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Abstract

Complex multi-dimensional data containing both spatial and temporal information can be rep-
resented by tensors. Widely used in fields where such data needs to be treated in a unified way
(e.g. mechanics, electrodynamics, neural networks), the very general tensorial representation lends
to the use of well-defined mathematical operations from multilinear algebra. This leads to not only
computationally efficient representational and analytic methods, but to ones that might be general-
ized to numerous application scenarios. There are various approaches to dealing with tensor-valued
data; often they include extensions of classical statistic and machine learning tools from vector-
or matrix-valued data. Notable examples include extending Principal Component Analysis (PCA)
to Multilinear Principal Component Analysis (MPCA), Canonical Correlation Analysis (CCA) to
Tensor Canonical Correlation Analysis (TCCA), and Linear Discriminant Analysis (LDA) to Mul-
tilinear Discriminant Analysis. Most of these methods rely on tensor decomposition in order to
bridge the gap between linear and multilinear algebra. One common approach is to first decom-
pose and then unify each tensor from a dataset into a single point on non-Euclidean space called
product Grassmann manifold (PGM). In this way, a simple and compact representation is achieved,
and discriminative analysis can be performed using distances between the points on the PGM. The
downside of this approach is that, most often, it does not take into account the underlying nature of
tensor data; namely, it does not distinguish spatial from temporal information, and treats them in
the same way. In applications where sequential context is crucial, this loss of temporal information
leads to a degradation in performance. In this thesis, we develop a general approach for representing
and analyzing spatio-temporal tensors, and show their application to the task of action recognition.
First, we address the key issues of PGM representation by explicitly modeling temporal informa-
tion from spatio-temporal tensors. This is achieved by first representing the temporal tensor mode
with a Hankel-like matrix, followed by a sequence-preserving linear subspace encoding which can
be seamlessly unified with PGM representation. We showcase this representation, named Product
Grassmann Manifold with Hankel-like Embedding (PGM-HLE), through tasks of visualization and
clustering of spatio-temporal datasets, concretely those containing human actions. Second, we
greatly improve this representation by incorporating the randomized generalization of Hankel-like
matrices, and develop a classification algorithm, Temporal-Stochastic Product Grassmann Manifold
(TS-PGM) which we demonstrate on the task of gesture and action recognition. Finally, we develop
discriminative extensions to TS-PGM by using (1) kernel mapping to handle non-linearity in the
data and (2) projection on generalized difference subspace (GDS) to reduce overlap between class
subspaces.
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home, sharing memories when they were most needed, and keeping me in line when I complained
too much; thanks to all my other friends who have not forgotten me during these years. Special
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Chapter 1

Introduction

It has become common knowledge that technological advances are exponential, and that any ad-
vance opens up avenues for further development and expansion, not only in the field in which the
advance occurred, but also in its adjacent fields. For example, the rise of computer science and
computational devices has opened up previously unimaginable advances in classical scientific fields
such as mathematics, physics, chemistry, medicine, etc. This allowed for breakthroughs to occur in
those fields, which spill over and affect their adjacent fields, often in a circular fashion.

One such phenomena can be observed in the context of data and data processing. In recent years
there has been a significant shift in the approach to handling data in virtually every technological
and scientific field. Advances in sensor technology led to increasing availability of various types of
increasingly complex data from real-world, and even simulated phenomena. This in turn created a
need for a wide array of methods which are able to consume and process such data. If such methods
are proven successful, new findings could lead to further breakthroughs and advancements. Thus,
the task of processing increasingly complex data becomes paramount for the future development of
any scientific field.

Sometimes it can be difficult to intuitively understand what construes complex data. Take camera
sensors for example. Not very long ago only black-and-white photographs were available, comprised
entirely of black and white pixel data. Then, color information was added to each pixel, as well as the
ability to record a succession of such images in the form of a video, adding movement information.
Various other forms of imaging have been developed as well, such as thermal and hyperspectral
imaging, depth imaging, specialized medical imaging, and so on. Each new development adds more
information and context, which can be critical for a given application. Accordingly, computational
representations of such data grow increasingly complex, from a simple matrix of pixels, to multi-
dimensional arrays containing color and depth information that change over time.

Multi-dimensional data can now be found in every scientific field, from image and video process-
ing, hyperspectral and medical imaging, signal processing, internet data processing, recommendation
systems, and many others [44, 75, 97, 130, 84, 11, 119, 92, 42, 76]. This, as mentioned before, calls
for increasingly sophisticated data representation and processing methods, ones that are, most of the
time, not trivial to implement. Another issue is that such methods are generally tailored to a specific
application, and cannot be generalized to a broad set of tasks, even in the same domain. Thus, a
lot of time and effort is spent implementing highly-specialized methods when a more generalized
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Figure 1.1: Examples of tensors and their modes. On image (a) a spatio-temporal tensor in the
form of a video is shown, containing two spatial modes and one temporal mode. Image (b) shows
a hyperspectral image, another example of a multidimensional data point; this tensor contains two
spatial modes and one spectral mode.

approach could provide the same performance, with the added benefit of being employable on dif-
ferent tasks. Of course, one could argue that developing generalized methods is even more difficult
and time-consuming, as it requires strong theoretical background and a very good insight into all
the possible use cases. Even when successfully developed, a generalized method often needs to be
fine-tuned to a specific task in order to be usable at all, which again requires time and effort.

In this thesis we argue that there exists a middle-ground between these two extremes; a more
balanced approach than a fully general or highly specialized one. It is possible to pick such a starting
point which distances the author from a specific application just enough to provide a decent amount
of generalizability without greatly sacrificing performance, while also not pushing them too far away
into the realm of pure theory. One way of achieving this is to find a key representation for a family
of problems, and focus on developing an array of techniques that deal with such a representation.

An interesting family of problems is video data processing, in the context of human gesture
and action recognition tasks. These tasks have increased in importance in recent years, with the
abundance of video data generated from various digital cameras, including, but not limited to,
smartphones, CCTVs, webcams, car dash cameras, etc. In almost all of these videos, of utmost
interest are human actions. There are many examples of such applications, including monitoring
pedestrians crossing a street, detecting sign language or emotion from a webcam, spotting anomalies
in human behaviour in order to prevent injury or harm to other people, detecting sports movements
and patterns for analytical and entertainment purposes, and many others. The key aspect of this
data is that it contains both spatial and temporal information - movement is essentially a change of
position across time.

Complex multi-dimensional data containing both spatial and temporal information can be natu-
rally represented by tensors. Widely used in fields where such data needs to be treated in a unified
way (e.g. mechanics, electrodynamics, neural networks), the very general tensorial representation
lends to the use of well-defined mathematical operations from multilinear algebra. This leads not
only to computationally efficient representational and analytic methods, but to ones that might be
generalized to numerous application scenarios. Videos are especially well-suited for representation
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with high-order tensors by the virtue of having at least two spatial and one temporal dimension, and
the intuition that the interplay between these dimensions contains vital information.

A tensor is essentially a multi-dimensional array, where the number of indices used to access
an element of the tensor correlates with the order of such a tensor. For example, a pixel in a
grayscale video can be accessed by three indices (x-coordinate, y-coordinate, and the number of the
frame), making it a third-order tensor. Tensors can be regarded as a generalization of vectors and
matrices, where vectors are first-order tensors, and matrices are second-order tensors. Examples of
spatio-temporal and hyperspectral tensors are shown on Figure 1.1

However, most methods in machine learning deal exclusively with vector or matrix-valued data.
Often, a multi-dimensional data point is preprocessed in such a way to fit the form of a vector or
matrix, to enable the application of a standard machine learning recognition method. This breaks
apart the inherent multi-dimensional structure of the data point and incurs a loss of information, which
might degrade recognition performance. In the case of videos, such treatment may break spatial
and temporal connections of pixels. Another problem is the exponential increase in dimensionality
of feature space when a tensor is vectorized; a 100x100 resolution video with 30 frames becomes a
300, 000-dimensional vector. This leads to an issue commonly known as the curse of dimensionality;
dealing with such high-dimensional vectors is computationally expensive, and often does not work
due to lack of training data for a very specific application.

There are studies and methods that attempt to deal with tensors in their original form and
circumvent these issues. In this thesis, we would like to contribute to the field of tensor analysis
by proposing general representational methods for spatio-temporal tensors. Our key idea is that
with this approach, it is possible to strike the fine balance between general and highly-specific, and
propose a set of tools based on tensor representation and multilinear algebra which can be used for a
whole range of applications dealing with spatio-temporal tensors, such as human gesture and action
recognition.

To this end, we first provide a survey of tensor analysis methods in the next section which are
of special interest, and discuss some of their problems. We then position our proposed methods
alongside established work.

1.1 Evolution and overview of tensor analysis methods

It was not immediately obvious to the scientific community that tensor representation is necessarily
well-suited for complex, multilinear data. However, over the past three decades, continuous research
on data representation and pattern analysis methods has naturally led to such a conclusion; as a
result, a plethora of tensor-based methods have been developed, for an equally numerous array of
applications.

It is prudent to first consider the versatility of tensor representation, and consequently, tensor-
based methods, before delving into the survey. Initial efforts were made in standard pattern recogni-
tion tasks such as face recognition [125, 69, 68, 40, 126, 127, 64] and 3D object recognition [87]. It
made sense due to natural representation of images as matrices of grayscale pixels, i.e. second-order
tensors, and 3D objects as third-order tensors. Quickly, these efforts spilled over to other computer
vision recognition tasks such action and gait recognition from videos [10, 28, 63, 66, 110], where
videos are viewed as second-, third- or higher-order tensors; further, sequences of 3D skeletons for
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3D skeleton action recognition [4, 53] are also easily modeled by higher-order tensors. Not surpris-
ingly, tensors were soon found to be very useful for processing data other than standard images and
videos, such as hyperspectral cubes [85], and fMRIs [34], as well as other various tasks including
image compression and retrieval [128, 36], texture rendering [115], and space-time super-resolution
[94].

Fields other than computer vision have seen a rise in tensor-based methods. Signal processing,
for example, a field rich with multichannel and multi-source signal data has seen various tensor-
based methods [97, 12]. Another significant branch of computer science greatly benefiting from
tensorial representation is data mining [105, 106, 83], where significant work has been done to
discover underlying correlations between individual dimensions of multi-dimensional data. Other
than that, tensors were found handy to process biological data such as EEG signals [57, 67] and DNA
sequences [129]. There has even been work on music genre classification [81]. Finally, tensors have
found their use in solving general regression problems [29], parameter estimation for latent variable
models [1] and many others not covered in this thesis.

In this section we will briefly cover the evolution and generalization of pattern recognition
methods from firstly relying on pure vector representation, to utilizing matrices when they seem a
natural choice for data representation, to finally considering higher-order tensors. Then, we delve
into several tensor-based methods of particular note and interest to our research direction; this allows
us to position our method and its contribution alongside established work.

Note that we mostly restrict our survey to tensor-based methods for computer vision tasks,
particularly those involving video data in general, and action or hand gesture sequences in particular,
to keep in line with our main research goal.

1.1.1 From linear to multilinear perspective on data

The history of pattern recognition methods based on linear algebra and second-order statistics. In
this subsection we cover the most notable methods related to our proposed research. Figure 1.2
depicts some of those methods, along with their relations to each other.

Principal component analysis (PCA) [16] and linear discriminant analysis (LDA) [3] are
among the first methods used for various pattern recognition tasks. Certainly, they have become
extremely influential to the landscape of pattern recognition and machine learning. The shared
philosophy behind PCA and LDA is relatively simple: given a set of data points, find orthogonal
projections (principal components) whose linear combinations explain most of the variability of the
data set. They differ, however, in their approaches: PCA is an unsupervised approach, meaning
there is no prior knowledge or concept of the data point belonging to a certain class; LDA is a
supervised approach, where the concept of class exists and data points are split among several
classes, with projections being optimized so that they achieve the best separability among classes.
There are various ways to obtain principal components, but usual approach is through eigenvalue
decomposition (EVD) or singular value decomposition (SVD).

Both methods assume that a data point is represented by a single vector. One of the first
applications of PCA was through Eigenfaces [111] for the task of face recognition. A set of images,
each image represented by a vector, is processed and decomposed through eigenvalue decomposition.
Resulting eigenvectors, or principal components, are then used as projective vectors for images to
create a new feature space, one that is significantly reduced in dimension. A linear classifier is
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Figure 1.2: A simplified map of key pattern recognition methods ranging from linear to multilinear
approaches. Arrows indicate predecessor-successor relationship, while dotted lines indicate joint
underlying concepts. Extensions and application-dependent modifications of methods have been
omitted from the map.

then trained on these projected images. However, the Eigenfaces method has been shown to exhibit
vulnerability to changes in illumination, pose, and other variations other than the identity of the
face. Thus, it was quickly surpassed by many other methods; however, it served as a philosophical
cornerstone for a plethora of methods on the basis of PCA. A supervised version of this method,
called Fisherfaces [6], has been implemented to combat the lack of discriminability, following the
philosophy of LDA. Further, due to LDA being a linear method, it may sometimes fail to capture well
the more complex distributions of data in the feature space; kernel techniques such as Kernel Direct
Discriminant Analysis (KDDA) [69] are used to address this issue, which work by applying a kernel
trick to transform the feature space from a linearly non-separable space to a linearly-separable space.

In general, approaches based on PCA and LDA suffer from two drawbacks regardless of the
application scenario. First, reorganizing data to fit the vector form often yields vectors of very
high dimension, giving way to a curse of dimensionality, where it becomes exponentially more
difficult to obtain good prediction performance as the number of dimensions increases; sometimes
this exacerbates the small sample size problem in applications where not a lot of data is available.
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Second, the act of reshaping initial data structures to vector form potentially breaks apart data
cohesion. This led to development of first methods utilizing matrices instead of vectors, such as two-
dimensional PCA (2D-PCA) [126], two-dimensional LDA (2D-LDA) [60, 58], two-dimensional
Fisher Discriminant Analysis (2D-FDA) [52] and their extensions and various modification for
specific applications.

2D-PCA [126] is among the first attempts to generalize PCA to non-vector data. It forgoes vector-
based description of images in favour of matrices. Though this idea sprang from computer vision,
it is possible to generalize to other types of data; the main idea is that when a data point naturally
represented a matrix is transformed into a vector, the correlations between elements break down
and a data loss is incurred. 2D-PCA introduces a method for computing a covariance matrix from
matrices instead of vectors, as is done by regular PCA. Then, the covariance matrix is decomposed,
via eigenvalue decomposition or SVD, as in regular PCA and principal components are obtained
as eigenvectors; eigenvectors corresponding to highest eigenvalues explain most of the variance
of the data. This process is less computationally expensive as the decomposition is executed on a
significantly smaller covariance matrix; besides, a preprocessing step of converting images to feature
vectors is not required. Though 2D-PCA partially succeeded in moving data representation from
vectors to matrices, it is worth noting that resulting principal components are still vectors, therefore
some of the interpretability is lost as original data is in matrix form. This also means that variation
along only one matrix axis is captured, so a certain information is incurred.

There are several extensions to 2D-PCA throughout the literature that try to address some of
its problems. One of them is alternate 2D-PCA (2PCA) [131] which addresses the problem of
2D-PCA that occurs when obtaining principal components; 2D-PCA obtains them row-wise, while
2PCA allows for column-wise principal components. Experimental results have shown though, that
there is no significant increase in performance if column-wise principal components are chosen over
row-wise principal components. Another method is Extended 2D-PCA (E2D-PCA) [86] which
utilizes both the row and column orientation simultaneously, but again with limited improvement.
Finally, Color PCA [98], attempts to address a general flaw of matrix-based image representation,
where only grayscale values of pixels are used and color information is lost. Namely, in Color
PCA the three image matrices (each representing one color channel) are concatenated and 2D-PCA
proceeds as usual; this resulted in only slight improvements.

Analogously, there are several attempts to generalize LDA into 2D-LDA. One [60] proposes an
iterative method to solve a version of the Fisher criterion and find Foley-Sammon optimal set of
discriminant vectors. It does not always have the best result, as there is no closed-form solution to
the optimization problem, unlike in the case of regular LDA. Another one [58], more successfully,
tries to solve the Fisher criterion through between-class and within-class scatter matrix optimization,
though it is also an iterative algorithm with no theoretical guarantees for convergence. Following
the same idea of between-class and within-class scatter matrices, a 2D-FDA [52] has been proposed,
where features are extracted with FDA instead of PCA before solving the Fisher criterion.

The first true tensor-based methods have been developed on the backs of multilinear algebra
and higher-order statistics; their aim was precisely to deal with problems that come from repre-
senting multidimensional data with vectors and matrices by using higher-order tensors. Previously
mentioned methods are based in classical linear algebra and second-order statistics; tensor-based
approaches are based in multilinear algebra and higher-order statistics. The research direction
born out of this basis is often referred to as multilinear subspace learning. As before, the first of
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these methods were developed for face and action recognition, before spreading to other application
domains.

