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Abstract

This dissertation deals with a specific class of queueing systems — double-ended queueing
systems—which frequently appear in reality. Themain purpose is tomodel behaviors of ev-
ery agent population involved in the system, and to develop policies from these that optimize
the system. Since a double-ended queue often involves more than one agent population, a
multi-population game theoretical framework specifically adapted to queueing games with
multiple agent types is developed as a general framework. Six queueing game models with
different settings are considered in this dissertation, each with its own challenges and special
features that cannot be solved by existing frameworks in the literature. The results show that
infinitely many Nash equilibria exist in the queueing games with observable system states,
but, among those equilibria, there is only one rational outcome. In the system where the
states are made invisible to agents, multiple equilibria may exist simultaneously, and the sys-
tem can settle into any of the equilibria. For several models, explicit performance measures
and optimizations are obtained; in the more complex models, such results are illustrated nu-
merically. The findings of this dissertation provide some tools and insights for social plan-
ners tomodel andoptimize real-world queueing systems that involve heterogeneous, strategic
populations of agents.
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AnEnglishman, even if he is alone, forms an orderly queue
of one.

George Mikes

1
Introduction

Waiting is part of life.
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1.1 Optimaldesigns inqueueing systems: Abrief introductiontoqueueing
theory

Waiting is part of life. People wait in queues for service, whether they are at a grocery store,
a restaurant, the post office, a ticket counter, or anywhere else where the resource capacity
cannot serve customers at once. Americans spend, on average, a staggering 118 hours per
year waiting in queues2. From an economic perspective, these waiting times may trigger a
huge opportunity cost for the economy because they take away from the times during which
people can do other tasks that produce actual value. Therefore, optimal queueing system
designs are of great importance.

Scheduling queueing tasks would not be complicated, were they deterministic: for exam-
ple, if customer arrivals or service times are identical or canbe exactly determinedbeforehand.
However, that is rarely the case in reality. By nature, the two processes in a queueing system
— the arrival process and the service process—are often stochastic. Customers usually arrive
at random times, and the times that they spend on the service also vary case-by-case. From a
management perspective, one may want to estimate the optimal number of servers that min-
imizes customers’ mean waiting time for a better service, or balances between queueing time
and operating costs.

Queueing theory captures the randomness in queueing systems and provides tools for
deriving the relationship between input parameters and performance measures. From this
relationship, planners can design a set of parameters that optimize targeted measures.

In queueing theory, a queueing system is characterized by six main factors that are de-
scribed with the following notations (also known as the Kendall–Lee Notation58):

A/B/C/D/E/F,

which respectively specify the nature of the arrival process, the nature of the service process,
the number of identical servers, the maximum number of customers allowed in the system,
the queue discipline, and the size of the population from which customers are drawn. If the
buffer capacity is infinite, the queue discipline is first-come-first-served (FCFS) and the pop-
ulation size is infinite, and factors D, E, and F are usually omitted. For example,M/M/1 indi-
cates a queue whose arrival process is a Poisson process (‘M’ stands for ‘Markovian’), whose
service times follow an exponential distribution, and that has one server.
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It shouldbenoted thatA/B/C/D/E/Fare only thebasic characteristics of a typical queue.
In fact,many further variants are distinguishedwithmoredisciplines orpolicies. Somequeue-
ing systems involve different types of agents, and hence require more detailed description.
An example of this is a preemptive priority queue in which customers are classified as either
primary or secondary. In this case, not only there are two arrival processes (one for each
customer type), but there also needs to be a set of rules to govern the occupation of servers.
Another example is a double-ended queues (to be explained further in Section 1.3.3) inwhich
agents arrive at both ends of the queue, with the agents on one end acting as the servers. In
such situations, the number of servers varies during the operation and cannot be described
with a fixed number.

This dissertation considers double-ended queues with a first-come-first-served discipline,
and infinite populations. The other four characteristics of the queue vary on a case-by-case
basis, resulting in the several distinctmodels addressed. Furthermore, the term“server,”while
appropriate in normal queueing systems, will be replaced by “matching points” when con-
sidering double-ended queues.

1.2 Agent behavior: Strategic queueing

1.2.1 The abstract idea

Most of the early queueing theory studies did not consider agents’ strategic behaviors. Arriv-
ing customers were, by default, assumed to join and stay in the queue until they were served.
Queueing theory thus came under criticism of both theoreticians and practitioners in the
mid-19th century, partly because of its shortcomings regarding such a cramped horizon and
their impracticality5. Over the course of time, a variety of new horizons and new methods
were developed to tackle increasinglymore complicatedproblemswhich aremore closely cap-
ture the complexity of modern, realistic systems. Strategic queueing is one of those notice-
able and interesting subfields that have attracted considerable attention along the evolution
of Queueing theory.

Humans are impatient by nature. In stochastic queueing systems, waiting is uncertain,
and psychology studies reveal that such uncertainty triggers irritation35,47. Balking, reneging
and jockeying soon result. Balking is when a customer arrives at a queue but decides not
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to enter it. Reneging is deciding to leave the queue before being served. Jockeying is when
a customer joins one queue, only to switch to another. These three strategic behaviors are
observed in queues in reality.

Modeling agents as rational entities, via decision theory, has led to the incorporation of
strategic behaviors into queueing problems, since the pioneering study of Naor 38 . This re-
search shows that, when customers arriving at anM/M/1 queue can observe the system state,
their strategy is based on some threshold queue length, above which no one is willing to join
the queue. Later, Edelson &Hildebrand 13 studied the case in which customers make strate-
gic decisions without knowing the queue length. These two classic models have paved the
way for a stream of research in strategic queueing that considers a wide range of model vari-
ants, thoroughly recapped in 17,19. Several works have sought to bridge this research stream
to the formal terminology used in game theory: Hassin & Haviv 18 , Economou 11 provided
formal definitions of payoff functions and agent strategies, representing them in a vector that
encodes the joining probabilities of agents at all possible states in observable queues (rather
than acknowledging a threshold policy from the beginning). Subsequently, Haviv & Oz 22

attempted to define the set of players in a class of queueing problems.

1.2.2 Levels of information

In decision theory, how agents behave depends on their expected utility of each action. The
expected utility of joining a queue depends directly on agents’ expected waiting time, which
is a function of various system parameters (which will be introduced in Section 1.3.1) and
system states.

The level of information reflects how much information on the system state is revealed
to agents. In an observable setting, agents can fully observe the system state. In unobservable
settings, the system state is fully hidden from agents, so strategic agents evaluate their ex-
pected waiting time from given system parameters which are supposed to be disclosed by
the system administrator. In hybrid settings, the partially observable models, the system
state information is only partially revealed. For example, if the system state that describes
theMarkov chain modeling the system is multi-dimensional, agents may be informed about
only some of those dimensions. The studies on theM/M/1 queue byNaor 38 and Edelson&
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Hildebrand 13 are the two seminal papers, respectively, corresponding to the observable and
unobservable cases. Multiple partially observable variants of the M/M/1 queue followed.
Economou & Kanta 12 , Guo & Zipkin 15 studied an M/M/1 system in which the queue is
divided into compartments of the same size, and customers are informed about either the
compartment number or the compartment position. Simhon et al. 52 , Kim & Kim 31 con-
sidered a system in which information on the queue length is disclosed based on a threshold
policy: customers are informed about the queue length only if the queue length is below a
threshold. The research showed that the throughput, in equilibrium, is monotonically in-
creasing in the threshold.

In the current dissertation, we focus on (fully) observable and (fully) unobservable mod-
els.

1.3 Parameters, performance measures and queueing regulations

1.3.1 System parameters and performance measures

System parameters prescribe the characteristics of a queueing system (as shown in Section
1.1). Typical system parameters that can be named include:

• Arrival rate: The mean number of arrivals to the queue per unit time.

• Service rate: The mean number of customers being served per server, per unit time.

• Number of servers: The fixed number of servers—who are presumed to be identical—
in a queueing system. This parameter reflects the service capacity of the system.

• Buffer capacity: The maximum queue length. This parameter reflects the physical
constraint of the system’s waiting room/space.

• Matching rate: The mean number of pairs of agents that match with each other per
unit time. This parameter can be seen in matching queues or double-ended queueing
systems, which will be introduced in Section 1.4.

There are two main system performance measures: mean queue length and the agents’
mean waiting time. Often, the probability distributions of the queue length and the waiting
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time are also of interest. Understanding the stochasticity of those performance measures
helps planners in answering practical questions such as: If the restaurant manager wants to
ensure that only 1% of patrons will have to wait more than 10 minutes for a meal, howmany
tables should be set up?

1.3.2 Economic parameters and performance measures

Economic parameters andperformancemeasures focus on themonetary aspect of the system.
Typical economic parameters include:

• Service value (also called reward): The monetary value that a customer agent receives
after completion of the service. For simplicity, this parameter is often set identically for
all customers, though some studies have also considered the service value as a random
variable33,37.

• Waiting cost rate: The cost to an agent for staying in the system per unit time. This
cost can be also interpreted as an opportunity cost, or the monetary value of one time
unit. This parameter is usually assumed identical for all agents in a single population.
Balachandran & Schaefer 3,4 considered a system with different types of customers
differentiated by their service values and time cost, and showed that only one type of
customer—with the highest ratio between their service value and time cost—join the
system in equilibrium.

• Service fee: The cost of the service per customer.

• Toll fee: The additional charge on each agent by the platformmanagers or the govern-
ment, for a specific purpose.

• Subsidy: The additional subsidy on each agent by the platform managers or the gov-
ernment, for a specific purpose.

Economic measures include:

• Mean social welfare: The mean total welfare, in monetary units, of all agents in the
system per unit time. This is obtained by summing up service value of all agents in the
system per unit time, less their average time cost.
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• Mean revenues: The mean total revenue from toll fee/service fee collected from cus-
tomers per unit time.

1.3.3 Queueing regulations

From a social perspective, the ultimate goal of social planners is to optimize social welfare. In
other cases, the final goal may differ, for example, it may be to maximize revenue (in case of
business platforms). It is common knowledge that multiple self-optimizations of each agent
rarely coincide with an overall optimization. Naor 38 proved that, in an observable M/M/1
queue, customer self-optimizations always lead to a longer maximum queue length than is
socially desired.

Within the scope of strategic queueing, a queueing system is often seen as a miniature
version of a market or society. Queueing agents always try to optimize their own utility. The
question, then, is how a queueing system should be regulated so that a targeted performance
measure can be optimized even when each agent acts selfishly.

Optimal designs aim to optimize performance measures by tuning, at the outset, for a
best set of system parameters. In other words, system parameters are often fixed at the stage
of system design and are difficult to change once the system commences operation. Further-
more, when agent behaviors follow decision theory, the most straightforward approach to
regulate their strategic behaviors is to adjust economic parameters. Naor 38 proposed impos-
ing a toll fee on each customer joining the queue. This fee is actually a money transfer from
customers to the systemadministrator; thus this amount itself adds neither cost nor benefit to
social welfare. However, the toll fee does affect customer behavior. As a toll fee is directly sub-
tracted from the expected customer utility, the customer joining rate would decrease. Naor
proved that the social welfare function is discretely unimodal with respect to the fee; there-
fore, there exists an optimal fee range that maximizes social welfare. This practical policy is
then followed by multiple studies in this line of research. Another approach, which applies
when the queue includes both supply and demand sides, is to adjust the service price. The
mechanism is basically similar: the adjusted price affects the agents’ joining behavior. An in-
crease in the price is amoney transfer from the demand side to the supply side, and vice versa.
Depending on the situation, there may be other policies that do not involvemoney transfers.
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Haviv & Oz 20,21 thoroughly reviewed and proposed regulation mechanisms in observable
and unobservable queues. In this dissertation, we focus mainly on money transfer policies.

1.4 Double-ended queueing systems

Double-ended queueing systems (also called double-sided or two-sided queueing systems in
some other studies) are queueing systems at which agents arrive at both ends of the queue for
matching. The topic has attracted increasing attention in industrial research since it applies
well to various social and service systems in reality. Some real-world examples of a double-
ended queue can be listed as follows.

• Passenger taxi stand. This is the archetypal real-world motivation for double-ended
queueing systems. Passengers and taxis arrive at opposite ends of the queue formatch-
ing. The idea of such a model was initiated by Kendall 29 , who studied the probability
distribution (mean and variance) of the queue length. Kashyap 26 considered a more
general case in which passengers are served in batches of a fixed, size and passenger
arrivals follow a k-Erlang distribution. Shi & Lian 49,50 bridged the strategic queue-
ing framework to a double-ended queueing model by assuming that the passengers
are rational. Several subsequent works then added real-world policies: Wang et al. 56

extended the model by incorporating a gated policy. In25, the same system setting
was considered in the context of customer loss aversion. In57, different levels of in-
formation were considered. Diamant & Baron 10 considered a matching queue with
two types of customers arriving at each end and differentiated by their priority. All
of the aforementioned papers neglect the boarding time (or matching time) of pas-
sengers so, as a result, at a certain time, either passengers or taxis are present in the
queue. The Markov chains that model those systems are, therefore, represented one-
dimensionally by the queue length. Furthermore, in the strategic queueing scenario,
taxis are assumed not to be strategic.

• E-hailing service: This is an app-based service where customers use a smartphone to
book a vehicle or taxi for a ride. Existing platforms include the popular Uber, Grab,
Lyft and Didi Chuxing. Instead of queueing up at a physical taxi stand, e-hailing cus-
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tomers (and taxis) place an order and wait in a virtual queue. Like the passenger–taxi
queueing systems, an e-hailing service can also be modeled as a double-ended queue
with passengers and taxis arriving at each side. Following this direction, Xu et al. 60 in-
vestigated the backward bending of the supply curve and suggested a price discrimina-
tion policy to avoid it. Jacob & Roet-Green 24 studied passenger strategy and optimal
policy to maximize revenue.

• Organ transplantation. This context involves two independent streams: a stream of
patients arriving for transplantation and a streamof donor organs. Thismedical appli-
cation of queueingwas firstmentioned byConolly et al. 9 , who emphasized the “impa-
tient” characteristic of enqueued agents in medical applications: both the donated or-
gans and the demand for them expire after a certain time. Boxma et al. 6 thenmodeled
organ transplantation as a double-ended queue in which both sides are impatient: the
health of patientsmaybecomeworsewhilewaiting, andorgans cannot bepreserved for
long. Elalouf et al. 14 proposed a policy to allocate live organs to candidates and studied
the dilemma of whether to store the organs or not by analyzing performancemeasures
under a double-ended queueing framework. Khademi & Liu 30 studied a multiclass
matching system in which the patients’ status may change, reclassifying them into a
different class.

• Customer–inventory system. These systems also involve two arrival processes: arrivals
of customers and arrival of (usually perishable) items into the inventory. These arrival
streams were first modeled as independent processes in a queueing system by Kaspi &
Perry 27,28 . Various extensions of this model followed. Perry & Stadje 46 derived the
stationary distribution of the system and the cost functionals of an inventory system
with perishable commodities and impatient demand. Afèche et al. 1 considered an in-
ventory problem with batch arrival and abandonment. Lee et al. 32 studied a system
with back orders and customer abandonment, focusing on optimal control of the pro-
duction rate.

• Assembly facilities. The double-ended queueing model can also be applied to assem-
bly facilities producing multiple parts. A product’s component parts arrive indepen-
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dently, and are assembled when all the parts are available. Noteworthy papers on this
topic include Som et al. 53 , Takahashi et al. 54 .

Double-ended queues also occur in a variety of other fields including market trading34,
finance, parallel processing, database concurrency control, and communication protocols. In
most cases, a double-ended queue represents a matching platform between two populations
of agents—a demand side and a supply side—which represents a two-sided market where
agents on each side often make strategic decisions to optimize their own utility. Studying
agent behaviors enables social planners to design the system optimally, developing policies
to maximize desired system performance measures. While economists focus mainly on the
supply–demand equilibrium of the market led by the price, it is not only price, but also
queueing time (which can be measured in equivalent monetary units), that impacts upon
the agents’ decision making.

A double-ended queue involves at least two distinct agent populations, and the popu-
lation motivations can make the queueing game complicated. This class of problems poses
several challenges. On the one hand, except for a few special settings, the presence of more
than one population of agents usually leads to multiple variables to describe system states of
the Markov chain that models the system. On the other hand, in a game setting with multi-
ple strategic agent types, the strategy adopted by an agent depends on the strategies of other
agents not only in the same population but also in other populations, and a Nash equilib-
rium must contain the strategies of every population rather than of just one population as
in one-sided strategic queueing problems. (It is already challenging to analyze the equilibria
of one-sided strategic queueing problems in which the system states are multi-dimensional.)
Tang et al. 55 considered an unobservable queueing systemwith two heterogeneous customer
types, differentiated by their delay sensitivity and service time. In this study, states repre-
senting the system’s Markov chain can be described with only one variable, and the joining
strategies of agents in the unobservable case are also represented with a single variable (that
is, the agents’ joining probability); therefore, the agents’ expected waiting time could be de-
rived explicitly. By determining where the two best-response functions intersect, it was not
complicated to obtain the equilibrium. Meanwhile, in the observable case, a number of vari-
ables (that is, agents’ joining probabilities at all possible states) are unknown at the beginning.
Consequently, this class of observable strategic queueing problem often presents a higher
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level of complexity, especially when the agents’ strategy is not guaranteed to be threshold-
based.

Another gap in the literature on strategic queueingmodels in general and agent behaviors
in double-ended queues specifically is that most studies exploit variants of theM/M/1 queue
inwhich performancemeasures can be derived in a closed form. This study aims to fill in this
gap by tackling several multi-dimensional problems in which, although the results may not
be derived explicitly, rigorous proofs of agent behaviors can still be obtained.

1.5 Contributions and organization of this dissertation

1.5.1 Contributions

Theoretical contributions

The theoretical contributions of the current dissertation are as follows:

• A multi-population game theoretical framework is developed as a general framework
to derive equilibria of queueing games in double-ended queueing systems.

• Agents’ waiting times in queueing systems, modeled by a multi-dimensional Markov
chain, are derived using first-hitting-time analysis. The monotone properties of the
waiting time function with respect to each dimension in the system state are proved
by induction.

Practical contributions

Industrial and service systems in modern society are becoming more sophisticated in tune
with the development of technology. Themodels considered in this dissertation incorporate
more complicated and realistic characteristics of real-world systems. First, in reality, both the
supply side and the demand side can be strategic, which makes the queueing game become
multi-population. Secondly, the matching process often takes time and is not negligible.
These characteristics add more challenges to the analysis.

By successfully modeling such systems with high complexity, optimal designs and opti-
mal policies can be obtained.

19



1.5.2 Organization

This dissertation contains five chapters, including this introduction. The remaining four are
as follows.

Chapter 2

This chapter presents amulti-population, game-theoretical, queueing systemframework that
acts as a general theoretical base for the analysis of the models in the following chapters.

Chapter 3

This chapter considers threedouble-endedqueueing systemmodelswith zeromatching times
and two strategic populations of agents. In the first model, the buffer capacity of both ends
is assumed finite, and all Nash equilibrium patterns are derived. In the second and the third
models, one end is assumed infinite, and the system state is made observable and unobserv-
able to agents, respectively. We focus on the rational outcome of the queueing game and
derive policies that optimize social welfare. The models in this chapter are based on the two
published papers in which the author of this dissertation is the first author42,43.

Chapter 4

This chapter considers three double-ended queueing systemmodels with nonzero matching
times. The first model considers a system in which one side is strategic while the other is not.
In the second model, both sides are strategic. The third model involves three populations:
two agent types on the demand side and one on the supply side. The models in this chapter
are based on the two published papers and one under-review paper in which the author of
this dissertation is the first author40,41.

Chapter 5

This chapter concludes the dissertation and suggests directions for further research.
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2
Theoretical frameworks

This chapter provides theoretical frameworks.
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2.1 First-step analysis

First-step analysis is a technique that conditions on the first step of theMarkov chain to solve
numerous problems such as computing mean first-passage times and hitting probabilities.
Within the scope of this study, the mean waiting time of an enqueued agent located at a
specific system state is of particular interest because it is one of the main determinants of
agent behavior. In what follows, we recall first-step analysis under a specific framework of a
continuous-timeMarkov chain that models the waiting time of agents in a queueing system.

Consider a tagged enqueued agent currently observing a state s of a continuous-time
Markov chain that models a queueing system. Denote by sabsorb the absorbing state at which
the agent enters the service. LetW(s) denote themean time taken from state s to state sabsorb.
Equivalently,W(s) is the agent’s mean waiting time. Assume that there areK possibilities of
the next state the agent can encounter after state s, denoted s1, s2, . . . , sK, with correspond-
ing transition rates from s denoted by γ1, γ2, . . . , γK. The Markov chain is diagrammed in
Figure 2.1.1.

Figure 2.1.1: Diagram of the Markov chain modeling mean waiting times.

The mean waiting time of the tagged agent from state s is recursively derived as follows:

T(s) =
1∑K

k=1 γk
+

K∑
k=1

γk∑K
k=1 γk

T(sk),

where the first term is the mean time for which the agent stays in state s, and the second
sum accumulates the mean waiting times from the next encountered state, weighted by the
corresponding transition probability.
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2.2 A theoretical framework for multi-population queueing games

Definition2.2.1 (Populations, Strategies, andProfiles). Consider a societyP = {1, 2, . . . ,M}
that consists of M populations of agents arriving at a queueing system. Agents can choose to
join or balk the queue upon arrival. Agents receive a reward of 0 if they choose to balk. Let
A = {a1, a2} be the set of pure strategies of each agent, where a1 represents “joining” and a2
represents “balking” upon arrival. The strategy of an arbitrary individual in population i is
denoted σ(i) (i = 1, 2, . . . ,M).

• In the observable case, σ(i) gives probabilities σ(i)s (s ∈ S) with which pure strategy a1 is
played by that agent at state s.

• In the unobservable case, σ(i) gives the probability σ(i) with which pure strategy a1 is
played by that agent.

The state space is denoted S. Let a vector x(i) ∈ [0, 1]card(S) (i = 1, 2, . . . ,M) denote
the population profile of population i, which yields the probabilities x(i)s with which the strategy
joining is played at each state s in population i.

A social profile, defined asX = {x(1), x(2), ..., x(M)}, consists of the strategy profiles of M
populations.

Definition 2.2.2 (Limiting Probabilities, Recurrent States, Absorbing States, and Transient
States). (Hassin &Haviv 18)
Let Lt be the system state at the arrival time of the tth agent. The limiting probability of Lt = s
when t → +∞, given a social profile X and L0 = s, is denoted π(X, s). For a given social
profile X, a state s is recurrent if π(X, s) > 0. If π(X, s) = 1, then the recurrent state s is
absorbing. If π(X, s) = 0, the state s is transient.

Definition 2.2.3 (Payoffs andBestResponses). Thepayoff to a focal individual in population
i who adopts a strategy σ(i), denoted Ui(σ(i)|X), is defined as follows.

• In the observable case

Ui(σ(i)|X) =
∑
n∈S

[
σ(i)s Ui(a1|X, s) + (1− σ(i)s )Ui(a2|X, s)

]
, (2.2.1)
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where Ui(aj|X, s) (j = 1, 2) represents the payoff to a population-i agent who adopts a
pure strategy aj at the system state s.

• In the unobservable case

Ui(σ(i)|X) = σ(i)Ui(a1|X) + (1− σ(i))Ui(a2|X), (2.2.2)

where Ui(aj|X) (j = 1, 2) represents the payoff to a population-i agent who adopts pure
strategy aj. By definition, Ui(a2|X) = 0 (agents receive a zero payoff if balking), while
Ui(a1|X) is determined by subtracting the waiting cost from the service value.

A strategy σ(i) of a focal individual in population i is called a best response against a social
profileX if

σ(i) ∈ BR(i)(X) = argmax
σ(i)

Ui(σ(i)|X), (2.2.3)

where BR(i)(X) denotes the set of best responses against X of an arbitrary individual in popu-
lation i.

Definition 2.2.4 (Nash Equilibria). A social profile X̄ =
(
x̄(1), x̄(2), . . . , x̄(M)

)
is in aNash

equilibrium if all agents in each population respond optimally to X̄, that is,

NE = {X̄ : σ̄(i) ∈ BR(i)(X̄) for all i ∈ P}, (2.2.4)

where σ̄(i) is the strategy that generates the population profile x̄(i) (σ̄(i) = x̄(i)).

Definition2.2.5 (SubgamePerfectNashEquilibria). Asocial profile X̄∗ =
(
x̄∗(1), x̄∗(2), . . . , x̄∗(M)

)
is in a subgame perfect Nash equilibrium (SPNE) if all agents in each population respond op-
timally to X̄∗ at each state in the state space S , that is,

SPNE = {X̄∗ : σ̄∗(i)s ∈ BR(i)(X̄∗, s) for all i ∈ P and s ∈ S}, (2.2.5)

where σ̄∗(i) is the strategy that generates the population profile x̄∗(i) (σ̄∗(i) = x̄∗(i)), andBR(i)(X, s)
denotes the set of best responses against a population profileX at state s, calculated as

BR(i)(X, s) = argmax
σ(i)s

Ui(σ(i)|X, s).
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Remark 2.2.1. In game theory, a subgame perfect Nash equilibrium can be derived by back-
ward induction: agentsmake their decisions about a certain system state by reasoning backward
from strategies at future states thatmay be reached from the current state that they observe. The
behavior in Definition 2.2.5 ensures that the backward induction is executed since optimizing
at all possible states in the state space is a stricter condition than optimizing at future states that
may be reached from the current state.

The notation σ refers to a mixed strategy adopted by a tagged individual agent, while x
refers to the proportion of agents who choose the action, “joining”. As we are considering
only symmetric strategies, i.e., a strategy mutually adopted by the whole population, there-
fore, the two notations can be used interchangeably.

Definition 2.2.6 (Threshold strategies). Consider a society in which members of population
i join a queueing system, adopting strategy σ(i). Assume that the Markov chain modeling a
queueing system is prescribed by a D-dimensional vector s = (x1, x2, . . . , xD). Consider a pos-
sible strategy in which, corresponding to a fixed set sd = (x1, x2, . . . , xd−1, xd+1, . . . , xD) and a
certain nonnegative integer ν(i)d , σ(i)s = 1 for all xd ≤ ν(i)d and σ(i)s = 0 for all xi > ν(i)d . Such
strategies are defined as threshold strategies with respect to dimension xd.

In theM/M/1 example in the original research byNaor 38 , the system state is represented
one-dimensionally by the queue length, and it was proved that customers follow a threshold
strategy with respect to the queue length (with an assumption that customers who expect a
zero payoff join the system).
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3
Two-population games in double-ended

queues with zero matching times

This chapter deals with modeling double-ended queues in which matching times are as-
sumed zero. This assumption is practically valid in several cases in which the matching times
are relatively small and can be dismissed as negligible; for example, the order matching time
on rail hailing applications.
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The models in this chapter deal with double-ended queueing systems where two popu-
lations adopt strategic behaviors. In systems with only one type of strategic agents which are
common in literature, agents follow the crowd and form a common strategy adopted by all at
the evolutionary endpoint. When both sides are strategic, however, the strategy adopted by
any individual on one side depends not only onwhat those of his own side are doing, but also
on the other side, which forms aNash equilibrium between the two sides. Further optimiza-
tions thus become more complicated since the social welfare functions are nowmultivariate
rather than being optimized on a single decision variable.

