

Maliciously Secure Multiparty Computation Protocols

and Its Applications

March 2023

Hikaru Tsuchida

Maliciously Secure Multiparty Computation Protocols

and Its Applications

Graduate School of Science and Technology

Degree Programs in Systems and Information Engineering

University of Tsukuba

March 2023

Hikaru Tsuchida

Abstract

Secure computation aims to compute a target function while keeping parties’ input hid-
den and outputting only the computation result. Secure computation has been attracting
attention because it can be used to securely realize outsourced computation and cross-
organizational data collaboration. Cryptographic techniques for secure computation is di-
vided into two schemes: multiparty computation (MPC) and homomorphic encryption. We
focus on MPC schemes.

MPC is a cryptographic technology that enables a set of parties to compute an arbitrary
function represented as a circuit without revealing any information other than the output.
MPC schemes enable parties to compute the target function securely even if an adversary
corrupts some of the parties. Some of the well-known MPC-based applications and services
are machine learning algorithms (e.g., the evaluation of deep neural networks and decision
trees) and biometric authentication (e.g., iris authentication). MPC-based applications and
services are considered useful because they can securely process confidential information.

There are two models for the rate at which the adversary can corrupt the parties: honest
majority and dishonest majority. We let n and t be the number of parties and corrupted
parties, respectively. In the honest majority setting, it holds that t < n/2. In the dishonest
majority setting, it holds that t < n. There are also two types of the adversary’s behav-
ior: semi-honest and malicious. Parties corrupted by a semi-honest adversary attempt to
learn as much information as they can while following the protocol specifications. Parties
corrupted by a malicious adversary can attempt to not only learn as much information as
they can but also manipulate the computation results while they are allowed to behave
arbitrarily. They may also attempt to launch a denial-of-service (DoS) attack. In particu-
lar, there are two types of typical security requirements related to the delivery of outputs
against malicious adversaries: fairness and robustness. Fairness ensures that the parties
corrupted by the malicious adversary can receive their outputs if and only if the honest
parties also receive their outputs. Robustness ensures that all honest parties always receive
their outputs regardless of the malicious adversaries’ behavior without aborting the proto-
col. Note that the MPC protocols with fairness may be aborted when detecting cheats by
corrupted parties. Hence, the MPC protocols with fairness cannot prevent DoS attacks by
the malicious adversary while the MPC protocols with robustness can. In other words, ro-
bustness is the stronger security requirement than fairness. Achievable security requirement
varies depending on the MPC protocols. Most MPC protocols have a trade-o↵ between the
security achieved and the performance.

Secret-sharing-based MPC (SS-MPC) is one of the most common types of MPC. In
SS-MPC protocols, each party distributes its inputs to multiple parties as secret shares
that look like random values over an algebraic structure (e.g., a residue ring). Parties use
shares locally and communicate among parties without revealing their inputs to compute
functions. Most SS-MPC protocols have a trade-o↵ between the communication and round
complexities.

In recent years, SS-MPC schemes over the ring among the constant and small number of
parties have been actively studied. In particular, it with t < n/3 can achieve both practical

performance and strong security requirements like fairness or robustness.
However, most of ring-based SS-MPC schemes with t < n/3 achieving fairness or robust-

ness focus to improve the communication or round complexities of the share multiplication
and subprotocols for the evaluation of deep neural networks, not to improve it of the sub-
protocols for the evaluation of decision trees and iris authentication. To the best of our
knowledge, the SS-MPC protocols for the evaluation of decision trees and iris authentication
over the ring achieving both practical performance and fairness or robustness have not been
proposed.

In this paper, we propose the ring-based SS-MPC protocol for the evaluation of decision
trees with fairness and constant rounds and that for the iris authentication with robustness.
Our study contributes to constructing MPC-based applications and services securely and
e�ciently in the real world.

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Notations . 4
2.2 Collision-resistant Hash Function . 4
2.3 Overview of Secret Sharing . 5
2.4 Overview of SS-MPC . 6

3 Overview of Typical MPC Applications 7

4 Private Decision Tree Evaluation with Constant Rounds via fair SS-4PC 10
4.1 Introduction . 10

4.1.1 Background . 10
4.1.2 Our Approach . 12
4.1.3 Related Work . 17

4.1.3.1 MSB Extraction Protocol. 17
4.1.3.2 Feature Selection Protocol (Oblivious Array Read Protocol). 18
4.1.3.3 Comparison Protocol. 18
4.1.3.4 Path Evaluation Protocol (k-ary AND/OR Protocol). . . . 19
4.1.3.5 Private Decision Tree Evaluation Protocol. 19
4.1.3.6 Oblivious Shu✏e Protocol. 20

4.2 Preliminaries in Chapter 4 . 21
4.2.1 2-out-of-3 Replicated Secret Sharing Scheme ((2,3)-RSS) and 2-out-

of-2 Additive Secret Sharing Scheme ((2,2)-ASS) 21
4.2.2 2-out-of-3 Shamir’s Secret Sharing Scheme ((2, 3)-SSS) 21
4.2.3 2-out-of-4 Replicated Secret Sharing Scheme ((2, 4)-RSS) 21
4.2.4 Secure Three-party Computation with One Corruption over Ring . . 21
4.2.5 Secure Three-party Computation with One Corruption over Field . . 21
4.2.6 Fair Four-party Computation with One Corruption over Ring 22
4.2.7 Building Blocks of Three-party Computation Protocol over Ring . . 22
4.2.8 Building Blocks of Three-party Computation Protocol over Field . . 24
4.2.9 Building Blocks of Fair Four-party Computation Protocol over Ring 25
4.2.10 Structure of Decision Tree . 26

i

4.2.11 Application Setting . 28
4.2.12 Naive Construction of PDTE with Semi-honest Security 28
4.2.13 Naive Construction of PDTE with Malicious Security and Fairness . 31
4.2.14 Definition of Security for Fair SS-4PC 32

4.3 Proposed Protocol with Semi-honest Security in Feature Selection Phase . . 33
4.3.1 Proposed Protocol with Semi-honest Security in Feature Selection

Phase over Ring . 33
4.3.2 Proposed Protocol with Semi-honest Security in Feature Selection

Phase over Field . 36
4.4 Proposed Protocol with Semi-honest Security in Comparison Phase 36
4.5 Proposed Protocol with Semi-honest Security in Path Evaluation Phase . . 38

4.5.1 Proposed Path Evaluation Protocol with Semi-honest Security over
Ring . 38

4.5.2 Proposed Path Evaluation Protocol with Semi-honest Security over
Field . 39

4.6 Proposed Protocol of Private Decision Tree Evaluation with Semi-honest Se-
curity . 40
4.6.1 Proposed Protocol of Private Decision Tree Evaluation with Semi-

honest Security over Ring . 40
4.6.2 Proposed Protocol of Private Decision Tree Evaluation with Semi-

honest Security over Field . 41
4.7 Proposed Protocols with Fairness . 43

4.7.1 Proposed Oblivious Shu✏ing Protocol 44
4.7.2 Proposed MSB Extraction, LT, and EQ Protocols 47
4.7.3 Proposed Protocol of PDTE . 52
4.7.4 Communication Complexities of Proposed Protocols with Fairness . 55

4.8 Security Proof of Proposed PDTE Protocols with Semi-honest Security . . 55
4.9 Security Proof of Proposed PDTE Protocols with Malicious Security and

Fairness . 56
4.10 Summary . 67

5 Secure Iris Authentication via robust SS-MPC 68
5.1 Introduction . 68

5.1.1 Background . 68
5.1.2 Our Approach . 69
5.1.3 Related Work . 70

5.1.3.1 Typical Method for Reducing Communication Cost 70
5.1.3.2 Bit-composition Protocol 71
5.1.3.3 MPC with GOD . 71

5.2 Preliminaries in Chapter 5 . 72
5.2.1 2-out-of-4 Replicated Secret Sharing Scheme ((2,4)-RSS) 72
5.2.2 (N � 2tp)-out-of-N Replicated Secret Sharing Scheme ((N � 2tp, N)-

RSS) . 72
5.2.3 Secure Four-party Computation with One Corruption 74

ii

5.2.4 Definition of Security . 75
5.3 Proposal . 75

5.3.1 Client-aided Bit-composition Protocol with Private Robustness Inde-
pendent of Statistical Parameter . 76
5.3.1.1 Four-party and Three-clients Construction with One Mali-

cious Corruption . 77
5.3.1.2 Security Proof Sketch of Protocol 27 78
5.3.1.3 Four-party and One-client Construction with One Malicious

Corrupted Party . 79
5.3.1.4 N -party andH-client Construction with Malicious Corrupted

Parties and Clients . 80
5.3.2 Client-aided Secure Hamming Distance Calculation Protocol with

Private Robustness Independent of Statistical Parameter 81
5.3.2.1 Protocol . 81
5.3.2.2 Application Setting . 82
5.3.2.3 Modification and Extension of Protocol 84

5.4 Summary . 85

6 Conclusion 86

Acknowledgements 87

Bibliography 88

iii

List of Figures

2.1 Toy example of secret sharing scheme . 5
2.2 Overview of SS-MPC . 6

4.1 Toy example of decision tree structure (Copyright(C)2022 IEICE, [1] Fig.1) 27
4.2 Overview of application setting for PDTE 28
4.3 Dependency of ideal functionalities (Copyright(C)2022 IEICE, [1] Fig.2) . . 56

5.1 Overview of registration phase in secure iris recognition 83
5.2 Overview of authentication phase in secure iris recognition 83

iv

List of Tables

4.1 Comparison of communication complexity of secure three-party MSB ex-
traction protocol between existing protocol and ours (k: bit length of ring,
L(= 2k): modulus of ring, p0: smallest prime number greater than k, (2, 2)-
ASS: 2-out-of-2 additive secret sharing scheme, (2, 3)-RSS: 2-out-of-3 repli-
cated secret sharing scheme) . 15

4.2 Comparison of communication complexity of oblivious array read protocol
between existing protocols and ours (m: length of array, k: bit length of
ring, p: prime number, p0: smallest prime number greater than k, n: number
of parties, t(< n/2): number of corrupted parties, (t+1, n)-ASS: (t+1)-out-
of-n additive secret sharing scheme, (t+ 1, n)-SSS: (t+ 1)-out-of-n Shamir’s
secret sharing scheme, (t+1, n)-RSS: (t+1)-out-of-n replicated secret sharing
scheme) . 15

4.3 Comparison of total communication complexity between naive PDTE proto-
cols and ours (m: number of features, k: bit length of ring, p: prime number,
p0: smallest prime number greater than k, h: height of tree) 16

4.4 Comparison of communication complexity between naive PDTE protocols
and ours (Comm. in O✏ine; communication bits per all parties in the o✏ine
phase, Comm. in Online; communication bits per all parties in the online
phase, m: number of features, k: bit length of ring, p: prime number, p0:
smallest prime number greater than k, h: height of tree) 16

4.5 Comparison of the number of the pseudo-random function (PRF) invocations
between naive PDTE protocols and ours (# PRF. in O✏ine; the number of
PRF invocations per all parties in the o✏ine phase, # PRF in Online; the
number of PRF invocations per all parties in the online phase, m: number
of features, k: bit length of ring, h: height of tree, |#BuildingBlock in off.|:
the number of PRF invocations for the BuildingBlock in the o✏ine phase,
|#BuildingBlock in on.|: the number of PRF invocations for the BuildingBlock
in the online phase. We note that BuildingBlock means each building block.) 17

v

4.6 Comparison of communication complexity of the oblivious shu✏e protocols
(Rounds: the number of communication rounds, Comm.: the number of
(amortized) communication bits per all parties, n: the number of parties, t:
the number of corruptions, nCt: the number of subset of t distinct elements of
n parties, i.e., n!/t!(n� t)!, m: the length of array, p: prime number, L(> 1):
arbitrary integer, |(com+zk) round|: the number of rounds of commitments
and zero-knowledge proof, |(com+zk) comm.|: the number of communication
bits of commitments and zero-knowledge proof., -: We consider fairness only
against a malicious adversary, not semi-honest adversary.) 18

4.7 Comparison of communication complexity of the MSB extraction protocols
via (only) secret sharing over the ring (Rounds: the number of communica-
tion rounds, Comm.: the number of (amortized) communication bits per all
parties, n: the number of parties, t(= 1): the number of corruptions, p0: the
smallest prime number larger than k, -: We consider fairness only against a
malicious adversary, not semi-honest adversary.) 19

4.8 Comparison of communication complexity of the PDTE protocols via (only)
secret sharing over the ring (Rounds: the number of communication rounds,
Comm.: the number of (amortized) communication bits per all parties, n:
the number of parties, t(= 1): the number of corruptions, m: number of
features, k: bit length of ring, p0: the smallest prime number greater than k,
h: height of the tree) . 20

4.9 Communication complexity of the building blocks (Rounds: the number of
communication rounds, Comm.: the number of (amortized) communication
bits per all parties, L: modulus size, k: bit length of power-of-two ring, h:
number of bits) . 27

4.10 Communication complexity of the proposed protocols (Rounds: the number
of communication rounds, Comm.: the number of (amortized) communica-
tion bits per all parties, L: modulus size, k: bit length of power-of-two ring,
k0: bit length for private compare, p0: the smallest prime larger than k, h:
height of tree, M : length of array, R: number of rows, C: number of columns,
m: dimension of input attribute vector) . 55

5.1 Comparison between existing maliciously secure bit-composition protocols
with one corruption and proposed protocol (Rounds: number of communica-
tion rounds, Comm.: (amortized) communication bits per all parties, k: bit
length of modulus, N : number of parties, H: number of clients, t: number
of malicious corruptions in protocol, tp: number of malicious corruptions in
parties, tc: number of malicious corruptions in clients, Std.: standard model,
ROM: random oracle model) . 70

vi

Chapter 1

Introduction

Secure computation aims to compute a target function while keeping parties’ input hid-
den and outputting only the computation result. Secure computation has been attracting
attention because it can be used to securely realize outsourced computation and cross-
organizational data collaboration. Cryptographic techniques for secure computation is di-
vided into two schemes: multiparty computation (MPC) and homomorphic encryption. We
focus on MPC schemes.

MPC is a cryptographic technology that enables a set of parties to compute an arbitrary
function represented as a circuit without revealing any information other than the output
[2–4]. MPC schemes enable parties to compute the target function securely even if an
adversary corrupts some of the parties. Some of the well-known MPC-based applications
and services are machine learning algorithms (e.g., the evaluation of deep neural networks
and decision trees) and biometric authentication (e.g., iris authentication). MPC-based
applications and services are considered useful because they can securely process confidential
information.

Many MPC protocols have trade-o↵s with respect to security from the following per-
spectives:

• Number of corrupted parties by an adversary. There are two types of models:
honest majority and dishonest majority. We denote the number of parties and cor-
rupted parties as n and t, respectively. In the honest majority setting, t < n/2 holds.
In the setting of dishonest majority, t < n holds.

• Adversary’s computing power. The adversary’s computing power is roughly di-
vided into two types: computationally bounded and unbounded. We call the security
against a computationally bounded and unbounded adversary computational security
and information-theoretic security, respectively.

• Adversary’s behavior. Adversaries can be divided into two types from the perspec-
tive of possible behaviors of corrupted parties: semi-honest (a.k.a passive) adversary
and malicious (a.k.a active) adversary. Parties corrupted by a semi-honest adversary
attempt to learn as much information about private inputs of other parties as they
can while following the protocol specifications. Parties corrupted by a malicious ad-

1

versary can also attempt to learn as much information as they can. In addition, they
can manipulate the computation results while they are allowed to behave arbitrarily.
They may also attempt to launch a denial-of-service (DoS) attack.

In particular, there are two types of typical security requirements related to the delivery
of outputs against malicious adversaries: fairness and robustness (a.k.a guaranteed output
delivery, GOD). Fairness ensures that the parties corrupted by the malicious adversary can
receive their outputs if and only if the honest parties also receive their outputs. Robustness
ensures that all honest parties always receive their outputs regardless of the malicious
adversaries’ behavior without aborting the protocol. Note that the MPC protocols with
fairness may be aborted when detecting cheats by corrupted parties1. Hence, the MPC
protocols with fairness cannot prevent DoS attacks by the malicious adversary while the
MPC protocols with robustness can. In other words, robustness is the stronger security
requirement than fairness. Achievable security requirement varies depending on the MPC
protocols. Most MPC protocols have a trade-o↵ between the security achieved and the
performance.

Secret-sharing-based MPC (SS-MPC) [2, 3] is one of the most common types of MPC.
In SS-MPC protocols, each party distributes its inputs to multiple parties as secret shares
that look like random values over an algebraic structure (e.g., a residue ring). Parties use
shares locally and communicate among parties without revealing their inputs to compute
functions. Most SS-MPC protocols have a trade-o↵ between the communication and round
complexities.

In recent years, SS-MPC schemes over the ring among the constant and small number
of parties have been actively studied [5–18]. In particular, it with t < n/3 can achieve both
practical performance and strong security requirements like fairness or robustness.

However, most of ring-based SS-MPC schemes with t < n/3 achieving fairness or robust-
ness focus to improve the communication or round complexities of the share multiplication
and subprotocols for the evaluation of deep neural networks, not to improve it of the sub-
protocols for the evaluation of decision trees and iris authentication. To the best of our
knowledge, the SS-MPC protocols for the evaluation of decision trees and iris authentication
over the ring achieving both practical performance and fairness or robustness have not been
proposed.

In this paper, we propose the ring-based SS-MPC protocol for the evaluation of decision
trees with fairness and constant rounds [1, 19] and that for the iris authentication with
robustness [20, 21]. Our study contributes to constructing MPC-based applications and
services securely and e�ciently in the real world.

This paper is organized as follows. §2 prepares preliminaries for the other chapters. §3
shows the overview of typical MPC aaplications and the need to research PDTE and bio-
metric authentication based on SS-MPC protocols. §4 describes in detail the contributions
with respect to the evaluation of decision trees with fairness and constant rounds [1, 19].
To describe it, §4 also describes in detail the contributions with respect to the evaluation

1Security with abort is a weaker security notion than fairness. If an MPC protocol achieving security with
abort detects cheating, it aborts. That is, security with abort does not ensure that the parties corrupted by
the malicious adversary can receive their outputs if and only if the honest parties also receive their outputs.

2

of decision trees with semi-honest security and constant rounds [22, 23]. §5 explains the
contributions for the iris authentication with robustness [20, 21]. Finally, we conclude and
explain the future work in §6.

3

Chapter 2

Preliminaries

2.1 Notations

We let Z2, Z2k , Zp(=Fp, where p is prime) and Z
p
0 (=F

p
0 , where p0 is the smallest prime

larger than k) be the residue rings modulo 2, 2k, p or p0. We denote the share vectors and
inner-products as ~a = (a0, . . . , ak�1),~b = (b0, . . . , bk�1), and ~a ·~b =

P
k�1
j=0 aj · bj mod L,

respectively, where aj , bj 2 ZL (j = 0, . . . , k � 1) and L = 2, 2k, p or p0.
We let � and · be the XOR operator and AND operator, respectively. Note that we

also use · as the multiplication operator on ZL where L = 2, 2k, p or p0.
Let Pi be the i-th party. Pi has a collision-resistant hash function. We let Hi0 (i0 =

0, 1, 2) be the clients who are the helper entities. We denote i mod 3 by i. For example,
P
i+1 means P(i+1) mod 3. We also denote i mod 4 by i. For example, Pi+1 means P(i+1) mod 4.
The security parameter is denoted by . The -bit bit string is {0, 1}. We use

the (cryptographically secure) pseudo-random functions (PRF) FL : {0, 1} ⇥ {0, 1} !
ZL where L = 2, 2k, p or p0. Hi0 has seed 2 {0, 1}. We use the unique identifier,

uid, vidj , vid
(�)
j

, vid(�1)
j

, vid(µ1)
j

, vid(1)
j

, . . . , vid(N�1)
j

2 {0, 1}. We use the public unique iden-
tifier, e.g., counter values. That is, any parties and clients can know these values. We also
use F ⇤

p
0 : {0, 1} ⇥ {0, 1} ! Z⇤

p
0 (= Z

p
0 \ {0}).

Let v|j 2 Z2 be j-th bit of v 2 Z2k . We also denote by v|j,...,i 2 Z2k the part of bit
strings of v 2 Z2k from j(� i)-th bit to i-th bit. Let msb(v) be the MSB of v. For example,
if v = 1100(2) = 12 2 Z24 , we have that v|0 = 0, v|1 = 0, v|2 = 1, v|3 = msb(a) = 1, and
v|2,...,0 = 100(2) = 4.

We denote the set of permutations of an array that has M elements on ZL by SM .

2.2 Collision-resistant Hash Function

For checking the message consistency e�ciently, we use the collision-resistant hash function
H. Note that the cryptographic hash function is required to have the following three
properties:

1. Preimage resistance: It is (computationally) hard to compute the value x from

4

u 4,4 -additive secret sharing scheme over ℤ!!
ØSecret value ! ∈ ℤ!!
Ø$": %-th party (% = 0,1,2,3)
Ø! = !# + !$ + !! + !% mod 2& where !" ∈ ℤ!! for % = 0,1,2,3.

1

Input '

'!

'"

'#

Reconstruct '

' $

' ! ' #

[Sharing] [Reconstruction]

($ ("

(! (#

($ ("

(! (#

' = (' $, ' ", ' !, ' #)

' $ = '$ ' " = '"

' ! = '! ' # = '#

Figure 2.1: Toy example of secret sharing scheme

H(x).

2. Collision resistance: It is (computationally) hard to find the pair (x, y) such that
H(x) = H(y) and x 6= y.

3. Second preimage resistance: Given the value y, it is (computationally) hard to
compute the value x such that H(x) = H(y) and x 6= y. Note that H has the second
preimage resistance if H has the collision resistance.

H that we used has the collision resistance.

2.3 Overview of Secret Sharing

Secret sharing is a cryptographic technology that distributes secret values among multiple
parties and manages it securely. Secret values are distributed over an algebraic structure,
and distributed values are indistinguishable from random numbers. We call the distributed
values shares.

Unless a certain number of shares are gathered, the original secret value cannot be
reconstructed from shares. Let n and t be the number of parties and the threshold value,
respectively. For example, a secret sharing such that the secret value is reconstructed when
t+1 shares out of n shares are gathered is called (t+1, n)-threshold secret sharing scheme.
As a toy example, we show (n, n)-additive secret sharing scheme, a type of (t+1, n)-threshold
secret sharing scheme in Fig. 2.1. Fig. 2.1 shows the (4, 4)-additive secret sharing scheme
over Z2k . Let [x] be the shares of x among parties. We also let [x]i be the i-th party’s share.

5

uSS-MPC
ØIt is divided into three phases: sharing, evaluation, and reconstruction.
Øe.g.) Compute !(#! , … , #") while keeping #! , … , #" hidden.

2

Input !!
!!" + !"$ = !! " + !"[$] (w/o comm.)
"$ = " ⋅ [$] (w/ comm.)

[sharing phase] [evaluation phase] [reconstruction phase]

Input !"

Input !# Input !$

Parties obtain shares
[!%] for $ = 0, … , 3

All parties reconstruct
(!!, … , !$) from [!!, … , !$]

Compute the function * represented
by the circuit for each gate

Figure 2.2: Overview of SS-MPC

In Fig. 2.1, P0 and P3 are the input dealer and the reconstructing party, respectively.
Note that [x]i(= xi) is indistinguishable from a random value over Z2k . Hence, no one can
reconstruct the secret value x, or even obtain partial information about x, unless the four
[x]i are gathered.

In this paper, we use a variety of secret sharing schemes. Since the secret sharing
schemes used in each chapter are di↵erent, see the preliminaries of each chapter for details.

2.4 Overview of SS-MPC

SS-MPC is one of the typical MPC schemes. It uses a secret sharing scheme to keep the
parties’ inputs confidential. Fig. 2.2 shows the overview of SS-MPC.

SS-MPC is divided into three phases: sharing, evaluation, and reconstruction phases.
In sharing phase, parties distribute their inputs as shares among parties. Then, parties
compute the function represented by the circuit gate-by-gate without reconstructing shares
in evaluation phase. In most SS-MPC schemes, the scalar addition/multiplication and
the share addition do not need communications between parties. The share multiplication
needs communications between parties. Finally, parties obtain the computation results by
reconstructing it from shares in reconstruction phase.

6

Chapter 3

Overview of Typical MPC
Applications

In this chapter, we provide some examples of typical MPC applications.

1. Cryptographic key management. A hardware security module (HSM) is a device
that securely manages cryptographic keys. Users can perform encryption, decryption,
and signing operations while never taking their keys out of HSMs. A virtual HSM
(vHSM) is a software realization of the HSM by MPC schemes. A vHSM is superior
to an HSM in terms of flexibility. For example, Unbound Security, which Coinbase ac-
quired, sold the vHSM product [24]. As another example, Sepior, which Blockdaemon
acquired, sold the cryptographic key management system for distributed management
of cryptographic keys. That is, MPC eliminates single points of failure by managing
cryptographic keys in a distributed manner.

2. Secure database and privacy-preserving data analysis. MPC can enable
database processing while keeping each data and query hidden. As described in [24],
for example, Galois, Inc. developed the Jana system that provides a private data as a
service (PDaaS) system for relational data by integrating MPC, di↵erential privacy,
and searchable encryption. As another example, Cybernetica developed Sharemind,
a privacy-preserving database based on an SS-MPC scheme [25–27].

The MPC enables not only simple database operations but also data analysis se-
curely. In the Estonian Association of Information Technology and Telecommunica-
tions (ITL), member companies’ economic benchmarking data were collected periodi-
cally and analyzed using MPC to promote their business. The MPC ensures that data
on each company’s economic indicators are kept confidential so that each company
does not know the data of the others. Another example is the privacy-preserving
statistical studies on linked database (PRIST), MPC enabled us to link and analyze
education and tax data while reducing privacy risks.

3. Privacy-preserving auction. In Danish sugar beet auctions [28], the buyer specifies
the quantity they wish to purchase for some possible price. Sellers also select the

7

amounts they want to sell for a given potential price. MPC realizes the auction
so that supply and demand match while keeping their bids confidential. It allows
sugar beet production contracts to be securely realized between farmers and sugar
companies. As another example, Energiauktion.dk provides power procurement as a
secure SaaS-type auction by MPC.

4. Training/inference of neural network models. In recent years, many works on
secure training/inference of the neural network model using MPC have been proposed
[10,12–14,16–18,29–36]. In the secure training/inference of the neural network model,
MPC conceals model parameters of neural networks, training data, and test data. It
allows sensitive data to be used for model training and inference. It also protects
model parameters, which are intellectual property, from being leaked.

5. Training/inference of decision tree models. As in the training/inference of the
neural network models, in that of the decision tree models, MPC conceals model
parameters of trees, training data, and test data. There have been studies on train-
ing/inference of decision tree models [37–40] proposed in recent years, although fewer
than those on that of neural network models.

6. Biometric matching(, identification, or authentication). MPC-based biomet-
ric template matching can achieve matching while keeping extracted and registered
features hidden. It is relatively easy to implement because MPC performs simple
distance calculations, and prior research exists [41–43].

Additionally, several studies [44,45] have been done on MPC and law regarding establishing
the above applications in the real world. In [45], Helminger and Rechberger discuss the role
of MPC in the EU General Data Protection Regulation (GDPR) [46]. Treiber et al. discuss
the role of the MPC in the exchange of private information between legal enforcement
agencies from both a technical and legal perspective [44].

In this paper, we focus on outsourced computations or cooperative computations by
multiple participants. Hence, this paper does not cover cryptographic key management.

For the secure database and privacy-preserving data analysis, the priority is still on
performance when processing large amounts of data and resolving issues related to the
flexibility of queries and analysis. Since the priorities associated with MPC security re-
quirements, such as fairness and robustness, are low. Therefore, we leave the improving the
trade-o↵ between security and performance for these applications as future works.

For the training/inference of neural network models, there have been many works in
recent years using MPC schemes with a few constant parties, which improves the trade-o↵
between performance and the security requirements achieved. However, despite its useful-
ness for tabular data, such as those owned by companies, rather than neural networks, there
is little research on the trade-o↵ between performance and the security requirements (such
as fairness or robustness) achieved for the training/inference of decision tree models.

There are many works on the performance of biometric matching. However, DoS attacks
should be a concern when it is used for authentication. Therefore, it should achieve not
only high performance but also robustness.

8

Hence, we focus on the inference of decision tree models with fairness and biometric
matching with robustness. These applications are practical even if the amount of data han-
dled or the size of a single piece of data is small. Applications such as secure databases,
privacy-preserving data analysis and auction, training and inference of neural network mod-
els, and training of decision trees are di�cult to achieve practical use as MPC applications
because of the huge amount of data handled and the large size of each piece of data. There-
fore, we leave improving the e�ciency and safety of these applications as a future issue.

9

Chapter 4

Private Decision Tree Evaluation
with Constant Rounds via fair
SS-4PC2

4.1 Introduction

4.1.1 Background

There are two types of typical MPC: garbled circuit (GC) [4,47] and SS -MPC [2,3]. Most
GC protocols compute an arbitrary function represented as a binary circuit among two
parties by using encrypted truth tables (garbled tables) and oblivious transfer (OT) [48,49],
which is a public-key primitive. A GC protocol requires many communication bits and small
and constant communication rounds.

In SS-MPC, each party distributes its inputs, and the computation proceeds with secret
shares that look like random numbers among several parties. In the SS-MPC protocol,
each party computes a function, which is represented as a binary, arithmetic, or mixed
circuit (composed of binary and arithmetic circuits) by using shares locally and communi-
cating among parties. The SS-MPC protocol requires small communication bits and many
communication rounds. There are two types of SS-MPC: SS -MPC over the field and SS -
MPC over the ring . The two schemes di↵er in the mathematical structure they use.

The former [2, 50] uses a finite field. SS-MPC over the field can compute an arbitrary
function represented as an arithmetic circuit. It can construct constant-round protocols by
using the multiplicative inverse. However, it requires modulo operations with a large prime
number. Therefore, the computational cost of SS-MPC over the field is often heavier than
SS-MPC over the ring.

The latter uses a residue ring (e.g., power-of-two ring). In particular, the secure three-

2This chapter is based on “Private Decision Tree Evaluation with Constant Rounds via (Only) SS-
3PC” [23] and “Constant-Round Fair SS-4PC for Private Decision Tree Evaluation” [1], by the same author,
which appeared in the IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, Copyright(C)2022 IEICE. The content of this chapter corresponds to references [1,19,22,23] relevant
to the requirements for completion.

10

party computation protocol (3PC) over the ring [5] and four-party computation protocol
over the ring [12, 14] have gained attention in recent years because they can perform high
throughput even when they compute a complex function represented as mixed circuits. SS-
MPC on the power-of-two ring benefits from not only a small communication complexity
but also a small computation cost because there is no need to perform a modulo operation
explicitly if it uses a power-of-two ring that equals the size of the data type. However,
SS-MPC over the ring cannot easily construct the constant-round protocol due to a lack of
the multiplicative inverse.

In addition, homomorphic encryption (HE) [51–56] computes the function represented
as an arithmetic circuit without revealing input values, which is di↵erent from MPC. Al-
though HE does not require communications during computation, it requires a large com-
putation cost.

As mentioned above, GC, SS-MPC, and HE have a trade-o↵ relationship for the compu-
tation cost, communication cost, and type of computable circuit. Hence, the optimal choice
depends on the computing resources, communication environment, and function related to
applications. To mitigate this problem, a hybrid scheme of GC and SS-MPC [10,12,30] and
that of GC and HE [41] were proposed and studied. In particular, to mitigate the com-
munication cost problem, the o✏ine-online paradigm is also widely known. It divides the
MPC protocol into an o✏ine phase (where the protocol processes part of computation that
is independent) and an online phase (where the protocol processes the rest of computation
with parties’ inputs). The o✏ine-online paradigm can reduce the communication cost of
the online phase even if it increases the communication cost of the o✏ine phase and the
whole computation. Therefore, the o✏ine-online paradigm is useful for MPC applications
that focus on the response time of queries.

One typical application of secure computation (e.g., GC, SS-MPC, and HE) that has
gained attention in recent years is the private decision tree evaluation (PDTE). A decision
tree is a commonly-used tool of decision support and widely studied in machine learning.
The PDTE protocol outputs the (encrypted) class label assigned to the leaf node as the
correct classification result without revealing confidential (or sensitive) information about
the tree (e.g., decision threshold values assigned to the internal node, comparison operations
assigned to the internal node, or class label assigned to the leaf node) and the input feature
vector. For example, there are several applications of the PDTE: electrocardiogram classi-
fication [57, 58], and remote diagnosis [57]. Araki et al. [6] experimented with the private
evaluation of a decision tree for credit decisions using 3PC over the ring.

Kiss et al. [39] published a systematization of knowledge paper about the PDTE. In [39],
the PDTE is divided into three phases: feature selection, comparison, and path evaluation.
In the feature selection phase, a feature is selected from the input feature vector without
revealing the values of the input feature vector, value of the selected feature, or index. In
the comparison phase, the selected feature is compared with the threshold value without
revealing the selected feature, threshold value, or comparison result. In the path evaluation
phase, the classification result is outputted without revealing the comparison results. In [39],
Kiss et al. focused on a constant-round protocol by using GC, HE, and a hybrid scheme of
GC and SS-MPC, but did not mention the constant-round protocol using only the SS-MPC.

SS-MPC over the field can provide constant-round equality-testing, less-than, and k-ary

11

OR3 (AND) protocols [50]. Thus, we can easily obtain a constant-round (but somewhat
less e�cient) protocol for the PDTE. However, it is non-trivial to construct the PDTE
protocol with constant rounds using only SS-MPC over the ring. For example, Cock et
al. proposed a PDTE protocol using only the SS-MPC over the ring in [59]. However,
the round complexity of their protocol is proportional to the height of the tree and the bit
length of the ring.

If we use GC, HE, or SS-MPC over the field, it is trivial to construct a constant-round
PDTE protocol. However, these techniques are less e�cient regarding the communication
complexity and computation cost than SS-MPC over the ring. On the other hand, it is
non-trivial to construct the PDTE protocol with constant rounds using only SS-MPC over
the ring. Therefore, the naive PDTE protocol with SS-MPC over the ring often has a larger
round complexity.

There are trade-o↵s about communication/computational cost in GC, HE, and SS-MPC,
making it di�cult to choose the optimal technology, but there is currently no protocol based
only on SS-MPC with constant rounds yet. Taking into account the potential risks related
to technology compromise, it is also desirable to have a variety of methods to construct
the constant-round PDTE protocol. For this reason, it will be meaningful to devise a
construction of constant-round PDTE protocol based not only on GC, HE, and the hybrid
protocols but also on (only) SS-MPC.

Thus, we ask the following: Could we construct the constant-round PDTE protocol with
constant rounds using only SS-MPC over the ring?

4.1.2 Our Approach

We propose a PDTE protocol with constant rounds using the semi-honest 3PC with single
corruption4. We propose an e�cient constant-round protocol over the ring in each phase
as follows.

1. We propose a more e�cient most significant bit (MSB) extraction protocol with con-
stant rounds (Protocol 4) than SecureNN [33]. Our scheme is used to construct the
constant-round less-than protocol and the constant-round equality-testing protocol.
Hence, our scheme can compute the process in the comparison phase with constant
rounds e�ciently.

2. We propose a more e�cient oblivious array read (OAR) protocol over the ring (Pro-
tocol 6) than existing ones [60]. Our scheme can compute the process in the feature
selection phase with constant rounds e�ciently.

3. We propose a path evaluation protocol with constant rounds (Protocol 11). To the
best of our knowledge, this is the first constant-round path evaluation protocol over
the ring.

3This computes
Wk

i=1 xi where xi 2 {0, 1}.
4Similarly to existing 3PC [5, 33], our protocols can also achieve only privacy (not correctness) against

a malicious adversary under the client-server model.