TensorFaces [114] is a tensor-based extension of PCA, mainly used for the task of face recog-
nition. It aims to address the downsides of regular PCA such as inability to handle variations in the
data; the key idea is that decomposing tensors will be able to account for such variation. Technically,
the entire set of faces is represented by a higher-order tensor, where each dimension of the tensor
corresponds to a certain variability: person, illumination, pose, etc. Then, an n-mode SVD [50]
is used to decompose and obtain principal components for each of the tensor modes, i.e. each of
the variables of faces. This is one of the first methods to introduce n-mode SVD, a method often
used by the methods that follow. Unfortunately, the proposed n-mode SVD is not a ”true” tensor
SVD, considering it lacks some properties of regular matrix SVD, however, it is a step in the right
direction. Another problem with Tensorfaces is that they are not constructed with discriminative
methods in mind; therefore, they lack the classification capacity in some regard. Finally, the images
are still treated as vectors, just like in original PCA.

Some of the issues of TensorFaces were addressed by the introduction of TensorPCA and its
discriminant version, TensorLDA [9]. Firstly, these methods addressed the problem of representing
images as vectors; instead, each face/image is modeled as a 2D tensor (2nd-order tensor) and is able
to retain the spatial correlations of pixels. The underlying framework is similar between TensorPCA
and TensorLDA; the main dfference is in their unsupervised and supervised nature respectively. The
key idea is the following: suppose an image to be a 2D matrix (2nd-order tensor); there exists a tensor
subspace such that when projecting the original image onto it, most of the variability of the image
is retained. This concept is analogous to standard PCA; the only difference is that in PCA, principal
components are vectors, whereas in TensorPCA and TensorLDA, the ”principal components” are
matrices. In the case of TensorPCA, tensor subspace is found by solving an optimization problem
with the main goal of reducing reconstruction error. On the other hand, TensorLDA utilizes an
approach to regular LDA, where between-class and within-class matrices are used to achieve best
separability. In both methods, distance between two images (two matrices) is defined as a Frobenius
norm. These approaches resulted in much lower computation time due to significantly reduced
dimensionality, while achieving better classification results. However, both methods are tested only
on face recognition task, and may fare poorly on more complicated tasks, especially those factoring
data which is not easily linearly separable.

However, a multilinear PCA (MPCA) [64, 65] has been developed which generalizes PCA
for higher-order tensors. The key idea of MPCA is to find a tensor projection that maximizes the
total tensor scatter, i.e., the projection that captures most of the input tensor variance, analogously
to the objective of regular PCA. The MPCA approach is iterative, and assumes, like PCA, that the
dimension of reduced space is known ahead of time. However, in most problems determining this
dimension is a non-trivial task; thus, MPCA includes a term in its objective function for finding an
optimal subspace dimension based on the wanted amount of compression. MPCA has been proposed
as a feature extraction mechanism for the task of object detection and recognition; extracted MPCA
features can be used with LDA to perform classification.

MPCA is often used along with other techniques to tackle various problems. For example, a
boosting algorithm is used to learn an ensemble of MPCA-generated tensor subspaces for the gait
recognition problem [63]. A different boosting method utilizes MPCA features to learn several
weak LDA learners which work in unison to produce a strong classifier [66]. One method combines
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random subspace method [37] with MPCA to reduce the number of selected features and thus
increase computational efficiency [118]. An unsupervised variant has been developed [120] as well,
with the aim to increase robustness to variability in the dataset, and also to incompleteness of the
dataset.

Multilinear Discriminant Analysis (MDA) [125], sometimes referred to in literature as Dis-
criminant analysis with Tensor Representation (DATER), has been proposed as a multilinear gen-
eralization of PCA and LDA. The motivation came from the core idea of 2D-PCA in representing
objects with higher-order tensors; though, while 2D-PCA represents images with matrices, MDA
takes this one step further and considers higher-order tensors in general. It is a general approach
which has been primarily utilized on computer vision problems such as face recognition. MDA
formulates a discriminant tensor criterion (DTC) and a k-mode optimization algorithm; they are
used in tandem to maximize the between-class scatter matrix and minimze the within-class scatter
matrix. It follows the same philosophy as that of LDA, with the main difference here being that
instead of a vector-based metric, a tensor-based one, DTC, is used for optimization. However, one
downside of this algorithm is uncertainty of convergence; namely, there are no guarantees that the
optimization will find a suitable result. In addition, finding an optimal number of dimensions during
the dimensionality reduction step remains an open problem.

Tensor-based methods have not only been used for regular image or video data. An example is
classification of hyperspectral data done in [85], where a generalization of PCA is used to decompose
tensors representing hyperspectral data, containing two spatial modes and one spectral mode. On
the other hand, they are also used to represent similarities/differences between complex data such
as fMRI images in [34], which are then decomposed and used in an SVD classification method. In
[127] a step has been made towards treating a set of images as a sequence of matrices, rather than a
set of vector merged into a matrix. The set of matrices is then approximated with matrices of lower
rank to improve compression and retain only important information; however, the solution is not of
a closed-form, but iterative instead, and does not guarantee convergence.

One glaring downside of most of previously mentioned methods is that tensors are not explicitly
used to represent each complex data point; instead, they are mostly used as a representation for the
whole set of data, or some advanced features extracted from the dataset which contain information
relevant to the application domain. In the following section we cover methods that treat data points
as tensors, and are of more interest to our research.

1.1.2 Representing data points with tensors

First tensor-based methods build upon general ideas dimensionality reduction and linear separation
of PCA and LDA. However, as mentioned many times before, the key point of tensor-based methods
is to represent individual data points as higher-order tensors, whereas most machine learning methods
work only with vectors. To address this gap, however, they took some insights from fields of pattern
set recognition and pattern set matching, such as subspace methods [17], and modified them to work
for tensors. For instance, a video can be viewed as a set of images; the whole set can be decomposed
with PCA and represented by its principal components, and then compared to another video by
measuring similarities of their respective principal components.

This very simple concept has led to development of several methods for classification of video
data, mainly for tasks of hand gesture and action recognition. Two notable examples are based
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on Canonical Correlation Analysis (CCA) [35], named Tensor Canonical Correlation Analysis
(TCCA) [49] and Discriminant Canonical Correlation (DCC) [47]. The core idea of these
methods lies in extending the concept of CCA from finding canonical correlations between two
sets of vectors to finding correlations between two multi-dimensional arrays, namely higher-order
tensors.

Tensor Canonical Correlation Analysis (TCCA) [49] is a classic tensor-matching method
applied to action recognition, which achieves the generalization of CCA by factorizing the tensors
into sets of matrices from tensor modes and finding canonical correlations between them. It
essentially executes 6 CCA processes, split into two categories: joint-shared-modes (tensors share
two modes and CCA is executed on the remaining mode) and single-shared-modes (tensors share
one mode and CCA is executed on the remaining two modes). This generates 6 sets of features,
which are then selected and optimized using weak learners and AdaBoost [15] boosting algorithm.
Feature selection is an important step in TCCA as features obtained from different tensor modes
contain different spatio-temporal information, and are not equal in terms of discriminative power.
The final selected features are classified using a nearest neighbour classifier. TCCA assumes that
tensors to be matched are of same dimension or shape, a common assumption shared by many tensor
matching methods. This can pose some problems for action recognition, in cases of varying video
lengths, different camera size, etc., which are usually dealt with extensive preprocessing steps.

Discriminant Canonical Correlation (DCCA) [47] is an evolved version of the TCCA which
utilizes a discriminative mechanism, as well as advanced hand-crafted features. After factorizing
the tensors, discriminative projection matrices are learned through an algorithm analogous to to
Linear Discriminant Analysis (LDA) [48]. This operation minimizes between-class correlations and
maximises within-class correlations, greatly increasing the classification performance in the newly
created feature space. Additionally, SIFT [62] features are extracted from the spatio-temporal tensors
to significantly increase representational power and robustness to changes in scale and rotation. They
use edge-based features in contrast to intensity-based features of regular grayscale image pixels, and
in most applications are shown to be a better choice. DCC is a good example of a simple extension
to the base method of TCCA, yet one that yields high increase in performance. TCCA and DCC are
related to PCA through the fact that they compute similarity between two tensors based on respective
principal components (canonical vectors) of factorized tensor modes.

Previously discussed methods, though they have a tensor-first approach, mostly rely on statistical
analyses to achieve good recognition performance. This approach is completely in line with tradi-
tional pattern recognition methods such as PCA and LDA. However, an argument could be made
that tensor representation allows for a geometric interpretation of subspaces obtained from their
decompositions. Such approach could yield more nuanced analysis of individual factors of each
tensor mode.

This interpretation is explored by several methods, with the key idea of viewing subspaces as
elements of special manifolds, Stiefel and Grassmann manifolds. These methods include Tangent
Bundle (TB) [73, 70], Product Grassmann Manifold (PGM) [74, 72] and n-mode Generalized
Difference Subspace (n-mode GDS) [25].

Tangent Bundles (TB) [73, 70] is a method which explores the geometrical interpretation of
tensors. Its key idea is that a data tensor is related to a tangent bundle on a special manifold such as
Stiefel or Grassmannian. A tensor is decomposed using High-Order Singular Value Decomposition
(HOSVD) into a set of matrices; these matrices are then projected onto a space tangent to a special
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Figure 1.3: A map of related concepts and methods. We position our proposed methods (green)
alongside tensor (orange) and manifold (yellow) based methods.

manifold, through the manifold charting operation. To perform classification, an intrinsic distance
metric based on tangent bundles is used in a nearest neighbour fashion; there is no training required.

A similar approach using HOSVD is Product Grassmann Manifold (PGM) [74, 72]. In PGM,
the key idea is to represent tensors as single points on non-Euclidean space called product Grassmann
manifold. Tensors are decomposed into modes, each belonging to a factor Grassmann manifold.
These factor Grassmannians are unified through a product manifold termed Product Grassmann
Manifold. This results in a mapping of tensor structures to respective points on PGM. Thus, further
analysis can be performed using geodesic distance, which is intrinsic to the product manifold. A
least squares regression is defined on the product manifold, using its geodesic distance, and is used
for classification purposes.

Following the same idea of PGM representation and expanding it with discriminative ability,
n-mode GDS [25] has been developed. The key idea here is to apply a Generalized Difference
Subspace (GDS) [18, 19] projection just before unifying factor manifolds on the product manifold.
The projection is done for each manifold separately; it orthogonalizes subspaces created from
tensor modes, removes overlap between them and thus increases discriminative capability of the
representation. Similar to some other tensors methods that rely on tensor factorization, the authors
of n-mode GDS added a weighing mechanism to tensor based on a modified Fisher criterion. They
have developed a Fisher criterion which factors tensors instead of vectors, as well as an optimization
algorithm for such criterion. Then, they are able to learn the a set of weights which achieves best
classification performance on a certain dataset.

The downside of PGM and n-mode GDS is that it does not take into account the underlying
nature of tensor data; namely, it does not distinguish spatial from temporal information, and treats
them in the same way. In applications where sequential context is crucial, such as ordering of frames
in a video, this loss of temporal information potentially leads to a degradation in performance.

The work proposed in this thesis is heavily inspired by previously discussed methods. However,
we would like to position our methods at the intersection of tensor, manifold and subspace based
methods, depicted on Figure 1.3. Like the above-mentioned tensor-based and manifold-based
methods, our proposed method is rooted in the tensor decomposition. However, we do not utilize
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CCA like TCCA and DCC do; instead, we perform our analysis on the product manifold. While PGM
and n-mode GDS also use product manifolds to achieve good results on tasks such as gesture and
action recognition, they treat all tensor modes equally. On the other hand, in our proposed methods
we explicitly model the temporal information contained within the spatio-temporal tensor, and
consider it as another factor manifold. Though many methods rely on advanced feature extraction,
we do not; our primary goal is not to achieve the best possible performance in a specific task, but
rather to develop a generalized representation technique for spatio-temporal tensors.

1.2 Objectives

In this thesis, we aim to develop a general approach for representing and analyzing spatio-temporal
tensors, particularly videos, and show their application to the task of action recognition. The proposed
methods should be general enough to be extendable and used for various other applications, so long
as they factor spatio-temporal tensors; however, it should not veer too far into the theoretical side so
as to be very difficult to adapt to new applications. Therefore, we propose methods based on sturdy
theory developed in previous work related to tensor decomposition and product manifold geometry,
while taking into consideration specific characteristics of spatio-temporal tensors.

1.3 Contributions

In this section of the thesis we outline our two main contributions to the fields of tensor analysis and
subspace methods.

As our first contribution, we develop a representation technique for spatio-temporal tensors
called Product Grassmann Manifold with Hankel-like Embedding (PGM-HLE). This is a general
representational approach which can be used for a wide variety of tasks factoring spatio-temporal
tensors. We address the key issues of product Grassmann manifold representation by explicitly
modeling temporal information, by first representing the temporal tensor mode with a Hankel-
like matrix, and then encoding it with a subspace which we term Hankel-like Embedding. This
special subspace preserves temporal information, and can be seamlessly unified with standard
PGM representation. We show the utility of our representation on data exploratory tasks such as
visualization and clustering of spatio-temporal tensor datasets, with a focus on human gesture and
action recognition.

As our second contribution, we develop a classification framework called Temporal-Stochastic
Product Grassmann Manifold (TS-PGM), with several extensions. We greatly improve the Hankel-
like Embedding from our previous work and address its memory and performance issues. This
is achieved by creating its randomized generalization, Temporal-Stochastic Tensor (TST) features,
which can also seamlessly be used with PGM to create a good representation for spatio-temporal
tensors. Then, such representation is used by the TS-PGM framework for the purposes of classifica-
tion in the tasks of human gesture and action recognition. Additionally, we develop discriminative
extensions to TS-PGM by using (1) kernel mapping to handle non-linearity in the data and (2)
projection on generalized difference subspace (GDS) to reduce overlap between class subspaces;
either extension can be used individually or in combination with the other one for maximum increase
in classification performance.
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Figure 1.4: Organizational map of the thesis. For best reading experience, readers are advised to
follow the path indicated by full lines: reading all chapters, starting with Chapter 1 and finishing
with Chapter 5. However, Chapters 3 and 4 are written independently from each other, allowing
readers to study only the one they are interested in, without significant loss of context.

In summary, we offer contributions to the field of tensor analysis by leveraging key ideas of
subspace-based methods, with an explicit focus on preserving temporal information. Our proposed
representational methods are evaluated in standard applications such as visualization, clustering and
classification on datasets containing human gestures and actions.

1.4 Thesis organization

The rest of this thesis is organized as follows.

• In Chapter 2, we cover the theoretical concepts and tools that serve as the basis of our work:
tensors and tensor unfolding; linear subspaces and their connection to Grassmann manifold;
and conclude with product Grassmann manifold, unifying all previous concepts and laying
the foundation for our main contributions.

• In Chapter 3 we introduce Product Grassmann Manifold with Hankel-like Embedding (PGM-
HLE), a representational method for spatio-temporal tensors, along with its application to
exploratory tasks such as dataset visualization and clustering.

• In Chapter 4 we introduce Temporal-Stochastic Product Grassmann Manifold (TS-PGM), a
classification framework for spatio-temporal tensors, and its discriminative extensions. We
then showcase these frameworks on tasks of hand gesture and action recognition.

• In Chapter 5 we conclude the thesis by summarizing the achieved results and offering sugges-
tions for future work.
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Chapter 2

Theoretical background

In this chapter we introduce the theoretical building blocks for the approaches proposed in this
thesis. First, we introduce the general concept of tensors, focusing on its key attributes, and the
cornerstone operation of tensor unfolding. Next, we cover basic terminology and assumptions of
subspace methods, followed by their connection to manifold theory. Finally, we explore the product
Grassmann manifold approach to tensor representation, and weigh its advantages and disadvantages
in the context of this thesis’ main objective.

The common notation used in this thesis is as follows: scalars are denoted by lowercase letters
and sets are denoted by uppercase letters. Vectors and matrices are denoted by boldface lowercase
and uppercase letters respectively. Tensors are represented by calligraphic letters, i.e., X , and
subspaces are denoted by script letters, i.e., 𝒫. Given a matrix 𝑨 ∈ R𝑤×ℎ, 𝑨⊤ ∈ Rℎ×𝑤 represents
its transposed matrix.

2.1 Tensors

Tensors are multidimensional arrays; formally, an 𝑛-th order tensor is an element of the tensor product
between 𝑛 vector spaces. The order of the tensor denotes the number of dimensions which can be
indexed. It can be helpful to view higher-order tensors as generalizations of vectors and matrices,
which are first-order and second-order tensors, respectively, as depicted on Figure 2.1. Often, in
literature order is used synonymously with mode or way; however, it can cause confusion to use the
terms interchangeably. Therefore, in this thesis we use mode to refer to a specific dimension of a
higher-order tensor, i.e. first mode denotes the first dimension of a higher-order tensor.

Tensors are used to represent a variety of multi-dimensional data. One interesting type of tensors
are spatio-temporal tensors, containing spatial and temporal information. In this thesis, we mainly
focus on such spatio-temporal tensors of the third-order as the means of depicting grayscale video
data. Consider a spatio-temporal tensor X ∈ R𝑑1×𝑑2×𝑑3 . Dimensions (modes) of sizes 𝑑1, 𝑑2 and
𝑑3 essentially represent the height, width and number of frames of said grayscale video.
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Figure 2.1: Illustration of the concept of tensor order. A first-order tensor is commonly known as a
vector; likewise, a second-order tensor is known as a matrix. Third-order tensors are the simplest of
higher-order tensors. Order refers to the number of indexable dimensions.