The following settings apply to the three models in this chapter. Consider a society
P = {1, 2} that consists of two populations of agents arriving at a double-ended queueing
system based on Poisson processes with rates λ1 and λ2. The two populations of agents rep-
resent a market with a supply side (population-1) and a demand side (population-2). Match-
ing is performed on a first-come-first-served basis by a pair of a population-1 agent and a
population-2 agent in zero unit time. The reward upon the completion of a service and the
waiting cost per unit time of a population-i agent are denoted byRi andCi (i = 1, 2), respec-
tively.

Agents can choose to join or balk the queue upon arrival. Agents receive a reward of 0
if they choose to balk. LetA = {a1, a2} be the set of pure strategies of each agent, where a1
represents “joining” and a2 represents “balking” upon arrival.

3.1 Model 1: Nash equilibria of aqueueinggame in anobservable queueing
systemwith finite ends

In this section, we will derive all possible Nash equilibrium pattern of a system in which the
buffer capacity of both ends are finite. This class of system can be seen in most of real-life
physical queues in which the waiting area is limited.

This model is based on the following paper: Nguyen, H. Q. & Phung-Duc, T. (2022).
A two-population game in observable double-ended queuing systems. Operations Research
Letters, 50(4), 407–41443.
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3.1.1 Preliminaries

The buffer capacity of population-i is denoted Ni (i = 1, 2). The state space is denoted
S = {−N1,−N1 + 1, ...,N2}, where a state s < 0 prescribes a queue with population-1
agents, while a state s > 0 prescribes a queue with population-2 agents, and s = 0 prescribes
an empty system. The payoff to a focal individual in population i, who adopts a strategy σ(i)

is given by

Ui(σ(i)|X) =
∑
s∈S

π(X, s)Ui(σ(i)|X, s)

=
∑
s∈S

π(X, s)
[
σ(i)s Ui(a1|X, s) + (1− σ(i)s )Ui(a2|X, s)

]
=
∑
s∈S

π(X, s)σ(i)s Ui(a1|X, s),

where Ui(aj|X, s) (j = 1, 2) denotes the payoff to the focal individual in the population-i,
who adopts the pure strategy aj upon observing state s. By definition,Ui(a2|X, s) = 0, while
Ui(a1|X, s) is obtained by subtracting the waiting cost from the service value.

The index “̃i” is also used to refer to a population other than i. In other words, ĩ = 2 if
i = 1, and vice versa.

Furthermore, let

s(e)i = max

{
n : Ri − Ci

n
λĩ
≥ 0, n ∈ N

}
,

andNi = min{Ni, s(e)i }. In this paper, s
(e)
i is referred to as ‘Naor’s threshold’.

Remark 3.1.1 (Discussion on Naor’s result in the case of finite buffer size). In addition to
considering two strategic populations, the model presented in this paper differs slightly from
Naor’s in the sense that we assume a finite buffer size for both sides, whereas an infinite buffer
size was considered in Naor’s model. It should be noted that Naor’s result remains the same
under a setting with an arbitrarily large finite buffer limit, as long as it is greater thanNaor’s
threshold level. In the observable strategic M/M/1 model, if there is a limit for the buffer size
and it is smaller than Naor’s threshold, then the threshold adopted by customers is identical to

28



that buffer limit.

3.1.2 Nash equilibria

The Nash equilibria of this game is of interest, defined as X̄ =
(
x̄(1), x̄(2)

)
, where x̄(i) is

generated from strategies σ̄(i), defined as

σ̄(i) =
(
σ̄(i)−N1

, σ̄(i)−N1+1, ..., σ̄
(i)
−1, σ̄

(i)
0 , σ̄(i)1 , ..., σ̄(i)N2−1, σ̄

(i)
N2

)
, i = 1, 2.

It immediately follows that σ̄(1)−N1
= σ̄(2)N2

= 0.
By defining the equilibria in (2.2.3) and (2.2.4), for i = 1, 2, the following condition

must be satisfied:
Ui
(
σ̄(i)|X̄

)
= max

σ(i)
Ui
(
σ(i)|X̄

)
. (3.1.1)

In equilibrium, the system can be modeled as shown in Figure 3.1.1. The dashed arrows
indicate that the corresponding transition rates may be equal to 0.

Figure 3.1.1: Transition diagram of the system in equilibrium.

The steady state balance equations are given by

σ̄(2)s λ2π(X̄, s) = σ̄(1)s+1λ1π(X̄, s+ 1) (3.1.2)

for s = −N1,−N1 + 1, ...,N2 − 1.

Lemma 3.1.1. In equilibrium,
(1) If there exists a recurrent state s < 0, then σ̄(2)s = 1, σ̄(1)s+1 > 0, and s + 1 is also a recurrent
state.
(2) If there exists a recurrent state s > 0, then σ̄(1)s = 1, σ̄(2)s−1 > 0, and s− 1 is also a recurrent
state.
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Proof. (1) Assume that σ̄(2)s < 1. Then, an arbitrary population-2 agent who adopts a strat-
egy σ(2), where σ(2)j = σ̄(2)j for all j ̸= s, and σ(2)s = 1, would find the expected payoff of

U2
(
σ(2)|X̄

)
=
∑
j̸=s

π(X̄, j)U2
(
σ(2)|X̄, j

)
+ π(X̄, s)U2

(
σ(2)|X̄, s

)
=
∑
j̸=s

π(X̄, j)U2
(
σ(2)|X̄, j

)
+ π(X̄, s)R2

>
∑
j̸=s

π(X̄, j)U2
(
σ(2)|X̄, j

)
+ π(X̄, s)σ̄(2)s R2 (as σ̄(2)s < 1 and π(X̄, s) > 0),

= U2
(
σ̄(2)|X̄

)
,

which contradicts the definition of the best responses and equilibria in (2.2.3) and (2.2.4).
This means that σ̄(2)s = 1. Because π(X̄, s) > 0 and σ(2)s = 1, the left-hand side of (3.1.2) is
positive, implying that σ̄(1)s+1λ1π(X̄, s + 1) > 0. Thus, σ̄(1)s+1 > 0 and π(X̄, s + 1) > 0. This
also means that s+ 1 is recurrent.
(2)This can be similarly proved.

FromLemma3.1.1, the following important result canbeobtainedby induction: In equi-
librium, if there exists a recurrent state s < 0, then all states s+1, s+2, ..., 0 are also recurrent,
and σ(2)j = 1 for all j = s, s+ 1, ..., 0. Similarly, if there exists a recurrent state s > 0 in equi-
librium, then all states s−1, s−2, ..., 0 are also recurrent, and σ(1)j = 1 for all j = s, s−1, ..., 0.

For deriving the joining strategy of a tagged agent, it is necessary to obtain the expected
waiting timewith respect to the state observed upon arrival, prescribed one-dimensionally by
s ∈ S, which also encodes the number of agents in the same population in front of the tagged
agent. This expected waiting time is 0 if there is currently a queue of agents in the opponent
population. If a tagged agent arrives and observes a queue of agents in the same population,
one more variable that represents the number of agents behind the tagged agent is required
to derive the expected waiting time of the tagged agent. This is because the arrival of other
agents in the same population behind the tagged agent affects the strategy of agents in the
opponent population. According to first-step analysis, the expected waiting time Ti(u, v) of
a tagged population-i agentwho is at positionu > 0 (that is, there areu−1 other population-
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i agents in front of the tagged agent) and observes v other population-i agents behind him
(u+ v ≤ Ni) is

Ti(u, v) =


1

σ̄(i)w λi+σ̄ (̃i)w λ̃i
+ σ̄(i)w λi

σ̄(i)w λi+σ̄ (̃i)w λ̃i
Ti(u, v+ 1) + σ̄ (̃i)w λ̃i

σ̄(i)w λi+σ̄ (̃i)w λ̃i
Ti(u− 1, v) if u+ v < Ni,

1
σ̄ (̃i)w λ̃i

+ Ti(u− 1, v) if u+ v = Ni,

(3.1.3)
where Ti(0, v) = 0 is the bound for the recursion, w = −(u + v) if i = 1, and w = u + v
if i = 2. The joining strategy of a population-i agent upon a state s is based on the expected
waiting time upon arrival, that is, Ti(|s|, 0).

By induction, it is easy to determine that Ti(u, v) ≥ u
λ̃i
. Intuitively, u

λ̃i
is the expected

waiting time of a population-i agent at position u, in an “ideal” scenario that population-̃i is
not strategic (that is, population-̃i agents always join the system with probability 1). There-
fore, when population-̃i is strategic, a population-i agent should expect a longerwaiting time.

In equilibrium, let

s1 = min {s : −N1 ≤ s ≤ 0, π (X̄, s) > 0} ,

and
s2 = max {s : 0 ≤ s ≤ N2, π (X̄, s) > 0} .

Consider the following 4 cases.

Case 1: s1 < 0 and s2 > 0. Induced from Lemma 3.1.1, the following results can be
obtained:

• σ̄(2)s = 1 and σ̄(1)s+1 > 0 for all s1 ≤ s < 0, and

• σ̄(1)s = 1 and σ̄(2)s−1 > 0 for all 0 < s ≤ s2, and

• any state s satisfying s1 ≤ s ≤ s2 is recurrent.

From (3.1.2), we have σ̄(2)s1−1λ2π(X̄, s1 − 1) = σ̄(1)s1 λ1π(X̄, s1), which implies that σ̄(1)s1 = 0
(as π(X̄, s1) > 0 and π(X̄, s1 − 1) = 0). Similarly, σ̄(2)s2 = 0 can be obtained.
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For any s1 < s ≤ 0, the conditionR1 − C1T1(|s|+ 1, 0) ≥ 0 must be satisfied because if
R1 − C1T1(|s| + 1, 0) < 0, then an arbitrary population-1 agent who adopts a strategy σ(1),
where σ(1)s = 0, and σ(1)j = σ̄(1)j for j ̸= s, would find a payoff of

U1

(
σ(1)|X̄

)
=
∑
j̸=s

π(X̄, j)U1

(
σ(1)|X̄, j

)
+ π(X̄, s)U1

(
σ(1)|X̄, s

)
=
∑
j̸=s

π(X̄, j)U1

(
σ(1)|X̄, j

)
>
∑
j̸=s

π(X̄, j)U1

(
σ(1)|X̄, j

)
+ π(X̄, s)σ̄(1)s (R1 − C1T1(|s|+ 1, 0))

(as σ̄(1)s > 0 and π(X̄, s) > 0)

= U1

(
σ̄(1)|X̄

)
,

which contradicts the definition of “best response” and “equilibria” in (2.2.3) and (2.2.4).
Furthermore, if R1 − C1T1(|s| + 1, 0) > 0, then it is easily implied that σ(1)s = 1. If R1 −
C1T1(|s|+ 1, 0) = 0, then σ(1)s ∈ (0, 1).

Consequently,
|si| ≤ Ni.

Consider the case in which i = 1. The above condition is obvious when N1 ≤ s(e)1 (which
is equivalent to N1 = N1) because s1 cannot exceed the buffer capacity of the population-
1 queue (N1). When N1 > s(e)1 (that is, N1 = s(e)1 ), this can be proved by contradiction.
Assume that |s1| > s(e)1 , then

R1 − C1T1(s(e)1 + 1, 0) ≤ R1 − C1
s(e)1 + 1
λ2

< 0,

which contradicts the definition of s(e)1 .
Similarly, for any s2 ≤ N2 and 0 ≤ s < s2, the conditionR2− C2T2(s+ 1, 0) ≥ 0must

be satisfied. If R2 − C2T2(s + 1, 0) > 0, then σ̄(2)s = 1. If R2 − C2T2(s + 1, 0) = 0, then
σ̄(2)s ∈ (0, 1).

Furthermore, the condition Ri − CiTi(|si| + 1, 0) ≤ 0 (i = 1, 2) must also be satisfied.
Assuming thatRi − CiTi(|si|+ 1, 0) > 0, then an arbitrary population-i agent who adopts
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a strategy σ(i), where σ(i)si > 0 and σ(i)j = σ̄(i)j for j ̸= si, would find a payoff of

Ui
(
σ(i)|X̄

)
=
∑
j ̸=s

π(X̄, j)Ui
(
σ(i)|X̄, j

)
+ π(X̄, s)Ui

(
σ(i)|X̄, si

)
=
∑
j̸=si

π(X̄, j)Ui
(
σ(i)|X̄, j

)
+ π(X̄, si)σ(i)si (Ri − CiTi(|si|+ 1, 0))

>
∑
j̸=si

π(X̄, j)Ui
(
σ(i)|X̄, j

)
(as σ(i)si > 0 and π(X̄, si) > 0),

= Ui
(
σ̄(i)|X̄

)
,

which contradicts the definition of “best response” and “equilibria” in (2.2.3) and (2.2.4). In
summary, the system equilibrium in this case is

X̄ =
(
σ̄(1), σ̄(2)) ,

defined with

σ̄(1) =
(
0, σ̄(1)−N1+1, ..., σ̄

(1)
s1−1, 0, σ̄

(1)
s1+1, ..., σ̄

(1)
−1, σ̄

(1)
0 , 1, 1, ..., 1, σ̄(1)s2+1, ..., σ̄

(1)
N2−1, σ̄

(1)
N2

)
,

and

σ̄(2) =
(
σ̄(i)−N1

, σ̄(i)−N1+1, ..., σ̄
(i)
s1−1, 1, 1, ..., 1, σ̄

(i)
0 , σ̄(i)1 , ..., σ̄(i)s2−1, 0, σ̄

(i)
s2+1, ...σ̄

(i)
N2−1, 0

)
,

where 0 < |si| ≤ Ni, and the unidentified σ̄(i)s take an arbitrary value in [0, 1] and satisfy the
following conditions.

• σ̄(1)s > 0 for all s1 < s ≤ 0; and σ̄(2)s > 0 for all 0 ≤ s < s2;

• T1(|s| + 1, 0) ≤ R1
C1
; if T1(|s| + 1, 0) < R1

C1
, then σ(1)s = 1; otherwise, σ(1)s ∈ (0, 1), for

all s1 < s ≤ 0;
T2(|s| + 1, 0) ≤ R2

C2
; if T2(|s| + 1, 0) < R2

C2
, then σ(2)s = 1; otherwise, σ(2)s ∈ (0, 1),

for all 0 ≤ s < s2;
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• Ti(|si|+ 1, 0) ≥ Ri
Ci
;

This pattern of equilibria can be illustrated in Figure 3.1.2.

Figure 3.1.2: Equilibrium pattern 1.

Case 2: If s1 = s2 = 0, then the only existing recurrent state, s = 0, becomes the only
absorbing state. This implies that π(X̄, 0) = 1 and π(X̄, s) = 0 for all s ̸= 0. Now, the
solutions of σ̄(1)0 and σ̄(2)0 must be acquired to obtain the equilibrium strategies of agents in
the only recurrent state of the system. From (3.1.2), σ̄(2)0 λ2π(X̄, 0) = σ̄(1)1 λ1π(X̄, 1) can be
obtained, which is equivalent to σ̄(2)0 λ2 = 0 (because π(X̄, 1) = 0), implying that σ̄(2)0 = 0.
Similarly, σ̄(1)0 = 0 can be obtained. Now, the payoff to a population-iwho follows the crowd
and adopts strategy σ̄(i) is

Ui
(
σ̄(i)|X̄

)
=
∑
s

π(X̄, s)Ui
(
σ̄(i)|X̄, s

)
= π(X̄, 0)Ui

(
σ̄(i)|X̄, 0

)
= 0.

Consider an arbitrary population-iwho adopts a strategy σ(i) where σ(i)0 > 0. The payoff to
this focal population-i agent is

Ui
(
σ(i)|X̄

)
=
∑
s

π(X̄, s)Ui
(
σ(i)|X̄, s

)
= π(X̄, 0)Ui

(
σ(i)|X̄, 0

)
= σ(i)0 (Ri − CiTi(1, 0)) .

For X̄ to be a state of equilibrium, the condition (3.1.1) is necessary, meaning that the
focal population-i agent should find a non-positive payoff. Thus, the set of σ̄(i)s (s ̸= 0)must
satisfy Ti(1, 0) ≥ Ri

Ci
. Otherwise,Ri − CiTi(1, 0) > 0, then

σ̄(i)0 ∈ argmax
σ(i)0

σ(i)0 (Ri − CiTi(1, 0)) = {1},

which contradicts σ̄(i)0 = 0.
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In summary, the system equilibrium in this case is

X̄ =
(
σ̄(1), σ̄(2)) ,

where
σ̄(1) =

(
0, σ̄(1)−N1+1, ..., σ̄

(1)
−1, 0, σ̄

(1)
1 , ..., σ̄(1)N2−1, σ̄

(1)
N2

)
,

and
σ̄(2) =

(
σ̄(2)−N1

, σ̄(2)−N1+1, ..., σ̄
(2)
−1 , 0, σ̄

(2)
1 , ..., σ̄(2)N2−1, 0

)
,

with all σ̄(i)s (s > 0) satisfying T2(1, 0) ≥ R2
C2
, and all σ̄(i)s (s < 0) satisfying T1(1, 0) ≥ R1

C1
.

This equilibrium pattern is illustrated in Figure 3.1.3.

Figure 3.1.3: Equilibrium pattern 2.

Case 3&4: si = 0 and s̃i ̸= 0. These cases can be treated similarly to Case 1 and Case 2.
The patterns of equilibria are illustrated in Figure 3.1.4 and Figure 3.1.5. In these equilibrium
patterns, there exists only one population of agents in the queue.

Figure 3.1.4: Equilibrium pattern 3.

Figure 3.1.5: Equilibrium pattern 4.

In summary, in all four cases, the system may end up at a Nash equilibrium at which
the length of each population’s buffer does not exceed a certain threshold (prescribed by |si|,
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in the case of population-i), and such thresholds do not exceed Naor’s threshold. A social
profile X̄ =

(
σ̄(1), σ̄(2)

)
is in equilibrium if all of the following conditions are satisfied:

• There exist states s1 ≤ 0 and s2 ≥ 0 such that σ̄(i)si = 0, 0 ≤ |si| ≤ Ni.
If s1 ̸= 0, σ̄(1)s > 0 for all s1 < s ≤ 0. If s2 ̸= 0, σ̄(2)s > 0 for all 0 ≤ s < s2.

• T1(|s| + 1, 0) ≤ R1
C1
; if T1(|s| + 1, 0) < R1

C1
, then σ(1)s = 1; otherwise, σ(1)s ∈ (0, 1), for

all s1 < s ≤ 0;
T2(|s| + 1, 0) ≤ R2

C2
; if T2(|s| + 1, 0) < R2

C2
, then σ(2)s = 1; otherwise, σ(2)s ∈ (0, 1),

for all 0 ≤ s < s2.

• Ti(|si|+ 1, 0) ≥ Ri
Ci
.

Proposition 3.1.1 (Sensitivity of agents’ strategies against buffer capacity). An arbitrary so-
cial profile under the setting of buffer capacity (Ni,Nĩ) (i = 1, 2), is denoted X(Ni,Ñi) =(
σ(i),(Ni,Ñi), σ (̃i),(Ni,Ñi)

)
, defined over [0, 1]N1+N2+1 × [0, 1]N1+N2+1.

LetX(Ni+k,Ñi) =
(
σ(i),(Ni+k,Ñi), σ (̃i),(Ni+k,Ñi)

)
, defined over [0, 1]N1+N2+k+1×[0, 1]N1+N2+k+1,

be a social profile with buffer capacity (Ni + k,Nĩ), where k is an arbitrary positive integer. All
vector elements are indexed by the corresponding system states.

If σ(i),(Ni,Ñi)
s = σ(i),(Ni+k,Ñi)

s for all s = −N1,−N1 + 1, ...,N2 and X(Ni,Ñi) is not an
equilibrium under the setting (Ni,Nĩ) by violating condition (i) whenN

(e)
i ≤ Ni, or violating

condition (ii), thenX(Ni+k,Ñi) is not an equilibrium under the setting (Ni + k,Nĩ).

Proof. Consider the following two cases.

• A state si satisfying σ
(i),(Ni,Ñi)
si = 0 and |si| ≤ Ni does not exist (violation of condi-

tion (i)) and s(e)i ≤ Ni. As a result, in the setting (Ni + k,Nĩ), a state si that satisfies
σ(i),(Ni+k,Ñi)
si = 0 and |si| ≤ s(e)i = min

{
s(e)i ,Ni + k

}
does not exist, which implies

thatX(Ni+k,Ñi) is not an equilibrium.

• Two states s1 and s2 satisfying σ
(i),(Ni,Ñi)
si = 0 and |si| ≤ Ni exist; however, at least

one of the equilibrium conditions concerning the expected waiting times is violated
(violation of condition (ii)). It is implied from (3.1.3) that expected waiting times at
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all states within the these two states do not change when the buffer size increases from
Ni toNi + k. Therefore, the corresponding equilibrium conditions for the expected
waiting times in the (Ni + k,Nĩ) setting are violated, which implies thatX(Ni+k,Ñi) is
not an equilibrium state.

Remark 3.1.2 (Discussion on the case of infinite buffer size). Consider a system with an in-
finite buffer size on both sides of the queue. Similarly to the results in Proposition 3.1.1, a social
profile denoted

X =
(
σ(1), σ(2)) = ((..., σ(1)−1, σ

(1)
0 , σ(1)1 , ...

)
,
(
..., σ(2)−1 , σ

(2)
0 , σ(2)1 , ...

))
is not in equilibrium if:

• A state si satisfying σ(i)si = 0 and |si| ≤ s(e)i does not exist (violation of condition (i)), or

• Two states s1 and s2 satisfying σ(i)si = 0 and |si| ≤ s(e)i exist; however, at least one of
the equilibrium conditions concerning the expected waiting times is violated (violation of
condition (ii)). The recursion in the case of infinite buffer size is slightly different from
(3.1.3) with regard to the bound. Without a bounding state Ni, the recursion for the
calculation of the expected waiting times (under the same notations as (3.1.3)) is

Ti(u, v) =
1

σ(i)w λi + σ (̃i)w λĩ
+

σ(i)w λi
σ(i)w λi + σ (̃i)w λĩ

Ti(u, v+ 1)+
σ (̃i)w λĩ

σ(i)w λi + σ (̃i)w λĩ
Ti(u− 1, v).

However, if there exists a state si satisfying σ(i)si = 0, it is implied that expected waiting
times at all states bounded by si are calculable and insensitive to the buffer size (si be-
comes the bound of the recursion over all states within this state). Therefore, the result in
Proposition 3.1.1 similarly holds when k → +∞, which is equivalent to the case of an
infinite buffer size on both sides.

On another note, whether a state s < 0 (if s > 0 can be similarly analyzed) is recurrent or
transient is directly controlled by population-1 agents’ decisions (because the queue length
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of population-1 agents is the consequence of their decision to join or balk); however, such
decisions depend on the strategy of population-2 agents. Because a transient state may never
be observed (it occurs with probability 0), the strategy of population-2 agents in transient
states does not affect their expected payoff; therefore, they can choose to join at those states
with arbitraryprobabilities. Meanwhile, the strategyofpopulation-1 agents in those transient
stateswoulddependon their beliefs about the strategy of population-2 agents. If population-
1 agents hold the belief that population-2 agents join the queue at such transient states s <
0 with probabilities smaller than 1, the system may end up at an equilibrium at which the
maximal buffer of population-1 agents is smaller thanN1. When population-1 agents believe
that population-2 agents optimize their payoff at every state (including transient states) and
vice versa, the outcome of the system is a subgame perfect Nash equilibrium derived in the
next section.

3.1.3 Subgame perfect Nash equilibrium

In this section, the subgame perfect Nash equilibria of this game is derived, defined as X̄∗ =(
σ̄∗(1), σ̄∗(2)), where

σ̄∗(i) =
(
σ̄∗(i)−N1

, σ̄∗(i)−N1+1, ..., σ̄
∗(i)
−1 , σ̄

∗(i)
0 , σ̄∗(i)1 , ..., σ̄∗(i)N2−1, σ̄

∗(i)
N2

)
.

It immediately follows that σ̄∗(1)−N1
= σ̄∗(2)N2

= 0.
At any state s > 0, we have

σ̄∗(1)s ∈ argmax
σ̄∗(1)s

U1
(
σ̄∗(1)s |X∗, s

)
= argmax

σ̄∗(1)s

σ̄∗(1)s R1 = {1}.

In other words, σ̄∗(1)s = 1 for all 0 < s ≤ N2.
Similarly, at any state s < 0, we have

σ̄∗(2)s ∈ argmax
σ̄∗(2)s

U2
(
σ̄∗(2)s |X∗, s

)
= argmax

σ̄∗(2)s

σ̄∗(2)s R2 = {1}.

In other words, σ̄∗(2)s = 1 for all −N1 ≤ s < 0. It then easily follows from (3.1.3) by
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induction that Ti(u, 0) = u
λ̃i
. Therefore, at any state s ≤ 0, we have

σ̄∗(1)s ∈ argmax
σ̄∗(1)s

U1
(
σ̄∗(1)s |X∗, s

)
= argmax

σ̄∗(1)s

(
σ̄∗(1)s

(
R1 − C1

|s|+ 1
λ2

))

=


{0} ifR1 − C1

|s|+1
λ2 < 0,

[0, 1] ifR1 − C1
|s|+1
λ2 = 0,

{1} ifR1 − C1
|s|+1
λ2 > 0,

which is equivalent to

σ̄∗(1)s =


0 if −N1 ≤ s ≤ −N1,

p2 if s = −N1 + 1,

1 if −N1 + 2 ≤ s ≤ 0,

where p2 = 1 ifR1−C1
N1
λ2 > 0, and p2 takes any value on [0, 1] ifR1−C1

N1
λ2 = 0. Similarly,

at any state s ≥ 0,

σ̄∗(2)s =


0 ifN2 ≤ s ≤ N2,

p1 if s = N2 − 1,

1 if 0 ≤ s ≤ N2 − 2,

where p1 = 1 if R2 − C2
N2
λ1 > 0, and p1 takes any value on [0, 1] if R2 − C2

N2
λ1 = 0. This

subgame perfect Nash equilibrium can be illustrated in Figure 3.1.6.

Figure 3.1.6: Subgame perfect Nash equilibrium.

This is a special case of the equilibrium pattern in Case 1 considered in the previous sec-
tion, where si = Ni for i = 1, 2.
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Remark 3.1.3 (Discussion on the case of infinite buffer size). Under an infinite buffer size
setting on both sides of the queue, the subgame perfect Nash equilibrium can still be derived
with the same method. If an assumption that agents choose to join when expecting a zero payoff
is added, then the conclusion on the subgame perfect Nash equilibrium becomes identical to that
inNaor’s setting: population-i agents join the queue if they observe a queue of population-i agents
with the length of s(e)i − 1 or less, and balk otherwise.
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3.2 Model 2: The rational outcome and optimal designs of queueing game
in an observable queueing system with one finite end and one infinite
end

In this section, wewill deriveNash equilibria and optimize social welfare of a system inwhich
the buffer capacity of the supply side is finite while that of the demand side is infinite, which
ismotivated from the cases inwhich the supply side takes relativelymuchmore physical space
than the demand side does. Real-life examples include passenger-taxi stations at which the
parking capacity is limited, or e-commerce platforms on which customers place their order
in a virtual queue while suppliers need actual space to store available items. This model is
based on the following paper: Nguyen, H. Q., & Phung-Duc, T. (2022). Supply–demand
equilibria andmultivariate optimization of social welfare in double-ended queueing systems.
Computers Industrial Engineering, 170, Article no. 10830642.

