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Chapter 1. General Introduction 

 

 

 

Purpose of this Chapter 

Information processing technology has become an indispensable part of modern society as 

computer performance has improved and the fields of use have expanded. The use of computers in 

research fields is no exception. Computational analysis methods such as fragment molecular orbital 

(FMO) calculations and molecular dynamics (MD) simulations are used in basic and applied 

research in a wide range of fields, including physics, chemistry, and pharmacology. The advantage 

of computational analysis methods is that they can efficiently analyze molecular-level phenomena 

that cannot be obtained by experimental analysis. MD simulations and FMO calculations are very 

effective methods for computational analysis of large-scale systems such as proteins, membranes, 

and polymeric materials. However, the huge volume of data obtained by these methods often makes 

manual analysis difficult. In recent years, the approach to scientific research has begun to shift from 

working hypothesis-driven science to data-driven science, and how to extract useful information 

from big data has become important. Against this background, M. Sultan et al. reported a case study 

of analysis of protein conformational changes using Random Forest,1 a type of machine learning, 

and the development of analysis tools using machine learning has attracted attention. 

In this doctoral thesis, computational analyses of several proteins were performed to reveal 

new scientific knowledge about these proteins and to establish new analytical methods. This chapter 

provides basic backgrounds about the study. 
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1-1. Protein and its function 

Proteins play a leading role in almost all biological processes, whether at the molecular, 

cellular, or tissue level. Therefore, it is important to understand their functions at the atomic level in 

order to understand biological phenomena. Therefore, this section describes proteins. 

 

1-1-1. Structures of proteins 

     Proteins are linear polymers consisting of repeating units of amino acid residues. The 

carboxyl group of each amino acid residue in the proteins is linked to the amino group of the next 

amino acid residue by a peptide bond (Figure 1a). 

     There are twenty amino acids that are specified by the genetic codes. There are twenty amino 

acids that are specified by the genetic codes. The amino acids in the proteins have various 

properties such as charges, hydrophobicity, volumes, and shapes. The property of each amino acid 

residue is determined by the side chain. Because possible conformations of the protein backbone 

and possible patterns of hydrogen bonding interactions between the backbone atoms are limited, a 

few characteristic local structures of the protein backbone are seen frequently within protein 

structures.2 These local structures are called secondary structures. The alpha helices (α-helices) and 

beta sheets (β-sheets) are the most common secondary structures (Figure 1b). The hydrogen bonds 

stabilizing the alpha helix structures are formed between i-th and (i+4)-th residues (Figure 1c). On 

the other hand, in the beta sheets, the backbone hydrogen bonds are formed between two sheets 

(Figure 1d). 
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Figure 1. Primary and secondary structures of protein. (a) Schematic structure of the protein 

backbone. R is an amino acid side chain. (b) A crystal structure of C-terminal binding protein 

(PDB ID: 2OME). The α-helices and β-sheets are colored red and yellow, respectively. Large 

parts of this protein adopt the α-helix or β-sheet structures, and the alpha helices and beta 

sheets are connected by loops colored light green. The backbone hydrogen bonding 

interactions that stabilize the secondary structures are shown for (c) an alpha helix and (d) a 

beta sheet. 

 

1-1-2. Functional expression and conformational change of proteins 

A protein changes its own structure either globally or locally, when it acts a biologically 

essential function (Figure 2). Thus, it is most essential to understand these structural changes 

dynamically at the atomic level in order to understand biological phenomena. However, this is not 

easy study both experimentally and theoretically/computationally, and Scientists are currently 

working on various approaches. 
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Figure 2. Conformational changes when a protein expresses its function. (a) Dengue virus: 

Dengue virus makes a conformational change from the inactive state on the left side to the 

active state on the right side during infection. (b) Hsp90: a chaperone protein that functions 

by changing its conformation from the inactive state (left-side) to the active state (right-side). 

 

1-2. Paradigm shift from hypothesis-driven research to data-driven research 

In recent years, the research approach has been changing from conventional 

hypothesis-driven science, i.e., science in the form of testing hypotheses assumed by researchers 

through experiments, to data-driven science, i.e., finding data to explain them based on 

experimental data obtained in various forms. This section provides background on the paradigm 

shift in research approaches. 

 

1-2-1. Growth of computational science methods 

It has not yet been half a century since the importance of computational science was first 

recognized and was able to provide some analysis for experiments. First principles calculations 

based on quantum mechanics were initially used only in the fundamental fields of quantum 
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chemistry and condensed matter physics. More recently, they have provided reliable analysis in 

applied sciences and have become indispensable in a variety of research fields. The history of 

computing has seen processing power continue to increase at an exponentially rapid rate from the 

birth of the electronic computer to the present. This is evidenced by the remarkable advances in 

personal computers and smart phones. Clearly, the reason for the astonishingly large progress in 

computational science is due to these advances in computers and the device technologies that 

support them. On the other hand, computational theory has also made great progress. In order to 

fully utilize large computational resources, an excellent computational theory is necessary, and it is 

fair to say that the synergistic effect of the two together has led to the development of computational 

science. Typical examples are density functional theory (DFT) calculations. This method makes it 

possible to calculate the stable atomic configuration structure, electronic states, and physical 

properties of a system from the principles of quantum mechanics itself, without the need for 

empirical knowledge. Many previous calculation methods have been described using this 

first-principles method, which is extremely precise and reliable. However, this method requires 

more computation time and storage capacity than the method using empirical potentials, and the 

scale of computation grows explosively as the system size increases. This limitation makes it 

difficult to describe systems much larger than the atomic scale in practical terms. Systems in which 

phenomena occurring at the atomic scale are intertwined with phenomena ranging from meso to 

macroscopic scales are the most challenging subjects for computational physics. Such calculations 

are required, for example, when attempting to elucidate the physiological functions of biological 

materials such as proteins and molecular motors from the elementary processes of individual atoms 

and molecules, or in the design of fuel cells from the atomic scale. The systems targeted in these 

studies are, of course, important as applied technologies, but they are also challenging problems 

whose principals have not yet been fully elucidated from a molecular theoretical viewpoint. Such 

problems cannot be solved by blindly using the current computational methods on a giant computer 

but require the development of new hybrid analytical methods. The QM/MM method and Fragment 
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molecular orbital (FMO) method are examples of such hybrid-type analysis methods. In order to 

promote computational science, which opens the way to such dramatic advances in science and 

technology, it is important to construct innovative computational theories, not to mention the 

development of computers themselves. 3 

 

1-2-2. Importance of data mining for scientific databases 

Due to the rapid progress in genome science in recent years, sophisticated genome 

sequencing devices have been developed one after another, and the genome sequences of a vast 

number of organisms are being determined on a daily basis. Furthermore, in addition to genomes, it 

has become possible to comprehensively collect a vast amount of data, called omics, on gene 

expression, proteins, metabolites, and so on. Therefore, scientific databases with guaranteed data 

quality and quantity are being prepared. In parallel with the development of scientific databases, 

computational technologies are also advancing, and methods for extracting information from huge 

databases, such as clustering4 and deep learning5, are being developed. Therefore, it is expected that 

new information can be obtained by data mining against life science genome databases accumulated 

so far, such as GenBank6. Therefore, data mining efforts for various life science databases are 

important. 

 

1-2-3. Data-driven research 

Data mining of databases that accumulate data from experiments has recently become a 

popular practice, as exemplified by the search for the shortest pathway in organic synthesis7, 8 and 

the prediction of new strains of influenza9. However, data mining using data obtained from 

computational analysis methods, such as MD simulations and FMO calculations, is still a relatively 

rare approach. The establishment of a data mining method for data obtained by computational 

simulations is expected to be a breakthrough that will lead to a dramatic growth in scientific 

research based on new approaches. 



12 

 

 

1-3. Computational Analysis Methods 

This section will give a background of the computational/theoretical analysis methods used in 

this study. 

 

1-3-1. Molecular dynamics (MD) simulation 

Molecular dynamics (MD) simulation is a method of computer simulation of the physical 

motion of atoms and molecules.10, 11 MD simulations take track with changes of energy, position, 

velocity and other parameters while time. Generally, when the N-body system simulated, the time 

evolution of the state is obtained by calculating the Newton equations of motion (Equation 1). 

 

𝑚𝑖

𝑑2

𝑑𝑡2
𝐫𝑖 = −∇𝑖𝑈(𝐫1・・・𝐫𝑁)     𝑖 = 1～ 𝑁 (Equation 1) 

 

mi and ri are the position and the mass of particle i, t is time, and U is the potential energy of the 

whole system. The potential energy was calculated by the sum of four energy components: (C1) 

stretched bond energy in the molecule, (C2) transformational angular energy of the angle between 

two bonds, (C3) dihedral torsion energy of the torsion angle, and (C4) non-bonding interaction 

energy (van der Waals (vdW) interaction and coulomb interaction). In the classical MD simulation 

of proteins, the potential energy of the system is modeled to represent the stable structure of the 

protein, represented by the molecular force field. There are several types of the molecular force 

fields in the world. They are used depending on the application which users used. It is specified as a 

group of empirical parameters according to the application. Typical types of molecular force fields 

are AMBER, CHARMM and MMx (X = 2, 3, 4). For example, the AMBER force field12 is defined 

at below (Equation 2). 
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𝑈({𝐫𝑖}) =  ∑ 𝑘r(𝑟𝑖𝑗 − 𝑟eq)2

bonds
(𝑖𝑗)

+  ∑ 𝑘θ(𝜃𝑖𝑗𝑘 − 𝜃eq)2

angle
(𝑖𝑗𝑘)

+ ∑
𝑘𝜑

2
dihedrals

(𝑖𝑗𝑘𝑙)

[1 − cos(𝑛𝜙𝑖𝑗𝑘𝑙 − γ)]

+ ∑ [
𝐴ij

𝑟𝑖𝑗
12 −

𝐵ij

𝑟𝑖𝑗
6 ]

i<j

+ ∑
𝑞𝑖𝑞j

ε𝑟𝑖𝑗
𝑖<𝑗

 (Equation 2) 

 

The first, second, and third terms are expressed as functions of the bond distance r between two 

atoms in the molecule, the bond angle θ between three atoms, and the dihedral angle φ consisting of 

four atoms, respectively. Here, kX and Xeq (X= r, θ, φ) are parameters determined for each amino 

acid residue. n and  in the third term are the identical rotational number and the phase for the 

torsion angle. On the other hand, the fourth and fifth terms represent the contribution of the van der 

Waals (vdW) interaction and the electrostatic interaction between two atoms, respectively, both of 

which are functions of the distance between them. In addition, Aij and Bij are parameters for each 

atomic pair obtained from the vdW radius, and qi is the charge of the i-th atom. 

MD simulation has become an indispensable tool for understanding the physical basis of the 

structure and function of biomacromolecules, as the development of well-known parameter sets, 

such as the AMBER force field, allows analysis over long periods of time and for large molecules.13, 

14 

 

1-3-2. Targeted molecular dynamics (TMD) simulation 

Targeted molecular dynamics (TMD) simulation is a tool implemented in Nanoscale 

Molecular Dynamics15 (NAMD; Not Another Molecular Dynamics Program), one of the programs 

that performs MD simulations. 

 TMD simulation is a calculation method that applies steering forces to each atom so that the Root 

Mean Square (RMS) of the initial structure and the target structure approach each other during the 

simulation. Force is added as a gradient of the potential energy of each atom (Equation 3). 
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𝑈TMD =  
1

2

𝑘

𝑁
[RMS(𝑡) − RMS∗(𝑡)]2 (Equation 3) 

 

where RMS(t) is the RMS distance (RMSD) of the structure obtained by the simulation when it is 

closest to the target structure, and RMS*(t) is the reference value of the RMSD required for 

structural change, calculated from the RMSD of the initial and target structures. This allows us to 

track the rare event of protein conformational change by MD simulation in a short period of time. 

     Structural changes that are important for protein function expression are "rare events" that are 

observed in MD simulations for even longer times than can be tracked in regular MD simulations. 

