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Abstract

Communication is one of the basic needs of human beings. To reach ideal goals
for communication, an understanding of the condition of the communication part-
ner, especially the emotional state, is essential. Within speech, as one of the
most common means of communication, human also conveys emotion. Along with
the advancement of technology and the widespread of communication systems,
there is a need for computers to understand the emotions conveyed from speech
and possibly with the combination of other types of information to realize a more
affectively-aware system. This leads to the study of speech emotion recognition
(SER), an essential component of affective computing.

This thesis explores the field of SER and aims to solve the problem related to its
practicality. SER has gained a lot of benefits through improvements, enabling the
SER to be adopted to practical use. One of these improvements is the combination
with other types of information, such as text that can be obtained by transcribing
speech using automatic speech recognition (ASR). Although the result from SER
studies is promising, SER performance degrade due to the various conditions and
limitations in practical use, such as ASR performance degradation due to emotion
and the imbalanced training data to develop SER from situations such as business
conversation.

In Chapter 3, we focus on improving SER performance by mitigating the effects
of incorrect recognition from automatic speech recognition (ASR) to SER. SER
is essential for understanding a speaker’s intention. Recently, some groups have
attempted to improve SER performance using a bidirectional long short-term mem-
ory (BLSTM) to extract features from speech sequences and a self-attention mech-
anism to focus on the important parts of the speech sequences. SER also benefits
from combining the information in speech with text, which can be accomplished
automatically using an ASR, further improving its performance. However, ASR
performance deteriorates in the presence of emotion in speech. Although there
is a method to improve ASR performance in the presence of emotional speech,
it requires the fine-tuning of ASR, which has a high computational cost and leads
to the loss of cues important for determining the presence of emotion in speech



segments, which can be helpful in SER. We propose a BLSTM-and-self-attention-
based SER method using self-attention weight correction (SAWC) with confidence
measures to solve these problems. This method is applied to acoustic and text
feature extractors in SER to adjust the importance weights of speech segments
and words with a high possibility of ASR error. Our proposed SAWC reduces the
importance of words with speech recognition errors in the text feature while em-
phasizing the importance of speech segments containing these words in acous-
tic features. Our experimental results on the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) dataset reveal that our proposed method outperforms other
state-of-the-art methods.

In Chapter 4, we focus on the problem regarding the training of SER due to the
conditions and availability of data in practical use. Although classification-based
SER methods have achieved high overall performance, these methods tend to
have lower performance for neutral speeches, which account for a large proportion
in most practical situations. To solve the problem and improve the SER perfor-
mance, we propose a neutral speech detector (NSD) based on the anomaly de-
tection approach, which uses an autoencoder, the intermediate layer output of a
pretrained SER classifier, and only neutral data for training. The intermediate layer
output of a pretrained SER classifier enables the reconstruction of both acous-
tic and text features, which are optimized for SER tasks. We then propose the
combination of the SER classifier and the NSD used as a screening mechanism
for correcting the class probability of the incorrectly recognized neutral speeches.
Results of our experiment using the IEMOCAP dataset indicate that the NSD can
reconstruct both the acoustic and textual features, achieving a satisfactory perfor-
mance for use as a reliable screening method. Furthermore, we evaluated the
performance of our proposed screening mechanism, and our experiments show
significant improvement in the F-score of the neutral class, and in the class-average
weighted accuracy compared with state-of-the-art SER classifiers.

In Chapter 5, we focus on the problem of the imbalanced training data for SER
in practical situations. Most of the existing SER methods are the classification-
based method, which has some limitations, including maintaining the balance of
the training data and the difficulty in handling additional emotional classes; it would



be more difficult to add new emotion classes or to retrain the classifier from scratch.
This chapter proposes a novel training strategy for an imbalanced dataset based
on reconstruction error. We propose an SER method based on the reconstruction
of acoustic and text features in latent space. The reconstructor for different emo-
tion classes, including the neutral class, is used. The proposed method selects
the emotion class with the lowest normalized reconstruction error as the SER re-
sult. Unlike the classifier approach, one reconstructor is dedicated to each emotion
class and trained using only the data of the target emotion class. Therefore, the
reconstructor can be trained without being affected by imbalanced training data
and also facilitates the application of data augmentation to only a specific emotion
class. Our experimental result obtained using the IEMOCAP dataset showed that
the proposed method improved the class-average weighted accuracy compared
with the state-of-the-art SER methods.
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Chapter 1

Introduction

1.1 Background

Communication is one of the essential needs to fulfill for human beings as so-
cial creatures. With communication, people can share different kinds of informa-
tion within a specific context to provide mutual understanding. However, problems
such as miscommunications and unpleasant situations become commonplace and
obstacles to reaching this ideal condition. One of the main reasons is the lack
of understanding of the communication partner’s state of mind or emotion. Un-
derstanding the emotion can help people to be more aware of the condition of
their communication partner and respond more appropriately. This would lead to
ideal communication, which is smooth and natural, with all information conveyed
as intended. This motivation to understand human emotions leads to the study of
emotion recognition.

The emerging technology in recent years has provided support to realize emo-
tion recognition and put it to practical use. Emotion recognition has been adopted
into many real-life applications, such as call-center conversation analysis [1] and
virtual assistants [2], and provides support for daily life communications. These
applications use different kinds of information, such as gestures [3], facial expres-
sions [4], biosignals such as EEG [5] and ECG [6], texts [7], and speech [8], which
might influence the conveyed emotions. Among all this information, speech is one

of the most prominent and readily available as it is the most common means of

1



2 CHAPTER 1 INTRODUCTION

communication. Speech is rich in information, containing the speech content and
the way it is conveyed, and therefore is often used as a cue for emotions. This
leads to the task of classifying emotions through speeches or known as speech
emotion recognition (SER).

1.2 SER and its problems

SER has been conducted since the early days when speech inputs with their fea-
tures were extracted and classified into emotional classes. SER was done by
using hand-crafted input features, and simple statistics or simple machine learning
methods, such as a Gaussian mixture model (GMM) and a support vector machine
(SVM) [9,10]. Recently, deep neural network (DNN)-based approaches have been
intensively applied to emotion recognition, resulting in significantly higher perfor-
mance [11-13]. One possible reason for this higher performance is that DNN can
automatically learn the representations of emotions from the input data without the
need to hand-craft the input features. To further improve the performance of SER,
some studies combine different types of information. One study included feature
fusion and ensemble learning on both speech and text from transcriptions [14,15],
including visual information and motion capture [16]. However, in many practi-
cal situations, such as in a call center conversation analysis system, the only us-
able information would be limited to speech. The emergence of automatic speech
recognition (ASR) systems has enabled us to automatically obtain text information
without requiring manual transcriptions. Combining this with acoustic information
has improved SER performance. One main problem is that ASR is not robust to
emotions. Some studies have proposed to solve this problem by fine-tuning ASR
to be robust to emotions [17] and combining several different ASR and text encod-
ing for SER [18]. These approaches are based on the idea presented in some
studies [18, 19] that the lower word error rate in ASR correlates with higher SER
performance.

To date, the use of SER in the world is still marginal due to the various chal-
lenges to realizing a high-performing SER. One of the challenges is that SER has
yet to achieve satisfactory performance. Although there are many methods pro-
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posed to improve SER performance, such as by combining other types of informa-
tion, incorporating ASR results, and lowering the error rates of ASR in recognizing
emotional speeches, these methods require high computational resources. On
the other hand, performance improvement is still not enough. For practical use,
it is important to have an SER with sufficient performance that can be applied to
situations with low computational resources.

Another challenge is the different specifications required to apply SER to differ-
ent conditions in practical settings. For instance, SER designated to handle casual
conversations in noisy places would require SER to be robust to noises, whereas
SER designated to handle business conversations would require SER to handle
more neutral speeches and be more sensitive in detecting emotions, as emotional
speeches are uncommon. Therefore it is important to develop an SER method that
specifically caters to certain practical condition settings.

The other challenge is that most conventional emotion recognition methods
are classification-based methods, in which emotions are decided from the high-
est probability of a set of designated emotion classes. These methods mostly
assume the balanced data population for each class. However, in practical condi-
tions, the data population is highly imbalanced for each class, and the performance
of some of the classes might be unequal. Therefore, classification-based methods
might not be suitable to apply in practical situations. To make SER more applica-
ble in practical situations, some methods, such as data augmentation, have been
proposed [20]. However, the data augmentation may worsen the data imbalance
problem if applied to the class containing most of the data population. Moreover,
to date, there have not been many studies that address the data imbalance prob-
lem in emotion recognition, which is important to realize a high-performing SER in
practical applications.

1.3 Research objectives

The main objective of this thesis is to investigate the problems of realizing SER
for practical uses, ranging from improving the recognition performance and adapt-
ing SER to different specifications for practical use. First, we introduce the SER
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method to solve the performance degradation of ASR in emotional speeches. Sec-
ond, we investigate the approach to solving SER problems in business conditions,
addressing the low recognition performance of neutral speeches, which dominates
business conversations. Finally, we explore a new training strategy for classifi-
cation tasks that would solve real-life problems of data imbalance for emotional
speeches.

1.4 Overview of thesis

This thesis consists of three parts. Chapter 2 provides a review of emotion recog-
nition and speech emotion recognition along with the base method used in this
study, as well as the evaluation metrics in this study. Chapter 3 introduces the
speech emotion recognition method aiming to improve performance by solving the
speech recognition error problem in emotional speeches. Chapter 4 introduces
the speech emotion recognition method based on anomaly detection to solve the
practicality problem in a business setting. Chapter 5 introduces a new approach
to training classification-based methods and their particular application to speech
emotion recognition. Finally, Chapter 6 concludes the entire contents and contri-
butions in this dissertation.



Chapter 2

Emotion recognition

In this chapter, we will provide some preliminaries regarding emotion recognition
and its components, especially in speech emotion recognition. We explain some of
the most recent speech emotion recognition methods. We also provide some basic
knowledge to understand our proposed approach throughout the thesis further.

Finally, we review the evaluation criteria for speech emotion recognition.

2.1 Emotion recognition

Emotion recognition is an essential part of affective computing, in which machines
attempt to identify the emotion in given inputs. Emotion recognition is recognizing
the underlying emotions of the person conveying them. In practical use, emotion
recognition is mainly formulated into the classifier-based task. Classifier-based
emotion recognition involves identifying emotions based on discrete classes, such
as happy and angry, represented using the emotion class probability. The method
receives input from various types of information, such as speech, text, and images,
extracts the feature, and classifies the emotion. Then, the method extracts the
necessary features using a feature extractor and classifies the emotions with an

emotion classifier. The flow of emotion recognition is illustrated in Figure 2.1.

5



6 CHAPTER 2 EMOTION RECOGNITION

|| Feature - Emot.-pn X
s extractor classifier e
Input:
Various types Emotion recognizer Output:
of information emotion class

Figure 2.1: Classifier-based emotion recognition

2.2 Emotion modelling

One of the most important aspects of conducting effective emotion recognition is
to choose the emotion model to adopt. As explained in one study [21], there are
at least three models for emotions: categorical emotion, dimensional emotion, and

appraisal emotion.

2.2.1 Categorical emotion

Categorical emotion, or known as a basic emotion, is emotion based on the avail-
able discrete labels. Categorical emotions seek to group emotions based on ef-
fective families. While experts have differing views, most emotion scientists agree
that there are at least five core emotions. One proposal by Ekman [22] suggests
six emotions: anger, fear, enjoyment, sadness, disgust, and surprise. On the other
hand, Plutchik [23] further categorized the emotion into eight bipolar emotions:
joy, sadness, trust, disgust, fear, anger, anticipation, and surprise. The emotion
model proposed by Plutchik is illustrated in Figure 2.2. Another type is proposed
by Cowen-Keltner [24]. Here, a total of 27 emotions were elicited from reviewing
video samples. The study also reported that categorical labels such as amusement
are more than capable of representing subjective experiences.