2.1.1 Tensor unfolding

An important tensor operation is tensor unfolding, also commonly referred to as matricization [51].
It is a procedure to rearrange the tensor into a matrix, reducing it along one specified mode. In
essence, a tensor is sliced along one mode, and the slices are concatenated to create a matrix. In
this work, we modify this procedure slightly, by adding an additional step; each of the slices is
vectorized, with such vectors then forming columns of the final matrix. Usually it is important to
maintain consistency in enumerating tensor modes, as well as to keep the order of slice vectorization.

Let X ∈ R𝑑1×...×𝑑𝑛 be an 𝑛-order tensor. The objective of tensor unfolding is to transform tensor
X into a set of matrices 𝑋 = {𝑿 𝑗}𝑛𝑗=1. More generally, the definition is as follows: let mat𝑎 be
the matricization operator of a tensor along all its modes except mode 𝑎. This operator reshapes an
𝑛-order tensor into a matrix with 𝑑𝑎 columns. With this, we can define matricization as follows:

mat 𝑗 X = 𝑿 𝑗 , (2.1)
𝑋 = {𝑿 𝑗}𝑛𝑗=1, (2.2)

with set 𝑋 containing mode matrices 𝑿 𝑗 ∈ R 𝑓 𝑗×𝑑 𝑗 , where 𝑓 𝑗 =
∏𝑛

𝑘=1 |𝑘≠ 𝑗
𝑑𝑘 .

To better understand the intuition behind tensor unfolding, consider the following example of a
tensor X ∈ R4×2×3, shown on 2.3.
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X ∈ R4×2×3 =



1 5
2 6
3 7
4 8

 ,


9 13
10 14
11 15
12 16

 ,

17 21
18 22
19 23
20 24


 . (2.3)

Tensor X is a third-order tensor, therefore it has three modes. By applying mat operator to each
individual mode, we get a set of mode matrices 𝑋 = {𝑿1 ∈ R6×4, 𝑿2 ∈ R12×2, 𝑿3 ∈ R8×3}:

𝑿1 ∈ R6×4 =



1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24


, 𝑿2 ∈ R12×2 =



1 5
9 13

17 21
2 6

10 14
18 22
3 7

11 15
19 23
4 8

12 16
20 24



, 𝑿3 ∈ R8×3 =



1 9 17
2 10 18
3 11 19
4 12 20
5 13 21
6 14 22
7 15 23
8 16 24


(2.4)

For example, a video seen as a tensor of size ℎ × 𝑤 × 𝑡, where ℎ, 𝑤 and 𝑡 represent height, width
and number of frames, respectively, can be unfolded into 𝑋 = {𝑿1 ∈ R(𝑤𝑡 )×ℎ, 𝑿2 ∈ R(ℎ𝑡 )×𝑤, 𝑿3 ∈
R(𝑤ℎ)×𝑡 }.

2.2 Subspaces

Linear vector subspaces of high-dimensional vector spaces are a linear algebra concept, commonly
applied in pattern set recognition and dimensionality reduction problems. Its core idea lies in the
premise that, when working with real world data, it is reasonable to assume that the data does not
span the entirety of a high-dimensional feature space, but only a small portion. Thus, representing
the pattern set with a subspace it spans not only simplifies data representation, but offers a wide
range of tools for further analysis.

Subspace representation has been widely used in the field of pattern recognition, particularly for
the problem of pattern set recognition. A pattern set of 𝑚 patterns, namely 𝑑-dimensional feature
vectors 𝑿 ∈ R𝑑×𝑚 can be compactly represented by a linear subspace𝒫. spanned by its orthonormal
basis vectors 𝑷 ∈ R𝑚×𝑛. Because the size of a subspace 𝑛 is much smaller than the feature space
𝑑, a compact representation is achieved, while preserving most of the variance that explains the
underlying set of data. Such subspaces can then be compared through various metrics for the task
of pattern analysis.
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Figure 2.2: A set of vectors in a vector space R 𝑓 spans a subspace 𝒫 of that vector space. This
model is widely used for various pattern recognition tasks.

2.2.1 Subspace construction

There are several methods to construct a subspace from a pattern set in the form of a data matrix.
A common approach is to perform principal component analysis (PCA) on the pattern set, and take
the principal components as basis vectors of a subspace. Consider again an 𝑚-sized pattern set of
𝑑-dimensional feature vectors arranged into a matrix 𝑿 ∈ R𝑑×𝑚, with feature vectors forming the
columns of said matrix.

PCA is done by applying singular value decomposition (SVD) on the autocorrelation matrix of
𝑿:

𝑼𝚲𝑼⊤ = 𝑿𝑿⊤. (2.5)

Matrix 𝑼 contains eigenvectors in its columns, while matrix 𝚲 contains their matching eigen-
values in the diagonal, sorted in the descending order. The final step is to select 𝑛 eigenvectors
corresponding to 𝑛 highest eigenvalues, and arrange them into the subspace basis matrix 𝑷 ∈ R𝑑×𝑛.

In most subspace-based methods, the number of subspace dimensions 𝑛 is considered a tuneable
hyperparameter. This means that there is usually no way to determine the value which yields best
recognition performance, as it can vary based on application, type of data, etc. Therefore, the best
value is usually determined by hyperparameter tuning.

However, there exists a useful heurestic which can speed up this process. Eigenvectors cor-
responding to highest eigenvalues explain most of the variance of the considered pattern set. A
contribution rate 𝜇(𝑛) can be calculated, which measures the ration of total variance contained in 𝑛

eigenvectors:

𝜇(𝑛) ≤
∑𝑛

𝑖=1 𝜆𝑖∑𝑟
𝑖=1 𝜆𝑖

, (2.6)

where 𝑟 is the rank of 𝑿𝑿⊤. If multiplied by 100%, 𝜇(𝑛) signifies the percentage of variance
contained in the subspace. Using Eq. 2.6 it is possible to control the trade-off between compactness
and representational power of the subspace. The lower 𝑛 is, the more compact subspace is; however,
it might not contain enough information for discriminative analysis. A good starting point for
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parameter search is to select 𝑛 so that it explains about 90% of variance, and then adjust according
to the performance on a given task and dataset.

2.2.2 Similarity between subspaces

For the purposes of classification and other discriminatory analyses, comparison of two subspaces
is conduced through a similarity defined as minimal canonical angles between two subspaces [18].
Consider subspaces 𝒫 and𝒬, spanned by basis vectors 𝑷 and 𝑸 respectively. Their canonical angles
{0 ≤ 𝜃1, ..., 𝜃𝑚 ≤ 𝜋

2 } can be computed by SVD as:

𝑷⊤𝑸 = 𝑼𝑝𝚺𝑼𝑞 . (2.7)

𝑼𝑝 and 𝑼𝑞 are the canonical vectors, and 𝚺 = diag(𝜆1, . . . , 𝜆𝑘) is a diagonal matrix with 𝑘

singular values {𝜆𝑙}𝑘𝑙=1.
The canonical angles

{
𝜃𝑙
}𝑘
𝑙=1 can be obtained as

{
arccos𝜆𝑙

}𝑚
𝑙=1. Thus, we can define the

similarity between subspaces 𝒫 and 𝒬 as:

𝑠(𝒫,𝒬) = 1
𝑘

𝑘∑︁
𝑙=1

cos2 𝜃𝑙 . (2.8)

The values of similarity function 2.8 are bounded between 0 and 1. If the value of similarity is
0, then the two subspaces are completely orthogonal; on the other hand, if the value is 1, then the
two subspaces completely overlap.

2.2.3 Grassmann Manifold and Subspace Representation

A Grassmann manifold, or Grassmannian, G(𝑘, 𝑓 ) can be defined as a set of all 𝑘-dimensional
subspaces of R 𝑓 . It is a smooth and compact manifold, and allows for a geometric interpretation of
subspaces that form it. For example, a 𝑘-dimensional subspace 𝒫 can be viewed as a single point
on the Grassmann manifold G(𝑘, 𝑓 ). In such an interpretation, the similarity between subspaces
based on canonical angles is related to the geodesic distance between their corresponding points on
the manifold. Concretely, they are inversely correlated; a dissimilarity based on canonical angles
corresponds to geodesic distance on the Grassmannian. An example of this interpretation is depicted
on Figure 2.3.

2.2.4 Product Grassmann Manifold

Tensor X can be decomposed to achieve a compact subspace representation using an n-mode SVD,
also known as High-Order SVD (HOSVD). First, tensor X is unfolded into a set of mode matrices
{𝑿 𝑗}𝑛𝑗=1. SVD is then executed on every 𝑿 𝑗 in the following manner:

𝑼 𝑗𝚲 𝑗𝑼
⊤
𝑗 = 𝑿 𝑗𝑿

⊤
𝑗 . (2.9)

Depending on the dimensions of 𝑿 𝑗 , SVD can also be performed efficiently as𝑽 𝑗𝚲 𝑗𝑽
⊤
𝑗 = 𝑿⊤

𝑗 𝑿 𝑗 ,
with 𝑼 𝑗 and 𝑽 𝑗 being related as 𝑿 𝑗 = 𝑼 𝑗𝚲

1
2𝑽⊤

𝑗 . Finally, the equation of HOSVD is as follows:
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Figure 2.3: Subspaces can be interpreted as points on Grassmannian G(𝑘, 𝑓 ). The distance between
these points is geodesic distance; this distance is defined by the canonical angless between two
subspaces.

X = C×1𝑼1×2𝑼2×3...×𝑛𝑼𝑛, (2.10)

where ×𝑖 , 𝑖 ∈ 1, . . . 𝑛 denotes the Cartesian product operator. In this decomposition, core
tensor C contains values that can be viewed as a multilinear correlation between the columns of the
orthogonal factor matrices {𝑼 𝑗}𝑛𝑗=1, which contain the singular vectors for each unfolded matrix 𝑿 𝑗 .

Then, selecting subspaces from each vector space spanned by the eigenvectors 𝑼 𝑗 ∈ {𝑼 𝑗}𝑛𝑗=1
results in a set of subspaces 𝑆𝑝 = {𝒫 𝑗}𝑛𝑗 . These subspaces are spanned by basis vectors {𝑷 𝑗}𝑛𝑗 ,
where 𝑷 𝑗 ∈ R 𝑓 𝑗×𝑘 𝑗 , containing 𝑘 𝑗 eigenvectors corresponding to the highest 𝑘 𝑗 eigenvalues, selected
from 𝑼 𝑗 and 𝚲 𝑗 respectively. Thus, the tensor X is mapped to a set of mode subspaces 𝑆𝑝.

Every 𝒫 𝑗 can be considered as a point on a factor Grassmannian 𝑀 𝑗 (𝑘 𝑗 , 𝑑 𝑗), where 𝑘 𝑗 and 𝑑 𝑗

are dimensions of subspace 𝒫 𝑗 and feature space of mode 𝑗 , respectively. To unify these subspace
representations, a product Grassmann manifold (PGM) can be constructed from a set of factor
manifolds 𝑀 = {𝑀 𝑗}𝑛𝑗=1 using the Cartesian product:

𝑀𝑝𝑔𝑚 = 𝑀1×1...×𝑛𝑀𝑛 = (𝒫1, ...,𝒫𝑛, ). (2.11)

Therefore, each tensor is represented as a point on 𝑀𝑝𝑔𝑚, enabling classification on the product
manifold via a metric defined on this space. The geodesic distance between two points on the
manifold is considered as a natural choice of dissimilarity due to its utilization of the manifold
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surface itself [2]. Canonical angle-based similarity between tensors X and Y , represented by sets
of subspaces {𝒫 𝑗}𝑛𝑗=1 and {𝒬 𝑗}𝑛𝑗=1, is defined as:

𝜌(X ,Y) = 1
𝑛

√√√ 𝑛∑︁
𝑗=1

𝑠(𝒫 𝑗 ,𝒬 𝑗)2. (2.12)

The similarity as defined in Eq. 2.12 is bounded between 0 and 1. Thus, a simple distance metric
𝑑 (X ,Y) on the PGM corresponds to 𝑑 (X ,Y) = 1 − 𝜌(X ,Y); if the distance between two tensors
on PGM is 0, they are identical; if it is 1, they are as far away as possible from each other.
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Chapter 3

Product Grassmann Manifold with
Hankel-like Embedding

In this chapter we describe our proposed method for representing tensors containing temporal
information, based on Product Grassmann Manifold (PGM) and specially introduced temporal
encoding. We evaluate our approach on hand gesture and action recognition datasets as exemplars
of temporal tensor datasets, aiming to show the versatility of our representation.

The background of the proposed method is discussed in Section 3.1. The details of the proposed
method are explained in Section 3.2, with experimental results shown in Section 3.3.

3.1 Background

Data exploration and representation has been at the forefront of problems tackled by the pattern
recognition community for a long time. Increase of multi-dimensional data sources, such as various
sensors and cameras, has been followed by a steady rise of representation techniques. Their common
aim is to naturally mold and express rich information contained in the data in a unified way. Often,
the first step in any research project is visualizing the given dataset and discovering natural patterns in
the data. Such representation then enables analysis via visualisations, clustering and classification,
allowing for a deeper insight into the structure of a given dataset. In this chapter we consider
representation of multi-dimensional data with temporal information, and their visualization and
clustering as first steps of data exploration.

As mentioned previously in this thesis, a representation method of particular interest is the
tensorial form, where the nature of multi-dimensional data is preserved without changing its inherent
structure. Concretely, a single data point is represented as a single tensor. In addition to the
simplicity of singular representation, this approach brings the benefits of established multi-linear
algebra, allowing for efficient computations on tensor data. Applications such as hand gesture
and action recognition [54, 14, 41], medical data analysis and imaging [75, 130, 84, 119, 42, 76],
multi-spectral imaging [44, 55, 45, 8, 43] and others [92, 11] may benefit from tensor representation.

One way to efficiently represent a tensor as a single data point is representation on the product
Grassmann manifold (PGM) [72], rooted in tensor unfolding [51] and subspace representation
[122, 80, 18]. An n-dimensional tensor can be unfolded along each of its dimensions, generating
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𝑛 modes [51]. With each mode essentially presenting a unique look into the data contained within
the tensor, by analyzing separate modes it is possible to extract information inaccessible by other
means. For example, a video can be viewed as a 3-dimensional tensor containing two spatial and
one temporal mode, and each mode can be compactly represented by a respective linear subspace it
spans.

A Grassmann manifold (GM) is defined as a set of linear subspaces of same dimension, and can be
geometrically interpreted as a surface where these subspaces are points on the manifold. Therefore,
there is a GM corresponding to each of the tensor modes. A single manifold expresses geometrical
relations between subspaces of the same mode via geodesic distance, enabling discriminative analysis
within the manifold [113, 103, 102, 100, 33, 30].

However, utilizing information from each mode in a unified manner requires the construction of
a PGM from distinct factor (mode) manifolds [71, 23]. Analysis can then be performed on the PGM
in a similar vein, taking into account that chordal distance between points on PGM is equivalent
to the Cartesian product of geodesic distances on respective mode Grassmannians [71, 32]. The
downside is that representing all tensor modes in the same way can lead to some loss of mode-
specific information. For videos, this means potential loss of discriminative temporal features, as
linear subspaces do not fully preserve sequence information [25].

We address the lack of explicit handling of temporal information, by exploiting the fact that
subspace representations of data on any number of factor manifolds can be used on the PGM. To
this end, we model the temporal mode with a Hankel-like matrix, which can then be encoded with a
sequence-preserving linear subspace and incorporated with regular tensor mode representations via
PGM. We refer to this representation as product Grassmann Manifold with Hankel-like embedding
(PGM-HLE), shown on Fig. 3.1. The idea of Hankel-like representations is strongly motivated by
its recent applications for sequential data, as investigated in the literature [96, 101, 24, 56, 107].

Further analysis of tensors on PGM-HLE is done in the context of chordal distance between
two points on the manifold [27, 104], a metric that unifies distances between subspaces within a
single factor Grassmannian [7]. In this way, we provide valuable temporal context at a minimal
increase in computational complexity. Besides, our approach demonstrates usability of specialized
representations via PGM.

Our main contributions are summarized as follows:

1. We introduce product Grassmann Manifold with Hankel-like embedding (PGM-HLE), a tem-
poral tensor representation method based on tensor decomposition and Hankel-like matrix.

2. Next, we show the benefit of using PGM-HLE through visualizations of basis vectors for
specific modes.

3. In addition, we demonstrate a simple use-case of tensor dataset visualization with t-SNE and
PGM-HLE.

4. Finally, we evaluate spectral clustering on PGM-HLE with hand gesture and action recognition
datasets.
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Figure 3.1: A temporal tensor can be unfolded along dimensions 𝐷1, 𝐷2 and 𝑇 to generate mode
features. Hankel-like matrix is created from temporal mode by applying a sliding window of size H
to preserve sequential information. Unified tensor representation is created on product Grassmann
manifold with Hankel-like embedding (PGM-HLE).