12

4. We propose a PDTE protocol with constant rounds over the ring (Protocol 13) us-
ing the above contributions. To the best of our knowledge, this is the first PDTE
protocol proposed with constant rounds over the ring without GC, HE, or OT (i.e.,
without public-key primitives). Our scheme is based on a 3PC over the ring that has
e�cient communication complexity and computation cost. Therefore, our scheme can
be performed e�ciently even if the communication environment has a large latency
and limited communication bandwidth.

We also propose a more e�cient PDTE protocol with constant rounds by using semi-
honest 3PC with single corruption over the field than the naive construction. We propose
e�cient constant-round protocols over the field in each phase as follows.

1. We propose a more e�cient OAR protocol over the field (Protocol 7) than the existing
ones [60]. Our scheme can compute the process in the feature selection phase with
constant rounds e�ciently. For more details of (theoretical) performance comparison
between Protocol 7 and the existing scheme, see Table 4.2.

2. We propose a path evaluation protocol over the field with constant rounds (Proto-
col 12). The number of rounds of our scheme is larger than one of the naive path
evaluation protocols. However, our scheme requires only the constant rounds and the
smaller communication complexity than the naive path evaluation protocol. There-
fore, our scheme can compute the process in the path evaluation phase with constant
rounds e�ciently. For more details of (theoretical) performance comparison between
Protocol 12 and the existing scheme, see Table 4.4.

3. We propose two PDTE protocols with constant rounds over the field (Protocols 14
and 15) using the above contributions. Protocol 14 needs the smallest communication
rounds in the online phase among the existing schemes. Protocol 15 removes the term
of 2h · log2(h) from the communication complexity in the path evaluation phase where
h is the height of the tree while achieving the constant rounds. For more details of
(theoretical) performance comparison between Protocols 14 and 15 and the existing
schemes, see Tables 4.3 and 4.4.

Table 4.1 shows the theoretical performance comparison of the MSB extraction protocol
between SecureNN [33] and our scheme. Let L be an even number. The MSB extraction
protocol in SecureNN [33] takes the shares over the odd ring ZL�1 as inputs and outputs
the shares over the even ring ZL. However, SS-MPC over the ring often uses the power-of-
two ring (i.e., the even ring) for computational e�ciency. Hence, we should compare the
performance of our scheme with the combination of a share conversion protocol that converts
the shares on ZL to the shares on ZL�1 and the MSB extraction protocol. The protocol
combining the share conversion and MSB extraction protocols in SecureNN [33] requires 9
rounds through the overall computation. On the other hand, our scheme (that takes the
shares on Z2k as inputs and outputs the shares on Z2) requires 7 rounds in the online phase
and 8 rounds in the online + o✏ine phase. If we use the bit conversion protocol [10] and
convert the output of the shares of our scheme to the shares on Z2k , the number of rounds

13

in the online phase is fewer than those of SecureNN. Therefore, our scheme is superior to
SecureNN for round complexity.

Table 4.2 shows the theoretical performance comparison of the OAR protocol between
our schemes and the existing schemes [60]. The OAR protocol takes the shared array ele-
ments and shared index value as inputs and outputs the shared array element corresponding
to the index value. Existing schemes [60] take the shares of the index value on Zm (where m
is the length of the array) or shares of Shamir’s secret sharing as input. However, we note
that the share of the index value may not always be on Zm as it depends on the preceding
and subsequent processes of the computation. In the context of the PDTE, both shares of
the index value and array elements may be over the same residue ring if the secure comput-
ing methods (GC, HE, or SS-MPC) are used for not only evaluation but also constructing
the decision tree. Hence, the OAR protocol is required to be a constant-round protocol
even if both shares of the index value and array elements are over the same residue ring.
However, it is not clear whether the existing schemes [60] are constant-round protocols or
not even if both shares of the index value and array elements are on the same residue ring
because most share conversion methods over the ring require many rounds. On the other
hand, our scheme over the ring (Protocol 6) is a constant-round protocol even if both shares
of the index value and array elements are over the same residue ring Z2k . Furthermore, our
scheme over the field (Protocol 7) requires only 8 rounds in the online phase, which is fewer
than the number of rounds of a custom three-party construction over the field [60] in the
online phase. The number of rounds of our scheme over the field (Protocol 7) needs more
rounds than the general construction with constant rounds [60]. However, the communi-
cation complexity of our scheme over the field (Protocol 7), O(m log2(p)), is more e�cient
than one of a general construction with constant rounds [60], O(m log2(log2(m)) log2(p))
even when t = 1 and n = 3. Therefore, our schemes have still an advantage compared with
the existing protocols [60].

Tables 4.3, 4.4 and 4.5 show the theoretical performance comparison of the PDTE
protocol between our schemes and naive constructions. The naive construction over the
ring (Protocol 1 in 4.2.12) and [59] are not constant-round protocols, but our scheme over
the ring (Protocol 13) is. Furthermore, the number of rounds of our scheme over the field
(Protocol 14) in the online phase is fewer than those of the naive construction over the field
(Protocol 2 in 4.2.12) in the online phase. In addition, the communication complexity of our
another scheme over the field (Protocol 15) is smaller than the communication complexity of
Protcol 14 while achieving the constant rounds. The communication complexity of Protcol
15 in the path evaluation phase is O(2h · log2(p)) because Protcol 15 uses our e�cient path
evaluation protocol with constant rounds (Protocol 12) in the path evaluation phase. Hence,
it is smaller than the communication complexity of Protcol 14 and Protocol 2 not using
Protocol 12 in the path evaluation phase, O(2h · log2(h) · log2(p)). However, the number of
communication rounds of Protcol 15 is more than the number of communication rounds of
Protcol 14 and Protocol 2. That is, our schemes over the field have a trade-o↵ relationship
for the communication cost.

Furthermore, we propose a maliciously secure PDTE protocol with constant rounds

14

Table 4.1: Comparison of communication complexity of secure three-party MSB extraction
protocol between existing protocol and ours (k: bit length of ring, L(= 2k): modulus of
ring, p0: smallest prime number greater than k, (2, 2)-ASS: 2-out-of-2 additive secret sharing
scheme, (2, 3)-RSS: 2-out-of-3 replicated secret sharing scheme)

Input Share Output Share
Rounds Comm. [bits/all parties]

O✏ine Online O✏ine Online

Naive MSB Extraction
(using bit-decomposition
protocol of ABY3 [10])

(2,3)-RSS on Z2k (2,3)-RSS on Z2 0 1 + log2(k) 0 3k

SecureNN [33]
(MSB Extraction)

(2,2)-ASS on ZL�1 (2,2)-ASS on ZL 0 5 0 4k log2(p
0) + 13k

SecureNN [33]
(Share Convert

+ MSB Extraction)
(2,2)-ASS on ZL (2,2)-ASS on ZL 0 9 0 8k log2(p

0) + 19k

This Work (Protocol 4) (2,3)-RSS on Z2k (2,3)-RSS on Z2 1 7 6k(k � 1) 11k + 3(k � 1) log2(p
0) + 4

This Work (Protocol 4)
+ Bit Conversion of ABY3 [10]

(2,3)-RSS on Z2k (2,3)-RSS on Z2k 1 8 6k(k � 1) 17k + 3(k � 1) log2(p
0) + 4

Table 4.2: Comparison of communication complexity of oblivious array read protocol be-
tween existing protocols and ours (m: length of array, k: bit length of ring, p: prime number,
p0: smallest prime number greater than k, n: number of parties, t(< n/2): number of cor-
rupted parties, (t+1, n)-ASS: (t+1)-out-of-n additive secret sharing scheme, (t+1, n)-SSS:
(t + 1)-out-of-n Shamir’s secret sharing scheme, (t + 1, n)-RSS: (t + 1)-out-of-n replicated
secret sharing scheme)

Share of Input and
Output Array Element

Share of Input Index
Rounds Comm. [bits/all parties]

O✏ine Online O✏ine Online

[61] (t+ 1, n)-SSS on Fp (t+ 1, n)-SSS on Fp m 3 mn(n+ 1) log2(p) 3n(n+ 1) log2(p)
Custom Three-party

Construction over Ring [60]
(2,2)-ASS on Z2k (2,2)-ASS on Zm 0 2 0 4mk

Custom Three-party
Construction over Field [60]

(2,2)-ASS on Fp (2,3)-SSS on Fp 1 10 (6 log2(m)� 2) · log2(p) (4m+ 2 log2(m) + 12) · log2(p)

General Construction
(with Constant Rounds) [60]

(t+ 1, n)-SSS on Fp (t+ 1, n)-SSS on Fp 1 4
(3m log2(log2(m)) + log2(m)
�1)n(n� 1) log2(p)

(m log2(log2(m)) + 3)n(n� 1) log2(p)

This Work over Ring (Protocol 6) (2,3)-RSS on Z2k (2,3)-RSS on Z2k 1 12 6k2 log2(m)
log2(m)(9k + (3k � 3) log2(p

0) + 4)
+6m log2(m) + 4mk + 2m+ 8k

This Work over Field (Protocol 7) (2,3)-SSS on Fp (2,3)-SSS on Fp 3 8 18m log2 p 45m log2(p)

building on Trident [12], a fair 4PC5 [12]. Our approaches are as follows:

1. We propose maliciously secure shu✏e and most significant bit (MSB) extraction pro-
tocols with fairness and constant rounds. Tables 4.6 and 4.7 show that only our
protocols achieve malicious security and fairness with constant rounds. Table 4.6 also
shows that the number of the communication rounds of our shu✏e in the online phase
is the same as semi-honest secure shu✏e [62] and the number of communication bits
of our shu✏e in the online phase is lower than [62].

2. By using our proposed shu✏e and MSB extraction along with Trident, we construct
each maliciously secure protocol related to each phase with constant rounds and fair-
ness. Table 4.8 shows that only our protocol achieves malicious security stronger
than [22] with constant rounds. It also shows that the number of rounds of our pro-
tocol in the online phase is smaller than naive construction in the practical setting
where the parameters m (the number of features), h (the height of tree), and k (the bit

5Trident [12] includes not only the SS-MPC but also the GC. We use only the SS-MPC in our protocol.

15

Table 4.3: Comparison of total communication complexity between naive PDTE protocols
and ours (m: number of features, k: bit length of ring, p: prime number, p0: smallest prime
number greater than k, h: height of tree)

Rounds Comm. [bits/all parties]
O✏ine Online O✏ine Online

Naive Construction over Ring
(Protocol 1 in 4.2.12)

0
log2(log2(m))

+2 log2(k) + log2(h) + 9
0

(2h � 1) · (3 log2m+ 3 log2(log2m) + 6m log2m+ 4mk + 2m
+17k + 6k log2 k + 3) + 2h · (3h+ 6k � 3) + 3k

Naive Construction over Field
(Protocol 2 in 4.2.12)

1 18
(2h � 1) · (6 log2(m)� 2 + 24k

�18 log2(k)� 30) · log2(p) + 2h · log2(h) · 6 log2(p)
(2h � 1) · (4m+ 2 log2(m) + 6k + 6 log2(k) + 36) · log2(p)

+(2h · 3 log2(h) + 1) · 6 log2(p)

[59] 0 h+ log2(k) + 5 0
(2h � 1) · (10m log2(m) + 30k � 10 log2(k)� 20)

+2h · 10hk
This Work over Ring

(Protocol 13)
1 26 (2h � 1) · (6k2 log2(m) + 18k2)

(2h � 1) · (log2(m)(9k + (3k � 3) log2(p
0) + 4) + (9k � 9) log2(p

0)
+6m log2(m) + 4mk + 2m+ 35k + 21) + 2h · (6k + 9h)

This Work over Field
(Protcol 14)

3 16
(2h � 1) · (18m+ 24k � 18 log2(k)
�30) · log2(p) + 2h · log2(h) · 6 log2(p)

(2h � 1) · (27m+ 6k + 6 log2(k) + 24) · log2(p)
+(2h · 3 log2(h) + 1) · 6 log2(p)

This Work over Field
(Protcol 15)

3 20
(2h � 1) · (18m+ 24k � 18 log2(k)
�30) · log2(p) + 2h · 18 log2(p)

(2h � 1) · (27m+ 6k + 6 log2(k) + 24) · log2(p)
+2h · 27 log2(p)

Table 4.4: Comparison of communication complexity between naive PDTE protocols and
ours (Comm. in O✏ine; communication bits per all parties in the o✏ine phase, Comm. in
Online; communication bits per all parties in the online phase, m: number of features, k:
bit length of ring, p: prime number, p0: smallest prime number greater than k, h: height of
tree)

Feature Selection Comparison Path Evaluation
Rounds in O✏ine Comm. in O✏ine Rounds in O✏ine Comm. in O✏ine Rounds in O✏ine Comm. in O✏ine
Rounds in Online Comm. in Online Rounds in Online Comm. in Online Rounds in Online Comm. in Online

Naive Construction over Ring 0 0 0 0 0 0

(Protocol 1 in 4.2.12) log2(log2(m)) + 5
(2h � 1) · (3 log2(m) + 3 log2(log2(m))

+6m log2(m) + 4mk + 2m+ 8k)
2 log2(k) + 2

(2h � 1) · (6k log2(k)
+9k + 3)

log2(h) + 2
2h · (3(h� 1)
+6k) + 3k

Naive Construction over Field 1
(2h � 1) · (6 log2(m)
�2) · log2(p)

1
(2h � 1) · (4k � 3 log2(k)

�5) · 6 log2(p)
1 2h · log2(h) · 6 log2(p)

(Protocol 2 in 4.2.12) 10
(2h � 1) · (4m+ 2 log2(m)

+12) · log2(p)
4

(2h � 1) · (k + log2(k)
+4) · 6 log2(p)

4 (2h · 3 log2(h) + 1) · 6 log2(p)

[59]
0 0 0 0 0 0
2 (2h � 1) · 10m log2(m) log2(k) + 2 (2h � 1) · (30k � 10 log2(k)� 220 h+ 1 2h · 10hk

This Work over Ring 1 (2h � 1) · (6k2 log2(m)) 1 (2h � 1) · 18k2 0 0

(Protocol 13) 12
(2h � 1) · (log2(m)(9k + (3k � 3) log2(p

0) + 4)
+6m log2(m) + 4mk + 2m+ 8k)

10
(2h � 1) · (27k

+(9k � 9) log2(p
0) + 21)

4 2h · (6k + 9h)

This Work over Field 3 (2h � 1) · 18m log2(p) 1
(2h � 1) · (4k

�3 log2(k)� 5) · 6 log2(p)
1 2h · log2(h) · 6 log2(p)

(Protocol 14) 8 (2h � 1) · 27m log2(p) 4
(2h � 1) · (k + log2(k)

+4) · 6 log2(p)
4 (2h · 3 log2(h) + 1) · 6 log2(p)

This Work over Field 3 (2h � 1) · 18m log2(p) 1
(2h � 1) · (4k � 3 log2(k)

�5) · 6 log2(p)
3 2h · 18 log2(p)

(Protocol 15) 8 (2h � 1) · 27m log2(p) 4
(2h � 1) · (k + log2(k)

+4) · 6 log2(p)
8 2h · 27 log2(p)

length of the modulus) are greater than m = 256, h = 16, and k = 2048 respectively6.
Therefore, our scheme can not only solve the theoretical open problem of [22] but also
be run e�ciently and securely even when the communication environment has a large
latency.

We put the tables of theoretical communication complexities for the building blocks and
the proposed protocols in §4.2.9 and §4.7.4 to help the reader understand.

6For example, the typical datasets for the privacy-preserving machine learning, Texas (that contains
hospital discharge data [63]) and Purchase (that contains purchasing histories [64]), have 600 and 6170
features, respectively. Araki et al. [6] conducted an experiment about the private evaluation of a concrete
decision tree at heights from 4 to 30 for credit decisions [65] using 3PC. The modulus size of residue ring
needs to be 128, 256, 512, 1024, 2048 or even larger to guarantee the accuracy of the fixed-point calculations.
If users need to train the decision tree securely via ID3 [66] and MPC before PDTE, training process contains
the logarithmic calculations via MPC with guaranteed high accuracy. As another case, in the hybrid model
of the decision tree and regression model (i.e., each regression model is assigned to each leaf), the larger ring
size is required to guarantee high accuracy.

16

Table 4.5: Comparison of the number of the pseudo-random function (PRF) invocations
between naive PDTE protocols and ours (# PRF. in O✏ine; the number of PRF invocations
per all parties in the o✏ine phase, # PRF in Online; the number of PRF invocations per
all parties in the online phase, m: number of features, k: bit length of ring, h: height of
tree, |#BuildingBlock in off.|: the number of PRF invocations for the BuildingBlock in the
o✏ine phase, |#BuildingBlock in on.|: the number of PRF invocations for the BuildingBlock
in the online phase. We note that BuildingBlock means each building block.)

Feature Selection Comparison Path Evaluation
PRF in O✏ine # PRF in O✏ine # PRF in O✏ine
PRF in Online # PRF in Online # PRF in Online

Naive Construction over Ring 0 0 0

(Protocol 1 in 4.2.12)
(2h � 1) · (|#NaiveBitDec|

+ log2(m)|#BitConversion|

+|#rArrayRead|)

(2h � 1) · (|#NaiveRingLT|

+|#NaiveRingEQ|+ 12)
2h · (|#rArrayAND|

+|#BitConversion|) + |#rInnerProduct|

Naive Construction over Field (2h � 1) · |#pArrayRead in off.|
(2h � 1) · (|#pLTZ in off.|+ |#pEQZ in off.|

+|#pInnerProduct in off.|)
2h · |#pArrayOr in off.|

+|#pInnerProduct in off.|

(Protocol 2 in 4.2.12) (2h � 1) · |#pArrayRead in on.|
(2h � 1) · (|#pLTZ in on.|

+|#pEQZ in on.|+ |#pInnerProduct in on.|)
2h · |#pArrayOr in on.|

+|#pInnerProduct in on.|

[59]
0 0 0
0 0 0

This Work over Ring (2h � 1) · |#rFSelection in off.| |#rComp in off.| |#rPathEval in off.|
(Protocol 13) (2h � 1) · |#rFSelection in on.| |#rComp in on.| |#rPathEval in on.|

This Work over Field (2h � 1) · |#pFSelection in off.|
(2h � 1) · (|#pLTZ in off.|+ |#pEQZ in off.|

+|#pInnerProduct in off.|
2h · |#pArrayOr in off.|

+|#pInnerProduct in off.|

(Protocol 14) (2h � 1) · |#pFSelection in on.|
(2h � 1) · (|#pLTZ in on.|+ |#pEQZ in on.|

+|#pInnerProduct in on.|
2h · |#pArrayOr in on.|

+|#pInnerProduct in on.|

This Work over Field (2h � 1) · |#pFSelection in off.|
(2h � 1) · (|#pLTZ in off.|+ |#pEQZ in off.|

+|#pInnerProduct in off.|
|#pPathEval in off.|

(Protocol 15) (2h � 1) · |#pFSelection in on.|
(2h � 1) · (|#pLTZ in on.|+ |#pEQZ in on.|

+|#pInnerProduct in on.|
|#pPathEval in on.|

4.1.3 Related Work

4.1.3.1 MSB Extraction Protocol.

The MSB extraction protocol extracts the (secret-shared) MSB from the (secret-shared)
input while keeping the input and its MSB secret. It is known as a useful subprotocol for
computing the mixed circuits (e.g., less-than protocol).

A semi-honest MSB extraction protocol with constant rounds over the field has been
proposed [50]. However, the field-based MPC protocol has greater computational complex-
ity than the ring-based one. Furthermore, the authors of [50] did not propose a maliciously
secure construction with constant rounds. One of the existing MSB extraction protocols
over the ring uses the GC to achieve constant rounds [10, 13, 71]. As another example,
existing MSB extraction protocols over the ring use the circuit-based approach based only
on SS-MPC [12, 14, 16–18]7. In recent years, the constant-round MSB extraction proto-
col via only SS-MPC [22, 33, 70] has been proposed. However, this protocol achieves only
semi-honest security.

7FLASH [14] and Trident [12] in the conference version include a constant-round MSB extraction pro-
tocol. However, a flaw was found in FLASH and was fixed in the preprint version of FLASH (uploaded to
ePrint). The MSB extraction protocol of Trident used the same approach as FLASH and had the same flaw.
The fixed MSB extraction protocols of [12, 14] need non-constant communication rounds depending on the
size of modulus.

17

Table 4.6: Comparison of communication complexity of the oblivious shu✏e protocols
(Rounds: the number of communication rounds, Comm.: the number of (amortized) com-
munication bits per all parties, n: the number of parties, t: the number of corruptions,

nCt: the number of subset of t distinct elements of n parties, i.e., n!/t!(n � t)!, m: the
length of array, p: prime number, L(> 1): arbitrary integer, |(com+ zk) round|: the num-
ber of rounds of commitments and zero-knowledge proof, |(com+ zk) comm.|: the number
of communication bits of commitments and zero-knowledge proof., -: We consider fairness
only against a malicious adversary, not semi-honest adversary.)

Corruption,
Security

Fairness
Rounds Comm.

O✏ine Online O✏ine Online

Resharing-based
shu✏e [67]

t < n/2,
semi-honest

- 0 2 · nCt 0 nCt · (t(n� t)
+(n� t)(n� 1)) ·m log2 L

Resharing-based
shu✏e [67]

t < n/2,
malicious

(abort) 0
2 · nCt

+|(com+ zk) round|
0 nCt · (t(n� t) + (n� t)(n� 1)) ·m log2 L

+|(com+ zk) comm.|

[68, 69]
t < n/2,

semi-honest
- 0 6 0 18m log2 p

[62]
t < n/2,

semi-honest
- 0 3 0 6m log2 L

Ours
t < n/3
malicious

X 4 3 9m log2 L 3m log2 L

4.1.3.2 Feature Selection Protocol (Oblivious Array Read Protocol).

There are two types of OAR protocol: circuit-based approach using general MPC [61, 72–
74] and oblivious random access machine (ORAM) [75–80]. Blanton et al. [60] proposed
the OAR (and write) protocol with constant rounds. They demonstrated through their
experiments that their scheme is superior to state-of-the-art schemes of the former [73] and
the latter [75]. Therefore, to the best of our knowledge, the OAR protocols in [60] are the
latest and most e�cient protocol with constant rounds.

4.1.3.3 Comparison Protocol.

In [81–84], e�cient comparison protocols are proposed. However, these schemes compute
the less-than circuit and are not constant-rounds protocols. ABY [30] and ABY3 [10]
can construct a constant-round comparison protocol over the ring by using GC. However,
the constant-round comparison protocol using only SS-MPC over the ring is not proposed
in [10, 30]. To the best of our knowledge, the SecureNN [33] is the only 3PC based on
the secret sharing scheme (SS-3PC) including the MSB extraction protocol with constant
rounds over the ring8. We note that SecureNN [33] did not propose a constant-round
equality testing protocol.

8In the conference version of FLASH [14], Byali et al. proposed a constant-round MSB extraction
protocol over the ring. However, the flaw was found and fixed in the preprint version uploaded to the ePrint
server. The MSB extraction protocol of Trident [12] used the same approach as FLASH and had the same
flaw. As a result, the MSB extraction protocols of FLASH and Trident are not constant-round protocols.
Therefore, the fixed protocols of [12, 14] are not constant-round protocols and need many communication
rounds depending on the size of modulus.

18

Table 4.7: Comparison of communication complexity of the MSB extraction protocols via
(only) secret sharing over the ring (Rounds: the number of communication rounds, Comm.:
the number of (amortized) communication bits per all parties, n: the number of parties,
t(= 1): the number of corruptions, p0: the smallest prime number larger than k, -: We
consider fairness only against a malicious adversary, not semi-honest adversary.)

Corruption,
Security

Fairness
Rounds Comm.

O✏ine Online O✏ine Online

[22]
t < n/2,

semi-honest
- 1 7 6k2 � 6k 11k + 3(k � 1) log2 p+ 4

[70]
(with pPIE)

t < n/2,
semi-honest

- 0 2 0 4(k + 1)2 + 4k

[70]
(with pPIE

0)
t < n/2,

semi-honest
- 0 3 0 4(2k + 1)(1 + log2 k) + 4k

ABY3
[10]+ [9]

t < n/2,
malicious

(abort) 4 1 + log2 k 24k 18k

BLAZE [13]
t < n/2,
malicious

X 4 1 + log2 k 9k 9k

Trident [12]
t < n/3,
malicious

X 1 1 + log2 k 3k 7k

FLASH [14]
t < n/3,
malicious

X
(Robustness)

2 3 + log2 k 4k 24k

SWIFT [17]
t < n/3,
malicious

X
(Robustness)

1 log2 k 7k � 6 7k � 6

Fantastic Four [16]
t < n/3,
malicious

X
(Robustness)

0 1 + log2 k 0 8k � 6

Tetrad [18]
(Tetrad-RII)

t < n/3,
malicious

X
(Robustness)

1 log4 k 3 · 216 + 12 · 184 + 33 · 179 + k 3 · (216 + 184 + 179) + k

Ours
t < n/3,
malicious

X 17 9 6k2 + (69k � 57) log2 p
0 + 11k + 2 18(k � 1) log2 p

0 + 15k

4.1.3.4 Path Evaluation Protocol (k-ary AND/OR Protocol).

The path evaluation protocol outputs the shares of class labels assigned to the leaf node
where the comparison result bits regarding the internal nodes included in its path are all 1.
That is, it is easy to construct the path evaluation protocol if the k-ary AND/OR protocol
exists.

Catrina and Hoogh [50] proposed a constant-round k-ary OR protocol over the field.
Ohata and Nuida [84] proposed an e�cient k-ary AND protocol (i.e., multi-fan-in multi-
plication/AND protocol) over the ring. However, their protocol is not a constant-round
protocol. To the best of our knowledge, there is no constant-round k-ary AND protocol
over the ring. Therefore, it is still non-trivial to construct a constant-round path evaluation
protocol over the ring.

4.1.3.5 Private Decision Tree Evaluation Protocol.

There are many constructions of the PDTE protocol including those based on HE [85, 86]
and GC+HE [57, 58]. Kiss et al. published [39] a systematization of knowledge paper that
mainly focused on the constant-round constructions based on GC or HE. On the other hand,
constructions of the PDTE protocol based on ORAM are proposed in [87, 88]. However,
these constructions are not constant-round protocols.

Cock et al. [59] proposed an e�cient PDTE protocol over the ring in commodity-based

19

Table 4.8: Comparison of communication complexity of the PDTE protocols via (only)
secret sharing over the ring (Rounds: the number of communication rounds, Comm.: the
number of (amortized) communication bits per all parties, n: the number of parties, t(= 1):
the number of corruptions, m: number of features, k: bit length of ring, p0: the smallest
prime number greater than k, h: height of the tree)

Corruption,
Security

Rounds in O✏ine Comm. in O✏ine
Rounds in Online Comm. in Online

Protocol 9 t < n/2, 0 0

in [22] semi-honest
log2(m) + 2 log2(k)

+ log2(h) + 9
(2h � 1) · (3 log2(m) + 3 log2(m) · log2(log2m) + 6m log2m
+4mk + 2m+ 17k + 6k log2 k + 3) + 2h · (3h� 3 + 6k) + 3k

[59]
t < n/2, 0 0

semi-honest h+ log2(k) + 5 (2h � 1) · (10m log2(m) + 30k � 10 log2(k)� 20) + 2h · 10hk
Protocol 8 t < n/2, 1 (2h � 1) · (log2(m) · 6k2 + 18k2)

in [22] semi-honest 26
(2h � 1) · log2(m) · (9k + (3k � 3) log2 p

0 + 4)
+(2h � 1) · (27k + (9k � 9) log2 p

0 + 22) + 2h(6k + 9h)

Naive Construction
t < n/3 log2 h+ 11 2h · (30k + 3h)� 30k � 3

(Protocol 3 in 4.2.13) malicious
log2 log2m+ log2 k

+ log2 h+ 9
2h · (17 log2m+ 33k + 3h+ 2)� 17 log2m� 33k � 4

Ours
t < n/3, 44

(2h � 1) · ((12m+ 18)k2 + (138km+ 207k � 114m
�171) log2 p

0 + 25mk + 7m+ 25k + 12) + 9 · 2h · (h+ 1) · (k + h)

malicious 27
(2h � 1) · (36km�m54k � 54) log2 p

0 + 33mk
+4m+ 48k + 6) + 3 · 2h · (h+ 1) · (k + h) + 4 · 2h · h

two-party computation9. However, in their protocol, each party must know the features and
threshold values or has the shares of the binary representation of these values. Furthermore,
their protocol in [59] is not a constant-round protocol. Hence, to the best of our knowledge,
there is no PDTE protocol with constant rounds over the ring using only SS-MPC.

4.1.3.6 Oblivious Shu✏e Protocol.

The oblivious shu✏e protocol shu✏es the input (secret-shared) array while keeping the array
elements and the shu✏ing order secret. It is known as a useful subprotocol for database
operations. For example, oblivious sorting protocols [62, 68, 69] use it as a subprotocol.

The resharing-based shu✏ing protocol [67] is a typical oblivious shu✏ing protocol. In
particular, in the case of semi-honest secure 3PC with single corruption, the resharing-based
shu✏ing protocol can achieve constant rounds [62, 68, 69]. As a di↵erent direct approach,
by using the MPC protocols for the arbitrary function and the permutation networks, the
oblivious shu✏ing protocol can be achieved [89,90]. However, this approach requires many
rounds depending on the size of the permutation networks.

9The commodity-based two-party computation employs the client (i.e., helper entity) that generates the
Beaver’s multiplication triples and sends it to two parties in the o✏ine phase. In the online phase, the client
does not participate in the protocol or collude with any party.

We note that Tables 4.3 and 4.4 show the communication complexity of parties, not the client. Hence,
if Tables 4.3 and 4.4 describe it associated with the parties and the client, the communication cost in the
o✏ine phase of [59] in Tables 4.3 and 4.4 is not 0 because there is the communication cost associated with
the Beaver’s multiplication triples.

We also note that Table 4.5 shows that the number of PRF invocations associated with parties, not
the client. Hence, if Table 4.5 describes it associated with the parties and the client, the number of PRF
invocations of [59] in Table 5 is not 0 because the client needs to invoke the PRF to generate the Beaver’s
multiplication triples.

20

4.2 Preliminaries in Chapter 4

4.2.1 2-out-of-3 Replicated Secret Sharing Scheme ((2,3)-RSS) and 2-
out-of-2 Additive Secret Sharing Scheme ((2,2)-ASS)

We denote the (2,3)-RSS shares of x on ZL (L = 2, 2k, p, p0) by [x]L = ([x]L,0, [x]L,1, [x]L,2)
where x 2 ZL. Pi has the share of x, [x]L,i = (xi, xi+1) where x = x0+x1+x2 mod L (xi 2
ZL, i = 0, 1, 2) and x2+1 = x0. We also denote the (2,2)-ASS shares of x on ZL by
hxiL,(i,j) = (hxiL,i, hxiL,j). Pi and Pj have the share of x, hxiL,i = xi and hxiL,j = xj where
x = xi+xj mod L (xi 2 ZL, i, j 2 {0, 1, 2} (i 6= j)), respectively. In particular, we assume
0  x  2k�1

� 1 if we use [x]2k or hxi2k .

4.2.2 2-out-of-3 Shamir’s Secret Sharing Scheme ((2, 3)-SSS)

We employ the Shamir’s secret sharing scheme [91]. We denote the (2, 3)-SSS share of x on
Fp by [[x]]p = ([[x]]p,0, [[x]]p,1, [[x]]p,2). Pi has the share of x, [[x]]p,i.

4.2.3 2-out-of-4 Replicated Secret Sharing Scheme ((2, 4)-RSS)

We use the (2, 4)-RSS in [12]10. We denote the (2, 4)-RSS’s shares of x on ZL as [x]L.
P3 has the share [x]L,3 = (�x,0, �x,1, �x,2). P

i
0 (i0 2 {0, 1, 2}) has the share [x]

L,i
0 =

(mx, �
x,i

0+1
, �

x,i
0�1

), where �
x,2+1 = �x,0. It holds that mx = x + �x mod L and �x =

�x,0 + �x,1 + �x,2 mod L where mx, �x, �x,0, �x,1, �x,2 2 ZL. Note that mx is computed
depending on an actual input x while �

x,i
0 (i

0
= 0, 1, 2) can be generated independently of

x by the pseudo-random function.

4.2.4 Secure Three-party Computation with One Corruption over Ring

We use the same addition and multiplication of shares as [5] denoted as [x]L + [y]L and
[x]L · [y]L, respectively. We also use the same scalar addition and multiplication of shares
as [5] denoted as c+ [x]L and c · [x]L where c 2 ZL, respectively. We use the same notation
for operations of scalars and one of the shares to keep the description simple.

We also note that Pi has the pair of shared keys (ki, ki+1) where ki 2 {0, 1} and
k2+1 = k0.

4.2.5 Secure Three-party Computation with One Corruption over Field

We employ the same addition and multiplication of shares and same data format as ones
used in [50]. We use the same notation for operations of scalars and one of the shares as in
the 3PC over the ring to keep the description simple. We also note that Pi has the pair of
shared keys in the same way as the 3PC over the ring.

10Note that the subscripts of the parties have been reassigned: P0, P1, P2, P3 in [12] correspond to P3,
P0, P1, P2 in this chapter.

21

4.2.6 Fair Four-party Computation with One Corruption over Ring

Each party has pre-shared keys in the same way as [12]. That is, each pair of Pi and Pj

(where i 6= j and i, j 2 {0, 1, 2, 3}) has ki,j 2 {0, 1}. Each group of Pa, Pb and Pc (where
a 6= b 6= c and a, b, c 2 {0, 1, 2, 3}) has ka,b,c 2 {0, 1}. All parties have k 2 {0, 1}. We
assume that each party is connected by a point-to-point private and authenticated channel
in the same way as [12].

We use the same addition and multiplication of shares as [12] and denote them by [x]L+
[y]L and [x]L · [y]L, respectively. We also use the same scalar addition and multiplication of
shares as [12] and denote them as c + [x]L and c · [x]L where c 2 ZL, respectively. In this
chapter, the same notation is used for scalar operations and share operations to simplify
the description.

4.2.7 Building Blocks of Three-party Computation Protocol over Ring

The following building blocks are secure with computational indistinguishability in the pres-
ence of one semi-honest corrupted party [5, 10, 33, 60, 62, 67]. These protocols are universal
composability (UC) secure [92], so they can be combined with other protocols.

• [x]2k BitConversion([x]2): It takes [x]2 (where x 2 Z2) as inputs and outputs [x]2k .
For more details, see [10]. It requires 1 round and 6k bits as its communication cost.
It invokes the PRF 14 times.

• [r]L,i RndGen(L, ki, ki+1): It generates the share of a random value on ZL. It is
called by each Pi using the PRF FL and the pair of shared keys (ki, ki+1). For more
details, see [5]. It requires no communication cost. It invokes the PRF 6 times.

• [x]L rShare(L,Pi, x): It takes the modulus L, the input dealer Pi and the input
value x as inputs and outputs [x]L. For more details, see [5]. It requires 1 round and
4 log2(L) bits as its communication cost. It invokes the PRF twice.

• x rOpen(Pi, [x]2k): It takes the receiver Pi and the share [x]2k as inputs and outputs
x. For more details, see [5]. It requires 1 round and log2(L) bits as its communication
cost. It does not invoke the PRF.

• hxiL,(i,i+1) aShare(Pi+2, L, x, Pi, Pi+1): It takes the input dealer Pi+2, the modulus
L, the input value x and the receivers Pi and Pi+1 as inputs and outputs hxiL,(i,i+1).
It requires 1 round and 2 log2(L) bits as its communication cost. It invokes the PRF
once.