Therefore, to track large-scale conformational changes such as protein folding and domain motion, 

either long-time dynamics or efficient sampling methods such as multi-canonical or replica 

exchange methods were necessary. The former has been achieved only on supercomputers such as 

Anton, while the latter requires the acquisition of certain know-how for each method to achieve 

structural sampling, and not everyone can easily perform the calculations. TMD is one of the 

simpler and faster sampling methods. 

 

1-3-3. Molecular orbital method 

The molecular orbital (MO) method16 is an approximate solution of the Schrödinger equation 

for the electronic state of a molecular system. The Schrödinger equation for multi-electron wave 

functions is reduced to the Schrödinger (HF; Hartree-Fock) equation for molecular orbitals 

(functions), which are one-electron wave functions, via the orbital approximation.17 MO methods 

can be further classified into ab initio (non-empirical) MO methods, semi-empirical MO methods, 

and Hückel MO methods. 

The ab initio MO method is based on the principle of not using any numerical data obtained 

from experiments, while the semi-empirical MO method uses parameters previously determined to 

reproduce the physical properties (experimental values) of a group of reference molecules in order 
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to reduce computational costs. In the 1960s and 1970s, calculations using the MO method began to 

be performed. Computer performance was very poor, and the scope of the ab initio MO method was 

limited to very small molecules. Therefore, some theoretical chemists developed semiempirical MO 

methods with the aim of developing practical MO methods applicable to larger molecules. Recently, 

the performance of the combinator has improved considerably, making it possible to apply the ab 

initio MO method to much larger systems, and at the same time, the semiempirical MO method has 

expanded its range of application to larger systems that cannot be handled by the ab initio MO 

method. On the other hand, when the system of interest is large or when dealing with a collection of 

molecules, it is difficult to perform MO calculations even with the current computer environment. 

In such cases, the structure, vibration, and reaction of the molecular system are sometimes 

discussed using analytical functions that approximate the potential energy surfaces. 

The electron configuration of the He atom is said to form a closed shell (1s)2, and the two 

electrons both occupy 1s orbitals. Therefore, when the He atoms are ionized by X-ray excitation 

and the energy of the emitted photoelectrons is measured (photoelectron spectrum), it is expected 

that only one peak corresponding to the ionization of 1s electrons is measured. However, when 

photoelectrons are measured with high sensitivity, photoelectrons emitted from He atoms are 

observed at 40-50 eV, on the low energy side of the main peak. Therefore, the concept of MOs in 

the one-electron picture is a kind of approximation, and the actual situation is described by a more 

complicated wave function. In next section, I will start with the Hartree-Fock (HF) approximation, 

which is an ab initio theory of the one-electron approximation, and touch upon the electron 

correlation problem in the next section. 

 

1-3-4. Hartree-Fock (HF) method17-19 

An atom with n electrons is a complex system in which electrons move in a field created by 

the nucleus and interact with each other. Y 1,2, ,N( ) If we focus on one of the n electrons, we can 

consider this electron to be in a stationary state 1(1) in the centrosymmetric field created by the 
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nucleus and the remaining electrons. The wave function Y 1,2, ,N( ) of an n-electron atom can be 

expressed as a product of one-electron wave functions f1 1( )f2 2( ) fN N( )  in the centrally 

symmetric field created by the nucleus and the remaining electrons. This is called the one-electron 

approximation. This is called the one-electron approximation. Within this one-electron 

approximation, each electron depends on the states of all the remaining electrons, so they must all 

be determined simultaneously. Hartree was the first to apply the variational method to the problem 

of constructing the wave function of a many-electron system using the set of one-electron functions 

fi{ }  in 1928. Hartree used the simple product of fi  (the Hartree product) to represent the wave 

function of a many-electron system. However, this wave function does not satisfy the fundamental 

property of the electron, the Fermi particle, which is pan-symmetry. To overcome this shortcoming, 

two years later in 1930, Fock expressed the wave function of a many-electron system using the 

Slater determinant, which takes the antisymmetry of the electron into account (HF method). These 

methods include the wave function in the operator. Therefore, we treat the problem by the method 

of self-consistent fields. 

These two methods, i.e., Hartree's method and Hartree-Fock's method, have different energy 

expressions depending on the form of the function used. Specifically, owing to the antisymmetry of 

the electrons, HF method includes an integral called the exchange integral, which is a purely 

quantum mechanical effect, in the energy table. Also, the antisymmetry results in Pauli's exclusion 

law, which is not analogous to the classical picture. 

In the electron configuration for the electron ground state (ground configuration), the 

electrons are packed two at a time, starting from the MO with the lowest orbital energy. When the 

system has an even number of electrons and all MOs are packed with two electrons each 

(closed-shell system), the number of electrons in the α spin (upward spin) and β spin (downward 

spin) are equal and symmetry is preserved, but when the number of electrons is odd or the number 

of electrons in one spin exceeds that of the other spin (open-shell system) Two possibilities arise 

depending on how the MOs are handled for the electrons of each spin. If the electron configuration 
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is a closed-shell system, the MOs for both spins will be the same, and the spin-restricted 

Hartee-Fock (RHF) method is applied. 

In the case of the Seki shell system, on the other hand, the spin-restricted open-shell HF 

(ROHF) method restricts the MOs to be the same for the orbitals occupied by two electrons each, 

and the spin-unrestricted HF (UHF) method defines the MOs for each spin separately. The ROHF 

method satisfies spin symmetry, while the UHF method does not. On the other hand, the UHF 

method imposes no restriction on the MOs and thus gives lower energy values than the ROHF 

method; when the UHF method is applied, care must be taken when the spin symmetry deviations 

are large. 

Next, we derive the HF equation based on the Linear Combination of Atomic Orbital 

(LCAO) method as an actual solution of the HF method. The electron-electron interaction can be 

roughly classified into the exchange interaction, which is caused by the fact that electrons are 

Fermions, and the so-called Hartree interaction, which is caused by the Coulomb repulsion force 

between two electrons. The exchange interaction is based on Pauli's exclusion law, which states that 

Fermions cannot occupy the same state at the same time, is treated explicitly in the HF method. 

For an accurate treatment of the electronic state, the Slater determinant, a 3n-dimensional 

wave function satisfying Pauli's exclusion criterion, 

 

 

(Equation 4) 

 

is treated as the trial function. The Hamiltonian of a given molecule is given by, 

 

 
(Equation 5) 

 

 

Y 1,2, ,n( ) =
1

n

f1 1( ) f2 1( ) fn 1( )

f1 2( ) f2 2( ) fn 2( )

f1 n( ) f2 n( ) fn n( )

H = -
Ñi

2

2
+VNe ri( )

æ

èç
ö

ø÷i=1

n

å +
1

2

1

ri - rji¹ j

n

å
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The energy evaluated for the Hamiltonian with the trial wave function,  

 

. 

(Equation 6) 

 

results in the following HF energy, 

 

 (Equation 7) 

 

where the matrix elements are 

 

 
(Equation 8) 

 

(Equation 9) 

 

The former is called the one-electron integral and the latter the two-electron integral, respectively. 

Now, the HF Lagrangian is constructed by adding the energy with the constraint of the 

orthonormalization on the orbital with Lagrange multipliers, ij, as 

 

 (Equation 10) 

 

where the overlap integral is defined as 

 

𝑆𝑖𝑗 = ∫ 𝛷𝑖
∗(𝒓)𝛷𝑗(𝒓)𝑑𝒓 (Equation 11) 
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By considering the stationary solution for the variation of the orbital, fi
*  (

¶LHF

¶fi
*

= 0  ), we obtain 

the following HF equation, 

 

 
(Equation 12) 

 

where 

 

 (Equation 13) 

 

(Equation 14) 

 

Note here that the exchange term is represented by a nonlocal operator. 

 

1-3-5. SCF method16, 20 

This section explains how to solve the HF equation. For most cases, the HF equation can be 

accurately solved by numerical calculations. However, in molecular systems, there are many nuclei, 

which are the centers of attractive interactions, and it is difficult to obtain MOs numerically. 

Roothaan solved this difficulty. Instead of direct numerical calculations for the MOs, he used an 

analytical expansion method. In other words, he expanded the orbital functions by an appropriate 

set of the basis functions centered at the nuclei, χp.  

 

𝜓𝑖(𝒓) = ∑ 𝐶𝑝𝑖𝜒𝑝(𝒓)

𝑚

𝑝=1

 (Equation 15) 

 

where Cpi is the expansion coefficient, which is defined to minimize the energy. As a set of basis 

functions, atomic orbitals are employed. This is so-called Linear Combination of Atomic Orbitals 
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(LCAO) method. Since molecules are made of atoms, they will retain the properties of their 

constituent atoms. The basic idea is that the waves of a molecule may be represented by the 

superposition of the waves of atoms placed on the nucleus. While the extended Hückel method used 

Slater-type orbitals (STO), the ab initio MO method uses Gaussian-type orbitals (GTO) exclusively 

for practicality. The basic principle remains the same. the HF equation is replaced by an algebraic 

problem of matrix eigenproblems. This is known as the Roothaan SCF method. 

Now, the vectors of the basic functions and expansion coefficients are 

 

 (Equation 16) 

 

 

(Equation 17) 

 

in any case 

 

 (Equation 18) 

 

is expressed as Substituting this basis into the HF equation, the Hartree-Fock-Roothaan equation for 

closed-shell molecules is finally given by the following secular equation as 

 

∑ 𝐶𝑖𝑠(𝐹𝑟𝑠 − 𝜀𝑖𝑆𝑟𝑠)

𝑚

𝑠=1

= 0 (𝑟 = 1, 2, ⋯ , 𝑚) (Equation 19) 

 

where m is the number of atomic orbitals in the molecular system, Frs is the Fock matrix defined as 
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In the Fock matrix element given by the above equation, hrs and (rs|tu) are one- and two-electron 

matrix elements given respectively as 

 

 
(Equation 21) 

(𝑟𝑠|𝑡𝑢) = ∫ ∫
𝜒𝑟

∗(𝒓)𝜒𝑖
∗(𝒓′)𝜒𝑢(𝒓′)𝜒𝑠(𝒓)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ (Equation 22) 

 

where Ptu is the density matrix given by 

 

𝑃𝑡𝑢 = 2 ∑ 𝐶𝑗𝑡𝐶𝑗𝑢

𝑛

𝑗=1

 (Equation 23) 

 

Srs is the overlap matrix as 

 

𝑆𝑟𝑠 = ∫ 𝜒𝑟
∗(𝒓)𝜒𝑠(𝒓)𝑑𝒓 (Equation 24) 

 

1-3-6. Electron correlation21, 22 

In the HF method, the electron-electron interaction is considered as a mean field using MOs, 

so the HF wave function is not an exact solution to the Schrödinger equation. The discrepancy 

between the exact electron-electron interaction and the that estimated by the mean field 

approximation, HF method, is called the electron correlation. Accurate estimation of electron 

correlation energies is the key to making quantitative comparisons with experimental data in 

first-principles calculations. There are two main methods for dealing with electron correlation. One 

is "wave function theory," which starts from the HF wave function and incorporates electron 

correlation at the wave function level, and the other is "density functional theory," which is 

computationally equivalent to the HF method but incorporates approximate electron correlation 
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effects derived from the model as a functional of density. Here, we will discuss these two electron 

correlation theories. 

 

1-3-7. Wave function theory16, 23 

The HF method describes the electronic ground state by a single Slater determinant, i.e. the 

HF ground state configuration. The electron configuration created by excitation of an electron from 

an occupied orbital to an unoccupied (virtual) orbital is called a singly excited configuration. 

Generally, one can construct the non-redundant n-multiply excitation configuration by removing n 

occupied orbitals and adding unoccupied virtual orbitals in each column of the Slater determinant. 