3.2 Proposed method

In this section, we describe the proposed tensor representation on PGM-HLE. An elementary
overview of the method is shown on Figure 3.1, with a more detailed look provided in Figure 3.2.
First, we formulate the general problem of tensor representation. Next, we explain the 𝑛-mode
tensor representation of spatio-temporal features via linear subspaces and then introduce Hankel-
like embedding of temporal modes. We describe our full tensor representation on the PGM with
Hankel-like embedding. Finally, we show how PGM-HLE enables distance and similarity-based
algorithms, with examples of visualization and clustering algorithms such as t-SNE and spectral
clustering (SC).

Notation is as follows. Scalars are denoted by lowercase letters and sets are denoted by uppercase
letters. Vectors and matrices are denoted by boldface lowercase and uppercase letters respectively.
Calligraphic letters denote tensors and script letters denote subspaces. Given a matrix 𝑨 ∈ R𝑤×ℎ,
𝑨⊤ ∈ Rℎ×𝑤 denotes its transpose.

3.2.1 Basic idea

For simplicity, in this work, multi-dimensional data points are regarded as 3-mode tensors X of size
𝑑1 × 𝑑2 × 𝑑𝑡 , where the mode of size 𝑑𝑡 is a temporal mode. However, the proposed approach can be
generalized to temporal tensors with 𝑛 modes. In its raw form, the data can be rather unwieldy and
uninformative. Therefore we compactly represent a tensor X with a set of mode subspaces. This
representation has multiple advantages: it allows parallel processing, and helps finding correlations
among various factors inherent in each mode.

We formulate the tensor representation problem as follows: Let 𝑋 = {X𝑖}𝑛𝑖=1 be a dataset of 𝑛
tensors. In addition, let 𝑇 (X ) be a transformation of a tensor in its raw form to its representation on
PGM-HLE. Finally let 𝜌(X ,Y) be the similarity function between two tensors X and Y defined by
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Figure 3.2: A greyscale tensor X is unfolded to generate mode features 𝑿1, 𝑿2, 𝑿3, and Hankel-like
matrix 𝑿4. non-centered PCA is performed to generate a set of subspace basis vectors. Tensors X
and Y , represented by sets of subspaces 𝑆𝑝 and 𝑆𝑞 are compared using geodesic distance 𝜌(𝑆𝑝, 𝑆𝑞).

geometric properties of PGM-HLE.
We consider optimization problems where we minimize a function 𝐹 dependent on some sort of

distance 𝑑 (X ,Y) between tensors X and Y . This can be written as:

min 𝐹 (𝑑 (X ,Y)), (3.1)

where X ,Y ∈ 𝑋 = {X𝑖}𝑛𝑖=1. We aim to create a transformation 𝑇 (X ) which provides similarity
𝜌(X ,Y) as an interface for solving Eq. (3.1) with 𝑑 (X ,Y) = 1 − 𝜌(X ,Y).

3.2.2 n-mode Tensor Representation with Linear Subspaces

Let X ∈ R𝑑1×𝑑2×𝑡 be a 3-dimensional tensor, where 𝑡 represents the temporal dimension. Tensor X
is unfolded into a set of matrices 𝑋 = {𝑿1, 𝑿2, 𝑿3}, a process known as matricization. Consider
a video as a tensor of size 𝑡 × ℎ × 𝑤, where 𝑤, ℎ and 𝑡 are width, height and number of frames,
respectively. This tensor is unfolded into 𝑋 = {𝑿1 ∈ R(𝑤𝑡 )×ℎ, 𝑿2 ∈ R(ℎ𝑡 )×𝑤, 𝑿3 ∈ R(𝑤ℎ)×𝑡 }, with
each mode representing concatenated slices along a specific tensor dimension. Therefore, X can be
decomposed to achieve a compact subspace representation using n-mode SVD [51], defined as:

X = C×1𝑼1×2𝑼2×3𝑼3. (3.2)

Core tensor 𝑪 contains values analogous to eigenvalues of SVD, while matrices {𝑼 𝑗}𝑛=3
𝑗=1 contain the

singular vectors for each unfolded matrix 𝑿 𝑗 , and expression 𝑼 𝑗𝚲 𝑗𝑼
⊤
𝑗 = 𝑿 𝑗𝑿

⊤
𝑗 holds.

Subsequently, we select a subspace spanned by eigenvectors 𝑼 𝑗 , resulting in a set of subspaces
𝑆𝑝 = {𝒫 𝑗}𝑛=3

𝑗
, spanned by basis vectors {𝑷 𝑗}𝑛=3

𝑗
, where 𝑷 𝑗 ∈ R 𝑓 𝑗×𝑚 𝑗 , containing 𝑚 𝑗 eigenvectors
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corresponding to the highest 𝑚 𝑗 eigenvalues. Different 𝑚 𝑗 can be selected, as each mode exhibits
different properties and levels of information density. In summary, tensor X is mapped to a set of
mode subspaces 𝑆𝑝. This offers a compact representation and an opportunity to analyze each tensor
mode independently. Both spatial and temporal information are captured by first and second mode
unfoldings. However, as SVD does not inherently preserve sequence information, some temporal
features may be lost from the temporal mode unfolding.

3.2.3 Hankel-like Embedding of Temporal Modes

It is possible to preserve sequential features from temporal tensor modes within a linear subspace.
Consider the temporal mode of tensor X ∈ R𝑑1×𝑑2×𝑡 :

mat𝑡 X = 𝑿𝑡 = 𝑿3 = [𝒙1, . . . , 𝒙𝑡 ] . (3.3)

A Hankel-like matrix 𝑯 can be created by applying a sliding window of size ℎ over the columns
of matrix 𝑿3. This creates a set of 𝑛 lagged frame sequences comprised of ℎ frames, arranged into
matrix 𝑯 ∈ R𝑔×𝑛 as follows:

𝑯 =


𝒙1 𝒙2 . . . 𝒙𝑡−ℎ+1
𝒙2 𝒙3 . . . 𝒙𝑡−ℎ+2
...

. . .
...

𝒙ℎ 𝒙ℎ+1 . . . 𝒙𝑡


. (3.4)

The number of columns of matrix 𝑯 is determined by the total length of sequence [𝒙1, . . . , 𝒙𝑡 ],
given by relationship 𝑛 = 𝑡 − ℎ + 1, and the number of rows is 𝑔 = ℎ × 𝑓𝑡 . In our method, ℎ is
considered a hyperparameter.

In temporal mode 𝑿3, the ordering of columns carries sequence information, which is lost when
applying SVD to create a subspace representation. However, 𝐻 preserves temporal information by
embedding it in its columns. We then construct a compact subspace representation in the following
manner:

𝑼𝚲𝑼⊤ = 𝑯𝑯⊤. (3.5)

𝑼 ∈ R𝑔×𝑛 contains eigenvectors as columns and 𝚲 ∈ R𝑛×𝑛 is a diagonal matrix with 𝑛

eigenvalues. Basis vectors of a subspace are obtained by selecting 𝑚 eigenvectors 𝑷4 = [𝒗1, ..., 𝒗𝑚]
corresponding to the𝑚 highest eigenvalues. Resulting subspace𝒬4 spanned by 𝑷4 exhibits sequence-
preserving qualities in each of the eigenvectors, which are generalized to the whole subspace. We
call this representation Hankel-like embedding (HLE). Additionally, HLE is fully compatible with
subspaces modeling spatio-temporal data from 3.2.2.

3.2.4 Product Grassmann Manifold with Hankel-like Embedding

By using the two approaches described in subsections 3.2.2 and 3.2.3, a temporal tensor X ∈
R𝑑1×𝑑2×𝑡 is represented by a set of subspaces 𝑆𝑝 = {𝒫 𝑗}4

𝑗=1, containing mode subspaces 𝒫1, 𝒫2
and𝒫3 and the HLE subspace𝒫4. Every𝒫 𝑗 is a point on a Grassmann manifold 𝑀 𝑗 (𝑚 𝑗 , 𝑑 𝑗), where
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𝑚 𝑗 and 𝑑 𝑗 are dimensions of subspace 𝒫 𝑗 and feature space respectively. A unified representation is
constructed on product Grassmann manifold from a set of factor manifolds 𝑀 = {𝑀 𝑗}4

𝑗=1 as follows:

𝑀 = 𝑀1 × 𝑀2 × 𝑀3 × 𝑀𝑡 = (𝒫1,𝒫2,𝒫3,𝒫4), (3.6)

where × denotes Cartesian product. Therefore, each spatio-temporal tensor is represented as a
single point on 𝑀 . Further data analysis is possible using a metric defined on PGM, namely the
geodesic distance between two points on the PGM. This is a natural choice of dissimilarity due to
its utilization of the manifold surface [2].

To define geodesic distance on 𝑀 , we first define geodesic distances between points (subspaces)
on factor manifolds. These distances are parametrized in terms of canonical angles between sub-
spaces, defined as minimal angles between two subspaces [18]. Given subspaces 𝒫 and 𝒬 and their
basis vectors 𝑷 and 𝑸, canonical angles {0 ≤ 𝜃1, ..., 𝜃𝑚 ≤ 𝜋

2 } can be computed by SVD as:

𝑷⊤𝑸 = 𝑼𝑝𝚺𝑼𝑞 . (3.7)

𝑼𝑝 and 𝑼𝑞 contain canonical vectors, and 𝚺 = diag(𝜅1, . . . , 𝜅𝑟 ) is a diagonal matrix with 𝑚

singular values {𝜅𝑙}𝑚𝑙=1. Canonical angles
{
𝜃𝑙
}𝑚
𝑙=1 can be obtained as

{
cos− 1(𝜅𝑙)

}𝑚
𝑙=1. Similarity

between subspaces 𝒫 and 𝒬 is then defined as:

𝑠(𝒫,𝒬) = 1
𝑚

𝑚∑︁
𝑙=1

cos2 𝜃𝑙 . (3.8)

Using this similarity in each factor manifold, we define the similarity on PGM. Tensors X and
Y represented by sets of subspaces {𝒫 𝑗}4

𝑗=1 and {𝒬 𝑗}4
𝑗=1 is defined as:

𝜌(X ,Y) = 1
𝑛

√√√𝑛=4∑︁
𝑗=1

𝑠(𝒫 𝑗 ,𝒬 𝑗)2. (3.9)

As individual similarities 𝑠(𝒫 𝑗 ,𝒬 𝑗) are bounded between 0 and 1, division by number of factor
manifolds 𝑛 is introduced to maintain same bounds for final similarity metric. This enables the
conversion of similarity to distance as 𝑑 (X ,Y) = 1 − 𝜌(X ,Y). Having defined the similarity
between points on PGM, it is possible to conduct further analysis of tensor datasets by considering
their layout in the manifold space. We explore an example of dataset visualization and clustering in
3.2.5 and 3.2.6 respectively.

3.2.5 Multilinear t-SNE

t-SNE [112] is a well known data visualization algorithm able effectively map multi-dimensional
data to two or three dimensions, while preserving both global and local structure. This is achieved
by representing distances between data points as probabilities under Gaussian distribution, and
minimizing Kullback-Leibler divergence between joint probability distributions A and B in high-
dimensional and low-dimensional spaces respectively. The following Eq. (3.10) represents this cost
function and is optimized using gradient descent:
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C = KL(A| |B) =
∑︁
𝑖

∑︁
𝑗

pij log
pij

qij
. (3.10)

Consider two data points 𝑥𝑖 and 𝑥 𝑗 in high-dimensional space, and their low-dimensional map-
pings 𝑦𝑖 and 𝑦 𝑗 . Here, pij is the probability of choosing 𝑥 𝑗 as a closely-related neighbour of 𝑥𝑖 under
a Gaussian distribution centered on 𝑥𝑖 . Analogously, qij is the same probability with respect to 𝑦𝑖
and 𝑦 𝑗 . Probability pij, given by the following equation:

pij =
exp(−||xi − xj | |2/ 2𝜎2)∑
𝑘≠𝑖 exp(−||xk − xi | |2/ 2𝜎2)

, (3.11)

is calculated explicitly as part of t-SNE algorithm. It assumes Euclidean distance between points
𝑥𝑖 and 𝑥 𝑗 , which is defined for multi-dimensional vectors. However, if data points 𝑥𝑖 and 𝑥 𝑗 are
instead multi-linear tensors X𝑖 and X 𝑗 , the Euclidean distance is not defined, and Eq. (3.11) cannot
be solved. Therefore, t-SNE cannot be utilized to visualise temporal tensor datasets.

We have provided an interface to solve this problem in 3.2.4, by introducing a similarity function
between two tensors based on the PGM with Eq. (3.9). Thus, we modify Eq. (3.11) in the following
manner:

pij =
exp(−d(Xi,Xj)/ 2𝜎2)∑

k≠i exp(−d(Xk,Xi)/ 2𝜎2)
, (3.12)

where 𝑑 (X ,Y) = 1 − 𝜌(X ,Y). By using Eq. (3.12) it is possible to optimize the Kullback-
Leibler divergence as defined in Eq. (3.10) for datasets with temporal tensor datasets and make
appropriate visualizations with t-SNE.

3.2.6 PGM-HLE with spectral clustering

A variety of clustering algorithms relies on constructing symmetric matrices based on pairwise
distances or similarities between all data points in the dataset. One notable example is spectral
clustering [78]. Given a set of points 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} ∈ R𝑙, the first step in spectral clustering is
to construct an affinity matrix 𝑨 ∈ R𝑛×𝑛, where 𝑨𝑖 𝑗 = exp(−||si − sj | |2/ 2𝜎2), 𝑖 ≠ 𝑗 and 𝐴𝑖𝑖 = 0.
However, if we consider a set of multilinear tensors 𝑋 = {X1,X2, . . . ,X𝑛} as a set of data points,
the similarity defined in Eq. (4.13) can be used to rewrite the formation of affinity matrix to:

𝑨𝑖 𝑗 = 𝜌(X𝑖 ,X 𝑗). (3.13)

Having constructed the affinity matrix 𝑨 ∈ R𝑛×𝑛 using Eq. (3.13), spectral clustering algorithm
proceeds with standard steps, without modifications, as defined in [78]. A major advantage of
PGM-HLE representation is that via Eq. (4.13) it provides an interface for using various algorithms
on tensor datasets, otherwise defined only for vector-valued data.

3.3 Experimental Results

In this section we cover experimental results involving PGM-HLE. First, we describe datasets used
in the experiments. Next, we showcase the representational power of PGM-HLE in two ways: (1)
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Figure 3.3: Uniformly sampled frames of temporal mode from CMB dataset.

Figure 3.4: Subspace basis vectors of tensor modes 1, 2, 3 and Hankel-like embedding, exhibiting
different form and information.

by visualizing the distribution of samples in a hand gesture dataset and (2) by evaluating a clustering
algorithm on hand gesture and action recognition datasets.

3.3.1 Datasets

We use Cambridge Hand Gesture [49] (CMB) and UT-Kinect [124] (UT) datasets in visualization
and clustering experiments. CMB is a benchmark dataset for hand gesture recognition, and comprises
9 classes with 100 videos per class. It is divided equally into five sets based on illumination settings.
We perform clustering experiments on each set, and on the entire dataset to evaluate robustness
against illumination change. UT contains skeleton data of 10 action classes, performed by 10
subjects in front of a Kinect device. There are 200 sequences in total. The data contains x, y and z
coordinates of 20 skeleton joints.

Tensors in CMB dataset are of shape ℎ × 𝑤 × 𝑡, where ℎ, 𝑤 and 𝑡 stand for height, width and
sequence length respectively, while in UT they are of shape 𝑐 × 𝑗 × 𝑡, where 𝑐, 𝑗 and 𝑡 stand for
coordinate, joint and sequence length respectively. As all tensors have variable temporal dimension
𝑡, we resize them to 12 × 16 × 30 (CMB) and 3 × 20 × 20 (UT). We use video data as it is easy to
visualize and interpret subspace basis vectors, as well as evaluate formed clusters.

3.3.2 Visualizations of Hankel-like subspaces

As videos are simple to interpret, we can visualize eigenvectors spanning subspaces of tensor
modes, including the Hankel-like embedding (HLE) of temporal mode. This provides insight into
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information contained within these representations, as well as grounds for further interpretability.
An example tensor X from CMB dataset, a closed hand moving to the left, is shown on 3.3.

We then decompose tensor X into three modes, obtain a Hankel-like matrix, perform non-
centered PCA and construct respective subspaces. On 3.4 we depict first three eigenvectors of
each mode. It can be clearly seen that each mode carries different information, Modes 1 and 2
are somewhat difficult to interpret, but they contain different spatio-temporal information depicting
movement of a hand from left to right. Eigenvectors of mode 3 are very similar to eigenvectors of
Hankel-like subspace, with the latter being almost a concatenation of the former. However, in 3.3.4
we show the effect of this information on clustering accuracy.

3.3.3 Tensor visualization on PGM-HLE

To investigate the effectiveness of PGM-HLE on CMB dataset, we use t-SNE on 1) baseline
vectorized representation of tensors, 2) subspaces of individual modes, including the HLE and 3)
on the PGM-HLE, and compare these visualizations. As t-SNE is not a deterministic algorithm, we
run it 10 times and pick the one with lowest KL value [123]. Results are depicted on 3.5.

Baseline setting 1) results in the worst visualization, with a high KL divergence score of 0.371,
while setting 3) achieves the best, with the lowest KL score of 0.208. Modes 1-4 in setting 2)
showcase that each mode carries information of different characteristics and quality with respect
to separability, with respective KL scores of 0.213, 0.271, 0.282 and 0.242. For example, mode 2
seems capable of separating all classes of ’contract’ shape, mode 1 successfully extracts rightward
movements and mode 3 ’flat’ hand shapes.