3.2.1 Preliminaries

The buffer capacity of population-(1) is denotedN. The state space is denoted

S = {−N,−N+ 1, ..., 0, 1, ...},

where a state s < 0 prescribes a queuewith population-1 agents, while a state s > 0 prescribes
a queuewithpopulation-2 agents, and s = 0prescribes an empty system. Population-i agents
(i = 1, 2) arrive according to a Poisson process with arrival rate λi. Assume λ1 > λ2. Let
ρ = λ2

λ1 .
We decompose the rewards of demanders and suppliers into components as follows,

R2 = R′

2 − p,

and
R1 = p− Cf,

where p denotes the service fee, R′
2 denotes the reward that demanders obtain before sub-

tracting the fee, and Cf represents fixed costs for suppliers.
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3.2.2 The rational outcome

We now try to find the strategy profiles of both populations at a SPNE, respectively denoted
by

σ̄∗(1) =
(
σ̄∗(1)−N , σ̄

∗(1)
−N+1, ..., σ̄

∗(1)
−1 , σ̄

∗(1)
0 , σ̄∗(1)1 , ...

)
,

and
σ̄∗(2) =

(
σ̄∗(2)−N , σ̄∗(2)−N+1, ..., σ̄

∗(2)
−1 , σ̄∗(2)0 , σ̄∗(2)1 , ...

)
.

The social profile is then defined asX∗ =
(
σ̄∗(1), σ̄∗(2)).

At any state s < 0, we have

σ̄∗(2)s ∈ argmax
σ(2)s

U2
(
σ(2)s |X∗, s

)
= argmax

σ(2)s

σ(2)s R2 = {1}.

Similarly, at any state s > 0, we have

σ̄∗(1)s ∈ argmax
σ(1)s

U1
(
σ(1)s |X∗, s

)
= argmax

σ(1)s

σ(1)s R1 = {1}.

In other words, σ̄∗(2)s = 1 for all−N ≤ s ≤ −1 and σ̄∗(1)s = 1 for all s ≥ 1. The expected
waiting time for any population-1 agent who enters the system at a state s > 0 is then |s|

λ2 , and
the expected waiting time of any population-2 agent who enters the system at a state s < 0 is
|s|
λ1 . It then follows that, for any s ≥ 0,

σ̄∗(2)s ∈ argmax
σ̄∗(2)s

U2
(
σ̄∗(2)s |X∗, s

)
= argmax

σ̄∗(2)s

(
σ̄∗(2)s

(
R1 − C1

|s|+ 1
λ2

))

=


{0}, ifR1 − C1

|s|+1
λ2 < 0,

[0, 1], ifR1 − C1
|s|+1
λ2 = 0,

{1}, ifR1 − C1
|s|+1
λ2 > 0.
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This can be rewritten as

σ̄∗(2)s =


0, if s ≥ n(s)2 ,

p2, if s = n(s)2 − 1,

1, if 0 ≤ s ≤ n(s)2 − 2.

Here p2 = 1 if R2 − C2
n(s)2
λ1 > 0, and p2 takes any value in [0, 1] if R2 − C2

n(s)2
λ1 = 0. Since

the case R2 − C2
n(s)2
λ1 = 0 rarely happens, we assume that R2 − C2

n(s)2
λ1 > 0. Then, we

can conclude that in the unique subgame perfect equilibrium, population-2 agents adopt a
threshold strategy: population-2 agents join the system if they observe a system state s ≤
n(s)2 − 1 upon their arrival, and balk if they observe a population-2 agent queue length larger
than n(s)2 − 1. Similarly, with the assumption thatR1 − C1

n(s)1
λ2 > 0, the population-1 agents’

strategy can be derived as follows: the population-1 agents join the system if they observe a
system state s ≥ −n(s)1 + 1 upon their arrival, and balk if they observe a queue length larger
than n(s)1 − 1.

In summary, there is a unique subgame perfect Nash equilibrium of the game, at which
both the populations adopt their own threshold strategy as follows.

(
n(s)1 , n(s)2

)
=

(
min

{
N,

⌊
λ2R1

C1

⌋}
,

⌊
λ1R2

C2

⌋)
.

The state transition diagram of the system in equilibrium is illustrated in Figure 3.2.1.

Figure 3.2.1: Transition diagram of the subgame perfect Nash equilibrium.

Remark 3.2.1. The subgame perfect Nash equilibrium derived above is one among the many
possible outcomes of the game. However, we assume that the system ends up at the subgame perfect
Nash equilibrium, which is the most rational outcome of the game under solution concept8.
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The solution concept of subgame perfect Nash equilibrium allows us to eliminate unstable out-
comes (often referred to as subgame imperfection).

3.2.3 Optimization

Let n1 and n2 (0 ≤ n1 ≤ N, 0 ≤ n2) respectively denote arbitrary threshold strategies
adopted by the population-1 agents and population-2 agents. With ρ = λ2

λ1 < 1, the state
space is given by

S = {−n1,−n1 + 1, ...,−1, 0, 1, ..., n2} .

Obviously, when either of n1 or n2 equals 0, the system would not exist and the social
welfare will be 0. Therefore, we consider the case in which n1 ≥ 1 and n2 ≥ 1.

The steady-state probabilities are

π−n1 =
1− ρ

1− ρn1+n2+1 ,

and
πs = ρn1+sπ−n1 , s = −n1 + 1, ...,−1, 0, 1, ..., n2.

According to the PASTA property, the balking probability of population-2 agents (i.e.,
the probability that a population-2 agent arrives and balks) is πn2 , so the mean number of
population-2 agents who actually join the queue is

λ2(1− πn2) = λ2
1− ρn1+n2

1− ρn1+n2+1 .

The balking probability of population-1 agents (i.e., the probability that a population-1 agent
arrives and balks) is π−n1 , so themean number of population-1 agents which actually join the
queue is

λ1(1− π−n1) = λ2
1− ρn1+n2

1− ρn1+n2+1 ,

which equals the actual joining rate of population-2 agents. We denote both these joining
rates by ξ .
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The mean queue lengths of population-1 and population-2 agents are

L1 =
0∑

s=−n1

(−s)π0 =
1

1− ρn1+n2+1

(
n1 −

ρ − ρn1+1

1− ρ

)
,

and

L2 =
n2∑
s=0

sπ0 =
ρn1

1− ρn1+n2+1

(
−n2 ρn2+1 +

ρ − ρn2+1

1− ρ

)
,

respectively.
The mean social welfare is then given by

SW(n1, n2) = ξ(R1 + R2)− C1L1 − C2L2

=
1

1− ρn1+n2+1

[
λ2(1− ρn1+n2)(R1 + R2)

− C2 ρn1
(
−n2 ρn2+1 +

ρ − ρn2+1

1− ρ

)
− C1

(
n1 −

ρ − ρn1+1

1− ρ

)]
.

Nowweneed tomaximize the socialwelfare function SW(n1, n2)of two integer variables
n1 and n2, under the constraints 1 ≤ n1 ≤ N and n2 ≥ 1.

For any fixed value of n1, consider the difference between social welfare when the queue
length threshold of population-2 agents is set at n2 and n2 + 1 as follows.

SW(n1, n2)− SW(n1, n2 + 1) =
ρn1+n2+1

(1− ρn1+n2+1)(1− ρn1+n2+2)
[−λ2(R1 + R2)(1− ρ)2

+ C2 ρ
(
(n2 + 1)(1− ρ)− ρn1+1 (1− ρn2+1))

− C1 ρ
(
n1 − n1 ρ − ρ + ρn1+1)].

Consider the following continuous function defined over [1,+∞)

u(ν) = −λ2(R1 + R2)(1− ρ)2 + C2 ρ
(
(ν + 1)(1− ρ)− ρn1+1 (1− ρν+1))

− C1 ρ
(
n1 − n1 ρ − ρ + ρn1+1)

= C2 ρn1+2 ρν+1 + C2 ρ(1− ρ)ν +H,
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whereH = −λ2(R1+R2)(1− ρ)2+C2 ρ (1− ρ − ρn1+1)−C1 ρ (n1 − n1 ρ − ρ + ρn1+1) .

We obtain the monotonic property of the function u(ν) as below.

Lemma 3.2.1. u(ν) is increasing in ν.

Proof. Computing the first derivative of u(ν)we have

u′(ν) = C2 ρ
[
ρν+n1+2ln( ρ) + (1− ρ)

]
.

Consider the following continuous function defined over (0, 1).

w( ρ) = ρν+n1+2ln( ρ) + (1− ρ),

where ν, n1 ≥ 1. We have

w′( ρ) = (ν + n1 + 2) ρν+n1+2ln( ρ) + ρν+n1+2 − 1 < 0,

for ρ ∈ (0, 1). Therefore w( ρ) is decreasing in ρ. Thus w( ρ) > w(1) = 0, ∀ ρ ∈ (0, 1),
which implies u′(ν) > 0. As such, we can conclude that u(ν) is increasing in ν.

Furthermore, we also have

SW(n1, n2)− SW(n1, n2 + 1) =
ρn1+n2+1

(1− ρn1+n2+1)(1− ρn1+n2+2)
u(n2). (3.2.1)

We use the above mathematical results to find the socially optimal value of population-2
agents’ strategy threshold given population-1 agents’ strategy.

Theorem 3.2.1. For each fixed value of n1, we find the optimal value of n2 which maximizes
social welfare as follows.
(I) If u(1) ≥ 0, the optimal value of n2 is 1.
(II) If u(1) < 0, the optimal value of n2 is

⌊
ν(o)
⌋
, where ν(o) is the unique value satisfying

u(ν(o)) = 0 with ⌊x⌋ denoting the largest integer number not exceeding x.

Proof. (I) If u(1) ≥ 0, because of the increasing property of u(ν) in ν obtained fromLemma
3.2.1, we have u(ν) ≥ 0 for all ν ≥ 1. From (3.2.1), we obtain SW(n1, n2) ≥ SW(n1, n2+1)
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for all n2 ≥ 1, which implies

argmax
n2

SW(n1, n2) = 1.

(II) If u(1) < 0, because of the increasing property of u(ν) in ν, there must exist a unique
ν(o) > 1 such that u(ν(o)) = 0 because u(ν) is continuous in [1,+∞) and limν→+∞ u(ν) =
+∞. Additionally, we have u(ν) < 0 for any 1 ≤ ν < ν(o); and u(ν) > 0 for any ν > ν(o).
It then can be implied from (3.2.1) that SW(n1, n2) ≤ SW(n1, n2 + 1) for any n2 ≤

⌊
ν(o)
⌋
,

and SW(n1, n2) ≥ SW(n1, n2 + 1) for any n2 >
⌊
ν(o)
⌋
, from which we obtain

argmax
n2

SW(n1, n2) =
⌊
ν(o)
⌋
.

Since n1 ∈ [1,N], the result in Theorem 3.2.1 allows us to obtain N optimal values of
social welfare corresponding toN values ofn1. By comparing thoseN optimal values of social
welfare inN cases of n1, we obtain

(
n(o)1 , n(o)2

)
which yields the highest social welfare.

The equation u(ν) = 0 can be rewritten as

ρn1+2 ρν + (1− ρ)ν +
H
C2 ρ

= 0.

Let x = ν ln( ρ), a = ρn1+2, b = 1− ρ
ln( ρ) and c =

H
C2 ρ . The equation becomes

aex + bx+ c = 0.

Substitute bx+ c = y in the above equation. After some calculations, we obtain

− y
b
e−

y
b =

a
b
e−

c
b . (3.2.2)

We can see that the left hand side of (3.2.2) takes the inverse form of a LambertW function.
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The equation (3.2.2) has one unique real root as follows

− y
b
= W0

(a
b
e−

c
b

)
,

which finally yields

ν(o) =
−W0

( a
be

− c
b
)
− c

b
ln( ρ)

.

Since the solution to the LambertW function can be instantly found by computer programs
such as MATLAB, this formula allows us to explicitly express the optimal value of n2 for
each fixed value of n1. To sum up, for each value of n1 = k ranging from 1 toN, we obtain
a unique optimal value of n2, denoted n2k . Finally, we obtain the socially optimal values of
(n1, n2) given by (

n(o)1 , n(o)2

)
= argmax

0≤k≤N
SW (k, n2k) .

3.2.4 Optimal policies

Two typical policies are introduced. One is to impose a fee or grant a subsidy to each agent,
and another is to intervene on price. Since there are two types of agents in the system, the
first approach requires a two-sided policy that treats each side differently. The second ap-
proach interfereswith only oneparameter and simultaneously regulates the behaviors of both
population-1 agents and population-2 agents. However, it can be limitedly implemented un-
der certain specific conditions.

Toll fee/Subsidy

First, we consider imposing fees or granting subsidies to population-1 agents and population-
2 agents denoted by θ1 and θ2 (if positive, these amounts are defined as a fee; otherwise, they
are defined as a subsidy). The fee or subsidy to population-1 agents should satisfy

R1 − C1
n(o)1

λ2
− θ1 > 0,

R1 − C1
n(o)1 + 1

λ2
− θ1 < 0.
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This yields

R1 − C1
n(o)1 + 1

λ2
< θ1 < R1 − C1

n(o)1

λ2
. (3.2.4)

Similarly, the fee or subsidy to population-2 agents should satisfy

R2 − C2
n(o)2 + 1

λ1
< θ2 < R2 − C2

n(o)2

λ1
. (3.2.5)

It should be noted that any values of θ1 or θ2 within the optimal ranges derived above
yield the same optimal value for social welfare since they do not affect the joining rates of
agents. The same applies to any ranges of optimal fees/subsidies/prices derived afterward.

Intervention pricing

Assume that the price p can be intervened and adjusted properly. Then, the service fee should
simultaneously satisfy the following conditions

R′
2 − p− C2

n(o)2

λ1
> 0,

R′
2 − p− C2

n(o)2 + 1
λ1

< 0,

p− Cf − C1
n(o)1

λ2
> 0,

p− Cf − C1
n(o)1 + 1

λ2
< 0.

It finally yields

p ∈

(
R′

2 − C2
n(o)2 + 1

λ2
,R′

2 − C2
n(o)2

λ2

)
∩

(
Cf + C1

n(o)1

λ2
,Cf + C1

n(o)1 + 1
λ2

)
. (3.2.6)

This is the price range that guarantees that the system equilibrium at which the social welfare
is maximized exists. Note that if either R′

2 − C2
n(o)2
λ2 ≤ Cf + C1

n(o)1
λ2 or Cf + C1

n(o)1 +1
λ2 ≤

R′
2 − C2

n(o)2 +1
λ2 , an optimal price pwould not exist.
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A price scheme, if existent, is similar to collecting a fee from one side of agents and redis-
tributing the same amount to the other side as a subsidy. A fee/subsidy policy is more flexible
in the sense that it can be applied in case agents of both the sides need a subsidy, or both the
sides were levied a toll (in such a case, a price scheme does not exist). Furthermore, the col-
lected fee from one side of agents (if applicable) might not necessarily be wholly transferred
as a subsidy to the other side, but can be used for redistribution of income or other social
purposes.

Remark 3.2.2. Depending on the features of results, there might be other practical policies. For
example, if n(o)1 ≤ n(s)1 and n(o)2 ≤ n(s)2 , one applicable policy could be to limit the buffer
capacity of both queue sides.

3.2.5 Numerical analysis

In the following experiment, we show a sensitivity analysis of social welfare and agents’ strat-
egy with respect to parking capacity parameter N in the observable case. Set λ2 = 4.4,
λ2 = 4.5, R1 = 15, R2 = 10, C1 = 3, C2 = 2, Cf = 5, p = 15, R′

2 = 25 and let N
varies from 2 to 20. The result is illustrated in Figure 3.2.2.

Figure 3.2.2: Social welfare and population-2 agents’ strategy with respect to parking capacity in the observable
case.

In the abovefigure, at each valuepoint of socialwelfare, we include the strategies of agents
that trigger the corresponding social welfare value (the first value represents the threshold
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strategy adopt by population-2 agents, while the second one represents the threshold strat-
egy adopt bypopulation-1 agents). In this example, the socially optimalwelfare first increases,
then becomes insensitivewithNwhenN gets larger. Furthermore, asN increases, the socially
optimal threshold of population-2 agents is non-increasing, while the socially optimal thresh-
old of population-1 agents is increasing from 1 to 5 and remains unchanged at 5 when N is
larger.

Meanwhile, a unimodal pattern is observed in case of self-optimization of agents. Fur-
thermore, while the self-optimal threshold of population-2 agents remained unchanged at
33, the self-optimal threshold of population-1 agents increases withN, before remaining un-
changed whenN ≥ 14.
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3.3 Model 3: Nash equilibria and optimal designs of queueing game in an
unobservable queueing systemwith one finite and one infinite end

In this section, we will derive Nash equilibria and optimize social welfare of a similar system
as in Section 3.2, but the system state is unobservable to agents.

This model is based on the following paper: Nguyen, H. Q., & Phung-Duc, T. (2022).
Supply–demand equilibria and multivariate optimization of social welfare in double-ended
queueing systems. Computers Industrial Engineering, 170, Article no. 10830642.

3.3.1 The outcomes

Let X̄ =
(
σ̄(1), σ̄(2)

)
∈ [0, 1]2 be the social profile in equilibrium, where σ̄(1) and σ̄(2) re-

spectively denote the joining probability of population-1 agents and population-2 agents.
The actual joining rate of population-1 agents is λ̄1 = σ̄(1)λ1, and that for the population-2
agents is λ̄2 = σ̄(2)λ2. Let ρ̄ = λ̄2

λ̄1
.

First, notice that X̄ =
(
σ̄(1), σ̄(2)

)
= (0, 0) is a Nash equilibrium. Under this social pro-

file, any agent who adopts a positive joining probability would receive an infinitely negative
expected payoff, so the best response is not to join.

Now we consider the case where σ̄(2) > 0. Notice that the condition ρσ̄(2) < σ̄(1) (or
equivalently ρ̄ < 1) must be satisfied. Otherwise, the system is unstable and an arbitrary
population-2 agent who adopts a strategy σ(2) = 0 would receive a payoff of 0, which is
clearly larger than that expected by any population-2 agent adopting σ̄(2) and expecting an
infinitely negative payoff. Therefore, in equilibrium, ρ̄ < 1 (also, σ̄(1) > 0),meaning that the
system is stable. By modeling the system in equilibrium as an M/M/1 queue, the expected
waiting time of a population-2 agent is

W2(σ̄(1), σ̄(2)) =
ρ̄N

λ̄1(1− ρ̄)
.

The expected waiting time of a population-1 agent is

W1(σ̄(1), σ̄(2)) =
N
λ̄2
− ρ̄ − ρ̄N+1

λ̄2(1− ρ̄)
.
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By definition of the Nash equilibria in (2.2.4),

σ̄(2) ∈ BR(2)(X̄) =


{0}, ifR2 − C2

ρ̄N

λ̄1(1− ρ̄) < 0,

[0, 1], ifR2 − C2
ρ̄N

λ̄1(1− ρ̄) = 0,

{1}, ifR2 − C2
ρ̄N

λ̄1(1− ρ̄) > 0.

Since σ̄(2) > 0, we can remove the first case leading to

σ̄(2) ∈

{1}, if R2 − C2
ρ̄N

λ̄1(1− ρ̄) > 0 (3.3.1)

(0, 1], if R2 − C2
ρ̄N

λ̄1(1− ρ̄) = 0. (3.3.2)

Similarly,

σ̄(1) ∈

{1}, if R1 − C1

(
N
λ̄2
− ρ̄− ρ̄N+1

λ̄2(1− ρ̄)

)
> 0 (3.3.3)

(0, 1], if R1 − C1

(
N
λ̄2
− ρ̄− ρ̄N+1

λ̄2(1− ρ̄)

)
= 0. (3.3.4)

Consider the following four cases.
Case 1: Combining (3.3.1) and (3.3.3), we have

σ̄(1) = σ̄(2) = 1

under the two conditions R2 − C2
ρN

λ2(1− ρ) > 0 and R1 − C1

(
N
λ2 −

ρ− ρN+1

λ2(1− ρ)

)
> 0. In this

equilibrium, both the populations of agents join the system at full potential rates and find
positive payoffs.

Case 2: Combining (3.3.2) and (3.3.3), we have σ̄(1) = 1 and

R2 − C2
ρ̄N

λ̄1(1− ρ̄)
= 0. (3.3.5)

Consider the function

U2(σ̄(2)) = R2 − C2
ρ̄N

λ̄1(1− ρ̄)
,
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where σ̄(1) = 1, 0 ≤ σ̄(2) ≤ 1, ρ̄ = σ̄(2)
σ̄(1) < 1.

We have

U′
2(σ̄(2)) = −C2

(Nλ1 − (N− 1)λ2σ̄(2))σ̄(2)
N−1

(λ1 − λ2σ̄(2))2
.

Since λ1 > λ2 and 0 ≤ σ̄(2) ≤ 1, we haveNλ1− (N− 1)λ2σ̄(2) > 0, and thus,U′
2(σ̄(2)) < 0

for 0 < σ̄(2) ≤ 1. Additionally,U′
2(σ̄(2)) = 0 for σ̄(2) = 0. Therefore, the functionU2(σ̄(2))

is decreasing in σ̄(2) in [0, 1]. This result indicates that the expected utility of each population-
2 agent decreases if population-2 agents join the system at a higher rate. This is intuitive
becausewhenpopulation-2 agents join the systemmore frequently, the expected population-
2 agent queue length increases. Thus, the expected waiting time of the population-2 agents
in the system increases.

Since U2(σ̄(2)) is decreasing in [0, 1], we have U2(1) ≤ U2(σ̄(2)) = 0. Also, because
U2(0) = R2 > 0, equation (3.3.5) must have a unique root σ̃(2) that satisfies 0 < σ̃(2) ≤ 1.

This equilibrium comes under the conditionR1 − C1

(
N
λ̄2
− ρ̄− ρ̄N+1

λ̄2(1− ρ̄)

)
> 0, where λ̄2 =

σ̃(2)λ2 and ρ̄ = σ̃(2)λ2
λ1 .

In this equilibrium, the population-1 agents join the system at the full potential rate,
while the population-2 agents join at a rate at which their expect payoff is 0.

Case 3: Combining (3.3.1) and (3.3.4), we have σ̄(2) = 1 and

R1 − C1

(
N
λ̄2
− ρ̄ − ρ̄N+1

λ̄2(1− ρ̄)

)
= 0 (3.3.6)

when σ̄(2) = 1.
Consider the function

U1(σ̄(1)) = R1 − C1

(
N
λ̄2
− ρ̄ − ρ̄N+1

λ̄2(1− ρ̄)

)
,

where σ̄(2) = 1, 0 ≤ σ̄(1) ≤ 1, ρ̄ = σ̄(2)λ2
σ̄(1)λ1

< 1.
Note that

U′

1(σ̄(1)) = −C1
ρ[σ̄(1)(σ̄(1)N − ρN)−NρN(σ̄(1) − ρ)]

λ2(σ̄(1) − ρ)2σ̄(1)N+1 .
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Consider the function h(σ̄(1)) = σ̄(1)(σ̄(1)N − ρN)−NρN(σ̄(1) − ρ) defined over [ ρ, 1]. We
have h′

(σ̄(1)) = (N + 1)(σ̄(1)N − ρN) > 0 for σ̄(1) ∈ ( ρ, 1], which implies that h(σ̄(1)) is
an increasing function with respect to σ̄(1) on [ ρ, 1]. Therefore, h(σ̄(1)) > h( ρ) = 0 for any
σ̄(1) ∈ ( ρ, 1], which implies that U′

1(σ̄(1)) < 0 on ( ρ, 1]. Thus, U1(σ̄(1)) is decreasing in σ̄(1)

on [ ρ, 1].
This equilibrium comes under the condition R2 − C2

ρ̄N

λ̄1(1− ρ̄) > 0, where λ̄1 = σ̃(1)λ1
and ρ̄ = λ2

σ̃(1)λ1
.

In this equilibrium, population-2 agents join the system at the full potential rate, while
population-1 agents join at a rate at which their expected payoff is 0.

Case 4: Combining (3.3.2) and (3.3.4), we have
R2
C2

=
ρ̄N

λ̄1(1− ρ̄) ,

R1
C1

= N
λ̄2
− ρ̄− ρ̄N+1

λ̄2(1− ρ̄) ,
(3.3.7)

with 0 < σ̄(1), σ̄(2) ≤ 1, which yields

R1C2

R2C1
=

N
λ̄2
· λ̄1(1− ρ̄)

ρ̄N
− ρ̄ − ρ̄N+1

λ̄2(1− ρ̄)
· λ̄1(1− ρ̄)

ρ̄N
.

Let φ = 1
ρ̄ , φ > 1. After some calculations, we obtain

NφN+1 − (N+ 1)φN + 1− R1C2

R2C1
= 0.

Consider the function g(φ) = NφN+1 − (N + 1)φN + 1− R1C2
R2C1

defined over [1,+∞). We
have g′(φ) = N(N + 1)φN−1(φ − 1) > 0 on (1,+∞). Therefore, g(φ) is continuously
increasing in [1,+∞). Also, notice that g(1) = −R1C2

R2C1
< 0 and limφ→+∞ f(φ) = +∞.

Thus, (3.3.7) always has a unique solution φ̃ in (1,+∞). Now, set ρ̃ = 1
φ̃ , then ρ̄ = ρ̃.

Substituting into (3.3.7), and replacing λ̄1 = σ̄(1)λ1 and λ̄2 = σ̄(2)λ2, we obtain

σ̄(1) = σ̂(1) =
C2

R2
· ρ̃N

1− ρ̃
· 1
λ1
,
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and
σ̄(2) = σ̂(2) =

C1

R1

(
N− ρ̃ − ρ̃N+1

1− ρ̃

)
1
λ2
.

Furthermore, recalling the conditions 0 < σ̄(1), σ̄(2) ≤ 1 and ρσ̄(2) < σ̄(1), we should
have

• C2
R2
· ρ̃N
1− ρ̃ ·

1
λ1 ≤ 1,

• C1
R1

(
N− ρ̃− ρ̃N+1

1− ρ̃N

)
1
λ2 ≤ 1, and

• C1
R1

(
N− ρ̃− ρ̃N+1

1− ρ̃N

)
< C2

R2
· ρ̃N
1− ρ̃ .

In this equilibrium, both the populations join the system with a probability less than or
equal to 1, at which joining agents find an expected payoff of 0.