• [xa]2k rArrayRead({[xj]2k}
m�1
j=0 , [a]m): It takes the shared array {[xj]2k}

m�1
j=0 and

the shared index [a]m as inputs and outputs [xa]2k . First, P0 and P1 generate
{hxji2k,(0,1)}

m�1
j=0 from {[xj]2k}

m�1
j=0 by setting hxji2k,0 = xj,0+xj,1 mod 2k for P0 and

hxji2k,1 = xj,2 for P1 where [xj]2k,0 = (xj,0, xj,1) and [xj]2k,1 = (xj,1, xj,2). Each party
generates the (2, 2)-ASS share of an index from [a]m. Then, each party runs the OAR
protocol of the custom three-party construction [60] and obtains hxai2k,(0,2). Next, P0

and P2 run [hxai2k,0]2k rShare(2k, P0, hxai2k,0) and [hxai2k,2]2k rShare(2k, P2, hxai2k,2),

22

respectively. Finally, it outputs [xa]2k = [hxai2k,0]2k +[hxai2k,2]2k . It requires 3 rounds
and 4mk+2m+8k bits as its communication cost. It invokes the PRF 4m+4 times.

• b PrivateCompare(x, {ha|jip0 ,(0,1)}
k�1
j=0 , �, {sj}

k�1
j=0 , {uj}

k�1
j=0 , P2): This is the private

compare protocol [33]. It takes the value x(2 Z2k) known to P0 and P1, the shares of
binary values {ha|jip0 ,(0,1)}

k�1
j=0 (a|j 2 Z2), the random bit (known to P0 and P1) �, the

random values (known to P0 and P1) {sj}
k�1
j=0 and {uj}

k�1
j=0 (where sj , uj 2 F⇤

p
0) and the

receiver P2 as inputs and outputs the masked comparison result bit b = � � (a > x)
to P2. It takes 1 round and 2k log2(p

0) bits as its communication cost. It invokes the
PRF 2k + 1 times.

• {R
0
j}

m�1
j=0 rSetShu✏e({Rj}

m�1
j=0): It is the oblivious shu✏e protocol for the multidi-

mensional shared array. Let Rj = {[vj]2k , [cj,0]2, . . . , [cj,h�1]2} be the set of shares and
Sm be the set of all permutation � : {0, . . . ,m� 1}! {0, . . . ,m� 1}. It takes the set
of shares {Rj}

m�1
j=0 as inputs and outputs {R

0
j}

m�1
j=0 = {[v0j]2k , [c

0
j,0]2, . . . , [c0j,h�1]2}

such that v0�(j) = vj , c0�(j),` = cj,` (for ` = 0, . . . , h � 1) and R
0
�(j) = Rj while

no one knows �. Intuitively, it runs the oblivious shu✏e protocol for (single) shared
array [62,67] in parallel. It requires 3 rounds and 6m(k+h) bits as its communication
cost. It invokes the PRF 6mh times.

• [
V

h�1
j=0 bj]2 rArrayAND({[bj]2}

h�1
j=0): It takes {[bj]2}

h�1
j=0 as inputs and outputs [

Q
h�1
j=0 bj]2.

Intuitively, it computes h�1 AND gates by using secure multiplication [5]. It requires
log2(h) rounds and 3(h�1) bits as its communication cost. It invokes the PRF 6(h�1)
times.

• {[x|j]2}
m�1
j=0 NaiveBitDec(m, [x]2k): It takes [x]2k and m( k) as inputs and outputs

{[x|j]2}
m�1
j=0 . For more details, see [10]. It requires 1 + log2(m) rounds and 3m +

3 log2(m) bits as its communication cost. It invokes the PRF 2 + 6 log2(m) times.

• [b]2 NaiveRingLT([x]2k , [y]2k): It takes [x]2k and [y]2k as inputs and outputs [b]2
(where b = 1 i↵ x < y and b = 0 otherwise). Intuitively, it runs {[(x � y)|j]2}

k�1
j=0

NaiveBitDec(k, [x� y]2k) internally. Then, it outputs [b]2 = [msb(x� y)]2. It requires
1 + log2(k) rounds and 3k + 3 log2(k) bits as its communication cost. It invokes the
PRF 2 + 6 log2(k) times.

• [b]2 NaiveRingEQ([x]2k , [y]2k): It takes [x]2k and [y]2k as inputs and outputs [b]2
(where b = 1 i↵ x = y and b = 0 otherwise). Intuitively, it runs {[(x � y)|j]2}

k�1
j=0

NaiveBitDec(k, [x � y]2k) internally. Then, it runs [b]2 rArrayAND({[(x � y)|j]2 �
1}k�1

j=0) and outputs [b]2. It requires 1 + 2 log2(k) rounds and 6k + 3k log2(k)� 3 bits
as its communication cost. It invokes the PRF 2 + 6 log2(k) + 6k � 6 times.

• [
P

h�1
j=0 xj · yj]2k rInnerProduct({[xj]2k}

h�1
j=0 , {[yj]2k}

h�1
j=0): It takes {[xj]2k}

h�1
j=0 and {

[yj]2k}
h�1
j=0 as inputs and outputs [

P
h�1
j=0 xj · yj]2k . For more details, see [5]. It requires

1 round and 3k bits as its communication cost. It invokes the PRF 6 times.

23

4.2.8 Building Blocks of Three-party Computation Protocol over Field

The following building blocks are secure with computational indistinguishability in the
presence of one semi-honest corrupted party [2,50,60,67,69,91,93]. These protocols are UC
secure [92], so it can be combined with the other protocols. We note that one invocation of
a primitive during which all parties send their shares (i.e., the field elements) to each other
requires 1 round and 6 log2(p) bits as communication cost.

• [[
W

h�1
j=0 bj]]p pArrayOr({[[bj]]p}

h�1
j=0): It is the logical sum protocol of h bits [50]. It

takes {[[bj]]p}
h�1
j=0 (bj 2 {0, 1}) as inputs and outputs [[

W
h�1
j=0 bj]]p. It requires 1 round

and log2(h) · 6 log2(p) bits in the o✏ine phase and 3 rounds and (3 log2(h)) · 6 log2(p)
bits in the online phase as its communication cost. It invokes the PRF log2(h) + 1
times in the o✏ine phase and 6 log2(h) times in the online phase.

• [[b]]p pLTZ(k, [[a]]p): It is the less-than-zero protocol [50]. It takes the bit length of
value k (s.t. 2k < p) and the share [[a]]p (s.t. �2k�1

 a  2k�1 < p) as inputs and
outputs [[b]]p (s.t. b = 1 i↵ a < 0 and b = 0 otherwise). It requires the 1 round and
(3k � 3) · 6 log2(p) bits in the o✏ine phase and 3 rounds and (k + 1) · 6 log2(p) bits
in the online phase as its communication cost. It invokes the PRF 19 log2(p) times in
the o✏ine phase and 6 log2(p) times in the online phase.

• [[b]]p pEQZ(k, [[a]]p): It is the equality testing protocol [50]. It takes the bit length
of value k (s.t. 2k < p) and the share [[a]]p (s.t. �2k�1

 a  2k�1 < p) as inputs
and outputs [[b]]p (s.t. b = 1 i↵ a = 0 and b = 0 otherwise). It requires the 1
round and (k � 3 log2(k) � 2) · 6 log2(p) bits in the o✏ine phase and 3 rounds and
(log2(k) + 2) · 6 log2(p) bits in the online phase as its communication cost. It invokes
the PRF 2k + 24 log2(k) + 2 times in the o✏ine phase and 6 log2(k) + 1 times in the
online phase.

• [[
P

m�1
j=0 xj · yj]]p pInnerProduct({[[xj]]p}

m�1
j=0 , {[[yj]]p}

m�1
j=0): It is the inner-product

protocol [50,93]. It takes the shares {[[xj]]p}
m�1
j=0 and {[[yj]]p}

m�1
j=0 as inputs and outputs

[[
P

m�1
j=0 xj · yj]]. It requires 1 round and 6 log2(p) bits as its communication bits. It

invokes the PRF 6 times in the online phase.

• [[x]]p pShare(Pi, x): It is the input sharing protocol by using (2, 3)-SSS. It takes the
input dealer Pi and the input value x as inputs and outputs [[x]]p. For more details,
see [2, 91]. It requires 1 round and 2 log2(p) bits as communication cost. It invokes
the PRF twice in the online phase.

• x pOpen(Pi, [[x]]p): It is the opening protocol by using (2, 3)-SSS. It takes the
receiver Pi and the share [[x]]p as inputs and outputs x. For more details, see [2, 91].
It requires 1 round and log2(p) bits as its communication cost. It does not invoke the
PRF.

• {R
0
j}

m�1
j=0 pSetShu✏e({Rj}

m�1
j=0): It is the oblivious shu✏e protocol for multidi-

mensional shared array. Let Rj = {[[vj]]p, [[c]]p} be the set of shares. Let Sm be the

24

set of all permutation � : {0, . . . ,m� 1}! {0, . . . ,m� 1}. It takes the set of shares
{Rj}

m�1
j=0 as inputs and outputs {R

0
j}

m�1
j=0 = {[[v0j]]p, [[c0j]]p} such that v0�(j) = vj ,

c0�(j) = cj and R
0
�(j) = Rj while no one knows �. Intuitively, it runs the oblivious

shu✏e protocol for (single) shared array [67, 69] in parallel. It requires 6 rounds and
18m log2(p) bits as its communication cost. It invokes the PRF 9m times in the online
phase.

• [[xa]]p pArrayRead({[[xj]]p}
m�1
j=0 , [[a]]p): It takes the shared array {[[xj]]p}

m�1
j=0 and the

shared index [[a]]p as inputs and outputs [[xa]]p. First, P0 and P1 generate {hxjip,(0,1)}
m�1
j=0

from {[[xj]]p}
m�1
j=0 by running the converting protocol (S2A in [60]) to convert the share

of (2, 3)-SSS to one of (2, 2)-ASS without communication. Then, each party runs the
OAR protocol of custom three-party construction [60] and gets hxaip,(0,2). We employ
the Mod protocol [50] to perform the modulo operation on [[a]]p with m in the same
way as [60]. In the custom three-party construction [60], it uses the oblivious random
rotation by using the random number r1 and r2 and computes [[a+r1+r2]]p. We require
the Mod protocol [50] to know the rotated target index, i.e., a+r1+r2 mod m. Next,
P0 and P2 run [[hxaip,0]]p pShare(P0, hxaip,0) and [[hxaip,2]]p pShare(P2, hxaip,2),
respectively. Finally, it outputs [[xa]]p = [[hxaip,0]]p+[[hxaip,2]]p. That is, P0 and P2 run
the converting protocol (A2S in [60]) from the share of (2, 2)-ASS to one of (2, 3)-SSS.
It requires 1 round and (6 log2(m)�2) · log2(p) bits in the o✏ine phase and 10 rounds
and (4m+2 log2(m)+12) · log2(p) bits in the online phase as its communication cost.
It invokes the PRF 18 log2(p)+12m times in the o✏ine phase and 4m+12 log2(p)+5
times in the online phase.

4.2.9 Building Blocks of Fair Four-party Computation Protocol over Ring

We use the following building blocks of Trident [12] in our protocol as subprotocols.

• v CC({Pa, Pb}, v, Pc): It runs the cross-checking message transfer protocol (also
known as the joint message passing protocol [16]). It takes the senders {Pa, Pb},
v 2 ZL that the senders have and the receiver Pc, where (a, b, c 2 {0, . . . , 3} and
a 6= b 6= c). In CC, both senders send v to the receiver. Then, the receiver checks
whether the values sent by the two senders match or not. If the values match, the
receiver gets the correct value v and broadcasts the message continue. If not, the
receiver broadcasts the message abort and aborts the protocol. It takes 1 round and
log2 L bits as (amortized) communication cost. This cross-checking message transfer
protocol is commonly used by recent fair 4PC protocols [12, 15, 16].

• x OpenOne(Pi, [x]L): It runs the opening protocol for one party. It takes the
receiver Pi and the share [x]L and outputs x 2 ZL to Pi. It requires 1 round and
log2(L) bits as its (amortized) communication cost.

• [
P

M�1
j=0 xj · yj]L DotProd(([x0]L, . . . , [xM�1]L), ([y0]L, . . . , [yM�1]L)): It runs the

dot product protocol. It takes the vectors of shares, ([x0]L, . . . , [xM�1]L) and ([y0]L,
. . . , [yM�1]L) and then outputs [

P
M�1
j=0 xj ·yj]L. It requires 1 round and 3 log2(L) bits

25

as its (amortized) communication cost in the o✏ine phase and 1 round and 3 log2(L)
bits as its (amortized) communication cost in the online phase. Note that we use Mult

instead of DotProd when M = 1.

• [x]L BitConv(L, [x]2): It runs the bit conversion protocol (also known as ⇧Bit2A,
bit to arithmetic sharing protocol in [12]11). It takes [x]2 (where x 2 Z2) and outputs
[x]L. It requires 2 rounds and 3 log2(L)+1 bits as its (amortized) communication cost
in the o✏ine phase and 1 round and 3 log2(L) bits as its (amortized) communication
cost in the online phase.

• [a < b]2 NaiveLT([a]2k , [b]2k): It takes the shares [a]2k and [b]2k and outputs the
shares of the result of LT [a < b]2. It can be achieved by using the revised (i.e., non
constant-round) MSB extraction of [12] in ⇧LT instead of ⇧msbExt. NaiveLT needs 1
round and 3k bits in the o✏ine phase and 1 + log2 k rounds and 7k bits in the online
phase as (amortized) communication cost.

• [a == b]2 NaiveEQ([a]2k , [b]2k): It takes the shares [a]2k and [b]2k and outputs the
shares of the result of EQ [a == b]2. It can be achieved by using NaiveLT in ⇧EQ

instead of ⇧LT. NaiveEQ needs 2 rounds and 9k bits in the o✏ine phase and 2+ log2 k
rounds and 17k bits in the online phase as (amortized) communication cost.

• [
V

h�1
j=0 bj]2 NaiveArrayAND({[bj]2}

h�1
j=0): It takes {[bj]2}

h�1
j=0 and outputs [

V
h�1
j=0 bj]2.

Intuitively, it computes h� 1 AND gates by using secure multiplication [12]. It needs
log2 h rounds and 3(h�1) bits in the o✏ine phase and log2 h rounds and 3(h�1) bits
in the online phase as (amortized) communication cost.

Table 4.9 shows the communication complexities for the building blocks.

4.2.10 Structure of Decision Tree

We use the same structure as [22]. We denote an input array as an m-dimension feature
vector by {attri}

m�1
i=0 s.t. 0  attri  2k�1

�1. Let attri be the i-th feature. We assume that

a decision tree is a complete binary tree. We define the decision tree as T = (h, �, {idxj}
2h�2
j=0 ,

{vj}
2h�2
j=0 , {condj}

2h�2
j=0 , {leafVal

j
0}

2h�1
j
0=0

) where h is the height of the tree. Let {idxj}
2h�2
j=0 be

a set of the index values idxj 2 Zm s.t. 0  m  2k�1
� 1. The j(= 0, . . . , 2h � 2)-th index

value idxj is used to choose the idxj-th feature for comparison at the j-th internal node.
We denote a set of the decision threshold values (assigned to the j-th internal node) by

{vj}
2h�2
j=0 s.t. 0  vj  2k�1

� 1. We also denote the set of the conditional bits to choose

comparison operations (less-than (LT, <) or equality-testing (EQ, ==)) by {condj}
2h�2
j=0 .

In each internal node, we use LT operation as a comparison operation and check whether
attridxj < vj if condj = 1. If not, we use the EQ operation and check whether attridxj == vj .

11In [12], BitConv converts the shares on Z2 into the shares on Z2k . It can be generalized to convert the
shares on Z2 into the shares on ZL (including Zp) by modifying u, v, r

0
b, and x

0 on Z2k to ones on ZL, since
Trident [12] can work on an arbitrary ring.

26

Table 4.9: Communication complexity of the building blocks (Rounds: the number of
communication rounds, Comm.: the number of (amortized) communication bits per all
parties, L: modulus size, k: bit length of power-of-two ring, h: number of bits)

Rounds Comm.
O✏ine Online O✏ine Online

CC 0 1 0 log2 L
OpenOne 0 1 0 log2 L
Mult 1 1 3 log2 L 3 log2 L

DotProd 1 1 3 log2 L 3 log2 L
BitConv 2 1 3 log2(L) + 1 3 log2 L
NaiveLT 1 1 + log2 k 3k 7k
NaiveEQ 2 2 + log2 k 9k 17k

NaiveArrayAND log2 h log2 h 3(h� 1) 3(h� 1)

ℎ = 2, 𝑚 = 4

attr௜ ௜ୀ଴
௠ିଵ = {attr଴, attrଵ, attrଶ, attrଷ} , idx௝ ௝ୀ଴

ଶ೓ିଶ = idx଴, idxଵ, idxଶ where idx௝ ∈ {0, … , 𝑚 − 1}(= {0, … , 3}),

cond௝ ௝ୀ଴
ଶ೓ିଶ = cond଴, condଵ, condଶ = {0,0,1} , v௝ ௝ୀ଴

ଶ೓ିଶ = v଴, vଵ, vଶ

Toy Example：
PathBranchଶ = 𝑏ଶ,଴, 𝑏ଶ,ଵ = {0,1}
𝛿 2,0 = 2, 𝛿 2,1 = 0

Leaf 0
(= 00 ଶ)

leafVal଴

Leaf 1
(= 01 ଶ)

leafValଵ

Leaf 2
(= 10 ଶ)

leafValଶ

Leaf 3
(= 11 ଶ)

leafValଷ

Internal Node 1
(condଵ = 0)

attr୧ୢ୶భ == vଵ

Internal Node 2
(condଶ = 1)
attr୧ୢ୶మ < vଶ

Internal Node 0
(cond଴ = 0)

attr୧ୢ୶బ == v଴

0 1

0 1 0 1

ℎ = 0

ℎ = 2

ℎ = 1

𝛿 2,1

𝛿 2,0

𝑏ଶ,଴

𝑏ଶ,ଵ

Figure 4.1: Toy example of decision tree structure (Copyright(C)2022 IEICE, [1] Fig.1)

27

uApplication setting of PDTE
[sharing phase] [evaluation phase] [reconstruction phase]

MPC servers

User Model owner

MPC servers MPC servers

User Model owner User Model owner

[#⃗] [%] %(#⃗)

Figure 4.2: Overview of application setting for PDTE

We assign a comparison result bit to branches. That is, we assign the comparison result
bit 1 (i.e., true) and 0 (i.e., false) to the right and left branch, respectively. The next step
is to judge the right (or left) child node if the comparison result bit is 1 (or 0).

Each j0(2 {0, 1, . . . , 2h � 1})-th leaf node has the class label value leafVal
j
0 2 Z2k . We

denote a set of class label values assigned to leaf nodes by {leafVal
j
0}

2h�1
j
0=0

. We also denote

a set of paths to the leaf nodes by PathBranch
j
0 = {b

j
0
,`
}
h�1
`=0 (where b

j
0
,`
2 {0, 1}). Let b

j
0
,`

be the bit assigned to the branch at the height ` in the path to the j0-th leaf node. Let
also � : {0, . . . , 2h � 1}⇥ {0, . . . , h� 1}! {0, . . . , 2h � 2} be the map function that takes j0

(i.e., the index number of the leaf node) and the height ` and outputs the position of the
corresponding internal node. Fig. 4.1 shows an example of the same tree used in [22].

4.2.11 Application Setting

Fig. 4.2 shows the overview of the application setting for the PDTE.
Loosely speaking, an user distributes his/her attribute vector, ~a among MPC servers. A

model owner also distributes his/her tree model, T among MPC servers. Let [~a] and [T] be
the shares of ~a and T , respectively. Then, MPC servers compute the shares of the result,
[T (~a)] and send it to the user. The user reconstructs T (~a) from received shares.

4.2.12 Naive Construction of PDTE with Semi-honest Security

To the best of our knowledge, Protocols 1 and 2 are the naive constructions, i.e., the best
combination of the existing protocols based only on SS-3PC over the ring and field.

28

Protocol 1 Naive Construction of PDTE via 3PC over Ring

Input: Set of shared index number {[idxj]2k}
2h�2
j=0 , shared feature array {[attri]2k}

m�1
i=0 ,

threshold values {[vj]2k}
2h�2
j=0 , conditional values {[condj]2k}

2h�2
j=0 , set of shared values

assigned to leaf nodes {[leafVal
j
0]2k}

2h�1
j
0=0

, mapping function �

Output: shared values assigned to leaf node of correct path [leafVal
j
0]2k where j0 is s.t.

V
h�1
`=0 (j

0
|` � comp�(j0,`) � 1) = 1. Let comp

�(j0 ,`) be cond
�(j0 ,`) · (v�(j0 ,`) < attridx

�(j
0
,`)
) +

(1� cond
�(j0 ,`)) · (v�(j0 ,`) == attridx

�(j
0
,`)
).

1: for j = 0, . . . , 2h � 2 do in parallel
2: (Feature Selection Phase)

3: {[idxj |i0]2}
log2(m)�1

i
0=0

 NaiveBitDec(log2(m), [idxj]2k) // 1 + log2(log2m) rounds &

3 log2(m) + 3 log2(log2(m)) bits

4: for i0 = 0, . . . , log2(m)� 1 do in parallel
5: [idxj |i0]m BitConversion(m, [idxj |i0]2) // 1 round & 6m bits

6: end for
7: [idxj]m =

Plog2(m)

i
0=0

2i
0
· [idxj |i0]m

8: [attridxj]2k rArrayRead({[attri]2k}
m�1
i=0 , [idxj]m) // 3 rounds & 4mk + 2m+ 8k bits

9: (Comparison Phase)

10: [vj < attridxj]2 NaiveRingLT([vj]2k , [attridxj]2k) // 1 + log2(k) rounds & 3k + 3k·

log2(k) bits

11: [vj == attridxj]2 NaiveRingEQ([vj]2k , [attridxj]2k) // 1 + 2 log2(k) rounds & 6k+

3k log2(k)� 3 bits

12: [compj]2 = [condj]2·[vj < attridxj]2�(1�[condj]2)·[vj == attridxj]2 // 1 round & 6 bits

13: end for
14: (Path Evaluation Phase)
15: Initialize Path

j
0 = {[comp

�(j0 ,0)]2, [comp
�(j0 ,1)]2, . . . , [comp

�(j0 ,h�1)]2} by picking up [comp
�(j0 ,`)]2

corresponding to the intermediate value which has (`+ 1)-th height in the path to the

j
0
-th leaf node from {[compj]2}

2h�2
j=0 .

16: for j
0
= 0, . . . , 2h � 1 do in parallel

17: [pathBit
j
0]2 rArrayAND(Path

j
0) // log2(h) rounds & 3(h� 1) bits

18: [pathBit
j
0]2k BitConversion([pathBit

j
0]2) // 1 round & 6k bits

19: end for
20: return [leafVal]2k rInnerProduct({[pathBit

j
0]2k}

2h�1
j
0=0

, {[leafVal
j
0]2k}

2h�1
j
0=0

). // 1 round

& 3k bits

Protocol 2 Naive Construction of Private Decision Tree Evaluation via Secure
Three-party Computation over Field

Input: Set of shared index number {[[idxj]]p}
2h�2
j=0 , shared feature array {[[attri]]p}

m�1
i=0 , thresh-

29

old values {[[vj]]p}
2h�2
j=0 , conditional values {[[condj]]p}

2h�2
j=0 , set of shared values assigned

to leaf nodes {[[leafVal
j
0]]p}

2h�1
j
0=0

, mapping function �

Output: shared values assigned to leaf node of correct path [[leafVal
j
0]]p where j0 is s.t.

V
h�1
`=0 (j

0
|` � comp�(j0,`) � 1) = 1. Let comp

�(j0 ,`) be cond
�(j0 ,`) · (v�(j0 ,`) < attridx

�(j
0
,`)
) +

(1� cond
�(j0 ,`)) · (v�(j0 ,`) == attridx

�(j
0
,`)
).

1: for j = 0, . . . , 2h � 2 do
2: (Feature Selection Phase)

3: [[attridxj]]p pArrayRead({[[attri]]p}
m�1
i=0 , [[idxj]]p) // 1 round & (6 log2(m)� 2) · log2(p)

bits in offline and 10 rounds & (4m+ 2 log2(m) + 12) · log2(p) bits in online

4: (Comparison Phase)

5: [[vj < attridxj]]p pLTZ(k, [[vj�attridxj]]p) // 1 round & (3k � 3) · 6 log2(p) bits in

offline and 3 rounds & (k + 1) · 6 log2(p) bits in online

6: [[vj == attridxj]]p pEQZ(k, [[vj�attridxj]]p) // 1 round & (k � 3 log2(k)� 2) · 6 log2(p)

bits in offline and 3 rounds & (log2(k) + 2) · 6 log2(p) bits in online

7:

[[compj]]p

= [[condj]]p · [[vj < attridxj]]p

+(1� [[condj]]p) · [[vj == attridxj]]p

= [[vj == attridxj]]p + [[sj]]p

where [[sj]]p pInnerProduct({[[condj]]p, [[condj]]p}, {[[vj < attridxj]]p, [[vj == attridxj]]p})

// 1 round & 6 log2(p) bits

8: end for
9: (Path Evaluation Phase)

10: Initialize Path
j
0 = {[[comp

�(j0 ,0)]]p, [[comp
�(j0 ,1)]]p, . . . , [[comp

�(j0 ,h�1)]]p} by picking up [[comp
�(j0 ,`)]]p

correspond to the intermediate value which has (`+1)-th height in the path to the j
0
-th

leaf node from {[[compj]]p}
2h�2
j=0 .

11: for j
0
= 0, . . . , 2h � 1 do

12: for ` = 0, . . . , h� 1 do
13: [[c

j
0
,`
]]p = [[j

0
|` � comp

�(j0 ,`)]]p = (j
0
|` � [[comp

�(j0 ,`)]]p)
2 = j

0
|` + [[comp

�(j0 ,0)]]p � 2 ·

[[comp
�(j0 ,`)]]p

14: end for
15: [[b

j
0]]p pArrayOr({[[c0

j
0
,`
]]p}

h�1
`=0) // 1 round & log2(h) · 6 log2(p) bits in offline

and 3 rounds & 3 log2(h) · 6 log2(p) bits in online

16: [[pathBit
j
0]]p = [[1� b

j
0]]p = (1� [[b

j
0]]p)2 = 1 + [[b

j
0]]p � 2 · [[b

j
0]]p

17: end for
18: return [[leafVal]]p pInnerProduct({[[pathBit

j
0]]p}

2h�1
j
0=0

, {[[leafVal
j
0]]p}

2h�1
j
0=0

). // 1 round

& 6 log2(p) bits

30

4.2.13 Naive Construction of PDTE with Malicious Security and Fairness

To the best of our knowledge, Protocol 3 is the naive construction of the maliciously secure
PDTE protocol with fairness based only on Trident [12], i.e., the best combination of the
building blocks of Trident.

Protocol 3 Naive Construction of Private Decision Tree Evaluation via Trident

Input: Input attributes {[attri]2k}
m�1
i=0 , tree T = (h, �, {[idxj]2k}

2h�2
j=0 , {[vj]2k}

2h�2
j=0 , {[condj

]2}
2h�2
j=0 , {[leafVal

j
0]2k}

2h�1
j
0=0

)

Output: [leafVal
j
0]2k where j0 s.t.

V
h�1
`=0 (j

0
|` == comp�(j0,`)) = 1. Let comp

�(j0 ,`) be

cond
�(j0 ,`) · (v�(j0 ,`) < attridx

�(j
0
,`)
)� (cond

�(j0 ,`) � 1)(v
�(j0 ,`) == attridx

�(j
0
,`)
).

1: for j = 0, . . . , 2h � 2 do in parallel
2: (Feature Selection Phase)
3: for j00 = 0, . . . ,m� 1 do in parallel
4: P3 sets [0]2k,3 = (0, 0, 0).
5: P

i
0 (i0 = 0, 1, 2) sets [0]2k,i0 = (j00, 0, 0)

6: [idxj == j00]2 NaiveEQ([idxj]2k , [j
00]2k) // 2 rounds & 9k bits in offline,

2 + log2 log2m rounds & 17 log2m bits in online

7: [idxj == j00]2k = BitConv(2k, [idxj == j00]2) // 2 rounds & 3k bits in offline,

1 rounds & 3k + 1 bits in online

8: end for
9: [attridxj]2k DotProd(([attr0]2k , . . . , [attrm�1]2k), ([idxj == 0]2k , . . . , [idxj == m �

1]2k)) // 1 rounds & 3k bits in offline, 1 rounds & 3k bits in online

10: (Comparison Phase)
11: [vj < attridxj]2 NaiveLT([vj]2k , [attridxj]2k) // 1 round & 3k bits in offline,

1 + log2 k rounds & 7k bits in online

12: [vj == attridxj]2 NaiveEQ([vj]2k , [attridxj]2k) // 2 rounds & 9k bits in offline,

2 + log2 k rounds & 17k bits in online

13: [compj]2 = [condj]2·[vj < attridxj]2�(1�[condj]2)·[vj == attridxj]2 DotProd(([condj]2, [1�
condj]2), ([vj < attridxj]2, [vj == attridxj]2))

// 1 round & 3 bits in offline, 1 round & 3 bits in online

14: end for
15: (Path Evaluation Phase)
16: Initialize Path

j
0 = {[comp

�(j0 ,0)]2, [comp
�(j0 ,1)]2, . . . , [comp

�(j0 ,h�1)]2} by picking up [comp
�(j0 ,`)]2

correspond to the intermediate value which has (`+1)-th height in the path to the j
0
-th

leaf node from {[compj]2}
2h�2
j=0 .

17: for j
0
= 0, . . . , 2h � 1 do in parallel

18: [pathBit
j
0]2 NaiveArrayAND(Path

j
0) // log2 h rounds & 3(h� 1) bits in offline,

log2 h rounds & 3(h� 1) bits in online

19: [pathBit
j
0]2k BitConv(2k, [pathBit

j
0]2)

31

// 2 rounds & 3k bits in offline, 1 rounds & 3k + 1 bits in online

20: end for
21: Return [leafVal]2k DotProd(([pathBit0]2k , . . . , [pathBit2h�1]2k), ([leafVal0]2k , . . . , [leafVal2h�1

]2k)). // 1 rounds & 3k bits in offline, 1 rounds & 3k bits in online

4.2.14 Definition of Security for Fair SS-4PC

In order to define the security, we use the ideal/real simulation paradigm and define the
real and ideal model in the almost same way as [8, 94] except that the number of parties.
Note that we use the modified ideal model in [94] to guarantee fairness that the trusted
party simply sends each party its output after the early abort option.
The real model: The parties execute a four-party protocol ⇧ in the real model12. The
adversary A (in a synchronous network) can be malicious and may deviate from the protocol
specification, e.g., sending incorrect messages in place of the corrupted party and intentional
delayed or unsent messages13.

We let A be a non-uniform probabilistic polynomial-time adversary corrupting at most
one party. That is, A can control t < n/3 party where (t, n) = (1, 4) as a static corruption.
We denote the set of parties as P = {P0, . . . , P3}. We also denote the output of the honest
parties, the corrupted party I 2 P, and A in an real execution of ⇧, with inputs x0, . . . , x3,
auxiliary input z for A, and security parameter  by REAL⇧,A(z),I(x0, x1, x2, x3,).
The ideal model: We define the ideal model, for any functionality F , receiving inputs
from P0, . . . , P3 and providing them with outputs. The ideal execution proceeds as follows:

• Send inputs to the trusted party: Each honest party Pj (j = 0, . . . , 3) sends its
specified input xj to the trusted party. A corrupted party PI controlled by A may
either send its specified input xI , some other x0I or an abort message.

• Early abort option: If the trusted party received abort from A, the trusted party
sends ? to P and terminates. Otherwise, it proceeds to the next step.

• Outputs: The trusted party computes each party’s output as specified by the func-
tionality F based on the inputs received. We denote the output of Pj by yj . Then,
the trusted party sends yj to Pj for j = 0, . . . , 3. All parties (including the corrupted
parties) always output the sent values from the trusted party that they obtained.

We define S as a non-uniform probabilistic polynomial-time adversary corrupting PI . We
denote the output of the honest parties, PI , and S in an ideal execution with F , with inputs
x0, . . . , x4, auxiliary input z for S, and security parameter  by IDEALF ,S(z),I(x0, x1, x2, x3,).
Definition 1. Let F be a 4-party functionality, and let ⇧ be a 4-party protocol. We say
that ⇧ computes F securely with fairness in the presence of one malicious party, if for

12We assume that each party can be an input dealer and/or an output receiver. If a party distributes its
input values as shares, he/she runs the input sharing protocol in Trident [12]. If a party reconstructs shares,
he/she run the opening protocol, OpenOne.

13We assume that the parties know the maximum delay threshold for sending messages. Hence, honest
parties can detect these cheating by waiting the maximum delay threshold for the data sent from the
corrupted party and abort the protocol.

32

every non-uniform probabilistic polynomial-time adversary A in the real world, there exists
a non-uniform probabilistic polynomial-time simulator S in the ideal model with F , s.t. for
every i 2 {0, 1, 2, 3},

{IDEALF ,S(z),i(x0, x1, x2, x3,)}

⌘{REAL⇧,A(z),i(x0, x1, x2, x3,)}
(4.1)

where x0, x1, x2, x3 2 {0, 1}⇤ under the constraint that |x0| = |x1| = |x2| = |x3|, z 2 {0, 1}⇤

and  2 N.
Definition 1 is the modified security definition based on [8, 94]. If Eq. (4.1) holds

with computational indistinguishability, then we say that ⇧ computes F securely with
computational security and fairness in the presence of one malicious party.

We also use the hybrid model to prove the security of the proposed schemes. In the
hybrid model, each party runs the actual protocol with actual messages and can access
the ideal subfunctionality computed by a trusted third party (TTP). As stated in [92], the
subfunctionality computed by a TTP can be replaced with a secure real protocol. Let g be
the subfunctionality. We say that protocol ⇧ is secure in the g-hybrid model. We denote
protocol ⇧ that is secure in the g-hybrid model as ⇧g.

4.3 Proposed Protocol with Semi-honest Security in Feature
Selection Phase

4.3.1 Proposed Protocol with Semi-honest Security in Feature Selection
Phase over Ring

In the feature selection phase, our protocol takes the share of the index [idx]2k (where 0 
idx  m�1) and the set of shared attributes {[attrj]2k}

m�1
j=0 as inputs and outputs [attridx]2k .

To construct our feature selection protocol (Protocol 6), we propose a subprotocol, the bit-
decomposition protocol (Protocol 5) that takes the bit length m and the shares [x]2k as
inputs and outputs the binary shares {[x|j]}

m�1
j=0 of m bits. To construct the subprotocol,

we also propose the MSB extraction protocol (Protocol 4). Therefore, we will explain,
Protocosls 4, 5 and 6.

Protocol 4 [msb(a)]2 ⇡msbExt([a]2k)

Input: [a]2k s.t. a 2 Z2k , a =
P

k�1
j=0 2

j
· a|j

Output: [msb(a)]2(= [a|k�1]2)
1: (O✏ine phase)
2: for j = 0, . . . , k � 1 do in parallel
3: Each Pi runs [r|j]2,i RndGen(2, ki, ki+1) where r =

P
k�1
j=0 2

j
· r|j . (for i = 0, 1, 2)

4: [r|j]2k BitConversion([r|j]2) // 1 round & 6k bits

5: end for
6: [r|k�2,...,0]2k =

P
k�2
j=0 2

j
· [r|j]2k

7: [2k�1
·msb(r)]2k = 2k�1

· [r|k�1]2k
8: (Online phase)

33

9: [a+ (r|k�2,...,0)]2k = [a]2k + [r|k�2,...,0]2k
10: [2 · ((a+ r)|k�2,...,0)]2k = 2 · [a+ (r|k�2,...,0)]2k
11: for i = 0, 1 do in parallel
12: 2 · ((a+ r)|k�2,...,0) rOpen(Pi, [2 · ((a+ r)|k�2,...,0)]2k) // 1 round & k bits

13: end for
14: r|k�2,...,0 rOpen(P2, [r|k�2,...,0]2k) // 1 round & k bits

15: for j = 0, . . . , k � 2 do in parallel
16: hr|jip0 ,(0,1) aShare(P2, p0, r|j , P0, P1) // 1 round & log2(p

0) bits

17: end for
18: P0 and P1 generate � 2 {0, 1}, sj , uj 2 Z⇤

p by using Fp and k1 for j = 0, . . . , k � 2.