HLE appears very similar to temporal mode 3, which is expected due to underlying temporal
information of both representations. However, separability between clusters in HLE is somewhat
higher and easier to notice. For example, HLE is able to group samples of classes ’v-rightward’, ’v-
leftward’ and ’spread-rightward’, while improving on the separability of all ’flat’ hand shapes. This
indicates that there might be some merit in utilizing information from HLE. Finally, it can be clearly
seen that PGM-HLE produces superior results in terms of separability and cluster interpretability in
addition to lowest KL score.

3.3.4 Spectral clustering on TS-PGM

To investigate contributions of different tensor modes on clustering accuracy, we use spectral clus-
tering (SC), a simple and fast algorithm. Both CMB and UT datasets contain labels, which we use
to evaluate the accuracy as defined as in [26]. In short, cluster class is determined by the labels of
majority members, and accuracy is defined as number of correctly clustered data points divided by
number of total samples. Results are presented in 3.1.

Clustering performance differs across tensor modes. On the entire CMB dataset, modes 1 and 3
perform similarly at 75.55% and 75.44%, with mode 2 performing worse at 69.77%. Performances
vary in subsets of CMB, most likely due to different illumination settings affecting spatio-temporal
features. All three modes significantly outperform the baseline at 18.80%, indicating valuable
information contained within them. Furthermore, HLE performs the best compared to individual
modes on CMB, offering noticeable improvement. In UT dataset mode 1 outperforms other two
modes and the baseline at 80.90%. Unlike CMB, the nature of modes 1 and 2 is harder to interpret
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Dataset Baseline M1 M2 M3 HLE PGM PGM-HLE

CMB S1 32.94% 88.88% 87.77% 84.44% 95.00% 97.22% 98.33%
CMB S2 16.88% 74.44% 80.00% 78.88% 83.88% 86.11% 88.33%
CMB S3 21.44% 74.44% 70.55% 72.77% 78.88% 81.11% 82.22%
CMB S4 27.55% 74.44% 71.11% 63.33% 76.66% 80.00% 83.88%
CMB S5 28.61% 78.88% 81.66% 80.55% 84.44% 86.66% 88.33%
Cambridge 18.80% 75.55% 69.77% 75.44% 83.11% 84.88% 86.66%
UT-Kinect 61.30% 80.90% 62.31% 65.32% 77.38% 92.46% 93.96%

Table 3.1: Spectral clustering results on CMB and UT. All tensor modes outperform the baseline.
HLE works better than regular modes 1, 2 and 3, except on UT. PGM-HLE outperforms all baselines
with 86.66% (CMB) and 93.96% (UT).

due to the structure of skeletal data. However, it is noticeable that HLE significantly improves the
performance of temporal mode from 65.32% to 77.38%.

It worth noting that M1 provides superior accuracy compared to HLE when PGM and PGM-HLE
are not available. This behavior may happen when some of the classes present very similar shapes
where the ordering of the observations over time does not define their semantics.

Unifying information from different tensor modes consistently improves accuracy in all cases,
shown on PGM and PGM-HLE performances. In PGM [72], a tensor is represented as a point
on product Grassmann manifold, and serves as a baseline for the idea of unifying tensor modes.
PGM-HLE offers additional context by utilizing specialized encoding of temporal information, and
the improvement is consistent across all datasets.

3.4 Summary

In this chapter we introduced a method for representing temporal tensors based on established
multilinear algebra. We use the PGM geometry to naturally unify representations of tensor modes
and Hankel-like embedding of temporal information and apply the geodesic distance to investigate
the relationship between temporal tensors. We further demonstrate the use of geodesic distance as
an general interface for solving optimization and clustering problems.

Using this interface, we performed t-SNE visualizations and spectral clustering of temporal
tensor datasets containing video and skeletal data, giving some weight to the strategy of unified
representation on PGM, special treatment of temporal information via Hankel-like embeddings and
finally the idea of geodesic distance as a general interface for solving various problems. Specifically
in the context of video datasets, this approach may prove valuable as it allows simple and fast analysis
of data in its raw form, without the need for significant data pre-processing or pre-training of heavy
representational models.

As potential future research steps, we will consider several directions. First would be to evaluate
the proposed method on various types of multilinear data, such a relational and signal data. Specifi-
cally, we believe that unified representation on PGM would be effective in utilizing side information
in addition video data, such as sound information, movement information via gyroscope signals,
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etc. Secondly, we plan to investigate different Riemannian manifolds in order to leverage their
different characteristics and similarity metrics that they provide, as potential improvements to the
representational aspect of our method. Lastly, a potential future direction includes extending the
proposed method to consider applying kernel trick to handle potential non-linearity in tensor modes
and other data.
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Figure 3.5: t-SNE visualizations of baseline vectorized representation, regular tensor modes, HLE
and PGM-HLE for Cambridge Hand Gesture dataset. This dataset combines three hand shapes -
’flat’, ’spread’ and ’v’ with three movements - ’leftward’, ’rightward’ and ’contract’. Baseline is very
cluttered. Modes and HLE offer different perspectives and provide high discrimination among the
clusters. PGM-HLE has the best defined visualization obtained by unifying those perspectives.
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Chapter 4

Temporal-Stochastic Product
Grassmann Manifold

In this chapter we propose a classification method for action recognition, based on PGM repre-
sentation and greatly improved temporal encoding, which we evaluate on hand gesture, action and
skeleton action recognition tasks.

The background of the proposed method is discussed in Section 4.1. The details of the proposed
method are explained in Section 4.3, with experimental results shown in Section 4.4.

4.1 Background

Previous work has shown the merit of representing tensors on the PGM. Further, we have demon-
strated in the previous chapter the value of specialized temporal encoding and unifying it with
the PGM. However, we have used a naive, though well-established approach based on Hankel-like
matrix to achieve this, that might not be best suited for classification problems requiring efficient
discriminative mechanisms.

Multi-dimensional data are used in a variety of tasks, such as video processing, medical and
hyperspectral image analysis, internet data processing, recommendation systems and many others
[44, 75, 97, 130, 84, 11, 119, 92, 42, 76]. As the complexity of such data increases, better techniques
are needed to accurately and efficiently represent the richness of the information contained therein.
Commonly, representation methods are often tailored to be task specific, thus enabling optimization
for a particular application. For example, video processing may require development of algorithms
that treat the data as a series of frames in order to identify correlates. The disadvantages of such
approaches are that optimized algorithms may not be generalizable to other tasks.

An alternative involves representing the data as tensors. Tensors, which can be regarded as
generalizations of matrices, are widely used in fields where complex multi-dimensional data needs
to be treated in a unified way (e.g. mechanics, electrodynamics, neural networks). Representing
the data in these more abstract terms opens up the opportunity for the application of well-defined
mathematical operations, in particular those from multilinear algebra, allowing for more efficient
computation. In addition, these operations can then be applied to different kinds of tensor data, in
direct contrast to more restricted bespoke algorithms.
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In this chapter, we build on a method of tensor representation that is based on multilinear algebra
[74, 72]. This approach, which we refer to here as Product Grassmann Manifold (PGM), starts with
a unified representation of multi-dimensional data-points as tensors, applies a number of multilinear
algebraic transformations to decompose the tensors, before finally reunifying the representation. The
resulting representations are more compact, by over 90% [72, 73, 25], and the algorithm is simple
to implement and computationally efficient.

In PGM, tensors undergo three mathematical operations: (1) tensor unfolding [51]; (2) subspace
representation [122, 80]; and (3) unification on the Product Grassmann manifold (PGM) [72]. In
tensor unfolding an 𝑛-dimensional tensor is reorganized along each of its dimensions to generate
𝑛 modes, a process also known as matricization. For example, video data can be viewed as a
3-dimensional tensor containing two spatial and one temporal mode. The analysis of the modes can
reveal information inaccessible when viewed in its original tensor form.

Subspace representation is then applied to each tensor mode, replacing the original mode data
with the respective linear subspace which it spans. While retaining the essence of the original data,
this representation is significantly more compact. These subspaces can also be viewed as points on
Grassmann Manifolds (GM), which are defined as a sets of linear subspaces of the same dimension. In
this case, each of the tensor modes corresponds to a single factor Grassmann Manifold. These factor
manifolds express geometrical relations between points. The similarity/dissimilarity of the points
can then be calculated through the geodesic distance on the manifold, allowing for discriminative
analysis to be performed within the manifold [113]. At this stage, however, representations of each
mode are still disconnected.

In the final step, individual factor manifolds are merged. The geodesic distances on respective
factor manifolds can be unified as their Cartesian product [71, 23, 32]. This allows for discriminative
analysis on what is known as the Product Grassmann Manifold (PGM) [74, 71]. As a method,
PGM, thus, decomposes tensors to reveal information, represents it more compactly, and finally
unifies those representations. However, one downside of the PGM approach is that all tensor modes
are treated and represented equally. In the case of videos, for example, because linear subspaces
do not fully preserve sequence information, this may result in the loss of discriminative temporal
features [25].

In this chapter, we propose (1) a method that incorporates into PGM the explicit handling of
temporal information, and (2) two extensions of this method. Our proposed method takes advantage
of the fact that the Product Grassmann Manifold can comprise any number of manifolds [117].
In order to accurately represent tensor sequence information, we employ a procedure similar to
Randomized Time Warping (RTW) [107]. It involves randomly sampling ordered data points on
a temporal tensor mode, and constructing a low-dimensional subspace. This representation, which
we refer to as Temporal-Stochastic Tensor (TST) features, is treated as an additional manifold and
reduces the loss of discriminative temporal features. In this way, we provide valuable temporal
context at a minimal increase in computational complexity. We refer to this approach as Temporal-
Stochastic PGM (TS-PGM). In our application to video data, TS-PGM has four factor Grassmann
Manifolds, three originating from linear subspaces of tensor modes, and one from specialized
Temporal-Stochastic (TS) subspaces. On this unified representation, we perform classification using
a modified Mutual Subspace Method (MSM) [39, 77]. Specifically, in order to account for the
curvature of the manifold, we modify MSM by replacing the canonical angle based [7] similarity
function with geodesic distance calculated on the TS-PGM [27, 104, 2]. An overview of the proposed
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Figure 4.1: Overview of proposed method. A temporal tensor can be unfolded along dimensions 𝐷1,
𝐷2 and 𝑇 to generate mode features. Temporal Stochastic Tensor (TST) features are created from the
temporal mode by randomly sampling 𝑄 frames 𝑅 times. This generates a feature matrix capable of
preserving sequential information. Unified tensor representation is created on the temporal-stochastic
product Grassmann manifold (TS-PGM).

method is shown in Figure 4.1.
We extend the TS-PGM method to address two drawbacks. Firstly, because subspaces are

generated independently of each other, they are not necessarily optimized for classification. To
alleviate this problem, before the use of TS-PGM, we project subspaces onto a Generalized Difference
Subspace (GDS) [18, 19], which has a quasi-orthogonalization property. This projection method
is known as 𝑛-mode GDS [25] when used on 𝑛-dimensional tensor data. Secondly, TS-PGM relies
on linear subspaces which cannot accurately represent non-linear data distributions. To address
this problem, we utilize a kernel mapping and construct subspaces in kernel space [21, 20, 79, 88],
which can be used both with TS-PGM and its discriminative extension that relies on 𝑛-mode GDS
projection.

As videos are a common exemplar of temporal tensors, we evaluate the proposed methods on
motion and action recognition datasets. Our main contributions are summarized as follows:

1. We introduce specialized Temporal-Stochastic Tensor features to explicitly represent and
preserve temporal tensor information.

2. We show the benefit of this representation and its integration with regular tensor modes via
Temporal-Stochastic PGM.

3. We employ 𝑛-mode GDS projection to enhance discriminative capability of TS-PGM.

4. We apply kernel mappings to TS-PGM to handle non-linear data.
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5. We evaluate TS-PGM and its enhancements on motion and action recognition datasets, out-
performing traditional subspace methods.

The rest of the paper is organized as follows. The next section describes related work. Then,
Section 4.3 describes the proposed method in detail, including the creation of TST features, construc-
tion of TS-PGM and the classification flow. In Section 4.4, we briefly introduce datasets used and
describe experiments and achieved results. Finally, in Section 4.5, we conclude and offer suggestions
for future work.

4.2 Related Work

Subspace-based methods have been extensively used to solve pattern-set problems, including video
classification, by representing pattern-sets with low-dimensional linear subspaces. Most notable
subspace-based method of this kind, originally developed for handwritten character recognition and
face recognition, is Mutual Subspace Method (MSM) [77]. In a concrete classification problem,
a linear subspace is constructed for each class from training data; providing reference models for
these classes. An input pattern-set is represented as a subspace in the same manner. The MSM
then classifies the input pattern-set by computing similarities between input and reference (class)
subspaces based on multiple canonical angles. This concept has since been extended in various
ways for different applications.

One such notable extension is Randomized Time Warping (RTW) [107], a method for hand
gesture and action recognition. RTW generalizes a classic algorithm for time-series analysis,
Dynamic Time Warping (DTW), by substituting the problem of computing similarities between
sequences with similarities between subspaces. This is done through repeated and constrained
random sampling of feature vectors from a given video sequence, which are then modeled by a
subspace. Then, classification is performed either in an MSM-like manner using the canonical
angles, or by treating subspaces as points on a Grassmann manifold and applying Grassmann
Discriminant Analysis (GDA) [31].

An interesting alternative direction in video classification, closely related to our work, is ex-
plored by tensor-based methods such as Discriminant Canonical Correlation (DCC) [47] and Tensor
Canonical Correlation Analysis (TCCA) [49]. Both methods take on a tensor-first approach to hu-
man gesture and action recognition, and rely on tensor decomposition and the concept of Canonical
Correlation Analysis (CCA) [35]. TCCA extends the definition of CCA to multi-dimensional arrays
such as tensors, by factorizing them into sets of matrices, before creating sets of projection matrices
between input and reference tensors, such that they maximize their mutual canonical correlations.

DCC is an evolved version of the previous method which incorporates discriminative information
learned through an algorithm analogous to Linear Discriminant Analysis (LDA) [48] between
factorized matrices of a single tensor themselves. In addition, DCC utilizes SIFT features extracted
from the spatio-temporal tensors to significantly increase performance.

A family of methods based on manifolds and product manifolds has been designed for tensors
with spatio-temporal information, specifically videos. Tangent Bundle [73] is a method that relies on
High-Order Singular Value Decomposition (HOSVD) to factorize the tensor; resulting matrices are
projected onto a tangent space, by charting them on a special manifold, such as Stiefel or Grassmann
manifolds. Classification is then performed as a nearest neighbour using intrinsic distance on those
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manifolds. A similar approach using HOSVD is done in Product Grassmann Manifold (PGM)
[74, 72]. In PGM, tensors are decomposed into modes, each belonging to a factor Grassmannian
manifold. Then, each tensor is represented as a point on the PGM, where points can be compared
using the geodesic distance. Such representation on the PGM is used to formulate a least squares
regression based on the geodesic distance, and is used for classification purposes.

The PGM representation is further endowed with discriminative ability using Generalized Differ-
ence Subspace (GDS) [18, 19] in a method called n-mode GDS [25]. Here, right before unification on
the PGM, resultant modes are projected onto a GDS, which orthogonalizes subspaces, thus decreas-
ing overlap and increasing discriminative capability. A variant of this method, n-mode weighted
GDS (n-mode wGDS), additionally includes learning the weights which dictate the contribution
of each mode to the PGM representation. This is done with an optimization algorithm using an
extended definition of Fisher’s score [25].

Our proposed method is heavily inspired by subspace representation in MSM and RTW, as
well as their classification flow; however, we handle multiple reference subspaces per class, and
discrimination is done on the product manifold. While RTW assumes the use of an explicit
discriminative algorithm through GDA, our proposed method relies only on the geodesic distances
generated during the training stage. Although we have been inspired by the sampling concept
introduced by RTW, our approach is less constrained and is adapted to work with tensor data.

Like the above-mentioned tensor-based and manifold-based methods, our proposed method is
rooted in the tensor decomposition. However, we do not utilize CCA like TCCA and DCC do;
instead, we perform our analysis on the product manifold. While PGM and n-mode GDS also use
product manifolds to achieve good results on tasks such as gesture and action recognition, they
treat all tensor modes equally. On the other hand, in our proposed method we explicitly model the
temporal information contained within the tensor.

It is worth mentioning that our method is designed for general recognition tasks involving
spatio-temporal tensors. Therefore, unlike most recognition methods, it does not rely on extraction
of features such as optical flow, SIFT, SURF, intensity gradients, or deep learning features such as
a specialized skeleton encoding; nor does it use a learning-based approach to classification. This
is because, while those features can be very effective, our primary goal is not to achieve the best
possible performance in a specific task, but rather to develop a generalized representation technique
for temporal tensors.

4.3 Proposed method

Similarly to Section 2.2.4, we model a single multi-dimensional data point with a single 𝑛-mode
tensor X , represented as a set of mode subspaces. Then we address the tensor classification problem
in two steps: 1) we represent individual tensors by their 𝑛-mode subspaces and 2) we classify
tensors by the strategy of nearest neighbor (1-NN) by using the similarity between these 𝑛-mode
representations.