It should be noted that the three equilibria (1, 1), (1, σ̃(2), ) and (σ̃(1), 1) occur under
unique conditions and are mutually exclusive. As a result, there may exist at most three equi-
libria: (0, 0), (σ̂(1), σ̂(2)) and one of the three equilibria (1, 1), (1, σ̃(2)), (σ̃(1), 1).

Remark 3.3.1 (Equilibrium selection). Any one of the equilibria may occur. The selection of
one equilibriumdepends onhow the agents are advisedand the belief of both sides in the behavior
of each other. For example, the equilibrium (0, 0)may occur when the system is suspended and
both the agent populations know that they cannot use the service at that platform. The problem
of equilibrium selection, which has been thoroughly analyzed in previous works 16, is outside the
scope of this research, but will be briefly discussed in a later section (3.3.2).

Remark 3.3.2 (A Cournot model). The unobservable case of two-sided strategic queueing can
also be modeled as a Cournot game, where the joining probability of one side can be seen as a
reaction function of the joining probability of the other side. We then reach equilibria by letting
two reaction functions cross each other.

Optimization

Assume that the population-1 agents and population-2 agents adopt strategies σ(1) and σ(2),
respectively. The actual joining rate of population-1 agents is λ̂1 = σ(1)λ1, and that of
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population-1 agents is λ̂2 = σ(2)λ2. Assume that the utility of balking population-1 agents
and population-2 agents is negligible. The expected social welfare is then a function of two
variables σ(1) and σ(2) as follows.

SW(σ(1), σ(2)) = (R1 + R2)λ2σ(2) − C2L1(σ(1), σ(2))− C1L2(σ(1), σ(2)),

whereL1 andL2 denote the expected queue lengths of population-1 and population-2 agents
per unit time. Note that for any σ(1), σ(2) such that ρσ(2) ≥ σ(1), we have ρ̂ = λ̂2

λ̂1
> 1. Thus

L2(σ(1), σ(2)) = +∞ and L1(σ(1), σ(2)) = 0 and SW(σ(1), σ(2)) = −∞. Therefore, we
only consider the case where ρσ(2) < σ(1). Under this condition, the actual joining rate
of population-1 agents is λ̂2 50. The problem becomes a multivariate optimization problem
where we try to maximize

SW(σ(1), σ(2)) = (R1 + R2)λ2σ(2) − C2

(
σ(2)λ2
σ(1)λ1

)N+1

1− σ(2)λ2
σ(1)λ1

− C1

N−
σ(2)λ2
σ(1)λ1

−
(

σ(2)λ2
σ(1)λ1

)N+1

1− σ(2)λ2
σ(1)λ1

 ,

Under the constraints 0 < σ(1), σ(2) ≤ 1, and ρσ(2) < σ(1).
Without modifications, the above problem looks complicated and does not seem to be

solvable. Therefore, we rewrite the problem as maximizing

SW(λ̂1, ρ̂) = (R1 + R2) ρ̂λ̂1 − C2
ρ̂N+1

1− ρ̂
− C1

(
N− ρ̂ − ρ̂N+1

1− ρ̂

)
,

under the constraints 0 < ρ̂ < 1, λ̂1 ≤ λ1 and ρ̂λ̂1 ≤ λ2.
For any fixed value of ρ̂, we have

∂SW(λ̂1, ρ̂)
∂ λ̂1

= (R1 + R2) ρ̂ > 0,

which implies that SW(λ̂1, ρ̂) is strictly increasing in λ̂1. Since λ̂1 ≤ λ2 and ρ̂λ̂1 ≤ λ2, we
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obtain
max SW(λ̂1, ρ̂) = max SW

(
min

{
λ1,

λ2
ρ̂

}
, ρ̂
)
.

This implies

max SW(λ̂1, ρ̂) = max

{
max
ρ̂∈(0, ρ]

SW (λ1, ρ̂) , max
ρ̂∈[ ρ,1)

SW
(
λ2
ρ̂
, ρ̂
)}

.

Remark 3.3.3. Theabove result intuitivelymeans that the optimal value of socialwelfare occurs
only if either one of the two sides join the system at the full rate.

Since SW(λ1, ρ̂) and SW
(

λ2
ρ̂ , ρ̂
)
are continuous with respect to ρ̂ on (0, ρ] and [ ρ, 1)

respectively, we can find their maximum by comparing all of their values at critical points
which are obtained by solving

dSW(λ1, ρ̂)
d ρ̂

=

(C1 + C1)Nρ̂N+1 − (C1 + C2)(N+ 1) ρ̂N + (R1 + R2)λ1 ρ̂2 − 2(R1 + R2)λ1 ρ̂ + (R1 + R2)λ1 + C1

(1− ρ̂)2

= 0

on (0, ρ], and

dSW
(

λ2
ρ̂ , ρ̂
)

d ρ̂
=

(C1 + C2)Nρ̂N+1 − (C1 + C2)(N+ 1) ρ̂N + C1

(1− ρ̂)2
= 0

on [ ρ, 1).
We can see that both equations above are equivalent to univariate polynomial equations

and are computationally solvable. After finding the optimal values of λ̂1 and ρ̂, we can obtain
the optimal (σ(1)(o), σ(2)(o)) by assigning σ(1) = λ̂1

λ1 and σ
(2) =

ρ̂λ̂1
λ2 .
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3.3.2 Optimal policies

Toll fee/Subsidy

As mentioned in Remark 3.3.3, the socially optimal strategies (σ(1)(o), σ(2)(o))may take one
of the two forms: (σ(1)(o), 1)or (1, σ(2)(o)). Assume that socialwelfare ismaximized at (σ(1)(o), 1)
(the other case can be treated similarly).

First, we consider imposing fees or granting subsidies topopulation-1 agents andpopulation-
2 agents denoted by θ1 and θ2, respectively. If positive, these amounts are defined as a fee.
Otherwise, they are defined as a subsidy. For (σ(1)(o), 1) to become the system equilibrium,
θ1 and θ2 must satisfy

R1 − C1W1(σ(1)
(o)
, 1)− θ1 = 0

and
R2 − C2W2(σ(1)

(o)
, 1)− θ2 ≥ 0.

In other words, we have  θ1 = R1 − C1W1(σ(1)
(o)
, 1),

θ2 ≤ R2 − C2W2(σ(1)
(o)
, 1).

Intervention pricing

Assume that the price p can be intervened and adjusted properly. Then, the service price
should simultaneously satisfy the following conditionsR′

2 − p− C2W2(σ(1)
(o)
, 1) ≥ 0,

p− Cf − C1W1(σ(1)
(o)
, 1) = 0,

which is equivalent to  p = Cf + C1W1(σ(1)
(o)
, 1),

p ≤ R′
2 − C2W2(σ(1)

(o)
, 1).
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In this approach, there exists a single optimal value for p at which social welfare is maxi-
mized. However, if Cf + C1W1(σ(1)

(o)
, 1) > R′

2 − C2W2(σ(1)
(o)
, 1), this approach becomes

infeasible.

Remark 3.3.4 (AStackelbergmodel). Wehave discussed a socially optimal price range includ-
ing a price ceiling and a price floor set by the platformmanager (or the government). Consider-
ing that sellers are the ones who decide the fare (under regulations, if any), this can be modeled
similarly as a two-stage Stackelberg game. In the first stage, the sellers decide the price within
the price range set in advance. In the second stage, the sellers and buyers choose whether to join
the system or not. Since the joining probabilities of the sellers and buyers are unchanged within
the given price range, with the advantage of the first mover, in the first stage, the sellers will
choose the price at the upper bound to maximize their utility. Consequently, in this scenario, the
equilibrium price is the ceiling price.

Brief discussion on how the system equilibrates

Note that the above policies only provide a necessary condition for the socially optimal strate-
gies (σ(1)(o), σ(2)(o)) to become an equilibrium, but not guarantee that both populations of
agents choose to act on that equilibrium. There might exist other equilibria even if the opti-
mal fees/subsidies/prices are set from the beginning.

Assume that at an arbitrary time, the system is at social profile (σ(1), σ(2)), where σ(1)

and σ(2), respectively, show the proportion of population-1 and population-2 agents joining
the system at the time being considered. In case there exist multiple Nash equilibria, the
convergence of the system depends on the initial social profile.

Let us take an example. Assume there exist 3 equilibria, (1, σ̃1), (σ̄∗(1), σ̄∗(2)), and (0, 0)
where 0 < σ̄∗(2) < 1 and 0 < σ̄∗(1) < σ̃(1) (later we can see that this case can actually
happen in a numerical example). Consider an arbitrary social profile (σ(2), σ(1)) such that
σ̄∗(2) < σ(2) < 1, 0 < σ(1) < σ̄∗(1). If U2(σ(2), σ(1)) < 0 and U1(σ(1), σ(2)) > 0, the
population-2 agentswill keepbalkingwhile the population-1 agents keep joining. Thismakes
the equilibriumat (σ̄∗(1), σ̄∗(2))more likely tooccur. Contrarily, for a social profile (σ(1), σ(2))
where σ̄∗(2) < σ(2) < 1, σ̄∗(1) < σ(1) < σ̃(1), U1(σ(1), σ(2)) > 0, andU2(σ(1), σ(2)) > 0, it is
more likely that the systemmay end up at the equilibrium (σ̃(1), 1).
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Practically, the equilibrium at (1, 1) is relatively less difficult to attain if sufficient incen-
tives and promotions are provided. Also, taking advantage of the feature stated in Remark
3.3.3, the socially optimalwelfare is obtainedwhenoneof the two sides joins the systemat full
potential rate. One may think about attaining the socially optimal equilibrium converging
from the social profile (1, 1) by implementing the following two-step strategy.

Step 1: Attract all potential agents at the launching state of the platform. Technically,
similar proposed policies can be implemented to ensure thatU1(1, 1) > 0 andU2(1, 1) > 0.
Platform companies, such as Uber and Lyft, offer generous discounts to both the customers
and riders, in the combination of various promotion campaigns, at the time of market en-
trance. This also enables the evaluationof λ1 and λ2, which represent the full potential supply
and demand, respectively.

Step 2: Adjust the price/subsidy/fee (as proposed in Section 3.3.2 and Section 3.3.2 )
such that U1(σ̃(1), 1) = 0 and U2(σ̃(1), 1) > 0. Consequently, this makes U1(1, 1) < 0, so
the joiningprobability converges from1 to σ̃(1), while population-2 agents still adopt σ(2) = 1
as they still find non-negative utility when the joining rate of population-1 agents decreases
to σ̃(1).

3.3.3 Numerical analysis

In this section, we present results of numerical examples that help to have a practical view
about the agent behavior in different scenarios and propose some recommendations for poli-
cies that can be made to optimize social welfare in the example.

In the example, we numerically show all results that were derived in the previous sections.
Set λ1 = 4.5, λ2 = 4, N = 25, R1 = 15, R2 = 10, C1 = 3, C2 = 2, Cf = 5, p = 15,
R′

2 = 25. Results are summarized in Table 3.1.
From the results, we can draw the following conclusions.

• In the observable case, the strategy thresholds of socially concerned population-1 and
population-2 agents drivers are smaller than when they act selfishly, which means we
need to impose extra fees θ1 andonpopulation-1 agents and θ2 onpopulation-2 agents.
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System setting Type of
behavior

Strategy of
population 1

Strategies of
population 2 Social welfare

Observable
Selfishly
optimal n1 = 13 n2 = 33 76.538

Socially
optimal n1 = 3 n2 = 11 89.876

Unobservable
Selfishly
optimal

σ(1) = 0.951 σ(2) = 1 54.711
σ(1) = 0.509 σ(2) = 0.557 −0.042
σ(1) = 0 σ(2) = 0 0

Socially
optimal σ(1) = 0.946 σ(2) = 1 55.296

Table 3.1: Strategies of the two populations and social welfare in different scenarios.

Using results (3.2.4) and (3.2.5), we can identify the range of those fees as below

7 < θ1 < 7.75,

and
9.667 < θ2 < 10.111.

As discussed, there is another approach that aims to adjust the service price. Using
result (3.2.6), we obtain

p ∈ (24.667, 25.111) ∩ (7.25, 8) = ∅,

which means that this approach cannot be applied in this case.

Another applicable policy is to limit the population-2 agent buffer at 11, and limit the
parking capacity at 3 (according to Remark 3.2.2).

• In theunobservable case, there exist three equilibria of the systemwhen thebehavior of
agents is selfishly optimal. Social welfare ismaximizedwhen all potential population-2
agents join the system and population-1 agents joinwith a probability of 0.946. There
are two ways to make (σ(1)(o), σ(2)(o)) = (0.946, 1) become an equilibrium. First,
plugging in numerical values of the parameters into (3.3.8), we obtain θ1 = 0.472
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and θ2 ≤ 13.353. However, as U2(0.946, 1) > 0, it is not necessary to impose any
fee or grant any subsidy to population-2 agents. Meanwhile, each population-1 agent
should be levied a fixed fee of 0.472.
The second solution is to fix a price at which (σ(1)(o), σ(2)(o)) = (0.946, 1) becomes
an equilibrium. Using result (3.2.6), we obtain p = 14.528,

p ≤ 28.352,

whichfinally yieldsp = 14.528. This is the fixedpricewhich is the necessary condition
to maximize the social welfare.

• Social welfare in the observable case is higher than that in the unobservable case, re-
gardless of agent behavior (selfishly optimal or socially optimal). Therefore, an observ-
able system is recommended if the priority is the total utility of all agents participating
in the system.

In the following example, we show a sensitivity analysis of the social welfare and agent
strategy with respect to the parking capacity parameterN in the unobservable case. Set λ1 =
4.4, λ2 = 4.5,R1 = 15,R2 = 10, C1 = 2, C2 = 3, Cf = 5, p = 15,R′

2 = 25 and letN vary
from 2 to 40. The result is illustrated in Figure 3.3.1.
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Figure 3.3.1: Social welfare and population-2 agent strategy with respect to the parking capacity in the
unobservable case.

For each value ofN, there always exist threeNash equilibria, of which one equilibrium is
reached when no agents join the system and triggers zero social welfare. Since there are mul-
tiple Nash equilibria in each case, we focus on the strategies that optimize the social welfare.
In the above figure, at each value point of the optimal social welfare, we include the optimal
strategies of agents that trigger the corresponding social welfare value. We see that the social
welfare is maximized when no population-1 agents balk in all the considered cases. The max-
imum optimal social welfare that can be reached is observed atN = 4, corresponding to the
smallest joining probability of the population-2 agents. As N becomes larger, the optimal
social welfare is obtained with a larger joining probability of population-2 agents.
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4
Population games in double-ended queues

with nonzero matching times

Thischapterdealswithmodelingdouble-endedqueues inwhichmatching times arenonzero,
which applies in systems in which the matching times cannot dismissed as negligible; for ex-
ample, passenger-taxi stations at which passenger often come with bulky luggage and need
time to communicate with taxi drivers.
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The incorporation of matching times in the models considered in this chapter requires
the addition of at least one more dimension in states of the Markov chains that describe the
system. Although if a social profile is a Nash equilibrium can still be verified by referring
to Definition 2.2.4, some explicit features of Nash equilibria as in Section 3.1 may become
impossible to derive. In this chapter, we focus on deriving the rational outcome, i.e., the
Subgame perfect Nash equilibria of the queueing games in the observable setting.

4.1 Model4: Therationaloutcomeandoptimaldesignsofaone-population
queueing game in an observable queueing systemwithmultiple match-
ing points, one finite end and one infinite end

Thismodel is based on the following paper: Nguyen,H.Q.&Phung-Duc, T. (2022). Strate-
gic customer behavior and optimal policies in a passenger–taxi double-ended queueing sys-
tem with multiple matching points and nonzero matching times. Queueing Systems, 102,
481–50841.

4.1.1 Preliminaries

Consider a societyP = {1, 2} that consists of twopopulations of agents arriving at a double-
ended queueing system containing S identical matching points, based on Poisson processes
with rates λ1 and λ2. The two populations of agents represent a market with a supply side
(population-1) and a demand side (population-2). Assume that the demand side is strategic
and the supply side is not. Matching is performedon a first-come-first-served basis by a pair of
a population-1 agent and a population-2 agent in a random time that follows an exponential
distribution with rate μ. The reward upon the completion of a service and the waiting cost
perunit timeof apopulation-i agent are denotedbyRi andCi (i = 1, 2), respectively. Assume
that

R2 ≥
C2

μ
.

This guarantees that population-2 agents are willing to join an empty queue.
Thewaiting area (including Smatching points) can accommodate atmostK population-

1 agents at the same time (K ≥ S). When the waiting area reaches its maximum capacity,
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the arrivals of population-1 agents are blocked, and they leave immediately. We assume that
the buffer capacity of population-2 agents is infinite. If a population-2 agent arrives when
all matching points are busy or there are no population-1 agents available for matching, the
population-2 agent will wait in the queue under a FCFS (first-come-first-served) service dis-
cipline.

The Markov chain describing the system is described by two variables, X1(t) and X2(t),
that, respectively, represent thenumberofpopulation-1 agents and thenumberofpopulation-
2 agents present in the systemat time t. The state space is givenbyS = {s = (x1, x2)| (x1, x2) ∈
N2}. In a non-strategic queueing scenario, the system’s transition diagram can be illustrated
as in Figure 4.1.1.

Figure 4.1.1: Transition diagram in the non-strategic scenario.

A single-server version of this model was thoroughly investigated in51, in which the au-
thors derived the stability condition and sojourn time distributions of both population-1
agents and population-2 agents. Furthermore, the stability condition of the multiserver sys-
tem with the same setting was derived in36 as follows.

λ2 <

(
S−1∑
x1=0

x1πx1 + S
K∑

x1=S

πx1

)
μ,
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whereπx1 denotes theprobability that there are x1 population-1 agents in anM/M/S/Kqueue
with arrival rate λ1 and service rate μ.

In the current research, we add economic parameters and study the system in equilib-
rium.

4.1.2 The rational outcome

In this section, we derive the strategic behavior of population-2 agents. Let

σ(2) =


σ(2)(0,0) σ(2)(0,1) . . .

σ(2)(1,0) σ(2)(1,1) . . .
...

... . . .

 ,

where σ(2)(x1,x2) denotes the joining probability of population-2 agents when they observe state
(x1, x2).

The transition diagram in case population-2 agents are strategic can be illustrated as in
Figure 4.1.2.

Figure 4.1.2: Transition diagram in the strategic scenario.

The dashed lines in the figure indicate that the corresponding transition rate remains
unknown (since the transition rates depend on the agents’ joining strategies).
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Note that the sojourn time can be decomposed into waiting time and service time, where
the expected service time is constant at 1

μ , while the expected waiting time depends on the
current system state. Next, since population-1 agents are not strategic, the waiting time of
a population-2 agent does not depend on the joining strategy of later comers. Denote by
T(x̂2, x1) the expected waiting time of a population-2 agent observing a system state s =

(x̂2, x1) upon arrival, where x1 represents the current number of population-1 agents in the
system, and x̂2 represents the current “position”of thepopulation-2 agent. If x̂2 = 0 then the
population-2 agent is currentlymatching at amatchingpoint. If x̂2 > 0 then thepopulation-
2 agent is x̂2 steps away from thematching points; in other words, x̂2− 1 is the current queue
length (which does not include population-2 agents in matching) being observed. We need
to calculate all the values of T(x̂2, x1) to investigate the strategic behavior of population-2
agents. To this end, we use first-step analysis with one-step transitions from state (x̂2, x1)
being illustrated in Fig. 4.1.3.

((a)) x1 = 0 ((b)) x1 = K

((c)) 0 < x1 < S ((d)) x1 = S ((e)) S < x1 < K

Figure 4.1.3: Transition diagrams from state (x̂2, x1) (x̂2 > 0)with transition probabilities

It immediately follows that T(0, x1) = 0 for x1 > 0. When x̂2 > 0, we can derive
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T(x̂2, x1) as follows.

T(x̂2, x1) =



1
λ1 + T(x̂2 − 1, x1 + 1) if x1 = 0,

1
λ1+x1μ +

λ1
λ1+x1μT(x̂2 − 1, x1 + 1) + x1μ

λ1+x1μT(x̂2, x1 − 1) if 0 < x1 < S,

1
λ1+Sμ +

λ1
λ1+SμT(x̂2, x1 + 1) + Sμ

λ1+SμT(x̂2, x1 − 1) if x1 = S,

1
λ1+Sμ +

λ1
λ1+SμT(x̂2, x1 + 1) + Sμ

λ1+SμT(x̂2 − 1, x1 − 1) if S < x1 < K,

1
Sμ + T(x̂2 − 1, x1 − 1) if x1 = K.

(4.1.1)
Inwhat follows, we derive population-2 agents’ strategies in the formof amultithreshold

vector of maximum positions (at which they are willing to join) corresponding to a specific
number of population-1 agents present in the system in Theorem 4.1.1, which is obtained by
Propositions 4.1.1 and 4.1.3. We present four propositions that shownoticeable properties of
expected waiting times and the derived threshold strategy. To be more specific, Proposition
4.1.1 shows the monotone property of T(x̂2, x1) with respect to x̂2. Proposition 4.1.2 shows
the monotone property of T(x̂2, x1) with respect to x1, which is obtained by Lemmas 4.1.1–
4.1.3. Proposition 4.1.3 shows that the expected waiting time reaches infinity as x̂2 reaches
infinity. Proposition 4.1.4 shows the monotone property of thresholds.

Proposition 4.1.1 (Monotone property of expected waiting times with respect to the posi-
tion). T(x̂2, x1) ≤ T(x̂2 + 1, x1) for any fixed value of x1.

Proof. Wewill prove Proposition 4.1.1 by induction on x̂2. The statement is equivalent to

T(x̂2, x1) ≤ T(x̂2 + 1, x1), (4.1.2)

for any fixed values of x1.
Since T(0, x1) = 0, it is obviously implied from the recursive formulas that T(0, x1) ≤

T(1, x1); thus, (4.1.2) holds with x̂2 = 0. Assuming that (4.1.2) holds with x̂2 = q − 1 for
any integer q ≥ 1, which indicates, for any fixed value of x1,

T(q− 1, x1) ≤ T(q, x1). (4.1.3)
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We show that it holds with x̂2 = q, which indicates that we need to prove that, for any
fixed value of x1,

T(q, x1) ≤ T(q+ 1, x1),

by considering the following 5 cases.

• When x1 = K, from (4.1.1) we have

T(q, x1) =
1
Sμ

+ T(q− 1,K− 1), (4.1.4)

and
T(q+ 1, x1) =

1
Sμ

+ T(q,K− 1). (4.1.5)

Since T(q− 1,K− 1) ≤ T(q,K− 1) by assumption (4.1.3), from (4.1.4) and (4.1.5),
we obtain

T(q, x1) ≤ T(q+ 1, x1) for x1 = K. (4.1.6)

• When S < x1 < K, from (4.1.1) we have

T(q, x1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, x1 + 1) +
Sμ

λ1 + Sμ
T(q− 1, x1 − 1),

and

T(q+ 1, x1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q+ 1, x1 + 1) +
Sμ

λ1 + Sμ
T(q, x1 − 1).

Now, due to (4.1.6), it is seen that the inequality T(q, x1) ≤ T(q + 1, x1) holds for
x1 = K− 1 because

T(q,K− 1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q,K) +
Sμ

λ1 + Sμ
T(q− 1,K− 2)

≤ 1
λ1 + Sμ

+
λ1

λ1 + Sμ
T(q+ 1,K) +

Sμ
λ1 + Sμ

T(q,K− 2)

= T(q+ 1,K− 1).
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Then, it is easily obtained by induction on x1, that

T(q, x1) ≤ T(q+ 1, x1) for S < x1 < K. (4.1.7)

• When x1 = 0, from (??) we have

T(q, 0) =
1
λ1

+ T(q− 1, 1), (4.1.8)

and
T(q+ 1, 0) =

1
λ1

+ T(q, 1). (4.1.9)

Since T(q − 1, 1) ≤ T(q, 1) because of the inductive assumption, from (4.1.8) and
(4.1.9) we obtain

T(q, x1) ≤ T(q+ 1, x1) for x1 = 0. (4.1.10)

• When 0 < x1 < S, from (4.1.1) we have

T(q, x1) =
1

λ1 + x1μ
+

λ1
λ1 + x1μ

T(q− 1, x1 + 1) +
x1μ

λ1 + x1μ
T(q, x1 − 1),

and

T(q+ 1, x1) =
1

λ1 + x1μ
+

λ1
λ1 + x1μ

T(q, x1 + 1) +
x1μ

λ1 + x1μ
T(q+ 1, x1 − 1),

Now, due to (4.1.10), it is seen that the inequality T(q, x1) ≤ T(q + 1, x1) holds for
x1 = 1 because

T(q, 1) =
1

λ1 + μ
+

λ1
λ1 + μ

T(q− 1, 2) +
μ

λ1 + μ
T(q, 0)

≤ 1
λ1 + μ

+
λ1

λ1 + μ
T(q, 2) +

μ
λ1 + μ

T(q+ 1, 0)

= T(q+ 1, 1).
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Then, it is easily obtained by induction on x1, that

T(q, x1) ≤ T(q+ 1, x1) for 0 < x1 < S. (4.1.11)

• Last, when x1 = S, from (4.1.1) we have

T(q, x1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, S+ 1) +
Sμ

λ1 + Sμ
T(q, S− 1), (4.1.12)

and

T(q+1, x1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q+1, S+1)+
Sμ

λ1 + Sμ
T(q+1, S−1). (4.1.13)

However, note that T(q, S+ 1) ≤ T(q+ 1, S+ 1) and T(q, S− 1) ≤ T(q+ 1, S− 1)
(implied from results (4.1.7) and (4.1.11)). Therefore, from (4.1.12) and (4.1.13), we
obtain

T(q, x1) ≤ T(q+ 1, x1) for x1 = S. (4.1.14)

Equations (4.1.6), (4.1.7), (4.1.10), (4.1.11), (4.1.14) complete our proof.

This result is intuitive in the sense that with the same number of population-1 agents in
the system, the farther population-2 agents are away from the matching points, the longer
they need to wait. However, looking at the recursive formulas, we can see that such a rela-
tionship betweenT(x̂2, x1) andT(x̂2+1, x1) is notmathematically trivial because thewaiting
time function is a piecewise-defined function with two variables.

Lemma 4.1.1.

T(1, x1) =


1
λ1 if 0 ≤ x1 ≤ S− 1,
λ21+(Sμ)2+λ1(Sμ)
λ1(Sμ)(λ1+Sμ) if x1 = S,

1
Sμ if S+ 1 ≤ x1 ≤ K.

Proof. We prove Lemma 4.1.1 by induction on x1.
First, note that

T(1, 0) =
1
λ1

+
λ1

λ1 + Sμ
T(0, 1) =

1
λ1
,
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and
T(1,K) =

1
Sμ

+
Sμ

λ1 + Sμ
T(0,K− 1) =

1
Sμ

.