In the electron correlation method, the electron wave function expressing the accurate electron 

ground state takes the form of a linear combination of the ground state HF configuration and the 

excited configurations. The excitation configurations can be classified into single excitation, double 

excitation, triple excitation, and quadruple excitation configurations, depending on the number of 

electrons to be excited. The most important contribution to the estimation of electron correlation 

comes from the two-electron excitation (double excitation) configuration, and the second most 

important is the four-electron excitation (quadruple excitation) configuration. There are three 

methods for estimating electron correlations such as perturbation theory, variational method, and 

cluster expansion. A brief description of each method is given below. 

 

1-3-8. Configuration interaction (CI) method 

The most intuitive way to estimate electron correlations by a variational method is the 

Configuration Interaction (CI) method,24, 25 in which the wave function is expanded using several 

electron configurations (Slater determinant and its linear combination). When a Hamiltonian matrix 

is constructed, the energies and the coefficients (called CI coefficients) for each configuration are 

estimated by diagonalizing the CI Hamiltonian matrix. The CI method that considers all excitation 

configurations from occupied orbitals to virtual orbitals is called the full CI (Full CI) method and 

gives the most accurate solution within the approximation of the basic functions used in the 
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calculation. However, it is not practical in terms of computational cost. In actual calculations, the CI 

method with wave function expansion terminated within a given excitation order is used. In the past, 

the CISD method, which considers up to single and double excitations, or the CID method, which 

considers only double excitations, were often used. However, the CI method with the limited order 

expansion has the defect that it does not satisfy "size-consistency”, and is not often used now. 

Nonetheless, its basic idea is very important. 

In the CI method, the wave function of type CI is given by 

 

𝛹𝐶𝐼 = ∑ 𝐶𝐼𝛷𝐼

0,𝑆,𝐷,⋯

𝐼

 (Equation 25) 

 

The CI is defined as follows where 0, S, D, ... denote the HF ground state, one-electron excitation, 

two-electron excitation configuration, etc. By using the CI wave function, one can evaluate the 

energy as 

 

𝐸𝐶𝐼 =
⟨𝛹𝐶𝐼|𝐻̂|𝛹𝐶𝐼⟩

⟨𝛹𝐶𝐼|𝛹𝐶𝐼⟩
=

∑ 𝐶𝐼
∗𝐶𝐽𝐻𝐼𝐽

0,𝑆,𝐷,⋯
𝐼,𝐽

∑ 𝐶𝐼
∗𝐶𝐽

0,𝑆,𝐷,⋯
𝐼,𝐽

 (Equation 26) 

 

where HIJ is called the Hamiltonian matrix element given by  

 

 (Equation 27) 

 

Note here that I is a set of all possible configurations. By adopting the variational principle with 

respect to CI
*, we obtain the CI secular equation as  

 

∑(𝐻𝐼𝐽 − 𝐸𝐶𝐼𝑆𝐼𝐽)𝐶𝐽 = 0

𝐽

 (Equation 28) 

H IJ = FI H FJ
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It would seem that a tremendous number of Hamiltonian matrix elements must be computed to 

solve this equation. However, many matrix elements are actually zero owing to the fact that the 

Hamiltonian is described by one- and two-electron operators. Thus, the Hamiltonian matrix 

elements between excitation configurations consisting of more than three-electron excitations are 

zero. For example, elements such as H0T and H0Q are zero. This leads to the fact that the 

two-electron excitation configuration is the main correction to the ground-state energy. 

 

1-3-9. Cluster expansion (CC) method 

The wave function of the cluster expansion (CC) method26, 27 is given by 

 

 

(Equation 29) 

 

It is characterized by the use of an exponential function as the excitation operator to create the wave 

function. Here, the excitation operator, T, is a sum of all possible excitation operators as 

 

 (Equation 30) 

 

where T1, T2, ... are operators that generate electron configurations for one-electron, two-electron, ... 

etc. excitations. Let us note that some of these operators contain expansion coefficients, which are 

variables of the CC method. In a similar manner, the CI wave function given by the above equation 

is 

 

 (Equation 31) 
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C1, C2, ... are the creation operators for one-electron, two-electron, ... excitations including CI 

coefficients. The coupled cluster method with single and doubles with third-order perturbation 

correction (CCSD(T)) method, where the contribution of three-electron excitations is estimated 

from the perturbation method, gives highly accurate results comparable to chemical accuracy and is 

called the golden standard method. Comparing the Taylor expansion and the CI wave function in 

the second line of the equation, it can be seen that various extra terms appear in the CC method. For 

example, the CISD and CCSD have the same number of expansion coefficients for the CI and 

cluster expansion methods, which even consider the same electronic excitations for the C and T 

operators. In other words, the CC method can incorporate a larger number of excitation 

configurations with the same number of variables as the CI method. Therefore, it gives more 

accurate results than the CI method. Unlike the CI method, the equations to be solved are the 

following nonlinear equations 

 

 (Equation 32) 

(Equation 33) 

 

It can be solved by an iterative method. Since it is not a variational method, it can take a value 

lower than the true energy. 

 

1-3-10. Møller-Plesset perturbation (MPn) method 

The simplest method for estimating electron correlation is the Møller-Plesset (MP2) method28 

based on second-order perturbation theory, which treats electron correlation as a perturbation and 

determines the energy and the electron wave function of a given system by perturbation expansion. 

As the order of the perturbation is increased, the accuracy of the calculation increases, but the 

computational cost increases rapidly. The MP4 method, which considers perturbation expansions up 

to the fourth order, is now often used because of the recent improvement in computer performance. 

F0e
-THeTF0 = E

FIe
-THeTF0 = 0
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The MP method, like the HF method, satisfies "size consistency" and can be discussed based on 

relative energies for systems of different sizes when determining molecular binding energies, etc. 

The MP method splits the Hamiltonian into a one-electron term and an interaction term as 

 

𝐻̂ = 𝐻0̂ + 𝑉̂,   𝐻0̂ = ∑ 𝐹̂(𝑖)

𝑖

 (Equation 34) 

 

where the one-electron term consists of the Fock operator and includes the mean field (part of the 

electron interaction) under the one-electron approximation. By applying second-order perturbation 

theory to this partitioned Hamiltonian yields 

 

𝐸(2) = ∑
𝑉0𝐼𝑉𝐼0

𝐸0 − 𝐸𝐼

𝐷

𝐼

 , 𝑉0𝐼 = ⟨𝛷0|𝑉̂|𝛷𝐼⟩ (Equation 35) 

 

Using the set of MOs, we obtain 

 

 (Equation 36) 

 

(Equation 37) 

 

where εp is the p-th orbital energy, (pq|rs) is the two-electron integral. Note that i, j label the indices 

representing the occupied orbitals, and a, b do the virtual orbitals, respectively. 

 

1-3-11. Multi-configulation SCF (MCSCF) method 

The HF method used a single Slater determinant to represent the ground state wave function. 

However, the HF method cannot correctly represent, for example, the electronic state of a hydrogen 

molecule dissociated into two hydrogen atoms. To solve this drawback, one can express the 
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wavefunction using several Slater determinants. This is the basic idea of the multiconfiguration 

(MC) SCF method.17 The wavefunction of the MCSCF method is 

 

𝛹𝑀𝐶 = ∑ 𝐴𝐼𝛷𝐼

𝐼

 (Equation 38) 

 

The CI expansion is used as in the CI method, where AI is the expansion coefficient. The difference 

from the CI method is that the orbital coefficients of each configuration function ΦI (one-electron 

HF orbitals in the HF method) are also variationally optimized at the same time. As with the CI 

method, the expansion coefficients are determined using the variational method. In the MCSCF 

method, the MOs are also determined simultaneously by SCF calculations. Therefore, the 

calculation is much more difficult than the HF method. In the MCSCF method, there are many 

choices in how to select the configuration functions. Today, the most commonly used MCSCF 

method is the complete active space (CAS) SCF method, which uses MOs near the valence orbitals, 

and all possible configurations of electronic excitation in them as configuration functions. The 

space of the chosen MOs is called the active space (active space). 

 

1-3-12. Density functional theory (DFT) 

The traditional approach to electron correlations in the first-principles calculations considers 

electron correlations based on wave functions. In contrast, density functional theory (DFT)29, 30 

starts from the electron density, not the wave function. Behind the possibility of such a treatment is 

a fundamental theorem called the Hohenberg-Kohn (HK) theorem, which can be applied in a 

straightforward manner. A straightforward application of the HK theorem is the Thomas-Fermi 

(Dirac) theory, which estimates the total energy of atoms about 15% to 50% lower. It also fails to 

describe the formation of molecules, such as the fact that molecules are more stable when they 

dissociate into atoms in pieces. On the other hand, the approximation introduced by Kohn and Sham 

in 1965 made the density functional theory a practically useful method. 
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In the KS-DFT, the kinetic energy term is reduced to a form that can be computed accurately 

and easily, and the remaining part is all squeezed into the exchange correlation functional. In 

KS-DFT, the kinetic energy term is reduced to a form that can be calculated accurately and easily, 

and the remaining part is squeezed entirely into the exchange correlation functional. The kinetic 

energy term in the KS approximation can be approximated by the KS orbital ji{ } and the 

 

 (Equation 39) 

 

Let be the kinetic energy term of the HF method. which has the same form as the kinetic energy 

term in the HF method. The electron density can be calculated using the KS orbitals as 

 

𝜌(𝒓) = ∑|𝜑𝑖(𝒓)|2

𝑂𝐶𝐶

𝑖=1

 (Equation 40) 

 

In the KS approximation, as with the HF orbitals, the KS spin orbitals can be divided into occupied 

spin orbitals occupied by a single electron and virtual spin orbitals containing no electrons. 

 

 (Equation 41) 

 

The form of the equation is as follows. where Vne is the electron-nuclear attraction term, J is the 

Coulomb term, and Exc is the exchange-correlation term. Now, the exchange-correlation functionals 

are functional differentiated by the density as the exchange-correlation potential, as follows 

 

 (Equation 42) 
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defined as "KS", the KS equation is obtained in the same way as the HF method was derived. 

 

 (Equation 43) 

 

where h is the one-electron operator (sum of the kinetic energy operator and the nuclear-electron 

attraction operator) as in the HF method, VH is the inter-electron Coulomb operator, and vxc is the 

exchange correlation potential operator. 

 

1-3-13. Fragment molecular orbital (FMO) method 

The fragment molecular orbital (FMO) method separates a molecular assembly or large 

molecule to some fragments to calculate at ab initio level. Ab initio calculations are executed on 

monomers (fragments) and dimer (fragment pairs). When execute ab initio calculation in FMO 

method, it performs the calculation under the electrostatic potential of the other fragments. Even 

large proteins can be calculated. This is because each fragment to be calculated is only a few dozen 

atoms.8 EFMO which is the total energy of the whole system was calculated by the later equation 

(Equation 44). 

 

𝐸FMO = ∑ 𝐸𝐼

𝑁

𝐼

+ ∑(𝐸𝐼𝐽 − 𝐸𝐼 − 𝐸𝐽)

𝑁

𝐼>𝐽

+  ⋯ (higher body contribution) (Equation 44) 

 

EI and EIJ are the total energies of the monomer and dimer, respectively. In the FMO method, it is 

possible to directly calculate the interaction energy between fragment pairs due to the nature of the 

equation for calculating the total energy of the system. These are called the fragment interaction 

energy (IFIE) or pair interaction energy (PIE). PIE analysis is an effective analytical technique for 

comprehending the properties of molecular- molecular interactions. Especially, it reveals the 

interaction energy between the residues around the ligand and the ligand in protein/ligand 

F̂KSji = eiji       F̂KS = ĥ + V̂H + v̂XC
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complexes. In drug design field, functional group optimization of drug candidate compounds use 

PIE analysis (Figure 3a).31 

 However, when conducting PIE analysis within or between proteins, the number of PIEs to be 

analyzed is huge (approximately [number of amino acid residues in protein]2 / 2), making the 

analysis difficult (Figure 3b). Therefore, it is important to develop analysis tools that facilitate the 

analysis of PIEs within or between proteins. 