19: � � (r|k�2,...,0 > (a + r)|k�2,...,0) PrivateCompare((a + r)|k�2,...,0, {hr|jip0 ,(0,1)}
k�2
j=0 ,�,

{sj}
k�2
j=0 , {uj}

k�2
j=0 , P2) // 1 round & 2(k � 1) log2(p

0) bits

20: P0, P1 and P2 set [�]2k = ((0,�), (�, 0), (0, 0))
21: P0, P1 and P2 set [(a+ r)|k�2,...,0]2k = ((0, (a+ r)|k�2,...,0), ((a+ r)|k�2,...,0, 0), (0, 0)).

22: [r|k�2,...,0]2k rShare(2k, P2, r|k�2,...,0) // 1 round & 4k bits

23: [u]2k = [� � (r|k�2,...,0 > (a + r)|k�2,...,0)]2k rShare(2k, P2,� � (r|k�2,...,0 > (a +

r)|k�2,...,0)) // 1 round and 4k bits

24: [r|k�2,...,0 > (a+ r)|k�2,...,0]2k = ([u]2k � [�]2k)
2
// 1 round & 3k bits

25: [a|k�2,...,0]2k = [(a+ r)|k�2,...,0]2k � [r|k�2,...,0]2k + 2k�1
· [r|k�2,...,0 > (a+ r)|k�2,...,0]2k

26: [2k�1
·msb(a)]2k = [2k�1

· a|k�1] = [a]2k � [a|k�2,...,0]2k
27: [2k�1

· (msb(a) � msb(r))]2k = [2k�1
· msb(a)]2k + [2k�1

· msb(r)]2k = 2k�1
· [a|k�1]2k +

2k�1
· [r|k�1]2k

28: 2k�1
·(msb(a)�msb(r)) rOpen(P0, [2k�1

·(msb(a)�msb(r))]2k) // 1 round & k bits

29: [msb(a)�msb(r)]2 rShare(2, P0, msb(a)�msb(r)) // 1 round & 4 bits

30: [msb(a)]2 = [msb(a)�msb(r)]2 � [r|k�1]2
31: return [msb(a)]2

Protocol 5 {[x|j]2}
m�1
j=0 ⇡rBitDec(m, [x]2k)

Input: m( k), [x]2k (s.t. x 2 Z2k , x =
P

k�1
j=0 2

j
· x|j , x|j 2 Z2 for j = 0, . . . , k � 1).

Output: {[x|j]2}
m�1
j=0

1: for j = 0, . . . ,m� 1 do in parallel
2: [2k�1�j

· x|j,...,0]2k = 2k�1�j
· [x]2k

3: [x|j]2 = [msb(2k�1�j
·x|j,...,0)]2 ⇡msbExt([2k�1�j

·x|j,...,0]2k) // 1 round & 6k2 bits

in offline, 8 rounds & 9k + (3k � 3) log2(p
0) + 4 bits in online

4: end for
5: return {[x|j]2}

m�1
j=0

Protocol 6 [attridx]2k ⇡rFSelection([idx]2k , {[attrj]2k}
m�1
j=0)

Input: [idx]2k , {[attrj]2k}
m�1
j=0 (s.t. 0  idx < m < 2k).

Output: [attridx]2k

1: {[idx|i]2}
log2(m)�1
i=0 ⇡rBitDec(log2(m), [idx]2k) // 1 round & 6k2 log2(m) bits in

34

offline, 8 rounds & log2(m)(9k + (3k � 3) log2(p
0) + 4) bits in online

2: for i = 0, . . . , log2(m)� 1 do in parallel
3: [idx|i]m BitConversion(m, [idx|i]2) // 1 round & 6m bits

4: end for
5: return [attridx]2k rArrayRead({[attri]2k}

m�1
i=0 ,

Plog2(m)�1
i=0 2i · [idx|i]m) // 3 rounds &

4mk + 2m+ 8k bits

Intuition behind Protocol 4. In the o✏ine phase, each party prepares three types of
the shares of random numbers [r|k�2,...,0]2k , [2

k�1
·msb(r)]2k , [r|k�1]2 (r =

P
k�1
j=0 2

j
·r|j , r|j 2

Z2) (from Step 1 to 7).
In the online phase, our first goal is to compute [a|k�2,...,0]2k(= [a mod 2k�1]2k).

First, each party uses [r|k�2,...,0]2k(= [r mod 2k�1]2k) to mask the input share [a]2k , then
computes the masked share [a + (r|k�2,...,0)]2k (at Step 9). Next, each party computes
[2 · ((a + r)|k�2,...,0)]2k(= 2 · [a + (r|k�2,...,0)]2k) (at Step 10). Then, P0 and P1 reveal
[2 · ((a+ r)|k�2,...,0)]2k and obtain 2 · ((a+ r)|k�2,...,0) mod 2k, from which they can obtain
(a+r)|k�2,...,0 (from Step 11 to 13). We note that P0 and P1 cannot know the plain MSB bit,
msb(a). In parallel, P2 obtains r|k�2,...,0 (at Step 14). Next, each party runs PrivateCompare

[33] and P2 obtains the masked comarison result bit � � (r|k�2,...,0 > (a+ r)|k�2,...,0) (from
Step 15 to 19). Then, each party removes the mask � by performing arithmetic XOR
operation over the ring (i.e., ([u]2k � [�]2k)

2 at Step 24), and obtains the share of compar-
ison bit [r|k�2,...,0 > (a + r)|k�2,...,0]2k (from Step 20 to 24). Finally, each party computes
[a|k�2,...,0]2k = [(a + r)|k�2,...,0]2k � [r|k�2,...,0]2k + 2k�1

· [r|k�2,...,0 > (a + r)|k�2,...,0]2k(=
[(a+ r) mod 2k�1]2k � [r mod 2k�1]2k +2k�1

· [(r mod 2k�1) > ((a+ r) mod 2k�1)]2k).
We note that [a|k�2,...,0]2k = [(a + r)|k�2,...,0]2k � [r|k�2,...,0]2k does not hold in general.

The reason that the equation does not work is because the wrap-around phenomenon may
occur. The wrap-around phenomenon means that the modulo operation may make (a +
r)|k�2,...,0 mod 2k less than r|k�2,...,0 mod 2k. To deal with a case where wrap-around
phenomenon occurs, we must compute [(a+ r)|k�2,...,0]2k � [r|k�2,...,0]2k +2k�1

· [r|k�2,...,0 >
(a+ r)|k�2,...,0]2k similarly to [81–83] to ignore the e↵ect of the wrap-around phenomenon.

Next, each party computes [2k�1
· msb(a)]2k = [2k�1

· a|k�1]2k = [a]2k � [a|k�2,...,0]2k =
[a]2k � [a mod 2k�1]2k (at Step 26). Then, P0 obtains 2k�1

· (msb(a)�msb(r)), from which
P0 can obtain msb(a) � msb(r) (from Step 27 and 28). P0 distributes [msb(a) � msb(r)]2
(at Step 29). Finally, each party computes [msb(a)]2 = [msb(a)�msb(r)]2 � [r|k�1]2.

Intuitions behind Protocols 5 and 6. In Protocol 5, each party computes the left
shift (at Step 2) and invokes ⇡msbExt (at Step 3), repeatedly. Then, each party gets the
shares of each bit over Z2.

In Protocol 6, to convert [idx]2k to [idx]m, each party invokes ⇡rBitDec and runs BitConversion
(from Step 1 to Step 4). Then, each party uses the OAR protocol [60], rArrayRead and ob-
tains [attridx]2k (at Step 5).

We emphasize that it is non-trivial to convert [idx]2k to [idx]m with constant rounds.
For example, if we use the (naive) circuit-based bit-decomposition protocol, BitDec, and
BitConversion, the conversion of the shared index is not a constant-round protocol. Hence,
the whole of the feature selection protocol is also not a constant-round protocol if the
conversion of the shared index is not a constant-round protocol.

35

4.3.2 Proposed Protocol with Semi-honest Security in Feature Selection
Phase over Field

Protocol 7 [[attridx]]p ⇡pFSelection([[idx]]p, {[[attrj]]p}
m�1
j=0)

Input: [[idx]]p, {[[attrj]]p}
m�1
j=0 (s.t. 0  idx < m  2k�1

 p).
Output: [[attridx]]p
1: for j = 0, . . . ,m� 1 do
2: (O✏ine Phase)
3: Pi chooses rj,i 2 F⇤

p randomly. (for i = 0, 1, 2)

4: [[rj,i]]p pShare(Pi, rj,i) (for i = 0, 1, 2) // 1 round and 6 log2(p) bits

5: [[rj]]p = [[rj,0]]p · [[rj,1]]p · [[rj,2]]p // 2 rounds and 12 log2(p) bits

6: (Online Phase)

7: [[dj]]p = [[rj · (idx� j)]]p = [[rj]]p · ([[idx]]p � j) // 1 round and 6 log2(p) bits

8: end for
9: Initialize Rj = {[[attrj]]p, [[dj]]p} for j = 0, . . . ,m� 1.

10: {R
0
j}

m�1
j=0 pSetShu✏e({Rj}

m�1
j=0) // 6 round and 18m log2(p) bits

11: for j = 0, . . . ,m� 1 do
12: Pick up [[d0j]]p from R

0
j = {[[attr0j]]p, [[d0j]]p}.

13: d0j pOpen(Pi, [[d0j]]p) (for i = 0, 1, 2) // 1 round and 3 log2(p) bits

14: end for
15: return [[attr0j]]p where d0j = 0.

Intuition behind Protocol 7. In o✏ine phase, each party generates the shares of
non-zero random values {[[rj]]p}

m�1
j=0 (from Step 1 to Step5). Next, let dj be the value to

indicate whether j and idx are matched. If it holds that j = idx, dj equals 0. If it holds
that j 6= idx, dj does not equal 0. Each party computes the share of dj , [[dj]]p (at Step 7).

Next, each party initializesRj = {[[attrj]]p, [[dj]]p} for each j and computes the obliviously
shu✏ed set of Rj , {R

0
j}

m�1
j=0 where R

0
j = {[[attr0j]]p, [[d0j]]p} such that attr

0
�(j) = attrj ,

d0�(j) = dj and R
0
�(j) = Rj while no one knows the random permutation � (at Steps 9 and

10). Then, each party reveals d0j (at Steps 12 and 13). If it holds that j = idx, d0�(j) equals
to 0. If it holds that j 6= idx, d0�(j) does not equal to 0 (i.e., non-zero random value). We
note that the revealed value d0j does not leak the positional information and the information
about idx because d0j is the obliviously shu✏ed value by the random permutation � that is
known to no one. Finally, each party outputs [[attr0j]]p (where d0j = 0).

4.4 Proposed Protocol with Semi-honest Security in Com-
parison Phase

Protocol 8 [a < b]2 ⇡rLT([a]2k , [b]2k)

Input: [a]2k , [b]2k (s.t. 0  a, b  2k�1
� 1)

Output: [a < b]2
1: [c]2k = [a]2k � [b]2k

36

2: [msb(c)]2 ⇡msbExt([c]2k) // 1 round & 6k2 bits in offline, 8 rounds & 9k+

(3k � 3) log2(p
0) + 4 bits in online

3: return [msb(c)]2

Protocol 9 [a == b]2 ⇡rEQ([a]2k , [b]2k)

Input: [a]2k , [b]2k (s.t. 0  a, b  2k�1
� 1)

Output: [a == b]2
1: [a < b]2 ⇡rLT([a]2k , [b]2k) // 1 round & 6k2 bits in offline, 8 rounds & 9k

+(3k � 3) log2(p
0) + 4 bits in online

2: [b < a]2 ⇡rLT([b]2k , [a]2k) // 1 round & 6k2 bits in offline, 8 rounds & 9k

+(3k � 3) log2(p
0) + 4 bits in online

3: [res]2 = ([a < b]2 � 1) · ([b < a]2 � 1) // 1 round & 3 bits

4: return [res]2

Protocol 10 {[compj]2}
2h�2
j=0 ⇡rComp({[attridxj]2k}

2h�2
j=0 , {[vj]2k}

2h�2
j=0 , {[condj]2}

2h�2
j=0)

Input: Attribute set {[attridxj]2k}
2h�2
j=0 , threshold values {[vj]2k}

2h�2
j=0 , conditional values

[condj]2}
2h�2
j=0

Output: {[compj]2}
2h�2
j=0

1: for j = 0, . . . , 2h � 2 do in parallel

2: [vj < attridxj]2 ⇡rLT([vj]2k , [attridxj]2k) // 1 round & 6k2 bits in offline,

8 rounds & 9k + (3k � 3) log2(p
0) + 4 bits in online

3: [vj == attridxj]2 ⇡rEQ([vj]2k , [attridxj]2k) // 1 round & 12k2 bits in offline,

9 rounds & 18k + (6k � 6) log2(p
0) + 11 bits in online

4: [compj]2 = [condj]2 · [vj < attridxj]2 � (1� [condj]2) · [vj == attridxj]2 // 1 round &

6 bits

5: end for
6: return {[compj]2}

2h�2
j=0

In the comparison phase, it is required to compare the attribute value and the decision
threshold value without revealing these values, the comparison operators, and comparison
results. Hence, we construct the less-than protocol (Protocol 8) and the equality-testing
protocol (Protocol 9) as subprotocols. Then, we also construct the comparison protocol
(Protocol 10) by using these subprotocols, i.e., oblivious selection protocol for the compar-
ison result.

In Protocol 8, to run the less-than protocol, each party computes [a� b]2k = [a]2k � [b]2k
where we assume 0  a, b  2k�1

� 1 and invokes ⇡msbExt. If a is smaller than b, msb(a� b)
equals 1 and can be outputted as the result of the less-than protocol. If not, msb(a � b)
equals 0 and can be outputted. In Protocol 9, to run the equality-testing protocol, each
party invokes ⇡rLT([a]2k , [b]2k) and ⇡rLT([b]2k , [a]2k) in parallel. a = b holds if (a < b)�1 = 1
and (b < a) � 1 = 1. Therefore, each party outputs ([a < b]2 � 1) · ([b < a]2 � 1) as the

37

result of the equality-testing protocol.

Protocol 10 takes the shares of the conditional values {[condj]2}
2h�2
j=0 as inputs and

outputs the oblivious comparison results for each internal node. It either outputs the
results of ⇡rLT (if cj = 1) or ⇡rEQ (if cj = 0). Hence, each party invokes ⇡rLT and ⇡rEQ (at
Steps 2 and 3). Then, each party selects one result or the other as the shared comparison
result bit [compj]2, obliviously (at Step 4).

4.5 Proposed Protocol with Semi-honest Security in Path
Evaluation Phase

4.5.1 Proposed Path Evaluation Protocol with Semi-honest Security over
Ring

Protocol 11 [leafVal
j
0]2k ⇡rPathEval({[compj]2}

2h�2
j=0 , {[leafVal

j
0]2k}

2h�1
j
0=0

, �)

Input: Comparison result of intermediate nodes {[compj]2}
2h�2
j=0 , set of shared values as-

signed to leaf nodes {[leafVal
j
0]2k}

2h�1
j
0=0

, mapping function �

Output: shared values assigned to leaf node of correct path [leafVal
j
0]2k where j0 is s.t.

V
h�1
`=0 (j

0
|` == comp�(j0,`)) = 1.

1: for j
0
= 0, . . . , 2h � 1 do in parallel

2: Initialize Path
j
0 = {[comp

�(j0 ,0)]2, [comp
�(j0 ,1)]2, . . . , [comp

�(j0 ,h�1)]2}.
3: for ` = 0, . . . , h� 1 do in parallel
4: Compute [c

j
0
,`
]2 = [j0|` == comp�(j0,`)]2 = j

0
|` � [comp

�(j0 ,`)]2 � 1 by picking up

[comp
�(j0 ,`)]2 from Path

j
0 .

5: end for
6: Set R

j
0 = {[leafVal

j
0]2k , [cj0 ,0]2, . . . , [cj0 ,h�1]2}

7: end for
8: {R

0
j
0}

2h�1
j
0=0
 rSetShu✏e({R

j
0}

2h�1
j
0=0

) // 3 rounds & 6 · 2h · (k + h) bits

9: Initialize count
j
0 = 0 for j

0
= 0, . . . , 2h � 1.

10: for j
0
= 0, . . . , 2h � 1; ` = 0, . . . , h� 1 do in parallel

11: Pick up [c0
j
0
,`
]2 from R

0
j
0 = {[leafVal0

j
0]2k , [c

0
j
0
,0]2, . . . , [c

0
j
0
,h�1]2}. Then, c0

j
0
,`

Open(Pi, [c0j0 ,`]2) for i = 0, 1, 2. // 1 round & 3 bits

12: count
j
0 = count

j
0 + 1 if c

j
0
,`
= 1.

13: end for
14: return [leafVal0

j
0]2k where count

0
j
0 = h.

In path evaluation phase, it is required to choose the correct path (and leaf node) by
using the shared comparison result of each node and the shared class labels assigned to leaf
nodes without revealing the information about paths, comparison results, and class labels.
We construct the path evaluation protocol (Protocol 11) and explain the intuition behind
it. Each party initializes Path

j
0 = {[comp

�(j0 ,`)]2}
h�1
`=0 for each j0-th leaf node (at Step 2). �

is the mapping function defined in §4.2.10. Next, let [leafVal
j
0]2k be the shares of each class

38

label value and c
j
0
,`
be the result of the equality-testing between the bit assigned to the

branch that has the `-th height on the path to the j0-th leaf node, j0|` and the comparison
result comp

�(j0 ,`). Each party computes R
j
0 = {[leafVal

j
0]2k , [cj0 ,0]2, . . . , [cj0 ,h�1]2} (from

Step 1 to 6).

Next, each party computes {R
0
j
0}

2h�1
j
0=0

by shu✏ing {R
j
0}

2h�1
j
0=0

obliviously by using the

random permutation � such that R
0
�(j0) = R

j
0 (at Step 8). After initializing count

j
0 = 0

(at Step 9). Then, each party obtains c0
j
0
,`
by choosing [c0

j
0
,`
]2 from R

0
j
0 and revealing it.

If c0
j
0
,`
= 1, each party increases count

j
0 by 1 (from Step 10 to Step 13). We note that

c0
j
0
,`
does not leak the positional information j0. In addition, an adversary can obtain no

information about {comp
�(j0 ,`)}

2h�2
`=0 and leafVal

j
0 from c0

j
0
,`
because the tree is a complete

binary tree. For example, we assume that h = 2. If the correct output leaf node is the leaf
node 2(= 10(2)), it holds that c00,0 = 1, c00,1 = 0, c01,0 = 0, c01,1 = 0, c02,0 = 1, c02,1 = 1,
c03,0 = 0, and c03,1 = 1. That is, the adversary gets all the 2-bit sequences, 00(2), 01(2), 10(2),
and 11(2). As another example, if the correct output leaf node is the leaf node 3(= 11(2)),
it holds that c00,0 = 0, c00,1 = 0, c01,0 = 1, c01,1 = 0, c02,0 = 0, c02,1 = 1, c03,0 = 1, and
c03,1 = 1. In this case, the adversary also obtains all 2-bit sequences, 00(2), 01(2), 10(2), and
11(2). We note that the random permutation � is di↵erent for each execution of rSetShu✏e.
Therefore, the adversary can get no information from c0

j
0
,`
.

If count
�(j0) = h,

V
h�1
`=0 (j

0
|` == comp�(j0,`)) =

V
h�1
`=0 (j

0
|` � comp�(j0,`) � 1) = 1 holds.

Therefore, each party outputs [leafVal0
j
0]2k where count

j
0 = h (at Step 14).

4.5.2 Proposed Path Evaluation Protocol with Semi-honest Security over
Field

Protocol 12 [[leafVal]]p ⇡pPathEval({[[compj]]p}
2h�2
j=0 , {[[leafVal

j
0]]p}

2h�1
j
0=0

, �)

Input: Comparison result of intermediate nodes {[[compj]]p}
2h�2
j=0 , set of shared values as-

signed to leaf nodes {[[leafVal
j
0]]p}

2h�1
j
0=0

, mapping function �

Output: shared values assigned to leaf node of correct path [[leafVal
j
0]]p where j0 is s.t.

V
h�1
`=0 (j

0
|` == comp�(j0,`)) = 1.

1: (O✏ine phase)
2: for j

0
= 0, . . . , 2h � 1 do

3: Pi chooses rj0 ,i 2 F⇤
p randomly. (for i = 0, 1, 2)

4: [[r
j
0
,i
]]p pShare(Pi, rj0 ,i) (for i = 0, 1, 2) // 1 round and 6 log2(p) bits

5: [[r
j
0]]p = [[r

j
0
,0]]p · [[rj0 ,1]]p · [[rj0 ,2]]p // 2 rounds and 12 log2(p) bits

6: end for
7: (Online phase)
8: Initialize Path

j
0 = {[[comp

�(j0 ,0)]]p, [[comp
�(j0 ,1)]]p, . . . , [[comp

�(j0 ,h�1)]]p} by picking up [[

comp
�(j0 ,`)]]p corresponding to the intermediate value which has (`+ 1)-th height in the

path to the j
0
-th leaf node from {[[compj]]p}

2h�2
j=0 .

9: for j
0
= 0, . . . , 2h � 1 do

39

10: for ` = 0, . . . , h� 1 do
11: Compute [[c

j
0
,`
]]p = [[j

0
|`�comp

�(j0 ,`)]]p = (j
0
|`�[[comp

�(j0 ,`)]]p)
2 = j

0
|`+[[comp

�(j0 ,`)]]p�

2 · [[comp
�(j0 ,`)]]p by picking up [[comp

�(j0 ,`)]]p from Path
j
0 .

12: end for
13: [[sum

j
0]]p =

P
h�1
`=0 [[cj0 ,`]]p

14: [[r
j
0 · sum

j
0]]p = [[r

j
0]]p · [[sumj

0]]p // 1 round and 6log(p) bits

15: Initialize R
j
0 = {[[leafVal

j
0]]p, [[rj0 · sumj

0]]p}
16: end for
17: {R

0
j
0}

2h�1
j
0=0
 pSetShu✏e({R

j
0}

2h�1
j
0=0

) // 6 rounds and 18 · 2h · log2(p) bits

18: for j
0
= 0, . . . , 2h � 1 do

19: Pick up [[r0
j
0 · sum0

j
0]]p from R

0
j
0 = {[[leafVal0

j
0]]p, [[r0j0 · sum

0
j
0]]p}.

20: r0
j
0 ·sum0

j
0 pOpen(Pi, [[r0j0 ·sum

0
j
0]]p) (for i = 0, 1, 2) // 1 round and 2h · 3 log2(p)

bits

21: end for
22: return [[leafVal0

j
0]]p where r0

j
0 · sum0

j
0 = 0.

In o✏ine phase, each party computes the shares of non-zero random values {[[r
j
0]]p}

2h�1
j
0=0

(from Step 1 to Step 6). Next, let [[leafVal
j
0]]p be the shares of the class label value assigned

to the j0-th leaf node. Let also c
j
0
,`
be the equality-testing result between the bit assigned

to the branch that has the `-th height on the path to the j0-th leaf node, j0|` and the
comparison result comp

�(j0 ,`). We set sum
j
0 =

P
h�1
`=0 c

j
0
,`
. Each party computes R

j
0 =

{[[leafVal
j
0]]p, [[rj0 · sumj

0]]p} (from Step 7 to Step 16).

Next, each party computes {R
0
j
0}

2h�1
j
0=0

by shu✏ing {R
j
0}

2h�1
j
0=0

obliviously by using the

random permutation � such that R0
�(j0) = R

j
0 , [[leafVal0

�(j0)]]p = [[leafVal
j
0]]p, and [[r0

�(j0) ·

sum
0
�(j0)] = [[r

j
0 · sum

j
0] (at Step 17). each party gets r0

j
0 · sum0

j
0 by choosing its shares from

{R
0
j
0}

2h�1
j
0=0

and revealing it (from Step 18 to Step 21). If
V

h�1
`=0 (j

0
|` == comp�(j0,`)) = 1,

i.e.,
W

h�1
`=0 c

j
0
,`
= 0, then sum

0
�(j0) = 0. If not, then sum

0
�(j0) 6= 0. That is, it holds that

r0
�(j0) · sum

0
�(j0) = 0 i↵

V
h�1
`=0 (j

0
|` == comp�(j0,`)) = 1. Therefore, it outputs [[leafVal0

�(j0)]]p
where r0

�(j0) · sum
0
�(j0) = 0 (at Step 22). We note that r0

�(j0) · sum
0
�(j0) leaks no positional

information about j0 because of pSetShu✏e.

4.6 Proposed Protocol of Private Decision Tree Evaluation
with Semi-honest Security

4.6.1 Proposed Protocol of Private Decision Tree Evaluation with Semi-
honest Security over Ring

Protocol 13 [leafVal]2k ⇡rDTEval({[idxj]2k}
2h�2
j=0 , {[attri]2k}

m�1
i=0 , {[vj]2k}

2h�2
j=0 , {[condj]2k

}
2h�2
j=0 , {[leafVal

j
0]2k}

2h�1
j
0=0

, �)

40

Input: Set of shared index number {[idxj]2k}
2h�2
j=0 , shared feature array {[attri]2k}

m�1
i=0 ,

threshold values {[vj]2k}
2h�2
j=0 , conditional values {[condj]2k}

2h�2
j=0 , set of shared values

assigned to leaf nodes {[leafVal
j
0]2k}

2h�1
j
0=0

, mapping function �

Output: shared values assigned to leaf node of correct path [leafVal
j
0]2k where j0 is s.t.

V
h�1
`=0 (j

0
|` � comp�(j0,`) � 1) = 1. Let comp

�(j0 ,`) be cond
�(j0 ,`) · (v�(j0 ,`) < attridx

�(j
0
,`)
) +

(1� cond
�(j0 ,`)) · (v�(j0 ,`) == attridx

�(j
0
,`)
).

1: Initialize A.
2: for j = 0, . . . , 2h � 2 do in parallel

3: [attridxj]2k ⇡rFSelection([idxj]2k , {[attri]2k}
m�1
i=0). // 1 round & 6k2 log2(m) bits in

offline, 12 rounds & log2(m)(9k + (3k � 3) log2(p
0) + 4) + 6m log2(m) + 4mk + 2m

+8k bits in online

4: Set [attridxj]2k into A.
5: end for
6: {[compj]2}

2h�2
j=0 ⇡rComp(A = {[attridxj]2k}

2h�2
j=0 , {[vj]2k}

2h�2
j=0 , {[condj]2k}

2h�2
j=0)

// 1 rounds & (2h � 1) · 18k2 bits in offline, 10 rounds & (2h � 1) · (27k + (9k

�9) log2(p
0) + 21) bits in online

7: [leafVal]2k ⇡rPathEval({[compj]2}
2h�2
j=0 , {[leafVal

j
0]2k}

2h�1
j
0=0

, �) // 4 rounds & 2h(6k+

9h) bits

8: return [leafVal]2k

Protocol 13 is our construction of PDTE over the ring. It employs Protocol 6 in the
feature selection phase, Protocol 10 in the comparison phase, and Protocol 11 in the path
evaluation phase.

4.6.2 Proposed Protocol of Private Decision Tree Evaluation with Semi-
honest Security over Field

Protocol 14 [[leafVal]]p ⇡pDTEval1({[[idxj]]p}
2h�2
j=0 , {[[attri]]p}

m�1
i=0 , {[[vj]]p}

2h�2
j=0 ,

{[[condj]]p}
2h�2
j=0 , {[[leafVal

j
0]]p}

2h�1
j
0=0

, �)

Input: Set of shared index number {[[idxj]]p}
2h�2
j=0 , shared feature array {[[attri]]p}

m�1
i=0 , thresh-

old values {[[vj]]p}
2h�2
j=0 , conditional values {[[condj]]p}

2h�2
j=0 , set of shared values assigned

to leaf nodes {[[leafVal
j
0]]p}

2h�1
j
0=0

, mapping function �

Output: shared values assigned to leaf node of correct path [[leafVal
j
0]]p where j0 is s.t.

V
h�1
`=0 (j

0
|` == comp�(j0,`)) = 1. Let comp

�(j0 ,`) be cond
�(j0 ,`) · (v�(j0 ,`) < attridx

�(j
0
,`)
) +

(1� cond
�(j0 ,`)) · (v�(j0 ,`) == attridx

�(j
0
,`)
).

1: Initialize A.
2: for j = 0, . . . , 2h � 2 do
3: (Feature Selection Phase)

41

4: [[attridxj]]p ⇡pFSelection([[idxj]]p, {[[attri]]p}
m�1
i=0). // 3 rounds & 18m log2(p) bits

in offline, 8 rounds & 27m log2(p) bits in online

5: Set [[attridxj]]p into A.
6: (Comparison Phase)

7: [[vj < attridxj]]p pLTZ(k, [[vj�attridxj]]p) // 1 round & (3k � 3) · 6 log2(p) bits in

offline and 3 rounds & (k + 1) · 6 log2(p) bits in online

8: [[vj == attridxj]]p pEQZ(k, [[vj�attridxj]]p) // 1 round & (k � 3 log2(k)� 2) · 6 log2(p)

bits in offline and 3 rounds & (log2(k) + 2) · 6 log2(p) bits in online

9:

[[compj]]p

= [[condj]]p · [[vj < attridxj]]p

+(1� [[condj]]p) · [[vj == attridxj]]p

= [[vj == attridxj]]p + [[sj]]p

where [[sj]]p pInnerProduct({[[condj]]p, [[condj]]p}, {[[vj < attridxj]]p, [[vj == attridxj]]p})

// 1 round & 6 log2(p) bits

10: end for
11: (Path Evaluation Phase)
12: Initialize Path

j
0 = {[[comp

�(j0 ,0)]]p, [[comp
�(j0 ,1)]]p, . . . , [[comp

�(j0 ,h�1)]]p} by picking up [[

comp
�(j0 ,`)]]p corresponding to the intermediate value which has (`+ 1)-th height in the

path to the j
0
-th leaf node from {[[compj]]p}

2h�2
j=0 .

13: for j
0
= 0, . . . , 2h � 1 do

14: for ` = 0, . . . , h� 1 do
15: [[c

j
0
,`
]]p = [[j

0
|` � comp

�(j0 ,`)]]p = (j
0
|` � [[comp

�(j0 ,`)]]p)
2 = j

0
|` + [[comp

�(j0 ,0)]]p �

2 · [[comp
�(j0 ,`)]]p

16: end for
17: [[b

j
0]]p pArrayOr({[[c0

j
0
,`
]]p}

h�1
`=0) // 1 round & log2(h) · 6 log2(p) bits in offline

and 3 rounds & 3 log2(h) · 6 log2(p) bits in online

18: [[pathBit
j
0]]p = [[1� b

j
0]]p = (1� [[b

j
0]]p)2 = 1 + [[b

j
0]]p � 2 · [[b

j
0]]p

19: end for
20: return [[leafVal]]p pInnerProduct({[[pathBit

j
0]]p}

2h�1
j
0=0

, {[[leafVal
j
0]]p}

2h�1
j
0=0

).

21: // 1 round & 6 log2(p) bits

Protocol 15 [[leafVal]]p ⇡pDTEval2({[[idxj]]p}
2h�2
j=0 , {[[attri]]p}

m�1
i=0 , {[[vj]]p}

2h�2
j=0 ,

{[[condj]]p}
2h�2
j=0 , {[[leafVal

j
0]]p}

2h�1
j
0=0

, �)

Input: Set of shared index number {[[idxj]]p}
2h�2
j=0 , shared feature array {[[attri]]p}

m�1
i=0 , thresh-

old values {[[vj]]p}
2h�2
j=0 , conditional values {[[condj]]p}

2h�2
j=0 , set of shared values assigned

to leaf nodes {[[leafVal
j
0]]p}

2h�1
j
0=0

, mapping function �

42

Output: shared values assigned to leaf node of correct path [[leafVal
j
0]]p where j0 is s.t.

V
h�1
`=0 (j

0
|` == comp�(j0,`)) = 1. Let comp

�(j0 ,`) be cond
�(j0 ,`) · (v�(j0 ,`) < attridx

�(j
0
,`)
) +

(1� cond
�(j0 ,`)) · (v�(j0 ,`) == attridx

�(j
0
,`)
).

1: Initialize A.
2: for j = 0, . . . , 2h � 2 do
3: (Feature Selection Phase)

4: [[attridxj]]p ⇡pFSelection([[idxj]]p, {[[attri]]p}
m�1
i=0). // 3 rounds & (2h � 1) · 18m log2(p)

bits in offline, 8 rounds & (2h � 1) · 27m log2(p) bits in online

5: Set [[attridxj]]p into A.
6: (Comparison Phase)

7: [[vj < attridxj]]p pLTZ(k, [[vj�attridxj]]p) // 1 round & (3k � 3) · 6 log2(p) bits in

offline and 3 round & (k + 1) · 6 log2(p) bits in online

8: [[vj == attridxj]]p pEQZ(k, [[vj�attridxj]]p) // 1 round & (k � 3 log2(k)� 2) · 6 log2(p)

bits in offline and 3 round & (log2(k) + 2) · 6 log2(p) bits in online

9:

[[compj]]p

= [[condj]]p · [[vj < attridxj]]p

+(1� [[condj]]p) · [[vj == attridxj]]p

= [[vj == attridxj]]p + [[sj]]p

where [[sj]]p pInnerProduct({[[condj]]p, [[condj]]p}, {[[vj < attridxj]]p, [[vj == attridxj]]p})

// 1 rounds & 6 log2(p) bits

10: end for
11: (Path Evaluation Phase)

12: [[leafVal]]p ⇡pPathEval({[[compj]]p}
2h�2
j=0 , {[[leafVal

j
0]]p}

2h�1
j
0=0

, �)

// 3 rounds & 2h · 18 log2(p) bits in offline, 8 rounds & 2h · 27 log2(p) bits

in online

13: return [[leafVal]]p

Protocols 14 and 15 are the proposed constructions over the field. One of our schemes
over the field (Protocol 14) is the same as the naive construction (Protocol 2 in 4.2.12),
except that our scheme employs Protocol 7 in the feature selection phase. The other of our
schemes over the field (Protocol 15) is the same as the naive construction (Protocol 2 in
4.2.12), except that our scheme employs Protocols 7 and 12 in the feature selection phase
and the path evaluation phase, respectively.

4.7 Proposed Protocols with Fairness

Key Idea. To construct the maliciously secure PDTE protocol based only on SS-MPC
with fairness and constant rounds, we use the fair 4PC based on secret sharing scheme,

43

Trident [12] and follow the algorithms of [22]. However, the PDTE protocol of [22] is based
on semi-honest 3PC including the semi-honest shu✏e protocol with constant rounds [62]
and semi-honest private compare (PC) protocol with constant rounds [33]14. The authors
of Trident did not propose an oblivious shu✏e protocol with constant rounds and PC
protocol in [12]. Hence, it is non-trivial to realize the algorithms of the PDTE protocol [22]
while achieving malicious security, fairness, and constant rounds by using Trident only
straightforwardly.

To overcome this problem, we propose a maliciously secure shu✏e protocol with fairness
and constant rounds based on Trident. We also construct a PC protocol that achieves
malicious security with fairness and constant rounds by using our shu✏e as a subprotocol.
By using our shu✏e, PC, and Trident as building blocks, and modifying the algorithms
of [22], we can realize the maliciously secure PDTE protocol with fairness and constant
rounds.