By induction on x1, we have

T(1, x1) =
1

λ1 + x1μ
+

λ1
λ1 + x1μ

T(0, x1 − 1) +
x1μ

λ1 + x1μ
T(1, x1 − 1)

=
1

λ1 + x1μ
+

x1μ
λ1 + x1μ

· 1
λ1

=
1
λ1
,

for 1 ≤ x1 ≤ S− 1; and

T(1, x1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(1, x1 + 1) +
Sμ

λ1 + Sμ
T(0, x1 − 1)

=
1

λ1 + Sμ
+

λ1
λ1 + Sμ

· 1
Sμ

=
1
Sμ

,

for S+ 1 ≤ x1 ≤ K− 1.
Finally,

T(1, S) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(1, S+ 1) +
Sμ

λ1 + Sμ
T(1, S− 1)

=
1

λ1 + Sμ
+

λ1
λ1 + Sμ

· 1
Sμ

+
Sμ

λ1 + Sμ
· 1
λ1

=
λ21 + (Sμ)2 + λ1 (Sμ)
λ1 (Sμ) (λ1 + Sμ)

.
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It can also be noted that

T(1, S)− T(1, S− 1) =
λ21 + (Sμ)2 + λ1 (Sμ)
λ1 (Sμ) (λ1 + Sμ)

− 1
λ1

=
Sμ

λ1(λ1 + Sμ)
> 0,

and

T(1, S)− T(1, S+ 1) =
λ21 + (Sμ)2 + λ1 (Sμ)
λ1 (Sμ) (λ1 + Sμ)

− 1
Sμ

=
λ1

Sμ(λ1 + Sμ)
> 0.

This result explicitly shows expected waiting times when population-2 agents are one
step away from the matching points. When there are fewer than S population-1 agents,
population-2 agents are expected to wait for 1

λ1 units of time. When there are more than
S population-1 agents, population-2 agents are expected to wait for 1

Sμ units of time. Mean-
while, the expected waiting time for those who observe exactly S population-1 agents in the
system is higher at λ21+(Sμ)2+λ1(Sμ)

λ1(Sμ)(λ1+Sμ) units of time.
We use this result to prove the following two lemmas.

Lemma 4.1.2. For any fixed value of x̂2,

T(x̂2, x1) ≤
1
x1μ

+ T(x̂2, x1 − 1),

for 1 ≤ x1 ≤ S− 1.

Proof. We prove this lemma by induction on x̂2. We can easily see that it holds with x̂2 = 0
and x̂2 = 1 due to Lemma 4.1.1. Assume that it holds with x̂2 = q− 1 for any integer q ≥ 2.
Additionally, assume that when x̂2 = q − 1, the inequality holds in the case of x1 = S (we
show that, under the same inductive assumptions, it also holds when x̂2 = q and x1 = S later
in Proposition 4.1.2). Then, from assumptions we have
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T(q− 1, x1) ≤
1
x1μ

+ T(q− 1, x1 − 1), for 1 ≤ x1 ≤ S.

We show that the inequality holds with x̂2 = q, which indicates that we need to prove
that

T(q, x1) ≤
1
x1μ

+ T(q, x1 − 1), for 1 ≤ x1 ≤ S− 1. (4.1.15)

Assume there exists 1 ≤ x1 ≤ S− 1 such that

T(q, x1) >
1
x1μ

+ T(q, x1 − 1). (4.1.16)

From (4.1.1) we have

T(q, x1) =
1

λ1 + x1μ
+

λ1
λ1 + x1μ

T(q− 1, x1 + 1) +
x1μ

λ1 + x1μ
T(q, x1 − 1)

<
1

λ1 + x1μ
+

λ1
λ1 + x1μ

T(q− 1, x1 + 1) +
x1μ

λ1 + x1μ

(
T(q, x1)−

1
x1μ

)
=

λ1
λ1 + x1μ

T(q− 1, x1 + 1) +
x1μ

λ1 + x1μ
T(q, x1),

which is equivalent to
T(q, x1) < T(q− 1, x1 + 1). (4.1.17)

On the other hand, we also have

T(q− 1, x1 + 1) <
1

(x1 + 1)μ
+ T(q− 1, x1), (4.1.18)

according to the inductive assumption. From (4.1.16), (4.1.17) and (4.1.18), we obtain

1
x1μ

+ T(q, x1 − 1) <
1

(x1 + 1)μ
+ T(q− 1, x1 + 1),

which implies
T(q, x1 − 1) < T(q− 1, x1). (4.1.19)
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Additionally, from (4.1.1) we have

T(q, x1 − 1)

=
1

λ1 + (x1 − 1)μ
+

λ1
λ1 + (x1 − 1)μ

T(q− 1, x1) +
(x1 − 1)μ

λ1 + (x1 − 1)μ
T(q, x1 − 2)

>
1

λ1 + (x1 − 1)μ
+

λ1
λ1 + (x1 − 1)μ

T(q, x1 − 1) +
(x1 − 1)μ

λ1 + (x1 − 1)μ
T(q, x1 − 2)

(due to (4.1.19)). This implies

T(q, x1 − 1) >
1

(x1 − 1)μ
+ T(q, x1 − 2).

By induction on x1, it finally implies

T(q, 1) >
1
μ
+ T(q, 0). (4.1.20)

However,

T(q, 1)− T(q, 0) =
(

1
λ1 + μ

+
λ1

λ1 + μ
T(q− 1, 2) +

μ
λ1 + μ

T(q, 0)
)
− T(q, 0)

=
1

λ1 + μ
+

λ1
λ1 + μ

T(q− 1, 2)− λ1
λ1 + μ

T(q, 0)

=
1

λ1 + μ
+

λ1
λ1 + μ

T(q− 1, 2)− λ1
λ1 + μ

(
1
λ1

+ T(q− 1, 1)
)

=
λ1

λ1 + μ
(T(q− 1, 2)− T(q− 1, 1))

≤ λ1
λ1 + μ

· 1
2μ

(due to the inductive assumption)

<
1
μ
,

which contradicts (4.1.20). This indicates that (4.1.15) holds and thus completes the proof.
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Lemma 4.1.3. For any fixed value of x̂2,

T(x̂2, x1 − 1) ≤ 1
λ1

+ T(x̂2, x1),

for S+ 2 ≤ x1 ≤ K.

Proof. We prove this lemma by induction on x̂2. We can easily see that it holds with x̂2 = 0
and x̂2 = 1 due to Lemma 4.1.1. Assume that it holds with x̂2 = q− 1 for any integer q ≥ 2.
Additionally, assume that when x̂2 = q − 1, the inequality holds in the case of x1 = S (we
will show that, under the same inductive assumptions, it also holds when x̂2 = q and x1 = S
later in Proposition 4.1.2). Then, from assumptions we have

T(q− 1, x1 − 1) ≤ 1
λ1

+ T(q− 1, x1), for S+ 1 ≤ x1 ≤ K.

We show that the inequality holds with x̂2 = q, which indicates that we need to prove
that

T(q, x1 − 1) ≤ 1
λ1

+ T(q, x1), for S+ 2 ≤ x1 ≤ K. (4.1.21)

First, notice that

T(q,K− 1)− T(q,K)

=

(
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q,K) +
Sμ

λ1 + Sμ
T(q− 1,K− 2)

)
− T(q,K)

=
1

λ1 + Sμ
− Sμ

λ1 + Sμ
T(q,K) +

Sμ
λ1 + Sμ

T(q− 1,K− 2)

=
1

λ1 + Sμ
− Sμ

λ1 + Sμ

(
1
Sμ

+ T(q− 1,K− 1)
)
+

Sμ
λ1 + Sμ

T(q− 1,K− 2)

=
Sμ

λ1 + Sμ
(T(q− 1,K− 2)− T(q− 1,K− 1))

≤ Sμ
λ1 + Sμ

· 1
λ1
(due to the inductive assumptions)

<
1
λ1
,

which indicates that (4.1.21) holds with x1 = K. Now, we make an inductive assumption on
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x1; and for any S+ 2 ≤ x1 ≤ K− 1, consider the following

T(q, x1 − 1)− T(q, x1)

=

(
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, x1) +
Sμ

λ1 + Sμ
T(q− 1, x1 − 2)

)
−
(

1
λ1 + Sμ

+
λ1

λ1 + Sμ
T(q, x1 + 1) +

Sμ
λ1 + Sμ

T(q− 1, x1 − 1)
)

=
λ1

λ1 + Sμ
(T(q, x1)− T(q, x1 + 1)) +

Sμ
λ1 + Sμ

(T(q− 1, x1 − 2)− T(q− 1, x1 − 1))

≤ λ1
λ1 + Sμ

· 1
λ1

+
Sμ

λ1 + Sμ
· 1
λ1

(due to the inductive assumptions)

=
1
λ1
.

We use these results to prove the following proposition.

Proposition 4.1.2 (Monotone property of expected waiting times with respect to the ob-
served number of population-1 agents). T(x̂2, x1) ≤ T(x̂2, x1 + 1) for x1 = 0, 1, ..., S − 1,
and T(x̂2, x1) ≥ T(x̂2, x1 + 1) for S, S+ 1, ...,K− 1.

Proof. We prove Proposition 4.1.2 by induction on x̂2. The statement is equivalent to the
following inequalities.

T(x̂2, x1) ≤ T(x̂2, x1 + 1), for 0 ≤ x1 ≤ S− 1, (4.1.22)

and
T(x̂2, x1) ≥ T(x̂2, x1 + 1), for S ≤ x1 ≤ K− 1. (4.1.23)

We already showed that (4.1.22) and (4.1.23) hold with x̂2 = 0 and x̂2 = 1 in Lemma
4.1.1. Assuming that (4.1.22) and (4.1.23) hold with x̂2 = q− 1 for any integer q ≥ 2, which
indicates that

T(q− 1, x1) ≤ T(q− 1, x1 + 1), for 0 ≤ x1 ≤ S− 1,
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and
T(q− 1, x1) ≥ T(q− 1, x1 + 1), for S ≤ x1 ≤ K− 1.

We show that it holds with x̂2 = q, which indicates that we need to prove that

T(q, x1) ≤ T(q, x1 + 1), for 0 ≤ x1 ≤ S− 1,

and
T(q, x1) ≥ T(q, x1 + 1), for S ≤ x1 ≤ K− 1.

by considering the following 5 cases.

• When x1 = 0, consider the following

T(q, 1)− T(q, 0) =
(

1
λ1 + μ

+
λ1

λ1 + μ
T(q− 1, 2) +

μ
λ1 + μ

T(q, 0)
)
− T(q, 0)

=
1

λ1 + μ
+

λ1
λ1 + μ

T(q− 1, 2)− λ1
λ1 + μ

T(q, 0)

=
1

λ1 + μ
+

λ1
λ1 + μ

T(q− 1, 2)− λ1
λ1 + μ

(
1
λ1

+ T(q− 1, 1)
)

=
λ1

λ1 + μ
(T(q− 1, 2)− T(q− 1, 1))

≥ 0 (due to the inductive assumption),

which indicates that
T(q, 0) ≤ T(q, 1). (4.1.24)

• When 1 ≤ x1 ≤ S− 2, from (4.1.1) we have

T(q, x1) =
1

λ1 + x1μ
+

λ1
λ1 + x1μ

T(q− 1, x1 + 1) +
x1μ

λ1 + x1μ
T(q, x1− 1), (4.1.25)
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and

T(q, x1 + 1) =
1

λ1 + (x1 + 1)μ
+

λ1
λ1 + (x1 + 1)μ

T(q− 1, x1 + 2)

+
(x1 + 1)μ

λ1 + (x1 + 1)μ
T(q, x1). (4.1.26)

We prove T(q, x1) ≤ T(q, x1 + 1) by contradiction. Assuming ∃x1, T(q, x1) >

T(q, x1 + 1), combining with (4.1.26) we have

T(q, x1) >
1

λ1 + (x1 + 1)μ
+

λ1
λ1 + (x1 + 1)μ

T(q−1, x1+2)+
(x1 + 1)μ

λ1 + (x1 + 1)μ
T(q, x1),

which is equivalent to

T(q, x1) >
1
λ1

+ T(q− 1, x1 + 2).

However, we also have T(q − 1, x1 + 2) ≥ T(q − 1, x1 + 1) (due to the inductive
assumption), so

T(q, x1) >
1
λ1

+ T(q− 1, x1 + 1). (4.1.27)

From (4.1.25) and (4.1.27) we obtain

T(q, x1) <
1

λ1 + x1μ
+

λ1
λ1 + x1μ

(
T(q, x1)−

1
λ1

)
+

x1μ
λ1 + x1μ

T(q, x1 − 1),

which is equivalent to
T(q, x1) < T(q, x1 − 1).

By induction on x1 (by repeating the same procedure), it finally implies

T(q, 1) < T(q, 0),

which contradicts (4.1.24) that is proved above. This contradiction indicates that

T(x̂2, x1) ≥ T(x̂2, x1 + 1), for 1 ≤ x1 ≤ S− 2. (4.1.28)
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• When x1 = K− 1, consider the following

T(q,K− 1)− T(q,K)

=

(
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q,K) +
Sμ

λ1 + Sμ
T(q− 1,K− 2)

)
− T(q,K)

=
1

λ1 + Sμ
+

Sμ
λ1 + Sμ

T(q− 1,K− 2)− Sμ
λ1 + Sμ

T(q,K)

=
1

λ1 + μ
+

Sμ
λ1 + Sμ

T(q− 1,K− 2)− Sμ
λ1 + μ

(
1
Sμ

+ T(q− 1,K− 1)
)

=
Sμ

λ1 + Sμ
(T(q− 1,K− 2)− T(q− 1,K− 1))

≥ 0 (due to the inductive assumption),

which indicates that
T(q,K− 1) ≥ T(q,K). (4.1.29)

• When S+ 1 ≤ x1 ≤ K− 2, from (4.1.1) we have

T(q, x1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, x1 + 1) +
Sμ

λ1 + Sμ
T(q− 1, x1 − 1),

and

T(q, x1 + 1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, x1 + 2) +
Sμ

λ1 + Sμ
T(q− 1, x1).

Due to the inductive assumption, we have T(q− 1, x1− 1) ≥ T(q− 1, x1); therefore,
due to (4.1.29), the inequality T(q, x1) ≥ T(q, x1 + 1) holds for x1 = K − 2. By
induction on x1, we obtain

T(q, x1) ≥ T(q, x1 + 1) for S+ 1 ≤ x1 ≤ K− 2.
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Next, we prove that T(q, S) ≥ T(q, S+ 1). From (4.1.1) we have

T(q, S) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, S+ 1) +
Sμ

λ1 + Sμ
T(q, S− 1), (4.1.30)

and

T(q, S+ 1) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, S+ 2) +
Sμ

λ1 + Sμ
T(q− 1, S).

To prove the above inequality, we show that

T(q, S− 1) ≥ T(q− 1, S). (4.1.31)

From (4.1.1) we have

T(q, S− 1)

=
1

λ1 + (S− 1)μ
+

λ1
λ1 + (S− 1)μ

T(q− 1, S) +
(S− 1)μ

λ1 + (S− 1)μ
T(q, S− 2)

≥ 1
λ1 + (S− 1)μ

+
λ1

λ1 + (S− 1)μ
T(q− 1, S)

+
(S− 1)μ

λ1 + (S− 1)μ

(
T(q, S− 1)− 1

(S− 1)μ

)
(due to Lemma 4.1.2)

=
λ1

λ1 + (S− 1)μ
T(q− 1, S) +

(S− 1)μ
λ1 + (S− 1)μ

T(q, S− 1),

which implies that (4.1.31) is true. Therefore,

T(q, S) ≥ T(q, S+ 1). (4.1.32)

From (4.1.30) and (4.1.32), we have

T(q, S) ≤ 1
λ1 + Sμ

+
λ1

λ1 + Sμ
T(q, S) +

Sμ
λ1 + Sμ

T(q, S− 1),
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which implies

T(q, S− 1) +
1
Sμ
≥ T(q, S),

and this also completes the proof of Lemma 4.1.2.

• Finally, we prove that T(q, S) ≥ T(q, S − 1). To show the above equality, first note
that

T(q, S− 1)

=
1

λ1 + (S− 1)μ
+

λ1
λ1 + (S− 1)μ

T(q− 1, S) +
(S− 1)μ

λ1 + (S− 1)μ
T(q, S− 2)

≤ 1
λ1 + (S− 1)μ

+
λ1

λ1 + (S− 1)μ
T(q− 1, S) +

(S− 1)μ
λ1 + (S− 1)μ

T(q, S− 1),

due to (4.1.28), and this implies

T(q, S− 1)− T(q− 1, S) ≤ 1
λ1
. (4.1.33)

Now, due to (4.1.33), Lemma 4.1.3 and the inductive assumptions, we have

T(q, S)− T(q, S+ 1)

=

(
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, S+ 1) +
Sμ

λ1 + Sμ
T(q, S− 1)

)
−
(

1
λ1 + Sμ

+
λ1

λ1 + Sμ
T(q, S+ 2) +

Sμ
λ1 + Sμ

T(q− 1, S)
)

=
λ1

λ1 + Sμ
(T(q, S+ 1)− T(q, S+ 2)) +

Sμ
λ1 + Sμ

(T(q, S− 1)− T(q− 1, S))

≤ λ1
λ1 + Sμ

· 1
λ1

+
Sμ

λ1 + Sμ
· 1
λ1

=
1
λ1
,

which indicates that
T(q, S) ≤ 1

λ1
+ T(q, S+ 1). (4.1.34)
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(Note that this conclusion also completes the proof of Lemma 4.1.3).

Now, due to (4.1.34), we have

T(q, S) =
1

λ1 + Sμ
+

λ1
λ1 + Sμ

T(q, S+ 1) +
Sμ

λ1 + Sμ
T(q, S− 1)

≥ 1
λ1 + Sμ

+
λ1

λ1 + Sμ

(
T(q, S)− 1

λ1

)
+

Sμ
λ1 + Sμ

T(q, S− 1)

=
λ1

λ1 + Sμ
T(q, S) +

Sμ
λ1 + Sμ

T(q, S− 1),

which implies T(q, S) ≥ T(q, S− 1).

Intuitively, at the same arbitrary position, in case the current number of population-1
agents in the system is greater than or equal to S, expected waiting times become shorter if
there are more population-1 agents in the system. Nevertheless, we see an opposite associa-
tion between the number of population-1 agents andwaiting times when there are S or fewer
than S population-1 agents in the system. This is because when the number of population-1
agents in the systems is smaller than or equal to the number of matching points, the num-
ber of population-2 agents being served at the matching points is equal to the number of
population-1 agents. In this case, more population-1 agents indicates that more population-
2 agents occupy the matching points at the time of arrival. Regardless of the number of
population-1 agents in the system (which is less than or equal to S), the population-2 agent
at position x̂2 needs a fixed number of x̂2 more population-1 agents for his turn to be served.
If more population-2 agents match at matching points, it is more likely that the matching
points becomes more “congested”, which may slow down the expected waiting time.

Proposition 4.1.3 (Infinity limit of waiting times).

lim
x̂2→+∞

T(x̂2, x1) = +∞

for all x1 = 0, 1, ...,K.
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Proof. First we prove that

T(x̂2, 0) ≥
x̂2
λ1
, (4.1.35)

for all x̂2 = 1, 2, ....
This inequality holds for x̂2 = 1 because T(1, 0) = 1

λ1 . Assume that it also holds for
x̂2 = q ≥ 1, indicating that T(q, 0) ≥ q

λ1 . We have

T(q+ 1, 0) =
1
λ1

+ T(q, 1)

≥ 1
λ1

+ T(q, 0) (due to Proposition 4.1.2)

≥ q+ 1
λ1

.

Therefore, by induction on x̂2, we obtain that (4.1.35) is true. limx̂2→+∞
x̂2
λ1 = +∞,

which implies
lim

x̂2→+∞
T(x̂2, 0) = +∞.

By induction on x1 using formula (4.1.1), we can easily obtain

lim
x̂2→+∞

T(x̂2, x1) = +∞.

for all x1 = 0, 1, 2, ...,K.

This result indicates that the expected waiting time diverges to infinity if the current po-
sition is infinitely far from the matching points. We use this result to prove the following
theorem.

Theorem 4.1.1 (Equilibrium strategy of population-2 agents). population-2 agents who ar-
rive at the systemadopt a threshold strategy represented by the vector η(s) = (n(s)0 , n(s)1 , ..., n(s)K ),
where n(s)x1 is the maximum position at which population-2 agents are willing to join the system
when they observe x1 population-1 agents upon arrival.

Proof. This can be obtained from the monotonically nondecreasing property of T(x̂2, x1)
with regard to x̂2 obtained in Proposition 4.1.1. Since R2 − C2

μ ≥ 0 by assumption and
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R2 − C2T(x̂2, x1) − C2
μ → −∞ for all x1 = 0, 1, ...,K when x̂2 → +∞ (due to the re-

sult in Proposition 4.1.3), for each fixed value of x1, there must exist n(s)x1 such that R2 −
C2T(n(s)x1 , x1) −

C2
μ ≥ 0 and R2 − C2T(n(s)x1 + 1, x1) − C2

μ < 0. n(s)x1 is the threshold strat-
egy corresponding to each fixed value of the number of population-1 agents observed upon
arrival.

Proposition 4.1.4 (Monotone property of thresholds). n(s)k ≥ n(s)k+1 for k = 0, 1, ..., S − 1,
and n(s)k ≤ n(s)k+1 for k = S, S+ 1, ...,K− 1.

Proof. This can be proved by contradiction.
First, consider the case when 0 ≤ x1 ≤ S − 1. We will prove n(s)x1 ≥ n(s)x1+1 Assume

that n(s)x1 < n(s)x1+1, which implies n(s)x1 + 1 ≤ n(s)x1+1. Since n(s)x1 and n(s)x1+1 are both decision
thresholds, we must have T(n(s)x1 + 1, x1) > R

C −
1
μ and T(n

(s)
x1+1, x1 + 1) ≤ R

C −
1
μ , which

imply T(n(s)x1 + 1, x1) > T(n(s)x1+1, x1 + 1). Additionally, by the monotonic properties of
T(x̂2, x1) on x̂2 and x1 (obtained in Propositions 4.1.1 and 4.1.2) and the earlier assumption,
we haveT(n(s)x1+1, x1+1) ≥ T(n(s)x1 +1, x1+1) ≥ T(n(s)x1 +1, x1). This contradiction indicates
n(s)x1 ≥ n(s)x1+1 for x1 = 0, 1, ..., S− 1.

Second, consider the case when S ≤ x1 ≤ K − 1. We will prove n(s)x1 ≤ n(s)x1+1. Assume
that n(s)x1 > n(s)x1+1, which implies n(s)x1 ≥ n(s)x1+1 + 1. Since n(s)x1 and n(s)x1+1 are both decision
thresholds, wemust haveT(n(s)x1 , x1) ≤

R
C−

1
μ andT(n

(s)
x1+1+1, x1+1) > R

C−
1
μ , which imply

T(n(s)x1+1 + 1, x1 + 1) > T(n(s)x1 , x1). Additionally, by the monotonic properties of T(x̂2, x1)
on x̂2 and x1 and the earlier assumption, we have T(n(s)x1+1 + 1, x1 + 1) ≤ T(n(s)x1 , x1 + 1) ≤
T(n(s)x1 , x1). This contradiction indicates n

(s)
x1 ≤ n(s)x1+1 for x1 = S, S+ 1, ...,K− 1.

This result indicates that the strategy threshold decreases as the number of population-1
agents increases within the range from 0 to S. population-2 agents adopt a greater thresh-
old when there are more population-1 agents in the system and the number of population-1
agents is larger than the number of matching points.

4.1.3 Overall optimization

Let ξ 1 and ξ2 denote the expected number of population-1 agents and population-2 agents
being diverted from the service station per unit time, respectively. Let L1 and L2 denote the

87



expected queue lengths of population-1 agents and population-2 agents. Additionally, de-
note by C1 the cost of staying in the system per unit time of taxi drivers and R2 the reward
that taxi drivers receive after completing serving a population-2 agent. Similarly, denote by
C2 the cost of staying in the system per unit time of population-2 agents and R2 the reward
(service value) that population-2 agents receive after being served.

Expected social welfare per unit time of all entities joining the system is then

SW = (λ1 − ξ 1)R1 + (λ2 − ξ2)R2 − C1L1 − C2L2. (4.1.36)

Since social welfare cannot be explicitly expressed in terms of threshold η, we need to use
a brute-force search method to find the maximum value of social welfare. The traditional
approach is to search for a socially optimal threshold strategy in the first place and then de-
rive a corresponding optimal fee range that adjusts the self-optimal threshold to the socially
optimal threshold. Such an approach is not feasible in this multidimensional case for several
reasons. First, to perform an exhaustive search to find the socially optimal threshold, it is
necessary that the number of cases being considered is finite, which requires an upper limit
for the population-2 agent buffer size, while we do not have this assumption. Second, even
if we set a maximum buffer size of population-2 agents atm, the number of cases to be con-
sidered is (m + 1)K+1, which becomes massively large when K andm are large. Finally, even
if we manage to find a socially optimal threshold strategy, there is no guarantee that it can be
shifted from the original self-optimal threshold strategy by implementing a fixed value for fee
θ since the strategy being considered is a vector ofK+ 1 values.

In this paper, we introduce a heuristic algorithm to find an optimal policy. Assume that
the administrator of the system levies a toll fee θ on each population-2 agent joining the sys-
tem. We want to find an optimal range of θ that maximizes expected social welfare. With a
toll fee of θ, the expected individual utility of population-2 agents becomes

E(U2) = R2 − θ − C2E(W).

Similar to the analysis in the previous section, when a toll fee is imposed, population-2 agents
still self-optimize and adopt a threshold strategy η = (n0, n1, ..., nK), which satisfies the
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property in Proposition 4.1.4. η remains unchanged as θ gradually increases within a certain
fee range. When θ exceeds the upper bound of the range, some threshold element(s) nx1 ,
which together with its corresponding number of population-1 agents x1 yield the longest
expected waiting time T(nx1 , x1), decreases by 1. We then obtain a new η and repeat this
procedure until all of the elements in η converge to 0, which is also the case where the taxi
service becomes too expensive and population-2 agents have no incentive to engage. Based
on this property, we develop an algorithm to derive ranges of toll fees and strategy thresholds
that population-2 agents adopt accordingly.
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Algorithm 1Deriving fee ranges and threshold strategies

1: T ←
{
T(n(s)x1 , x1)| x1 = 0, 1, ...,K

}
2: τ←max T
3: δ1← 0 ▷ lower bound of fee range (initial)
4: δ2←R2 − C2τ − C2

μ ▷ upper bound of fee range (initial)
5: Δ← [δ1, δ2] ▷ fee range (initial)
6: η = (n0, n1, ..., nK)← (n(s)0 , n(s)1 , ..., n(s)K ) ▷ threshold corresponding to fee range

(initial)
7: O←{(Δ, η)} ▷ initial output: an initial pair of fee range and threshold
8: while η ̸= 0 do ▷ 0: zero vector
9: for T(x̂2, x1) in T do ▷ updating η
10: if T(x̂2, x1) = τ then
11: T ← T \ {T(x̂2, x1)} ∪ {T(x̂2 − 1, x1)}
12: nx1← nx1 − 1
13: end if
14: end for
15: τ←max T
16: δ1← δ2
17: δ2←R2 − C2τ − C2

μ

18: Δ← (δ1, δ2] ▷ updating Δ
19: O←O ∪ {(Δ, η)} ▷ updating set of output
20: end while
21: returnO

For each pair of (Δ, η) obtained fromAlgorithm2,we can correspondingly derive a value
of social welfare by the following procedure.