 

 

Figure 3. (a) FMO calculation results image. The FMO calculation can quantitatively 

evaluate and visualize the interaction between the ligand and the amino acid residues around 

the ligand as shown in the figure. (b) The FMO calculation is a very useful analysis method 

when the amino acid residues to be analyzed are specified, such as "residues around the 

ligand". However, when the number of analysis targets increases, such as "protein-protein 

interactions" or "all structures sampled from MD trajectory data", the analysis becomes 

difficult. 

 



31 

 

1-4. Machine learning 

In this study, machine learning algorithms, which have been remarkably developed in recent 

years, were used to analyze a huge amount of data. This section provides background on the three 

machine learning algorithms used in this study, decision trees, bootstrap aggregating, and random 

forests, and provide an overview of these algorithms. 

 

1-4-1. Decision tree 

Decision trees are used as predictive models in the field of machine learning to draw 

conclusions about the target value of an item based on observations of that item (Figure 4). 

Decision trees are often used in data mining because the process of classification can be easily 

interpreted. In this case, the decision tree shows a tree structure in which the leaves (nodes) 

represent the classification and the branches represent the collection of features (features) that led to 

the classification.32 

 

 

 

 

 

Figure 4. Diagram of a decision tree. A decision tree that determines the conditions for 

playing golf is shown. The black boxes are nodes and the orange ones are features. The 

decision tree has a hierarchical structure based on several features. 
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The values named the Gini index (Gini impurity; IG) is calculated in the decision tree 

algorithm. It is used to measure importance of features. The Gini index is a value calculated for a 

node classified by a feature as the impurity of the data in that node (Equation 45). 

𝐼𝐺(𝑡) = 1 − ∑ (
𝑛𝑖

𝑛
)

2
𝑐

𝑖=1

  (Equation 45) 

 

t is the node number at which the Gini index was calculated, n is the number of all data in the node, 

and c is the number of data types. The closer the Gini index is to 0, the higher the impurity and the 

less important the features are. 

 

1-4-2. Bootstrap aggregating (Bagging) 

Bagging is a method in which the training data used for each classifier is obtained by boosted 

trap sampling*, and the prediction model (weak classifier) are used for prediction and finally 

combined in some way (majority vote, average, and output as features to build a new learner) 

(Figure 5). 

* Boost trap sampling: a method of randomly extracting some data from a population, allowing for 

overlap, when there is data to serve as the population. 
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Figure 5. Diagram of Bootstrap aggregating. In bagging, each training (learning) data is 

obtained by boost strap sampling, a prediction model (weak classifier) is created, and finally 

the predictions are combined in some way to bring out the predictions. 

1-4-3. Random forest (RF) 

Random Forest is an ensemble learning algorithm that combines and bagging multiple decision 

trees to show improved generalization capability.33, 34 The learning process is as follows. 

1. For each of the N decision trees, do the following. 

  i) Sampling from the training data set (sampling by boost trap sampling) 

  ii) Create and train predictive models with decision trees 

2. Completing the random forest when all decision trees have been trained 

In decision trees, the values named the Gini index is calculated as an indicator of importance of 

features. It refers to the impurity of the data of a node among the nodes classified by a certain feature. 

The closer the Gini index is to 0 (1), the lower (higher) the purity of the data, indicating that the 

feature is unimportant (important). In the RF calculation, the values named the Gini importance is 

calculated by gathering the Gini indices calculated for all decision trees (Equation 46). 

 

Gini importance (𝜃) =  ∑ 𝐼𝐺𝜏

𝜏

 (Equation 46) 

 

θ indicates the number of features used in the analysis, and τ indicates the number of total nodes. 

 

1-5. Scope of this doctoral thesis 

In light of the above, this doctoral thesis aimed to reveal new scientific knowledge about 

proteins and to establish new analytical methods. Chapter 2 focused on the FMO method and 

analyzes protein-ligand interactions between a new drug and its receptor. In Chapter 3, 

protein-protein interaction analysis between canine distemper virus and lymphocyte activating 

molecules was performed using the FMO method, since the results of Chapter 2 suggested that the 
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FMO method is also useful for protein-protein interaction analysis. In Chapter 4, based on the 

findings in the previous chapter, a new analysis tool using the FMO method was constructed and 

validated. In Chapter 5, I used the analysis tools developed in Chapter 4 to analyze proteins for 

which detailed molecular mechanisms have not been elucidated. 
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Chapter 2. Theoretical elucidation of the molecular 

association model of PPARα and its novel ligand, 

pemafibrate 

 

 

 

Purpose of this Chapter 

In this chapter, I focused on the FMO method and performed protein-ligand interaction 

analysis for novel drugs and their receptors. The usefulness of the FMO method for 

protein-ligand interaction analysis was verified. 
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2-1. Introduction 

 

2-1-1. Peroxisome proliferator-activated receptor (PPAR) 

In recent years, research on nuclear receptors has remarkably advanced, and many 

so-called orphan receptors with unidentified ligands have been discovered and their functions 

are elucidated. Among them, the peroxisome proliferator-activated receptors (PPARs) are 

ones of the most dramatically studied nuclear receptors. PPARs have been shown to be 

involved in the regulation of the cellular response to steroid hormones, thyroid hormones, 

vitamin D3, and retinoic acid. In 1990, PPARs were first screened from a mouse liver cDNA 

library by Green et al. as a clone encoding a protein activated by the antihyperlipidemic drug 

peroxisome proliferator.35 Subsequently, PPARs were found to be not only a proliferator of 

peroxisomes, an intracellular organelle involved in lipolysis, but also a ligand-inducible 

transcription factor that regulates various key genes involved in peroxisome proliferation. In 

other words, in addition to lipid metabolism such as neutral fat lowering, carbohydrate 

metabolism such as insulin sensitivity enhancement, and various physiological activities such 

as atherosclerosis, immune and inflammatory responses, cell proliferation, and malignant 

tumor control, the ligands have been applied to the treatment of many diseases. 

It is known that PPARs consist of three subtypes, i.e., PPARα, PPARβ/δ, and PPARγ. 

PPARs form a heterodimer with the retinoid X receptor (RXR) and bind to the peroxisome 

proliferator responsive element (PPRE), a DNA-binding domain (DBD), to regulate gene 

expression in the downstream regions. These receptors share a common structural 

composition consisting of an N-terminal variable domain with ligand-independent activation 

function, a conserved DBD, and a ligand-binding domain (LBD) with ligand-dependent 

activation function.36 Since PPARs are involved in the transcription of genes involved in cell 

proliferation and differentiation, immune response, and sugar and lipid metabolism, they are 

attracting attention as therapeutic agents for diabetes and metabolic diseases. Therefore, 

PPAR agonists are considered important tools for the treatment of diabetes and metabolic 
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syndrome. 

PPARα is mainly found in the liver, heart, kidney, and gastrointestinal tract, which are 

organs with high utilization of fatty acids, and regulates fatty acid metabolism, especially fatty 

acid oxidation. When PPARα is activated by agonists, the C-terminal helix H12 (AF-2 

interface) is activated, promoting heterodimerization with RXRα and recruitment of nuclear 

coactivators, which eventually interact with a DNA binding site in PPRE to regulate target 

gene transcription.37 Several reports have shown that PPARα activated by various ligands has 

anti-inflammatory effects. However, PPARα agonists are believed to have not only the 

anti-inflammatory effects mentioned above but also inflammation-inducing effects, and their 

mechanism of action is complex. Thus, the detailed analysis on the interaction between 

PPARα and a specific agonist is important for the therapeutic targeting on PPARα. 

 

2-1-2. Therapeutics targeting PPARs 

A number of natural and synthetic PPAR ligands have been identified.38 Among them, 

fibrate-type drugs for hyperlipidemia ubiquitously activate PPARα, which regulates lipid flux 

by modulating fatty acid transport and β-oxidation in the liver, and can lower triglyceride 

(TG) levels and increase high-density lipoprotein (HDL) cholesterol levels in patients with 

hyperlipidemia and type 2 diabetes, thereby improving plasma lipid profiles and potentially 

preventing coronary artery disease and stroke.39 However, the efficacy of these fibrates is 

limited by their weak activity against PPARα and dose-dependent side effects.40 Pemafibrate 

(Figure 6), on the other hand, is a novel, highly active, selective PPARα modulator 

(SPPARMα) that was found to potently and specifically enhance PPARα activity.41 This 

modulator was found to exert beneficial effects on lipid metabolism, reverse cholesterol 

transport, and inflammation, resulting in anti-obesity effects and, overall, having a 

transcriptional effect that exceeds that of clinically used fibrates.42 The modulator also 

exhibited potent TG-lowering effects in dyslipidemia subjects with high TG and low HDL 
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cholesterol, without increasing side effects.43 Previous studies have shown that pemafibrate 

causes higher PPARα activation than other fibrate drugs, hence the name SPPARMα.44 

Recently, Takei et al. compared the effects of pemafibrate with those of classical PPARα 

agonists and found that pemafibrate activates PPARα transcriptional activity more effectively 

than classical agonists.45 

 

 

Figure 6. The structures of (a) pemafibrate and (b) fenofibrate. 

 

2-1-3. PPARα and pemafibrate complex structure 

At the time the study was conducted, the structure of the PPARα LBD complex with 

pemafibrate remained unknown. It was quite difficult to obtain the structure of PPARα 

experimentally due to a flexible loop in the LBD region which makes instability. However, 

knowing its complex structure is essential for understanding the structural basis of its 

mechanism of action and ultimately for designing better ligands with improved binding 

affinity and selectivity. Therefore, to elucidate the molecular basis for the regulation of 

PPARα activity by pemafibrate, I obtained the structure of pemafibrate bound PPARα using 

molecular simulations combined with quantum mechanics/molecular mechanics calculations. 

Then, using the FMO method8 based on first principle calculations, I determined a new 

binding pattern for this modulator in the LBD of PPARα. Subsequently, the binding of the 

PPARγ coactivator 1α (PGC-1α) to the PPARα-pemafibrate complex was examined in detail. 
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2-2. Materials and Methods 

 

2-2-1. Structural model construction 

I first created the complex structure of the PPARα and coactivator PGC-1α using the 

Molecular Operating Environment (MOE) program46. Initial structure was taken from the 

X-ray structure of the GW409544 ligand bound to PPARα with coactivator motif. The X-ray 

structure of the LXXLL peptide derived from steroid receptor coactivator 1, SRC1 (PDB ID: 

1K7L),47 in complex with the PPARγ ligand rosiglitazone PPARγ coactivator 1α, PGC-1α 

(PDB ID: 3CS8) was constructed.48 The ligand, which bounded to X-ray structure, was 

replaced by fenofibrate or pemafibrate using dock utility of MOE. I performed 

pre-optimization of the structures by using Amber10:EHT force field with solvation energies 

were calculated with the born model. After constructing complex structure, I was performed 

molecular dynamics (MD) simulations up to 100 ns to analyze the stability of the modeled 

structures. MD simulations were done by explicitly specifying water molecules as the solvent. 

In the all MD simulations, the AMBER ff14SB force field49 and the TIP3P water model in 

AMBER 1450 were used for the protein and the solvent, respectably. Calculations were 

performed at 300 K and 1 bar pressure using the NPT ensemble. 

 

2-2-2. QM/MM Calculation 

The structure of the PPARα-ligand complex was fully optimized at the QM/MM 

method using the NWChem program51, with the B3LYP-D functional and 6-31G(d) basis set 

used for the QM part and the AMBER99 force field for the MM part. The ligand and its 

surrounding important residues were considered to be placed in the QM region, and other 

residues in the MM region. 

 

2-2-3. Calculation of FMO 

FMO calculations were performed using the PAICS program52. The correlated 
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Resolution-of-Identity second order Møller–Plesset (RI-MP2) level53 and a 

correlation-matched double  basis set (cc-pVDZ) were used for all FMO calculations. 