4.7.1 Proposed Oblivious Shu✏ing Protocol

Protocol 16 Oblivious Mini-shu✏e Protocol (Type 1) ⇧miniShu✏e1

Input: Random permutation ⇡ 2 SM , senders (knowing ⇡) {P0, P1, P2}, receiver (not
knowing ⇡) P3, the array of shares [~x]L = ([x0]L, [x1]L, . . . , [xM�2]L, [xM�1]L)

Output: Shu✏ed array of shares [~x0]L = ([x00]L, [x01]L, . . . , [x0M�2]L, [x0M�1]L) where x0⇡(`)
= x` (` = 0, . . . ,M � 1).

1: Set mx` = x`+�x` mod L and �x` = �x`,0+�x`,1+�x`,2 mod L (for ` = 0, . . . ,M�1).
2: Let [x`]L,3 = (�x`,0, �x`,1, �x`,2) be the P3’s shares of x` (for ` = 0, . . . ,M � 1).
3: Let [x`]L,i0 = (mx` , �

x`,i
0+1

, �
x`,i

0�1
) be the P

i
0 ’s shares of x` where i0 2 {0, 1, 2} (for

` = 0, . . . ,M � 1).
4: for ` = 0, . . . ,M � 1 do in parallel
5: The senders P0, P1 and P2 compute r

`,i
0 = FL(k0,1,2, uid`,i0) and sets r` = r`,0+ r`,1+

r`,2 mod L where uid
`,i

0 is a unique identifier and i0 2 {0, 1, 2}.
6: P

i
0 sets [x0⇡(`)]L,i0 = (mx`+r` mod L, �

x`,i
0+1

+r
`,i

0+1
mod L,�

x`,i
0�1

+r
`,i

0�1
mod

L).
7: for i

0
= 0, 1, 2 do in parallel

8: P
i
0+1

and P
i
0�1

compute �0
⇡(`),i0 = �

x`,i
0 + r

`,i
0 mod L.

9: By CC({P
i
0+1

, P
i
0�1

},�0
⇡(`),i0 , P3), P3 gets �0

⇡(`),i0 as the correct value �
x0

⇡(`),i
0 or

aborts the protocol. // 1 round & log2 L bits in offline, 0 round & 0 bit in

online

10: end for
11: end for
12: P3 sets [x0⇡(`)]L,3 = (�x0

⇡(`),0,�x0
⇡(`),1,�x0

⇡(`),2).

14In the client-server model [5], PC protocol [33] can achieve only privacy (not correctness) against
a malicious adversary. However, we would like to construct the PDTE protocol achieving privacy and
correctness against a malicious adversary even outside the client-server model. Hence, we cannot use the
PC protocol [33] without modifications as a building block.

44

13: Return [~x0]L = ([x00]L, [x01]L, . . . , [x0M�2]L, [x0M�1]L).

Protocol 17 Oblivious Table Shu✏e Protocol ⇧TableShu✏e

Input: The number of rows R, the number of columns C, the array of shares [~x(0)0] =

([x(0)0,0]L0 , . . . , [x
(0)
0,C�1]LC�1), . . ., [~x

(0)
R�1] = ([x(0)

R�1,0]L0 , . . . , [x
(0)
R�1,C�1]LC�1) where modu-

lus sizes L` 2 {2, 2k, q} (` = 0, . . . , C � 1).

Output: Shu✏ed array of shares [~x(4)0] = ([x(4)0,0]L0 , . . . , [x
(4)
0,C�1]LC�1), . . ., [~x(4)

R�1] = (

[x(4)
R�1,0]L0 , . . . , [x

(4)
R�1,C�1]LC�1) where ⇡ 2 SR is a random permutation that no party

knows and x(4)
⇡(`0),`

= x(0)
`
0
,`
for `0 = 0, . . . , R� 1; ` = 0, . . . , C � 1.

1: for i = 0, 1, 2, 3 do
2: Pi, Pi+1, and Pi+2 generate the random permutation ⇡i�1 2 SR unknown to Pi�1

by using the pseudo-random function FR, the unique identifier uidi, and pre-shared key
ki,i+1,i+2.

3: end for
4: Set [~y(0)

`
] = ([y(0)

`,0]L` , . . . , [y
(0)
`,R�1]L`) = ([x(0)0,`]L` , . . . , [x

(0)
R�1,`]L`) for ` = 0, . . . , C � 1.

5: for ` = 0, . . . , C � 1 do in parallel

6: Parties obtain [~y(1)
`

] = ([y(1)
`,0]L` , [y

(1)
`,1]L` , . . . , [y

(1)
`,R�2]L` , [y

(1)
`,R�1]L`) by ⇧miniShu✏e1(⇡3

, {P0, P1, P2}, P3, [~y
(0)
`

]) where y(1)
⇡3(`

0)
= y(0)

`
0 for `0 = 0, . . . , R� 1.

// 1 round & 3R log2 L` bits in offline, 0 round & 0 bit in online

7: end for
8: for j = 1, 2, 3 do
9: for ` = 0, . . . , C � 1 do in parallel

10: Parties obtain [~y(j+1)
`

] = ([y(j+1)
`,0]L` , [y

(j+1)
`,1]L` , . . . , [y

(j+1)
`,R�2]L` , [y

(j+1)
`,R�1]L`) by⇧miniShu✏e2

(⇡j�1, {P3, Pj�1, P
j
}, P

j+1, [~y(j)
`

]) where y(j+1)

`,⇡j�1(`
0)

= y(j)
`,`

0 for `0 = 0, . . . , R � 1.

// 1 round & 2R log2 L` bits in offline, 1 round & R log2 L` bits in online

11: end for
12: end for
13: Return [~x(4)0] = ([x(4)0,0]L0 , . . . , [x

(4)
0,C�1]LC�1) = ([y(4)0,0]L0 , . . . , [y

(4)
C�1,0]LC�1), [~x(4)1] = ([

x(4)1,0]L0 , . . . , [x
(4)
1,C�1]LC�1) = ([y(4)0,1]L0 , . . . , [y

(4)
C�1,1]LC�1), . . ., [~x

(4)
R�1] = ([x(4)

R�1,0]L0 , . . . , [

x(4)
R�1,C�1]LC�1) = ([y(4)0,R�1]L0 , . . . , [y

(4)
C�1,R�1]LC�1) where the random permutation ⇡ =

⇡2 � ⇡1 � ⇡0 � ⇡3 which no party knows and x(4)
⇡(`0),`

= x(0)
`
0
,`
for `0 = 0, . . . , R � 1; ` =

0, . . . , C � 1.

Overview. We propose the oblivious shu✏e protocol for secret shares of table data (i.e.,
two-dimensional arrays) with fairness and constant rounds (Protocol 17, ⇧TableShu✏e). To
construct ⇧TableShu✏e, we also propose the oblivious mini-shu✏e protocol with fairness and
constant rounds (⇧miniShu✏e1 and ⇧miniShu✏e2). ⇧miniShu✏e1 and ⇧miniShu✏e2 take the random
permutation that only three parties know and the shares of the one-dimensional array. They
output the shares of the shu✏ed array with fairness by resharing the three parties’ (locally
shu✏ed) shares via CC. Since ⇧miniShu✏e1 and ⇧miniShu✏e2 consist of the local operations

45

and execution of CC, they can achieve fairness and constant rounds. ⇧TableShu✏e can be
constructed by executing the oblivious mini-shu✏es in series while changing the random
permutation and the three parties who know the permutation. Hence, ⇧TableShu✏e achieves
fairness and constant rounds.

Our shu✏e protocols follow the high-level strategy of resharing-based shu✏e and can
be regarded as a kind of constant-round resharing-based shu✏e among three parties [62,
68,69] or multi-party resharing-based shu✏e [67]. However, we emphasize that the existing
constant-round resharing-based shu✏e protocols among three parties [62, 68, 69] are only
semi-honest secure. We also emphasize that the existing multi-party resharing-based shuf-
fle protocol with the malicious security [67] can achieve the security only with abort by
using zero-knowledge proofs and commitment scheme, without fairness. In addition, it can
detect cheating probabilistically. That is, if the parties would like to increase the proba-
bility of cheating detection, parties need to sacrifice performance. On the other hand, our
shu✏e protocol can detect cheating deterministically rather than probabilistically without
sacrificing performance.

Intuition of Protocol 16. In ⇧miniShu✏e1, P0, P1, and P2 know the random permu-
tation (and P3 does not know it). In ⇧miniShu✏e2, P3, P

i
0�1

, and P
i
0+1

know the random

permutation (and P
i
0 does not know it), where i0 2 {0, 1, 2}.

In ⇧miniShu✏e1, at Step 5, the three senders P0, P1, and P2, compute the randomnesses
r
`,i

0 (such that r` = r`,0 + r`,1 + r`,2 mod L) by using k0,1,2 that P3 does not know to

rerandomize the shares of input array at next step (for ` = 0, . . . ,M � 1; i
0
= 0, 1, 2). At

Step 6, the sender P
i
0 (i0 = 0, 1, 2) shu✏es mx` , �x`,i

0+1
and �

x`,i
0�1

locally by applying

⇡ and rerandomizes the (locally) shu✏ed values by using r`, r`,0, r`,1, and r`,2 and setting
[x0⇡(`)]L,i0 = (mx` + r` mod L,�

x`,i
0+1

+ r
`,i

0+1
mod L,�

x`,i
0�1

+ r
`,i

0�1
mod L). At

Steps 7 to 10, the senders send the (locally) shu✏ed and rerandomized values �0
⇡(`),i0 to the

receiver P3 by CC. Note that �0
⇡(`),i0 leaks no information about the permutation ⇡ and the

values before the shu✏e because of rerandomizing it by r`, r`,0, r`,1, r`,2. Then, the receiver
P3 constructs the shu✏ed shares [x0⇡(`)]L,3 without knowing ⇡ and the shares before the
shu✏e. ⇧miniShu✏e2 and ⇧miniShu✏e1 are almost identical except that the senders and receiver
are di↵erent.

Note that P3’s shares are independent of the actual array. Hence, ⇧miniShu✏e1 (and
⇧miniShu✏e2) allow the resharing values related to P3’s shares by CC to be processed in the
o✏ine phase as well as in Trident.

To explain in more detail, three senders, P0, P1 and P2, can send the shu✏ed three values
�0

⇡(`),i0 (for i
0 = 0, 1, 2) to the receiver, P3 in the o✏ine phase at Step 9 in ⇧miniShu✏e1. On

the other hand, in ⇧miniShu✏e2, three senders, P3, P
i
0+1

and P
i
0�1

, can send the shu✏ed

two values, �0
⇡(`),i0+1

and �0
⇡(`),i0�1

, to the receiver, P
i
0 in the o✏ine phase. The remaining

value of shu✏ed shares of P
i
0 , m

x
0
⇡(`)

must be sent to P
i
0 in the online phase by three senders

because m
x
0
⇡(`)

depends on the actual array. For this reason, the communication costs in

the o✏ine/online phase of ⇧miniShu✏e2 di↵er from that of ⇧miniShu✏e1.
Intuition of Protocol 17. ⇧TableShu✏e takes the matrix of shares with R rows and C

columns and outputs the matrix with the shu✏ed rows. In ⇧TableShu✏e, the three parties

46

generate the random permutation that the rest of the parties does not know by FR, a unique
identifier, and pre-shared keys from Steps 1 to 3. At Step 4, the parties set the column
vector using input shares. From Steps 5 to 12, the parties run ⇧miniShu✏e1 and ⇧miniShu✏e2 for
each column vector in series while changing the random permutation and the senders who
know the random permutation. Then, the parties set the shu✏ed rows using the shu✏ed
columns at Step 13.

4.7.2 Proposed MSB Extraction, LT, and EQ Protocols

Protocol 18 Random shares generation protocol over (2, 4)-RSS ⇧RSG

Input: Modulus size L
Output: [r]L s.t. r 2 ZL which no party knows. (Note that r is generated rondomly.)
1: P3, P

i
0�1

, and P
i
0+1

compute �
r,i

0 = FL(uidRSG, k3,i0�1,i0+1
) for i0 = 0, 1, 2 where uidRSG

is a unique identifier.
2: P0, P1, and P2 computes mr = FL(uidRSG, k0,1,2) and set mr = r + �r mod L and

�r = �r,0 + �r,1 + �r,2 mod L.
3: P3 sets [r]L,3 = (�r,0,�r,1,�r,2). P

i
0 sets [r]

L,i
0 = (mr,�

r,i
0+1

,�
r,i

0�1
) for i

0
= 0, 1, 2

where mr = r + �r,0 + �r,1 + �r,2 mod L.
4: Return [r]L = ([r]L,0, [r]L,1, [r]L,2, [r]L,3).

Protocol 19 Fair and Private Compare Protocol for k0-bit values ⇧FPC

Input: Bit length k0( k), binary shares {[x|`]p0}
k
0�1

`=0 (where x|` 2 {0, 1}), a common input

r 2 {0, 1}k
0

Output: [(x > r)]2k
1: (O✏ine phase)
2: for ` = 0, . . . , k0 � 1 do in parallel
3: P3, P

i
0�1

and P
i
0+1

computes s
`,i

0 = F ⇤
p
0 (uid`, k3,i0�1,i0+1

) and s0
`,i

0 = F ⇤
p
0 (uid0`, k3,i0�1,i0+1

) for i0 = 0, 1, 2 where uid` and uid
0
` are unique identifiers.

4: P0, P1 and P2 computes s`,3 = F ⇤
p
0 (uid`, k0,1,2) and s0`,3 = F ⇤

p
0 (uid0`, k0,1,2).

5: Set [s`,3]p0 ,3 = (0, 0, 0) and [s`,3]p0 ,i0 = (s`,3, 0, 0) for i0 = 0, 1, 2.
6: Set [s`,0]p0 ,0 = (0, 0, 0), [s`,0]p0 ,1 = (0, 0,�s`,0), [s`,0]p0 ,2 = (0,�s`,0, 0), and [s`,0]p0 ,3 =

(�s`,0, 0, 0).
7: Set [s`,1]p0 ,0 = (0,�s`,1, 0), [s`,1]p0 ,1 = (0, 0, 0), [s`,1]p0 ,2 = (0, 0,�s`,1), and [s`,1]p0 ,3 =

(0,�s`,1, 0).
8: Set [s`,2]p0 ,0 = (0, 0,�s`,2), [s`,2]p0 ,1 = (0,�s`,2, 0), [s`,2]p0 ,2 = (0, 0, 0), and [s`,2]p0 ,3 =

(0, 0,�s`,2).
9: Set [s0`,i]p0 in the same way as [s`,i]p0 by using s0`,i for i = 0, . . . , 3.

10: Each party computes [s`,0 · s`,1]p0 , [s`,2 · s`,3]p0 , [s
0
`,0 · s0`,1]p0 and [s0`,2 · s0`,3]p0 by

Mult([s`,0]p0 , [s`,1]p0), Mult([s`,2]p0 , [s`,3]p0), Mult([s0`,0]p0 , [s
0
`,1]p0) and Mult([s0`,2]p0 , [s

0
`,3

]
p
0), respectively. // 2 rounds & 24 log2 p

0
bits in offline, 0 round & 0 bit

in online

11: Each party computes [s`]p0 = [(s`,0 ·s`,1) · (s`,2 ·s`,3)]p0 and [s0`]p0 = [(s0`,0 ·s0`,1) · (s0`,2 ·

47

s0`,3)]p0 byMult([s`,0·s`,1]p0 , [s`,2·s`,3]p0) andMult([s0`,0·s0`,1]p0 , [s
0
`,2·s0`,3]p0), respectively.

// 2 rounds & 12 log2 p
0
bits in offline, 0 round & 0 bit in online

12: end for
13: Parties compute [b]2 by ⇧RSG(2).
14: Parties get the shares of random bit [b]2k and [b]

p
0 by BitConv(2k, [b]2) and BitConv(p

0
, [b]2),

respectively. // 3 rounds & 6k + 6 log2 p
0 + 2 bits in offline, 0 round & 0 bit

in online

15: (Online phase)
16: Let t = r + 1 mod 2k.
17: for ` = k0 � 1, . . . , 0 do in parallel
18: (Case of b = 0)
19: [w|`]p0 = [x|`]p0 + r|` � 2r|`[x|`]p0 , [c|`]p0 = r|` � [x|`]p0 + 1 +

P
k�1
m=`+1[w|m]

p
0

20: (Case of b = 1)
21: [w0

|`]p0 = [x|`]p0 + t|` � 2t|`[x|`]p0 , [c
0
|`]p0 = �t|` + [x|`]p0 + 1 +

P
k�1
m=`+1[w

0
|m]

p
0

22: end for
23: [s` · c|`]p0 Mult([s`]p0 , [c|`]p0) and [s0` · c0|`]p0 Mult([s0`]p0 , [c

0
|`]p0) for ` = 0, . . . , k0� 1

in parallel. // 1 round & 6k0 log2 p
0
bits in offline, 1 round & 6k0 log2 p

0
bits

in online

24: Parties get the shu✏ed array [~d]
p
0 = ([d0]p0 , . . . , [dk0�1]p0) and [~d0]

p
0 = ([d00]p0 , . . .

, [d0
k
0�1]p0) by ⇧TableShu✏e(k0, 1, [s0 ·c|0]p0 , . . . , [sk0�1 ·c|k0�1]p0) and ⇧TableShu✏e(k0, 1, [s00 ·

c0|0]p0 , . . . , [s
0
k0�1 ·c0|k0�1]p0) in parallel, respectively. // 4 rounds & 18k0 log2 p

0
bits

in offline, 3 rounds & 6k0 log2 p
0
bits in online

25: for ` = k0 � 1, . . . , 0 do in parallel
26: [d00`]p0 = (1 � [b]

p
0) · [d`]p0 + [b]

p
0 · [d0`]p0 = [d`]p0 + [b]

p
0 · (�[d`]p0 + [d0`]p0) = [d`]p0 +

Mult([b]
p
0 , [�d`+d0`]p0). // 1 round & 3 log2 p

0
bits in offline, 1 round & 3 log2 p

0

bits in online

27: for i0 = 0, 1, 2 do in parallel
28: P

i
0 reconstructs d00` by OpenOne(P

i
0 , [d00`]p0). // 0 round & 0 bit in offline,

1 round & log2 p
0
bits in online

29: end for
30: end for
31: P0, P1, and P2 set b0 = 1 i↵ 9` 2 {0, . . . , k0 � 1} s.t. d00` = 0 else b0 = 0.
32: All parties computes �

b
0
,i
0 = F2k(uidb0 , k) for i

0 = 0, 1, 2.
33: P3 sets [b0]2k,3 = (�

b
0
,0,�b

0
,1,�b

0
,2). Pi

0 sets [b0]2k,i0 = (m
b
0 ,�

b
0
,i
0+1

,�
b
0
,i
0�1

) for i0 = 0, 1, 2

where m
b
0 = b0 +

P2
i
0=0 �b

0
,i
0 mod 2k.

34: Return [(x > r)]2k = [b0�b]2k = ([b0]2k�[b]2k)
2
 Mult([b0�b]2k , [b

0
�b]2k). // 1 round

& 3k bits in offline, 1 round & 3k bits in online

Protocol 20 Most Significant Bit Extraction Protocol ⇧msbExt

Input: [x]2k s.t. x 2 Z2k , x =
P

k�1
j=0 2

j
· x|j

48

Output: [msb(x)]2(= [x|k�1]2)
1: (O✏ine phase)
2: Parties compute [r|`]2 by ⇧RSG(2) for ` = 0, . . . , k � 1.
3: for j = 0, . . . , k � 1 do in parallel
4: Parties get [r|j]2k and [r|j]p0 by BitConv(2k, [r|j]2) and BitConv(p0, [r|j]2) in parallel,

respectively.
// 3 rounds & 6k + 6 log2 p

0 + 2 bits in offline, 0 round & 0 bit in online

5: end for
6: [r|k�2,...,0]2k =

P
k�2
j=0 2

j
· [r|j]2k , [2

k�1
·msb(r)]2k = 2k�1

· [r|k�1]2k .
7: (Online phase)
8: [x+ (r|k�2,...,0)]2k = [x]2k + [r|k�2,...,0]2k
9: [2 · ((x+ r)|k�2,...,0)]2k = 2 · [x+ (r|k�2,...,0)]2k

10: P
i
0 reconstructs 2·((x+r)|k�2,...,0) by OpenOne(P

i
0 , [2·((x+r)|k�2,...,0)]2k) for i

0 = 0, 1, 2

in parallel. // 0 round & 0 bit in offline, 1 round & 3k bits in online

11: P3 sets [(x+ r)|k�2,...,0]2k,3 = (0, 0, 0).
12: P

i
0 sets [(x+ r)|k�2,...,0]2k,i0 = ((x+ r)|k�2,...,0, 0, 0) for i0 = 0, 1, 2.

13: If (x + r)|k�2,...,0 = 2k�1
� 1, P0, P1, and P2 set the bit needFPC = 0. If not, they set

needFPC = 1. Then, P0 and P1 send needFPC to P3 by CC. // 0 round & 0 bit in

offline, 1 round & 1 bit in online

14: If needFPC = 0, [x|k�2,...,0]2k = [(x+ r)|k�2,...,0]2k � [r|k�2,...,0]2k .
15: If needFPC = 1, [r|k�2,...,0 > (x+r)|k�2,...,0]2k ⇧FPC(k�1, {[r|`]p0}

k�2
`=0 , (x+r)|k�2,...,0)

// 14 rounds & (63k � 57) log2 p
0 + 9k + 2 bits in offline, 7 rounds &

18(k � 1) log2 p
0 + 3k bits in online

16: If needFPC = 1, [x|k�2,...,0]2k = [(x + r)|k�2,...,0]2k � [r|k�2,...,0]2k + 2k�1
· [r|k�2,...,0 >

(x+ r)|k�2,...,0]2k .
17: [2k�1

·msb(x)]2k = [2k�1
· x|k�1] = [x]2k � [x|k�2,...,0]2k

18: [2k�1
· (msb(x) �msb(r))]2k = [2k�1

·msb(x)]2k + [2k�1
·msb(r)]2k = 2k�1

· [x|k�1]2k +
2k�1

· [r|k�1]2k
19: for i0 = 0, 1, 2 do in parallel
20: P

i
0 gets 2k�1

· (msb(x)�msb(r)) by OpenOne(P
i
0 , [2k�1

· (msb(x)�msb(r))]2k)

// 0 round & 0 bit in offline, 1 round & 3k bits in online

21: end for
22: P3 sets [msb(x)�msb(r)]2,3 = (0, 0, 0).
23: P

i
0 sets [msb(x)�msb(r)]2,i0 = (msb(x)�msb(r), 0, 0) for i0 = 0, 1, 2.

24: Return [msb(x)]2 = [msb(x)�msb(r)]2 � [r|k�1]2

Overview. We propose the PC protocol for k0-bit values achieving malicious security
with fairness and constant rounds (Protocol 19, ⇧FPC). ⇧FPC takes the bit length k0, binary

shares {[x|`]p0}
k
0�1

`=0 , and common input r and outputs [x > r]2k .
To construct ⇧FPC, we follow the high-level strategy of PC protocol of SecureNN [33].

However, the existing constant-round PC protocol [33] achieves only the semi-honest se-
curity. In addition, the existing constant-round PC protocol [33] is an asymmetric 3PC
protocol. Most of asymmetric MPC protocols are designed to reduce the communication

49

complexities by sacrificing the achievement of a high level of security. Thus, in general,
it seems harder for the maliciously secure (symmetric) MPC to reduce the communication
complexities or to be the constant-round protocol.

Hence, just using the existing maliciously secure MPC protocol and following the high-
level strategy of [33] straightforwardly do not seem to lead to the protocol with fairness and
constant rounds. In particular, the existing constant-round PC protocol [33] uses the (non-
zero) random value generation and asymmetric oblivious shu✏e. The (non-zero) random
value generation is more di�cult to achieve in the setting of maliciously secure (symmetric)
MPC than in that of semi-honest secure (asymmetric) MPC. The intuitive reason why it
is di�cult is that it requires all parties to work together to generate a non-zero random
number that is unknown to all parties, while it also requires a technique to detect whether
a party is dishonestly using zero as a random number. The technique to detect cheating
is not required in that of semi-honest secure (asymmetric) MPC because parties follow
the protocol specification. In addition, the existing maliciously secure shu✏e [67] achieves
security with only abort, without fairness.

To overcome the above and construct the maliciously secure PC protocol with fairness
and constant rounds, we use our new maliciously secure shu✏e ⇧TableShu✏e and convert the
asymmetric semi-honest secure 3PC protocol [33] to the symmetric maliciously secure 4PC
protocol based on Trident.

Then, we construct the maliciously secure MSB extraction protocol with fairness and
constant rounds (Protocol 20, ⇧msbExt) by following the high-level strategy of the existing
constant-round MSB extraction protocol [22] but introducing our new secure PC protocol
⇧FPC and converting the semi-honest secure 3PC protocol [22] to the maliciously secure 4PC
protocol based on Trident. Note that the maliciously secure PC protocol with fairness using
the fair MPC and following the high-level strategy of [22] straightforwardly requires the
computing the greater-than circuit and the number of communication rounds proportional
to the size of the circuit.

Secure LT (⇧LT) and EQ (⇧EQ) protocols can be realized by using fair MPC and fol-
lowing the high-level strategy of [22] straightforwardly, but then we require computing the
circuit for MSB extraction and the number of communication rounds proportional to the
size of the circuit. We avoid such realizations and instantiate the maliciously secure LT
(⇧LT) and EQ (⇧EQ) protocols by following the high-level strategy of existing constant-
round protocols [22] but using our new introduced ⇧msbExt.

Intuition of Protocol 18. ⇧RSG takes the modulus size L as input and output the
shares of the random number that no party knows, [r]L. This protocol is used as a subpro-
tocol in Protocols 19 and 20.

At Steps 1 and 2, three parties compute each value that the three parties hold over
(2, 4)-RSS by using the pseudo-random function, the unique identifier, and the pre-shared
key that the three parties hold without communications. For example, at Step 1, P3, P

i
0�1

and P
i
0+1

compute mr 2 ZL by using FL, uidRSG, and k
3,i0�1,i0+1

. Here, uidRSG 2 {0, 1} is

a unique identifier. That is, uidRSG is di↵erent each time ⇧RSG is executed. We note that
P
i
0 cannot know �

r,i
0 because P

i
0 does not hold k

3,i0�1,i0+1
for i0 = 0, 1, 2. P3 cannot know

mr because P3 does not hold k0,1,2.

50

Then, parties let r = mr + �r mod L where �r = �r,0 + �r,1 + �r,2 mod L at Step
3. We note that no party knows r 2 ZL because each party knows only three of the four
values, mr, �r,0, �r,1 and �r,2. After that, each party sets his/her shares by using three of
the four values that he/she knows.

Intuition of Protocol 19. In the o✏ine phase of ⇧FPC, from Steps 2 to 12, parties
compute the shares of the non-zero random values s`, s0` 2 F⇤

p
0 that no party knows. At

Step 13, parties generate the shares of a random bit b over Z2 by ⇧RSG. Then, the parties
convert them into the shares over Z2k and Z

p
0 by BitConv at Step 14.

The strategy in the online phase of ⇧FPC is almost the same as SecureNN [33]. That is,
the parties compute the masked comparison result bit [b�(x > r)]2k and remove the mask b.
The di↵erence between SecureNN and our protocol is that b is shared by all parties and no
party knows b. Therefore, the parties compute both the cases of b = 0 and b = 1 to compute
[b � (x > r)]2. In other words, the parties compute both (x > r) and (x  r) ⌘ (x < t)
(where t = r+1) obliviously. Then, the parties do the oblivious selection by [b]2 and remove
it.

We focus on the explanation of the case of b = 0, i.e., the case of [x > r]2k . Note that
it holds that (x > r) = 1 if and only if there exists the leftmost15 `0-th bit where x|

`
0 6= r|

`
0

and x|
`
0 = 1. The existence of such the `0-th bit implies that the bits of x and r existing

on left side of the `0-th bit are identical. The parties compute [w|`]p0 and [c|`]p0 (at Step
19). Then, there exists the `-th bit such that c|` = 0 if (x > r) = 1. After that, at Step
23, the parties compute the masked shares of c|`, [s` · c|`]p0 by using the shares of non-zero

random value s` (computed in the o✏ine phase). The parties obtain the shu✏ed array [~d]
p
0

by ⇧TableShu✏e(k0, 1, [s0 · c|0]p0 , . . . , [sk0�1 · c|k0�1]p0) at Step 24. The case of b = 1 is the
same as that of b = 0 and is described at Steps 21, 23, and 24.

Then, the parties choose either [~d]
p
0 or [~d0]

p
0 as [d00`]p0 obliviously depending on the value

of b at Step 26. After that, P0, P1, and P2 reconstruct d00` by OpenOne from Steps 27 to 29.
After reconstruction, at Step 31, if there exists 0 in d000, . . . , d00k0�1 (i.e., 9` 2 {0, . . . , k0�1}
s.t. d00` = 0), P0, P1, and P2 set b0 = 1. If not, they set b0 = 0. The existence of 0
in d000, . . . , d00k0�1 means the existence of 0 in d0, . . . , dk0�1 or d00, . . . , d0k0�1 depending on
b = 0 or 1, respectively. It also means the existence of 0 in c0, . . . , ck0�1 or c00, . . . , c0k0�1

depending on b = 0 or 1, respectively. Note that P0, P1, and P2 cannot learn any new
information about whether there exists 0 in d000, . . . , d00k0�1 because d00` is masked by the
non-zero random value s` or s0` (that no party knows) and shu✏ed by ⇧TableShu✏e. That is,
{d⇡(`)(= s` · c|`)}k

0
`=0 and {d0⇡(`)(= s0` · c0|`)}k

0
`=1 where ⇡ is a random permutation that no

one knows and is hiding the positional information on whether {c`}k
0

`=1 and {c0`}k
0

`=1 contain
0, respectively. {d00`}k

0
`=1 hide whether b = 0 or 1. Hence, the reconstructed values {d00`}k

0
`=1

do not leak the positional information on whether {c`}k
0

`=1 or {c0`}k
0

`=1 contain 0. At Steps
32 and 33, all parties set [b0]2k by using only local operations. After that, they compute
[x > r]2k = [b0 � b]2k by Mult at Step 34.

Intuition of Protocol 20. ⇧msbExt takes [x]2k and outputs [msb(x)]2 = [x|k�1]2. In
the o✏ine phase of ⇧msbExt, the parties generate the shares of random values to mask the

15In this paper, the most significant bit is the leftmost bit and the least significant bit is the rightmost
bit. For example, the most significant bit of x 2 Z2k , x|k�1, means the leftmost (k � 1)-th bit in x.

51

values of the calculation process. At Steps 2 to 5, the parties generate the shares of random
value r|` 2 {0, 1} over Z2 and convert it into the shares over Z2k and Zp. After that, they
compute the shares [r|k�2,...,0]2k and [2k�1

·msb(r)]2k at Step 6.
In the online phase of ⇧msbExt, the first goal is to compute the shares [x|k�2,...,0]2k . To

compute them, the parties compute [2 · ((x + r)|k�2,...,0)]2k (at Steps 8 and 9). Then, P0,
P1, and P2 get (x + r)|k�2,...,0 by OpenOne at Step 10. The parties set [(x + r)|k�2,...,0]2k
at Steps 11 and 12. If (x+ r)|k�2,...,0 = 2k�1

� 1, the parties set the flag bit needFPC = 0,
otherwise, they set needFPC = 1 at Step 13. The bit needFPC means whether or not to run
⇧FPC to cancel the e↵ect of the wrap-around. The wrap-around means that the modulo
operation may have (x + r)|k�2,...,0 mod 2k less than r|k�2,...,0 mod 2k. If needFPC = 0,
i.e., (x + r)|k�2,...,0 = 2k�1

� 1, the wrap-around does not occur. The parties remove
the shared mask [r|k�2,...,0]2k from [(x + r)|k�2,...,0]2k at Step 14. If needFPC = 1, i.e.,
(x + r)|k�2,...,0 6= 2k�1

� 1, to verify whether the wrap-around occurs or not, the parties
execute ⇧FPC(k � 1, {[r|`]p}

k�2
`=0 , (x+ r)|k�2,...,0) at Step 15. Then, the parties remove the

shared mask [r|k�2,...,0]2k from [(x+ r)|k�2,...,0]2k canceling the e↵ect of the wrap-around at
Step 16. After that, the parties get [x|k�2,...,0]2k . Next, they obtain [msb(x) �msb(r)]2 by
masking and opening from Steps 17 to 23. Then, they remove the mask msb(r) and get
[msb(x)]2 at Step 24.

How to Construct LT and EQ Protocols, i.e., ⇧LT and ⇧EQ. We can construct
⇧LT and ⇧EQ by replacing the MSB extraction protocol with ours in LT and EQ protocols
of [22]. We assume 0  a, b  2k�1

� 1. In ⇧LT, the parties compute the shares of the
MSB of [a � b]2k = [a]2k � [b]2k by ⇧msbExt to run the LT operation. If a is smaller than
b, msb(a� b) equals 1 and can be the output as the result of LT. If not, msb(a� b) equals
0 and can be the output. In ⇧EQ, the parties invoke ⇧LT([a]2k , [b]2k) and ⇧LT([b]2k , [a]2k)
in parallel. Note that a = b holds if (a < b) � 1 = 1 and (b < a) � 1 = 1. Therefore, the
parties compute the shares of the EQ result by Mult([(a < b)� 1]2, [(b < a)� 1]2).

4.7.3 Proposed Protocol of PDTE

Overview. We construct three protocols for each phase, i.e., feature selection ⇧FSelection

(Protocol 21), comparison ⇧Comp and path evaluation ⇧PathEval (Protocol 22). Then, we
combine these protocols and construct the maliciously secure PDTE protocol with constant
rounds and fairness, ⇧PDTE.

To construct ⇧FSelection, we follow the typical algorithm of oblivious array read (e.g.,
the described algorithm in [72]), instead of the existing feature selection algorithm of [22]
and instantiate the maliciously secure feature selection protocol with constant rounds and
fairness by using our EQ protocol ⇧EQ, BitConv and DotProd as building blocks. We note
that the typical algorithm of oblivious array read in [72] is not constant-round protocol.
Further, there is no EQ protocol achieving fairness and constant rounds except our EQ
protocol ⇧EQ although BitConv and DotProd with fairness and constant rounds have been
already proposed.

To construct ⇧Comp and ⇧PathEval, we follow the algorithms of existing comparison and
path evaluation protocols in [22] and instantiate the maliciously secure comparison and
path evaluation protocols with constant rounds and fairness by using our LT, EQ and

52

shu✏e protocols, i.e., ⇧LT, ⇧EQ and ⇧TableShu✏e and existing building blocks DotProd and
OpenOne. We note that there are no LT, EQ or shu✏e protocols achieving fairness and
constant rounds except our LT, EQ and shu✏e protocols, ⇧LT, ⇧EQ and ⇧TableShu✏e although
DotProd and OpenOne with fairness and constant rounds have been already proposed.

Protocol 21 Feature Selection Protocol ⇧FSelection

Input: [idx]2k , {[attrj]2k}
m�1
j=0 (s.t. 0  idx < m  2k�1

� 1).
Output: [attridx]2k
1: for j = 0, . . . ,m� 1 do in parallel
2: P3 sets [0]2k,3 = (0, 0, 0).
3: P

i
0 (i0 = 0, 1, 2) sets [j]2k,i0 = (j, 0, 0).

