pre- and post-processing required to use the AVX-512
instructions (more specifically, the time for conversion to and from a 52-bit representation),
and the reciprocal number calculation required for Algorithm 8. While GMP also calculates
a 64-bit reciprocal, a 416-bit reciprocal is calculated. Therefore, the proposed calculation
cost is higher than that for GMP. GMP also had a slight advantage over the proposed method
for 1,024 words due to the differences in the algorithms used, primarily because GMP uses
the divide-and-conquer algorithm for its division while Basecase division is used due to the
reasons mentioned above. However, even though the most basic algorithm is used, AVX-
512 instructions allow calculations to be performed at speeds closer to GMP, which uses
an asymptotically faster algorithm. Thus, this result shows that the AVX-512 instructions
can offer a performance improvement over scalar instructions in multiple-length integer
division. In fact, with a performance improvement of up to about 30%, the implementation
is notably faster in the middle range.

Tables 5.6 and 5.7 show execution time comparisons when the A size is set to 2n and
2.5n, respectively. In these comparisons, the divide-and-conquer algorithm is used when
the word lengths n of B are 512 and 1,024. Focusing on n = 32, it can be seen that the
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Table 5.8: Execution times for 3n-word / n-word division.
n Proposed (Full) Proposed (Kernel) Ratio GMP Ratio

32 1.94 1.86 0.96 2.44 0.80
64 4.80 4.45 0.93 7.54 0.64

128 13.80 13.04 0.94 23.68 0.58
256 46.83 44.76 0.96 71.92 0.65
512 132.22 127.77 0.97 217.00 0.61

Table 5.9: Execution times for 4n-word / n-word division.
n Proposed (Full) Proposed (Kernel) Ratio GMP Ratio

32 2.52 2.44 0.97 3.49 0.72
64 6.78 6.12 0.90 11.03 0.61

128 20.04 18.76 0.94 35.24 0.57
256 74.32 69.20 0.93 106.96 0.69
512 232.28 204.48 0.88 324.99 0.71

difference in execution time with GMP has declined compared to the time in Table 5.5.
However, when the size of A is 2.5n, the situation is reversed, and the proposed method
is superior to the library. For larger sizes, when n is equal to or greater than 512, the
implementation is faster than GMP due to the divide-and-conquer algorithm. Overall, the
average performance improvement is about 25% over GMP. Here, a comparison between
the Basecase and divide-and-conquer methods is performed. When the size of A is 1.5n, if
the divide-and-conquer process is applied when n = 1,024, 2n-word / n-word calculations
are necessary due to the nature of the algorithm. Based on this, it can be seen that the
Basecase algorithm is about 40 microseconds faster than n = 1,024 in Table 5.6. Therefore,
as described in subsection 5.3.4, when the length of A is not excessive, the Basecase method
is more efficient.

Finally, the effect of a larger dividend is evaluated. Tables 5.8 and 5.9 show execu-
tion time comparisons when the dividend is three and four times larger than the divisor,
respectively. In both cases, the implemented program is faster than GMP for all sizes.
Throughout, it is found that the percentage of execution time for the 64-bit to 52-bit con-
version, which is a process unique to the AVX-512, is generally about 5 to 10% of the total.
The 1.5n-word / n-word comparison shows that GMP is faster than the proposed approach,
even with AVX-512, because it is still processing the most basic division at n = 1,024.
Later, however, since it can be seen that the implementation is faster in all comparisons at
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n = 512 and 1,024 using divide-and-conquer, the algorithmic performance improvements
are considered to be confirmed.

To summarize, the proposed implementation resulted in average performance improve-
ments of about 35%, which are higher than the case for 2n and 2.5n. Furthermore, since
GMP does not use SIMD instructions to calculate divisions, SIMD instructions are found
to be more advantageous than scalar instructions, especially when the A size is large.

5.5 Conclusion

This paper reports on efforts to speed up large integer division by utilizing AVX-512 SIMD
instructions. To accomplish this, asymptotically fast divide-and-conquer algorithms were
incorporated into the most basic methods. Additionally, since the target is arbitrary pre-
cision divisions, two divide-and-conquer methods (Basecase-based and scaling) were im-
plemented in an effort to meet this target. Furthermore, since this algorithm includes large
integer multiplications, Karatsuba multiplication was applied to speed up the process.