In emotion recognition, there are cases where it is not possible to classify the
emotion into one of the defined emotion classes. One necessary step to alleviate
this problem is to incorporate the neutral class as conducted throughout the thesis.
The neutral class represents the situation where there is no emotion expressed, or
the emotion is not expressed enough to be considered clearly as one of the emo-
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=" disapproval

remorse

Figure 2.2: Plutchik wheel of emotions

tion classes. The neutral class does not include situations where there is a clear
emotion that is other than the defined class, or there are multiple emotions from the
defined classes. In such a case, it would be possible to generate the probabilities
of the defined emotions and either present the multiple emotion classes with the
highest probabilities or reject the data when the probabilities of being in a defined
emotion are too low, which can be beneficial for practical situations.

In practical use, categorical emotion is the most commonly applied emotion
model for emotion recognition. One of the main reasons is that although there
are slight differences between the discrete labels in each model, several common
emotions are found in almost all categorical emotion theories, such as happy, sad,
and angry. These are the emotions that people find familiar; therefore, the results
from using this model can be easily represented by many people.
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Surprise
/ ACTIVATION
tense alert
Fear
/
nervous :
Anger excited
/ stressed elated
Disgust
upset happy Happiness
UNPLEASANT PLEASANT
sad contented
Sadness
depressed serene
lethargic relaxed

fatigued

DEACTIVATION

Figure 2.3: Dimensional emotion model

2.2.2 Dimensional emotion

Aside from categorical emotion, another way to model the emotion is through di-
mensional emotion. The dimensional emotion model views emotion as continuous
values in two or three different attributes. The dimensional emotion was first de-
veloped by Russell [25], where emotion is modeled on a circumplex model based
on subjective feelings. In the study, 28 emotion words are grouped based on per-
ceived similarity, and the analysis in the study revealed two bipolar dimensions
of valence and arousal. Valence measures how positive or negative an emotion
is, while arousal measures the activation level of the emotion, namely sleepiness
(low arousal) and awakedness (high arousal). The dimensional emotional model
by Russell is illustrated in Figure 2.3. Another study by Fontaine [26] argues that
emotion is not two but four dimensions (valence, arousal, dominance, and pre-
dictability).

As the dimensional emotion model measures emotion in terms of continuous
values in two or more dimensions, it does not require any specific categorical la-
bels and therefore eliminates the difference between emotional label names such
as those used in categorical emotion. However, several notable issues exist in

adopting the dimensional emotional model to practical use. First, the dimensional
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emotion model is less familiar and therefore needs to be represented back to cate-
gorical emotion. Second, the level of personal differences in the dimensional emo-
tion model is higher than that of the categorical speech, which provides more chal-
lenges in determining the correct labels. Finally, the analysis from Cowen-Keltner
revealed that dimensional attributes are less capable of capturing the subjective
emotion evaluation used for practical situations than categorical labels. Therefore
this approach is not used in this study.

2.2.3 Appraisal emotion

Other than categorical and dimensional emotion, there is appraisal emotion, an-
other type of emotion model. Appraisal emotion is the hybrid of categorical and
dimensional emotion, having the basic emotion labels and their intensity as rep-
resented in the dimensional emotion. One of example of appraisal emotion is the
Emotion Geneva Wheel [27]. Since appraisal emotion is uncommon among re-
searchers, not many datasets employ appraisal emotion as the label, and therefore
not used in this study.

2.3 Speech emotion recognition (SER)

Speech is one of the most common methods of communication and one of the
most readily available types of information. Speech contains linguistic information
and other types of information, especially related to how it is conveyed. Due to
these reasons, speech is mainly used to recognize emotions, leading to the study
of SER. SER is the task of identifying the emotion expressed by the speaker in a
given utterance. Like emotion recognition methods, SER comprises input feature
extraction and classification steps.

The first known research paper on SER has existed since 1996 [28], with the
idea possibly existing much earlier. In the first study on SER, statistical pattern
recognition methods and the use of prosodic features were explored to classify
emotional content in speeches. The method proposed in the study achieved per-
formance comparable to humans using a limited amount of speech data.
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The progress of studies in SER is further contributed by the increase in the
datasets published. During the early 2000s, many datasets are published for emo-
tion recognition, including speech datasets. Some notable datasets for SER in-
clude EmoDB [29], IEMOCAP [30], RAVDESS [31], and MSP-Podcast [32]. These
datasets are commonly used in SER research and hasten the progress of studies
in SER.

The advancement of SER studies, together with the increasing need for SER
and the increasingly available amount of data available in real life, led to practical
implementation in industries. SER has been implemented in various applications
such as virtual assistants and call-center conversation analysis. The study of SER
implemented to practical use was researched in this pilot study [33], where it was
applied for call-center application. This early study showed tremendous potential
for SER to be applied practically. Nowadays, the application of SER is widespread
in the industry, while new methods on tackling real-life situations with SER are
continuously being studied.

The availability of many data types in recent years has opened up the possi-
bility of combining several different types of data to improve the performance of
certain tasks, known as multimodal information processing. Emotion recognition,
including SER, benefits from multimodal information processing. Multimodal infor-
mation processing is inspired by the decision-making process in humans, where
humans recognize situations based on different sensories. For instance, a person
is convinced that someone is sad by looking into the tears, the speech uttered by
the sad person, the body gestures, and many more. This is adapted to machine
learning, which also benefits from multimodal information processing as machine
learning improves with many inputs processed.

In the case of SER, which processes primarily from speech, it benefits from
combining the information in speech: acoustic features and textual content. One
method to obtain the textual content is through manual transcriptions. Transcrip-
tions provide accurate speech content and are reliable for SER tasks. Studies
showed that the methods using acoustic features and transcriptions are effective
in recognizing emotions [14, 15]. However, obtaining transcriptions is impractical

because it requires numerous human annotators and transcriptions are not avail-
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able in real-time.

With the availability of ASR, it is possible to obtain speech content in the form
of text by inputting speech to ASR. Therefore, it is possible to apply multimodal
information processing in SER using speech and text, with speech as the main
input source. One of the main issues that arise among the researchers in the SER
community is whether multimodal information processing is necessary. However,
recent studies [34] confirm the effectiveness of SER methods that applies multi-
modal information processing in comparison to the ones utilizing only speech or
text. It is shown that the methods with the text feature from ASR results, in addition
to other input features, still provide better performance for SER than those without,
indicating that text information is still essential to improve SER performance.

Another issue is about the best way to apply multimodal information processing
to SER, in other words, how to fuse speech and text in SER. Speech and text
each represent different types of information and their importance. Due to this
reason, speech and text are separated early in the processing and need to be
fused back at a later processing, depending on which information to be considered
more important. One of the known earliest works [35] combined speech and text
information at the decision level. Several different approaches can accomplish the
fusion of speech and text in SER.

2.3.1 Features

Input features are an essential part of developing many of the recent systems,
including the emotion recognition system. In SER, the system mainly receives
speech as the primary input and text as additional information to further enhance
the performance of SER. However, speech and text are difficult to process without
any further processing, and it would be better to have the system process only
the important information in a way that is easily understandable to the system.
An effective input feature extraction will yield high performance in SER and other
systems. In this thesis, we divide the features into acoustic and textual features,
representing the features from speech and text, respectively.
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Acoustic features

Acoustic features contain much information about emotions and are correlated with
emotion, with studies dating back to earlier years. In SER, there are two big di-
visions of acoustic features: hand-crafted features and deep learning-based fea-
tures. Hand-crafted features is further divided into two categories, namely low-level
descriptors (LLD) and high-level statistical features (HSF). LLD is mainly extracted
per frame, while HSF is statistical features computed from LLDs and captures the
changes among the frames.

LLD and HSF are further divided into several groups, namely signal energy,
fundamental frequency (FO0), voice quality, cepstral, time signal, and spectral, ac-
cording to one study [36]. These LLDs, especially FO, intensity, and voice quality,
are known to correlate strongly with emotion, as shown in this study [37].

LLD and HSF are most commonly used in SER and many speech-related tasks,
such as ASR. In ASR, MFCC is widely used as it contains much information, such
as the phoneme representation and the change of intonation. The use of MFCC
has been proven in some studies to be better than other spectrogram-based fea-
tures as MFCC provides the most informative acoustic features compared to other
acoustic features.

The advancement of deep learning-based methods has made deep learning-
based features available, which are obtained from extracting the acoustic repre-
sentation in other deep learning-based tasks. Deep learning-based features are
commonly used in recent years and have gained the attention of researchers in
the field of SER.

Textual features

Textual features, known as text features, lexical features, linguistic features, and
semantic features, represent important information from text inputs. As machines
process inputs in numerical representation, text by itself is difficult to be processed
and therefore needs to be converted to numerical values. In tasks that require
text processing, including SER, there has been many ways presented to extract
textual features. One of the simplest way, as presented in the early works [38], is
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to spot the keywords or phrases correlated to certain emotions. For example, the
word “disappointed” can be represented as [(2, 0.2), (3, 0.6)] where 2 represents
“angry” emotion and 3 represents “sadness” emotion. The values 0.2 and 0.6
represent the intensity of emotions.

The representation of textual features gradually becomes more systematic, as
shown by TF-IDF. TF is defined as the frequency of a word in a particular docu-
ment/utterance, whereas IDF is defined as a logarithm of the total number of doc-
uments ratio to the total number containing that word. TF-IDF is the multiplication
of TF with IDF.

Another advancement is representing the text in a numerical feature vector,
such as bag of words (BOW). First, a fixed integer is assigned to each word oc-
curring in any document, i.e., building a dictionary from a corpus by assigning a
word to integer indices. Second, count the number of occurrences of each word
and store it as the value of feature j where j is the index of word w in the dic-
tionary. Recently, BoW features have been expanded to their acoustic and visual
counterparts (BoAW and BoVW).

Recent studies with deep learning-based methods have led to the study of deep
learning-based word embeddings, such as word2vec, GloVe, BERT, and FastText.
These models are trained from DNN models using a large linguistic corpus to gen-
erate word vectors and sometimes include relative positional embeddings or con-

textual information.

2.3.2 Classifier-based methods

Over the years, classifiers for SER has advanced from simple statistical-based
method to support vector machine (SVM), and multilayer perception (MLP). Along
with the rise of deep neural networks and the huge data availability in recent years,
methods such as convolutional neural network (CNN), long short-term memory
(LSTM), and attention mechanism have brought the benchmark performance of
SER further. Here, we provide some preliminaries about the commonly-used
classifier-based methods.
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Support Vector Machine (SVM)

SVM is based on statistical learning theory and regression analysis. SVM [39]
is a machine learning for classification problems, which conceptually implements
these ideas: Find a hyperplane in a multidimensional space that separates the
data points to their potential classes. SVM itself is applicable for many applica-
tions, such as EEG signal classification, cancer identification, seizure prediction,
face recognition, speech disorder, and bioinformatics. In the early days, when
the number of available data was still small, SVM was one of the best-performing
methods for classification. Some of the early works [10,37] show promising results
using SVM for SER.