We then obtain the infinitesimal generatorQ of the Markov chain modeling the system
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in equilibrium as below.

Q =



B(0) C(0)

A(1) B(1) C(1)

A(2) B(2) C(2)
. . . . . . . . .

A(K−1) B(K−1) C(K−1)

A(K) B(K)


,

where block matricesA(x1),B(x1) and C(x1) are dimensionally nonhomogeneous and defined
as follows.

• Q has neither zero columns nor zero rows.

• C(x1),B(x1+1),A(x1+2) have the same number of columns for x1 = 0, 1, ...,K− 2. B(0)

andA(1) have the same number of columns. C(K−1) and B(K) have the same number
of columns.

• A(x1),B(x1), C(x1) have the same number of rows for x1 = 1, 2, ...,K− 1. B(0) and C(0)

have the same number of rows. A(K) and B(K) have the same number of rows.

• C(x1)x2,x2 = λ1, for

x2 = 0, 1, ...,max

{
x1 +max

l≥x1
(min{l, S}+ nl − l) ,max

l≤x1
(min{l, S}+ nl)

}
.

• A(x1)
x2,x2−1 = min(x2μ, x1μ, Sμ), for

x2 = 1, 2, ...,max

{
x1 +max

l≥x1
(min{l, S}+ nl − l) ,max

l≤x1
(min{l, S}+ nl)

}
.

• B(x1)
x2,x2+1 = λ2, for x2 = 0, 1, ...,min{x1, S}+ nx1 − 1.

• All other elements ofQwhich do not lie on the main diagonal are 0.
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• Qx2,x2 = −
∑

x1 ̸=x2 Qx2,x1 .

We can thenderive the steady state probabilities defined asπ = (π0, π1, ..., πK) ,whereπx1 =

(πx1,0, πx1,1, ...) is a vector encoding all probabilities when there are x1 population-1 agents in
the system at the steady state by solving the following equations: πQ = 0,

πe = 1,

where 0 is a zero vector of appropriate dimension, and e is a vector of appropriate dimension
with all elements equal to 1.

The balking probability of population-1 agents is then given by πKe, and the balking
probability of population-2 agents is

K∑
x1=0

∑
x2≥nx1+min{x1,S}

πx1,x2 .

The numbers of population-1 agents and population-2 agents diverted from the system
per unit time are, respectively given by

ξ 1 = λ1πKe,

and

ξ2 = λ2
K∑

x1=0

∑
x2≥nx1+min{x1,S}

πx1,x2 .

The mean lengths of the population-1 and population-2 agent queue are, respectively
given by

L1 =
K∑

x1=0

∑
x2

x1πx1,x2 ,

L2 =
K∑

x1=0

∑
x2

x2πx1,x2 .
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Substituting ξ 1, ξ2,L1,L2 into (4.1.36), we obtain the value of social welfare with respect
to the fee range Δ and threshold strategy η of population-2 agents. Comparing all obtained
values of socialwelfare, we acquire themaximumsocialwelfare togetherwith the correspond-
ing fee range and threshold vector, which yield that optimal value.

4.1.4 Revenue maximization

We examine the case in which the owner of the platform aims to maximize their revenue by
imposing a toll fee of θ on each population-2 agent. We consider the following two scenarios.
In the first scenario, the platform owner collects a fixed fee for a seasonal toll pass from taxi
companies. In this case, revenue maximization is equivalent to maximizing revenue from
population-2 agents. Thus, the objective function of the platform owner is given by

M1 = (λ2 − ξ2)θ.

In another scenario, theplatformowner also levies a toll fee for each entranceof apopulation-
1 agent, denoted θ1. Assume that this amount is already fixed in advance. The objective func-
tion in this case is given by

M2 = (λ2 − ξ2)θ + (λ1 − ξ 1)θ1.

In both scenarios, it is easily seen that the optimal value of the revenue is attained at one
of the fee range upper bounds because all other parameters remain unchanged within the
fee range. Since we already obtained all possible fee ranges and corresponding parameters in
the previous section, it is possible to compare the revenue in all cases and find the maximum
revenue similarly.

4.1.5 Numerical analysis

In this section, we illustrate the results with a specific numerical example. Set λ1 = 6, λ2 =
7, μ = 12, S = 4,K = 15,R1 = 18,R2 = 20,C1 = 5,C2 = 5, θ1 = 10. Calculated results
show that
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• When there is no intervention from the administrators, population-2 agents adopt
threshold strategy

η(s) = (23, 23, 23, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 33)

corresponding to thenumberofpopulation-1 agents beingobserveduponarrival rang-
ing from 0 to 15. This results in an expected social welfare of 136.221.

• Figure 4.1.4 shows that social welfare is discretely unimodal with respect to fee ranges,
and peaks at 203.122 when a fee ranging in (16.250, 16.854] is imposed on each en-
trance. Within this fee range, population-2 agents adopt strategy

ηo = (3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14).

Figure 4.1.4: Social welfare with respect to imposed fee

• The graph in Fig. 4.1.5, which is noncontinuous (only continuous within each range
of toll fees), represents the relationship between the revenue frompopulation-2 agents
and the toll fee levied on them. The maximum revenue from population-2 agents is
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114.893when the platform charges a toll fee of 19.479monetary units per population-
2 agent entrance.

Figure 4.1.5: Revenue from population-2 agents with respect to imposed fee

• Figure 4.1.6 shows that the total revenue is maximum at 173.875 when the platform
charges a toll fee of 19.479 monetary units per entrance of population-2 agents.

Figure 4.1.6: Platform’s revenue with respect to imposed fee
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When the fee is larger than 19.479, population-2 agents have no incentive to join the
systemsince their expectedutility becomesnegative regardless of thenumberofpopulation-
1 agents observed in the system.

• Finally, we present a sensitivity analysis of population-2 agents’ strategic behaviorwith
respect to nonnegligible matching times. Except for the mean matching time, which
is let vary, all parameters remain the same as in the previous experiments. The results
are shown in Fig. 4.1.7.

Figure 4.1.7: Sensitivity of population-2 agents’ strategic behavior with respect to mean matching time

It can be observed that the thresholds adopted by population-2 agents increase with
an increased matching rate μ at first and then remain unchanged as μ becomes larger.
Intuitively, asmatching times becomes smaller, population-2 agents’ expected sojourn
times also decrease, so they are willing to join a longer queue.
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4.2 Model5: Therationaloutcomeandoptimaldesignsofatwo-population
queueing game in an observable queueing system with a single match-
ing point and two infinite ends

In this section, we consider an observable, double-ended queueing system in which both
agent populations are strategic and performmatching in nonzero times. Since there is a time
axis along which agents arrival at the queue, this game can be categorized as a combination of
many sequential matching games, and poses several challenges beyond those posed by tradi-
tional sequential games and one-population queueing games. Compared to well-known se-
quential games such as Tic-Tac-Toe, Pay-raise Voting Game and Entrant–Incumbent game,
the current game setting entails the involvement of many more players beyond the twomain
playerswhoare supposed tomatchwith eachother. Furthermore, inmostbasic one-population
queueing game settings, later comers’ strategy does not affect the expected waiting times of
those who are already enqueued, whereas a newcomer in the current two-population setting
may need to account for the joining strategies of all agents arriving afterward until he can
successfully match. For example, in the M/M/1 observable queueing game38, whether or
not later comers join the queue, the expected waiting time of an enqueued agent at position
n is always n

μ (given that service times follow an exponential distribution with rate μ). In
the model considered in Section 4.1, although the expected waiting times are derived two-
dimensionally with respect to the position and the number of agents in the other population
in the system, those waiting times are not affected by any strategic later-arriving agents, since
one population is not strategic. Meanwhile, in the present two-population matching game,
the expected waiting time of a tagged agent arriving at an empty system depends on the join-
ing strategy of the soonest arriving agent in the counterpart population. As such, to derive
conditional expected waiting times of a tagged agent, we need to adopt onemore dimension,
that is, the number of agents enqueued behind him. The waiting time function also con-
tains the (unknown) joining probabilities of agents at future states which prescribe joining
strategies of later-coming agents, which increases the problem’s complexity.
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4.2.1 Preliminaries

Consider a double-ended queueing systemwith two agent populations, with one population
arriving at each side of the queue according to Poisson processes, formatching. population-1
agents arrive with rate λ1, while population-2 agents arrive with rate λ2. Matching is per-
formed between a pair (comprising a population-1 agent and a population-2 agent) in a ran-
dom time that follows an exponential distribution with rate μ, on a first-come, first-served
basis. The buffer capacity on each side is infinite. The Markov chain describing the system
is described by two variables, X1(t) and X2(t), that, respectively, represent the number of
population-1 agents and the number of population-2 agents present in the system at time t.
The state space is given by S = {s = (x1, x2)| (x1, x2) ∈ N2}. In a non-strategic queueing
scenario, the system’s transition diagram can be illustrated as in Figure 4.2.1.

Figure 4.2.1: Transition diagram in the non-strategic scenario.

Let Vi denote the service value (before applying a fee) of population-i agents, Ci denote
the waiting cost rate of population-i agents (i = 1, 2), and p denote the service price. We
consider a scenario in which the two populations of agents represent a market with a sup-
ply side (population-1) and a demand side (population-2). Let Ri denote the net reward of
population-i agents. It then follows thatR1 = V1 + p andR2 = V2 − p. The price p can be
also interpreted as a transfer payment, which does not impact the equilibrium analysis, but
will be important in the social welfare setting.

Assume thatRi − Ci

(
1
λ̃i
+ 1

μ

)
> 0.

We use the index “̃i” to refer to a population other than i. In other words, ĩ = 2 if i = 1,
and vice versa.
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4.2.2 Expectedwaiting times

Let

σ(i) =


σ(i)(0,0) σ(i)(0,1) . . .

σ(i)(1,0) σ(i)(1,1) . . .
...

... . . .

 ,

where σ(i)(x1,x2) denotes the joining probability of population-i agents when they observe state
(x1, x2).

Denote by Ti(x1, x2) the conditional expected waiting time of a population-i agent en-
countering a system state (x1, x2) (for example,T1(x1, x2)prescribes the expectedwaiting time
of a population-1 agent choosing to join the queue and observing x1 population-1 agents ex-
cluding himself). Ti(x1, x2) can be derived by first-hitting-time analysis. However, to this
end, we need to employ one more variable, that is, the number of population-i agents en-
queuedbehindour tagged agent, denoted yi. Also, to track thepositionof a taggedpopulation-
i agent, it is more convenient to use a position variable, denoted x̂i, in place of xi. This vari-
able represents how far the tagged population-i agent is from the matching point. We thus
letWi(x̂i, x̃i, yi) denote the expected waiting time of a population-i agent, positioned at x̂i,
observing x̃i population-̃i agents in the system, and yi population-i)agents behind him. It
immediately follows thatWi(0, x̃i, yi) = 0. According to the first-hitting-time analysis, the
expected waiting time of a population-i agent who encounters state (x̂i, x̃i, yi), where x̂i > 0,
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can be recursively calculated as

Wi(x̂i, x̃i, yi) =



1
σ(i)
(̂xi+yi,x̃i)

λi+σ (̃i)
(̂xi+yi,x̃i)

λ̃i
+

σ(i)
(̂xi+yi,x̃i)

λi

σ(i)
(̂xi+yi,x̃i)

λi+σ (̃i)
(̂xi+yi,x̃i)

λ̃i
Wi(x̂i, x̃i, yi + 1)

+
σ (̃i)
(̂xi+yi,x̃i)

λ̃i

σ(i)
(̂xi+yi,x̃i)

λi+σ (̃i)
(̂xi+yi,x̃i)

λ̃i
Wi(x̂i − 1, x̃i + 1, yi) if x̃i = 0,

1
σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
+

σ(i)
(̂xi+yi+1,x̃i)

λi

σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
Wi(x̂i, x̃i, yi + 1)

+
σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i

σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
Wi(x̂i, x̃i + 1, yi)

+
μ

σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
Wi(x̂i, x̃i − 1, yi) if x̃i = 1,

1
σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
+

σ(i)
(̂xi+yi+1,x̃i)

λi

σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
Wi(x̂i, x̃i, yi + 1)

+
σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i

σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
Wi(x̂i, x̃i + 1, yi)

+
μ

σ(i)
(̂xi+yi+1,x̃i)

λi+σ (̃i)
(̂xi+yi+1,x̃i)

λ̃i+μ
Wi(x̂i − 1, x̃i − 1, yi) if x̃i > 1.

(4.2.1)

Toderive an agent’s joining strategy, it is necessary to obtain that agent’s expectedwaiting
time upon first arriving, i.e. with no one else queueing behind. To this end, notice that

Ti(x1, x2) = Wi(xi + 1−min{x̃i, 1}, x̃i, 0).

Remark 4.2.1. It is not our purpose to derive all possible Nash equilibria (among which there
exist subgame imperfections that are not rational outcomes). Even without doing so, however, it
is possible to show that multiple Nash equilibria exist in specific examples of this game. Given
a social profile in a Nash equilibrium (for example, the equilibrium in which no one joins an
empty system, or the subgameperfectNash equilibriumwhichwill be derived in the next section),
we can assign arbitrary values to transient states as long as these transient states do not have any
effects on the expected waiting time at recurrent states.

Consider possibleNash equilibria inwhich, corresponding to thenumber of population-
ĩ agents in the system, σ(i)(xi,x̃i) = 1 for all xi ≤ ν(i)x̃i , and σ

(i)
(xi,x̃i)

= 0 for all xi > ν(i)x̃i . We define
such strategies as threshold strategies. A threshold strategy of population-i agents is that, when
there are x̃i population-̃i agents in the system, a population-i agent balks if he observes more
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than ν(i)x̃i other population-i in the system, and joins otherwise. In terms of notation, if ν(i) =
(ν(i)0 , ν(i)1 , ...) is the threshold strategy of population-i agents in equilibrium, we can write
ν(i) = Fi(ν(1), ν(2)).

4.2.3 The rational outcome

An example of the sequential game

In this section, we present an example of the sequential game in which a backward induction
is adopted to find the subgame perfect Nash equilibrium of the game. First, we consider
how backward induction works in an example of the game. Consider a tagged population-i
agent who arrives at an empty system, that is, he encounters state (0, 0) upon arrival. The
joining strategy of this agent depends directly on the joining strategy of the soonest arriving
population-̃i agent who will match with the tagged agent. This game can be diagrammed as
in Figure 4.2.2.

Figure 4.2.2: A sequential game at state (0, 0).

There are three subgames in this example. Using backward induction, we can induce the
agents’ actions as follows:
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• Subgame 1: The soonest arriving population-̃i agent will join the queue since his ex-
pected payoff of joining the system is Rĩ − Cĩ

1
μ > 0. This is because, no matter how

many other population-i agents arrive in between the soonest-arriving population-̃i
agent and the tagged population-i agent, the soonest-arriving population-̃i agent can
always start matching immediately without waiting. In this subgame, the expected
payoff of the tagged population-i agent isRi−Ci

(
1
λ̃i
+ 1

μ

)
because he expects to wait

for 1
λ̃i
units of time for the soonest arrival of the population-̃i agent.

Note that, if the soonest arrivingpopulation-̃i agentdecides tobalk, the taggedpopulation-
i agentmay expect a lower payoff, denotedU1 (since the expectedwaiting timebecomes
longer). However, this outcome is not a subgame perfect Nash equilibrium.

• Subgame 2: There is temporarily not enough information to conclude how the soon-
est arriving population-̃i agent will behave if the tagged population-i agent balks, be-
cause, in this case, the population-̃i agent needs further reasoning about the strategy
of the next arriving population-i agent, and that becomes another sequential game.
However, the tagged population-i agent always obtains zero payoff for his balking de-
cision regardless of the what the soonest arriving population-̃i agent decides.

• Subgame 3: The tagged population-i agent decideswhether to join the systemby com-
paring the the two actions’ expected payoffs: Ri − Ci

(
1
λ̃i
+ 1

μ

)
> 0.

As the rational outcome of this game, a population-i agent joins at state (0, 0), and a
population-̃i joins at state (1, 0) if i = 1, or (0, 1) if i = 2.

The solution of the game

The above example illustrates how agents rationally behave according to backward induc-
tion. From the overall perspective, agents make their decision about a certain system state
by reasoning backward from strategies at future states that may be reached from the current
state that they observe. Since the formula for calculating expected waiting times is recursive,
the procedure to derive expected waiting times is identical to an inductive process: agents
base the unknown expected waiting time, at a certain state, on the adjacent states at which
the expected waiting times and joining strategies of agents are already identified.
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In the first place, it can be induced that, even when the buffer capacity is infinite, the
maximum length of the buffer on each side is finite. Consider a tagged population-i agent
who encounters system state (x1, x2) upon arrival. This customer’s waiting time can be de-
composed into two components: the waiting time for xi other population-i agents to com-
plete their matching process, and the possible waiting time for population-̃i agents to arrive
for matching. Since the expected value of the first time component is xi

μ , it is implied that
Ti(x1, x2) ≥ xi

μ . Because
xi
μ → +∞ as xi → +∞, we have limxi→+∞ Ti(x1, x2) = +∞.

This means that a population-i agent joining at an infinite position would expect a payoff at
−∞, which is not rational. Therefore, there exist finite values that the population-i agent
buffer length never exceeds. Let

Ni = max

{
n : Ri − Ci

n
μ
≥ 0, n ∈ N

}
.

As such, σ(i)(x1,x2) = 0 for all xi = Ni, and any states (x1, x2) in which xi > Ni are transient.
It should be noted that joining strategies of agents at those transient states do not affect their
joining strategies at recurrent states in this backward-sequential game setting. We can now
derive joining strategies at the remaining states that follow in the system’s transition diagram
as in Figure 4.2.3.
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Figure 4.2.3: Transition diagram in the strategic scenario.

The dashed lines in the figure indicate that the corresponding transition rate remains
unknown (since the transition rates depend on the agents’ joining strategies). Technically,
we need to calculate the expected waiting times of agents at every state in the above diagram,
and update agents’ joining strategies accordingly.

First, notice thatT1(0, x2) = 0 for all x2 ≥ 1, andT2(x1, 0) = 0 for all x1 ≥ 1. Therefore,
the expected payoff to population-i agents who observe x̃i > 0 population-̃i agents, and no
other population-i agents, in the system upon arrival isRi − Ci

μ > 0, which implies that

σ(1)(0,x2) = 1; σ(2)(x1,0) = 1, (4.2.2)

for x1 > 0 and x2 > 0.
It then follows that

W1(1, 0,N1 − 1) =
1

σ(2)(N1,0)λ2
=

1
λ2
.
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For any y1 < N1 − 1, we have

W1(1, 0, y1) =
1

σ(1)(1+y1,0)λ1 + σ(2)(1+y1,0)λ2
+

σ(1)(1+y1,0)λ1
σ(1)(1+y1,0)λ1 + σ(2)(1+y1,0)λ2

W1(1, 0, y1 + 1).

Since σ(2)(1+y1,0) = 1 for all 0 ≤ y1 < N1−1, it is easily obtainedby induction thatW1(1, 0, 0) =
1
λ2 , which implies thatT1(0, 0) = 1

λ2 . Similarly, we obtainW2(1, 0, y2) = 1
λ1 for all 0 ≤ y2 ≤

N2 − 1, and T2(0, 0) = W2(1, 0, 0) = 1
λ1 .

Since Ri − Ci

(
Ti(0, 0) + 1

μ

)
= Ri − Ci

(
1
λ̃i
+ 1

μ

)
> 0 by assumption, population-i

agents always join an empty system. This is also the conclusion of the example in Section
4.2.3. In other words,

σ(i)(0,0) = 1. (4.2.3)

Lemma 4.2.1. Ti(x1, x2) = xi
μ for all xi < x̃i, xi ≤ Ni.

Proof. Observe thatW1(1,N2,N1 − 2) = 1
μ . For any y1 < N1 − 2, we have

W1(1,N2, y1) =
1

σ(1)(2+y1,N2)
λ1 + μ

+
σ(1)(2+y1,0)λ1

σ(1)(2+y1,0)λ1 + μ
W1(1,N2, y1 + 1).

It is then easily obtained by induction on y1 thatW1(1,N2, y1) = 1
μ for all 0 ≤ y1 ≤ N1− 2,

which implies that T1(1,N2) = W1(1,N2, 0) = 1
μ . Then, by induction on x2, it is easily

obtained that W1(1, x2, y1) = 1
μ for 1 ≤ x2 ≤ N2 and 0 ≤ y1 ≤ N1 − 2. Similarly,

Wi(1, x̃i, yi) = 1
μ , for 1 < x̃i ≤ Nĩ and 0 ≤ yi ≤ Ni− 2. Also by induction, for any x̂i < x̃i,

we can prove that

Wi(x̂i, x̃i, yi) =
x̂i
μ
.

It then follows that T1(x1, x2) = x1
μ for all x1 < x2 and T2(x1, x2) = x2

μ for all x2 < x1.

Remark 4.2.2. Lemma 4.2.1 can be proved in another way that is more intuitive. Notice that,
when there are xi population-i agents and x̃i population-̃i agents in the system (xi < x̃i), a tagged
population-i agent who decides to join the systemwill find his counterpart population-̃i agent for
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matching already present on the other side of the queue. Therefore, his waiting time only consists
of the matching times of the other xi enqueued population-i agents, with an expected value of xi

μ .

Results in Lemma 4.2.1 suggest that the joining strategies of population-i agents at states
where 1 ≤ xi < x̃i, xi ≤ Ni can be identified as follows:

σ(i)(x1,x2) =


1 if xi < Ni

pi if xi = Ni − 1,

0 if xi = Ni,

(4.2.4)

where pi = 1 ifRi − Ci
Ni
μ > 0, and pi takes any value on [0, 1] ifRi − Ci

Ni
μ = 0.

Now, we will derive agents’ strategies upon state (1, 1). First, observe that

Wi(1, 1,Ni − 2) =
1

μ + σ (̃i)(Ni,1)λĩ
+

1

μ + σ (̃i)(Ni,1)λĩ
Wi(1, 0,Ni − 2)

+
σ (̃i)(Ni,1)λĩ

μ + σ (̃i)(Ni,1)λĩ
Wi(1, 2,Ni − 2)

=
1

μ + λĩ
+

μ
μ + λĩ

· 1
λĩ

+
λĩ

μ + λĩ
· 1
μ

=
μ2 + λ2ĩ + μλĩ
μλĩ(μ + λĩ)

.

By induction from Eq. (4.2.1), for any 0 ≤ yi ≤ Ni − 2, we obtain

Wi(1, 1, yi) =
μ2 + λ2ĩ + μλĩ
μλĩ(μ + λĩ)

,

which implies that Ti(1, 1) =
μ2+λ2ĩ +μλ̃i
μλ̃i(μ+λ̃i)

. Then, the joining strategies of population-i agents
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at state (1, 1) can be identified as follows:

σ̄(i)(1,1) =


1 ifRi − Ci

(
μ2+λ2ĩ +μλ̃i
μλ̃i(μ+λ̃i)

+ 1
μ

)
> 0,

pi ifRi − Ci

(
μ2+λ2ĩ +μλ̃i
μλ̃i(μ+λ̃i)

+ 1
μ

)
= 0,

0 ifRi − Ci

(
μ2+λ2ĩ +μλ̃i
μλ̃i(μ+λ̃i)

+ 1
μ

)
< 0

(4.2.5)

where pi takes any value on [0, 1].

Lemma 4.2.2. Wi(x̂i, x̃i, yi) = Wi(x̂i, x̃i, yi + 1) for x̂i = x̃i > 1, 0 ≤ yi ≤ Ni − x̂i − 1.

Proof. We already showed that Lemma 4.2.2 holds for x̂i = 1. Assume that Lemma 4.2.2
holds until x̂i = ki− 1 (ki ≥ 2), whichmeans thatWi(ki− 1, x̃i, yi) = Wi(ki− 1, x̃i, yi+ 1)
for x̃i = ki − 1 ≥ 1, 0 ≤ yi ≤ Ni − ki.

First, we will show thatWi(ki, x̃i,Ni − ki − 2) = Wi(ki, x̃i,Ni − ki − 1) for x̃i ≥ 1.
According to the recursion in Eq. (4.2.1), we have

(μ + σ(i)(Ni−1,x̃i)
λi + σ (̃i)(Ni−1,x̃i)

λĩ)Wi(ki, x̃i,Ni − ki − 2)

=1+ μWi(ki − 1, x̃i − 1,Ni − ki − 2) + σ(i)(Ni−1,x̃i)
λiWi(ki, x̃i,Ni − ki − 1)

+ σ (̃i)(Ni−1,x̃i)
λĩWi(ki, x̃i + 1,Ni − ki − 2),

and

(μ + σ (̃i)(Ni,x̃i)
λĩ)Wi(ki, x̃i,Ni − ki − 1) = 1+ μWi(ki − 1, x̃i − 1,Ni − ki − 1)

+ σ (̃i)(Ni,x̃i)
λĩWi(ki, x̃i + 1,Ni − ki − 1),

which imply that(
μ + σ(i)(Ni−1,x̃i)

λi + σ (̃i)(Ni−1,x̃i)
λĩ
)
(Wi(ki, x̃i,Ni − ki − 2)−Wi(ki, x̃i,Ni − ki − 1)) = 0

(becauseWi(ki − 1, x̃i − 1,Ni − ki − 2) = Wi(ki − 1, x̃i − 1,Ni − ki − 1) by inductive
assumption, σ (̃i)(Ni−1,x̃i)

= σ (̃i)(Ni,x̃i)
= 1, andWi(ki, x̃i + 1,Ni− ki− 2) = Wi(ki, x̃i + 1,Ni−

ki − 1) = ki
μ ).
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It then follows that Wi(ki, x̃i,Ni − ki − 2) = Wi(ki, x̃i,Ni − ki − 1). Similarly, by
induction on yi, we obtainWi(ki, x̃i, yi) = Wi(ki, x̃i, yi + 1) for 0 ≤ yi ≤ Ni − ki − 1,
which means Lemma 4.2.2 also holds for x̂i = ki. This completes the proof.

From Lemma 4.2.2, recalling Eq. (4.2.1), we obtain

Wi(x̂i, x̃i, yi) =
1

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ

+
μ

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ
Wi(x̂i − 1, x̃i − 1, yi)

+
σ(i)(x̂i+yi+1,x̃i)

λi

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ
Wi(x̂i, x̃i, yi + 1)

+
σ (̃i)(x̂i+yi+1,x̃i)

λĩ

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ
Wi(x̂i, x̃i + 1, yi),

which is equivalent to

Wi(x̂i, x̃i, yi) =
1

μ + λĩ
+

μ
μ + λĩ

Wi(x̂i − 1, x̃i − 1, yi) +
λĩ

μ + λĩ
Wi(x̂i, x̃i + 1, yi).