 

2-3. Results and Discussion 

2-3-1. The complex structure of pemafibrate or fenofibrate bound to PPARα 

The ligand binding pocket interface of the constructed model structure of PPARα is 

shown on the surface. The structure suggests that the ligand binding pocket is Y-shaped and 

located in the center of the LBD. There were some interesting differences between the 

structures of the QM/MM-optimized pemafibrate/PPARα complex and the fenofibrate/PPARα 

complex. Fenofibrate occupies only arm I of the cavity extending from the center of the 

ligand binding pocket toward the AF-2 helix (H12). It interacts with amino acid residues 

mainly through the polar head (COO-) of fenofibrate, forming an effective H-binding network. 

In contrast, pemafibrate, which has a Y-shaped molecular structure, occupied all regions of 

the ligand binding pocket, including arm II and arm III between helix 3 and β-sheet (Figure 

7). This indicates that pemafibrate is not only involved in the hydrogen bond network formed 

between the polar head and SER280 (H4), TYR314 (H6), HIS440 (H11), TYR464 (H12), but 

also makes important interactions with other residues (Figure 8a). In particular, CYS276 and 

VAL332 interact with the aminobenzoxazole moiety (BC ring, Figure 6a) via CH-p. Similarly, 

THR279 (hydrogen bond), TYR334 (p-p interaction) and MET220 (hydrogen bond) interact 

with phenoxy-alkyl groups, including ring D, and GLN277 (hydrogen bond) interacts with the 

COO- group of pemafibrate. These interactions are largely absent in fenofibrate-bound PPARα 

(Figure 9a). This difference in interaction mode is also related to the size of the LBPs, which 

were calculated to be 828 Å3 for the pemafibrate-bound form and 1163 Å3 for the 

fenofibrate-bound form. This indicates that pemafibrate has two pharmacophores, 

aminobenzoxazole and dimethoxybenzene, which strongly interact with PPARα. 
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 Figure 7. Binding patterns of 

pemafibrate and fenofibrate to 

human PPARα. Magenta is 

pemafibrate and light blue is 

fenofibrate. The binding pocket has 

three pharmacophore regions: red, 

yellow, and green. 

 

 

 

Figure 8. (a) Interaction between residues in the LBP of PPARα and pemafibrate. Hydrogen 

bonding in red dashed line, SH-p interaction in black dashed line, and p-p interaction in black 

dotted line. (b) PIE between amino acids and pemafibrate. Bars in red, green, cyan represents 

the interactions in region A, B, C, respectively. Dark colors denote electrostatic interaction 

and mild colors denote dispersion interactions. 
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Figure 9. (a) Interaction between residues in the LBP of PPARα and fenofibrate. Hydrogen 

bonding in red dashed line. (b) PIE between amino acids and fenofibrate. Bars in red, green, 

cyan represents the interactions in region A, B, C, respectively. Dark colors denote 

electrostatic interaction and mild colors denote dispersion interactions. 

 

2-3-2. Interaction between pemafibrate and PPARα 

In both pemafibrate and fenofibrate bounded complexes, there were four strong 

hydrogen bonds formed between the COO− group and SER280, TYR314, HIS440, and 

TYR464 by hydrogen bond network that anchors the ligand position within the LBP (Figure 

8a, Figure 9a). Furthermore, this network should provide a stable tertiary structure for 

PPARα. This is because each of these four amino acids is derived from a different helix. 

SER280 is derived from helix H4, TYR314 from H6, HIS440 from H11, and TYR464 from 

terminal H12. This is consistent with previous experimental findings that ligands with COO− 

groups co-crystallize with PPARs.54 The fragment interaction obtained for these hydrogen 

bonds between the COO− groups of the PPARα/pemafibrate complex and SER280, TYR314, 

HIS440, TYR464. From the FMO calculations, these hydrogen bond interactions appear to 

play a dominant role in ligand binding in the PPARα cavity. The FMO calculations indicate 

that these hydrogen bonding interactions appear to play a dominant role in ligand binding in 

the PPARα cavity. Other adjacent important amino acid variants were also estimated, 

indicating the importance of ILE272. a closer look at the FMO results shows that the COO− 
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group of pemafibrate forms a large hydrogen bond with GLN277 (-12.3 kcal mol-1), which is 

a PPARα/fenofibrate complex This is rarely seen in the PPARα/phenofibrate complex. In 

other words, the effect of SER280 in the latter may be shared by the combined effect of 

SER280 and GLN277 in the former. The calculated PIEs also confirm several other 

significant interactions (Figure 8b), with CYS276 (H4) interacting CH- with amino 

benzoxazole (-13.1 kcal mol-1) and VAL332 interacting CH- with the same oxazole moiety 

(-7.6 kcal mol-1). TYR334 on the loop near the entrance of the LBP mainly interacts - with 

the D ring (-6.7 kcal mol-1). THR279 forms hydrogen bonds (-7.9 kcal mol-1) with the 

methoxy phenoxy and amino benzoxazole moieties. 

 

2-3-3. Interaction between fenofibrate and PPARα 

The interaction pattern with the COO − group is qualitatively similar to that of 

pemafibrate-bound PPARα, except for the involvement of GLN277 (Figure 9a). The 

calculated PIEs for hydrogen bonds in the H-bond network are -20.0 kcal mol-1 (SER280), 

-27.0 kcal mol-1 (TYR314), -29.1 kcal mol-1 (HIS440) and -28.1 kcal mol-1 (TYR464). The 

importance of these interactions was also confirmed by biochemical experiments. The 

terminal B ring (Figure 6) is involved in an important dispersal interaction (Figure 9b). It 

mediates the CH- interaction between LEU456 and ILE447. The A ring of fenofibrate 

interacts primarily with ILE354 and partially with VAL444, which also interacts with the B 

ring; GLN277 interacts with the benzene ring of the A ring; and GLN277 interacts with the 

benzene ring of the B ring. 

 

2-3-4. PGC-1α and PPARα/pemafibrate interaction 

The concept of SPPARM is that the binding of such ligands leads to different 

conformational changes and different patterns of cofactor mobilization, promoting specific 

biological responses. In mutation experiments conducted by our group, the V306A mutant, 
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when co-transfected with PGC-1α, blunted only pemafibrate-induced PPARα activation, 

while fenofibrate increased transcriptional activity to the same extent as WT of PPARα.55 This 

mutation experiment indicates that the effect of pemafibrate on PPARα transcriptional 

activation may be dependent on V306 affecting PPARα binding to PGC-1α. To understand 

this difference, I thoroughly analyzed the interaction between Val306 and its neighbors: 

coactivators with LXXLL motifs, such as PGC-1α, are recruited to nuclear receptors, such as 

PPARs, upon ligand binding to activate transcription of their cognate target genes. Val 306 

interacts directly with several amino acids of PGC-1α via a dispersion-dominated van der 

Waals interaction (Figure 10a). The dispersion energies from FMO calculations indicate that 

Val306 binds PPARα and pemafibrate more strongly than fenofibrate, 4 kcal mol-1 strongly 

interacts with PGC-1α (Figure 10b). This may explain the experimental results that mutation 

of Val306 results in less activity of pemafibrate-bound PPARα than fenofibrate-bound PPARα. 

 

 

Figure 10. (a) Complex structure of AF-2 interfaces of PPARα and LXXLL peptide motif of 

a cofactor. Interaction mode of VAL306 with the LXXLL motif which including the 

interaction with the AF-2 interface. (b) van der Waals dispersion interaction energy between 

V306 in PPARα and amino acid residues of LXXLL motif. This figure shows that difference 

of the calculated FMO interactions of VAL306 with PGC-1α when fenofibrate/pemafibrate is 

bound in the LBD of PPARα (pemafibrate - fenofibrate). 
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2-4. Summary 

In many cases, ligand binding changes the conformation of the protein so that it can 

successfully bind to the ligand. This is commonly referred to by the concept of induced fit. In 

fact, ligation of PPARα is caused by the stabilization of the entire structure of the LBD by the 

ligand, resulting in a more compact and rigid conformation. As a result, the LBD becomes 

more compact and rigid, the AF-2 interface is stabilized, and coactivators are mobilized 

through it.56 Thus, enhanced induced conformability could increase the transcriptional activity 

of PPARs. Structural analysis reveals that pemafibrate ligation is triggered by induced fitting. 

Since the ligand covers the largest region of the cavity and interacts with residues in all 

regions of the cavity, it can efficiently activate induced fitting. This can be assessed from the 

change in the size of the LBP. The cavity sizes of pemafibrate- and fenofibrate-bound PPARα 

are estimated to be 828 Å3 and 1163 Å3, respectively; it is recalled that PPARα has a cavity of 

about 1300 Å3.56 This indicates that binding to pemafibrate promotes induced binding by 

causing a conformational change in the cavity region that allows the ligand to bind more 

easily. 

FMO calculations show that the hydrogen bonding network between SER280, TYR314, 

HIS440, and TYR464 and the ligand is much stronger for pemafibrate-bound PPARα than for 

phenofibrate-bound PPARα. Interactions with the amino benzoxazole and dimethoxybenzene 

moieties of pemafibrate are completely absent in the fenofibrate-bound PPARα. The 

prominent interactions with these two pharmacophores are CYS276 and VAL332 for amino 

benzoxazole and MET220, THR279, and TYR334 for dimethoxybenzene. Also worth 

mentioning is the p-p interaction of about -7.0 kcal mol between the D ring of pemafibrate 

and TYR334 on the loop located at the entrance of the LBP. This particular interaction may 

stabilize the flexible loop region. The sum of all PIEs involving the ligand can reflect the 

overall binding of the ligand to the protein. I found that pemafibrate interacts more strongly 

with PPARα than fenofibrate by -69.5 kcal mol, suggesting that pemafibrate may be a more 
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potent ligand for PPARα than fenofibrate. These results indicate that the enhanced activity of 

PPARα due to ligand binding of this novel pemafibrate is mainly due to its ability to interact 

with the largest number of residues from throughout the cavity region. This Y-shaped ligand 

matches well with the Y-shaped LBP of PPARα. This lock-and-key nature makes pemafibrate 

a novel and potent modulator, Hennuyer et al. concluded from GST pull-down experiments 

that pemafibrate appears to promote the recruitment of coactivators, including PGC-1α, more 

efficiently than fenofibrate I conclude.42 Our in silico studies show that overall LBP is more 

stabilized by pemafibrate than by fenofibrate through ligand binding. This major 

conformational change in LBP would then be reflected in the stabilized AF-2 interface, and 

our analysis of FMO calculations and in vitro experiments indicate that PPARα bound to 

pemafibrate interacts efficiently with its cofactor, PGC-1α. This confirms the assumption 

made in previous experiments that VAL306 plays an important role in enhancing the 

interaction of AF-2 with the PGC-1α cofactor. In other words, pemafibrate has an advantage 

over the smaller fenofibrate in binding of PPARα to the LBD by three specifically tailored 

pharmacophores. The molecular basis for the increased activity of pemafibrate-bound PPARα, 

investigated in an in silico approach based on ab initio calculations, reveals a clearly novel 

pattern of binding mode. This novel SPPARMα modulator interacts with all regions of LBP. 

All three pharmacophores, polar COO− head, amino benzoxazole, and methoxy phenoxy, play 

equally important roles. Compared to fenofibrate, pemafibrate was shown to stabilize LBP 

more efficiently and to stimulate a stronger interaction between the AF-2 interface and the 

PGC-1α coactivator; VAL306 plays a pivotal role in enhancing this interaction, and the 

interaction between the AF-2 interface and the PGC-1α coactivator was also enhanced by 

pemafibrate. This result was also confirmed by in vitro experiments. 