Multilayer perception (MLP)

MLP is also known as the feedforward neural network. MLP is based on connec-
tionist learning proposed in the early years [40]. MLP projects the input data into
linearly separable space using non-linear transformation. MLP refers to the neu-
ral network containing several hidden layers, which is a layer between input and
output containing many units or perceptrons. The increasing number of hidden
layers in MLP creates deeper layers, which can be referred to as a simple deep
neural network (DNN). One of the advantages of MLP is the ability to extract fea-
tures from more complex, less-structured data. MLP can be formulated in Egs. 2.1
Here, = denotes the input feature, y denotes the output, W denotes the hidden
layer containing weights, and b denotes the bias.

y=g(WTz +by), (2.1)

MLP has been utilized for SER, and is proven to be effective against conven-
tional statistical-based methods. Some of the studies [11,41-43] reported the
effectiveness of MLP in SER compared to the SVM-based methods. In another
study [44], MLP is used to evaluate the effect of context information on categori-
cal SER tasks and is shown to outperform most of the results using the baseline
majority-class method.
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Figure 2.4: RNN architecture

CNN

Convolutional neural network, or CNN, is a type of neural network containing con-
volutional layers. In a convolutional layer, a convolution operation is conducted,
in which the overlap of two functions are measured when one function assumed
to be the input is shifted by another function assumed to be the kernel. The out-
put of a convolution layer is a feature map. As CNN is deeply inspired by the
mechanism of the animal visual cortex in processing the visual field, CNN is often
applied to image-like data. However, processing time-series data using CNN is
still possible by using 1-dimension CNN. In processing speech data, CNN usually
receives spectrogram-based features as the input. In processing textual features,
CNN works by computing n-gram vectors and grouping the vector afterward.

CNN has been widely used in SER and has shown promising results [45, 46]
through efficient learning of salient features and spectrogram images. Using CNN
for sequential data such as speech and language processing, has some draw-
backs. One of the possible drawbacks is that CNN does not keep time-variant
information, which can be alleviated by applying LSTM. Many studies in SER have
taken advantage of combining CNN and LSTM, resulting in the improved bench-
marks [12,13,47].

LSTM

Bidirectional Long Short-term Memory is a Recurrent Neural Network (RNN) vari-
ant. RNN is a neural network model that conducts sequential data processing,
such as time-series data. RNN consists of a hidden layer that is accessed repeat-
edly, in which output from the previous sequence of the hidden layer is used as
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Figure 2.5: LSTM unit

input for the current sequence while maintaining the internal state. The architec-
ture of RNN is shown in Figure 2.4. In the figure, x; , h;, and y; represents the
input sequence, hidden layer vector, and output vector from LSTM respectively.

RNN itself has several problems, including a vanishing gradient, which causes
the inability to handle information on long-term dependencies. Although the infor-
mation are still retained over the short term, they are lost over the long term, losing
relevance to the current state. As a countermeasure, Long Short-term Memory
(LSTM), a variant of RNN, is introduced. The improvement compared to RNN is
that LSTM adds three gates: forget gate f;, input gate i;, and output gate o, with a
value between 0 to 1, where 0 indicating closed gate and 1 indicating open gate.
These three gates enable information control, allowing the flow of long-term and
short-term memory information. The single LSTM unit is shown in Figure 2.5.
LSTM can be represented by

fi=0(Wy-[hi1,x] +by), (2.2)

i, =0 (W, [hy1,x] +by), (2.3)
C, = tanh (W¢ - [hy_1,%] + bc), (2.4)
C=f0C_1+1,0 ét, (2.5)

oy =0 (Wo . [ht—hxt] + bo) ] (2.6)
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ht = O * tanh (Ct) (27)

In the equations, f;, i;, and o, represents value of forget gate, input gate and output
gate at time ¢ respectively. C; and c; represents state value and new candidate
state value. o and © represents local sigmoid function and point-wise multiplica-
tion.

BLSTM is a model that consists of two LSTMs, in which one LSTM runs to
process the time sequence data in forward direction and the other runs the time
sequence data in backward direction. Therefore, BLSTM can retain the information
relevant to the previous state, performing better than LSTM. BLSTM is applied to
utterance characteristics classification in this study. BLSTM architecture is shown
on Figure 2.6. In this figure, g represents the forward LSTM states, h represents
the backward LSTM states, and ¢ represents the time. The time sequence input
x; to x; is fed to g and h. The output y; to y; is obtained by concatenating the
resulting states from g and h.

Attention mechanism

BLSTM-based networks have one demerit: information loss after going through
long sequences. This issue causes some of the information in the earlier se-
quences to be considered unimportant. To solve this issue, recent studies focused
on the important parts and used the weights to calculate another sequence. The
attention mechanism [48], which is a neural-network-based mechanism to capture
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the contextual information from a sequence, has been introduced. This mecha-
nism is based on the biological organism’s ability to extract cues and identify which
part to focus on next to obtain the key information.

Attention mechanism can be represented by

u; = tanh(We; + b), (2.8)

exp(ulu;)

T

o = 7
Zizl exp(ui ui)

and (2.9)

t
c= Zaiei. (2.10)
i=1

The hidden state from the previous layer output e; is fed to the attention mecha-
nism to determine the attention weight «; of each frame, which is determined by
Egs. 2.8 and 2.9. The output of the attention mechanism is the weighted sum of
e;, represented by vector c, as shown in Eq. 2.10.

In particular, the self-attention mechanism [49] is widely used in classification
tasks. The self-attention mechanism focuses on the important parts and applies
weights in the same sequence. Together with LSTM-based networks, the use of
the self-attention mechanism has improved the performance of many classification
tasks, including SER [50-53].
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2.3.3 Anomaly detection

Anomaly detection is the identification of data outside the distribution of the ma-
jority of the data. Anomaly detection is suitable for the condition where many data
are of the same class, and many others are outside the class. The method of
anomaly detection usually involves training the detector with normal data to learn
their representation and reduce their error. Therefore, when the data that is out
of the distribution, known as anomalous data, is inputted, it has a high error rate
and can be considered an anomaly. The flow of anomaly detection is illustrated in
Figure 2.7.

In general, there are many techniques that can be employed for anomaly de-
tection, ranging from statistical-based methods, one-class SVM, to reconstruction
methods. Due to the recent advancement in DNN-based methods, particularly au-
toencoder, many of the anomaly detection techniques have been able to handle
larger dimensions of data.

Anomaly detection is a fundamental component in many applications, where
spotting anomalies is vital such as in medical systems, critical infrastructures, se-
curity applications, and image defect detection. In the field of acoustics, there have
been previous studies in detecting faulty machine sounds [54]. This study uses au-
toencoder to reconstruct spectrograms and ensures the reconstruction with min-
imal loss for normal machine sounds. The promising result shown in this study
shows the potential of adopting anomaly detection to other acoustic-based tasks
such as SER.
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Autoencoder

Autoencoder [55] is a deep-learning architecture primarily used to represent higher-
dimensional data, typically for dimensionality reduction. The autoencoder learns a
representation for a data set, by training the network to ignore insignificant data.
Autoencoder consists of an encoder and a decoder, which compress the input
features to more compact bottleneck features and decompress the bottleneck fea-
tures into a reconstructed output with the same shape as the input. An optimal
autoencoder would perform as close to perfect reconstruction as possible, in other
words, having a small reconstruction error. Typically, the autoencoder uses a fully
connected neural network as the structure, with the encoder having units that are
smaller than the previous layer and the decoder being the size of the encoder
with reverse order. A typical autoencoder is illustrated in Figure 2.8. In recent
years, many variants of autoencoder can be used, such as variational autoencoder
(VAE) [56] used to augment the data by injecting a latent variable to autoencoder,
and RNN-based autoencoder, which uses RNN as encoder and decoder instead
of fully connected neural network. Autoencoder has been applied to many tasks
such as data augmentation and anomaly detection through reconstruction.

In SER, the use of autoencoder has been explored for reconstruction-error-
based learning [57]. The study used an autoencoder with RNN as the encoder
and decoder, and RNN to predict emotion in continuous emotion recognition. The
results show a high correlation between small reconstruction errors and perfor-
mance improvement. Despite the great potential of using RNN as an autoencoder
to reconstruct variable length data, it is still difficult to reconstruct using an RNN-
based autoencoder, which prompts some studies to solve the problem related to
the representation of autoencoder.

2.4 Base method

In this thesis, we will base our work on the basic SER method using speech and
its ASR result as the input, as illustrated in Figure 2.9. Here, the speech features
and their ASR result are extracted separately, representing different types of infor-
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Figure 2.9: State-of-the-art SER method

mation.

Figure 2.10(a) illustrates the acoustic feature extractor in the basic SER method.
The acoustic feature extraction in the state-of-the-art method uses bidirectional
long short-term memories (BLSTM) and a self-attention mechanism, independently
extracting speech features and their ASR result. For simplicity, we denote the
acoustic features xi, ...,z where x represents the input acoustic feature and T
represents the number of frames. These are then fed to the BLSTM to obtain e;,
which is defined for each frame index i as

e; =g; ©h, (2.11)

where g, h, and ¢ represent the forward hidden states of BLSTM, backward hid-
den states of BLSTM, and concatenation, respectively. Then, e; is fed to the self-

attention mechanism defined as

Y = mtanh(Ne;TF), (2.12)

aq, ..., = softmax(yi, ..., yr). (2.13)
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«; is the attention weight at frame i, and m and N are trainable parameters that
can be represented as a layer of a dense neural network. The weighted sum v
from BLSTM and attention weights are defined as

T
i=1

After the weighted sum v is calculated, it is fed to a single fully connected layer
to obtain a fixed-length intermediate layer representation, z,.,..::., Of acoustic fea-
tures.

Figure 2.10(b) illustrates the text feature extractor in the basic SER method.
The text feature extractor in the SER method uses the ASR text of the input ut-
terance. ASR text is first encoded by bidirectional encoder representations from
transformers (BERT) word embedding. The resulting embeddings with length L,
defined as wy, ..., w;, are then fed to the text feature extractor by the same process
as that of the acoustic feature extractor. Here, we obtain the fixed-length intermedi-
ate layer representation z,.,; of text features. The classification part then receives
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Z = Z,0ustics © Ziere @S the input and then outputs the emotion class probability. The
final emotion class is taken from the highest emotion class probability.

2.5 Evaluation criteria

One necessary aspect for measuring the improvement of the emotion recognition
methods in practical use is to evaluate the emotion recognition performance. Re-
garding the scope of this thesis, which assumes emotion recognition as a classification-
based task, we use objective evaluation. To evaluate the overall emotion recogni-
tion performance, we use the unweighted accuracy (UA) and the weighted accu-
racy (WA) as the evaluation metrics. The UA is defined as the number of correctly
classified samples divided by the total number of samples, whereas the WA is the
average of the correctly classified sample in a class divided by the total number of
data in each class. Aside from the UA and WA, we measure the performance of
emotion recognition for each class using the F-score. The UA, WA, and F-score
are respectively defined as

N
UA = —Zemili (2.15)
Zi:l Zj:l tij
WA=~ i (2.16)
N i=1 Zjvzl tij,

(2.17)

precision recall

where N is the number of classes and ¢;; is the number of data labeled as class ¢
and predicted as class ;. In practice, all of these criteria are calculated using Scikit
learn. For all these metrics, the value lies between 0% to 100%, where higher
percentage indicates better performance.



Chapter 3

SER based on self-attention weight
correction for acoustic and text
features

3.1 Introduction

SER using acoustic features and ASR results have suffered from performance
degradation due to the ASR not being robust to emotions, resulting in many speech
recognition errors in emotional speeches. Moreover, the state-of-the-art approaches
of SER use a self-attention mechanism, which focuses on the important parts or
segments in a sequence. They would end up focusing on the parts that contain
speech recognition errors, contributing to the SER performance degradation. One
possible way to mitigate the effects of speech recognition errors is to use the result
of multiple ASR and text encoders, which has complex architecture and require ac-
cess to several different ASR. Meanwhile, the speech segments containing speech
recognition errors may contain cues beneficial to understand emotions. Therefore,
the question is how to reduce the effects of speech recognition errors on SER by
utilizing the information contained in those.

In this chapter, we introduce self-attention weight correction (SAWC) using con-
fidence measures (CM) [58], a metric indicating the reliability of ASR results that
corrects the weights of the attention mechanism. We investigate the applications

24
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of SAWC for acoustic and text features and examine the changes in the corrected

attention mechanism.