SinceWi(x̂i, x̃i + 1, yi) = x̂i
μ ,Wi(x̂i, x̃i, yi) can then be calculated inductively. This result

suggests that the joining strategies of population-i agents at stateswhere 1 ≤ xi = x̃i, xi ≤ Ni

can be identified as follows:

σ̄(i)(x1,x2) =


1 ifRi − Ci

(
Wi(x̂i, x̃i, 0) + 1

μ

)
> 0,

pi ifRi − Ci

(
Wi(x̂i, x̃i, 0) + 1

μ

)
= 0,

0 ifRi − Ci

(
Wi(x̂i, x̃i, 0) + 1

μ

)
< 0,

(4.2.6)

where pi can take any value on [0, 1].

Lemma 4.2.3. Wi(x̂i, x̃i, yi) = Wi(x̂i, x̃i, yi + 1) for x̂i > x̃i, x̂i ≥ 1, 0 ≤ yi ≤ Ni − x̂i − 1.

Proof. We already showed that Lemma 4.2.3 holds for x̂i = 1. Assume that Lemma 4.2.3
holds until ki − 1 (ki ≥ 2), which means thatWi(ki − 1, x̃i, yi) = Wi(ki − 1, x̃i, yi + 1) for
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ki − 1 > x̃i, ki − 1 ≥ 1, 0 ≤ yi ≤ Ni − ki.
First, we will show thatWi(ki, ki − 1,Ni − ki − 2) = Wi(ki, ki − 1,Ni − ki − 1) for

ki ≥ 2. According to the recursion in Eq. (4.2.1), we have

(μ + σ(i)(Ni−1,ki−1)λi + σ (̃i)(Ni−1,ki−1)λĩ)Wi(ki, ki − 1,Ni − ki − 2)

= 1+ μWi(ki − 1, ki − 2,Ni − ki − 2) + σ(i)(Ni−1,ki−1)λiWi(ki, ki − 1,Ni − ki − 1)

+ σ (̃i)(Ni−1,ki−1)λĩWi(ki, ki,Ni − ki − 2),

and

(μ + σ (̃i)(Ni,ki−1)λĩ)Wi(ki, ki − 1,Ni − ki − 1)

= 1+ μWi(ki − 1, ki − 2,Ni − ki − 1) + σ (̃i)(Ni,ki−1)λĩWi(ki, ki,Ni − ki − 1),

which imply(
μ + σ(i)(Ni−1,ki−1)λi + σ (̃i)(Ni−1,ki−1)λĩ

)
(Wi(ki, ki − 1,Ni − ki − 2)−Wi(ki, ki − 1,Ni − ki − 1))

= 0

(becauseWi(ki − 1, ki − 2,Ni − ki − 2) = Wi(ki − 1, ki − 2,Ni − ki − 1) by inductive
assumption, σ (̃i)(Ni−1,ki−1) = σ (̃i)(Ni,ki−1) = 1, andWi(ki, x̃i+1,Ni−ki−2) = Wi(ki, x̃i+1,Ni−
ki− 1) = ki

μ ). It then follows thatWi(ki, ki− 1,Ni− ki− 2) = Wi(ki, ki− 1,Ni− ki− 1).
Similarly, by induction on yi, we obtainWi(ki, ki − 1, yi) = Wi(ki, ki − 1, yi + 1) for 0 ≤
yi ≤ Ni − ki − 1.

Then, by induction on x̂i, we obtain Wi(ki, x̃i, yi) = Wi(ki, x̃i, yi + 1), which means
that Lemma 4.2.3 also holds for x̂i = ki. This completes the proof.
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From Lemma 4.2.3, recalling Eq. (4.2.1), we obtain

Wi(x̂i, x̃i, yi) =
1

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ

+
μ

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ
Wi(x̂i − 1, x̃i − 1, yi)

+
σ(i)(x̂i+yi+1,x̃i)

λi

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ
Wi(x̂i, x̃i, yi + 1)

+
σ (̃i)(x̂i+yi+1,x̃i)

λĩ

μ + σ(i)(x̂i+yi+1,x̃i)
λi + σ (̃i)(x̂i+yi+1,x̃i)

λĩ
Wi(x̂i, x̃i + 1, yi),

which is equivalent to

Wi(x̂i, x̃i, yi) =
1

μ + σ (̃i)(x̂i+yi+1,x̃i)
λĩ

+
μ

μ + σ (̃i)(x̂i+yi+1,x̃i)
λĩ
Wi(x̂i − 1, x̃i − 1, yi)

+
σ (̃i)(x̂i+yi+1,x̃i)

λĩ

μ + σ (̃i)(x̂i+yi+1,x̃i)
λĩ
Wi(x̂i, x̃i + 1, yi).

SinceWi(x̂i, x̂i, yi) can already be calculated using the result in Lemma 4.2.2,Wi(x̂i, x̃i, yi)
for x̂i > x̃i can then be inductively calculated starting from x̃i = x̂i − 1. This result suggests
that the joining strategies of population-i agents, at states where 1 ≤ xi > x̃i, xi ≤ Ni, can
be identified as follows:

σ̄(i)(x1,x2) =


1 ifRi − Ci

(
Wi(x̂i, x̃i, 0) + 1

μ

)
> 0,

pi ifRi − Ci

(
Wi(x̂i, x̃i, 0) + 1

μ

)
= 0,

0 ifRi − Ci

(
Wi(x̂i, x̃i, 0) + 1

μ

)
< 0

(4.2.7)

where pi can take any value on [0, 1].

Remark 4.2.3. Lemma 4.2.2 and Lemma 4.2.3 can also be explained intuitively. The condi-
tion x̂i ≥ x̃i implies that there are currently more population-i agents than population-̃i agents
in the system. If another population-i agent arrives, that condition still holds. The results in Eq.
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(4.2.4) indicate that, as long as there are more population-i agents than population-̃i agents
in the system, a newly arriving population-̃i agent always joins when their population has not
exceeded Nĩ. Therefore, the waiting time of the tagged population-i agent is insensitive to the
number of agents behind him.

Results (4.2.3), (4.2.4), (4.2.5), (4.2.6) and (4.2.7) complete the derivation of agents’
strategies at all states in equilibrium. Furthermore, it should be noted from the existing re-
sults that, in subgame perfection, the joining strategy of later comers does not affect the ex-
pected waiting time of already enqueued agents of the same population. From now on, de-
noteWi(x̂i, x̃i) = Wi(x̂i, x̃i, 0), which represents the expectedwaiting time of a population-
i agent arriving at position x̂i and observing x̃i population-̃i agents upon arrival.

Lemma 4.2.4. Wi(x̂i, x̃i) is non-decreasing in x̂i.

Proof. The expected waiting time of a tagged population-i agent joining at position x̂i when
there are x̃i population-̃i agents can be rewritten as follows:

Wi(x̂i, x̃i) =



x̂i
μ

if x̂i < x̃i,

1
μ+σ (̃i)

(̂xi+1,x̃i)
λ̃i
+

μ
μ+σ (̃i)

(̂xi+1,x̃i)
λ̃i
Wi(x̂i − 1, x̃i − 1) +

σ (̃i)
(̂xi+1,x̃i)

λ̃i

μ+σ (̃i)
(̂xi+1,x̃i)

λ̃i
Wi(x̂i, x̃i + 1)

if x̂i ≥ x̃i > 1,

1
μ+σ (̃i)

(̂xi+1,x̃i)
λ̃i
+

μ
μ+σ (̃i)

(̂xi+1,x̃i)
λ̃i
Wi(x̂i, x̃i − 1) +

σ (̃i)
(̂xi+1,x̃i)

λ̃i

μ+σ (̃i)
(̂xi+1,x̃i)

λ̃i
Wi(x̂i, x̃i + 1)

if x̂i ≥ x̃i = 1,
1

σ (̃i)
(̂xi,x̃i)

λ̃i
+Wi(x̂i − 1, x̃i + 1)

if x̃i = 0.

We will show thatWi(x̂i + 1, x̃i) ≥ Wi(x̂i, x̃i). It is easily seen that this holds for x̂i = 0.
Assume that this inequality also holds for x̂i = qi−1 (qi ≥ 1), whichmeans thatWi(qi, x̃i) ≥
Wi(qi − 1, x̃i) for 0 ≤ x̃i ≤ Nĩ. Also, asWi(1, 1) > 1

μ , we assume thatWi(qi, qi) ≥ qi
μ .

Consider the following five cases.
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• If x̃i = 0, we have

Wi(qi + 1, 0)−Wi(qi, 0)

=

 1

σ (̃i)(qi+1,0)λĩ
+Wi(qi, 1)

−
 1

σ (̃i)(qi,0)λĩ
+Wi(qi − 1, 1)


= Wi(qi, 1)−Wi(qi − 1, 1) (since σ (̃i)(qi+1,0) = σ (̃i)(qi,0) = 1)

≥ 0 (by inductive assumption),

which impliesWi(qi + 1, 0) ≥Wi(qi, 0).

• If x̃i > 0 and qi < x̃i − 1, we have

Wi(qi + 1, x̃i)−Wi(qi, x̃i) =
qi + 1
μ
− qi

μ
=

1
μ
> 0,

which impliesWi(qi + 1, x̃i) > Wi(qi, x̃i).

• If x̃i > 1 and qi = x̃i − 1, we have

Wi(qi + 1, x̃i) =
1

μ + σ (̃i)
(qi+1,̃i)λĩ

+
μ

μ + σ (̃i)
(qi+1,̃i)λĩ

Wi(qi, qi) +
σ (̃i)
(qi+1,̃i)λĩ

μ + σ (̃i)
(qi+1,̃i)λĩ

Wi(qi + 1, qi + 2)

≥ 1

μ + σ (̃i)
(qi+1,̃i)λĩ

+
μ

μ + σ (̃i)
(qi+1,̃i)λĩ

· qi
μ
+

σ (̃i)
(qi+1,̃i)λĩ

μ + σ (̃i)
(qi+1,̃i)λĩ

· qi + 1
μ

(becauseWi(qi, qi) ≥
qi
μ
by inductive assumption, andWi(qi + 1, qi + 2) =

qi + 1
μ

)

=
qi + 1
μ

,

which implies thatWi(qi + 1, x̃i) > Wi(qi, x̃i)when qi = x̃i − 1.
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• If x̃i > 1 and qi ≥ x̃i, we have

Wi(qi + 1, x̃i)−Wi(qi, x̃i)

=

 1

μ + σ (̃i)(qi+2,x̃i)
λĩ

+
μ

μ + σ (̃i)(qi+2,x̃i)
λĩ
Wi(qi, x̃i − 1) +

σ (̃i)(qi+2,x̃i)
λĩ

μ + σ (̃i)(qi+2,x̃i)
λĩ
Wi(qi + 1, x̃i + 1)


−

 1

μ + σ (̃i)(qi+1,x̃i)
λĩ

+
μ

μ + σ (̃i)(qi+1,x̃i)
λĩ
Wi(qi − 1, x̃i − 1) +

σ (̃i)(qi+1,x̃i)
λĩ

μ + σ (̃i)(qi+1,x̃i)
λĩ
Wi(qi, x̃i + 1)



For qi ≥ x̃i, we have σ
(̃i)
(qi+2,x̃i)

= σ (̃i)(qi+1,x̃i)
. Also, by inductive assumption,Wi(qi, x̃i−

1) ≥ Wi(qi − 1, x̃i − 1). Therefore, ifWi(qi + 1, x̃i + 1) ≥ Wi(qi, x̃i + 1), we can
obtainWi(qi + 1, x̃i) ≥Wi(qi, x̃i). This holds by induction because we already have
Wi(qi + 1, x̃i) > Wi(qi, x̃i)when qi = x̃i − 1.

• If x̃i = 1, we have

Wi(qi + 1, 1) =
1

μ + σ (̃i)(qi+2,1)λĩ
+

μ

μ + σ (̃i)(qi+2,1)λĩ
Wi(qi + 1, 0)

+
σ (̃i)(qi+2,1)λĩ

μ + σ (̃i)(qi+2,1)λĩ
Wi(qi + 1, 2),

and

Wi(qi, 1) =
1

μ + σ (̃i)(qi+1,1)λĩ
+

μ

μ + σ (̃i)(qi+1,1)λĩ
Wi(qi, 0) +

σ (̃i)(qi+1,1)λĩ

μ + σ (̃i)(qi+1,1)λĩ
Wi(qi, 2).

For qi ≥ 1, σ (̃i)(qi+1,1) = σ (̃i)(qi+2,1) = 1. Also, we already haveWi(qi+ 1, 0) ≥Wi(qi, 0)
andWi(qi + 1, 2) ≥ Wi(qi, 2) from the earlier proofs. Therefore,Wi(qi + 1, 1) ≥
Wi(qi, 1).

The above five cases complete the proof of Lemma 4.2.4.

Noting that Ri − Ci

(
Wi(Ni, x̃i) + 1

μ

)
< 0, Lemma 4.2.4 implies that, given x̃i, there

exists a threshold level η(i)x̃i of the position above at which population-i agents balk the queue.
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Also, in what follows, we assume that, if Ri − Ci

(
Wi(x̂i, x̃i) + 1

μ

)
= 0, a population-i

agent chooses to join at that state. Then, in subgame perfectNash equilibrium, population-i
agents follows a threshold strategy prescribed by a vector

η(i) =
(
η(i)0 , η(i)1 , ..., η(i)Ñi

)
,

where η(i)j − 1+min{j, 1} is the maximum position at which a population-i agent chooses
to join when there are j population-̃i agents in the system.

Remark 4.2.4. Let η(i)max = max η(i) ≤ Ni. η(i)max is not necessarily the actualmaximumnum-
ber of population-i agents in the system. For example, theremay exist a valuem < min{η(i)max, η

(̃i)
max}

such that Ri − Ci

(
Wi(m,m) + 1

μ

)
< 0. In this case, the maximum number of both popula-

tions in the system is m. As such, any states (x1, x2) such that xi > m are transient.

Let m(i) denote the actual maximum number of population-i agents in the system in
subgame perfection. Then, the threshold strategy that population-i agents follow can be
irreducibly rewritten as

η(i)∗ =
(
η(i)0 , η(i)1 , ..., η(i)

m(̃i)

)
.

AnothersubgameperfectNashequilibriumcomputationtechnique: Aloop
algorithm

In this section, we propose a loop algorithm to compute the subgame perfect Nash equilib-
rium which does not require the backward induction procedure.
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Algorithm 2Deriving equilibrium threshold strategies

1: η(1)← η(1)0 =
(
η(1)0 , η(1)1 , ..., η(1)N2

)
▷ arbitrary initial threshold strategy of population 1

2: η(2)← η(2)0 =
(
η(2)0 , η(2)1 , ..., η(2)N1

)
▷ arbitrary initial threshold strategy of population 2

3: ν(1)← an arbitrary (N2 + 1)-dim vector different from η(1)

4: ν(2)← an arbitrary (N1 + 1)-dim vector different from η(2)

5: while η(1) ̸= ν(1) or η(2) ̸= ν(2) do
6: ν(1)← η(1)

7: η(1)←F1(η(1), η(2))
8: ν(2)← η(2)

9: η(2)←F2(η(1), η(2))
10: end while
11: return

(
η(1), η(2)

)
▷ equilibrium threshold strategy

The above algorithm is based onmulti-variable fixed-point iteration. In numerical exam-
ples in a later section (Section 4.2.5), we will show that Algorithm 2 converges to the exactly
same result as derived in the previous section, regardless of the initial threshold strategy se-
lected at the beginning. From an intuitive standpoint, this algorithm simulates how agents
keep updating their behaviors sequentially based on the strategies of other agents.

Note that the above algorithm is based on several premises. First, agents are assumed to
follow threshold strategies. Second, the threshold strategy of population-i agents is a (Nĩ+1)-
dimensional vector. This is based on the similar fact induced from the previous section that,
in an ideal scenario for population-iwhere there are always population-̃i agents on the oppo-
site side of the queue to match with, the number of population-i agents in the system never
exceeds Ni. Since population-̃i agents are strategic, the maximum number of population-i
agents should be less than or equal toNi, thus, any states in which xi > Ni are transient, so
the joining probabilities of agents at those states do not need to be considered.

4.2.4 Performance measures in equilibrium

We construct the infinitesimal generatorQ of theMarkov chainmodeling the system in equi-
librium where the number of population-1 agents (i.e., x1) is the level, and the number of
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population-2 agents (i.e., x2) is the phase, with xi satisfying xi ≤ η(i)x̃i . The steady-state prob-

abilities are defined as π =

(
π0, π1, ..., πη(1)

m(2)

)
,where πx1 =

(
π(x1,0), π(x1,1), ...

)
is a vector

encoding all probabilities when there are x1 population-1 agents in the system at the steady
state. These probabilities are obtained by solving the following equations: πQ = 0,

πe = 1,

where 0 is a zero vector of appropriate length, and e is a unit vector of appropriate length.
The mean number of population-i agents in the system, denoted Li, is given by

Li =
∑
x1

∑
x2

xiπ(x1,x2).

The balking rates of population-i agents, denoted ξ i, is given by

ξ i =
∑
x̃i

∑
xi=η(i)x̃i

π(x1,x2)λi,

and the joining rate for population i is λi − ξ i.
Social welfare is given by

SW = (λ1 − ξ 1)R1 + (λ2 − ξ2)R2 − C1L1 − C2L2.

Social welfare can be separated into two parts: thewelfare of the demand side, and thewelfare
of the supply side, which are, respectively, given by

SW(1) = (λ1 − ξ 1)R1 − C1L1,

and
SW(2) = (λ2 − ξ2)R2 − C2L2.
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4.2.5 Numerical examples

In this section, we present numerical examples of the analyses in previous sections.
Example 1 (Equilibrium analysis). Set λ1 = 1, λ2 = 1, μ = 20, R1 = R2 = 7.5 and

C1 = C2 = 7. As a result,N1 = N2 = 21, and the threshold strategies of agents are

η(1) = η(2) = (1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21).

However, as Ri − Ci

(
Ti(4, 4) + 1

μ

)
< 0, neither population-1 agents nor population-2

agents are willing to join the system at state (4, 4) (although, if a population-i agent decided
to join at state (4, 4), the next-arriving population-̃i agent would definitely join). Therefore,
the maximum number of agents in each population is capped at 4. The irreducible form of
the threshold strategies of the two sides of agents is

η(1)∗ = η(2)∗ = (1, 2, 3, 4, 4).

The transition diagram of the system in subgame perfect Nash equilibrium is illustrated in
Figure 4.2.4

Figure 4.2.4: Transition diagram in subgame perfect Nash equilibrium.
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This example illustrates Remark 4.2.4.
Example 2 (Convergence of Algorithm 2 and equilibrium analysis). In this example, we

examine the performance of Algorithm 2. Set λ1 = 5, λ2 = 4, μ = 6, R1 = 3, R2 = 6
and C1 = C2 = 7. It follows thatN1 = 2 andN2 = 5, and threshold strategies of the two
populations are represented by vectors η1 and η2 of lengthsN1 + 1 andN2 + 1, respectively.

We consider two cases differentiated by the initial threshold policy followed by each pop-
ulation. In the first experiment, all elements in both threshold vectors are set relatively large at
106, which represents the case where agents are supposed non-strategic. In the second exper-
iment, both threshold vectors are set to 0, representing the case in which agents do not join
the system at first. The convergence of Algorithm 2 in the two cases is illustrated in Figure
4.2.5.
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((a)) population-1.

((b)) population-2.

Figure 4.2.5: Convergence to subgame perfect Nash equilibrium of Algorithm 2.

It can be seen that, in the first experiment, it took only one iteration for the algorithm
to converge to the subgame perfect Nash equilibrium in the first experiment, while two iter-
ations were needed in the second experiment. We also conducted a large number of similar
experiments on different initial values for η(1)0 and η(2)0 , and on different set of system param-
eters, and found that Algorithm 2 always converges to the subgame perfect outcome.

Returning to the above example, we can derive the reduced form of the equilibrium
threshold strategies as η(1)∗ = (1, 1, 2, 2, 2) and η(2)∗ = (3, 4, 4).
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Example 3 (Sensitivity analyses andoptimal designs). In this example, set λ1 = 4, λ2 = 5,
μ = 6, C1 = C2 = 7,V1 = 20 andV2 = 5. The price is tuned for optimal system designs.

Figure 4.2.6: Queue lengths with respect to price.

Figure 4.2.6 illustrates the sensitivity of mean queue lengths for both populations. A
higher pricemeans that more agents on the supply side are willing to wait, while fewer agents
on the demand side find incentive to stay enqueued for long. However, when the price ex-
ceeds an upper threshold at which no demanders find a positive payoff even if they do not
have to wait in the queue, the both queue lengths drop to zero. This is because, if all deman-
ders do not join the system, joining suppliers would wait forever.
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Figure 4.2.7: Joining rates with respect to price.

Figure 4.2.7 shows the joining rates of both populations with respect to the price. Since
this is a matching queue, it is intuitive that the mean supply and demand quantities balance
in equilibrium, regardless of the price. Furthermore, as the price increases to the upper limit
at which no demanders join, both joining rates also drop to zero.

Figure 4.2.8: Welfare measures with respect to price.

Figure 4.2.8 shows that mean social welfare is discretely unimodal with respect to the
price. It can be observed that social welfare remains unchanged within each price range. If
the price increases but does not change the threshold strategies of both agent populations,
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it does not affect social welfare because the fare is similar to a transfer payment from the
demand side to the supply side. In this example, the maximum social welfare is 58.43, ob-
tained at prices within [4.09, 4.15). In a social application, this optimal social welfare could
be achieved through interference pricing from the government. The mean welfare of the de-
mand side peaks at 46.16 when p = 0.98, and the mean welfare of the supply side peaks at
23.29 when p = 11.66.

4.3 Model 6: Nash equilibria of a three-population queueing game in an
unobservable queueing system with multiple matching points, one fi-
nite end and one infinite end

Themodel in this section is motivated from a passenger-taxi queueing system in which there
are two types of passengers, differentiated by their mean matching times with taxis. This
feature captures the fact that there may be multiple types of passengers whose matching
times with taxis are not identical. For example, domestic passengers can match with local
taxi drivers more quickly, while it may take a longer time for foreign visitors to communicate
with taxis drivers. Another consideration is that the parking space can only accommodate a
limited numbers of cars in relative comparison with the capacity of the waiting area for pas-
sengers, so it is reasonable to consider a queue with infinite capacity of the demand end and
finite capacity of the supply end.

This model is based on the following two papers:

• Nguyen, H. Q. & Phung-Duc, T. (2022). Queueing analysis and Nash equilibria
in an unobservable taxi-passenger system with two types of passenger. In Interna-
tional Conference on Operations Research and Enterprise Systems (ICORES) (pp.
48–55)40; and

• Nguyen, H. Q. & Phung-Duc, T. (2023). Performance analysis and Nash equilibria
in a taxi-passenger system with two types of passenger. SN Computer Science, 4(1),
1–1344.

Thismodel, which contains threepopulations of strategic agents, is themost complicatedone
in the series of models. It will focus on the explanation of the existence of different equilibria
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and numerical analyses only. Another purpose of this model is to illustrate how difficult the
analyses become if more strategic populations are added to the model, which raises the need
for other approaches such as simulation-based or heuristic methods in future work.

4.3.1 Preliminaries

Consider a society P = {1, 2, 3} that consists of three populations of agents arriving at a
double-ended queueing system containing S identical matching points. The three popula-
tions of agents represent a market with a demand side (population 1 and population 2) and
a supply side (population 3). The area (including S matching points) can accommodate at
most K population-3 agents at the same time (K ≥ S). Matching is performed on a first-
come-first-served basis by a pair of an agent on the demand side and an agent on the sup-
ply side. The reward upon the completion of a service and the waiting cost per unit time
of a population-i agent are denoted by Ri and Ci (i = 1, 2, 3). Assume that all agents on
the demand side have identical service value and waiting cost rate, i.e. R1 = R2 = R and
C1 = C2 = C.

In an ideal situation where agents are given enough incentive to join the queue with-
out balking, agents on the demand side and the supply side arrive at the system according
to Poisson processes with potential arrival rates Λ and Λ3, respectively. A matching point
receives a population-1 agent with probability ε, and a population-2 agent with probability
1− ε. The matching times of population-1 and population-2 agents follow exponential dis-
tributions with parameters μ1 and μ2, respectively. Without loss of generality, we can assume
that μ1 < μ2, meaning that population-1 agents have a larger mean matching time. When
the waiting area reaches its maximum capacity, the arrival of any new population-3 agent is
blocked, so that population-3 agent leaves immediately. On the other hand, we assume that
there is no limit on the buffer of the demand side.

Let σ(1), σ(2) and σ(3) denote the joiningprobabilities of population-1 agents, population-
2 agents, and population-3 agents, respectively. Let λ = (σ(1)ε+σ(2)(1− ε))Λ, λ1 = σ(1)εΛ,
λ2 = σ(2)(1 − ε)Λ, λ3 = σ(3)Λ3 and α = σ(1)ε

σ(1)ε+σ(2)(1−ε) . Then, λ1, λ2 and λ3 are the actual
arrival rates of agents; these will be are used to derive performance measures in the following
section.
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4.3.2 Performance measures

LetX1(t),X2(t) andX3(t) respectivelydenote thenumberofpopulation-1 agents beingmatched
at thematching points, the number of population-3 agents in the system, and the total num-
ber of passengers in the system, at time t. The process {(X1(t),X2(t),X3(t)) | t ≥ 0} is a
continuous-timeMarkov Chain with the state space S given by

S = {(x1, x2, x3) ∈ {0, 1, ..., S} × {0, 1, ...,K} × {0, 1, 2, . . . }}.

Also, as implied by their definitions, it should be noted that x1 ≤ x2 and x1 ≤ x3.
The systemcanbemodeled as aquasi-birth-deathprocesswith the infinitesimal generator

Q being expressed as follows.

Q =



B(0) C(0) O O O ... ... ... ...

A(1) B(1) C(1) O O ...
...

...
...

O A(2) B(2) C(2) O ...
...

...
...

...
... . . . . . . . . . ...

...
...

...
O O ... A(K) B(K) C(K) O ...

...
O O ... O A(K) B(K) C(K) O ...
...

...
...

...
... . . . . . . . . . ...


,

whereO denotes a zeromatrix of appropriate dimension. If we denote byM(m, n) the set of
allm× n-dimensional matrices, andM(x2, x3) (x2, x3 ∈ Z+) the element at the xth2 row, xth3
column of amatrixM, then the blockmatrices inQ can be defined by the systemparameters
λ, λ3, μ1, μ2 and α, shown as follows.