From this study the FMO method proved to be useful for protein-ligand interaction 

analysis. Because of the nature of the calculation method, the FMO method divides the 

protein into amino acids and performs the calculation, not only protein-ligand interactions but 
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also protein-protein Therefore, it is possible to analyze not only protein-ligand interactions, 

but also protein-protein interactions. Therefore, I decided to conduct protein-protein 

interaction analysis in the next chapter. 
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Chapter 3. Computational study of interspecies 

transmission of CDV/SLAM protein-protein interactions 

 

 

 

Purpose of this Chapter 

The FMO method has proven to be useful for the analysis of protein-ligand interactions, 

since the FMO method, due to the nature of its calculation method, divides the protein into 

amino acid units and performs calculations for each amino acid. Therefore, it is possible to 

analyze protein-protein interactions as well as protein-ligand interactions. Therefore, in this 

chapter, I conducted protein-protein interaction analysis and verified the usefulness of the 

FMO method for protein-protein interaction analysis. 
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3-1. Introduction 

 

3-1-1. Morbillivirus (MoV) 

Morbillivirus (MoV) belong to the Paramyxoviridae family and infect animals 

systemically, causing high mortality and morbidity.57 During the infection cycle, the viral 

hemagglutinin (H) protein interacts with signaling lymphocyte-activated molucur (SLAM) 

and poliovirus receptor-like 4 (nectin-4) expressed on host immune cells and epithelial cells, 

respectively.57 sequence is highly conserved among species, but the amino acid sequence of 

SLAM is not, suggesting that the interaction between H-protein and SLAM defines 

morbillivirus host selectivity. Currently, seven species of viruses in the morbillivirus genus 

have been isolated, including measles virus (MV), which infects humans.57 Because canine 

morbilliviruses (canine distemper virus, CDV) cause severe infections in carnivores, and 

CDV in particular causes fatal outbreaks in non-human primates, there is interest in 

understanding the interspecies transmission of morbilliviruses. Accumulating evidence 

indicates that CDV infects animals of the genus Macaca, but not humans.58-60 It has also been 

shown that macaca SLAM, but not human SLAM, functions as a receptor for CDV.60, 61 

Furthermore, a slight variation in the CDV H-protein allows this protein to interact with other 

primate SLAMs of the genus Saguinus (e.g., cottontail tamarin) and Homo (human).62-64 The 

molecular mechanism of interspecies transmission of CDV in primates may be elucidated by 

analyzing differences in SLAMs of these species, and structural data will play an important 

role in elucidating this mechanism. 

 

3-1-2. Importance of the N-terminal region in the MoV and SLAM complex structure 

Crystal structures of morbillivirus H proteins have been attempted by many research 

groups,65-68 and several structures of complexes with receptor proteins have been reported.66, 

68 Hashiguchi et al. reported the crystal structure of MV H protein (MV-H) in a complex with 

the known receptor for MV, cottonwood tamarin (SLAM). This structure and the analysis of 
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the cottonwood vitamarin SLAM mutant indicated that residues such as N72, V74, E75, and 

K77 in the CC'-loop region of cottonwood vitamarin SLAM form an interaction with 

MV-H.66 Binding to SLAM changes the oligomeric state of MV-H, and this change in the 

oligomeric state of MV-H MV-H oligomeric state upon binding to SLAM, suggesting that 

this change triggers MV fusion.69, 70 On the other hand, the role of the N-terminal region of 

SLAM in viral infection was unclear. The functional importance of this region has been 

demonstrated by combined analyses using viral infection assays and SLAM mutants. Seki et 

al. reported that the M29S mutant of human SLAM does not interact with MV-H, suggesting 

that structural analysis of the N-terminal region of SLAM is necessary to fully elucidate the 

molecular mechanism of H-protein-SLAM complex formation.71 

Thus, the flexible N-terminal region of SLAM may be important for facilitating 

morbillivirus infection. However, since there are no structural data on the N-terminal region 

of CDV-H and SLAM, an approach other than X-ray crystallography is needed to elucidate 

the function of the N-terminal region of SLAM in CDV infection. Therefore, I constructed a 

complex model of CDV-H and the N-terminal region of SLAM and analyzed the interaction 

energy between CDV-H and the N-terminal region of SLAM. Using the constructed model, I 

analyzed the interaction energy between SLAM and CDV-H by computational chemistry 

method. As a result, it was inferred how the residues in the N-terminal region of SLAM affect 

the interaction between CDV-H and SLAM at the molecular level. 

 

3-2. Materials and Methods 

 

3-2-1. Homology modeling 

The structure of the complex was constructed using the MOE program46. The crystal 

structure of the MV-H-SLAM complex (PDB ID: 3ALW) was used as the first template.66 

This structure consists of an MV-H head (amino acids 184-607) and a SLAM-V (amino acids 

30-140) domain, and these two domains are connected by a flexible linker 
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(Gly-Gly-Gly-Ser)3 of 12 residues. Thus, the structure lacked the following two elements. (1) 

the N-terminus of SLAM (including the critical 28 residues) and (2) part of the N-terminus of 

MV-H. The incomplete N-terminal regions of MV-H and SLAM were modeled using MOE's 

Loop Modeler utility to obtain a complete MV-H-SLAM complex structure. For this purpose, 

I used the sequence of the MV IC-B strain (GenBank accession number NC_001498) for the 

MV-H protein part, part of the N-terminal region of the published MV-H structure (PDB ID: 

2ZB665), and for the SLAM part I used macaca slam (GenBank accession number XM_ 

001117605) and the first MV-H- SLAM template (PDB ID: 3ALW66) for the SLAM part. 

This complete model, compMV-macaca SLAM, was used as a template for structural 

modeling of the CDV-H-macSLAM complex: the CDV protein portion of the CDV Ac96I 

strain sequence (GenBank accession number AB753775) and the newly constructed 

compMV-macSLAM structure was used as a template to model the structure of the 

CDV-H-macSLAM complex. The missing hydrogen atoms were added with the Pro-tonate 

3D utility of MOE using the AMBER10:EHT force field, and the solvation energy was 

determined with the Born model. The resulting structures were fully optimized using the 

AMBER10:EHT force field; the structures of the H28R and M29S SLAM mutants complexed 

with CDV-H were modeled using the constructed WT CDV-H-SLAM structure and MOE's 

Protein Builder utility. All structures were visualized by PyMOL72. 

 

3-2-2. Molecular dynamics simulation 

Initial setup for the MD simulations was performed using AMBER1450 and ff14SB 

force fields49. The constructed complex structures were solvated using the TIP3P water model 

in a 110 × 90 × 90 Å3 cubic box. Neutralizing counterions were added to each system. 

Topology files created in AMBER were converted to GROMACS format using the acpype.py 

script.73 All MD simulations were performed using the GROMACS package.74 Bonds with H 

atoms in the constructed structures were treated as rigid bodies using the LINCS algorithm.75 
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In order to equilibrate the whole system, I was done 800 ps NPT simulations by using the 

Nose-Hoover thermostat at 300 K with keeping heavy atoms constrained.76, 77 After 

equilibration, a 100 ns NPT simulation was performed with the Parrinello–Rahman method at 

1 bar and 300 K.78, 79 As nonlocal interactions, electrostatic interactions were calculated using 

the particle mesh Ewald method with a real space cutoff of 10 Å. 

 

3-2-3. Coupling free energy calculation 

Using the Molecular Mechanics Generalized Born Surface Area (MM-GB/SA) 

method80 implemented in AMBER14, binding free energies were calculated for all simulated 

systems included in the MD calculations; a total of 100 conformations were extracted from 

the last 20 ns of the MD simulations. MM-GBSA calculations were performed after removal 

of water molecules and counterions. The enthalpy term (H) was calculated using the modified 

GB model developed by A. Onufriev et al.81 The concentration of 1-1 mobile counterions in 

solution was set to 0.15 M. 

 

3-2-4. Calculation of RMSD and RMSF 

The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) 

were calculated with the AMBER14 cpptraj analysis tool.82 The structures were sampled at 10 

ps intervals. Before each calculation, external translational and rotational motions were 

removed by minimizing the RMSD distance of the Cα atom relative to the equivalent atom in 

the first frame of the orbitals The RMSD and RMSF values were calculated for the Cα atom. 

 

3-2-5. Fragment molecular orbital (FMO) calculations 

The FMO calculations were performed using the PAICS program.52 Correlation 

Resolution-of-Identity 2-order Moller Plesset (RI-MP2) level of theory and correlation 

matching double-zeta basis set cc-pVDZ were used for the calculations. Fragment assignment 
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and PAICS input generation were performed using PaicsView.83 Output was analyzed using 

RbAnalysisFMO84. 

Briefly, the FMO method, a quantum mechanical method based on first principles 

calculations, is a powerful theoretical tool for the reliable study of protein-ligand interactions. 

The ligand is also considered a fragment, and the properties of the fragments are combined to 

derive the properties of the entire system in a many-body expansion. By considering two body 

types (fragment pairs) in this way, it is possible to calculate the fragment interaction energy 

(IFIE), which is an important physical quantity in understanding protein-ligand binding. In 

this study, I used FMO to study protein-protein interactions; FMO is now being used as a 

valuable tool to describe protein-ligand interactions.55 

 

3-3. Results and Discussion 

 

3-3-1. Comparison of protein sequences of human SLAM and macaca SLAM 

Because CDV-H has been shown to interact with macaque SLAMs but not with human 

SLAMs, I initially wanted to identify the residues that trigger cross-species transmission of 

CDV among primates.60, 61, 63 This suggested that differences in the amino acid sequences of 

the two SLAMs were responsible for their differential affinity for CDV-H. The sequence 

alignment of human and macaca SLAMs is shown in Figure 11, suggesting that they differ 

from each other by only 11 residues. In general, SLAM can be divided into five domains: 

signal peptide (shown in pink in Figure 11), V domain (blue), C2 domain (yellow), 

transmembrane domain (green), and cytoplasmic domain (purple). structural data from the 

complex of MV-H and cottonwood marine SLAM indicate that the V domain only contributes 

to the interaction with CDV-H. Only residues 28 and 48 of the V-domain differ in amino acid 

type between macaque and human SLAMs (Figure 11). Residue 48 is located distal to the 

interaction interface between MV-H and SLAM (Figure 12b), suggesting that this residue is 

not important for the interaction. In addition, the structure of the N-terminal region of SLAM 
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(red square in Figure 11) by Hashiguchi et al. lacks residue 28, so the potential role of residue 

28 in complex formation cannot be determined.66 Furthermore, modeling of the structure of 

the N-terminal region of human SLAM complexed with MV-H suggests that residue 28 plays 

only a minor role in the interaction with MV-H.71 Therefore, an approach that predicts the 

structure in the N-terminal region of SLAM is needed to determine the role of residue 28 in 

the interaction with CDV-H. 

 

 

Figure 11. Sequence alignment of human SLAM and macaca SLAM. Sequences were 

obtained from GenBank database, accession numbers for human SLAM and macaca SLAM 

were NP_003028 and XM_001117605, respectively. The alignment was done by ClustalW. 

There are five domains in SLAM: signal peptide (pink), V domain (blue), C2 domain 

(yellow), transmembrane domain (green) and cytoplasmic domain (purple). 
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Figure 12. (a) Complex structure of MV-H (gray) and macaca SLAM (surface 

representation). The interaction surface bound to MV-H is shown in orange and others are in 

cyan. Residue of position 48 (magenta) is not located at the interaction surface (orange). 

Constructed complex structure of CDV-H (pink) and macaca SLAM (cyan). (b) front view 

and (c) side view. 

 

3-3-2. Interaction energy analysis between CDV-H and SLAM by fragment 

molecular orbital (FMO) analysis 

The potential functional roles of residues in the N-terminal region of SLAM were 

determined by using a computational chemistry approach to construct a homology model of 

macaca SLAM complexed with CDV-H. The complex model structure of CDV-H and macaca 

SLAM was constructed using Molecular Operating Environment (MOE) software, using the 

crystal structure of the complex of MV-H and cottonwood marine SLAM as a template; the 

sequence identities of MV-H and CDV-H and cottonwood marine SLAM and macaca slam 

are 35% and 83%, respectively, and modeling revealed suggested that a highly accurate model 

structure of CDV-H and macaca slam could be obtained. For the modeled CDV-H, I 
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confirmed that the structure did not unfold after MD simulation. Next, I performed 

complementation of the residues in the N-terminal region using the structural geometry of this 

region and the scoring calculated by MOE. The structure with the highest score was selected 

from the generated model. I also confirmed that important interactions are conserved not only 

in the crystal structure but also in the modeled structure. 