In this section we describe the proposed TS-PGM. First, we formulate the problem of tensor
classification. Next, we explain the 𝑛-mode Spatio-Temporal Tensor (STT) representation, followed
by the introduction of our main idea - Temporal-Stochastic Tensor (TST) features. Finally, we
describe our classification algorithm based on these representations on the Product Grassmann
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Manifold (PGM). In addition, we also briefly discuss computational complexity of our proposed
methods.

We use the following notation: scalars are denoted by lowercase letters and sets are denoted by
uppercase letters. Vectors and matrices are denoted by boldface lowercase and uppercase letters
respectively. Tensors are represented by calligraphic letters, i.e., X , and subspaces are denoted by
script letters, i.e., 𝒫. Given a matrix 𝑨 ∈ R𝑤×ℎ, 𝑨⊤ ∈ Rℎ×𝑤 represents its transposed matrix.

4.3.1 Problem Formulation

In this chapter, we choose to model a single multi-dimensional data point with a single 𝑛-mode
tensor X . As tensors are complex data structures, it may be difficult to analyze the data in its raw
form. Therefore, in the context of our framework, we opt to represent tensors in the compact form
of a set of mode subspaces. This approach has several advantages, such as parallel processing of
tensor modes and reduced storage footprint due to subspace representation. Additionally, it enables
correlation analysis among various factors inherent in respective modes. We formulate the tensor
classification problem in two steps. First, we represent individual tensors by their 𝑛-mode subspaces.
Then, we classify tensors by the strategy of nearest neighbor (1-NN) by using the similarity between
these 𝑛-mode representations.

More formally, the problem of classification can be defined as follows: let {(X𝑖 , 𝑦𝑖)}𝑚𝑖=1 be a
set of 𝑚 reference tensors. All tensors have 𝑛 modes, and are of sizes 𝑑1 × 𝑑2 × . . . × 𝑑𝑛−1 × 𝑑𝑛,
with 𝑑𝑛 = 𝑑𝑡 indicating the dimension of the temporal mode. Each tensor X𝑖 is paired with a
respective label 𝑦𝑖 ∈ C = {1, · · · , 𝑙}. Given a novel query tensor Y , we want to correctly predict it
as belonging to one of the categories C.

4.3.2 Spatio-temporal Tensor Features

In this subsection, we explain the 𝑛-mode tensor representation. Let X ∈ R𝑑1×...×𝑑𝑛−1×𝑑𝑛 be an
𝑛-mode tensor with temporal dimension 𝑑𝑛 = 𝑑𝑡 . The tensor X is unfolded into a set of matrices
𝑋 = {𝑿 𝑗}𝑛𝑗=1, a process known as matricization or unfolding [51]. For example, consider a video
seen as a tensor of size ℎ × 𝑤 × 𝑡, where ℎ, 𝑤 and 𝑡 represent height, width and number of frames,
respectively. This video is unfolded into 𝑋 = {𝑿1 ∈ R(𝑤𝑡 )×ℎ, 𝑿2 ∈ R(ℎ𝑡 )×𝑤, 𝑿3 ∈ R(𝑤ℎ)×𝑡 }. In
essence, each mode represents concatenated slices along a specific tensor dimension.

More generally, the definition is as follows: let mat𝑎 be the vectorization operator of a tensor
along all its modes excepted mode 𝑎. This operator reshapes an 𝑛-mode tensor into a matrix with 𝑎

columns. For simpler indexation, let 𝑑𝑛 = 𝑑𝑡 . With this, we can define matricization as follows:

mat𝑑 𝑗
X = 𝑿 𝑗 , (4.1)

𝑋 = {𝑿 𝑗}𝑛𝑗=1, (4.2)

with set 𝑋 containing mode matrices 𝑿 𝑗 ∈ R 𝑓 𝑗×𝑑 𝑗 , where 𝑓 𝑗 =
∏𝑛

𝑘=1 |𝑘≠ 𝑗
𝑑𝑘 .

The set of modes 𝑋 can be decomposed to achieve a compact subspace representation using an
n-mode SVD, also known as High-Order SVD (HOSVD). Thus, a tensor X is decomposed in the
following manner:
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Figure 4.2: Detailed overview of proposed method. A grayscale tensor X is unfolded using
matricization to generate mode features 𝑿1, 𝑿2, 𝑿3. From 𝑿3, TST features 𝑿4 are generated by
sampling 𝑞 frames 𝑟 times. On each feature set, PCA is performed to generate a set of subspaces 𝑃.
Tensors X and Y , represented by 𝑃 and 𝑄 can then be compared using geodesic distance 𝜌(𝑃,𝑄).

X = C×1𝑼1×2𝑼2×3...×𝑛𝑼𝑛, (4.3)

where ×𝑖 , 𝑖 ∈ 1, . . . 𝑛 denotes the Cartesian product operator. In this decomposition, core
tensor C contains values that can be viewed as a multilinear correlation between the columns of the
orthogonal factor matrices {𝑼 𝑗}𝑛𝑗=1, which contain the singular vectors for each unfolded matrix 𝑿 𝑗 ,
i.e.:

𝑼 𝑗𝚲 𝑗𝑼
⊤
𝑗 = corr(𝑿 𝑗), (4.4)

corr({𝒙 𝑗 ,𝑖}) =
∑︁
𝑖

𝒙 𝑗 ,𝑖𝒙
⊤
𝑗 ,𝑖 (4.5)

Here, corr is a correlation matrix between all columns {𝒙 𝑗 ,𝑖}𝑖 of the matrix 𝑿 𝑗 with respect to
an inner product. For ease of calculation, corr(𝑿 j) = 𝑿 j𝑿

⊤
j in the simplest case..

We then select subspaces from each vector space spanned by the eigenvectors 𝑼 𝑗 ∈ {𝑼 𝑗}𝑛𝑗=1
resulting in a set of subspaces 𝑆𝑝 = {𝒫 𝑗}𝑛𝑗 . These subspaces are spanned by basis vectors {𝑷 𝑗}𝑛𝑗 ,
where 𝑷 𝑗 ∈ R 𝑓 𝑗×𝑣 𝑗 , containing 𝑘 𝑗 eigenvectors corresponding to the highest 𝑘 𝑗 eigenvalues, selected
from 𝑼 𝑗 and 𝚲 𝑗 respectively. Note that different 𝑘 𝑗 can be selected for each mode subspace as each
mode exhibits different properties and levels of information density. In summary, the tensor X is
mapped to a set of mode subspaces 𝑆𝑝.

In our tensor classification framework we compute a set of reference subspaces for each class in
the training (in contrast to a set of reference subspaces per sample tensor). Therefore, in the training
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phase we employ a variation of the procedure above to model a set of reference tensors (belonging
to the same class) with a single set of mode class subspaces. For class 𝑐 ∈ C with 𝑚𝑐 samples, we
compute:

𝑼 𝑗 ,𝑐𝚲 𝑗 ,𝑐𝑼
⊤
𝑗 ,𝑐 =

1
𝑚𝑐

𝑚∑︁
𝑖 |𝑦𝑖=𝑐

corr(𝑿 𝑗 ,𝑖). (4.6)

The 𝑐th class subspace 𝒲𝑗 is spanned by basis vectors 𝑾 𝑗 ,𝑐 obtained from the leading 𝑘

eigenvectors, i.e. the columns of 𝑼 𝑗 ,𝑐. Class 𝑐 is represented by a set of mode class subspaces
{𝑾 𝑗 ,𝑐}𝑛𝑗=1.

The resulting set of mode subspaces offers a compact representation of tensor modes and an
opportunity to analyze each mode independently. However, some temporal features may be lost in
this representation, as a consequence of subspace extraction. We discuss this issue in more detail in
the next section, as well as offering a solution by introducing Temporal-Stochastic Tensor features.

4.3.3 Temporal-Stochastic Tensor Features

For tensors containing temporal information, such as videos, applying the approach described in
section 4.3.2 may not be ideal. This is due to loss of this temporal information when executing the
Singular Value Decomposition (SVD) in Eq.(4.4) on the auto-correlation matrix defined in Eq.(4.5).
Consider the unfolded temporal mode of a tensor X :

mat𝑛 X = 𝑿𝑛 =

= [𝒙1, . . . , 𝒙𝑑𝑡 ],
(4.7)

where mode matrix 𝑿𝑛 is of size 𝑓𝑛 × 𝑑𝑡 , with 𝑓𝑛 =
∏𝑛−1

𝑗=1 𝑑 𝑗 . Vector 𝒙𝑡 ∈ R 𝑓𝑛 (𝑡 = 1, . . . , 𝑑𝑡 )
is a column of 𝑿𝑛, and can be thought of as a frame of the sequence determined by the temporal
mode. Temporal information is embedded here in the ordering of columns in 𝑿𝑛.

However, this ordering is lost when creating subspace representation of the temporal mode. The
first step is to compute an auto-correlation matrix, a 𝑓𝑛 × 𝑓𝑛 matrix containing correlation values
of each frame with itself. Then, SVD is performed on this auto-correlation matrix in Eq.(4.4).
Regardless of the ordering of columns in the auto-correlation matrix, SVD produces the same
eigenvectors and eigenvalues, meaning that the temporal information directly embedded into the
ordering of columns is lost.

To address this issue, we introduce the Temporal-Stochastic Tensor (TST) features to extract the
temporal features that the mode subspaces cannot preserve. Consider again the unfolded temporal
mode 𝑿𝑛 in Eq.(4.7) and the ordered set 𝑆 = {𝒙𝑡 }𝑑𝑡𝑡=1 containing ordered columns of 𝑿𝑛.

A TST feature vector 𝒔 = [𝒛⊤1 , 𝒛
⊤
2 , ...𝒛

⊤
𝑞 ]⊤, 𝒔 ∈ R𝑔 (𝑔 = 𝑞 𝑓𝑑𝑡 ) is constructed by randomly sampling

𝑞 frames from the ordered set 𝑆, while preserving their original ordering. Specifically, if 𝑡 (𝒛𝑖) (with
𝑖 = 1, . . . , 𝑞) is the original order of a frame, then the samples 𝒛1, ..., 𝒛𝑞 ∈ 𝑆 needs to satisfy the
following condition: 𝑡 (𝒛1) < ... < 𝑡 (𝒛𝑞).

This sampling procedure is repeated 𝑟 times, resulting in a set of TST feature vectors {𝒔𝑖}𝑟1. The
numbers of sampled frames 𝑞 and repetitions 𝑟 are considered hyperparameters, and, depending on
the dataset, should be tuned accordingly. We compute a TST subspace to represent the distribution
of TST feature vectors in the traditional subspace manner:
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𝑼𝚲𝑼⊤ = corr( [𝒔1, . . . , 𝒔𝑟 ]). (4.8)

𝑼 ∈ R𝑔×𝑟 is a matrix with eigenvectors as columns and 𝚲 ∈ R𝑟×𝑟 is a diagonal matrix with
𝑟 eigenvalues. The basis vectors of the TST subspace are obtained by selecting 𝑘 eigenvectors
𝑷𝑇 = [𝒗1, ..., 𝒗𝑘] corresponding to the 𝑘 highest eigenvalues. The resulting TST subspace 𝒫𝑛

exhibits sequence-preserving qualities in each of the eigenvectors, which are generalized to the
whole subspace. This procedure is used to map a tensor X to 𝒫𝑛.

Analogous to Section 4.3.2, we compute a reference TST subspace for each class in the training.
Using a variation of the procedure described in this section, we model a set of reference sequences,
belonging to the same class, with a single TST subspace. For class 𝑐 ∈ C with 𝑚𝑐 samples, we
compute:

𝑼𝑐𝚲𝑐𝑼
⊤
𝑐 =

1
𝑚𝑐

𝑚𝑐∑︁
𝑖 |𝑦𝑖=𝑐

corr( [𝒔1,𝑖, . . . , 𝒔𝑟 ,𝑖]). (4.9)

The basis vectors 𝑾𝑡 ,𝑐 of 𝑐th class subspace 𝒫𝑡 ,𝑐 are obtained from the leading 𝑘 eigenvectors,
i.e. the columns of 𝑽𝑐.

4.3.4 Temporal-Stochastic Product Grassmann Manifold

By using the two approaches described in previous subsections, we can map an 𝑛-dimensional tem-
poral tensor X ∈ R𝑑1×···×𝑑𝑛 to a set of subspaces 𝑆𝑝 = {𝒫 𝑗}𝑛+1

𝑗=1, spanned by basis vectors {𝑷 𝑗}𝑛+1
𝑗=1.

This set is comprised of subspace representations of 𝑛 Spatio-Temporal Tensor modes {𝒫 𝑗}𝑛𝑗=1 and
the TST subspace 𝒫𝑡 . Every 𝒫 𝑗 can be considered as a point on a factor Grassmannian 𝑀 𝑗 (𝑘 𝑗 , 𝑑 𝑗),
where 𝑘 𝑗 and 𝑑 𝑗 are dimensions of subspace 𝒫 𝑗 and feature space of mode 𝑗 , respectively. To unify
these subspace representations, we construct Temporal-Stochastic Product Grassmann Manifold
from a set of factor manifolds 𝑀 = {𝑀 𝑗}𝑛+1

𝑗=1 by Eq. 4.10 using the Cartesian product:

𝑀 = 𝑀1×1...×𝑛𝑀𝑛×𝑛+1𝑀𝑛+1 = (𝒫1, ...,𝒫𝑛,𝒫𝑛+1). (4.10)

Therefore, each temporal tensor is represented as a point on 𝑀 , enabling classification on the
product manifold via a metric defined on this space. The geodesic distance between two points on
the manifold is considered a natural choice of dissimilarity due to its utilization of the manifold
surface itself [2].

Geodesic distance on 𝑀 is defined through geodesic distances between points on all factor
manifolds {𝑀 𝑗}𝑛+1

𝑗=1. In general, the geodesic distance on a single Grassmann Manifold 𝑀𝑖 is related
to a similarity parametrized in terms of the canonical angles [18] between subspaces in the following
manner: consider subspaces 𝒫 and 𝒬, spanned by basis vectors 𝑷 and 𝑸 respectively. Their
canonical angles {0 ≤ 𝜃1, ..., 𝜃𝑚 ≤ 𝜋

2 } can be computed by SVD as:

𝑷⊤𝑸 = 𝑼𝑝𝚺𝑼𝑞 . (4.11)

𝑼𝑝 and 𝑼𝑞 are the canonical vectors, and 𝚺 = diag(𝜆1, . . . , 𝜆𝑘) is a diagonal matrix with 𝑘

singular values {𝜆𝑙}𝑘𝑙=1. The canonical angles
{
𝜃𝑙
}𝑘
𝑙=1 can be obtained as

{
arccos𝜆𝑙

}𝑚
𝑙=1. Thus, we

can define the similarity between subspaces 𝒫 and 𝒬 as:
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𝑠(𝒫,𝒬) = 1
𝑘

𝑘∑︁
𝑙=1

cos2 𝜃𝑙 . (4.12)

The similarity function on Product Grassmann Manifold 𝑀 is defined by combining similarities
{𝑠(𝒫 𝑗 ,𝒬 𝑗)}𝑛+1

𝑗=1 on each of 𝑛 + 1 manifolds. Formally, the similarity between two tensors X and Y ,
represented with sets of subspaces 𝑆𝑝 and 𝑆𝑞, respectively, is defined as:

𝜌(𝑆𝑝, 𝑆𝑞) = ©«
𝑛+1∑︁
𝑗=1

(
𝑠(𝒫 𝑗 ,𝒬 𝑗)

)2ª®¬
1/2

. (4.13)

A distance is inversely related to the similarity function 𝜌. Finally, relying on the similarity
function 𝜌, we can define the Temporal-Stochastic Product Grassmann Manifold (TS-PGM) classi-
fication framework for temporal tensors. An overview of the proposed method is shown on Figure
4.2. For the sake of clarity and simplicity, we illustrate TS-PGM for the case of tensors with 𝑛 = 3
modes and size ℎ ×𝑤 × 𝑡. However, this approach can be generalized to 𝑛-mode tensors. As defined
in Section 4.3.1, having a set of labeled reference tensors {(X𝑖 , 𝑦𝑖)}𝑚𝑖=1, with 𝑦𝑖 ∈ C = {1, · · · , 𝑐}
and an input tensor Y , the training phase consists of:

1. The unfolding stage: each reference tensor X𝑖 is unfolded into 3 spatio-temporal modes
𝑿1,𝑖, 𝑿2,𝑖 and 𝑿3,𝑖 . In parallel, a set of TST features {𝒔𝑠}𝑟𝑠=1 is generated, with 𝑞 frames
sampled 𝑟 times. For convenience, these features can be arranged into matrix 𝑿4,𝑖 . Therefore,
a set of feature matrices 𝑋𝑖 = {𝑿 𝑗 ,𝑖}4

𝑗=1 = {𝑿1,𝑖 ∈ R𝑤𝑡×ℎ, 𝑿2,𝑖 ∈ Rℎ𝑡×𝑤, 𝑿3,𝑖 ∈ R𝑤ℎ×𝑡 ,
𝑿4,𝑖 ∈ R𝑞ℎ𝑤×𝑟 } is created for every tensor X𝑖 .