A(K),B(K), C(K) ∈M
(
(S+1)(S+2)

2 + (K− S)(S+ 1), (S+1)(S+2)
2 + (K− S)(S+ 1)

)
such that

C(K) = diag(λ, λ, ..., λ);

A(K)
(
(S+ 1)(S+ 2)

2
+ i(S+ 1) + j,

S(S+ 1)
2

+ i(S+ 1) + j
)

= α(j−1)μ1+(1−α)(S−(j−1))μ2,

A(K)
(
(S+ 1)(S+ 2)

2
+ i(S+ 1) + j,

S(S+ 1)
2

+ i(S+ 1) + (j+ 1)
)

= α(S− (j− 1))μ2,

A(K)
(
(S+ 1)(S+ 2)

2
+ i(S+ 1) + (j+ 1),

S(S+ 1)
2

+ i(S+ 1) + j
)

= (1− α)jμ1,
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B(K)
(
S(S+ 1)

2
+ i(S+ 1) + j,

(S+ 1)(S+ 2)
2

+ i(S+ 1) + (j+ 1)
)

= λ3,

for i = 0, 1, ...,K− S and j = 1, 2, ..., S+ 1;

A(K)
(
(i+ 1)(i+ 2)

2
+ j,

i(i+ 1)
2

+ j
)

= (i− (j− 1))μ2,

A(K)
(
(i+ 1)(i+ 2)

2
+ (j+ 1),

i(i+ 1)
2

+ j
)

= jμ1, ,

B(K)
(
i(i+ 1)

2
+ j,

(i+ 1)(i+ 2)
2

+ j
)

= (1− α)λ3,

B(K)
(
i(i+ 1)

2
+ j,

(i+ 1)(i+ 2)
2

+ (j+ 1)
)

= αλ3,

for i = 0, 1, ..., S− 1 and j = 1, 2, ..., i+ 1.
For n < K,

C(n) ∈M
(
(n+ 1)(n+ 2)

2
+ (K− n)(n+ 1),

(n+ 1)(n+ 2)
2

+ (K− n)(n+ 2)
)
,

for n ≥ 1, and

A(n) ∈M
(
(n+ 1)(n+ 2)

2
+ (K− n)(n+ 1),

n(n+ 1)
2

+ (K− (n− 1))n
)
,

B(n) ∈M
(
(n+ 1)(n+ 2)

2
+ (K− n)(n+ 1),

(n+ 1)(n+ 2)
2

+ (K− n)(n+ 1)
)
,

such that
C(n)(i, i) = λ,

for i = 1, 2, ..., (n+1)(n+2)
2 ;

C(n)
(
(n+ 1)(n+ 2)

2
+ i(n+ 1) + j,

(n+ 1)(n+ 2)
2

+ i(n+ 2) + j
)

= (1− α)λ,

C(n)
(
(n+ 1)(n+ 2)

2
+ i(n+ 1) + j,

(n+ 1)(n+ 2)
2

+ i(n+ 2) + (j+ 1)
)

= αλ,
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A(n)
(
(n+ 1)(n+ 2)

2
+ i(n+ 1) + j,

n(n+ 1)
2

+ i(n+ 1) + j
)

= (n− (j− 1))μ2,

A(n)
(
(n+ 1)(n+ 2)

2
+ i(n+ 1) + (j+ 1),

n(n+ 1)
2

+ i(n+ 1) + j
)

= jμ1,

B(n)
(
n(n+ 1)

2
+ i(n+ 1) + j,

(n+ 1)(n+ 2)
2

+ i(n+ 1) + (j+ 1)
)

= λ3,

for i = 0, 1, ...,K− n and j = 1, 2, ..., n+ 1;

A(n)
(
(i+ 1)(i+ 2)

2
+ j,

i(i+ 1)
2

+ j
)

= (i− (j− 1))μ2,

A(n)
(
(i+ 1)(i+ 2)

2
+ (j+ 1),

i(i+ 1)
2

+ j
)

= jμ1,

B(n)
(
i(i+ 1)

2
+ j,

(i+ 1)(i+ 2)
2

+ j
)

= (1− α)λ3,

B(n)
(
i(i+ 1)

2
+ j,

(i+ 1)(i+ 2)
2

+ (j+ 1)
)

= αλ3,

for i = 0, 1, ..., n− 1 and j = 1, 2, ..., i+ 1; and n ≥ 1.
Finally,

B(0)(i, i) = −
∑
j
A(0)(i, j)−

∑
j̸=i

B(0)(i, j),

and
B(n)(i, i) = −

∑
j

(
A(n)(i, j) + C(n)(i, j)

)
−
∑
j̸=i

B(n)(i, j)

for n = 1, ...,K.
Letting Q∗ = A(K) + B(K) + C(K), we can then derive the stability condition of the

system by simultaneously solving the following equations for γ.

γQ∗ = 0,
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and
γe = 1,

where γ is the row vector representing the stationary distribution of the infinitesimal genera-
torQ∗, 0 is a row vectorwith all elements equal to 0 and e is a column vectorwith all elements
equal to 1. The stability condition, then, is

γC(K)e < γA(K)e. (4.3.1)

If stability condition (4.3.1) is not satisfied, the system becomes an M/H2/S/K queue
of population-3 agents in which agents on the demand side become “servers” (H2 denotes a
hyper-exponential distribution with two phases). The mean waiting times of population-1
and population-2 agents are given by

W1 = W2 = +∞.

When the stability condition holds, we can derive the steady state probabilities π =

(π0, π1, π2, ...), where πx3 = (π0,0,x3 , π1,0,x3 , ..., πS,K,x3) is the vector encoding all probabili-
ties when there are x3 demanders in the system at the steady state. For x3 ≥ K, there exists a
constant matrixR such as

πx3 = πKRx3−K,

whereR satisfies
C(K) +RB(K) +R2A(K) = O. (4.3.2)

The solution of the matrix equation (4.3.2) is obtained by the Matrix Geometric Method
proposed by Neuts 39 . Furthermore, for 1 ≤ x3 ≤ K, we also have

πx3 = πx3−1R(x3),

whereR(K) = R, andR(1),R(2), ...,R(K−1); π0, π1, ..., πK are recursively calculated as

R(x3) = −C(x3)(B(x3) +R(x3+1)A(x3+1))−1.
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π0 is determined by solving

π0(B(0) +R(1)A(1))−1 = 0,

and

π0

(
I +

S−1∑
x3=1

x3∏
x2=1

R(x3) +

(
S∏

x2=1

R(x3)

)
(I −R)−1

)
e = 1,

where I denotes an identity matrix of appropriate dimension.
Next, we derive performance measures of the system, including average queue lengths,

and average waiting times of demanders and suppliers. The average number of demanders in
the waiting line is given by

L =
∞∑

x3=0

K∑
x2=0

S∑
l=0

(x3 −min{x2, x3, S})πx1,x2,x3

=

K−1∑
x3=0

x3πx3ex3 −
K−1∑
x3=0

πx3gx3 + πK(I −R)−1[KI + (I −R)−1R]eK − πK(I −R)−1gK,

(4.3.3)

where

• ex3 is a vector of the same dimension as πx3 , will all elements equal to 1.

• gx3 = (g0,0,x3 , g1,0,x3 , ..., gS,K,x3), where gx1,x2,x3 = min{x2, x3, S}.

Note that the summation in (4.3.3) excludes (x1, x2, x3) not existing in the state space. The
same rule applies to all later summations and products.

The average number of population-3 agents in the system is given by

L3 =
∞∑

x3=0

K∑
x2=0

S∑
l=0

x2πx1,x2,x3

=
K−1∑
x3=0

πx3fx3 + πK(I −R)−1fK. (4.3.4)
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Here, fx3 = (f0,0,x3 , f1,0,x3 , ..., fS,K,x3), where fx1,x2,x3 = x2.
Corresponding to (4.3.3) and (4.3.4), the average sojourn time population-3 agents can

be calculated via Little’s Law as follows

W3 =
L3

λ3(1− Pb)
,

where Pb is the blocking probability of population-3 agents, calculated by

Pb =
K−1∑
x3=0

πx3ux3 + πK(I −R)−1uK.

Here, ux3 is a vector with the same dimension as πx3 , in which the last min(x3 + 1, S + 1)
elements equal 1 and the other elements equal 0.

The average number of demanders in the system is given by

L =
∞∑

x3=0

x3πx3ex3

=
K−1∑
x3=0

x3πx3ex3 + πK(I −R)−1[KI + (I −R)−1R]eK.

The average sojourn time of all demanders is given by

W =
L
λ
.

Since a demander knows his own type before entering the system, the expected sojourn
times of a population-1 and a population-2 agent are estimated as

W1 =
L
λ
+

1
μ1
, (4.3.5)
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and

W2 =
L
λ
+

1
μ2
. (4.3.6)

Finally, social welfare, which equals the total utility of all agents in the system per time
unit, is given by

SW = λR+ λ3(1− Pb)R3 − CL− C3L3.

For further analysis, we acknowledge the following properties, which are supported by
intuition and numerous simulation results.

Axiom4.3.1. The expected sojourn time of anarbitrary agent depends on the strategies of agents
in their own population and the other populations. In other words, W1,W2 andW3 are func-
tions of σ(1), σ(2) and σ(3). The monotonic properties of these functions with respect to each vari-
able are given as follows.
Under the stability condition given in (4.3.1),
(1)W1 is continuously increasing in σ(1) and σ(2), and decreasing in σ(3).
(2)W2 is continuously increasing in σ(1) and σ(2), and decreasing in σ(3).
(3)W3 is continuously decreasing in σ(1) and σ(2), and increasing in σ(3).

4.3.3 Nash Equilibria

In this section, we derive all possible Nash equilibria at which agents make a best response to
the strategies of other agents. The social profile,which is representedby a triplet

(
σ(1), σ(2), σ(3)

)
,

is denotedX. Let X̄ =
(
σ̄(1), σ̄(2), σ̄(3)

)
be the social profile in equilibrium.

The payoff of an arbitrary population-1 agentwho adopts a strategy σ(1) against the social
profile X̄ is given by

U1
(
σ(1)|X̄

)
= σ(1) (R− CW1 (X̄)) .
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Bydefinition, σ̄(1) is a best response against the social profile in equilibrium,whichmeans

σ̄(1) ∈ argmax
σ(1)

U1
(
σ(1)|X̄

)

=


{0} ifR− CW1 (X̄) < 0,

[0, 1] ifR− CW1 (X̄) = 0,

{1} ifR− CW1 (X̄) > 0.

(4.3.7)

If we similarly defineU2
(
σ(2)|X̄

)
andU3

(
σ(3)|X̄

)
for the other two populations, we also

have

σ̄(2) ∈ argmax
σ(2)

U2
(
σ(2)|X̄

)

=


{0} ifR− CW2 (X̄) < 0,

[0, 1] ifR− CW2 (X̄) = 0,

{1} ifR− CW2 (X̄) > 0,

(4.3.8)

and

σ̄3 ∈ argmax
σ(3)

U3
(
σ(3)|X̄

)

=


{0} ifR3 − C3W3 (X̄) < 0,

[0, 1] ifR3 − C3W3 (X̄) = 0,

{1} ifR3 − C3W3 (X̄) > 0.

(4.3.9)

(4.3.7), (4.3.8) and (4.3.9) lead to 27 possible combinations. However, we can reduce the
number of cases to consider by noting thatW1 (X̄) > W2 (X̄), and considering the follow-
ing special cases. First, if σ̄(1) = 0, meaning that population-3 agents do not join the system,
then it is easily seen that σ̄(1) = σ̄(2) = 0 since the best response of demanders is not to join
the system either. On the other hand, if σ̄(2) = 0, meaning that population-2 agents have
no incentive to join the system, then it is implied that σ̄(1) = 0 (since population-1 agents
always expect longer sojourn times than population-2 agents), which leads to σ̄3 = 0. In
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other words,
(
σ̄(1), σ̄(2), σ̄3

)
= (0, 0, 0) is an equilibrium and is the only equilibrium where

σ̄(2) = 0 or σ̄3 = 0. When σ̄(2) > 0, σ̄3 > 0 and the stability condition (4.3.1) is satisfied, all
possible equilibria can be derived as shown in Table 4.1.

Table 4.1: Equilibria and corresponding conditions.

Equilibria Conditions

(1, 1, 1)
R− CW1 (1, 1, 1) > 0,
R− CW2(1, 1, 1) > 0,
R3 − C3W3(1, 1, 1) > 0.

(σ̄(1), 1, 1)
R− CW1(σ̄(1), 1, 1) = 0,
R− CW2(σ̄(1), 1, 1) > 0,
R3 − C3W3(σ̄(1), 1, 1) > 0.

(0, 1, 1)
R− CW1(0, 1, 1) < 0,
R− CW2(0, 1, 1) > 0,
R3 − C3W3(0, 1, 1) > 0.

(0, σ̄(2), 1)
R− CW1(0, σ̄(2), 1) < 0,
R− CW2(0, σ̄(2), 1) = 0,
R3 − C3W3(0, σ̄(2), 1) > 0.

(1, 1, σ̄(3))
R− CW1(1, 1, σ̄(3)) > 0,
R− CW2(1, 1, σ̄(3)) > 0,
R3 − C3W3(1, 1, σ̄(3)) = 0.

(σ̄(1), 1, σ̄(3))
R− CW1(σ̄(1), 1, σ̄(3)) = 0,
R− CW2(σ̄(1), 1, σ̄(3)) > 0,
R3 − C3W3(σ̄(1), 1, σ̄(3)) = 0.

(0, 1, σ̄(3))
R− CW1(0, 1, σ̄(3)) < 0,
R− CW2(0, 1, σ̄(3)) > 0,
R3 − C3W3(0, 1, σ̄(3)) = 0.

(0, σ̄(2), σ̄(3))
R− CW1(0, σ̄(2), σ̄(3)) < 0,
R− CW2(0, σ̄(2), σ̄(3)) = 0,
R3 − C3W3(0, σ̄(2), σ̄(3)) = 0.
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Equilibria #1 and #3 can be verified by simply checking their corresponding conditions.
The other equilibria are derived by solving their corresponding conditional equations and
double-checking other conditions. The solutions to those equations are not explicit but are
computationally solvable. We will illustrate results in several numerical examples in the fol-
lowing section.

4.3.4 Numerical Analysis

In this section, we present the analysis in specific numerical examples. First, we assume that
agents are not rational, and numerically examine the variation of someperformancemeasures
with respect to system parameters and actual joining rates. In the following examples, we set
μ1 = 2, μ2 = 5, α = 0.3,R1 = R2 = R = 15,R3 = 20, C1 = C2 = 4 and C3 = 5. Results
are illustrated in Figures 4.3.1 to 4.3.8.

Figures 4.3.1 to 4.3.4 verify the monotonic properties of demanders’ and population-3
agents’ waiting times with respect to the agents’ actual joining rates. The results are intuitive
and follow exactly as in Axiom 4.3.1.

Figure 4.3.1: W2 with respect to λ2 (λ1 = 5,K = 20).
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Figure 4.3.2: W2 with respect to λ1 (λ2 = 4,K = 20).

Figure 4.3.3: W3 with respect to λ2 (λ1 = 5,K = 20).

134



Figure 4.3.4: W3 with respect to λ1 (λ2 = 4,K = 20).

Figures 4.3.5 and 4.3.6 show that the social welfare function is unimodal with respect to
the joining rates of demanders and suppliers. There exists a valueofpassengers’ (or population-
3 agents’) joining rate at which social welfare reaches its maximum. These patterns suggest
that the platform manager can control the arrival rate of one side of agents in case the other
side is not strategic, to maximize social welfare. More details about applicable control poli-
cies can be found in21. For example, when population-3 agents are not strategic and join the
queue with rate λ1 = 5, policy makers can interfere in the demanders’ service value to adjust
their arrival rate at around λ∗2 = 4.7, which yields the highest social welfare. When λ2 < λ∗2,
demanders need more incentive to join the queue, so a fixed subsidy (such as a discount or
coupon) can be granted. On the contrary, when λ2 > λ∗2, a toll fee can be applied to re-
duce the joining rate of demanders. The same policies apply in the case where suppliers are
strategic and demanders are not.

135



Figure 4.3.5: SWwith respect to λ2 (λ1 = 5, S = 3,K = 20).

Figure 4.3.6: SWwith respect to λ1 (λ2 = 4, S = 3,K = 20).

Figures 4.3.7 and 4.3.8 illustrate how social welfare varies according to the two system
parameters S andK. In this experiment, social welfare increases quickly at first, then remains
almost unchanged as S becomes larger. It can be observed that 5matching points are enough
and optimal in this example (considering that a larger waiting a may consume more budget
for construction and management). On the contrary, social welfare decreases with increased
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buffer capacity. This phenomenon may stem from the fact that the buffer capacity already
exceeds a particular “threshold,” above which the queue length of population-3 agents gets
longer and leads to inefficient waiting times, thus reducing social welfare.

Figure 4.3.7: SWwith respect to S (λ2 = 4, λ1 = 5,K = 20).

Figure 4.3.8: SWwith respect toK (λ2 = 4, λ1 = 5, S = 3).
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In what follows, we derive joining probabilities of agents and calculate social welfare in
the case where agents are strategic. For this, we set Λ2 = 4, Λ1 = 5, μ1 = 1, μ2 = 5, S = 3,
K = 8, ε = 0.3, C2 = 5 and C1 = 4.

First, it can be seen that the equilibrium (0, 0, 0) exists in any setting of parameters. In
reality, the systemmay end up at the equilibrium (0, 0, 0) in extreme situations, for example,
when the system is terminated. In the following example, we derive other equilibria from the
situations in Table 4.1.
Example 1. Assume R = 15 and R3 = 20. In this case, two equilibria exist: (1, 1, 1) (and
(0, 0, 0)). This means either that potential agents all join, or that none join at all.
Example 2. Assume R = 15 and R3 = 4. In this example, we keep the service value of
passengers unchangedwhile reducing the service value of population-3 agents. Thismake the
equilibrium (1, 1, 1) no longer exist since population-3 agents expect a negative payoff when
they join the system at full rate. Instead, there exists an equilibrium at (0, 0.9099, 0.5499),
at which population-1 agents choose not to join the system at all, while both population-
2 agents and population-3 agents join the system at a rate smaller than the corresponding
potential rate.
Example 3. Assume R = 2.5 and R3 = 4. In this example, we found the equilibrium
(0, 1, 1), meaning that population-1 agents choose not to join the system at all, while both
population-2 agents and population-3 agents join the system at full potential rates.
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5
Conclusion

This chapter covers the following points:

• Summarize the key findings of the study

• Discuss shortcomings of the study

• Present recommendations for future research
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5.1 Summary of the key findings

This research proposed a theoretical framework for multi-population queueing games that
employs queueing theory and game theory to model agents’ joining behaviors and applies
that framework to optimally design double-ended queueing systems according to such agent
behaviors.

Six different models of queueing games in double-ended queueing systems, categorized
into two main streams—systems with zero matching times (Chapter 3) and systems with
nonzeromatching times (Chapter 4)—have been considered in this dissertation. All sixmod-
els shared the same game theoretical framework from Chapter 2, but each model poses its
own difficulties to be solved. It has been noticed that, in models with zero matching time,
only one agent population is present in a non-empty queue at a time. When the matching
times are nonzero, in contrast, the queueing systemmaywitness agents on both ends at some
point. Technically, dismissing the matching time allowed for fewer dimensions in the system
states of theMarkov chain modeling the system, which reduced the complexity of the math-
ematical analysis. As such, most of the results in Chapter 3 could be derived in their closed
form. Chapter 4 presented models with higher complexity, but at the cost of the results no
longer being derived explicitly.

In observable queues (Sections 3.1, 3.2, 4.1, 4.2), it can be observed that the agents’ strate-
gies are subject to a threshold policy: there exist maximumqueue lengths abovewhich agents
stop joining the queue. This feature is based on a key point: the monotone property of the
waiting function with respect to the queue length in subgame perfect Nash equilibrium. In
Section 3.2, the conditional expected waiting time and its monotonicity could be obtained
instantly. However, in Sections 4.1 and 4.2, the expected waiting times could not be calcu-
lated explicitly: they are instead derived recursively by first-hitting-time analysis. As such,
their monotone properties are not trivial to obtain. Rigorous proofs by induction have been
presented, which suggests an effective method for similar problems.

Another common feature tobeobserved inmost of themodels is that themean socialwel-
fare is usually discreetly unimodal with respect to the fee/subsidy/price being implemented;
in other words, there always exists a fee/subsidy/price range in which mean social welfare is
maximized. This feature was proved in themodels in Sections 3.2 and 3.3 andwas illustrated
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by numerical examples in Sections 4.1 and 4.2.
Regarding the proposed optimal policies, two typical policies have been adopted from

literature: to impose toll fees or to grant a subsidy, and price intervention. Although the
implementations are similar across the literature, the context varies: it is necessary to regulate
the behavior of multiple agent populations rather than one population only. In that sense,
price intervention offers the advantage of simultaneously regulating the behaviors of both
the supply and demand sides, although it may not always be applicable.

In summary, this study proposed a neat solution to a series of queueing games and their
optimal designs with at most three populations of agents. Although the theoretical frame-
work was much more general, allowing for an arbitrary n strategic agent populations, it is
likely that a heuristic scheme or a simulation approach is needed to solve problems of higher
complexity.

5.2 Shortcomings and recommendations for future research

This study leaves several shortcomings which open corresponding directions for future re-
search, as follows.

First, in the observable queue settings considered in Sections 3.1, 3.2, 4.1 and 4.2, it was
shown that multiple equilibria exist in those queueing games. Irrational outcomes can be
eliminated, which leaves only one subgame perfect Nash equilibrium remaining. However,
in the unobservable queue settings (Sections 3.3 and 4.3), multiple equilibria exist and it
is not possible to conclude about the rationality of each outcome. It also remains open to
determine the situations inwhich the system ends up at a specific equilibrium. This problem
of equilibrium selection deserves further investigation.

Second, in Section 4.2, a fixed-point iteration based algorithm to compute the rational
outcome of the game was proposed. Although Algorithm 2 was shown to converge to the
subgameperfect outcome in all presented numerical examples, its validation needs further in-
vestigation: 1) Is there a rigorous proof of the convergence of the algorithm? 2)Does a similar
loop algorithm work in other population games? In fact, the same idea has been applied to
another model (Nguyen& Phung-Duc 45) in which customer arrivals affect the on/off status
of servers, thereby changing the expected waiting times of those who were already enqueued
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before. The successful applications of the algorithm suggest that itmay apply in other queue-
ing models in which agents can observe the system state, and the expected waiting times of
enqueued agents are affected by the joining strategies of later comers. Under these circum-
stances, agents keepupdating their joining strategies until an equilibrium is reached,meaning
that agents do not find any better strategies than following the crowd.

Third, technically, the six models in this dissertation are differentiated by the follow-
ing main features: the observability of system states (observable or unobservable), matching
times (zero or nonzero) and the number of (strategic) populations. The models are inten-
tionally chosen because eachmodel has its own difficulties and hence requires different tech-
niques to solve. However, the combination of the aforementioned featuresmay lead tomany
more models which have not been considered in the current study for several reasons (for ex-
ample, similarity with considered models, complexity—too trivial or too complicated to be
solved by the current framework, etc). A totally new model can be obtained by varying one
of the features. Regarding the level of information that is revealed to agents, it is of interest
to investigate partially observable queues. For example, in Model 4 (Section 4.1) and Model
5 (Section 4.2), we can consider a setting in which one of the two dimensions of the system
state is invisible to agents. A challenge posed in this setting is a concrete mathematical proof
of the possible monotone property of the conditional expected waiting time with respect to
the observable dimension which is the precursor to a threshold strategy. Another direction
for future research is to incorporate the heterogeneity of agents in reality by expanding the set
of agent populations and generalizing the results with arbitrary numbers of agents on both
sides of the queue, which greatly increases the complexity of the problem.

Another assumption that can be relaxed is the linear waiting cost. In all the models, the
waiting cost rates were assumed constant and the waiting times were always non-increasing
with respect to the position of agents. As a matter of fact, there was no reneging behavior, as
agents always found nonnegative payoff in the queue over time (once they joined). In fact,
due to several factors (such as psychology), the waiting cost may be nonlinear. In such a case,
if the expected waiting cost at a specific state happens to exceed the service value, the tagged
agent would leave the system. This phenomenonwould expand the action space and increase
the complexity of the problem.

Furthermore, the analyses in the current dissertation rely on several assumptions that

142



might not be realistic in some applications. It is always of interest to incorporate policies that
characterize real-life double-ended queueing systems. Some suggestions for possible further
investigations are as follows:

• Batch arrivals and batch services can be taken into consideration. Furthermore, one
can allow for amore flexiblematchingmechanism: one-to-many ormany-to-many, in-
stead of the one-to-one regime considered throughout the study. These considerations
are included in Xu et al. 59 , Chai et al. 7 , but not under a population game theoretical
setting.

• Some passenger–taxi systems may adopt a gated policy which blocks the entrance of
an arriving taxi during the idle state and allows taxis to join during the busy period.
This policy was captured in Wang et al. 56 under a one-population game setting in
passenger–taxi queues with zero matching time.

• The current game theoretical framework is based on a latent assumption that agents
are extremely “smart”; however, it is quite impractical that agents can compute their
expected waiting times using a complicated formula as in (4.1.1), (4.2.1). To overcome
this flaw, a random error term can be added to agents’ estimated waiting time, which
is known as bounded rationality23.

Last but not least, the main scope of the current study is optimal designs, i.e., to set the
system parameters before an operation. The measures of the systems are quantified in their
mean values—which represent the system performance in the long run. This is when queue-
ing theory and aMarkov process formalism come in handy. In fact, there can be many other
approaches to a social problem tied to queueing systems in particular. For example, multi-
agent simulation is an alternative powerful technique that can, theoretically, deal with much
more universal and complex settings of the system, including the general non-Poisson in-
puts48. However, this method still poses several weaknesses compared to the framework in
the current study. On the one hand, it requires numerous rounds of simulation to obtain
themean value of a systemmeasure, whichmay be time-consuming and costly. On the other
hand, while it is usually difficult to explain the patterns resulting from simulation,mathemat-
ical modeling allows for some interpretation of the system (especially in case of closed-form
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results). Another related formalism is the Markov decision process, which is particularly ap-
plicable in the scenario of optimal control, in which decision variables can be dynamically
adjusted during the operation. In conclusion, depending on the specific class of problem,
purpose and even resource, one or a mixture of different methods can be chosen for a social
problem.
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A
Symbols and Notations

List of symbols and notations that are used across sections
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Symbol Definition Remark
i A population of agents index
ĩ The population other than population i (in case of 2 populations) index
N Set of natural number {0, 1, 2, ...} set
P Society (Set of populations) set
A Set of actions set
S State space set
card(S) The number of elements in set S integer
λi Arrival rate of population-i agents ppl/time
ξ i Balking rate of population-i agents ppl/time
μ Matching rate (in case of 2 populations) pairs of ppl/time
S Number of matching points integer
p Price (service fee) monetary
θ Toll fee/Subsidy monetary
Ci Waiting cost rate of population-i agents monetary/time
Ri Service value of population-i agents monetary
SW Mean social welfare per unit time monetary/time
s Amulti-dimensional system state vector
s A one-dimensional system state integer
σ(i) Strategy of population-i agents vector
σ̄(i) Strategy of population-i agents in equilibrium vector
σ(i)s Joining probability of population-i agents at state s (in observable case) scalar
σ(i) Joining probability of population-i agents (in unobservable case) scalar
σ̄(i) Joining probability of population-i agents in equilibrium (in unobservable case) scalar
(s) self-optimal value index
(o) overall (socially) optimal value index
⌊x⌋ The largest integer number not exceeding x integer

Table A.1: List of symbols used across sections
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