3.2 Proposed method

3.2.1 Problems of the basic SER method

In this section, we discuss the problems of the basic SER method and then explain
the details of our proposed method. One main issue with the basic SER method
is that the SER performance deteriorates owing to ASR errors. One of the most
prominent causes of these errors is the presence of emotion in speech because
emotion changes the intonation and pronunciation of the intended speech content.

As a reference, we investigated the word error rate of ASR for neutral speeches
and emotional speeches. In this study, we use a pretrained ASR based on the
Kaldi speech recognition toolkit [59], using the speech data from Librispeech [60],
which consists of English speech from audiobooks. The word error rate for this
dataset is 3.8% under the clean condition. On the other hand, the word error rate
for the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset [61], the
English emotional speech dataset used to evaluate our proposed method, using
the same pretrained ASR is 43.5%. The high word error rate for the IEMOCAP
dataset indicates that the presence of emotion considerably deteriorates ASR per-
formance.

Since ASR is not robust to the presence of emotion in speech, the ASR text
would contain many speech recognition errors upon recognizing emotional speech.
As explained in the previous section, the acoustic and text feature extractors of the
basic SER method use BLSTM and a self-attention mechanism. The self-attention
mechanism focuses on the important words and speech segments to determine
emotion. Focusing on the words incorrectly recognized by ASR results in many
incorrectly recognized emotions, thus deteriorating the SER performance. One of
the solutions to this problem is to improve ASR performance to be robust to emo-
tions through retraining or fine-tuning as shown in Section Il. However, this solution

requires a high computational cost and might not effectively improve SER perfor-
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Figure 3.1: Proposed SER method

mance. The essential information regarding the presence of emotion in segments
containing speech recognition errors, which can be focused on by a self-attention
mechanism in acoustic feature extraction, might be lost owing to ASR being more
robust to emotions.

We propose a method to improve the basic SER method by adjusting the self-
attention weights using CM and named this method self-attention weight correction
(SAWC). It is a critical component in acoustic and text feature extractors. SAWC
resolves the issue without retraining or fine-tuning ASR to be robust to emotions.
The proposed SER method is illustrated in Figure 3.1.

3.22 CM

In the field of speech recognition, one of the most prominently used metrics for
ASR reliability is CM [58]. CM indicates how reliable ASR results is. CM falls in the
range of 0 to 1; 0 indicates an unreliable result and 1 indicates a reliable result. CM
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Table 3.1: Example of ASR results including the speech segments and their CMs

start (s) | duration (s) | result (1st candidate) | CM
0.70 0.65 CLEARLY 1.00
2.27 0.14 YOU 0.97
2.41 0.11 KNOW 0.86
2.52 0.42 D ‘ AVRIL 0.38
2.95 0.19 AGO 0.39
3.15 0.78 SUPERVISOR 1.00
3.93 0.13 OR 0.78
4.06 0.41 SOMETHING 1.00
4.47 0.33 YAH 0.44

has long been used in ASR to evaluate word-level and sentence-level recognition
results, accurately discriminating parts that contain possible speech recognition
errors. We employ CM in the Kaldi speech recognition toolkit, which is based on
the lattice posterior estimation. An example of ASR results and CM aligned for
each speech segment and its corresponding spectrogram are illustrated in Table
3.1 and Figure 3.2, respectively.

3.2.3 SAWC using CM

Text attention weight correction

In text features, SAWC aims to mitigate the effects of ASR error on SER perfor-
mance. SAWC here uses CM to suppress incorrectly recognized words or em-
phasize the more correctly recognized words. Figure 3.3 illustrates the structures
of the text feature extractors of the basic SER method and our proposed method
with SAWC. In both text feature extraction structures, the flow begins with inputting
the text feature consisting of BERT word embeddings. These features are fed to
the text feature extractor using BLSTM and the self-attention mechanism. CM ¢;
is concatenated with self-attention weights «; and will be fed to an LSTM network
and dense network. The output from the network is then normalized using the
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softmax function to obtain new attention weights. SAWC is defined as
s; = Dense(LSTM (o; ® ¢;)), (3.1)

b1, ..., br = softmax(sy, ..., st), (3.2)

where 3., ..., B, indicate the resulting self-attention weights. Here, the LSTM layer
learns and adjusts the attention weights by also considering the CM sequence. 3,
..., B are then used to calculate the weighted sum of the BLSTM outputs defined
as

T
vV = Zﬂiei’ (3.3)
i=1

where Vv’ represents the new weighted-sum feature, now used as the updated z,.,;.

We also investigated three applications of CM in text feature extraction: early
fusion, late fusion, and our proposed SAWC. The illustration of the applications can
be shown in Figure 3.4. The three applications are explained in the following:

Early fusion (Figure 3.4(a)) CM is treated directly as one of the textual em-
bedding features as they are part of the ASR results and CM is represented by a
sequence of weights, which might be suitable for extraction using BLSTM early on.
In this method, CM is concatenated after the textual features have gone through
BLSTM and before the self-attention mechanism.

Late fusion (Figure 3.4(b))) As CM is small in dimension compared with the
textual features, extracting CM sequentially in the early stages might cause early
information loss and CM would not have markedly reduce speech recognition er-
rors. Therefore, it would be more effective when used as one feature to consider
aside from the extracted sequential text features for the self-attention mechanism.
In this method, CM is concatenated after the textual features have gone through
BLSTM and before the self-attention mechanism.

SAWC (Figure 3.4(c))) The previous two mechanisms use CM both directly
and indirectly as part of the textual features. These mechanisms would require
many training data for the incorrectly recognized words and their weighting. To
solve this, we concatenate CM directly to the self-attention mechanism weights
and update the weights through a fully connected network. By this method, one
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Figure 3.4: Architecture of the proposed method on the textual feature extraction
part of SER

can decrease the CM dependence on the textual feature and train with fewer data.
As CM indicates how reliable the ASR result is, CM values can act as another
weight for ASR results, similarly to what the self-attention mechanism does for the
textual feature extraction. The combination of two different weights provides more

precise weights for textual information.

Acoustic attention weight correction

Figure 3.5 illustrates the structures of acoustic feature extractors of the basic SER
method and our proposed method with SAWC. In both acoustic feature extractors,
the flow begins with inputting the acoustic features MFCC, CQT, and F0. These
features are fed to the acoustic feature extractor consisting of BLSTM and the self-
attention mechanism.

On the basis of the application of CM in the text features, we apply SAWC to
acoustic feature extraction. The aim of SAWC in the acoustic features is to utilize
the information contained in the speech segments having a high probability of ASR
errors and focus on these segments. The idea is that emotions cause pronunci-
ation changes in specific speech segments resulting in ASR errors; therefore, the
speech segments with a high probability of ASR errors contain information helpful
in determining emotions. Here, we align the CM from each word to the correspond-
ing speech segments in the acoustic features, as illustrated in Figure 3.2. Since
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Figure 3.5: Structures of acoustic feature extractors of (a) the basic SER method
and (b) our proposed method with SAWC

SAWC needs to have the same sequence length of CM as that of self-attention, for
each of the words in the recognition result, the CMs on the start and end times are
aligned to the corresponding speech segments. The silent segments are assumed
to be correctly recognized, and CM on those segments is set to 1. The aligned CM,
which has the same length as the acoustic feature and the calculated self-attention
weights, is used for SAWC in the acoustic features. The self-attention weights of
the acoustic features are concatenated with the aligned CM and updated, similarly
to the calculations in Egs. 3.1 and 3.2. The updated self-attention weights of the
acoustic feature are then multiplied by the output of the BLSTM in the acoustic
feature extractor similarly to the calculation in Eq. 3.3, and the updated z,...s:. IS
produced.
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Table 3.2: Dataset specifications

Dataset IEMOCAP
Speakers 5 males and 5 females
Utterance length 1-19s
# of utterances Happy 1689
Sad 1084
Neutral 1708
Angry 1103

Table 3.3: Number of speech data for each emotion class and recording session

Session | Happy | Sad | Neutral | Angry | Total
286 | 194 384 229 | 1093
335 | 197 362 137 | 1031
322 | 305 320 240 | 1093
303 | 143 258 327 | 1031

5 443 | 245 384 170 | 1242
Total | 1689 | 1084 1708 | 1103 | 5584

AWM=

3.3 Experiments and results

3.3.1 Datasets

We trained and evaluated our proposed method using the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) dataset [61], which is one of the benchmark
datasets for emotion recognition. The IEMOCAP dataset was developed when
conventional machine learning methods, such as support vector machines, deci-
sion trees, logistic regression, and early neural networks, were the most commonly
used methods to conduct SER. It is also used to evaluate the recent deep-learning-
based methods. The IEMOCAP dataset is available upon request.

The IEMOCAP dataset is recorded from conversations spoken in English, which
contain either scripted or improvised emotional speeches divided into five ses-
sions, each containing one male and one female speaker. There are ten speakers
(five males and five females) in the IEMOCAP dataset. The length of the IEMOCAP
dataset is approximately 12 hours, comprising audiovisual data, including video,
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speech, motion capture of the face, and text transcriptions. For all experiments in
this thesis, we only use the speech data, and the text transcriptions are used only
for method comparison. The speech data in IEMOCAP dataset have a sampling
rate of 16KHz and a format of 16-bit PCM. Each of the utterances in IEMOCAP
datasets has class and dimensional emotion labels. The class labels in IEMOCAP
follow the labels from Ekman models (neutral, happy, sad, angry, excited, frus-
trated, other). The class labeling process is conducted by three evaluators, and
the label is decided through majority voting. The dimensional labels in IEMOCAP
consist of valence, arousal, and dominance, each ranging from 1 to 5 as a result of
Self-Assessment Manikin evaluation. The dimensional labels are decided by aver-
aging the score given by two evaluators. Labeling by class is simpler to implement
in practical situations, however, we use only the class labels. In addition, we used
the data from four emotion classes (happy, sad, neutral, and angry). To make the
dataset conditions similar to those in previous works, we grouped the utterances
labeled as excited with the utterances labeled as happy. Throughout this thesis,
we assume that each input data belongs to exactly one of the defined emotion
classes. The experiments were performed with five-fold cross-validation, with each
fold corresponding to each session. The training set consists of speech data from
four sessions, and the test set consists of the speech data from the remaining one
session, ensuring speaker independence. The details of the dataset used in this
study are shown in Table 3.2, and the number of speech data for each emotion
class and recording session is shown in Table 3.3.

3.3.2 Input features

Our proposed method receives two different types of input features: acoustic and
text features. The acoustic features consist of 33 dimensions, consisting of 20-
dimensional Mel-feature cepstrum coefficients (MFCCs), 12-dimensional constant
Q-transform (CQT), and one-dimensional fundamental frequency (F0). All of the
acoustic features are extracted using Librosa [62]. The text features is taken from
the ASR result. First, we conducted ASR on the input speeches using a rec-
ognizer based on the Kaldi acoustic recognition toolkit pretrained with the Lib-
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rispeech dataset. The Librispeech dataset consists of approximately 1000 h of

read speeches in English, sampled at 16 kHz and in the format of 16-bit PCM. Next,
we encoded ASR texts using BERT pretrained using lower-case English texts. The
pretrained BERT consists of 12 layers and 110 M parameters, resulting in 768-
dimensional text features. The pretrained BERT is named bert-based-uncased,
which is publicly available.