4: [idx == j]2 ⇧EQ([idx]2k , [j]2k) // 18 rounds & 12k2 + 22k + (138k � 114) log2 p
0+

7 bits in offline, 10 rounds & 36(k � 1) log2 p
0 + 30k + 3 bits in online

5: [idx == j]2k = BitConv(2k, [idx == j]2) // 2 rounds & 3k bits in offline, 1

round & 3k + 1 bits in online

6: end for
7: Return [attridx]2k = DotProd(([attr0]2k , . . . , [attrm�1]2k), ([idx == 0]2k , . . . , [idx == m�

1]2k)) // 1 round & 3k bits in offline, 1 round & 3k bits in online

Intuition of Protocol 21 (Feature Selection Phase). Protocol 21, ⇧FSelection, takes
the shares of index [idx]2k (s.t. idx 2 Zm) and the array of shares {[attrj]2k}

m�1
j=0 and outputs

[attridx]2k . In ⇧FSelection, the parties check whether idx == j obliviously by ⇧EQ from Steps
1 to 4 and convert the output shares of ⇧EQ over Z2 into the shares over Z2k by BitConv at
Step 5 for j = 0, . . . ,m� 1. Then, they choose [attridx]2k obliviously by DotProd at Step 7.

How to Construct Comparison Protocol (Comparison Phase). Comparison
protocol, ⇧Comp, takes the shares of the attribute compared with the threshold values at

each intermediate node {[attridxj]2k}
2h�2
j=0 , the shares of the threshold values {[vj]2k}

2h�2
j=0 ,

and the shares of the conditional value that controls whether the LT or EQ is used as the

comparison operation at each intermediate node {[condj]2}
2h�2
j=0 . It outputs the shares of

comparison results {[compj]2}
2h�2
j=0 . In the same way as [22], the parties compute the results

of LT and EQ in parallel by ⇧LT and ⇧EQ at Steps 2 and 3. Then, they choose either [vj <
attridxj]2 or [vj == attridxj]2 as [compj]2 obliviously by DotProd, depending on [condj]2 for

j = 0, . . . , 2h � 2 in parallel.

Protocol 22 Path Evaluation Protocol ⇧PathEval

Input: {[compj]2}
2h�2
j=0 , {[leafVal

j
0]2k}

2h�1
j
0=0

, �

Output: [leafVal
j
0]2k where j0 s.t.

V
h�1
`=0 (j

0
|` == comp�(j0,`)) = 1.

1: for j
0
= 0, . . . , 2h � 1 do

2: Initialize Path
j
0 = ([comp

�(j0 ,0)]2, [comp
�(j0 ,1)]2, . . . , [comp

�(j0 ,h�1)]2).
3: for ` = 0, . . . , h� 1 do
4: [c

j
0
,`
]2 j

0
|` � [comp

�(j0 ,`)]2 � 1 by picking up [comp
�(j0 ,`)]2 from Path

j
0 .

5: end for
6: Set R

j
0 = ([leafVal

j
0]2k , [cj0 ,0]2, . . . , [cj0 ,h�1]2)

53

7: end for
8: R

0
0, . . . ,R0

2h�1 ⇧TableShu✏e(2h, h + 1,R0, . . . ,R2h�1) where R
0
j
0 = ([leafVal0

j
0]2k ,

[c0
j
0
,0]2, . . . , [c

0
j
0
,h�1]2), leafVal

0
⇡(j0) = leafVal

j
0 (j0 = 0, . . . , 2h � 1), c0

⇡(j0),` = c
j
0
,`
(j0 =

0, . . . , 2h�1; ` = 0, . . . , h�1) and a random permutation ⇡ 2 S2h that no party knows.

// 4 rounds & 9 · 2h · (h+ 1) · (k + h) bits in offline, 3 rounds & 3 · 2h·

(h+ 1) · (k + h) bits in online

9: Initialize count
j
0 = 0 for j

0
= 0, . . . , 2h � 1.

10: for j
0
= 0, . . . , 2h � 1; ` = 0, . . . , h� 1 do in parallel

11: Pick up [c0
j
0
,`
]2 from R

0
j
0 . Then, Pi gets c0j0 ,` by OpenOne(Pi, [c0j0 ,`]2) for i = 0, . . . , 3.

// 0 round & 0 bit in offline, 1 round & 4 bits in online

12: count
j
0 = count

j
0 + 1 if c0

j
0
,`
= 1.

13: end for
14: Return [leafVal0

j
0]2k where count

j
0 = h.

Intuition of Protocol 22 (Path Evaluation Phase). Protocol 22, ⇧PathEval, takes

the shares of the comparison result of intermediate nodes {[compj]2}
2h�2
j=0 , the shares of

labels assigned to leaf nodes {[leafVal
j
0]2k}

2h�1
j
0=0

, and mapping function �. It outputs the

shares of the label assigned to the leaf node of the correct path [leafVal
j
0]2k , where j0 s.t.

V
h�1
`=0 (j

0
|` == comp�(j0,`)) =

V
h�1
`=0 (j

0
|` � comp�(j0,`) � 1) = 1. In the same way as [22],

from Steps 1 to 4 of ⇧PathEval, the parties check whether the comparison result comp
�(j0 ,`)

and the bit assigned to the branch of the path to the j0-th leaf node, j0|`, match or not
and outputs the shares of the matching result [c

j
0
,`
]2. Then, the parties set the row vector

of shares R
j
0 that includes the shares of j0-th leaf label [leafVal

j
0]2k and the shares of the

matching result bit [c
j
0
,0]2, . . . , [cj0 ,h�1]2 at Step 6. Next, the parties get the shu✏ed row

vectors R
0
0, . . . ,R0

2h�1 by ⇧TableShu✏e(2h, h + 1,R0, . . . ,R2h�1) at Step 8. After that, by
OpenOne, the parties reconstruct the (shu✏ed) matching result c0

j
0
,`
and increase the value

of count
j
0 if c0

j
0
,`
= 1 from Steps 9 to 13. Finally, the parties output [leafVal0

j
0]2k , where

count
j
0 = h.

Note that c0
j
0
,`
does not leak the positional information j0. An adversary can obtain no

information about {comp
�(j0 ,`)}

2h�2
`=0 or leafVal

j
0 from c0

j
0
,`
thanks to the complete binary

tree and ⇧TableShu✏e. For example, we assume that h = 2. If the correct output leaf node
is the leaf node 2(= 10(2)), it holds that c0,0 = 1, c0,1 = 0, c1,0 = 0, c1,1 = 0, c2,0 = 1,
c2,1 = 1, c3,0 = 0, and c3,1 = 1. That is, an adversary gets all the 2-bit sequences (00(2),
01(2), 10(2), and 11(2)) from the shu✏ed matching result c0

j
0
,`
. As another example, if the

correct output leaf node is the leaf node 3(= 11(2)), it holds that c0,0 = 0, c0,1 = 0, c1,0 = 1,
c1,1 = 0, c2,0 = 0, c2,1 = 1, c3,0 = 1, and c3,1 = 1. An adversary also obtains all the 2-bit
sequences (00(2), 01(2), 10(2), and 11(2)) from c0

j
0
,`
. Therefore, an adversary can obtain no

information about j0, {comp
�(j0 ,`)}

2h�2
`=0 or leafVal

j
0 by reconstructing the shu✏ed matching

result c0
j
0
,`
.

If the structure of tree is not a complete binary tree, reconstructing the shu✏ed matching

result c0
j
0
,`
may leak some information about j0, {comp

�(j0 ,`)}
2h�2
`=0 or leafVal

j
0 . If the tree

54

Table 4.10: Communication complexity of the proposed protocols (Rounds: the number
of communication rounds, Comm.: the number of (amortized) communication bits per all
parties, L: modulus size, k: bit length of power-of-two ring, k0: bit length for private
compare, p0: the smallest prime larger than k, h: height of tree, M : length of array, R:
number of rows, C: number of columns, m: dimension of input attribute vector)

Rounds Comm.
O✏ine Online O✏ine Online

⇧miniShu✏e1 1 0 3M log2 L 0
⇧miniShu✏e2 1 1 2M log2 L M log2 L
⇧TableShu✏e 4 3 9RC log2 L 3RC log2 L

⇧RSG 0 0 0 0
⇧FPC 14 7 (63k0 + 6) log2 p

0 + 9k + 2 18k0 log2 p
0 + 3k

⇧msbExt 17 9 6k2 + (69k � 57) log2 p
0 + 11k + 2 15k + 18(k � 1) log2 p

0

⇧LT 17 9 6k2 + (69k � 57) log2 p
0 + 11k + 2 15k + 18(k � 1) log2 p

0

⇧EQ 18 10 12k2 + (138k � 114) log2 p
0 + 22k + 7 30k + 36(k � 1) log2 p

0 + 3
⇧FSelection 21 12 12k2m+ (138k � 114)m log2 p

0 + 25mk + 7m+ 3k 36(k � 1)m log2 p
0 + 33mk + 4m+ 3k

⇧Comp 19 11 (2h � 1) · (18k2 + (207k � 171) log2 p
0 + 11k + 22k + 12) (2h � 1) · (54(k � 1) log2 p

0 + 45k + 6)
⇧PathEval 4 4 9 · 2h · (h+ 1) · (k + h) 3 · 2h · (h+ 1) · (k + h) + 4 · 2h · h

⇧PDTE 44 27
(2h � 1) · ((12m+ 18)k2 + (138km+ 207k
�114m� 171) log2 p

0 + 25mk + 7m+ 25k
+12) + 9 · 2h · (h+ 1) · (k + h)

(2h � 1) · (36km�m54k � 54) log2 p
0

+33mk + 4m+ 48k + 6) + 3 · 2h

·(h+ 1) · (k + h) + 4 · 2h · h

is not a complete binary tree, the length of the path to a leaf node is di↵erent for each
leaf node. For example, suppose that only one leaf node has a distance of 3 from the root
node to itself, while the other leaf nodes have a distance of 2. If an adversary obtain the
3-bit sequence, 111(2), then the adversary would know that the leaf node with a distance
of 3 from the root node to itself is the correct leaf node. Therefore, the structure of tree
must be a complete binary tree. That is, for all leaf nodes, the distance from the root node

to the leaf node must be the same to hide some information about j0, {comp
�(j0 ,`)}

2h�2
`=0 or

leafVal
j
0 .

How to construct the PDTE protocol. ⇧PDTE is our construction of PDTE that
achieves malicious security with fairness and constant rounds. It takes the shares of input
attributes {[attri]2k}

m�1
i=0 and tree T and outputs the shares of the leaf on the correct path

[leafVal
j
0]2k . It utilizes ⇧FSelection, ⇧Comp, and ⇧PathEval in each phase in the same way as [22],

respectively.

4.7.4 Communication Complexities of Proposed Protocols with Fairness

Table 4.10 shows the communication complexities for the proposed protocols with fairness.

4.8 Security Proof of Proposed PDTE Protocols with Semi-
honest Security

We follow the formal security definition of perfect security in the presence of one semi-honest
corrupted party [5]. Loosely speaking, our schemes are composed of the UC secure building
blocks and several operations without communications. Therefore, our scheme is secure as
long as the building blocks are secure.

55

ℱ୫୧୬୧ୗ୦୳୤୤୪ୣଵ
(oblivious mini-shuffle (Type 1))

ℱ୫୧୬୧ୗ୦୳୤୤୪ୣଶ
(oblivious mini-shuffle (Type 2))

ℱ୘ୟୠ୪ୣୗ୦୳୤୤୪ୣ
(oblivious table shuffle)

ℱ୊୔େ
(private comparison

for 𝑘′-bit values)

ℱ୫ୱୠ୉୶୲
(MSB extraction)

ℱ୐୘
(less-than operation)

ℱ୉୕
(equality-testing operation)

ℱ୊ୗୣ୪ୣୡ୲୧୭୬
(feature selection)

ℱେ୭୫୮
(oblivious comparison)

ℱ୔ୟ୲୦୉୴ୟ୪
(path evaluation)

ℱ୔ୈ୘୉
(private decision tree evaluation)

Higher functionality

Lower functionality

ℱୖୗୋ
(random share generation)

Figure 4.3: Dependency of ideal functionalities (Copyright(C)2022 IEICE, [1] Fig.2)

4.9 Security Proof of Proposed PDTE Protocols with Mali-
cious Security and Fairness

We assume that the pseudo-random function FL and fair 4PC building blocks are secure.
We prove that our protocols compute the ideal functionalities securely with computational
security and fairness in the presence of one malicious party.

Note that Kushilevitz et al. [95] showed that a protocol in which the security is proven
with a black-box non-rewinding simulator assuming that the inputs of all parties are fixed
before the execution (also known as input availability) achieves the universal composability
[92]. That is, it is su�cient to prove the security of our protocols in the classical stand-alone
setting by using the hybrid model if we assume that our protocols have the input availability
in the same way as [5, 8].

Fig. 4.3 shows the dependency of ideal functionalities. Loosely speaking, we prove that
the lower protocol computes the lower ideal functionality securely with computational se-
curity and fairness in the presence of one malicious party. Then, we prove that the higher
protocol in the hybrid model of lower ideal functionality computes the higher ideal func-
tionality securely with computational security and fairness in the presence of one malicious
party. We show that the following theorems hold:
Theorem 1. If FL is a pseudo-random function and CC is secure, then the oblivious mini-
shu✏e protocol ⇧miniShu✏e1 (Protocol 16) computes FminiShu✏e1 securely with computational
security and fairness in the presence of one malicious party.

Proof. If the adversary A corrupts one of the senders (i.e., P0, P1, or P2), it is easy to

56

FminiShu✏e1 - (oblivious mini-shu✏e (Type 1))

1. P
i
0 sends the message (miniShu✏e1, ⇡(2 SM), ([x0]L,i0 , . . . , [xM�1]L,i0)) to

FminiShu✏e1 for i0 = 0, 1, 2.

2. P3 sends the message miniShu✏e1.

3. After receiving the messages, FminiShu✏e1 reconstructs the values, x` 2 ZL by
using [x`]L,i0 (for ` = 0, . . . ,M � 1; i0 = 0, 1, 2).

4. FminiShu✏e1 generates the random values �
x
0
⇡(`)

,�
x
0
⇡(`),0

,�
x
0
⇡(`),1

,�
x
0
⇡(`),2

2 ZL

(s.t. �
x
0
⇡(`)

= �
x
0
⇡(`),0

+ �
x
0
⇡(`),1

+ �
x
0
⇡(`),2

mod L) and sets x0⇡(`) = x` and

m
x
0
⇡(`)

= x` + �
x
0
⇡(`)

for ` = 0, . . . ,M � 1.

5. FminiShu✏e1 sets each party’s shares as follows:

[x0⇡(`)]L,0 = (m
x
0
⇡(`)

, �
x
0
⇡(`),1

, �
x
0
⇡(`),2

)

[x0⇡(`)]L,1 = (m
x
0
⇡(`)

, �
x
0
⇡(`),2

, �
x
0
⇡(`),0

)

[x0⇡(`)]L,2 = (m
x
0
⇡(`)

, �
x
0
⇡(`),0

, �
x
0
⇡(`),1

)

[x0⇡(`)]L,3 = (�
x
0
⇡(`),0

,�
x
0
⇡(`),1

,�
x
0
⇡(`),2

)

6. FminiShu✏e1 sends ([x00]L,i, . . . , [x0M�1]L,i) to Pi for i = 0, . . . , 3.

construct the simulator S and the (corrupted) party’s view by using the party’s inputs
(and internal random coins) because the senders receive no messages from another party.
Loosely speaking, S computes the view by using the party’s inputs and FL in the same way
as in the actual protocol ⇧miniShu✏e1 and sending the message continue to FminiShu✏e1. If A
manipulates the sending message �0

⇡(`),j by applying the other permutation ⇡0 or adding
the random value, S computes the party’s view in the same way as A’s cheating and sends
the message abort to FminiShu✏e1.

Even if the adversary A corrupts the receiver P3, we can construct S because P3 just
sets the received values as P3’s shares. For example, P3 receives [x0⇡(`)]L,3 = (�`,0,�`,1,�`,2).

Then, we let the receiving messages sent from senders in P3’s view be �0(i
0+1)

⇡(`),i0
sent by P

i
0+1

and �0(i
0�1)

⇡(`),i0
sent by P

i
0�1

for i0 = 0, 1, 2. S sets �0(i
0+1)

⇡(`),i0
= �

`,i
0 and �0(i

0�1)

⇡(`),i0
= H(�

`,i
0).

Therefore, we can construct S for every corrupted party. ⇧miniShu✏e1 satisfies Definition
1. Hence, Theorem 1 holds.

Theorem 2. If FL is a pseudo-random function and CC is secure, the oblivious mini-shu✏e
protocol ⇧miniShu✏e2 computes FminiShu✏e2 securely with computational security and fairness
in the presence of one malicious party.

57

FminiShu✏e2 - (oblivious mini-shu✏e (Type 2))

1. P3 sends the message (miniShu✏e2, ⇡(2 SM), ([x0]L,3, . . . , [xM�1]L,3)) to
FminiShu✏e2.

2. P
i
0�1

sends the message (miniShu✏e2, ⇡, ([x0]
L,i

0�1
, . . . , [xM�1]

L,i
0�1

)) to

FminiShu✏e2 where i0 2 {0, 1, 2}.

3. P
i
0+1

sends the message (miniShu✏e2, ⇡, ([x0]
L,i

0+1
, . . . , [xM�1]

L,i
0+1

)) to

FminiShu✏e2 where i0 2 {0, 1, 2}.

4. P
i
0 sends the message miniShu✏e2 where i0 2 {0, 1, 2}.

5. After receiving the messages, FminiShu✏e2 reconstructs the values, x` 2 ZL by
using [x`]L,3, [x`]

L,i
0�1

, and [x`]
L,i

0+1
(for ` = 0, . . . ,M � 1).

6. FminiShu✏e2 generates the random values �
x
0
⇡(`)

,�
x
0
⇡(`),0

,�
x
0
⇡(`),1

,�
x
0
⇡(`),2

2 ZL

(s.t. �
x
0
⇡(`)

= �
x
0
⇡(`),0

+ �
x
0
⇡(`),1

+ �
x
0
⇡(`),2

mod L) and sets x0⇡(`) = x` and

m
x
0
⇡(`)

= x` + �
x
0
⇡(`)

for ` = 0, . . . ,M � 1.

7. FminiShu✏e2 sets each party’s shares as follows:

[x0⇡(`)]L,0 = (m
x
0
⇡(`)

, �
x
0
⇡(`),1

, �
x
0
⇡(`),2

)

[x0⇡(`)]L,1 = (m
x
0
⇡(`)

, �
x
0
⇡(`),2

, �
x
0
⇡(`),0

)

[x0⇡(`)]L,2 = (m
x
0
⇡(`)

, �
x
0
⇡(`),0

, �
x
0
⇡(`),1

)

[x0⇡(`)]L,3 = (�
x
0
⇡(`),0

,�
x
0
⇡(`),1

,�
x
0
⇡(`),2

)

8. FminiShu✏e2 sends ([x00]L,i, . . . , [x0M�1]L,i) to Pi for i = 0, . . . , 3.

Proof. We can prove that Theorem 2 holds in the same way as the proof of Theorem 1.

Theorem 3. The oblivious shu✏e protocol for table data ⇧TableShu✏e (Protocol 17) in the
(FminiShu✏e1,FminiShu✏e2)-hybrid model computes FTableShu✏e securely with computational se-
curity and fairness in the presence of one malicious party.

Proof. We replace calling ⇧miniShu✏e1 and ⇧miniShu✏e2 with invoking the ideal functionalities

FminiShu✏e1 and FminiShu✏e2 and prove the security of⇧(FminiShu✏e1,FminiShu✏e2)
TableShu✏e . ⇧(FminiShu✏e1,FminiShu✏e2)

TableShu✏e
consists of invoking the ideal functionalities FminiShu✏e1 and FminiShu✏e2 and computations
without communications. Therefore, the simulator S can be composed in the case where a

party is corrupted. Hence, ⇧(FminiShu✏e1,FminiShu✏e2)
TableShu✏e satisfies Definition 1. Therefore, Theorem

3 holds.

58

FTableShu✏e - (oblivious table shu✏e)

1. Pi sends the message (shu✏e, R, C, [~x0]i = ([x0,0]L0,i, [x0,1]L1,i, . . . , [
x0,C�1]LC�1,i), . . . , [~xR�1]i = ([xR�1,0]L0,i, [xR�1,1]L1,i, . . . , [xR�1,C�1]LC�1,i)
to FTableShu✏e for i = 0, . . . , 3.

2. After receiving the messages, FTableShu✏e reconstructs the values, x
`
0
,`
2 ZL`

by using the received shares for `0 = 0, . . . , R� 1; ` = 0, . . . , C � 1.

3. FTableShu✏e generates the random permutation ⇡ 2 SR.

4. FTableShu✏e generates the random values �x0
⇡(`

0
),`
,�x0

⇡(`
0
),`

,0,�x0
⇡(`

0
),`

,1,

�x0
⇡(`

0
),`

,2 2 ZL (s.t. �x0
⇡(`

0
),`

= �x0
⇡(`

0
),`

,0+�x0
⇡(`

0
),`

,1+�x0
⇡(`

0
),`

,2 mod L) and

sets x0
⇡(`0),` = x

`
0
,`
and mx0

⇡(`
0
),`

= x
`
0
,`
+ �x0

⇡(`
0
),`

for `0 = 0, . . . , R � 1; ` =

0, . . . , C � 1.

5. FTableShu✏e sets each party’s shares as follows:

[x0
⇡(`0),`]L,0 = (m

x
0
⇡(`

0
),`

, �x0
⇡(`

0
),`

,1, �x0
⇡(`

0
),`

,2)

[x0
⇡(`0),`]L,1 = (m

x
0
⇡(`

0
),`

, �x0
⇡(`

0
),`

,2, �x0
⇡(`

0
),`

,0)

[x0
⇡(`0),`]L,2 = (m

x
0
⇡(`

0
),`

, �x0
⇡(`

0
),`

,0, �x0
⇡(`

0
),`

,1)

[x0
⇡(`0),`]L,3 = (�x0

⇡(`
0
),`

,0,�x0
⇡(`

0
),`

,1,�x0
⇡(`

0
),`

,2)

6. FTableShu✏e sends [~x00]i = ([x00,0]L0,i, [x
0
0,1]L1,i, . . . , [x

0
0,C�2]LC�2,i, [x

0
0,C�1

]LC�1,i), . . . , [
~x0R�1]i = ([x0R�1,0]L0,i, [x

0
R�1,1]L1,i, . . . , [x

0
R�1,C�2]LC�2,i,

[x0R�1,C�1]LC�1,i) to Pi for i = 0, . . . , 3.

FRSG - (random share generation)

1. Parties send the message (RSG, L) to FRSG.

2. After receiving the message, FRSG generates the random value mr,�r,j
0 2 ZL

for j0 = 0, . . . , 2.

3. FRSG sends [r]
L,j

0 = (mr,�
r,j

0+1
,�

r,j
0�1

) to P
j
0 for j0 = 0, . . . , 2 and [r]L,3 =

(�r,0,�r,1,�r,2) to P3. We note that r = mr � (
P2

j
0=0 �r,j

0) mod L.

59

FFPC - (private comparison for k0-bit values)

1. Each party Pi sends the message (FPC, k0, {[x|`]p,i}
k
0�1

`=0 , r) (s.t. r 2 {0, 1}k
0

and x|` 2 Z2) to FFPC for i = 0, . . . , 3.

2. After receiving the messages, FFPC reconstructs x|` by using [x|`]p,i (for i =

0, . . . , 3; ` = 0, . . . , k0 � 1). Then, FFPC computes x =
P

k
0�1

`=0 2` · x|`.

3. FFPC computes the comparison result bit, b = (x > r).

4. FFPC generates the random values �b,�b,0,�b,1,�b,2 2 Z2k (s.t. �b = �b,0 +
�b,1 + �b,2 mod 2k) and sets mb = b+ �b mod 2k .

5. FFPC sets each party’s shares as follows:

[b]2k,0 = (mb, �b,1, �b,2)

[b]2k,1 = (mb, �b,2, �b,0)

[b]2k,2 = (mb, �b,0, �b,1)

[b]2k,3 = (�b,0, �b,1, �b,2)

6. FFPC sends [b]2k,i to Pi for i = 0, . . . , 3.

FmsbExt - (MSB extraction)

1. Each party Pi sends the message (msbExt, [x]2k,i) to FmsbExt for i = 0, . . . , 3.

2. After receiving the messages, FmsbExt reconstructs the values, x by using the
received messages. Then, FmsbExt computes msb(x) = x|k�1 2 Z2.

3. FmsbExt generates the random values �msb(x),�msb(x),0,�msb(x),1,�msb(x),2 2

Z2 (s.t. �msb(x) = �msb(x),0 � �msb(x),1 � �msb(x),2 mod 2) and sets mmsb(x)

= msb(x)� �msb(x) mod 2 .

4. FmsbExt sets each party’s shares as follows:

[msb(x)]2,0 = (mmsb(x), �msb(x),1, �msb(x),2)

[msb(x)]2,1 = (mmsb(x), �msb(x),2, �msb(x),0)

[msb(x)]2,2 = (mmsb(x), �msb(x),0, �msb(x),1)

[msb(x)]2,3 = (�msb(x),0, �msb(x),1, �msb(x),2)

5. FmsbExt sends [msb(x)]2,i to Pi for i = 0, . . . , 3.

60

Theorem 4. If the pseudo-random function FL is secure, then the RSG protocol ⇧RSG (Pro-
tocol 18) computes FRSG securely with computational security and fairness in the presence
of one malicious party.

Proof. ⇧RSG consists of invoking the pseudo-random function FL without communications.
Therefore, the simulator S can be composed in the case where a party is corrupted. Hence,
⇧RSG satisfies Definition 1. Therefore, Theorem 4 holds.

Theorem 5. If the pseudo-random function FL and fair 4PC building blocks (i.e., Mult,
BitConv, DotProd, and OpenOne) are secure, then the fair and PC protocol for k0-bit values
⇧FPC (Protocol 19) in the (FTableShu✏e,FRSG)-hybrid model computes FFPC securely with
computational security and fairness in the presence of one malicious party.

Proof. We replace calling⇧TableShu✏e and⇧RSG with invoking the ideal functionality FTableShu✏e

and FRSG and prove the security of ⇧FTableShu✏e,FRSG
FPC . ⇧FTableShu✏e,FRSG

FPC consists of invoking the
ideal functionalities FTableShu✏e and FRSG, the fair 4PC building blocks, and computations
without communications. Therefore, the simulator S can be composed in the case where
a party is corrupted. Hence, ⇧FTableShu✏e,FRSG

FPC satisfies Definition 1. Therefore, Theorem 5
holds.

Theorem 6. If the pseudo-random function FL and fair 4PC building blocks are secure,
then the MSB extraction protocol ⇧msbExt (Protocol 20) in the (FFPC,FRSG)-hybrid model
computes FmsbExt securely with computational security and fairness in the presence of one
malicious party.

Proof. We replace calling ⇧FPC and ⇧RSG with invoking the ideal functionality FFPC and
FRSG and prove the security of ⇧FFPC,FRSG

msbExt . ⇧FFPC,FRSG
msbExt consists of invoking the ideal function-

alities FFPC and FRSG, the fair 4PC building blocks and computations without communica-
tions. Therefore, the simulator S can be composed in the case where a party is corrupted.
Hence, ⇧FFPC,FRSG

msbExt satisfies Definition 1. Therefore, Theorem 6 holds.

Theorem 7. The less-than protocol ⇧LT in the FmsbExt-hybrid model computes FLT securely
with computational security and fairness in the presence of one malicious party.

Proof. We replace calling ⇧msbExt with invoking the ideal functionality FmsbExt and prove
the security of ⇧FmsbExt

LT . ⇧FmsbExt
LT consists of invoking the ideal functionality FmsbExt and

computations without communications. Therefore, the simulator S can be composed in the
case where a party is corrupted. Hence, ⇧FmsbExt

LT satisfies Definition 1. Therefore, Theorem
7 holds.

Theorem 8. If Mult is secure, then the equality-testing protocol ⇧EQ in the FLT-hybrid
model computes FEQ securely with computational security and fairness in the presence of
one malicious party.

Proof. We replace calling ⇧LT with invoking the ideal functionality FLT and prove the
security of ⇧FLT

EQ . ⇧FLT
EQ consists of invoking the ideal functionality FLT, executing Mult, and

computations without communications. Therefore, the simulator S can be composed in the

61

FLT - (less-than operation)

1. Each party Pi sends the message (LT, [a]2k,i, [b]2k,i) to FLT for i = 0, . . . , 3.

2. After receiving the messages, FLT reconstructs a and b by using the received
messages. Then, FLT computes the comparison result bit c = (a < b).

3. FLT generates the random values �c,�c,0,�c,1,�c,2 2 Z2 (s.t. �c = �c,0 �

�c,1 � �c,2 mod 2) and sets mc = c� �c mod 2 .

4. FLT sets each party’s shares as follows:

[c]2,0 = (mc, �c,1, �c,2)

[c]2,1 = (mc, �c,2, �c,0)

[c]2,2 = (mc, �c,0, �c,1)

[c]2,3 = (�c,0, �c,1, �c,2)

5. FLT sends [c]2,i to Pi for i = 0, . . . , 3.

FEQ - (equality-testing operation)

1. Each party Pi sends the message (EQ, [a]2k,i, [b]2k,i) to FEQ for i = 0, . . . , 3.

2. After receiving the messages, FEQ reconstructs a and b by using the received
messages. Then, FEQ computes the comparison result bit c = (a == b).

3. FEQ generates the random values �c,�c,0,�c,1,�c,2 2 Z2 (s.t. �c = �c,0 �

�c,1 � �c,2 mod 2) and sets mc = c� �c mod 2 .

4. FEQ sets each party’s shares as follows:

[c]2,0 = (mc, �c,1, �c,2)

[c]2,1 = (mc, �c,2, �c,0)

[c]2,2 = (mc, �c,0, �c,1)

[c]2,3 = (�c,0, �c,1, �c,2)

5. FEQ sends [c]2,i to Pi for i = 0, . . . , 3.

62

case where a party is corrupted. Hence, ⇧FLT
EQ satisfies Definition 1. Therefore, Theorem 8

holds.

FFSelection - (feature selection)

1. Each party Pi sends the message (FSelection, [idx]2k,i, [attr0]2k,i, . . . ,
[attrm�1]2k,i) to FFSelection for i = 0, . . . , 3.

2. After receiving the messages, FFSelection reconstructs idx and {attrj}
m�1
j=0 by

using the received messages where 0  idx < m  2k�1
� 1 and 0  attrj 

2k�1
� 1. Then, FFSelection chooses the idx-th attribute, attridx.

3. FFSelection generates the random values �attridx ,�attridx,0,�attridx,1,�attridx,2 2 Z2k

(s.t. �attridx = �attridx,0+�attridx,1+�attridx,2 mod 2k) and sets mattridx = attridx

+ �attridx mod 2k .

4. FFSelection sets each party’s shares as follows:

[attridx]2k,0 = (mattridx , �attridx,1, �attridx,2)

[attridx]2k,1 = (mattridx , �attridx,2, �attridx,0)

[attridx]2k,2 = (mattridx , �attridx,0, �attridx,1)

[attridx]2k,3 = (�attridx,0, �attridx,1, �attridx,2)

5. FFSelection sends [attridx]2k,i to Pi for i = 0, . . . , 3.

Theorem 9. If DotProd and BitConv are secure, then the feature selection protocol ⇧FSelection

(Protocol 21) in the FEQ-hybrid model computes FFSelection securely with computational se-
curity and fairness in the presence of one malicious party.

Proof. We replace calling ⇧EQ with invoking the ideal functionality FEQ and prove the

security of ⇧
FEQ

FSelection. ⇧
FEQ

FSelection consists of invoking the ideal functionality FEQ, executing
BitConv and DotProd, and computations without communications. Therefore, the simulator
S can be composed in the case where a party is corrupted. Hence, ⇧

FEQ

FSelection satisfies
Definition 1. Therefore, Theorem 9 holds.

Theorem 10. If DotProd is secure, then the comparison protocol ⇧Comp in the (FLT,FEQ)-
hybrid model computes FComp securely with computational security and fairness in the pres-
ence of one malicious party.

Proof. We replace calling ⇧LT and ⇧EQ with invoking the ideal functionalities FLT and ⇧EQ,

respectively. We prove the security of ⇧
FLT,FEQ

Comp . ⇧
FLT,FEQ

Comp consists of invoking the ideal func-
tionalities FLT and FEQ, executing DotProd, and computations without communications.
Therefore, the simulator S can be composed in the case where a party is corrupted. Hence,
⇧

FLT,FEQ

Comp satisfies Definition 1. Therefore, Theorem 10 holds.

63

FComp - (oblivious comparison)

1. Each party Pi sends the message (Comp, {[attridx]2k,i}
2h�2
j=0 , {[vj]2k,i}

2h�2
j=0 ,

{[condj]2,i}
2h�2
j=0) to FComp for i = 0, . . . , 3.

2. After receiving the messages, FComp reconstructs {attridxj}
2h�2
j=0 , {vj}

2h�2
j=0 and

{condj}
2h�2
j=0 by using the received messages. Then, FComp sets the compari-

son result bit compj for j = 0, . . . , 2h�2. If condj = 1, comp = (vj < attridxj).
If condj = 0, comp = (vj == attridxj).

3. FComp generates the random values �compj ,�compj ,0,�compj ,1,�compj ,2 2 Z2k

(s.t. �compj = �compj ,0��compj ,1��compj ,2 mod 2) and sets mcompj = compj

� �compj mod 2 for j = 0, . . . , 2h � 2.

4. FComp sets each party’s shares (for j = 0, . . . , 2h � 2) as follows:

[compj]2,0 = (mcompj , �compj ,1, �compj ,2)

[compj]2,1 = (mcompj , �compj ,2, �compj ,0)

[compj]2,2 = (mcompj , �compj ,0, �compj ,1)

[compj]2,3 = (�compj ,0, �compj ,1, �compj ,2)

5. FComp sends {[compj]2,i}
2h�2
j=0 to Pi for i = 0, . . . , 3.

64

FPathEval - (path evaluation)

1. Each party Pi sends the message (PathEval, {[compj]2,i}
2h�2
j=0 , {[leafVal

j
0]2k,i

}
2h�1
j
0=0

, �) to FPathEval for i = 0, . . . , 3.

2. After receiving the messages, FPathEval reconstructs {compj}
2h�2
j=0 and

{leafVal
j
0}

2h�1
j
0=0

by using the received messages. Then, FPathEval computes

res = leafVal
j
0 where j0 s.t. ^h�1

`=0 (j
0
|` == comp

�(j0 ,`)) = 1.

3. FPathEval generates the random values �res,�res,0,�res,1,�res,2 2 Z2k (s.t. �res

= �res,0 + �res,1 + �res,2 mod 2k) and sets mres = res+ �res mod 2k .

4. FPathEval sets each party’s shares as follows:

[res]2k,0 = (mres, �res,1, �res,2)

[res]2k,1 = (mres, �res,2, �res,0)

[res]2k,2 = (mres, �res,0, �res,1)

[res]2k,3 = (�res,0, �res,1, �res,2)

5. FPathEval sends [res]2k,i to Pi for i = 0, . . . , 3.

Theorem 11. If OpenOne is secure, then the path evaluation protocol ⇧PathEval (Protocol
22) in the FTableShu✏e-hybrid model computes FPathEval securely with computational security
and fairness in the presence of one malicious party.

Proof. We replace calling ⇧TableShu✏e with invoking the ideal functionality FTableShu✏e. We
prove the security of ⇧FTableShu✏e

PathEval . ⇧FTableShu✏e
PathEval consists of invoking the ideal functionality

FTableShu✏e, executing OpenOne, and computations without communications. Therefore,
the simulator S can be composed in the case where a party is corrupted. Hence, ⇧FTableShu✏e

PathEval
satisfies Definition 1. Therefore, Theorem 11 holds.

Theorem 12. The PDTE protocol ⇧PDTE in the (FFSelection,FComp,FPathEval)-hybrid model
computes FPDTE securely with computational security and fairness in the presence of one
malicious party.