At the interaction interface between the N-terminal region of macaca SLAM (red in 

Figure 13a) and CDV-H (pink in Figure 13a), two residues of macaca SLAM (His28 and 

Met29) were shown to interact with three residues of CDV-H (Tyr186, Arg543, Thr544, and 

Phe600). This observation was supported by quantitative FMO analysis of interaction 

energies: the energies of His28 and Met29 were -36.9 and -32.2 kcal/mol, respectively, and 

these values were more than 15 kcal/mol lower than those of the other residues (Figure 13b). 

The calculated fragment interaction energies (PIE) of the residues Tyr186, Arg543, and 

Phe600 of CDV-H formed interactions with macaca SLAM (Figure 13c). The IFIEs of 

Tyr186, Arg543, and Phe600 were -5.6, -19.8, and -2.7 kcal/mol, respectively. 

In summary, His28 is a major contributor to the formation of the CDV-H-macacaca 

SLAM complex. In particular, the interaction between His28 and three CDV-H residues 

(Tyr186, Arg543, and Phe600) is a major contributor to the formation of this complex. 
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Figure 13. (a) Residues in CDV-H 

(pink) interacted with N-terminal 

domain (red) in macaca SLAM 

(cyan). (b) Binding affinities of the 

residues of N-terminal domain in 

macaca SLAM by FMO analysis. 

(c) pair interaction energies (PIEs) 

of the interacting residues of 

CDV-H by FMO analysis. 

 

 

3-3-3. Molecular dynamics simulation of the complex of CDV-H and macaca SLAM 

The above static structural analysis indicated that His28 and Met29 of macaca SLAM 

play an important role in the stable complex formation with CDV-H. To verify this 

observation, the dynamics of the CDV-H-macacaca SLAM complex was investigated by 

molecular dynamics (MD) simulations of the CDV-H complex with wild-type (WT), macaca 

SLAM H28R mutant, and M29S mutant. Human SLAM has arginine at position 28. 

First, root mean square deviation (RMSD) values of the Cα atoms were calculated, and 

it was found that the structure equilibrated at an RMSD value of approximately 2.2 Å during 

the 100 ns simulation (Figure 14a). Next, the structural changes at the N-terminus (residues 

25-31) of macaca SLAM during the simulation were analyzed by calculating the root mean 

square fluctuation (RMSF) values of the Cα atoms (Figure 14b). The analysis revealed that 

only the H28R mutant of macaca SLAM exhibited increased flexibility in this region: the 

RMSF values for residues 27-29 of the H28R mutant were >2.0 Å (Figure 14b, red), while 

those for WT (black) and M29S (blue) were <1.3 Å (Figure 14b). Analysis of the orbital 

structure also supported this observation. As shown in Figure 14c, the flexibility of the 

N-terminal region of maca SLAM H28R was clearly higher than that of the WT and M29S 
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mutants (Figure 14c). MMGBSA analysis showed that the H28R mutation, compared to the 

WT and M29S mutations, interacted between maca SLAM and CDV-H energy was found to 

be reduced by ~20 kcal/mol ( 

Table 1). 

The above quantitative analysis of the static and dynamic structures of CDV-H and 

macaca SLAM indicates that the interaction formed between His28 of macaca SLAM and the 

residues of CDV-H is essential for the formation of a stable macaca SLAM-CDV-H complex. 

Specifically, the formation of an interaction between side chain H28 and each of Y186, R543, 

and Y600 is thought to be responsible for the high stability of macaca SLAM-CDV-H (Figure 

13c); mutation of H28R abolishes this interaction, resulting in a highly flexible N-terminal 

region. Here, I performed a computational analysis of the H28R mutant to show the difference 

between human SLAM and macaca SLAM, and a similar phenomenon may be observed in 

the H28K mutant. 

 

 

 

Figure 14. Results of MD simulations about the CDV-H/macaca SLAM complex. (a) RMSD 

values of Cα atoms during the 100 ns MD simulations. This figure shows that the RMSD 
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values of WT, H28R and M29S colored black, red, and blue line, respectively. (b) RMSFs of 

the residues in N-terminal region (from 25 to 31) in macaca SLAM. The displayed color is 

the same in (a). (c) Trajectory structures obtained from MD simulation of the CDV-H/macaca 

SLAM complex. 

 

Table 1. Binding energies between macaca SLAM and CDV-H calculated by MMGBSA 

analysis. 

 ∆G (kcal/mol) 

WT −31.8 

H28R −7.2 

M29S −30.9 

 

 

3-4. Summary 

The molecular basis for the differentiation of receptor function between macaca SLAM 

and human SLAM in response to CDV infection has not been studied in detail. In this report, I 

propose a detailed and specific model for the molecular mechanism by which the N-terminal 

region of macaca SLAM forms a stable interaction with CDV-H. The results obtained in this 

study are summarized in Figure 15, which shows that only the H28R mutation destabilizes 

the interaction. I have previously demonstrated the effectiveness of the simulation approach in 

analyzing the interaction between human SLAM and MV-H.71 The combination of 

calculations and experiments revealed that Met29 in the N-terminal region of human SLAM 

is essential for the formation of the interaction with MV-H. Since the protein regions that 

form the interaction are very flexible, this computational approach is expected to facilitate the 

analysis of intermolecular interactions that cannot be revealed by crystallographic analysis. 

This chapter proves that the FMO method is also useful for protein-protein interaction 
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analysis. However, when intra-protein or protein-protein interaction analysis is performed, the 

number of interaction pairs to be analyzed is huge (about [number of amino acid residues in 

protein]2 / 2), which makes the analysis difficult. Therefore, it is important to develop an 

analysis tool that facilitates the analysis of interactions within or between proteins, and in the 

next chapter, I construct a new analysis tool using the FMO method and validate the method. 

 

Figure 15. This figure showing that the 

key role of important residues in 

N-terminal region of macaca SLAM play 

in interaction with CDV-H. 
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Chapter 4. Development of Random Forest-Fragment Molecular 

Orbital (RF-FMO) Method for Dynamic Protein Interaction 

Analysis and Application to Src Tyrosine Kinase 

 

 

 

Purpose of this Chapter 

In this chapter, I establish a valuable tool (RF-FMO) for extracting important residues 

and interactions between amino acid residues by combining the Random Forest (RF) method 

which is one of the machine learning algorithms, and PIE analysis based on the fragment 

molecular orbital (FMO) calculation, based on the knowledge obtained in the previous chapter. 

The RF-FMO will be benchmarked against Src-Kinase, for which the functional mechanism 

has been elucidated at the molecular level through a wide range of previous studies. 
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4-1. Introduction 

 

4-1-1. Src-tyrosine kinase 

Protein tyrosine phosphorylation is found primarily in multi-cellular organisms. 

Differentiation, development and metabolism were controlled by protein tyrosine 

phosphorylation. And these regulates need tight regulation of inter-cellular signaling. The first 

to be discovered were non-receptor tyrosine kinases (Src) in the various tyrosine kinases that 

phosphorylate proteins tyrosine. Currently, a family of tyrosine kinases have been reported in 

the paper. It named Src family tyrosine kinases (SFKs), and has nine members (Src, Fyn, Yes, 

Lck, Lyn, Hck, Fgr, Blk). The intra-cellular domains which including   GPCRs, cytokine 

receptors, growth factors and integrins were interacted with SFKs and SFKs have common 

structural domain.85 

Src tyrosine kinase is well known as an important regulator of signaling specific to cell 

proliferation. This protein exists exclusively in the plasma membrane. It has important role to 

activate protein synthesis systems and cell proliferation. That activation was done by 

transducing signaling molecules from various protein receptors.86, 87 There are strongly 

correlation between tumor growth and steady activation of transcription factors by Src 

tyrosine kinase.88 Thus, molecules which control the switching between inactive and active 

states of Src tyrosine kinase are regard to be candidates for anti-tumor drugs. Anti-tumor 

effects are exerted by indirect and direct inhibition of the phosphorylation of Src tyrosine 

kinase. In recent years, Drugs such as Iressa which inhibit its activity are clinically used to 

some malignancies. It also known about the inhibitors of Src tyrosine kinase can prevent 

acute inflammatory reactions such as lung injury. From the above information, to understand 

the conformational changes of Src tyrosine kinase at the atomic level is important. It may play 

an important role in clinical applications and inhibitor design to know the molecular basis of 

it. If you want to know the general issues related to Src tyrosine kinase, it may help you to see 

some reviews and references paper.89-91 
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4-1-2. Structure of Src-tyrosine kinase 

Src tyrosine kinase has five domains. These are named a kinase domain (green), a flexible 

binding region (Linker, yellow), an SH2 domain (light orange), SH3 domain (orange) and an 

anchor segment (anchor), in order from the C-terminal end of the protein (Figure 16a). When 

Src tyrosine kinase regulates its function, it makes a series of conformational changes which 

bend large joints. In the active state, the protein takes on an extended structure. On the other 

hand, the protein has a small folded structure in inactive state (Figure 16a).92 The 

conformational changes in proteins that change the two states described above are known to be 

induced by conformational changes in the A-loop in the kinase domain. A-loop is residues 

404-424 of Src tyrosine kinase. Therefore, A-loop is particularly important for inducing this 

large conformational change (Figure 16b, c).93 
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Figure 16. (a) Active state structure (left) and inactive state structure (right) of Src-Kinase. 

Src-Kinase has four domains: SH2 domain (light orange), and SH3 domain (orange), Linker 

domain (yellow) and Kinase domain (green). When Src-Kinase express its function, it makes 

conformational change. SH2 domain and Kinase domain are open in active state structure. 

When the protein is inactive state structure, it is folded into a compact shape. The structures 

(b) front and (c) side view which active state structure and inactive state structure 

superimposed on each other. A-loop undergoes an interesting conformational change between 

two states. It forms α-helix in the inactive state (orange) and extended in the active state 

(green). 

 

4-1-3. Efforts for Protein Structure Change Analysis 

Many biological phenomena are carried out by proteins. In general, proteins perform 

important biological functions by changing their structure, either globally or locally. 

Therefore, to understand the details of life phenomena, it is crucial to understand these 
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structural changes of proteins at the molecular level. However, from experimental, theoretical, 

and computational perspectives, understanding protein conformational changes at the 

molecular level is a challenging task. Researchers are currently addressing this challenge by 

developing several approaches. From a theoretical and computational perspective, these 

include molecular dynamics (MD) simulations and quantum chemistry (QC) calculations such 

as the fragment molecular orbital (FMO) methods8 were used for it. Each of these calculation 

methods has its advantages and disadvantages. The amount of data obtained from MD and 

FMO calculations is large, and at first glance it may seem that there is a lot of information to 

be gained from the analysis. However, it is difficult to obtain physicochemical knowledge 

about protein function from such a large amount of computational data. 

In current years, the methods which analyze huge amount of data have been used to 

analyze detail of torsion angles of amino acid residues in important functional proteins. 

Machine learning method which is one of the data science methods was used to analyze the 

dihedral angles of amino acid residues obtained MD trajectory analysis in Sultan et al..1 In 

their study, they first performed a basic experiment using alanine dipeptides, using the φ-ψ 

angles of peptides obtained by MD simulations as training data to train a random forest 

algorithm. The learning results were used to analyze MD trajectory data, and it was found that 

the conformational states of the peptides were neatly clustered. Furthermore, they performed 

the same analysis using the φ, ψ, and χ angles of the Src tyrosine kinase as training data. The 

Gini importance obtained from the random forest analysis allowed identify the amino acid 

residues and domains that are important for the conformational change of the protein. These 

studies demonstrate the effectiveness of an analysis tool that combines the random forest 

method with computational chemistry.  