3.3.3 Classifier specifications

The SER consists of an acoustic feature extractor, a text feature extractor, and
an emotion classifier. The basic SER method comprises a two-layer BLSTM with
128 units and a self-attention mechanism. Each of the feature extractors con-
sists of BLSTM with 128 units and a self-attention mechanism, resulting in a 128-
dimensional vector representation for z,..,..;. and z;..; for the acoustic and text
feature extractors, respectively. SAWC in acoustic and text feature extractors uses
BLSTM that receives two-dimensional inputs, providing a two-dimensional output
and a dense layer that outputs a one-dimensional output. The resulting inter-
mediate layer representation z is a 256-dimensional vector consisting of a 128-
dimensional vector from each of the acoustic and text features. The intermediate
layer representation is fed to the emotion classifier, consisting of two dense layers
with (256—64—4) units. In this experiment, we used Adam [63] as the optimizer with
a learning rate of 0.0001 and a weight decay of 0.00001. The dropout was set to
0.3. The batch size was set to 40. The results were taken from the highest WA out
of 100 epochs.

Figure 3.6 shows the graphical representation of loss and WA during the train-
ing on one of the folds in our proposed method using SAWC on both acoustic and
text feature extractors. Here, the x-axis represents the number of model training
epochs, and the y-axis respectively represents loss and WA in the left and right
graphs. In the loss representation, the loss in the training phase decreases until
the last epoch, whereas that in the testing phase decreases up to epoch 80 and
starts to overfit afterward. On the other hand, in the WA representation, the ac-
curacy in the training phase improves close to 100% until the last epoch, whereas
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Figure 3.6: Graphical representation of loss and WA during the training of the
proposed method

that in the testing phase increases to epoch 40 and tends to plateau afterward.

3.3.4 Computation environment

We conducted both the training and testing phases in the experiments using the
GPU. Owing to the large amount of calculation needed during the training phase
of our proposed method, it is recommended to use GPU for training. On the other
hand, the testing phase can be conducted using either GPU or CPU. The computer
used for the experiment has NVIDIA Quadro RTX 6000 GPU with 24 GB of RAM
and Intel Core i9-10940X 3.3 GHz CPU with 32 GB of RAM. All the programs were
run using the operating system Ubuntu 18.04. All the programs were written in
the Python 3 programming language using PyTorch 1.4.0 [64] as the library. The
evaluation metrics are calculated using the Scikit-learn [65] toolbox.

We measured the average computational time in our proposed method of SER
using SAWC on both acoustic and text features. Our proposed method ran for
41.798 s on GPU for each epoch in the training phase. On the other hand, our
proposed method ran for 0.011 s on GPU and 0.375 s on CPU for each utterance
in the test phase.
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Table 3.4: UA and WA performance comparison of the basic SER method with dif-
ferent input features and our proposed method with different SAWC combinations.
Here, AC, TR, AT represents acoustic, transcriptions and ASR text, respectively.

Method UA (%) | WA(%)
(Basic) AC 61.1 64.3
(Basic) T 75.5 75.6
(Basic) AT 71.8 71.9
(Basic) AC + TR 78.6 78.4
(Basic) AC + AT 73.9 74.2
(Basic) AC w/0 SAWC + AT with CM early fusion | 74.3 74.4
(Basic) AC w/0 SAWC + AT with CM late fusion | 74.9 75.2
(Proposed) AC w/o SAWC + AT with SAWC 75.5 75.3
(Proposed) AC with SAWC + AT w/o SAWC 76.1 76.1
(Proposed) AC with SAWC + AT with SAWC 76.8 76.6

3.3.5 Experiment result
Comparison of the application of SAWC

Table 3.4 shows the performance of the basic SER method with different combi-
nations of input features and SAWCs using CM. Here, we experimented with the
basic SER method using only acoustic features, text features, and both features.
The text features were divided into two types, one using human-based transcrip-
tions provided in the dataset and the other using ASR text. The experiments were
run with the same classifier specifications for each input feature.

From the comparison, the performance of the basic SER method using only
acoustic features yields UA and WA of 61.1% and 64.3%, respectively. The SER
method using only transcriptions yields the UA and WA of 75.5% and 75.6%,
whereas that using ASR text as the input yields a lower performance of 71.8% and
71.9% in UA and WA, respectively. The method combining acoustic features and
transcriptions achieved the UA and WA of 78.6% and 78.4%, respectively, which
are significantly higher than those obtained by the method using only acoustic fea-
tures or transcriptions. The same increase can also be observed by combining
acoustic features and ASR text, achieving the UA and WA of 73.9% and 74.2%, re-
spectively. The decline in the performance of the basic SER method using ASR text
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as the input text features compared with that using transcriptions is due to the per-
formance deterioration of ASR caused by the presence of emotions in speeches,
resulting in incorrect recognition results being used.

Now, we compare the SER performance of the proposed SER method using
SAWC with CM on the acoustic and text features with the performance of the basic
SER method using acoustic features and ASR text. First, applying SAWC with CM
to the text feature only (Acoustic without SAWC + ASR text with SAWC) improved
both the UA and WA compared with the basic SER method by 1.6% and 1.1%
to 75.5% and 75.3%, respectively. One explanation is that SAWC considers the
words with low CMs as speech recognition errors, thereby reducing the attention
weights on these words and adjusting the attention weights to focus more on the
correctly recognized words. These score is improved from the SER method using
CM in early fusion or late fusion.

On the other hand, applying SAWC to the acoustic feature only (Acoustic with
SAWC + ASR text without SAWC) also improved both the UA and WA compared
with the basic method by 2.2% and 1.9% to 76.1% and 76.1%, respectively. The
results show that SAWC can improve acoustic feature extraction by adjusting the
importance weights of the speech segments in accordance with CM. One possible
explanation is that the speech recognition errors in the speech segments contain
information essential to determining the emotion; therefore, emphasizing these
parts results in their being considered more in the decision of the emotional output
label.

Furthermore, the proposed SER method combining SAWC with CM on acoustic
and text features yields the UA and WA of 76.8% and 76.6%, respectively, which is
a further performance improvement compared with the method applying SAWC on
either acoustic or text feature extractors. The result implies that combining the two
types of input enhanced with SAWC can improve the overall SER performance.
The performance of our proposed method is close to that of the basic SER method
using acoustic features and transcription.

We also evaluated the performance using F-score for each emotion class, as
shown in Table 3.5. Overall, the trend of improvement of the F-score for each
emotion on different input features is similar to those in UA and WA. The neutral
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Table 3.5: F-score performance comparison of the basic SER method with different
input features and our proposed method with different SAWC combinations. Here,
AC, TR, AT represents acoustic, transcriptions and ASR text, respectively.

Method F-score (%)

Happy | Sad | Neutral | Angry

Basic AC 47 .6 705 | 56.4 69.7
Basic 82.8 77.8 | 65.3 75.4

Basic) AC + TR 83.4 81.1 | 68.5 82.2
Basic) AC + AT 79.7 71.8 | 64.7 81.1

)
)T
Basic) AT 80.4 74.6 | 58.6 70.9
)
)
)

Basic) AC w/0 SAWC + AT with CM late fusion | 79.5 76.5 | 64.7 81.1

Proposed) AC w/o SAWC + AT with SAWC 81.4 76.3 | 65.8 79.7
Proposed) AC with SAWC + AT w/o SAWC 82.5 77.2 | 64.4 80.9
Proposed) AC with SAWC + AT with SAWC 83.0 77.6 | 66.2 80.6

(
(
(
(
(
(Basic) AC w/0 SAWC + AT with CM early fusion | 79.0 73.8 | 64.5 78.9
(
(
(
(

class has the lowest F-score among the four emotion classes.

Comparison with state-of-the-art methods

Next, we compare the performance of our proposed method with those of state-of-
the-art methods, as shown in Table 3.6. Most reports did not show the results in
other metrics such as F-score for each emotion class. Therefore, we compare the
performance of our proposed method with those of state-of-the-art methods only in
terms of UA and WA. The state-of-the-art methods used for comparison are SER
methods using acoustic and text features. The text feature is further separated
into transcriptions and ASR text, where ASR text has a word error rate of 43.5%,
indicating that many of the speech data contain incorrect text information, whereas
the transcriptions can be assumed to have no such errors.

In terms of UA and WA, our proposed method outperforms the state-of-the-art
SER methods using acoustic and ASR results as input information. Although our
proposed method has yet to achieve the performance of the state-of-the-art SER
methods using acoustic and transcriptions, the differences in UA and WA from
those of the best state-of-the-art method are 1.6% and 0.9%, respectively, which
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Table 3.6: Proposed and state-of-the-art methods

Method Input UA (%) | WA (%)
Yoon et al. [15] Acoustic + Transcriptions 77.6 76.5
Wang et al. [66] Acoustic + Transcriptions 771 76.8
Wu et al. [67] Acoustic + Transcriptions 78.4 77.5
Kim and Shin [68] | Acoustic + ASR text 68.7 66.6
Xu et al. [69] Acoustic + ASR text 69.5 70.4
Yoon et al. [15] Acoustic + ASR text 73.9 73.0
Feng et al. [17] Acoustic + ASR text 69.7 68.6
Heusser et al. [70] | Acoustic + ASR text 71.0 73.5
Wu et al. [67] Acoustic + ASR text 75.6 74.7
Proposed method | Acoustic + ASR text + CM 76.8 76.6

means their accuracies are similar.

Confusion matrix of the SER classifier

Figure 3.7 shows the confusion matrices of the basic SER method and the pro-
posed method, which combines both acoustic and text feature extraction with SAWC
using CM. Compared with the basic SER method, most emotions except for neu-
tral emotions have gains in the number of correctly classified speeches. The F-
score for neutral emotions is only about 66.2%, whereas those for other classes
are above 75%. Neutral speeches are mistaken for all classes, especially happy
speeches. One possible explanation is that SAWC might have emphasized the
speech segments that contain incorrect recognition results, indicating the possible
presence of emotion despite the speech being neutral.

Visualization of SAWC

We discuss SAWC with CM in the proposed method through visualization. Here,
we take an example of an utterance labeled as angry that had been incorrectly
recognized as neutral by the basic SER method; it is the same utterance as the
example shown in Table 3.1 and Figure 3.2.

Figure 3.8 shows SAWC with CM in the proposed method applied to the text
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Figure 3.7: Confusion matrices of the basic SER method and our proposed method
showing the best result
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Figure 3.8: SAWC applied to the text feature extractor

feature extractor. The graphs from top to bottom respectively show the text at-
tention weight before the update, CM aligned to each word, and the updated text
attention weights. Here, some of the words with low CMs, which are more likely
to be incorrectly recognized, were weighted more, whereas the words with high
CM or the correctly recognized words were weighted less. By applying our pro-
posed SAWC, we can reduce the text attention weights on the words with low
CMs, whereas the words with high CMs are slightly emphasized. The visualization
of the updated self-attention weights showed that applying the proposed method to
the text features successfully improved the performance by suppressing the effects
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Figure 3.9: SAWC applied to the acoustic feature extractor

of ASR errors.

Figure 3.9 shows SAWC with CM in the proposed method applied to the acous-
tic feature extractor. The graphs from top to bottom respectively show the acoustic
attention weight before the update, CM aligned to the acoustic frames and their
corresponding ASR text, and the updated acoustic attention weights. Similarly to
Figure 3.2, we set the silent speech segments to 0 for display purposes, in con-
trast to the experiment where the silent speech segments are set to 1. Here, the
plot of updated attention weights resembles the inverted shape of the plot of CM
aligned to the acoustic frame, where some parts contain the peak values from the
attention weight before applying SAWC. SAWC works differently on the acoustic
features from that on the text features. In the acoustic features, self-attention is ad-
justed to focus on the speech segments containing the speech recognition errors,
which would likely have low CM. SAWC still considers the part previously focused
on by self-attention, although not as much as CM. The visualization of SAWC con-
firms that the speech segment emphasized might be affected by emotion, thus

containing information essential for SER.
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Table 3.7: UA and WA of proposed method and basic SER method using CM as
attention weight

Method UA (%) | WA (%)
(Proposed) AC with SAWC + AT with SAWC 76.8 76.6
AC with CM as attention + AT w/o SAWC 76.3 76.3
AC with CM as attention + AT with SAWC 76.3 76.2

Comparison with the method using CM as attention weight

To extend our results and discussion, we also investigate whether replacing the
self-attention mechanism in the acoustic feature extractor with the inversely aligned
CM, which is obtained by replacing CM ¢y, ..., ey by 1 — ¢4, ..., 1 — ¢, yields re-
sults similar to those obtained by SAWC with CM. The inversely aligned CM is
considered to be due to the updated attention weights in the bottom part of Figure
3.9 showing a similar pattern. Here, we substitute the attention weights with the
inversely aligned CM instead of applying the correction to the attention weights.