To compute this multiplication more efficiently and thus take full advantage of the
AVX-512IFMA instruction set, a divisor and dividend were converted into a reduced-radix
representation of 52 bits per word. The Basecase division operation was also devised,
together with a procedure that is friendlier to SIMD instructions than existing methods.
This allowed implementation of a division function that combines some optimization tech-
niques. We then evaluated the implemented program on a Cannon Lake microarchitecture
processor and compared the execution times for various sizes with the GNU MP library.

In comparison with GMP, we found that this library was faster when the word length
of the divisor was 32 (i.e., 2,048 bits) and the dividend was shorter than about 4,096 bits.
For such relatively small divisions, GMP is currently superior because the cost of the pro-
cessing that must be performed separately from the division kernel in order to use SIMD
instructions is non-negligible. In a similar context, due to the difference in the algorithm
used, GMP was faster for 1,536-word / 1,024-word (i.e., 98,304 bits divided by 65,536
bits) calculations. However, the difference in execution time was less than 5% even though
GMP uses the divide-and-conquer algorithm while the proposed program uses the Basecase
algorithm. For the other patterns, the implementation was faster, with average performance
improvements of 25% to 35%. These results suggest that SIMD instructions are useful for
speeding up the division of large integers.
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Chapter 6

Conclusion

This thesis provided the results of applying SIMD instructions to large integer multiplica-
tion and division. Here, the results are summarized and future work is discussed.

6.1 Summary

The objective of this thesis was to improve the performance of large integer multiplication
and division by using SIMD instructions in CPUs. To achieve this objective, implementa-
tion methods and algorithms that incorporate the reduced-radix representation and enable
efficient computation using SIMD instructions were proposed. This minimized the effect
of handling carries, which is a challenge in large integer arithmetic.

For large integer multiplication with Intel processors, AVX-512F and AVX-512IFMA
multiplication instructions were implemented. The multiplier and multiplicand were con-
verted into 228-radix and 252-radix representations, respectively. In terms of algorithms,
the most basic multiplication method and the Karatsuba method were applied. Further
optimizations were made by taking into account memory access and stall effects in the im-
plementation. In addition to the multiplication kernel, SIMD instructions were used in the
reduced-radix representation conversion process and AVX-512BW and AVX-512VBMI
were utilized. For the performance evaluation, the implemented program was run on Xeon
Phi Knights Landing and Cannon Lake processors and compared with GMP. The results
showed that both the 32-bit AVX-512F and 52-bit AVX-512IFMA multiplications were
faster than GMP on the target processors for operand sizes of 2,048 bits or more. For the
Knights Landing processor, a performance gain of up to approximately 2.5x over GMP was
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obtained with AVX-512F instructions. For the Cannon Lake processor, a performance gain
of approximately 2.97x was obtained with AVX-512IFMA.

Large integer multiplication was also examined for an Arm processor. It was performed
on an A64FX processor capable of executing 512-bit SVE instructions. Since SVE has no
special restrictions on the number of bits, unlike AVX-512IFMA, each operand was calcu-
lated by converting it to a 256-radix representation. However, the partial product must be
consistently in a 256-radix reduced-radix representation during the calculation of the multi-
plication, which requires additional operations for SVE with 64-bit multiplication instruc-
tions. Therefore, a multiplication algorithm that maintains this consistency was proposed
and applied to the implemented program. Since this method uses basic instructions such
as shift and AND instructions, it could be implemented for architectures other than Arm.
The program was compiled in two modes: one the Fujitsu compiler-based trad mode and
the other the Clang/LLVM-based clang mode. In the performance evaluation, GMP was
slightly faster than the implemented program in 2,048-bit multiplication due to latency and
the increased number of instructions in the proposed algorithm; nevertheless, the differ-
ence was small. However, for larger operand sizes, the SVE implementation was faster.
The performance gains were up to 36% with trad mode compilation and up to 31% with
clang mode compilation.

AVX-512 was also applied to large integer division. AVX-512IFMA was used in this
calculation because some conventional methods have algorithms that calculate the quotient
by multiplying inverses and previous research has shown that AVX-512IFMA is particu-
larly effective in speeding up multiplication. The inverse is calculated only once and the
cost of this calculation is relatively small. Therefore, for an inverse with a larger number of
digits, a larger number of candidate quotient digits can be calculated at once by the module,
making this method a good match for SIMD instructions. A SIMD-instruction-friendly di-
vision algorithm was then proposed. It reduces the processing of the carry compared with
that for an implementation based on the conventional method. In addition, a more optimal
implementation was made for the division calculation. This is because, in the algorithm
used in this study, carry propagation is much less likely to occur, so taking an optimistic
approach to speculative parallel carry processing is not a problem in most cases. If carry
propagation occurs as a result of a calculation using this approach, then sequential process-
ing with scalar instructions is performed. The most basic division method and the divide-
and-conquer method were used to implement this. The design is such that the operand
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size can be properly calculated by adjusting it in advance to match the preconditions in
the divide-and-conquer method. The performance evaluation results show that the basic
algorithm is faster when the dividend size is less than approximately 2.5 times the divisor
size and that the divide-and-conquer method is faster for a large operand size. GMP was
slightly faster for 2n-word / n-word division at 2,048 bits, but the proposed implementation
was faster for larger operand sizes. Furthermore, when the dividend size was large (2.5n,
3n, and 4n), the proposed method was faster even at 2,048 bits. On average, performance
gains of 25% to 35% were obtained.