Proof. We replace calling ⇧FSelection, ⇧Comp, and ⇧PathEval with invoking the ideal functional-

ity FFSelection, FComp, and FPathEval, respectively. We prove the security of⇧
FFSelection,FComp,FPathEval

PDTE .

⇧
FFSelection,FComp,FPathEval

PDTE consists of invoking the ideal functionalities FFSelection, FComp, and
FPathEval, and computations without communications. Therefore, the simulator S can be

composed in the case where a party is corrupted. Hence, ⇧
FFSelection,FComp,FPathEval

PDTE satisfies
Definition 1. Therefore, Theorem 12 holds.

65

FPDTE - (private decision tree evaluation)

1. Each party Pi sends the message (PDTE, {[attr
i
0]2k,i}

m�1
i
0=0

, T = (h, �, {[idxj]2k,i

}
2h�2
j=0 , {[vj]2k,i}

2h�2
j=0 , {[condj]2,i}

2h�2
j=0 , {[leafVal

j
0]2k,i}

2h�1
j
0=0

) to FPDTE for i =

0, . . . , 3.

2. After receiving the messages, FPDTE reconstructs {idxj}
2h�2
j=0 , {attr

i
0}

m�1
i
0=0

,

{vj}
2h�2
j=0 , {condj}

2h�2
j=0 and {leafVal

j
0}

2h�1
j
0=0

by using the received messages.

3. FPDTE computes as follows for j = 0, . . . , 2h � 2:

• If condj = 0, FPDTE computes the comparison result bit compj = 1 if
attridx == vj else compj = 0.

• If condj = 1, FPDTE computes the comparison result bit compj = 1 if
attridx < vj else compj = 0.

4. FPDTE computes res = leafVal
j
0 where j0 s.t. ^h�1

`=0 (j
0
|` == comp

�(j0 ,`)) = 1.

5. FPDTE generates the random values �res,�res,0,�res,1,�res,2 2 Z2k (s.t. �res =
�res,0 + �res,1 + �res,2 mod 2k) and sets mres = res+ �res mod 2k .

6. FPDTE sets each party’s shares as follows:

[res]2k,0 = (mres, �res,1, �res,2)

[res]2k,1 = (mres, �res,2, �res,0)

[res]2k,2 = (mres, �res,0, �res,1)

[res]2k,3 = (�res,0, �res,1, �res,2)

7. FPDTE sends [res]2k,i to Pi for i = 0, . . . , 3.

66

From Theorems 1 to 12, if the pseudo-random function FL and fair 4PC building blocks
are secure, our PDTE protocol ⇧PDTE computes FPDTE securely with computational security
and fairness in the presence of one malicious party.

4.10 Summary

In this chapter, we proposed the PDTE protocol with constant rounds using (only) the
semi-honest secure SS-3PC over the ring for the first time. We also proposed more e�cient
PDTE protocols with constant rounds by using (only) the semi-honest secure SS-3PC over
the field than the naive construction. Furthermore, we proposed the PDTE protocol with
constant rounds using (only) the maliciously secure SS-4PC over the ring for the first time.
Our schemes provide the PDTE e�ciently even where the communication environment has
a large latency and limited communication bandwidth. The generalization of the proposed
protocol to theN -party protocol and improvement of its security (e.g., information-theoretic
security) are open problems to be addressed in the future.

67

Chapter 5

Secure Iris Authentication via
robust SS-MPC16

5.1 Introduction

5.1.1 Background

The strongest security notion is GOD, which ensures that all parties including a malicious
adversary learn the correct outputs regardless of the attacker’s behaviour. There are two
main types of GOD: traditional robustness [17] and private robustness [14, 16]. The former
ensures that all parties learn the correct outputs, but there is a possibility that the parties’
inputs may be known to a honest party. The latter ensures that all parties learn the correct
outputs while keeping information on parties’ inputs secret from all parties. Hence, the
latter is a stronger security notion than the former. In particular, the existing protocols
with private robustness achieve the cheating detection and cheater identification implic-
itly because the private robustness in these protocols is achieved by detecting the cheating
and removing the values sent from the identified cheater without revealing the parties’ in-
puts. For example, Fantastic Four [16] is capable of detecting cheating deterministically,
but the identification of the cheater is achieved probabilistically depending on a statistical
parameter. FLASH [14] is capable of both detecting cheating and identifying the cheater,
deterministically. The performance of the protocols that realize probabilistic cheating detec-
tion or probabilistic cheater identification degrades as the statistical parameter is increased.
Hence, if strong security is to be achieved, the protocols that realize deterministic cheating
detection and deterministic cheater identification are preferable.

The practical advantage of MPC with GOD is that it is secure against a malicious
adversary who performs denial of service (DoS) attacks. Real applications or services using
MPC schemes that achieve security with abort or fairness are not secure against DoS attacks
because it is easy for the adversary to shut them down by sending incorrect values in MPC.

16This chapter is based on “Client-aided Robust Bit-composition Protocol with Deterministic Cheater
Identification in Standard Model” [21], by the same author, which appeared in the Journal of Information
Processing, Volume 29, Copyright(C)2021 Information Processing Society of Japan. The content of this
chapter corresponds to references [20, 21] relevant to the requirements for completion.

68

In comparison, real applications or services using MPC schemes with GOD are robust
against such DoS attacks.

In the SS-MPC protocol, each party computes any function represented as a binary,
arithmetic or mixed circuit (which is composed of binary and arithmetic circuits) by using
shares locally and communicating among the parties. In particular, the secure three-party
or four-party protocol [10,12–14,16,17] has gained attention in recent years because it can
achieve a high throughput even when it computes a complex function represented as mixed
circuits.

An e�cient share conversion protocol is required when the SS-MPC protocol computes
a complex function represented as mixed circuits. Let Z2 and Z2k be residue ring modulo
2 and 2k, respectively. For example, the addition of the shares on the arithmetic ring Z2k

is for free. However, the exclusive OR (XOR) operation of the shares of bit on Z2k requires
communication. In comparison, the XOR operation for the shares on the binary ring Z2

is for free. However, the addition of shares on Z2 requires communication. Therefore,
converting shares with changing the modulus according to the type of circuits can reduce
the communication cost of the entire computation.

The bit-composition protocol is a protocol that converts a k-dimensional vector with
shares of xj 2 {0, 1}(j = 0, . . . , k � 1) on Z2 (or a binary field F2) to shares of x(=P

k�1
j=0 2

j
· xj) on Z2k (or a finite field Fq s.t. q is a prime number). In particular, the bit

conversion protocol is a protocol that converts shares of x 2 {0, 1} on Z2 (or F2) to shares
of x on Z2k (or Fq). Note that these conversion protocols that do not require changing the
modulus are easily achievable. However, it is hard to construct these protocols by changing
the modulus. An existing maliciously secure bit-composition protocol achieves security with
abort [10, 96], fairness [12, 13], or GOD [14, 16, 17]. Byali et al. proposed a bit conversion
protocol with private robustness independent of a statistical parameter in [14]. The bit-
composition protocol with private robustness independent of a statistical parameter can
be achieved by running the bit conversion protocol with private robustness independent
of statistical parameter [14] in parallel k times and using shares locally. However, the bit
conversion protocol in [14] uses a commitment scheme that uses a collision-resistant hash
function. Therefore, its security is proved only in the random oracle model (ROM). In
the ROM, the collision-resistant hash function is replaced by an ideal random function. In
comparison, there are no such replacements in the standard model. Therefore, the ROM is
a stronger assumption than the standard model.

From a practical viewpoint, an MPC scheme that computes complex functions repre-
sented as mixed circuits and achieves private robustness independent of a statistical param-
eter is preferred. Hence, a bit-composition protocol with private robustness independent of
a statistical parameter is required. However, there are no such protocols for the standard
model.

5.1.2 Our Approach

In this chapter, we propose a client-aided bit-composition protocol with private robustness
independent of a statistical parameter that is provably secure in the standard model. The
proposed scheme is based on a maliciously secure four-party computation with one corrup-

69

Table 5.1: Comparison between existing maliciously secure bit-composition protocols with
one corruption and proposed protocol (Rounds: number of communication rounds, Comm.:
(amortized) communication bits per all parties, k: bit length of modulus, N : number of
parties, H: number of clients, t: number of malicious corruptions in protocol, tp: number
of malicious corruptions in parties, tc: number of malicious corruptions in clients, Std.:
standard model, ROM: random oracle model)

Scheme Threshold Property
Deterministic

cheating detection
Deterministic

cheater identification
Model

O✏ine phase Online phase
Rounds Comm. Rounds Comm.

ABY3 [10] + [9] (t,N) = (1, 3) abort (probabilistic) (not achievable) Std. 3 12k log2 k + 12k 1 + log2 k 9k log2 k + 9k
BLAZE [13] (t,N) = (1, 3) fairness (probabilistic) (not achievable) Std. 5 9k2 1 4k2

Trident [12] (t,N) = (1, 4) fairness X (not achievable) Std. 2 3k2 + k 1 3k

FLASH [14] (t,N) = (1, 4)
private

robustness
X X ROM 2 4k2 3 10k2

SWIFT [17] (t,N) = (1, 4)
traditional
robustness

X (not achievable) Std. 2 3k2 + 4k 1 3k2

Fantastic Four [16] (t,N) = (1, 4)
private

robustness
X (probabilistic) Std. 2 8k2 + 8k 1 8k

This Work
(Protocol 27)

(t,N,H) = (1, 4, 3)
private

robustness
X X Std. 1 24k2 + 24k 1 8k

This Work
(Protocol 28)

(tp, N,H) = (1, 4, 1)
private

robustness
X X Std. 1 12k2 + 12k 1 8k

This Work
(Protocol 30)

tp(2tp + 1) < N ,
2tc + 1 < H

private
robustness

X X Std. 1
(tc + 1)(2tp + 1)k2

+(tc + 1)(2tp + 1)k
1 N(N � (2tp + 1))(tp + 1)k

tion [14] with three additional clients who assist the parties in the calculation. Note that
these clients provide an auxiliary input only in the preprocessing phase. They do not input
any secret values, do not compute any values, and do not learn the output during the actual
computation. That is, we propose a maliciously secure seven-party bit-composition protocol
with one corruption that achieves private robustness independent of a statistical parameter
and is provably secure in the standard model for the first time. Our scheme can improve the
e�ciency and security of computation for complex functions represented as mixed circuits.

We also propose a secure computation protocol for the Hamming distance by modifying
the proposed bit-composition protocol. Our protocol for the Hamming distance can be
useful for secure iris authentication applications.

Furthermore, we extend our protocol with a constant number of parties and clients to one
with an arbitrary number of parties and clients. In our extended protocol, the parameters
(i.e., the number of parties and clients) are flexible so that it fits in many situations.

Table 5.1 shows a comparison of the communication cost between the proposed scheme
and the existing maliciously secure bit-composition protocols. This table shows that only
our scheme achieves private robustness composed of deterministic cheating detection and
cheater identification in the standard model. Furthermore, it shows that the number of
communication rounds of our scheme is the lowest compared with other previous schemes.

5.1.3 Related Work

5.1.3.1 Typical Method for Reducing Communication Cost

In MPC protocols, it is important to reduce the communication cost. For example, introduc-
ing entities that help with part of the computation [97] is known as a typical methodology
for reducing the communication cost. The o✏ine-online paradigm [12–14, 71] is another
method. The o✏ine-online paradigm divides the MPC protocol into an o✏ine phase and
online phase. In the o✏ine phase, the protocol processes part of the computation that can

70

be done independently of the parties’ inputs. In the online phase, the protocol processes the
rest of the computation with the parties’ inputs. The o✏ine-online paradigm can reduce
the communication cost of the online phase even if it increases the communication cost of
the o✏ine phase and the whole computation. The o✏ine-online paradigm is suited to MPC
applications that focus on the response time of queries. However, to the best of our knowl-
edge, simultaneously realizing private robustness and the communication cost reduction of
the bit-composition protocol by these methodologies has not been proposed.

5.1.3.2 Bit-composition Protocol

There are two main ways to realize the existing bit-composition protocol: using an adder
circuit and executing a bit conversion protocol in parallel. The former approach is used
in [10]. It can change the communication complexity according to the adder circuit used in
the protocol. It can reduce the total communication volume, but it is not a constant-round
protocol. Therefore, it is not suited to a network with low latency.

The latter one is used in [12–14,16,96]. It is a constant-round protocol. Hence, it is suited
to a network with low latency. In particular, this approach is compatible with the o✏ine-
online paradigm. In [12,16,17,96], the shares of the random bit rj 2 {0, 1} (j = 0, . . . , k�1)
on Z2 and Z2k (or Fq) are prepared in the o✏ine phase. Then, in the online phase, the
communication complexity can be reduced to O(k) by using the shares of the random bit
generated in the o✏ine phase, even if the bit conversion protocol is executed in paral-
lel. Among the existing works, only the bit conversion protocol in [14] achieves private
robustness independent of a statistical parameter (in ROM). Therefore, to the best of our
knowledge, there is no bit-composition protocol that simultaneously achieves private robust-
ness independent of a statistical parameter in the standard model and O(k) communication
complexity in the online phase.

5.1.3.3 MPC with GOD

Most of the existing protocols have used a broadcast channel or an expensive asymmetric-key
primitive [15,98,99]. In recent years, secure four-party protocols achieving GOD without the
broadcast channel or the expensive asymmetric-key primitive are proposed [14,16,17]. Byali
et al. proposed a secure four-party protocol with GOD (private robustness independent of a
statistical parameter) that does not use the broadcast channel or an expensive asymmetric-
key primitive in [14]. However, it uses a commitment scheme of which the security is proved
in ROM. Therefore, the security of the whole protocol is also proved in ROM. To the best
of our knowledge, there has been no proposed general MPC protocol that achieves private
robustness independent of a statistical parameter in the standard model without a broadcast
channel or an expensive asymmetric-key primitive nor even a specific protocol that achieves
it.

71

5.2 Preliminaries in Chapter 5

5.2.1 2-out-of-4 Replicated Secret Sharing Scheme ((2,4)-RSS)

We use the (2,4)-RSS (also known as mirrored sharing) in [14]. We denote the (2,4)-
RSS’s shares of x on Z2k as [x]. Each Pi has share [x]i as follows, where �x,�1

x,�
2
x 2 Z2k ,

and µx, µ1
x, µ

2
x 2 Z2k such that µx = x + �x mod 2k, �x = �1

x + �2
x mod 2k, and µx =

µ1
x + µ2

x mod 2k:

• P0’s share: [x]0 = (�1
x, µ

1
x, µ

2
x)

• P1’s share: [x]1 = (�1
x,�

2
x, µ

1
x)

• P2’s share: [x]2 = (�2
x, µ

1
x, µ

2
x)

• P3’s share: [x]3 = (�1
x,�

2
x, µ

2
x)

We denote the (2,4)-RSS’s shares of x on Z2 as [x]B. We note that P0, P1, P2 and P3

correspond to E1, V1, E2 and V2 in [14], respectively.

5.2.2 (N � 2tp)-out-of-N Replicated Secret Sharing Scheme ((N � 2tp, N)-
RSS)

Protocol 23 x ⇡mboOneParty([[x]]B, `)

Input: [[x]]B (where x, xj 2 Z2 and x = x0 � · · ·� xN�1 mod 2)
Output: P` obtains x.
1: for j = 0, . . . , `� 1, `+ 2tp + 1, . . . , N � 1 do in parallel

2: Each Pi sends xj as mj,i to P` for i = j�(2tp+1), . . . , j�tp. // 1 round and tp + 1

bits

3: Each Pi sends the hashed value of xj , hj,i = H(xj) = H(mj,i) for i = j � tp, . . . , j.

// 1 round & tp|hi,j | bits

4: P` computes the hashed value of mj,i, hj,i for i = j � (2tp + 1), . . . , j � tp. Then, P`

chooses mj 2 {mj,i}
j�tp

i=j�(2tp+1) as the correct value xj if tp + 1 or more of the hashed

values in {hj,i}
N�1
i=0 match the hashed value of mj , H(mj).

5: end for
6: P` computes x = x0� · · ·�xN�1 mod 2 by using [[x]]B

`
and the chosen values as correct

values in the previous steps.

Protocol 24 x ⇡mbo([[x]]B)

Input: [[x]]B (where x, xi 2 Z2 and x = x0 � · · ·� xN�1 mod 2)
Output: All parties obtain x.
1: for i = 0, . . . , N � 1 do in parallel

72

2: All parties run ⇡mboOneParty([[x]]B, i) and Pi gets x. // 1 round & N(N � (2tp + 1))

(tp + 1) bits

3: end for

Let N and tp be the number of parties and the corruptions in the parties. We use the
(N � 2tp, N)-RSS where tp(2tp + 1) < N (i.e., at most O(

p
N) corruptions similar to

the secure N -party computation protocol proposed by Byali et al. [98] or Chandran et
al. [100]). We denote the (N � 2tp, N)-RSS’s shares of x on Z2k as [[x]]. Each Pi has share
[[x]]i = (xi, . . . , xi+2tp) where x = x0 + · · · + xN�1 mod 2k. That is, each Pi has (2tp + 1)
of these xj (j = 0, . . . , N � 1), ranging from xi to xi+2tp as shares. In other words, each
xj (j = 0, . . . , N � 1) is possessed by (2tp + 1) parties. Therefore, if tp(2tp + 1) < N holds,
then the secret value cannot be reconstructed from shares of (N � 2tp, N)-RSS even if tp
corruptions occur. We also denote the (N � 2tp, N)-RSS’s shares of x on Z2 as [[x]]B as in
Protocols 23 (multiparty binary shares opening (mbo) protocol for one party, ⇡mboOneParty)
and 24 (multiparty binary shares opening protocol, ⇡mbo).

Each party Pi (for i = 0, . . . , N � 1) performs the share addition, [[x + y]] = [[x]] + [[y]]
by setting [[x+ y]]i = (xi + yi mod 2k, . . . , xi+2tp + yi+2tp mod 2k). If parties perform the

scalar addition, [[c + x]] = c + [[x]], where x, xi 2 Z2k , x =
P

N�1
i=0 xi mod 2k, and c 2 Z2k

is public, the parties who obtain x0 replace x0 (in their shares) with x00 = x0 + c mod 2k.
Each party performs the scalar multiplication, [[c · x]] = c · [[x]], where c 2 Z2k , by setting
[[c · x]]i = (c · xi mod 2k, . . . , c · xi+2tp mod 2k). Therefore, the linearity of shares of
(N � 2tp, N)-RSS on Z2k holds, i.e., [[c0 · x+ c1 · y]] = c0 · [[x]] + c1 · [[y]], where c0, c1 2 Z2k .
The linearity of shares of (N�2tp, N)-RSS on Z2 holds in the same way as (N�2tp, N)-RSS
on Z2k .

We explain how to reconstruct the secret value from shares of (N � 2tp, N)-RSS. We
describe the opening protocol of (N � 2tp, N)-RSS on Z2, Protocol 24, because we use it
only on Z2 (not Z2k) in our protocol. Protocol 24 is the opening protocol on Z2 for all
parties. It is realized by running the opening protocol on Z2 for one party (Protocol 23)
in parallel. Protocols 23 and 24 achieve private robustness independent of a statistical
parameter because of the majority voting in Line 4 of Protocol 2317.

Protocol 23 requires 1 round and (N � (2tp+1))(tp+1+ tp|hi,j |) bits as communication
bits. Note that we can ignore the communication cost of Step 3 of Protocol 23 when running
multiple instances. Hence, Protocol 23 requires 1 round and (N � (2tp + 1))(tp + 1) bits as
amortized communication bits. Therefore, Protocol 24 requires 1 round and N(N � (2tp +
1))(tp + 1) bits as amortized communication bits.

Protocol 25 [[x]] ⇡share(x, P`, vid, F)

Input: Input value x 2 Z2, input dealer P`, unique identifier vid, pseudo-random function
F : {0, 1} ⇥ {0, 1} ! Z2

Output: [[x]]

17At Line 4 in Protocol 23, the security is not compromised even if Pi (i = j � tp, . . . , j) sends the raw
value, i.e., mj,i. The reason why Pi (i = j � tp, . . . , j) sends the hashed value, H(mj,i), is just to reduce the
cost of communication volume.

73

1: for i = 0, . . . , N � 1 do in parallel
2: Each party Pi computes rj = F (seedj , vid) where rj 2 Z2 for j = i, . . . , i+ 2tp.
3: Each party Pi sets [[r]]B

i
= (rj , . . . , rj+2tp) where r = r0 � · · · � rN�1 mod 2 and

j = i, . . . , i+ 2tp.
4: end for
5: An input dealer P` generates random values xj 2 Z2 for j = 1, . . . , N � 1.
6: P` sets x0 = x� x1 � · · ·� xN�1 mod 2.
7: for i = 0, . . . , N � 1 do in parallel
8: P` sends [[x]]Bi = (xi, . . . , xi+2tp) to Pi // 1 round & (N � 1)(2tp + 1) bits

9: end for
10: [[x� r]]B = [[x]]B � [[r]]B

11: All parties run ⇡mbo([[x�r]]B) and gets x�r. // 1 round & N(N � (2tp + 1))(tp + 1)

bits

12: All parties exchange their (x� r) and choose the correct (x� r) by the majority voting.
If it is not possible to determine the correct value by majority voting, then P` and its
initial input values are removed.

13: [[x]]B = (x� r)� [[r]]B

Note that we do not use the sharing protocol of (N � 2tp, N)-RSS in our protocol.
However, we describe it over Z2 in Protocol 25 for completeness.

We assume that each Pi (i = 0, . . . , N � 1) obtains (seedi, . . . , seedi+2tp) where seedi 2

{0, 1}. We also assume that (seedi, . . . , seedi+2tp) are given to each Pi only once by a trusted
third party or MPC-based random value generation during the initialization process.

From Lines 1 to 4 in Protocol 25, each party computes the shares of random bit r, [[r]]B

to mask the input value. Then, the input dealer P` computes the shares of input value [[x]]B

and sends [[x]]B
i
to Pi from Lines 5 to 9. After that, all parties compute [[x� r]]B at Line 10

and get (x� r) by ⇡mbo at Line 11. At Line 12, all parties exchange (x� r) and choose the
correct (x � r) by majority voting. However, if P` is the corrupted party, P` can cause so
much corruptions that tp(2tp + 1) < N does not hold, indirectly, by sending the incorrect
di↵erent values to each party in the previous Lines. Hence, if the majority voting does not
work well, the parties except P` identify P` as the corrupted party and remove it and its
initial inputs. Finally, all parties compute [[x]]B = (x � r) � [[r]]B at Line 13 and get the
shares of the input value [[x]]B.

5.2.3 Secure Four-party Computation with One Corruption

We use the same addition of shares as [14]. We denote the addition of shares as [x] + [y].
We also use the same scalar addition and scalar multiplication of shares as [14]. We denote
the scalar addition and scalar multiplication of shares as c+ [x] and c · [x], where c 2 Z2k .
We denote the operations on Z2 in the same way as on Z2k . Note that we use the same
notation for operations of scalars and those of the shares to keep the description simple.

We also use the same four-party binary shares opening (bo) protocol (i.e., output com-
putation protocol) as [14]. The bo protocol of [14] (not the bit conversion protocol of [14])
achieves private robustness independent of a statistical parameter in the standard model

74

because it uses the collision-resistant hash function only for reducing the communication
cost but does not use the commitment scheme based on the collision-resistant hash function.
We denote the bo protocol on Z2 as ⇡bo. ⇡bo takes a share [x]B as input and outputs x 2 Z2.
We denote x ⇡bo([x]B) when it is called. Protocol ⇡bo needs one round and 8 bits as the
(amortized) communication cost, respectively.

5.2.4 Definition of Security

Let view
⇡

i
(~x) be the view of Pi while running protocol ⇡ on inputs ~x. It consists of its

inputs ~x, all the messages received by Pi, and an internal random coin. Let output⇡(~x) be
the outputs of all parties while running protocol ⇡ on inputs ~x.
Definition 2 (Perfect Security in the Presence of One Malicious Corrupted Party). Let
f : ({0, 1}⇤)7 ! ({0, 1}⇤)7 be a deterministic 7-ary functionality and let ⇡ be a protocol.
We say that ⇡ computes f with perfect security in the presence of one malicious corrupted
party for f if there exists probabilistic polynomial-time algorithm S such that for every
corrupted party i 2 {0, 1, 2, 3, 4, 5, 6}, and every ~x 2 ({0, 1}⇤)7 where |x0| = |x1| = |x2| =
|x3| = |x4| = |x5| = |x6|:

{(S(xi, fi(~x)), f(~x))} ⌘ {(view⇡

i (~x), output
⇡(~x))} (5.1)

We note that Definition 2 is modified from the security definition of [8] to adapt the pro-
posed seven-party (i.e., four parties P0, P1, P2 and P3 and three helper H0(= P4), H1(= P5)
and H2(= P6)) bit-composition protocol with private robustness independent of a statistical
parameter. If the above equation (2) holds with computational indistinguishability, then
we say that ⇡ computes f with computational security in the presence of one malicious
corrupted party.

We use the hybrid model [92] to prove the security of the proposed scheme. Let g be
the subfunctionality. We say that protocol ⇡ is secure in the g-hybrid model. We denote
protocol ⇡ secure in the g-hybrid model as ⇡g.

5.3 Proposal

We propose the new client-aided bit composition protocol with private robustness inde-
pendent of statistical parameter in §5.3.1. The bit-composition protocol is useful as a
subprotocol, but not a useful application. Hence, by modifying our bit-composition proto-
col, we also propose a new client-aided secure Hamming distance calculation protocol with
private robustness independent of statistical parameter as a useful application in §5.3.2. It
is useful for the secure iris authentication as a biometric authentication service.

For more details, in §5.3.1, we propose a three bit-composition protocols. In §5.3.1.1,
we propose a four-party and three-clients construction with one malicious corruption. We
prove that it is secure in §5.3.1.2. We also propose a four-party and one-client construction
with one malicious corruption by modifying the four-party and three-clients construction
to reduce the number of clients (in §5.3.1.3). In order to allow flexibility in the number of
parties and clients, we propose a multi-party and multi-client construction with malicious
corrupted parties and clients (in §5.3.1.4).

75

In §5.3.2, we propose the secure Hamming distance calculation protocol (in §5.3.2.1).
We explain how to use our protocol in the secure iris authentication in §5.3.2.2. Then, we
modify and extend our secure Hamming distance calculation protocol to reduce the number
of clients and allow flexibility in the number of parties and clients in §5.3.2.3.

5.3.1 Client-aided Bit-composition Protocol with Private Robustness In-
dependent of Statistical Parameter

Protocol 26 {[rj]B, [rj]}
n�1
j=0 ⇡rRndGen(F, F 0,H, seed, {vidj , vid

(�)
j

, vid(�1)
j

, vid(µ1)
j

}
n�1
j=0)

Input: pseudo-random function F : {0, 1}⇥{0, 1} ! Z2 and F 0 : {0, 1}⇥{0, 1} ! Z2k ,
collision-resistant hash function H, shared seed by clients seed, unique identifiers {vidj ,

vid
(�)
j

, vid(�1)
j

, vid(µ1)
j

}
n�1
j=0 where seed, vidj , vid

(�)
j

, vid(�1)
j

, vid(µ1)
j
2 {0, 1} (n is a positive

integer)
Output: {[rj]B, [rj]}

n�1
j=0 s.t. rj 2 Z2

1: for j = 0, . . . , n� 1 do
2: Each H

i
0 (i

0
= 0, 1, 2) computes rj = F (seed, vidj).

3: Each H
i
0 computes �rj = F (seed, vid

(�)
j

), �1
rj

= F (seed, vid(�1)
j

), �2
rj

= �rj � �1
rj

mod 2.
4: Each H

i
0 computes µrj = rj � �rj mod 2, µ1

rj
= F (seed, vid(µ1)

j
), µ2

rj
= µrj � µ1

rj

mod 2.
5: Each H

i
0 computes �0

rj = F 0(seed, vid
(�)
j

), �01
rj

= F 0(seed, vid(�1)
j

), �02
rj

= �0
rj � �01

rj

mod 2k.
6: Each H

i
0 computes µ0

rj
= rj +�0

rj mod 2k, µ01
rj

= F 0(seed, vid(µ1)
j

), µ02
rj

= µ0
rj
�µ01

rj

mod 2k.
7: Each H

i
0 sets [rj]B0 = (�1

rj
, µ1

rj
, µ2

rj
), [rj]B1 = (�1

rj
, �2

rj
, µ1

rj
), [rj]B2 = (�2

rj
, µ1

rj
, µ1

rj
),

[rj]B3 = (�1
rj
, �2

rj
, µ2

rj
).

8: Each H
i
0 sets [rj]0 = (�01

rj
, µ01

rj
, µ02

rj
), [rj]1 = (�01

rj
, �02

rj
, µ01

rj
), [rj]2 = (�02

rj
, µ01

rj
,

µ01
rj
), [rj]3 = (�01

rj
, �02

rj
, µ02

rj
).

9: end for
10: H0 andH1 send the set of shares {[rj]Bi , [rj]i}

n�1
j=0 to each Pi (i = 0, 1, 2, 3). H2 computes

the hashed value of {[rj]Bi , [rj]i}
n�1
j=0 , H(R2,i), and send it to each Pi. // 1 round

& 24nk + 24n bits

11: Let each R0,i and R1,i be the set of shares {[rj]Bi , [rj]i}
n�1
j=0 that is sent to Pi from H0

and H1, respectively. Each Pi computes the hashed value of R0,i and R1,i, H(R0,i)
and H(R1,i). If H(R0,i) = H(R1,i) or H(R0,i) = H(R2,i), each Pi outputs R0,i. If
H(R1,i) = H(R2,i), each Pi outputs R1,i.

Protocol 27 [x] ⇡FrRndGen
rBitComp({[xj]

B
}
k�1
j=0)

Input: {[xj]B}
k�1
j=0 (where xj 2 Z2)

76

FUNCTIONALITY 1 (FrRndGen - generating two types of random shares).

1. FrRndGen receives message (gen, n) from clients H0, H1 and H2.

2. FrRndGen generates {[rj]B, [rj]}
n�1
j=0 randomly where rj 2 {0, 1}.

3. FrRndGen sends {[rj]B, [rj]}
n�1
j=0 to parties P0, P1, P2, and P3.

FUNCTIONALITY 2 (FrBitComp - converting binary share vector on Z2 to a share
on Z2k).

1. FrBitComp receives shares {[xj]B}
k�1
j=0 from parties P0, P1, P2 and P3.

2. FrBitComp reconstructs xj and computes x =
P

k�1
j=0 2

j
· xj mod 2k. Then,

FrBitComp computes [x] and sends it to parties P0, P1, P2, and P3.

Output: [x] s.t. x =
P

k�1
j=0 2

j
· xj mod 2k

1: (O✏ine phase)
2: P0, P1, P2, P3, H0, H1 and H2 invoke FrRndGen where n = k, then get {[rj]B, [rj]}

k�1
j=0 .

// ⇡rRndGen requires 1 round & 24k2 + 24k bits

3: (Online phase)
4: Each Pi (i = 0, 1, 2, 3) computes [cj]Bi = [xj � rj]Bi = [xj]Bi � [rj]Bi for j = 0, . . . , k � 1.

5: Each Pi gets the value cj ⇡bo([cj]B) for j = 0, . . . , k�1 in parallel. // 1 round & 8k

bits

6: [x] =
P

k�1
j=0 2

j
· (cj + [rj]� 2 · cj · [rj]) mod 2k.

5.3.1.1 Four-party and Three-clients Construction with One Malicious Cor-
ruption

Our scheme is divided into three steps. In the first step (at Lines 1 and 2 in Protocol 27),
three clients generate the shares of random bits rj 2 Z2 (j = 0, . . . , k � 1) on Z2 and Z2k ,
i.e., {[rj]B, [rj]}

k�1
j=0 by running ideal functionality FrRndGen (where n = k). In the actual

protocol, ideal functionality FrRndGen is replaced with protocol ⇡rRndGen in Protocol 26. In
⇡rRndGen, three clients generate random values by using the same seed, the unique identifiers

{vidj , vid
(�)
j

, vid(�1)
j

, vid(µ1)
j

}
n�1
j=0 , and pseudo-random functions F and F 0 (from Line 1 to 6

in Protocol 26). Then, they set the random values as shares {[rj]B, [rj]}
k�1
j=0 (from Line 7 to

8 in Protocol 26) and send {[rj]Bi , [rj]i}
k�1
j=0 or the hashed value of them to Pi (i = 0, 1, 2, 3)

(at Line 10 in Protocol 26)18. Each Pi selects the set of shares that matches two or more
matching sets of shares sent from H0, H1, and H2 as correct outputs (at Line 11 in Protocol

18At Line 10 in Protocol 26, the security is not compromised even if H2 sends the raw value, i.e., R2.
The reason why H2 sends the hashed value, H(R2), is just to reduce the cost of communication volume.

77

26). Each Pi can always get correct random shares {[rj]Bi , [rj]i}
k�1
j=0 because there can be

at most one corrupted client.
In the second step (at Lines 4 and 5 in Protocol 27), each Pi (i = 0, 1, 2, 3) computes

[cj]Bi = [xj � rj]Bi = [xj]Bi � [rj]Bi for j = 0, . . . , k � 1 and gets the masked values cj by
running the four-party binary shares opening protocol ⇡bo, which is proposed in [14].

In the third step (at Line 6 in Protocol 27), the parties remove mask rj from cj by
computing [xj] = [cj � rj] = (cj � [rj])2 = cj + [rj] � 2 · cj · [rj] mod 2k. We note that

(cj)2 = cj and (rj)2 = rj where cj , rj 2 {0, 1}. Then, the parties output [x] =
P

k�1
j=0 2

j
·

(cj + [rj]� 2 · cj · [rj]).

5.3.1.2 Security Proof Sketch of Protocol 27

The bit-composition protocol ⇡FrRndGen
rBitComp in Protocol 27 computes FrBitComp with computa-

tional security in the presence of one malicious corrupted party because ⇡FrRndGen
rBitComp consists

of FrRndGen, ⇡bo and local computations. The security of ⇡bo with private robustness in-
dependent of a statistical parameter in the standard model is proved in [14] because it
uses majority voting and does not use a commitment protocol. Therefore, if we prove
that ⇡rRndGen computes FrRndGen with computational security in the presence of one mali-
cious corrupted party, we can also prove the security of ⇡FrRndGen

rBitComp with private robustness
independent of a statistical parameter in the standard model.

We prove that protocol ⇡rRndGen in Protocol 26 computes FrRndGen with computational
security in the presence of one malicious corrupted party. We assume that at most one of
H

i
0 (i

0
= 0, 1, 2) is corrupted by a malicious adversary. In this case, H

i
0 does not learn any

information about secret inputs. Therefore, privacy is achieved. The correctness is also
achieved with private robustness independent of a statistical parameter by majority voting
(i.e., a selection of two or more matching the set of shares which is received) because there
is at most one corrupted party. More specifically, either R0,i (that is sent to Pi from H0)
or R1,i (that is sent to Pi from H1) is always the correct value because there is at most one
corrupted client of H

i
0 (i

0
= 0, 1, 2). Then, at Line 11 in Protocol 26, each Pi can choose

either R0,i or R1,i as the correct value by knowing H(R2,i) (that is sent to Pi from H2) and
comparing H(R0,i), H(R1,i) and H(R2,i). Hence, the simulator S (i.e., the polynomial-time
algorithm S in 2) can be composed.