T1, .., 77 = softmax(l — c1,...,1 — cr) (3.4)
T

c’ = ZTZ'GZ‘ (35)
i=1

In this evaluation, we applied softmax to the inversely aligned CM weights and
used them as the attention weights in the acoustic feature extractor.

Table 3.7 and Table 3.8 shows the UA and WA of the proposed method and
the method with inversely aligned CM used as attention weights, and F-score of
the comparison, respectively. The result shows that the inversely aligned CM used
as attention weights yields a slightly lower UA, WA, and overall F-score for each
emotion class. Despite the similarity of the updated attention weights to the in-
versely aligned CM, the attention weights in the proposed method before applying
SAWC still hold some significance in the weights of the acoustic feature. It can be
inferred that both the weights from the attention mechanism and the CM aligned to
the acoustic frames are still essential in determining the important segment in the

acoustic features.
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Table 3.8: F-score of proposed method and basic SER method using CM as atten-
tion weight

Method F-score (%)

Happy | Sad | Neutral | Angry
(Proposed) AC with SAWC + AT with SAWC 83.0 | 77.6 66.2 | 80.6
AC with CM as attention + AT w/o SAWC 81.7 | 77.2 64.0 | 80.0
AC with CM as attention + AT with SAWC 82.8 | 76.8 63.6 | 80.0

3.4 Summary of Chapter 3

In this chapter, we focus on the problem of SER, which is the ASR performance
degradation in emotional speeches. Since ASR contains CM, which indicates how
reliable the recognition result is and how likely the emotion recognition occurs, we
propose using CM to mitigate the effect of speech recognition errors on SER. We
investigated the use of CM in SER using acoustic features and ASR results in text,
ranging from fusing CM as part of the input feature to using them to correct the at-
tention mechanism, as presented in SAWC directly. The experimental results show
that in the text feature, our proposed SAWC yields the highest SER performance
compared to the other fusing approaches. We applied the proposed method to
SER using acoustic features and ASR results as the text. Our results showed
improvement in SER performance, where SAWC reduces the effects of speech
recognition errors on the text features while emphasizing the segments containing
speech recognition errors as cues for emotions. The method in this study provides
a solution to the problem of ASR performance degradation in emotional speeches.



Chapter 4

SER improvement by neutral speech
detection using autoencoder and
intermediate representation

4.1 Introduction

In practical situations, such as business conversations, neutral speeches make
up most of the speech data population. On the other hand, emotional speeches
are uncommon and usually indicate some unexpected events or trouble. From the
result in Chapter 3, the recognition result of neutral speeches is still low despite
the number of data available. As a result, many neutral speeches would be incor-
rectly recognized as emotional speeches and outnumber the number of correctly
recognized emotional speeches. In other words, low neutral speech recognition
performance results in SER performance degradation. Therefore, maintaining the
recognition performance for each emotion class, including neutral speech, is im-
portant to ensure a high-performing SER.

In several practical settings, such as business conversation analysis, most con-
versations do not contain emotions or are considered neutral. Emotional speeches
might indicate potential trouble or unanticipated events in conversations. On the
basis of this idea, we focus on the anomaly detection approach that uses only neu-
tral speeches as training data. The anomaly detection model learns the represen-

44
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tation of the normal data used in training and identifies anomalous data, that is the
data deviating from normal behavior. Here, normal data can be regarded as neutral
speeches and anomalous data as emotional speeches. The anomaly detection ap-
proach has been investigated in the acoustics domain, namely anomalous sound
detection in machines [54]. In this approach, raw spectrograms are used as in-
put and an autoencoder as a reconstructor. Here, the reconstructor is trained to
minimize the reconstruction error of normal machine sounds. The normal machine
sounds therefore will be successfully reconstructed, whereas the anomalous ones
will not be reconstructed well. The anomalies in faulty machines were successfully
detected from sounds using this approach.

There are several challenges to applying the anomaly detection approach to
speech data in an SER domain. First, the reconstruction of speech is difficult be-
cause of the high dimensionality of a spectrogram and the variability of speech
length. Second, it is difficult to deal with textual information, which is often utilized
as input features in SER, to provide additional hints for possible anomalies in the
emotion domain. These two problems can be solved by representing a raw spec-
trogram and textual information with fixed-length low-dimensional vectors. One
way to realize it is to utilize the intermediate layer representation of the SER clas-
sifier as the input for anomaly detection, which has been studied in the field of
image anomaly detection [71] and proven to be effective in improving the anomaly
detection performance.

Considering the condition mentioned above, it would be possible to reformu-
late the problem as an anomaly detection problem, where neutral speeches are
considered normal and emotional speeches are anomalous. This chapter intro-
duces a method using neutral speech detection and applying them to screen neu-
tral speeches. The neutral speech detection proposed uses an autoencoder to
reconstruct the intermediate layer representation in SER for neutral speeches.
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Figure 4.1: Proposed method using by detecting neutral speeches and using the
result to correct the emotion class decision

4.2 Proposed method

4.2.1 Overview

The process flow of the proposed method by detecting neutral speeches and us-
ing the result to correct the emotion class decision is illustrated in Figure 4.1. The
proposed method consists of the feature extractor, the NSD, and the screening
mechanism part. The feature extractor is taken from the pretrained SER classifier
explained in Chapter 3, following the steps until the output of the intermediate layer
representation z, which is then fed to the autoencoder-based NSD. The NSD works
by reconstructing z, resulting in the reconstructed feature vector z and having the
reconstruction error calculated as the anomaly score. When the anomaly score
exceeds the decision threshold value, the input speech is classified as emotional
(anomalous). Otherwise, it is classified as neutral (normal). Finally, the screening
mechanism part decides the emotion class by correcting the neutral class proba-
bility based on the anomaly score.

4.2.2 NSD

The NSD of our proposed method consists of a deep autoencoder, which is a deep-
learning architecture primarily used to represent higher-dimensional data, typically
for efficient dimensionality reduction. In the proposed method, the autoencoder,
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which consists of the encoder £ and the decoder D in the form of two neural net-
works, is used to learn the representation of neutral speech through the output of
the intermediate layer z of the SER classifier. The most attractive feature of our
NSD is that it can deal with not only acoustic information but also textual informa-
tion as the target of reconstruction. z is transformed into a compact bottleneck
representation v with the encoder £, whereas the decoder D maps back the bot-
tleneck representation into the reconstructed intermediate layer representation z.

The process is defined as

<
Il

£(2|05), (4.1)
2 =D(v|0p), (4.2)

where 65 and 0 represent the parameter set of an encoder and a decoder respec-
tively. The reconstruction error of the autoencoder, hereby defined as the anomaly
score, is computed as the mean square error (MSE)

dim

r=>Y |z -z (4.3)
=1

where dim is the dimension of z. As the autoencoder is trained using only neu-
tral speeches, z here represents the intermediate layer representation of neutral
speeches.

We investigated the anomaly scores of the neutral speeches in the training data
by the reconstruction experiment. As a result, it was found that the distribution
of the anomaly scores is asymmetric. Therefore, the neutral/emotional decision
is conducted using a decision threshold obtained from the value applied to the
percentile point function of the Gamma distribution [72] of the anomaly scores in
the training data. The distribution of the anomaly scores from the training data is
illustrated in Figure 4.2.
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Figure 4.2: Distribution of the anomaly scores of from the training data

4.2.3 Screening mechanism

We introduce a screening mechanism to combine the results of SER and the NSD
to improve the SER performance further. In the screening mechanism, the NSD is
utilized as the main decider for the final class decision, where speeches detected
as neutral are automatically regarded as neutral in the SER result. In the following
equation, we will assume py, ps, ..., px, ..., pc @s the SER class probability, C' as the
number of emotion classes, p, as the neutral probability, and r as the reconstruc-
tion error. We compare two screening mechanisms in this study.

Weak screening Speeches detected as neutral by the NSD are regarded as
neutral in the final SER class decision. On the other hand, the class decision for
speeches not detected as neutral will defer back to the initial SER class probability.

This is described as
1, r<T,
Pr = (4.4)
Pr, T>T
where T is the decision threshold.
Strong screening This is similar to the weak screening in terms of speeches

detected as neutral. However, speeches not detected as neutral are regarded as
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any class other than the neutral class. In this case, the SER class decision takes
the neutral class probability out of the equation and takes the remaining class with
the highest probability as the result. The mechanism can be described as

1, r<T,

I
=
o

Pk
0, »r>T.

4.3 Experiments and results

4.3.1 Dataset

In this study, we used the Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) dataset [61], one of the benchmark datasets for emotion recognition, to eval-
uate the effectiveness of the proposed method. The IEMOCAP dataset consists of
scripted and improvised emotional speeches divided into five sessions, each con-
taining one male and one female speaker. There are ten speakers (five males and
five females) in the IEMOCAP dataset.

For the pretrained SER classifier, we used the data from four classes (happy,
sad, neutral, and angry). To make it similar to previous works, we included the
utterances labeled as excited to the utterances labeled as happy. The experiments
were performed in five fold cross-validation. The training set comprises four ses-
sions, and the test set comprises the remaining one session to ensure speaker
independence. The F-score reported are based on the combined results from all
five folds, not from averaging the F-score in each fold. The details of the dataset
are shown in Table 4.1

For the NSD, we used the same five fold cross-validation setting with the pre-
trained SER classifier. However, because we aim to train the neutral data repre-
sentation, the training set contains only the neutral speeches from each of the four
sessions. On the other hand, the test set of the NSD uses the same dataset as
that for the SER but with the labels being neutral and the rest of the classes being

emotional.
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Table 4.1: Dataset specifications

Dataset IEMOCAP

Speakers 5 males and 5 females

Utterance length 1—-19s

# of utterances Happy 1689
Sad 1084
Neutral 1708
Angry 1103

4.3.2 Input features

The input features used in this chapter is the same as those explained in Chap-
ter 3, in which the features inputted to the pretrained SER classifier were divided
into two parts for acoustic feature extraction and textual feature extraction. For
the acoustic feature extraction, we extracted a 33-dimensional feature consisting of
20-dimensional Mel-frequency cepstral coefficients (MFCCs), 12-dimensional con-
stant Q-transform (CQT), and one-dimensional fundamental frequency (F0). All of
the acoustic features are extracted using Librosa [62]. For the textual features,
first, we conducted ASR on the input speeches using a recognizer pretrained with
the Librispeech [60] dataset and Kaldi speech recognition toolkit [59]. Librispeech
consists of approximately 1000 hours of speech sampled at 16 kHz. Next, we
encoded the ASR texts using pretrained BERT [73], which was trained from lower-
case English texts. The pretrained BERT consists of 12-layer and 110M parame-
ters, resulting in 768-dimensional textual features.