In summary, large integer multiplication and division computations can be accelerated
by SIMD instructions, which are faster than GMP in all cases for large operand sizes. Thus,
SIMD instructions and the reduced-radix representation speed up computation and thus the
objective of this study has been achieved. SIMD instructions have long been included in
CPUs, allowing bit-wide instructions such as AVX-512 and SVE to be executed. Start-
ing with Intel processors, 512-bit-wide SIMD instructions are becoming more common in
desktop processors. In the near future, these instructions will be available in many general-
purpose computers. This thesis showed that various large integer arithmetic operations can
be processed faster using these computers.

6.2 Future Work

This section gives suggestions for future work.
The most basic method and the Karatsuba method were used in the algorithm for large

integer multiplication. However, there are various multiplication algorithms, such as the
Toom–Cook method [48], that are known to be asymptotically faster for large integer mul-
tiplication [37]. The Toom–Cook method reduces the burden of multiplication processing
by dividing one operand into three or more parts (in the Karatsuba method, one operand is
divided into two parts). Implementing asymptotically faster algorithms with SIMD instruc-
tions should further speed up large integer multiplication, especially for operands larger
than those considered in this thesis. Thus, in the future, these algorithms will be imple-
mented with SIMD instructions and compared with the Karatsuba method. Furthermore,
GMP performs multiplication by increasing the number of divisions to 3-way and 4-way
forms when the size of the multiplier and multiplicand exceeds some threshold. Therefore,
in future research, it will be desirable to implement multi-precision integer multiplication
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with the n-way form of the Toom–Cook method using SIMD instructions and investigate at
which operand sizes the algorithm should be switched. This will produce behavior closer
to that of GMP and will bring us closer to achieving arbitrary-precision arithmetic library
with SIMD instructions.

The SVE2 instruction set has been introduced [49]. One of the instructions in this set
targets large integer arithmetic. For example, this instruction set includes instructions that
perform addition with a carry (ADCLB and ADCLT). These instructions may solve the carry
problem that arises when SIMD instructions are used. Furthermore, once this problem is
solved, it will be possible to perform large integer multiplication without the reduced-
radix representation, thus eliminating the need for conversion processing. However, this
SVE2 instruction is designed to store the carry in an adjacent word instead of the carry
flag for the scalar instructions. This means that the number of words that can actually
be added is halved. Therefore, even if these SVE2 instructions enable the computation of
large integer multiplication without the reduced-radix representation, it does not necessarily
mean that they can be processed faster than the method in this thesis, which uses this
representation. A method that combined SVE and SVE2 instructions will be implemented
and its performance will be compared with that of a method that uses only SVE and GMP.

In addition, the A64FX processor can execute 512-bit-wide SIMD instructions, whereas
SVE instructions can be up to 2,048 bits. A larger bit width should allow for faster cal-
culations, especially when the multiplier and multiplicand sizes are large. Therefore, the
performance of the proposed approach will be evaluated on processors that can execute
instructions with larger bit widths.

There are also several ways to speed up the division process. The first is to improve the
efficiency of the multiplication used inside the division. As described in Section 5.1, even
though methods that use the middle product have been proposed [56] [57], it is difficult
to implement such algorithms efficiently using SIMD instructions. Therefore, a SIMD-
instruction-friendly method, such as the proposed algorithm (Algorithm 8), which is a
multiplication-based division method, should improve efficiency.

Another way to speed up division is to implement multiplication and division processes
that are asymptotically faster, especially when the operand sizes are larger than those con-
sidered in this thesis. Since the computational complexity of division also depends on that
of the multiplication used internally, future work on multiplication should also apply to di-
vision. The Newton–Raphson method is an effective division algorithm for large operands.
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Since this division method is also multiplication-based, it has the potential to be processed
at high speed using SIMD instructions.
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