2. The subspace creation stage: for each class 𝑐 ∈ C, the class correlations are aggregated and
a set of basis vectors {𝑾 𝑗 ,𝑐}4

𝑗=1 is computed according to Eq. 4.6 for spatio temporal features
𝑿1, 𝑿2 and 𝑿3 and Eq. 4.9 for TST features 𝑿4. These basis vectors span a set of reference
class subspaces 𝑆𝑐 = {𝒲𝑗 ,𝑐}4,𝑚𝑐

𝑗 ,𝑐=1.

The testing phase for a query tensor Y consists of:

1. The unfolding stage: tensor Y is unfolded into 3 spatio-temporal modes 𝒀1, 𝒀2 and 𝒀3, and
the set of TST features {𝒔𝑠}𝑟𝑠=1, arranged into matrix𝒀4, is generated with 𝑞 frames sampled 𝑟

times. This results in a set of feature matrices𝑌 = {𝑿 𝑗}4
𝑗=1 = {𝒀1 ∈ R𝑤𝑡×ℎ,𝒀2 ∈ Rℎ𝑡×𝑤,𝒀3 ∈

R𝑤ℎ×𝑡 , 𝒀4 ∈ R𝑞ℎ𝑤×𝑟 }.

2. The input subspace creation stage: a set of basis vectors {𝑸 𝑗}4
𝑗=1 is generated using Eq. 4.4

for spatio-temporal features 𝒀1, 𝒀2 and 𝒀3 and Eq. 4.8 for TST features 𝒀4, spanning a set of
input subspaces 𝑆𝑞 = {𝒬 𝑗}4

𝑗=1.

3. The similarity calculation stage: similarities {𝜌(𝑆𝑐, 𝑆𝑞)}𝑙𝑐=1 are calculated between the set
of input subspaces 𝑆𝑞 and each set of class subspaces 𝑊𝑐 for each reference class 𝑐 ∈ C, using
Eq. 4.13.
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4. The classification stage: finally, tensor Y is assigned the label of class 𝑐 corresponding to
the label of the reference set of subspaces with highest similarity of {𝜌}4

𝑖=1, i.e., prediction
pred(Y) = argmax𝑐 𝜌(𝑆𝑐, 𝑆𝑞).

4.3.5 Constrained TS-PGM

A major drawback of TS-PGM is that subspaces are generated independently of each other [80],
meaning there is no reason to a priori assume they are optimal for classification purposes. To
directly address this, Generalized Difference Subspace (GDS) has been developed [18]. It works
by projecting subspaces to a special subspace (GDS) containing only the essential components for
discrimination between classes. It has also been utilized for tensor analysis [25].

Given a set of 𝑐 (≥ 2) 𝑛-dimensional reference class subspaces {𝒫𝑖}𝑐𝑖=1 with their basis matrices
{𝑷𝑖}𝑐𝑖=1, a basis matrix of a sum subspace 𝒢 can be created in the following manner:

𝑮 =
1
𝑐

𝑐∑︁
𝑖=1

𝑷𝑖 . (4.14)

Sum subspace 𝒢 contains information of all the classes comprising it. To obtain discriminative
information, its basis matrix 𝑮 is decomposed using SVD:

𝑮 = 𝑼𝚲𝑽⊤, (4.15)

where 𝑼 contains eigenvectors, and 𝚲 eigenvalues in descending order. GDS 𝒟 is obtained
by removing the leading principal components from sum subspace 𝒢. This is done by selecting 𝑘

eigenvectors from 𝑼 corresponding to lowest eigenvalues in 𝚲. Resulting subspace 𝒟 contains only
differences between all subspaces {𝒫𝑖}𝑐𝑖=1. Discriminative information is then used for the purposes
of classification, by projecting original reference class subspaces {𝒫𝑖}𝑐𝑖=1 onto the GDS 𝒟, resulting
in a set of reference class subspaces �̂� = {�̂�𝑖}𝑐𝑖=1 with enhanced discriminative capabilities:

�̂�𝑖 = 𝑜𝑟𝑡ℎ(𝑫⊤𝑷𝑖). (4.16)

with 𝑜𝑟𝑡ℎ representing the Gram-Schmidt orthogonalization. TS-PGM utilizing GDS projection
is referred to as Temporal-Stochastic Constrained PGM (TS-CPGM). In the training stage, after
completing steps 1 and 2 of standard TS-PGM, the resulting set of reference class subspaces
𝑆𝑐 = {𝒲𝑗 ,𝑐}4,𝑚𝑐

𝑗 ,𝑐=1, spanned by {𝑾 𝑗 ,𝑐}4,𝑚𝑐

𝑗 ,𝑐=1 is used to create a set of Generalized Difference Subspaces
𝐷 = {𝒟𝑗}4

𝑗=1, spanned by {𝑫 𝑗}4
𝑗=1. In our case, 𝑗 belongs in {1, 2, 3, 4}, representing four

subspaces; three Spatio-Temporal Tensor modes and one Temporal-Stochastic representation. This
is accomplished using equations (4.14) and (4.15). Original subspaces from set 𝑆𝑐 are then projected
onto 𝐷 using (4.16) like so:

�̂� 𝑗 ,𝑐 = 𝑜𝑟𝑡ℎ(𝑫⊤
𝑐𝑾 𝑗 ,𝑐), (4.17)

for every 𝑗 ∈ {1, 2, 3, 4} and 𝑐 ∈ {1, . . . , 𝑚𝑐}. Set {�̂� 𝑗 ,𝑐}4,𝑚𝑐

𝑗 ,𝑐=1 spans the set of projected
reference class subspaces {�̂�𝑗 ,𝑐}4,𝑚𝑐

𝑗 ,𝑐=1. To perform classification, an input tensor undergoes steps
1 and 2 of standard TS-PGM and a set of input subspaces 𝑆𝑞 = {𝒬 𝑗}4

𝑗=1 is projected onto the set
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of Generalized Difference Subspaces 𝐷 using Eq. (4.16). The resulting set {�̂� 𝑗}4
𝑗=1, spanned by

{𝑸 𝑗}4
𝑗=1 is compared to reference class subspaces {�̂�𝑗 ,𝑐}4,𝑚𝑐

𝑗 ,𝑐=1 using similarity in Eq. (4.13) as
normal.

4.3.6 Kernel Extension of TS-PGM

The second drawback of TS-PGM lies in the linear nature of subspaces. While theoretically
subspaces offer decent and compact representation for individual classes, it is often the case that
real-world application data comprises non-linear data distributions. In such cases, linear subspaces
usually exhibit a high degree of overlap, thus significantly reducing the classification performance
of subspace-based methods [21, 88].

An established way of dealing with this issue is to generate subspace representations through
kernel PCA [90, 91], by mapping input patterns into a high dimensional feature space via a nonlinear
map 𝜙. Linear subspaces created in the mapped feature space correspond to non-linear subspaces
in original input space.

Consider a set of patterns 𝑋 = (𝒙1, . . . , 𝒙𝑑) in an 𝑛-dimensional vector space 𝐼 and mapping
function 𝜙(𝒙). It maps input patterns from 𝐼 to an f-dimensional feature space 𝐹 : 𝜙 : R𝑛 →
R 𝑓 , 𝒙 → 𝜙(𝒙). PCA can then be performed in the non-linear space 𝐹 by calculating the inner
product (𝜙(𝒙) · 𝜙(𝒚)).

Due to high (possibly infinite) dimensionality of space 𝐹, it can be hard to calculate the inner
product. However, if the nonlinear map 𝜙 is defined through a kernel function 𝑘 (𝒙, 𝒚), the inner
products (𝜙(𝒙) · 𝜙(𝒚)) can be calculated from the inner products (𝒙 · 𝒚). This technique is known
as the “kernel trick”. Commonly, an exponential function 𝑘 (𝑥, 𝑦) = 𝑒𝑥𝑝(− | |𝑥−𝑦 | |2

𝜎2 ) is used.
In the context of our framework, kernel PCA is used to construct mode subspaces for Spatio-

Temporal and Temporal-Stochastic Tensor features. In standard TS-PGM, Eq. (4.5) is used for
computing the auto-correlation matrix, the first step in PCA. However, for kernel PCA, we use 𝜙 to
map the vectors to non-linear space, and thus the equation becomes:

corr({𝒙 𝑗 ,𝑖}) =
∑︁
𝑖

𝜙(𝒙 𝑗 ,𝑖)⊤𝜙(𝒙 𝑗 ,𝑖) (4.18)

Having computed the auto-correlation in non-linear space, the flow of kernel TS-PGM continues
the same way as standard TS-PGM. We compute a set of reference subspaces for each class in the
training equations Eq. (4.4) and Eq. (4.8) for spatio-temporal and temporal-stochastic tensor
features, respectively. Then, for an input tensor, we compute a set of subspaces using Eq. (4.6) and
Eq. (4.9). Similarity between a set of input subspaces and a set of reference subspaces is performed
in the same way as in standard TS-PGM. We refer to this enhanced method as Temporal-Stochastic
Kernel PGM (TS-KPGM).

It is worth noting that GDS projection from Section 4.3.5 can be used in conjunction with the
kernel mapping, leveraging the benefits of both extensions simultaneously, at the cost of increased
computational requirements and memory usage. This final extension is called Temporal-Stochastic
Kernel Constrained Product Grassmann Manifold (TS-KCPGM).
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Mode Reference Input Similarity
M1 𝑂 (𝑐(𝑤𝑡) (ℎ𝑚)2) 𝑂 (𝑤𝑡ℎ2) 𝑂 (𝑐𝑘2𝑖)
M2 𝑂 (𝑐(ℎ𝑡) (𝑤𝑚)2 𝑂 (ℎ𝑡𝑤2) 𝑂 (𝑐𝑘2𝑖)
M3 𝑂 (𝑐(𝑤ℎ) (𝑡𝑚)2) 𝑂 (𝑤ℎ𝑡2) 𝑂 (𝑐𝑘2𝑖)
TST 𝑂 (𝑐(𝑞ℎ𝑤) (𝑟𝑚)2) 𝑂 (𝑞ℎ𝑤𝑟2) 𝑂 (𝑐𝑘2𝑖)

Table 4.1: Varying time complexities of SVD operations in TS-PGM. The costliest operation is
computing the reference subspaces; with TST features being slightly more expensive than regular
tensor modes. Computing input subspaces and similarities on the product manifold is relatively
inexpensive.

4.3.7 Computational Complexity of Proposed methods

Finally, we discuss the computational complexity of our methods in terms of Big O notation. The
main bottleneck of our method is the SVD, required for computing reference subspaces, input
subspaces, and similarities between them. In general, the upper bound time complexity of the
SVD is 𝑂 (𝑚𝑛2), for an 𝑚 × 𝑛 matrix. This makes our method require exponential execution time.
However, the actual computation time differs based on a number of parameters such as dataset and
tensor size, and chosen reference and input subspace dimensions. In practice, subspace dimensions
are usually very small.

Further discussion is carried out for a classification problem with 𝑐 classes, each of which
contains 𝑚 tensors. For simplicity, all tensors are of the same size ℎ×𝑤× 𝑡. To obtain TST features,
𝑞 frames are sampled 𝑟 times from each tensor. Reference subspaces are of dimension 𝑘 , while input
subspaces are of dimension 𝑖, where 𝑘 >= 𝑖. A general overview of SVD complexities is shown in
Table 4.1.

In the case of TS-PGM, computation of reference subspaces mostly depends on class and sample
sizes 𝑐 and 𝑚, tensor dimensions ℎ, 𝑤, 𝑡 and sampling parameters 𝑞 and 𝑟 , and is the most costly
operation in our method. Input subspaces, on the other hand, are obtained very fast and depend only
on tensor dimensions, while the computation of similarities depends on class size 𝑐 and subspace
dimensions 𝑘 and 𝑖.

Kernel extension to TS-PGM additionally requires computation of kernel space prior to con-
structing reference subspaces; therefore, its cost is higher compared to base TS-PGM and greatly
depends on the size of the dataset. On the other hand, introducing GDS projection to TS-PGM
marginally increases the complexity in the training step by requiring an additional SVD operation
per mode to compute the GDS.

4.4 Experimental Results

In this section, we evaluate proposed methods on several hand gesture, action and skeleton-based
action recognition datasets. We first describe the datasets we use in our experiments, as well as
their respective experimental settings. Secondly, we evaluate the validity of tensor representation
with a sequence-preserving TST subspace and analyze the contribution of this representation on the
TS-PGM compared to standard tensor modes through ablation experiments. Thirdly, we show that
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extensions of TS-PGM with 𝑛-mode GDS projection and kernel mapping achieve better performance
compared to basic TS-PGM. Lastly, we compare our methods to relevant subspace-based and neural
network-based approaches and discuss their advantages and drawbacks.

4.4.1 Datasets

Cambridge Gesture (CMB) is a simple hand motion dataset that contains 9 classes (3 hand shapes
combined with 3 hand motions), with 100 video sequences per class, resulting in 900 videos in
total. It is divided equally into five sets based on illumination settings. We use one set with normal
illumination for training, and the rest for testing.

Northwestern Hand Gesture (NW) is a more complex dataset containing 10 gestures performed
by 15 subjects with 7 different hand shapes. This totals 1,050 video sequences. A convention is to
consider hand shapes and subjects to be variations for every gesture performed, therefore the dataset
has 10 classes. We use 550, 250 and 250 sequences for training, validation and testing, respectively.

KTH dataset consists of 2,391 action sequences in video format. It contains six types of actions
recorded in four different scenarios, with total of 25 subjects recorded performing the actions. The
dataset is split according to subjects, with 8, 8 and 9 subjects for train, validation and test sets,
respectively.

UT-Kinect (UT) dataset contains videos, depth sequences, and skeleton data of 10 action classes,
performed by 10 subjects in front of a Kinect device. There are 200 sequences in total. In our
experiments we utilize skeleton data, which contain x, y and z coordinates of 20 skeleton joints,
under a Leave-One-Out Cross Validation (LOOCV) experimental protocol.

All datasets contain sequences of variable length which we resize to equal number of frames
using linear interpolation. This is a key pre-processing step, as tensors are required to be of the
same dimensions for most tensor-based methods. However, TST features can be extracted before
this interpolation, thus potentially preserving additional information. The dimensions of resulting
tensors are 12 × 16 × 30 (CMB), 12 × 16 × 20 (NW), 16 × 16 × 30 (KTH) and 3 × 20 × 20 (UT).

4.4.2 Spatio-temporal and temporal-stochastic tensor features

First, we put our main question to the test - how well do Temporal-Stochastic Tensor (TST) features
capture the temporal information compared to regular Spatio-Temporal Tensor (STT) modes? We
do this through a classification ablation study on all datasets, by classifying subspace representations
of both STT modes and TST features using Mutual Subspace Method (MSM) [77], an established
method for classifying subspace-represented data, specifically pattern-sets. It is a suitable method
for evaluating the accuracy obtained from singular modes, as it also relies on canonical angles to
measure similarity between subspaces, and TS-PGM could be considered its natural multilinear
extension.

Class reference subspaces and input subspaces are obtained as described in section 4.3.4. How-
ever, canonical angles between input and class reference subspaces are calculated using Eq. 4.11,
and input is classified as the class of the most similar reference subspace. Note that there is no
unification using Product Grassmann Manifold, and only information contained in either one of the
tensor modes or TST features is used for classification. Dimensions of reference and input subspaces
are chosen experimentally and fixed for all classes, meaning that every class is represented with the
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Dataset M1 M2 M3 TST
Cambridge S1 91.11% 76.66% 82.77% 96.66%
Cambridge S2 78.88% 77.22% 82.77% 93.33%
Cambridge S3 85.55% 81.11% 84.44% 92.77%
Cambridge S4 83.88% 76.66% 73.33% 94.44%
Cambridge ALL 81.25% 79.02% 73.33% 93.33%
Northwestern 88.53% 82.31% 27.11% 91.37%
KTH 61.14% 68.48% 74.62% 75.55%
UT-Kinect 93.50% 74.44% 79.00% 94.00%

Table 4.2: Ablation study of MSM classification performances on singular tensor modes and
Temporal-Stochastic Tensor (TST) features. Standard modes are labeled as M1, M2 and M3,
depending on the tensor axis along which the matricization was executed. Classification utilizing
TST features outperforms regular tensor modes in all cases, usually with a significant margin.

same number of dimensions. Results are shown in Table 4.2.
It can be seen that regular STT modes do not perform consistently across datasets. Mode 1

performs the best on Cambridge, Northwestern and UT-Kinect, while mode 3 (temporal) outperforms
it on KTH. This implies the imbalance of information contained within individual tensor modes, with
respect to a given dataset. For CMB, NW and UT, spatial information is more valuable than temporal,
as shown by superior performance of modes 1 and 2, while KTH benefits more from temporal mode.
However, TST representation consistently achieves the best performance, outperforming regular
modes by far. This is possibly due to the ability of TST features to represent both global and local
temporal information, offering significant improvement over a regular temporal mode. These results
give us confidence in using TST features for representing temporal tensors.