4.3.3 SER classifier and NSD specifications

The pretrained SER consists of a feature extractor (acoustic feature extractor and
textual feature extractor) and the emotion classifier. The feature extractor used
BLSTM with 128 units and a self-attention mechanism with 128 units for the acous-
tic feature extractor and the additional confidence measure-based correction mech-
anism for the text feature extractor. The resulting intermediate layer representation
z from the SER is a 256-dimensional vector, consisting of a 128-dimensional vector
from each of the acoustic and text features.
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The NSD is an autoencoder consisting of nine layers with units (256—128—-64—
32-16—-32—64—-128-256). The optimizer is set to Adam [63] with a learning rate of
0.00001 and dropout to 0.2. For the anomaly score calculation, we use the Gamma
distribution of the reconstruction error of neutral speeches. The decision threshold
is taken from the distributions’ percentile point function with a value of 0.8, which
yields the best performance among the tested percentile values. We evaluate the
results for the NSD using F-score for neutral and the results for the SER using the
average unweighted accuracy (UA), average weighted accuracy (WA), and F-score
of each emotion class. The pretrained SER model used as the feature extractor
was taken from the model that yields the highest WA of the test data out of 100
epochs. Meanwhile, the results for the NSD were taken from the highest neutral
F-score of the test data out of 100 epochs.

4.3.4 Experiment Results

Table 4.2 shows the F-score of our proposed method’s neutral class in reconstruct-
ing the different features. Results of our experiment show that in all the differ-
ent features reconstructed, the proposed method outperforms the SER method in
terms of the neutral F-score. The base SER method (pretrained SER classifier)
obtained a neutral F-score of 67.4%. The performance in reconstructing only the
textual feature representation and the acoustic feature representation yields neutral
F-scores of 61.1% and 76.0%, respectively. On the other hand, the reconstruction
of both the acoustic and text features achieves a neutral F-score of 81.0%, which
shows significant improvement from the base SER method and the reconstruction
of a single feature. One possible explanation is that the intermediate layer output
from the base SER method is produced by considering both the acoustic and text
features in the training phase. Therefore, it is necessary for the NSD to use the
representation from both acoustic and text features to achieve the best reconstruc-
tion. From the results, the NSD can be expected to have sufficient reliability as an
input to the screening mechanism.

Table 4.3 shows UA and WA of our proposed method and the state-of-the-
art SER classifiers with acoustic and text features as the input. Overall, our pro-
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Table 4.2: Comparison of reconstructed feature

Reconstructed feature | Neutral F-score (%)
Base SER method 66.2
Text 61.1
Acoustics 76.0
Acoustics + Text 80.3

Table 4.3: SER performance comparison (UA, WA) with state-of-the-art methods.
The symbol ‘=" means that the value is not described in the paper.

Method UA (%) | WA (%)
Neumann and Vu [74] - 56.1
Feng et al. [17] 69.7 68.6
Siriwardhana et al. [75] 75.5 -
Base SER method (Chapter 3) | 76.8 76.6
Wang et al. [66] 77.1 76.8
Priyasad et al. [76] 79.2 80.5
(Proposed) Weak screening 81.0 84.5
(Proposed) Strong screening 82.7 83.2

posed method using the NSD for strong screening mechanism achieved UA and
WA of 82.7% and 83.2% respectively. On the other hand, the use of NSD for the
weak screening mechanism achieved UA and WA of 81.0% and 84.5% respec-
tively. These results indicate the significant improvement of our method compared
with the base SER method, achieving UA and WA of 75.9% and 76.1%, respec-
tively. Table 4 shows the F-score of each emotion class of our proposed method
and F-score reported in the state-of-the-art SER classifiers. The F-score of neu-
tral is improved from 67.4% to 78.6% and 80.3% in the weak and strong screening
mechanisms, respectively. The screening mechanism results indicate that the SER
performance and the F-score of neutral speeches can be increased simply just by
prioritizing the NSD screening result, where neutral speeches are automatically
regarded as neutral. In results of the weak screening mechanism, most of the
emotional classes show some performance increase because the speeches incor-
rectly recognized as emotional classes were corrected to neutral. However, the

strong screening mechanism further improves the performance for neutral, angry,
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Table 4.4: SER performance comparison (F-score) with state-of-the-art methods.
The symbol ‘—" means that the value is not described in the paper.

F-score (%)

Method

Happy | Sad | Neutral | Angry
Neumann and Vu [74] 58.2 |51.9| 52.8 | 66.5
Feng et al. [17] 69.1 [70.5| 61.0 | 77.3
Siriwardhana et al. [75] 771 |78.4| 64.7 | 81.9

Base SER method (Chapter 3)| 83.0 [77.6| 66.2 | 80.6
(Proposed) Weak screening 85.2 |75.6| 78.6 | 825
(Proposed) Strong screening 85.0 |[78.0| 80.3 | 85.3

Base SER method Weak screening Strong screening

Predicted label Predicted label Predicted label
happy sad neutral angry happy sad neutral angry happy sad neutral angry

happy 3.91 8.88 3.02 happy Al 2.72 1433 178 4.38 5.09 2.19

3.14 saq| 572 [EBCM 2482 3.32

neutral{ 4.04 1.93 EErEs) 1.58

happy

sad 80.54 [NV sad 3.87

True label
True label
True label

neutral{ 16.33  12.65 RGEISCE] neutral

angry| 199 408 1197 KL angry| 245 163 10.76 [RIRG S—

Figure 4.3: Confusion matrices (in %) for base SER method, weak screening
mechanism and strong screening mechanism

and sad speeches by 1.7%—2.8% from those of the weak screening mechanism.
The confusion matrices from the base SER method, the proposed method with
the weak screening mechanism, and the proposed method with the strong screen-
ing mechanism are shown in Figure 4.3. The strong screening mechanism im-
proves the neutral classification performance from the base SER method by using
only the neutral NSD detection result. As a result, it can be observed that the
strong screening mechanism tends to improve the performance of both neutral
and emotional classes in a well-balanced manner. On the other hand, the weak
screening method drastically improves the neutral classification performance by
using the NSD detection result and the SER class decision. However, in the weak
screening mechanism, it can be observed that there is a tendency to incorrectly

classify the emotional speeches as neutral.
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4.4 Summary of Chapter 4

In this chapter, we introduced NSD, an SER method with anomaly detection ap-
proaches towards neutral speeches, which reconstructs the intermediate layer rep-
resentation of SER. We propose to use the NSD to screen neutral speeches, and
correct the class decision of SER. The results show that the reconstruction of neu-
tral speeches achieved sufficient reliability as an input to the screening mecha-
nism, and the screening mechanism achieved show significant improvement in the
F-score of the neutral class and class-average weighted accuracy compared with
the state-of-the-art SER classifiers.



Chapter 5

SER based on the reconstruction of
acoustic and text features in latent
space

5.1 Introduction

SER has been studied intensively, with most of the methods based on a classi-
fication approach, outputting the softmax probability of different emotion classes.
One limitation is the need to balance the training data since, otherwise, it would
result in a classifier being biased toward a certain class. The performance of the
class with low performance can be improved by increasing the training data for that
class. However, it would not be easy to maintain the balance of the training data.
Another limitation is that in the case of additional emotional classes, it would be
more difficult to add new emotion classes or to retrain the classifier from scratch.
In this chapter, we propose a novel training strategy for an imbalanced dataset
based on reconstruction error. First, we extract the acoustic and text features in
latent space by using a pretrained classifier. Second, the extracted features are
fed into the reconstructor for each class. Finally, the emotion class is judged to
have the lowest normalized reconstruction error. The main advantage of our pro-
posed method is the possibility of training the autoencoder separately for each
emotion class, therefore alleviating the need for data balancing. Furthermore, the

55
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Figure 5.1: Proposed method flow of SER based on the reconstruction of acoustic
and text features in latent representation

data augmentation of the latent space can be done specifically for each emotion
class without being affected by the others. Finally, we compare the performance
characteristics of our proposed method with those of the state-of-the-art SER clas-
sification methods.

5.2 Proposed method

Figure 5.1 illustrates our proposed method flow. Our proposed method consists of
the feature extractor, the reconstructor for each emotion class, and a class deci-
sion. The feature extractor is taken from the acoustic and text feature extractor of
the pretrained SER method explained in Chapter 2, resulting in the intermediate
layer representation z. This is then fed to the autoencoder-based reconstructor
for each target emotion class. Each reconstructor reconstructs z, resulting in the
reconstructed feature vector z and having the calculated reconstruction error. We

select the emotion class with the lowest normalized reconstruction error.

5.2.1 Reconstructor

SER methods are mostly based on classification, which is trained to classify emo-
tion classes. However, classification-based methods ideally require all classes to
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be trained with a balanced number of data to generalize well, which is difficult in
practical situations with the data for each defined class being imbalanced. This
can be handled by reducing the dependency for each class, which can be realized
by reconstructing the features of each class separately and determining if the data
is of the target class or not. The reconstruction-based method, on the other hand,
has the potential to perform strongly in class-imbalanced situations compared to
the classification method and therefore is proposed in this chapter.

Our proposed reconstructor has the architecture of a deep autoencoder and is
made of an encoder and a decoder, both in the form of two neural networks. The
autoencoder is mainly effective in dimensionality reduction and the representation
of higher-dimensional data. The use of an autoencoder in our proposed method is
similar to the NSD explained in Chapter 4, which was inspired by the anomaly
detection-based approach applied in the anomalous sound detection task [54],
which was previously handled using a classification-based approach. In anoma-
lous sound detection, the autoencoder is used to reconstruct the spectrogram and
detect the anomalous machine sound. The success of anomalous sound detec-
tion has made the autoencoder a commonly used solution for reconstruction and
detection tasks. However, applying this approach to the SER domain has several
challenges. First, reconstructing a spectrogram for speech is difficult owing to the
high dimensions and variable lengths. Moreover, it is necessary to keep the textual
information, providing cues to the target emotion.

One possible idea to solve these problems is to use latent representations as
the reconstruction target for the autoencoder. The latent representation is usually
taken from a pretrained method, has a fixed length, and contains a compact rep-
resentation of the input features important to the task of the pretrained method.
Using the autoencoder on the latent space has been proven effective in improving
the anomaly detection performance in image anomaly detection [71]. Following the
success of image anomaly detection, we introduced the use of the autoencoder
and latent space to both our previous method and our proposed method.

In our reconstructor, the autoencoder learns the representation of speeches
in a target emotion class from the latent representation z of the pretrained SER
method. The main strength of our reconstructor is the ability to learn a more spe-
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cific representation of the acoustic and textual information z as the reconstruction

target. z is a compact representation of features prominent in SER, enabling easy
reconstruction. zis transformed into a bottleneck representation v with the encoder
&, whereas the decoder D maps back the bottleneck representation into the recon-
structed latent representation z, where 0 and 0 represent the parameter set of an
encoder and a decoder, respectively. The reconstruction error of the reconstructor
is computed using the mean square error (MSE)

r=llz—2|?, (5.1)

where dim is the dimension of z.

5.2.2 Class decision

In reconstruction-based methods and in anomaly detection-based approaches, it
is common to determine whether data is of the target class or not on the basis
of the decision threshold. For example, the threshold used for the autoencoder
in Chapter 4 is obtained from the Gamma distribution [72] percentile value of the
training data. If the anomaly score exceeds the decision threshold, the data is
considered anomalous, and vice versa. It is possible to use the decision thresh-
old to decide whether the reconstructor result corresponds to the target emotion
class or not. However, integrating reconstructor results from each emotion class
obtained on the basis of the decision threshold would raise several issues, such
as the difficulty in determining the optimum decision threshold value for each re-
constructor and classifying a speech into exactly one emotion class. It can be said
that the reconstruction-based method has difficulties with class decisions as it is
not designed for classification tasks.

To solve these problems, we propose integrating the reconstructor results from
each emotion class and determining the emotion class of a speech without using
a decision threshold. First, we calculate ', which is the normalized reconstruction
error, defined as

,_lz—2)

o= 1A (5.2)
I
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1 N
p= >Nz~ Z” (5.3)
n=1

where p represents the average reconstruction error of the training data for the
target emotion class, z and Z represent the acoustic and text features in the latent
space and its reconstruction version, and N represents the number of data in the
training set. Then, we calculate »’ for each target emotion class. Finally, we select
the emotion class with the smallest »’ as the final result.