In another case, we assume that at most one of Pi(i = 0, 1, 2, 3) is corrupted by a
malicious adversary. S can generate random bits r0j 2 Z2 (j = 0, . . . , k� 1). If the outputs
of F and F 0 are indistinguishable from the random values with computational security,
S can also generate random values �r0j ,�

1
r0j

, µ1
r0j
2 Z2 and �0

r0j ,�
01
r0j , µ

01
r0j 2 Z2k , then

set �2
r0j

= �r0j � �1
r0j

mod 2, µr0j = r0j � �0
r0j mod 2, µ2

r0j
= µr0j � µ2

r0j
mod 2, �02

r0j =

�0
r0j � �01

r0j mod 2k, µ0
r0j = r0j + �0

r0j mod 2k, and µ2
r0j

= µr0j � µ2
r0j

mod 2k. Then, S

can set {[r0j]B, [r0j]}
k�1
j=0 by using these random values in the same way as at Lines 7 and

8 in Protocol 26. Therefore, privacy is achieved. Correctness with private robustness
independent of a statistical parameter in the standard model is also achieved because each
Pi(i = 0, 1, 2, 3) sends no messages and cannot cheat. Hence, S can be composed.

To prove that ⇡rRndGen is secure with private robustness independent of a statistical

78

parameter in the standard model, we prove that the corrupted party or client cannot break
private robustness independent of a statistical parameter if H has the second preimage
resistance. In ⇡rRndGen, only the corrupted client can break private robustness because
the parties send no messages in ⇡rRndGen. Let the corrupted client be Hc (c = 0, 1, 2). If
Hc would like to cheat and break private robustness, he/she needs to find R0

c,i such that
Rc�1,i 6= R0

c,i, Rc+1,i 6= R0
c,i, H(Rc�1,i) = H(R0

c,i), and H(Rc+1,i) = H(R0
c,i) because

breaking private robustness requires that the majority voting does not work. However, if
Hc (knowing Rc�1,i and Rc+1,i) finds such R0

c,i, Hc breaks the second preimage resistance of
H. Hence, ⇡rRndGen is secure with private robustness independent of a statistical parameter
in the standard model if H has the second preimage resistance. We note that we can prove
that ⇡bo is secure with the private robustness independent of a statistical parameter in the
standard model if H has the second preimage resistance similarly. On the other hand, we
emphasize that FLASH [14] needs the collision-resistant hash function that has not only the
second preimage resistance but also the preimage resistance and collision resistance because
the collision-resistant hash function in FLASH [14] is used as the commitment scheme that
achieves the hiding and binding properties. To use a hash function as a commitment scheme,
the security of FLASH needs to be proven in the ROM.

Therefore, ⇡rRndGen satisfies Definition 2 and computes FrRndGen with computational
security in the presence of one malicious corrupted party. We can prove the whole security
of ⇡FrRndGen

rBitComp with private robustness independent of a statistical parameter in the standard
model.

5.3.1.3 Four-party and One-client Construction with One Malicious Corrupted
Party

Protocol 28 [x] ⇡rBitComp5({[xj]B}
k�1
j=0)

Input: {[xj]B}
k�1
j=0 (where xj 2 Z2)

Output: [x] s.t. x =
P

k�1
j=0 2

j
· xj mod 2k

1: (O✏ine phase)
2: H0 generates {[rj]B, [rj]}

k�1
j=0 randomly and distributes it to the parties. // 1 round &

12k2 + 12k bits

3: (Online phase)
4: Each Pi (i = 0, 1, 2, 3) computes [cj]Bi = [xj � rj]Bi = [xj]Bi � [rj]Bi for j = 0, . . . , k � 1.

5: Each Pi gets the value cj ⇡bo([cj]B) for j = 0, . . . , k�1 in parallel. // 1 round & 8k

bits

6: [x] =
P

k�1
j=0 2

j
· (cj + [rj]� 2 · cj · [rj]) mod 2k.

As a natural modification of Protocol 27, we note that H1 and H2 are not required if
it is certain that H0 is a semi-honest client. One client is more natural in the setting than
three clients. However, we stress that this modified protocol places a stronger assumption
on the clients than Protocol 27 does.

79

The modified protocol is Protocol 28. It requires 1 round and 12k2 + 12k bits in the
o✏ine phase and 1 round and 8k bits in the online phase as the (amortized) communication
cost. Hence, the (amortized) communication cost of Protocol 28 is lower than that of
Protocol 27.

5.3.1.4 N-party and H-client Construction with Malicious Corrupted Parties
and Clients

Protocol 29 {[[rj]]B, [[rj]]}
n�1
j=0 ⇡rMultiRndGen(F, F 0,H, seed, {vidj , vid

(1)
j

, . . . , vid(N�1)
j

}
n�1
j=0)

Input: pseudo-random function F : {0, 1} ⇥ {0, 1} ! Z2 and F 0 : {0, 1} ⇥ {0, 1} !
Z2k , collision-resistant hash function H, shared seed by clients seed, unique identifiers

{vidj , vid
(1)
j

, . . . , vid(N�1)
j

}
n�1
j=0 s.t. seed, vidj , vid

(1)
j

, . . . , vid(N�1)
j

2 {0, 1} (n is a positive
integer)

Output: {[[rj]]B, [[rj]]}
n�1
j=0 s.t. rj 2 Z2

1: for j = 0, . . . , n� 1 do
2: Each H

i
0 (i

0
= 0, . . . , H � 1) computes rj = F (seed, vidj).

3: Each H
i
0 computes rj,1 = F (seed, vid

(1)
j

), . . . rj,N�1 = F (seed, vid
(N�1)
j

).
4: Each H

i
0 sets rj,0 = rj � rj,1 � · · ·� rj,N�1 mod 2.

5: Each H
i
0 computes r0j,1 = F 0(seed, vid

(1)
j

), . . . r0j,N�1 = F 0(seed, vid
(N�1)
j

).

6: Each H
i
0 sets r0j,0 = rj �

P
N�1
`=1 r0j,` mod 2k.

7: Each H
i
0 sets [[rj]]Bi = (rj,i, . . . , rj,i+2tp) for i = 0, . . . , N � 1.

8: Each H
i
0 sets [[rj]]i = (r0j,i, . . . , r0j,i+2tp) for i = 0, . . . , N � 1.

9: end for
10: H0 . . . , Htc send the set of shares {[[rj]]Bi , [[rj]]i}

n�1
j=0 to each Pi (i = 0, . . . , N � 1).

H
i
000 (i

000
= tc +1, . . . , 2tc) computes the hashed values of {[[rj]]Bi , [[rj]]i}

n�1
j=0 , hi000 ,i (i

000
=

tc + 1, . . . , 2tc), and send it to each Pi.

// 1 round & (tc + 1)(2tp + 1)nk + (tc + 1)(2tp + 1)n bits

11: Let each R
i
00
,i
(i

00
= 0, . . . , tc) be the set of shares {[[rj]]Bi , [[rj]]i}

n�1
j=0 that is sent to Pi

from H
i
00 . Each Pi computes the hashed value of R

i
00
,i
, h

i
00
,i
.

12: Each Pi outputs Ri 2 {R
i
00
,i
}
tc

i
00=0

as the correct shares {[[rj]]Bi , [[rj]]i}
n�1
j=0 if tc+1 or more

of the hashed values in {h
i
0
,i
}
H�1
i
0=0

match the hashed value of R
i
0
,i
(i

0
= 0, . . . , H � 1).

Protocol 30 [[x]] ⇡FrMultiRndGen
rMultiBitComp({[[xj]]

B
}
k�1
j=0)

Input: {[[xj]]B}
k�1
j=0 (where xj 2 Z2)

Output: [[x]] s.t. x =
P

k�1
j=0 2

j
· xj mod 2k

1: (O✏ine phase)
2: All the parties and clients invoke FrMultiRndGen where n = k, then get {[[rj]]B, [[rj]]}

k�1
j=0 .

// ⇡rMultiRndGen requires 1 round & (tc + 1)(2tp + 1)k2 + (tc + 1)(2tp + 1)k bits

80

FUNCTIONALITY 3 (FrMultiRndGen - generating two types of random shares of
(tp + 1, N)-RSS).

1. FrMultiRndGen receives message (gen, n) from clients H
i
0 for i

0
= 0, . . . , H � 1.

2. FrMultiRndGen generates {[[rj]]B, [[rj]]}
n�1
j=0 randomly, where rj 2 {0, 1}.

3. FrMultiRndGen sends {[[rj]]B, [[rj]]}
n�1
j=0 to parties Pi for i = 0, . . . , N � 1.

FUNCTIONALITY 4 (FrMultiBitComp - converting the binary share vector of (tp +
1, N)-RSS on Z2 to the share of (tp + 1, N)-RSS on Z2k).

1. FrMultiBitComp receives shares {[[xj]]B}
k�1
j=0 from parties Pi for i = 0, . . . , N � 1.

2. FrMultiBitComp reconstructs xj and computes x =
P

k�1
j=0 2

j
· xj mod 2k. Then,

FrMultiBitComp computes [[x]] and sends it to parties Pi for i = 0, . . . , N � 1.

3: (Online phase)
4: Each Pi (i = 0, . . . , N�1) computes [[cj]]Bi = [[xj�rj]]Bi = [[xj]]Bi �[[rj]]

B
i
for j = 0, . . . , k�1.

5: Each Pi (i = 0, . . . , N � 1) gets the value cj ⇡mbo([[cj]]B) for j = 0, . . . , k � 1 in

parallel. // 1 round & N(N � (2tp + 1))(tp + 1)k bits

6: [[x]] =
P

k�1
j=0 2

j
· (cj + [[rj]]� 2 · cj · [[rj]]) mod 2k.

LetH and tc be the number of clients and the corruption in the clients. As a modification
of Protocol 27, we propose a modified construction with an arbitrary number of parties and
clients, Protocol 30, where tp(2tp + 1) < N and 2tc + 1 < H. We assume that all clients
have seed. We also assume that all clients do not collude with a party as well as the existing
client-aided protocols [29, 84, 101].

Since there are no restrictions on the number of parties and clients, Protocol 30 is
available for a wider range of situations than Protocol 27.

The computation strategy of Protocol 30 is almost the same as Protocol 27 except
that it relies on (N � 2tp, N)-RSS, not (2, 4)-RSS. The proof strategy is also the same as
§27. Therefore, Protocol 30 computes FrMultiBitComp with computational security if no client
colludes with parties and it holds that tp(2tp + 1) < N and 2tc + 1 < H.

5.3.2 Client-aided Secure Hamming Distance Calculation Protocol with
Private Robustness Independent of Statistical Parameter

5.3.2.1 Protocol

Protocol 31 [
P

m�1
j=0 (xj � yj)] ⇡FrRndGen

rHD ({[xj]B, [yj]B}
m�1
j=0)

Input: {[xj]B, [yj]B}
m�1
j=0 (where xj , yj 2 Z2 and m < 2k)

81

Output: [dist] s.t. dist =
P

m�1
j=0 (xj � yj) mod 2k

1: (O✏ine phase)
2: P0, P1, P2, P3, H0, H1 and H2 invoke FrRndGen where n = m, then get {[rj]B, [rj]}

m�1
j=0 .

// ⇡rRndGen requires 1 round & 24mk + 24m bits

3: (Online phase)
4: Each Pi computes [zj]Bi = [xj � yj]Bi = [xj]Bi � [yj]Bi for j = 0, . . . ,m� 1.
5: Each Pi computes [cj]Bi = [zj � rj]Bi = [zj]Bi � [rj]Bi for j = 0, . . . ,m� 1.
6: Each Pi gets value cj ⇡bo([cj]B) for j = 0, . . . ,m� 1 in parallel.

// 1 round & 8m bits

7: [dist] =
P

m�1
j=0 (cj + [rj]� 2 · cj · [rj]) mod 2k.

FUNCTIONALITY 5 (FrHD - computing the share of the Hamming distance be-
tween (x0, . . . , xm�1) and (y0, . . . , ym�1) from {[xj]B, [yj]B}

m�1
j=0 , where xj , yj 2

{0, 1} and m < 2k).

1. FrHD receives shares {[xj]B, [yj]B}
m�1
j=0 from parties P0, P1, P2, and P3.

2. FrHD reconstructs xj , yj(j = 0, . . . ,m) and computes dist =
P

m�1
j=0 (xj �

yj) mod 2k. Then, FrHD computes [dist] and sends it to parties P0, P1, P2

and P3.

Our secure Hamming distance calculation protocol ⇡FrRndGen
rHD in Protocol 31 is based

on ⇡FrRndGen
rBitComp. In the o✏ine phase, FrRndGen (where n = m) is invoked in the same way as

⇡FrRndGen
rBitComp (at Line 2 in Protocol 31). In the online phase, each Pi computes [zj]Bi = [xj�yj]Bi

(at Line 4). Then, each Pi gets masked value cj(2 {0, 1}) = zj�rj (j = 0, . . . ,m�1) by using
shares {[rj]B}

m�1
j=0 and ⇡bo (at Lines 5 and 6 in Protocol 31). Finally, the parties remove

mask rj from cj by computing [xj] = [cj � rj] = (cj � [rj])2 = cj + [rj]� 2 · cj · [rj] mod 2k.
Then, the parties output [dist] = [

P
m�1
j=0 zj] =

P
m�1
j=0 (cj + [rj] � 2 · cj · [rj]) (at Line 7 in

Protocol 31). The security of our protocol is proved in the same way as for ⇡FrRndGen
rBitComp.

5.3.2.2 Application Setting

In biometric authentication services that use iris recognition, a user has the biometric
template, the binary vector {xj}

m�1
j=0 . The servicer has the registered template, the binary

vector {yj}
m�1
j=0 . We assume that the authentication of the user is successful if the Hamming

distance
P

m�1
j=0 xj�yj is smaller than the decision threshold value d, which the servicer has.

Note that the user and servicer do not want to reveal the vector to each other to ensure
privacy and prevent information leakage.

We assume that the (honest) user and the (honest) servicer compute {[xj]B}
m�1
j=0 and

{[yj]B}
m�1
j=0 and send them to the MPC servers (P0, P1, P2 and P3) running Protocol 31,

respectively. Then, all the MPC servers send their share of the Hamming distance [dist] to

82

uApplication setting of secure iris recognition
Ø registration phase

User Servicer

MPC servers

Registered template
!! !"#

$%&
Shares of registered template

!!
'

!"#

$%&

Figure 5.1: Overview of registration phase in secure iris recognition

uApplication setting of secure iris recognition
Ø authentication phase

User Servicer

MPC servers

Biometric template
! !"#

$%&
Shares of biometric template

!!
'

!"#

$%&

Shares of Hamming distance
[∑!! ⊕ %!]

Authentication
result

Clients

Shares of random values
((! , (!

')
!"#

$%&

Compute the shares of
Hamming distance

• Reconstruct ∑!! ⊕ %! from shares
• Then, compute + > ∑!! ⊕ %!

Servicer has the threshold value, +.

Figure 5.2: Overview of authentication phase in secure iris recognition

83

the servicer. Then, the servicer reconstructs dist and selects two or more matching values
as the correct output. Finally, the servicer checks whether dist is smaller than d and sends
the result of the authentication to the user. In this way, our scheme can provide a secure
authentication service that is robust against DoS attacks in the standard model.

Fig. 5.1 and 5.2 show the overviews of registration and authentication phases in the
biometric authentication service that uses the iris recognition.

5.3.2.3 Modification and Extension of Protocol

Protocol 32 [
P

m�1
j=0 (xj � yj)] ⇡rHD5({[xj]B, [yj]B}

m�1
j=0)

Input: {[xj]B, [yj]B}
m�1
j=0 (where xj , yj 2 Z2 and m < 2k)

Output: [dist] s.t. dist =
P

m�1
j=0 (xj � yj) mod 2k

1: (O✏ine phase)
2: H0 generates {[rj]B, [rj]}

m�1
j=0 randomly and distributes it to the parties. // 1 round &

12mk + 12m bits

3: (Online phase)
4: Each Pi (i = 0, . . . , 3) computes [zj]Bi = [xj � yj]Bi = [xj]Bi � [yj]Bi for j = 0, . . . ,m� 1.
5: Each Pi computes [cj]Bi = [zj � rj]Bi = [zj]Bi � [rj]Bi for j = 0, . . . ,m� 1.

6: Each Pi gets value cj ⇡bo([cj]B) for j = 0, . . . ,m� 1 in parallel. // 1 round & 8m

bits

7: [dist] =
P

m�1
j=0 (cj + [rj]� 2 · cj · [rj]) mod 2k.

Protocol 33 [[
P

m�1
j=0 (xj � yj)]] ⇡FrMultiRndGen

rMultiHD ({[[xj]]B, [[yj]]B}
m�1
j=0)

Input: {[[xj]]B, [[yj]]B}
m�1
j=0 (where xj , yj 2 Z2 and m < 2k)

Output: [[dist]] s.t. dist =
P

m�1
j=0 (xj � yj) mod 2k

1: (O✏ine phase)
2: All the parties and clients invoke FrMultiRndGen where n = m, then get {[[rj]]B, [[rj]]}

m�1
j=0 .

// ⇡rMultiRndGen requires 1 round & (tc + 1)(2tp + 1)mk + (tc + 1)(2tp + 1)m bits

3: (Online phase)
4: Parties compute [[zj]]B = [[xj � yj]]B = [[xj]]B � [[yj]]B for j = 0, . . . ,m� 1.
5: Parties compute [[cj]]B = [[zj � rj]]B = [[zj]]B � [[rj]]B for j = 0, . . . ,m� 1.

6: Each party gets value cj ⇡mbo([[cj]]B) for j = 0, . . . ,m�1 in parallel. // 1 round &

N(N � (2tp + 1))(tp + 1)m bits

7: [[dist]] =
P

m�1
j=0 (cj + [rj]� 2 · cj · [[rj]]) mod 2k.

We can modify and extend Protocol 31 by using Protocols 28 and 30. Protocol 32 (i.e., the
modified Hamming distance calculation protocol based on Protocol 28) requires only one
client. Hence, the financial cost of the service with Protocol 32 is lower than with Protocol
31. In Protocol 33 (i.e., the extended protocol based on Protocol 30), there can be an

84

arbitrary number of parties and clients. Therefore, Protocol 33 is useful for improving the
system redundancy and high availability of services.

5.4 Summary

In this chapter, we proposed the client-aided maliciously secure bit-composition proto-
col with GOD (private robustness independent of a statistical parameter) in the standard
model. Our scheme simultaneously improves the e�ciency of computing complex functions
and the security. We also proposed the secure Hamming distance protocol with GOD (pri-
vate robustness independent of a statistical parameter) in the standard model by modifying
our bit-composition protocol. Our Hamming distance protocol can help provide a secure
iris recognition service that is robust against DoS attacks.

85

Chapter 6

Conclusion

We proposed the ring-based SS-MPC protocol for the constant-round PDTE [1, 19, 22, 23]
and that for the iris authentication with robustness [20, 21].

Our constant-round PDTE protocols with semi-honest security [22,23] would be a can-
didate for a high-performance method, even in an environment with high communication
latency, as an alternative to the approach using GC and HE. Our constant-round PDTE
protocols with malicious security and fairness [1,19] achieve not only the same level of use-
fulness as the constant-round PDTE protocols with semi-honest security [22,23], but also a
stronger security notion than those protocols because it is secure for an attacker to deviate
from the protocol specification.

Secure iris recognition services based on our Hamming distance calculation protocols
with robustness [20, 21] is secure against DoS attacks, making it practical for both service
availability and security. This is because our protocols achieve robustness, and abort does
not occur.

We leave as a future work the proposal of an e�cient mixed protocol framework sup-
porting SS-MPC and GC that achieves private robustness. A mixed protocol framework
supporting SS-MPC and GC that achieves traditional robustness [18] has been proposed,
but it with private robustness has not yet been proposed. We also as a future work the
proposal of an e�cient multiparty protocol achieving FaF-security [102]. Loosely speaking,
FaF-security is a more formal security definition than private robustness.

86

Acknowledgements

I would like to express my sincere appreciation to Associate Professor Takashi Nishide
for his thoughtful guidance and continuous support. He provided useful comments on my
dissertation and some of my research [1, 19–23].

I also thank Mr. Yusaku Maeda, co-author of several studies [22, 23]. He shared with
me his knowledge of Demux that helped me construct the OAR protocol.

I am grateful to the members of the dissertation committee, Professor Noboru Kunihiro,
Professor Kazumasa Omote, Associate Professor Kazuki Katagishi, and Visiting Associate
Professor Masaki Shimaoka.

Finally, I would like to thank the anonymous reviewers and potential readers for their
helpful comments on my research. I hope that my research can arouse the interest of even
a few potential readers.

87

Bibliography

[1] Hikaru TSUCHIDA and Takashi NISHIDE. Constant-round fair ss-4pc for private
decision tree evaluation. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, advpub:2021DMP0016, 2022.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10. ACM, 1988.

[3] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

[4] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167. IEEE Computer Society, 1986.

[5] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
ACM Conference on Computer and Communications Security, pages 805–817. ACM,
2016.

[6] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Kazuma Ohara, and
Hikaru Tsuchida. How to choose suitable secure multiparty computation using gener-
alized SPDZ. In ACM Conference on Computer and Communications Security, pages
2198–2200. ACM, 2018.

[7] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell, Kazuma
Ohara, and Hikaru Tsuchida. Generalizing the SPDZ compiler for other protocols. In
ACM Conference on Computer and Communications Security, pages 880–895. ACM,
2018.

[8] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority. In EU-
ROCRYPT (2), volume 10211 of Lecture Notes in Computer Science, pages 225–255,
2017.

[9] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel
Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority

88

mpc for malicious adversaries - breaking the 1 billion-gate per second barrier. In IEEE
Symposium on Security and Privacy, pages 843–862. IEEE Computer Society, 2017.

[10] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine
learning. In ACM Conference on Computer and Communications Security, pages
35–52. ACM, 2018.

[11] Peeter Laud and Alisa Pankova. Bit decomposition protocols in secure multiparty
computation. In WAHC@CCS, pages 37–48. ACM, 2018.

[12] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Trident: E�cient 4pc framework
for privacy preserving machine learning. In NDSS. The Internet Society, 2020.

[13] Arpita Patra and Ajith Suresh. BLAZE: blazing fast privacy-preserving machine
learning. In NDSS. The Internet Society, 2020.

[14] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. FLASH: fast and
robust framework for privacy-preserving machine learning. Proc. Priv. Enhancing
Technol., 2020(2):459–480, 2020.

[15] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Secure computation with low
communication from cross-checking. In ASIACRYPT (3), volume 11274 of Lecture
Notes in Computer Science, pages 59–85. Springer, 2018.

[16] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four: Honest-
majority four-party secure computation with malicious security. In USENIX Security
Symposium, pages 2183–2200. USENIX Association, 2021.

[17] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT: super-fast
and robust privacy-preserving machine learning. In USENIX Security Symposium,
pages 2651–2668. USENIX Association, 2021.

[18] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. Tetrad: Actively secure
4PC for secure training and inference. Cryptology ePrint Archive, Report 2021/755,
2021. https://eprint.iacr.org/2021/755 (Accepted to NDSS 2022).

[19] Hikaru Tsuchida and Takashi Nishide. Private decision tree evaluation with constant
rounds via (only) fair SS-4PC. In ACISP, volume 13083 of Lecture Notes in Computer
Science, pages 309–329. Springer, 2021.

[20] Hikaru Tsuchida and Takashi Nishide. Client-aided bit-composition protocol with
guaranteed output delivery. In 2020 International Symposium on Information Theory
and Its Applications (ISITA). IEEE, 2020.

[21] Hikaru Tsuchida and Takashi Nishide. Client-aided robust bit-composition protocol
with deterministic cheater identification in standard model. J. Inf. Process., 29:515–
524, 2021.

89

[22] Hikaru Tsuchida, Takashi Nishide, and Yusaku Maeda. Private decision tree evalua-
tion with constant rounds via (only) SS-3PC over ring. In ProvSec, volume 12505 of
Lecture Notes in Computer Science, pages 298–317. Springer, 2020.

[23] Hikaru Tsuchida, Takashi Nishide, and Yusaku Maeda. Private decision tree eval-
uation with constant rounds via (only) SS-3PC over ring and field. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., 105-A(3):214–230, 2022.

[24] David W. Archer, Dan Bogdanov, Liina Kamm, Y. Lindell, Kurt Nielsen, Jakob Ille-
borg Pagter, Nigel P. Smart, and Rebecca N. Wright. From keys to databases – real-
world applications of secure multi-party computation. Cryptology ePrint Archive,
Paper 2018/450, 2018. https://eprint.iacr.org/2018/450.

[25] Dan Bogdanov. How to securely perform computations on secret-shared data. Mater’s
Thesis, 2007.

[26] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In European Symposium on Research in Computer
Security, pages 192–206. Springer, 2008.

[27] Dan Bogdanov. Sharemind: programmable secure computations with practical appli-
cations. PhD thesis, University of Tartu, 2013. https://dspace.ut.ee/handle/

10062/29041.

[28] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P.
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computa-
tion goes live. In Financial Cryptography, volume 5628 of Lecture Notes in Computer
Science, pages 325–343. Springer, 2009.

[29] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In IEEE Symposium on Security and Privacy, pages
19–38. IEEE Computer Society, 2017.

[30] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for
e�cient mixed-protocol secure two-party computation. In NDSS. The Internet Society,
2015.

[31] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure computa-
tion framework for machine learning applications. In AsiaCCS, pages 707–721. ACM,
2018.

[32] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions
via minionn transformations. In CCS, pages 619–631. ACM, 2017.

[33] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure
computation for neural network training. PoPETs, 2019(3):26–49, 2019.

90

[34] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tri-
pathi. Ezpc: Programmable and e�cient secure two-party computation for machine
learning. In EuroS&P, pages 496–511. IEEE, 2019.

[35] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi,
and Rahul Sharma. Cryptflow: Secure tensorflow inference. In IEEE Symposium on
Security and Privacy, pages 336–353. IEEE, 2020.

[36] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal,
and Tal Rabin. Falcon: Honest-majority maliciously secure framework for private
deep learning. Proc. Priv. Enhancing Technol., 2021(1):188–208, 2021.

[37] Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, and Harm op den Akker.
Practical secure decision tree learning in a teletreatment application. In Financial
Cryptography, volume 8437 of Lecture Notes in Computer Science, pages 179–194.
Springer, 2014.

[38] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In CRYPTO,
volume 1880 of Lecture Notes in Computer Science, pages 36–54. Springer, 2000.

[39] Ágnes Kiss, Masoud Naderpour, Jian Liu, N. Asokan, and Thomas Schneider. Sok:
Modular and e�cient private decision tree evaluation. PoPETs, 2019(2):187–208,
2019.

[40] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev. Secure training of decision
trees with continuous attributes. Proc. Priv. Enhancing Technol., 2021(1):167–187,
2021.

[41] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: tool for automating secure two-party computations. In ACM
Conference on Computer and Communications Security, pages 451–462. ACM, 2010.

[42] Marina Blanton and Paolo Gasti. Secure and e�cient protocols for iris and fingerprint
identification. In ESORICS, volume 6879 of Lecture Notes in Computer Science, pages
190–209. Springer, 2011.

[43] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0: im-
proved mixed-protocol secure two-party computation. In USENIX Security Sympo-
sium, pages 2165–2182. USENIX Association, 2021.

[44] Amos Treiber, Dirk Müllmann, Thomas Schneider, and Indra Spiecker genannt
Döhmann. Data protection law and multi-party computation: Applications to in-
formation exchange between law enforcement agencies. In WPES@CCS, pages 69–82.
ACM, 2022.

[45] Lukas Helminger and Christian Rechberger. Multi-party computation in the GDPR.
IACR Cryptol. ePrint Arch., page 491, 2022.

91

[46] Regulation (eu) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing directive 95/46/ec (general
data protection regulation) (text with eea relevance). https://eur-lex.europa.eu/
eli/reg/2016/679/oj.

[47] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513. ACM, 1990.

[48] Moni Naor and Benny Pinkas. E�cient oblivious transfer protocols. In SODA, pages
448–457. ACM/SIAM, 2001.

[49] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT, volume 2045 of Lecture Notes in Computer Science,
pages 119–135. Springer, 2001.

[50] Octavian Catrina and Sebastiaan de Hoogh. Improved primitives for secure multiparty
integer computation. In SCN, volume 6280 of Lecture Notes in Computer Science,
pages 182–199. Springer, 2010.

[51] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages
223–238. Springer, 1999.

[52] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In Public Key Cryptography, volume
1992 of Lecture Notes in Computer Science, pages 119–136. Springer, 2001.

[53] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, pages 365–377. ACM, 1982.

[54] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

[55] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–
99, 1983.

[56] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009. crypto.stanford.edu/craig.

[57] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-
preserving remote diagnostics. In ACM Conference on Computer and Communica-
tions Security, pages 498–507. ACM, 2007.

[58] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza
Sadeghi, and Thomas Schneider. Secure evaluation of private linear branching pro-
grams with medical applications. In ESORICS, volume 5789 of Lecture Notes in
Computer Science, pages 424–439. Springer, 2009.

92

[59] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj S. Katti, Anderson C. A. Nasci-
mento, Wing-Sea Poon, and Stacey Truex. E�cient and private scoring of deci-
sion trees, support vector machines and logistic regression models based on pre-
computation. IEEE Trans. Dependable Secur. Comput., 16(2):217–230, 2019.

[60] Marina Blanton, Ah Reum Kang, and Chen Yuan. Improved building blocks for secure
multi-party computation based on secret sharing with honest majority. In ACNS (1),
volume 12146 of Lecture Notes in Computer Science, pages 377–397. Springer, 2020.

[61] Peeter Laud. A private lookup protocol with low online complexity for secure mul-
tiparty computation. In ICICS, volume 8958 of Lecture Notes in Computer Science,
pages 143–157. Springer, 2014.

[62] Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi, and Benny
Pinkas. An e�cient secure three-party sorting protocol with an honest majority. IACR
Cryptol. ePrint Arch., 2019:695, 2019.

[63] Hospital discharge data use agreement. https://www.dshs.texas.gov/THCIC/

Hospitals/Download.shtm.

[64] Acquire valued shoppers challenge — kaggle. https://www.kaggle.com/c/

acquire-valued-shoppers-challenge/data.

[65] Vivek Kumar Singh, Burcin Bozkaya, and Alex Pentland. Money walks: implicit
mobility behavior and financial well-being. PloS one, 10(8):e0136628, 2015.

[66] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[67] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-e�cient oblivious database
manipulation. In ISC, volume 7001 of Lecture Notes in Computer Science, pages
262–277. Springer, 2011.

[68] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Prac-
tically e�cient multi-party sorting protocols from comparison sort algorithms. In
ICISC, volume 7839 of Lecture Notes in Computer Science, pages 202–216. Springer,
2012.

[69] Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Oblivious radix sort:
An e�cient sorting algorithm for practical secure multi-party computation. IACR
Cryptol. ePrint Arch., 2014:121, 2014.

[70] Keitaro Hiwatashi, Ken Ogura, Satsuya Ohata, and Koji Nuida. Accelerating secure
(2+1)-party computation by insecure but e�cient building blocks. In AsiaCCS, pages
616–627. ACM, 2021.

[71] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. ASTRA: high
throughput 3pc over rings with application to secure prediction. In CCSW@CCS,
pages 81–92. ACM, 2019.

93

[72] Marcel Keller and Peter Scholl. E�cient, oblivious data structures for MPC. In
ASIACRYPT (2), volume 8874 of Lecture Notes in Computer Science, pages 506–
525. Springer, 2014.

[73] Peeter Laud. Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. PoPETs, 2015(2):188–205, 2015.

[74] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-Moran.
E�cient lookup-table protocol in secure multiparty computation. In ICFP, pages
189–200. ACM, 2012.

[75] Jack Doerner and Abhi Shelat. Scaling ORAM for secure computation. In ACM
Conference on Computer and Communications Security, pages 523–535. ACM, 2017.

[76] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi.
SCORAM: oblivious RAM for secure computation. In ACM Conference on Computer
and Communications Security, pages 191–202. ACM, 2014.

[77] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David
Evans, and Jonathan Katz. Revisiting square-root ORAM: e�cient random access
in multi-party computation. In IEEE Symposium on Security and Privacy, pages
218–234. IEEE Computer Society, 2016.

[78] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: on tightness of the
goldreich-ostrovsky lower bound. IACR Cryptol. ePrint Arch., 2014:672, 2014.

[79] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. Three-party ORAM
for secure computation. In ASIACRYPT (1), volume 9452 of Lecture Notes in Com-
puter Science, pages 360–385. Springer, 2015.

[80] Stanislaw Jarecki and Boyang Wei. 3pc ORAM with low latency, low bandwidth, and
fast batch retrieval. In ACNS, volume 10892 of Lecture Notes in Computer Science,
pages 360–378. Springer, 2018.

[81] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
Improved primitives for MPC over mixed arithmetic-binary circuits. In CRYPTO
(2), volume 12171 of Lecture Notes in Computer Science, pages 823–852. Springer,
2020.

[82] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. Secure evaluation of
quantized neural networks. Proc. Priv. Enhancing Technol., 2020(4):355–375, 2020.

[83] Ivan Damg̊ard, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter Scholl,
and Nikolaj Volgushev. New primitives for actively-secure MPC over rings with ap-
plications to private machine learning. In IEEE Symposium on Security and Privacy,
pages 1102–1120. IEEE, 2019.

94

[84] Satsuya Ohata and Koji Nuida. Communication-e�cient (client-aided) secure two-
party protocols and its application. In Financial Cryptography, volume 12059 of
Lecture Notes in Computer Science, pages 369–385. Springer, 2020.

[85] David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter. Privately evaluating
decision trees and random forests. PoPETs, 2016(4):335–355, 2016.

[86] Raymond K. H. Tai, Jack P. K. Ma, Yongjun Zhao, and Sherman S. M. Chow. Privacy-
preserving decision trees evaluation via linear functions. In ESORICS (2), volume
10493 of Lecture Notes in Computer Science, pages 494–512. Springer, 2017.

[87] Atsunori Ichikawa, Wakaha Ogata, Koki Hamada, and Ryo Kikuchi. E�cient secure
multi-party protocols for decision tree classification. In ACISP, volume 11547 of
Lecture Notes in Computer Science, pages 362–380. Springer, 2019.

[88] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser. Private evaluation
of decision trees using sublinear cost. PoPETs, 2019(1):266–286, 2019.

[89] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an
e�cient framework for private function evaluation. In EUROCRYPT, volume 7881 of
Lecture Notes in Computer Science, pages 557–574. Springer, 2013.

[90] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS. The Internet Society, 2012.

[91] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[92] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

[93] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography. In PODC,
pages 101–111. ACM, 1998.

[94] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious
adversaries at almost the cost of semi-honest. In CCS, pages 1557–1571. ACM, 2019.

[95] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure
protocols and security under composition. SIAM J. Comput., 39(5):2090–2112, 2010.

[96] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim
Wood. Zaphod: E�ciently combining LSSS and garbled circuits in SCALE. In
WAHC@CCS, pages 33–44. ACM, 2019.

[97] Donald Beaver. Commodity-based cryptography (extended abstract). In STOC, pages
446–455. ACM, 1997.

[98] Megha Byali, Carmit Hazay, Arpita Patra, and Swati Singla. Fast actively secure five-
party computation with security beyond abort. In ACM Conference on Computer and
Communications Security, pages 1573–1590. ACM, 2019.

95

[99] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. Fast secure computa-
tion for small population over the internet. In ACM Conference on Computer and
Communications Security, pages 677–694. ACM, 2018.

[100] Nishanth Chandran, Juan A. Garay, Payman Mohassel, and Satyanarayana
Vusirikala. E�cient, constant-round and actively secure MPC: beyond the three-
party case. In CCS, pages 277–294. ACM, 2017.

[101] Hiraku Morita, Nuttapong Attrapadung, Tadanori Teruya, Satsuya Ohata, Koji
Nuida, and Goichiro Hanaoka. Constant-round client-aided secure comparison pro-
tocol. In ESORICS (2), volume 11099 of Lecture Notes in Computer Science, pages
395–415. Springer, 2018.

[102] Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky. MPC with friends and foes. In
CRYPTO (2), volume 12171 of Lecture Notes in Computer Science, pages 677–706.
Springer, 2020.

96