Next, we test the benefit of unifying different representations through the Product Grassmann
Manifold geometry and compare performance of singular modes. In essence, we aim to show that
incorporating explicit temporal information is highly beneficial, compared both to combined repre-
sentations on PGM and especially individual representation. We use PGM to classify combinations
of three STT modes and we use TS-PGM to classify unified TST feature and STT mode represen-
tations. For both methods the dimensions of reference and input subspaces are fixed across modes
and classes and are determined experimentally, as in the previous experiment. Results are shown in
Table 4.3.

Using tensor modes together, via PGM, offers robustness and better performance compared to
individual representations. PGM outperforms even MSM using TST features, though the gap in
performance is not as large. Joint representation on TS-PGM beats all approaches by a fair margin.
As mentioned previously, the contribution of different modes varies depending on the dataset.
However, TS-PGM offers robustness to this variance, in addition to leveraging additional temporal
information using TST features. It is worth noting that in our approach, the contributions of factors
on PGM and TS-PGM are uniform. This means that when computing the similarity between points
on the product manifold, there is no weighting strategy applied to the contribution of similarities of
each of the factor manifolds and all factors are considered equal. Further modifying the significance
of each factor is possible by learning weights, like in [25].
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Dataset Single Mode TST PGM TS-PGM
Cambridge 81.25% 93.33% 93.33% 97.08%
Northwestern 88.53% 91.37% 93.05% 94.98%
KTH 74.62% 75.55% 77.28% 80.15%
UT-Kinect 93.50% 94.00% 95.00% 99.00%

Table 4.3: Comparison of best performances from single tensor modes and TST features to unified
representations of tensor modes on PGM and TS-PGM. Results shows the benefit of unifying
individual representations on the PGM, while TS-PGM demonstrates that incorporating explicit
temporal information via TST features beats other representation methods.

Dataset TS-PGM TS-CPGM TS-KPGM TS-KCPGM
Cambridge S1 98.88% 100% 99.44% 100%
Cambridge S2 96.66% 98.33% 97.22% 98.88%
Cambridge S3 97.77% 98.33% 97.77% 97.77%
Cambridge S4 97.77% 99.44% 98.33% 99.44%
Cambridge ALL 95.08% 97.50% 97.36% 97.77%

Table 4.4: Evaluation of discriminative and kernel extesions to TS-PGM representation. The effect of
GDS projection to increase discriminative capabilities can be seen in results of TS-CPGM, achieving
increase of at least 1% in all cases. Applying kernel mapping improves both base TS-PGM and
TS-CPGM, demonstrated by results of TS-KPGM and TS-KCPGM respectively.

4.4.3 Discriminative extensions and evaluation with current methods

In this experiment, we evaluate proposed discriminative extensions to TS-PGM on all Cambridge
dataset illumination subsets. As mentioned in Section 4.3.5, we employ 𝑛-mode GDS projection
[25], resulting in the constrained TS-PGM (TS-CPGM) method. We also utilize a kernel mapping to
implement kernel TS-PGM (TS-KPGM) and kernel TS-CPGM (TS-KCPGM), explained in Section
4.3.6.

Regular Temporal-Stochastic Product Grassmann Manifold requires setting up three hyperpa-
rameters: dimensions of reference and input subspaces, and the number of angles to consider when
calculating geodesic distance. Constrained extension of TS-PGM further requires setting up the di-
mension of Generalized Difference Subspace (GDS). In kernel extensions, as we are using Gaussian
exponential function for the kernel trick, where the value of 𝜎 is one additional hyperparameter to
be considered.

In our experiments, the dimensions of 𝑛-mode GDS for TS-CPGM, as well as the kernel size for
TS-KPGM and TS-KCPGM are fixed for all modes and classes and are experimentally determined,
and the best performance is recorded for each method. Results on Cambridge sets are shown in
Table 4.4.

The base TS-PGM has the lowest performance which is because it is merely a representation
method without a discriminative mechanism. As expected, both extensions offer better performance.
Utilizing 𝑛-mode GDS projection, which is considered a very good discriminative method [18, 25],
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yields stronger results, and offers constant improvement on all sets. TS-CPGM achieves greater
performance by at least 1% in all settings, and even achieves 100% accuracy on set 1. Projection
onto 𝑛-mode GDS removes overlap between sets of class reference subspaces, making it easier to
classify an input tensor. However, in some cases the dimension of the GDS can be hard to determine.
Too few dimensions results in the loss of discriminative information, while too many introduces
noise, thus negatively impacting the classification performance.

Tackling non-linearity in the data through kernel mapping offers slight (around 0.5%), but
constant and robust, improvement over the baseline, as shown by performance of TS-KPGM. While
not as convincing as the constrained version, it still offers a 2% performance boost in the case of
all data being used. It is worth mentioning that while the kernel trick does not offer as big of a
boost in performance as 𝑛-mode GDS projection, it is comparatively easier to determine proper
kernel size. In our experiments, 𝜎 can be any value in the range of 10 to 300 without affecting the
results significantly. In addition, kernel mapping can be used to strengthen the constrained version of
TS-PGM, resulting in TS-KCPGM. By utilizing both the n-mode GDS projection and kernel trick,
TS-KCPGM achieves the best results, outperforming the baseline in all cases.

4.4.4 Comparison with related methods

In this section, we compare our proposed method to related work on hand gesture and action
recognition, paying special attention to other traditional tensor-based methods. In addition, we
consider state of the art methods on the employed datasets - tensor-based, neural-network based or
otherwise. We follow standard experimental protocols defined for each dataset. It is important to
note that for our method, we utilize exclusively grayscale image features from the Cambridge and
Northwestern datasets, unlike some of the other methods.

We compare TS-PGM and and its extensions to established tensor-based methods on Cambridge
hand gesture dataset. These methods include Discriminative Canonical Correlation (DCC) [47],
Tensor Canonical Correlation Analysis (TCCA) [49], Product Grassmann Manifold (PGM) [72]
and Tangent Bundle (TB) [73]. Further, we observe performances of closely related methods of
Randomized Time Warping (RTW) [107], 𝑛-mode Generalized Difference Subspace (𝑛-mode GDS)
[25] and 𝑛-mode weighted GDS (n-mode wGDS). Finally, Spatio-Temporal Covariance Descriptors
(Cov3D) [89] and Key Frames Extraction Method and Feature Fusion Strategy (Key Frames) [108]
are considered. Results are shown in Table 4.5.

Results demonstrate the effectiveness of TS-PGM compared to traditional tensor-based methods
such as DCC, TCCA, PGM and TB, with smallest performance margin being 6% in case of TB,
and largest being 21% in case of DCC. Interestingly, improvement over manifold-based methods of
PGM and its discriminative extension 𝑛-mode GDS can be noted with 9% and 3% increase. This
lends credibility to our idea of incorporating explicit temporal data with TST features.

Spatio-Temporal Covariance Descriptors (Cov3D) [89] are covariance matrix-based features
extracted from a number of windows within the video which are found to be the most discriminative.
As the Cov3D are symmetric positive definite matrices existing on a Riemannian manifold, a
Riemannian learning method is utilized for final classification. However, it can be seen that base
TS-PGM outperforms Cov3D by 4%, even though it relies on, essentially, a 1-nearest neighbour
classifier based on geodesic distance. This further shows that the quality of representation can
outweigh the effectiveness of a discriminative method.
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Method Cambridge
DCC [47] 76%
TCCA [49] 82%
PGM [72] 88%
TB [73] 91%
Cov3D [89] 93%
RTW [107] 93.6%
n-mode GDS [25] 93%
n-mode wGDS [25] 94%
Ours (TS-PGM) 97.08%
Ours (TS-KPGM) 97.36%
Ours (TS-CPGM) 97.50%
Ours (TS-KCPGM) 97.77%
Key Frames [108] 98.23%

Table 4.5: Comparison of proposed methods with established tensor and subspace based methods
on Cambridge dataset. It can be clearly seen that TS-PGM offers competitive results, outperforming
all methods except Key Frames [108]. TS-KPGM, TS-CPGM and TS-KCPGM all deliver improved
performance over the base method, with TS-KCPGM trailing behind the best performing method by
only 0.5%.

As noted before, boosting representational and discriminative power of TS-PGM by kernel
mapping and GDS projection yields the best results, shown by TS-KCPGM.

The only method outperforming TS-KCPGM, though only by 0.5%, is Key Frames [108], a
hand gesture recognition-specific method. It detects the most discriminant frames in a video by
calculating entropy of motion histograms of each frame, and finding peaks in the entropy curve
through density clustering. Advanced motion and appearance features are then extracted from key
frames, before fusing them and classifying using SVM. The difference in performance could be
attributed to TS-KCPGM not utilizing hand crafted spatial or temporal features such as HOG [13],
SURF [5] or SIFT 3D [93], but instead relying only on grayscale image representation. However,
these features can be easily incorporated into TS-PGM by replacing specific tensor modes, and
proceeding with individual subspace representation and then unification on TS-PGM as usual.

On Northwestern hand gesture dataset, we compare our proposed TS-PGM to several methods
designed specifically for hand gesture recognition. [95] calculate Divergence Fields (DF) from
optical flows between frames in order to find salient regions for feature extraction; classification is
performed by matching against the pre-trained database using the term-frequency inverse document
frequency (TF-IDF) algorithm. On the other hand, [61] utilize genetic programming to evolve a
set of simple 3D sequence-processing operators to obtain a set of strong high-level, spatio-temporal
descriptors.

Results for Northwestern hand gesture dataset are shown in table 4.6. While more challenging
than the Cambridge dataset, TS-PGM demonstrates competitive results, with average accuracy of
94.98% over 20 trials, though not outperforming other methods. Lower performance of TS-PGM
can be explained by our choice of features, which are simple grayscale features, not tailored for
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Method Northwestern
Ours (TS-PGM) 94.98% ± 3.02%

DF + TF-IDF [95] 95.8%
Genetic Programming [61] 96.1%

Key Frames [108] 96.89% ± 1.08%

Table 4.6: Comparison of proposed method with related methods on Northwestern dataset. Although
not outperforming other methods, TS-PGM yields competitive results, while relying on much simpler
image descriptors such as grayscale features.

any specific recognition task. High variance of 3% indicates possible overfitting, which could be
explained by the fact that we use the same number of dimensions for all reference subspaces. This
can negatively impact the performance, as not all classes and tensor modes require the same number
of dimensions to be effectively represented, making it difficult to find optimal dimension for all
reference subspaces. A solution would be to allow a degree of freedom when selecting subspace
dimensions for a particular class or tensor mode.

Finally, by testing our proposed representation method on skeleton data contained within the
UT-Kinect dataset, we show its capability to represent different types of temporal tensors. Results
are shown in Table 4.7. As TS-PGM is a general framework for encoding temporal tensors, it is
possible to utilize skeleton data directly as tensor input, without any preprocessing. TST sampling is
performed on the temporal axis, while the tensor is decomposed in the same manner as a grayscale
video tensor.

On this dataset, base TS-PGM achieves excellent, near state of the art performance, doing better
than most other approaches, which utilize Graph Based Skeleton Modeling [46], Time Warped
ARMA Models [99] and Lie Groups [116]. It even outperforms deep learning approaches such
as [59] which is based on LSTM networks with attention mechanism, [22] that relies on graph
convolutional neural networks, and [109] that utilizes deep reinforcement learning. The only
method outperforming TS-PGM is the approach based on subspace clustering and temporal pruning,
proposed by [82], highly specialized for human action recognition using 3D skeletons.

These results show promise for the ability to represent general temporal tensors on TS-PGM. In
addition, they show that it is feasible to use skeleton extraction methods as a powerful preprocessing
step for human action recognition under the TS-PGM framework.

The proposed method does not rely on pretraining, or extracting features such as optical flow
[38], and uses only raw tensor data while achieving competitive results. It does not require a large
amount of training data, as demonstrated on small sample datasets. Another advantage of our
method is robustness to different illumination settings, which is a well-known property of subspace
representation. The proposed methods handle prototypes of considerably smaller size than original
tensors, benefiting hardware with limited memory and processing capacities. Further, scalability is
achievable due to the independence of the subspaces, allowing for utilization of parallel processing
techniques to speed up computation. Besides, new classes can be quickly adjusted to incorporate
new knowledge in our methods. It is worth noting that TS-PGM and its extensions work by focusing
only the representational aspect of data, which leaves room for further improvement by using explicit
discriminative methods such as GDA [31], or other learning methods.
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Method UT-Kinect
Kao et al. [46] 96.0%
Sogi et al. [99] 97.0%

Vemulapalli et al. [116] 97.1%
Liu et al. [59] 98.5%

Tang et al. [109] 98.5%
Gao et al. [22] 98.5%

Ours (TS-PGM) 99.0%
Paoletti et al. [82] 99.5%

Table 4.7: Comparison of proposed method with related methods on UT-Kinect dataset. In general,
tensors containing temporal modes can be represented on the TS-PGM, not necessarily only videos.
In UT-Kinect, human actions are defined by tensors containing skeleton coordinates over a period
of time. Classification on TS-PGM yields very competitive results, outperforming most related
methods, while requiring no special preprocessing.

4.5 Summary

In this chapter we introduced the Temporal-Stochastic Product Grassmann Manifold representation
and classification framework for temporal tensors, based on Product Grassmann Manifold and
Temporal-Stochastic Tensor features. Action and gesture recognition tasks were used to evaluate the
proposed method since their data structures are typically presented as tensors.

We address the loss of temporal information occurring in traditional PGM method by creating
Temporal-Stochastic Tensor features through a random sampling method. We then use the PGM
geometry to naturally unify representations of tensor modes and Temporal-Stochastic Tensor features,
allowing for the application of the geodesic distance to investigate the relationship between temporal
tensors. Additionally, we employ 𝑛-mode GDS projection to extract discriminative features and
improve our base method. We further implement a kernel mapping to handle nonlinear data
distributions. Experimental results revealed that the proposed method is superior to the conventional
PGM and subspace-related methods, confirming the usefulness of explicit temporal representation
via Temporal-Stochastic Features in unison with tensor modes. In addition, we show the possibility
of using different types of temporal tensors, such as skeleton data, highlighting the generalizability
of our method.

A potential future direction would include extending the proposed method to consider hybrid
varieties of kernels, approaching each mode with an optimal kernel. This strategy may provide more
informative features since it would deal with the nonlinear nature of the data distribution in each
mode. Due to recent advances in differentiability of the Singular Value Decomposition computation
[121], it would be interesting to design an end-to-end framework able to learn better representations
with algorithms such as stochastic gradient descent on the Riemannian Manifold [102]. We also
plan to investigate different manifolds for future work and evaluate the proposed method on more
complex and varied data.
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Chapter 5

Concluding remarks

In this thesis we introduced basic representation methods for tensors containing temporal infor-
mation, followed by algorithms for visualization, clustering and classification in the domain of
computer vision. First, we introduced a method for representing temporal tensors by using the PGM
geometry to naturally unify representations of tensor modes and Hankel-like embedding of temporal
information. Geodesic distance on the PGM-HLE can be used to analyze the relationship between
temporal tensors, and used as a general interface for solving optimization and clustering problems.
To demonstrate this, we performed t-SNE visualizations and spectral clustering of temporal tensor
datasets containing video and skeletal data, giving some weight to the strategy of unified represen-
tation on PGM, special treatment of temporal information via Hankel-like embeddings and finally
the idea of geodesic distance as a general interface for solving various problems. Specifically in the
context of video datasets, this approach may prove valuable as it allows simple and fast analysis of
data in its raw form, without the need for significant data pre-processing or pre-training of heavy
representational models.

Then, we extended and improved this idea by introducing Temporal-Stochastic Product Grass-
mann Manifold (TS-PGM), a classification framework for action recognition. We greatly enhanced
the temporal encoding of tensors with Temporal-Stochastic Tensor features, with can likewise be
seamlessly integrated with the PGM geometry. The discriminative abilities of TS-PGM are im-
proved by introducing generalized difference subspace (GDS) projection, resulting in a constrained
TS-PGM (TS-CPGM). We also introduced kernel mapping to TS-PGM to alleviate non-linearity
issues that often occur in application data, culminating in the kernel TS-PGM (TS-KPGM). Both of
these extensions can be utilized at the same time. We demonstrate proposed classification frame-
works for tasks of hand gesture, action and skeleton action recognition. All experimental results
show the effectiveness of proposed methods. Proposed methods are general, assume only tensors
containing temporal modes as input, and can be utilized in a variety of applications which we have
not explored at present.

Concerning our future work, there are several areas in which our algorithms could be improved.
Most crucial problem to address would be better selection of frames for best temporal encoding, as
TST features are not necessarily optimal for classification purpose due to randomness. Further, it
would be very valuable to investigate the use of various features other than grayscale images, as this
will open up the pathway to many computer vision applications. One such interesting application
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is anomaly detection, where it would theoretically be possible to detect changes in a video by
observing changes in multiple tensor modes simultaneously, which could yield improvement over
tracking the changes only on raw video. A more daring expansion into applications can be done by
considering data such as 4D videos, 4D computed tomography (CT) scans, 4D magnetic resonance
imaging (MRI) scans, and other forms of various higher-order tensor data. Another, very interesting
perspective, is combining representations of multiple signals or videos through the PGM geometry,
as well as considering data with mutliple modalities. We hope that this basis will foster development
of algorithms targeting other applications.
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