5.3 Experiments and results

5.3.1 Datasets

The dataset used to conduct the experiment is IEMOCAP, which is the same
dataset as Chapter 3 and 4. There are four classes (happy, sad, neutral, and
angry) with utterances labeled as excited also included to the utterances labeled
as happy. The experiments were performed in five fold cross-validation. The train-
ing set comprises four sessions, and the test set comprises the remaining one
session to ensure speaker independence. The F-score reported are based on the
combined results from all five folds, not from averaging the F-score in each fold.

The main difference is that the reconstructor from each emotions receive inputs
from the specific classes. For the reconstructor, we used the same five fold cross-
validation setting with the pretrained SER classifier. The reconstructor is trained
separately for each class, therefore the training set contains only speeches on the
first four training folds labeled as the designated emotion class for each reconstruc-
tor. On the other hand, the test set of each reconstructor uses the same dataset
as that for the classifier-based SER but with the labels on the designated class re-
main the same and the rest of the class is labeled as not of the designated emotion
class.
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5.3.2 Input features

The input features for this method follow from Chapter 3. The input uses an ex-
tracted 33-dimensional acoustic features consisting of 20-dimensional Mel-frequency
cepstral coefficients (MFCCs), 12-dimensional constant Q-transform (CQT), and
one-dimensional fundamental frequency (F0). All of the acoustic features are ex-
tracted using Librosa [62]. In addition, the input also used text features, which
were extracted from the ASR result on the input speeches using a recognizer pre-
trained with the Librispeech [60] dataset and Kaldi speech recognition toolkit [59].
Librispeech consists of approximately 1000 hours of speech sampled at 16 kHz.
The text features were encoded from the ASR texts using pretrained BERT [73],
which was trained from lower-case English texts. The pretrained BERT consists of
12-layer and 110M parameters, resulting in 768-dimensional textual features.

5.3.3 SER method and reconstructor specifications

The pretrained SER method consists of an acoustic feature extractor, a textual
feature extractor, and an emotion classifier. The specifications for the pretrained
SER method are the same as the one used in Chapter 3. The feature extractor
for both the acoustic and text features used one layer of BLSTM with 128 units,
a self-attention mechanism with 128 units for the acoustic feature extractor, and
the additional CM-based correction mechanism for the text feature extractor. The
resulting latent representation z from the base SER method is a 256-dimensional
vector consisting of a 128-dimensional vector from each of the acoustic and text
features. In the pretrained SER method, z is fed to an emotion classifier consisting
of a fully connected network with (256—64—4) units. The output of the pretrained
SER method is assigned to the softmax probability of the four emotion classes,
where the highest probability identifies the final emotion class. The pretrained
SER method uses softmax cross-entropy as the loss function. The optimizer is set
to Adam [63] with a learning rate of 0.0001 and a dropout of 0.2.

The reconstructor for each emotion class is an autoencoder consisting of nine
layers with (256—128—64—32—-16—-32—-64—128-256) units. The autoencoder is trained
with mean squared error as the loss function. The optimizer is set to Adam with a
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Table 5.1: SER performance characteristics (UA, WA) of our proposed method and
state-of-the-art methods. The symbol ‘" means that the value is not described in
the paper.

Method UA (%) | WA (%)
Neumann and Vu [74] - 56.1
Feng et al. [17] 69.7 68.6
Chen et al. [14] 75.3 74.3
Siriwardhana et al. [75] 75.5 -
Base SER method (Chapter 3) | 76.8 76.6
Wang et al. [66] 77.1 76.8
Proposed method 77.8 77.8

Table 5.2: SER performance characteristics (F-score) of our proposed method and
state-of-the-art methods. The symbol ‘= means that the value is not described in
the paper.

F-score (%)
Method Happy | Sad | Neutral | Angry
Neumann and Vu [74] 58.2 |[51.9| 52.8 | 66.5
Feng et al. [17] 69.1 [70.5| 61.0 | 77.3
Siriwardhana et al. [75] 771 |78.4| 64.7 | 81.9
Base SER method (Chapter 3)| 83.0 [77.6| 66.2 | 80.6
Proposed method 84.7 |79.3| 71.6 | 74.3

learning rate of 0.00001 and a dropout of 0.2. We evaluate the SER performance
using the average unweighted accuracy (UA), average weighted accuracy (WA),
and F-score of each emotion class. The pretrained SER method used as the fea-
ture extractor was taken from the highest WA of the test data out of 100 epochs.
In addition, the reconstructor for each emotion class, which is later integrated into
our proposed method, was taken from the highest F-score for the emotion class of
the test data out of 200 epochs.

5.3.4 Experiment results

Table 5.1 shows the UA and WA of our proposed method and state-of-the-art SER
methods. Our proposed method achieved UA and WA of 77.8% and 77.8%, re-
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spectively. These results indicate UA and WA improvement of 1.9% and 1.7% over
the base SER method, which achieved UA and WA of 75.9% and 76.1%, respec-
tively. Our proposed method outperformed the state-of-the-art SER methods in
terms of UA and WA.

Table 5.2 shows the F-scores of our proposed method and state-of-the-art SER
methods. Overall, the F-score shows the effectiveness of our proposed method of
SER based on reconstruction error, which is superior to the F-score of happy, sad,
and neutral classes of the base SER method by 3.1%—4.2%. Figure 5.2 shows the
confusion matrices for the base SER method and our proposed method. Similar
to the result of the F-score, our proposed method offers increased performance for
the happy, sad, and neutral classes in terms of accuracy. On the other hand, there
is a deterioration in the performance of the angry class, with many of the speeches
being incorrectly recognized as a neutral class. One of the possible reasons is that
the intermediate layer representation for the angry class is slightly harder to recon-
struct compared to the other emotion classes. Another possibility is the effect of
the resulting intermediate feature representation created from the feature extractor
trained in Chapter 3, favoring the improvement of the happy and sad class over the
angry class. Regardless, these results imply that the classifier-based SER meth-
ods and our proposed method have comparable overall performance but different
strengths regarding performance for each emotion class. Therefore, integrating our
proposed method with the classifier-based SER methods would potentially boost
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the SER performance.

5.4 Summary of Chapter 5

In this chapter, we introduced a novel training strategy to improve classification
tasks on imbalanced data conditions that frequently occur in practical situations.
We proposed a method by reconstructing the intermediate layer representations
of SER independently for each class using autoencoder, and then combine the
result using a simple class decision method that selects the emotion with the low-
est normalized reconstruction error. We made a comparison between SER us-
ing classifier-based methods and our proposed method. The experimental results
show that our proposed method shows the performance improvement in compari-
son to the classifier-based methods.



Chapter 6

Conclusion

6.1 Summary of this thesis

In this dissertation, we explained the importance of speech emotion recognition
and presented the challenges related to its practical use in real life. The first chal-
lenge addressed is the effects of ASR performance degradation due to emotions
and their influence on SER. The second challenge is training SER in practical con-
ditions due to the imbalanced number of speeches in each emotion class, with
many of the speeches being neutral. The third challenge is obtaining the balanced
amount of emotional data used to train a robust SER model. We introduced SER
methods based on classification and reconstruction to tackle these challenges.

In Chapter 3, we addressed the problem of ASR performance degradation in
SER using acoustics and text information. The result from ASR is beneficial for
practical use, especially for obtaining text information in real time. We proposed a
BLSTM- and self-attention-based SER method using SAWC with CM. The idea is
to mitigate the effects of ASR error on text feature extraction by reducing the weight
of the words with low CM, which are likely to be a speech recognition error, and to
emphasize the speech segments with low CM as segments with a higher probabil-
ity of containing emotion in the acoustic feature. By utilizing the information from
CM in ASR results and SAWC, our method can improve the SER performance.
Our method does not require fine-tuning of ASR to be robust to emotion; this fine-
tuning incurs a high computational cost and might lose the important emotional
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cues in the segments with speech recognition errors. The experimental results
demonstrated that our proposed method using SAWC in acoustic and text fea-
ture extractors improved the classification performance parameters UA and WA by
2.9% and 2.4%, respectively, compared with those of the basic SER method. In
addition, our proposed method outperformed the state-of-the-art SER methods.

In Chapter 4, we described the problem of SER for practical use, such as in
business situations where most of the speech is neutral. Although classification-
based SER methods have achieved high overall performance, these methods tend
to have lower performance for neutral speeches. To solve the problem and im-
prove the SER performance, we propose a neutral speech detector based on the
anomaly detection approach, which uses an autoencoder, the intermediate layer
output of a pretrained SER classifier, and only neutral data for training. The in-
termediate layer output of a pretrained SER classifier enables the reconstruction
of both acoustic and text features, which are optimized for SER tasks. We then
propose the combination of the SER classifier and the NSD used as a screening
mechanism for correcting the class probability of the incorrectly recognized neu-
tral speeches. Experimental results using the IEMOCAP dataset confirmed that
the NSD has sufficient reliability as an input to the screening mechanism, and
the screening mechanism achieved show significant improvement of 12.9% in the
F-score of the neutral class to 80.3%, and 8.4% in the class-average weighted
accuracy to 84.5% compared with the state-of-the-art SER classifiers.

In Chapter 5, we observed the problem related to the difficulty of obtaining
emotional speeches, particularly in business conversations. Most of the existing
SER methods are the classification-based method, which has some limitations, in-
cluding maintaining the balance of the training data and the difficulty in handling
additional emotional classes; it would be more difficult to add new emotion classes
or to retrain the classifier from scratch. We proposed a novel training strategy for
an imbalanced dataset based on the reconstruction error of acoustic and text fea-
tures in latent space. The reconstructor for different emotion classes, including
the neutral class, is used. The proposed method selects the emotion class with
the lowest normalized reconstruction error as the SER result. Unlike the classifier
approach, one reconstructor is dedicated to each emotion class and trained using
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only the data of the target emotion class. The main advantage of this method is
the possibility of training the reconstructors of each emotion and augmenting the
data for each emotion independently, reducing the dependency on the amount of
data required for each emotion. Our experimental result obtained using the IEMO-
CAP datasets confirmed that our proposed method based on the reconstruction
approach improves the overall SER performance by 1.9% on the UA and 1.7%
on the WA for the IEMOCAP dataset, slightly outperforming most state-of-the-art
methods based on the classification approach. In addition, the proposed method
improved the SER performance for most emotion classes in terms of the F-score.

6.2 Future perspectives

We have proposed several methods for addressing problems related to SER and
its improvement in fulfilling the conditions for practical situations, but there are still

room for improvement.

* Reconstruction methods are, as the name implies, basically aimed to recon-
struct the input feature representation with a minimum difference. There-
fore, the reconstruction methods employed in this study can be used for data
augmentation. Applying the proposed method to augment SER intermediate
layer representation would be prospective to improve SER performance.

» The method of reconstructing the latent representation of acoustic and text
features proposed in the thesis still relies on simple class decisions. This
method is still unstable depending on the performance of the reconstructors
of each emotion class. Other class decision methods, such as machine learn-
ing or neural network-based class decision methods, should be observed to
alleviate this problem.

» Practical uses consider the computational time and cost, which should be as
low as possible. However, adding the reconstruction step for the SER incurs
extra computational time. Since the SER used to extract the feature in the
proposed method is pretrained, and the reconstructors are independent for



6.2 FUTURE PERSPECTIVES 67

each emotion, the proposed method would benefit from parallel processing

for each component, which we will investigate in the future.

* The proposed method has been verified using the IEMOCAP dataset, in
which the data is slightly imbalanced. However, as the proposed methods
based on reconstruction in Chapter 4 and Chapter 5 are to solve the im-
balanced test dataset and imbalanced training dataset, respectively, the ef-
fectiveness of the proposed methods should be verified in the imbalanced
dataset condition.
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