However, conformational changes in proteins are mainly caused by interaction changes 

between amino acid residues. In addition, interactions between amino acid residues are often 

formed between atoms outside the main chain. Therefore, I think that the analysis based on 
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the interaction network between amino acid residues can provide a more detailed 

understanding of the mechanism of protein conformational change than the analysis based on 

the dihedral angle of the main chain. In this study, we developed a powerful analysis tool 

called Random Forest-FMO (RF-FMO). After the development of RF-FMO, the Src tyrosine 

kinase was used as a target protein for the analysis. 

 

4-2. Random forest-fragment molecular orbital (RF-FMO) method 

 

4-2-1. Disadvantages of clustering analysis of trajectory data using random forests 

developed by Sultan 

      Sultan et al.1 reported a trajectory data analysis method using random forests, but 

two shortcomings were predicted for this tool. The first is the number of estimator and max of 

depth settings used when training with random forests. The number of estimator and max of 

depth settings used when training in a random forest, where number of estimators is the 

number of decision trees to be created and max of depth is the number of node layers to be 

created for a single decision tree. The second is whether the analysis can be performed on 

proteins with more amino acid residues than those used in the benchmark calculations of 

Sultan et al.1 

These two shortcomings may reduce the accuracy of the calculation and make it 

difficult to adapt the method to proteins with more than about 300 residues. Therefore, we 

have developed a new tool (RF-MD) that verifies and improves on these shortcomings, and 

will provide insight into the development of RF-FMO. 

 

4-2-2. Validation of the analysis method developed by Sultan 

The trajectory analysis tool reported in the Sultan et al.1 That tool was not available on 

the web. Therefore, we created the trajectory analysis tool of Sultan et al. based on the 

description in the paper (Schema 1). The tool was developed entirely using the Scikit-learn 

library implemented in Python 2.7.94 The MD Traj library was used for reading and writing 
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trajectory data.95 This tool automatically extracts amino acid residues that are important for 

conformational changes of proteins with two conformational states by using MD simulation 

trajectories of the two conformational states as input. The number of estimator and max depth 

settings used in the random forest calculation in this tool were 30 and 4, respectively. 

 

Schema 1. Analysis flowchart for the 

Trajectory Analysis Tool based on the 

paper by Sultan et al 

 

 

First, in order to confirm that the tool works as well as the one of Sultan et al. we performed 

automatic extraction of amino acid residues using Src-Kinase trajectory data generated by 

MD simulation as input. The Gini importance values of φ, ψ, and χ obtained from this 

analysis were plotted for each amino acid residue (Figure 17), and similar to Sultan et al. Gini 

importance peaks were observed. Therefore, the tool created in this study is considered to be 

almost similar to the tool of Sultan et al.1 
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Figure 17. Results of the analysis of the 

author's trajectory analysis tool for 

Src-Kinase. The obtained Gini importance 

values of φ, ψ, and χ are depicted 

graphically for each amino acid residue. 

The graph suggests that Lys295, Glu310, 

His384, and A-loop are important, similar 

to the results of Sultan et al. 

 

 

To verify the accuracy, we repeated the same calculation five times and compared the results 

(Figure 18a). To compare the Gini importance errors, the mean value of the Coefficient of 

Variation (CV) of the Gini importance (𝑪𝑽̅̅ ̅̅ ) was obtained as follows ((Equation 47 and 

(Equation 48) 

 

𝑪𝑽 =  
𝝈

𝒙̅
  (Equation 47) 

𝑪𝑽̅̅ ̅̅ =  
∑ 𝑪𝑽𝒊

𝒊
  (Equation 48) 

 

σ is the standard deviation of Gini importance at each amino acid residue and 𝒙̅ is the mean 

value of Gini importance at each amino acid residue. This value indicates that the larger the 

value, the larger the error, and the smaller the value, the smaller the error. This result indicates 

that the Sultan et al. tool1 is inaccurate due to the variation in the values calculated for each 

calculation. 

Furthermore, when the Gini importance values were calculated five times using the tool 

created with the CtBP2 trajectory as input, it was found that there was an even larger variation 

in the Gini importance values from calculation to calculation (Figure 19a). This is because 

the number of amino acid residues in hCtBP2 is nearly twice as large as in Src-Kinase. 
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These results indicate that the Sultan et al. tool1 is inaccurate and that it is difficult to 

extract important amino acid residues because the calculated Gini importance values vary 

from calculation to calculation. 

 

 

 

Figure 18. Accuracy validation of Sultan's tool 

using Src-Kinase. (a) Src-Kinase trajectory data 

were analyzed five times using the tool of Sultan 

et al. Gini importance values obtained from each 

calculation were plotted. The plotted curves do 

not overlap, indicating that the results varied 

from calculation to calculation. (b) The same 

procedure as in a was performed using RF-MD. 

The five curves overlapped nicely and the value 

of 𝑪𝑽̅̅ ̅̅  was reduced, indicating that the accuracy 

of the calculation was successfully improved. 
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Figure 19. Accuracy validation of Sultan et al.'s 

tool using CtBP2. (a) CtBP2 trajectory data were 

analyzed five times using the tool of Sultan et al. 

Gini importance values obtained from each 

calculation are plotted. The plotted curves do not 

overlap, indicating that the results varied from 

calculation to calculation. Furthermore, the 

increase in 𝑪𝑽̅̅ ̅̅  values compared to Src-Kinase 

suggests that the accuracy will further decrease 

as the number of data increases. (b) The same 

operation as in a was performed using RF-MD. 

The five curves overlap nicely and the value of 

𝑪𝑽̅̅ ̅̅  has decreased, suggesting that the accuracy 

of the calculation has been successfully 

improved. 

 

 

4-2-3. Development of RF-MD and consideration of accuracy improvement 

RF-MD was created to overcome the weaknesses found in the tool of Sultan et al. 

Basically, to increase the accuracy of the random forest calculation performed in the tool, it 

was said that the number of estimator and max depth settings should be increased. However, 

when the number of estimators was increased, the computation time became very long due to 

the large amount of data, and there were concerns about over-learning for the max depth. 

Therefore, we decided to repeat the calculation to obtain the Gini importance value and 

calculate the average value of the obtained Gini importance (Schema 2). This would allow for 

easy parallelization of each calculation and avoid over-learning. 
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Schema 2. Flowchart of the RF-MD analysis 

 

 

First, we compared the accuracy with the tool of Sultan et al. using Src-Kinase 

trajectory data.1 As in the previous section, we performed the same calculation five times and 

compared the Gini importance values calculated for each calculation (Figure 18b). As a result, 

the variation in Gini importance values was almost eliminated and the accuracy problem was 

successfully solved without loss of computation time (Table 2). 

Next, we performed the same operation using hCtBP2 trajectory data (Figure 19b). No 

variation in Gini importance values was observed for this result as well. This suggests that 

high accuracy can be maintained even as the number of data increases. This suggests that the 

RF-MD can maintain high accuracy even when the number of data increases, which was a 

problem with the trajectory analysis tool of Sultan et al.1 Based on the findings obtained here, 

we developed the RF-FMO in the next section. 
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Table 2. Comparison of analysis time [in Sec] between the tools of Sultan et al. and RF-FMO. 

The time required for analysis by each trajectory is shown. Single Processor is the time 

required for the analysis with the tool of Sultan et al. and multi processors is the time required 

for the analysis with RF-MD. The RF-MD tool repeats the same calculation 1000 times to 

improve accuracy and averages the obtained values, so the time required to repeat the 

calculation 1000 times was used for comparison. As a result, it is clear that RF-MD is faster. 

 

Number of cycle 

Single Processor Multi Processors 

Src-Kinase CtBP2 Src-Kinase CtBP2 

1 4.73 11.33 - - 

1000 4726.63 11328.33 211.97 379.05 

 

4-2-4. Development RF-FMO 

The RF-FMO takes the trajectory data of the protein in two states from MD simulations 

as inputs (denoted Form A and Form B). The analysis process of the RF-FMO method is shown 

in Scheme 3. At the first, Root Mean Square Deviation (RMSD) was calculated using the 

inputs of Form A and Form B trajectories. RF-FMO used the initial structure of each trajectory 

for the reference structure of the RMSD at each trajectory. After calculated RMSD for each 

trajectory, RF-FMO crate two type of histograms by using the RMSD calculated, one is 

calculated by all structures, another one is calculated by randomly sampled up structures that 

were distributed within a range of standard deviation values to the left and right with respect to 

the median. This extraction method allowed us to extract only the major structures in each state. 

Then, RF-FMO calculate the interaction energy between amino acid residues by FMO method 

after energy optimization using GROMACS was performed on each sampled structure. Finally, 

RF-FMO method calculates the Gini importance value. To calculate the Gini importance values, 

a random forest calculation was performed using the interaction energy values between amino 
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acid residues calculated in the FMO calculation as training data. In addition, the betweenness 

centrality of each amino acid residue was calculated by graph theory analysis using the 

interaction energy values between amino acid residues. The resulting betweenness centrality of 

each amino acid residue in each structure was used as training data to calculate its Gini 

importance value. 

Graph theory is a mathematical theory about graphs consisting of a set of nodes and a set of 

edges. The theory defines each node and the edges that connect the nodes, and analyzes the 

characteristics of each node and edge. The graph theory analysis performed in RF-FMO is as 

follows. Each fragment (amino acid residues) used in the FMO calculation is defined as a node, 

and the interaction energy between amino acid residues calculated by the FMO calculation is 

defined as an edge. Values of amino acid residue interaction energy were used normalized 

between 0.1 and 1.1. This mean that the analysis was performed by creating a graph in which 

the nodes of each amino acid residue were connected to each other by the presence or absence 

of interaction energy. The connection between each node is such that the higher the interaction 

energy, the stronger the connection, and amino acid residues with no interaction are not 

connected by edges and are not related to each other. Betweenness Centrality Bj,
96, 97 is a 

numerical measure of how much of the node of interest is in the shortest path between two other 

nodes. The higher the value, the more it is always involved in an interaction network with 

somewhere else. For example, a highway junction or an approver in a paper submission are one 

example of cases where influence is generated because information is frequently transmitted 

there because it has to pass through there. It is represented by the following equation. 

 

𝐵𝑗 =  ∑
𝑔𝑖𝑗𝑘

𝑔𝑖𝑘
𝑖<𝑘

  (Equation 49) 

 

where gik is the number of the shortest paths between nodes i and k that include node j. gijk is the 

number of shortest paths between nodes i and k. 
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The RF-FMO analysis tool was developed using the Scikit learn library implemented in 

Python 2.7,94 and the md-traj library was used to read and write trajectory data.95 The RF-FMO 

takes as input trajectory data from MD simulations of proteins in two conformational states. 

From those trajectory data, it samples the conformations and performs an FMO calculation for 

each sampled conformation, using the amino acid interaction energy calculated by the FMO 

calculation to perform random forest analysis and graph theory analysis. The RF-FMO 

automatically determined important amino acid residues for conformational change from the 

output of the FMO calculations performed for each of the sampled structures by 

computational processing. 
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Scheme 3. Flow chart of RF-FMO analysis. 

 

 

4-3. Materials and Methods 

 

4-3-1. Construction of initial structure 

The structure obtained from the X-ray crystal structures were used for construction of 

initial structure of Src tyrosine kinase. Two X-ray crystal structures was used. The complex 

structures of MPZ bound to Src tyrosine kinase (PDB ID: 1Y5798) which functions as the active 

state was used for active state structure. The complex structure of AMP-PNP bound to Src 

tyrosine kinase (PDB ID: 2SRC92) which functions as the inactive state was used for inactive 

state structure. MOE 2016.08 was used for construction of all initial structures.46 All 

constructed structure were optimized with Amber10:EHT force field for the protein. To take 

account of solvent effects used the Born implicit solvent model. To equalize the amino acid 
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residues length of each protein, the residues from Trp260 to Thr521 were extracted in each 

X-ray crystal structures. Molecules other than Src tyrosine kinase that were placed in the PDB 

were removed except for those necessary for analysis. Crystal water and molecules bound to 

the protein were removed, except for the ligands MPZ and AMP-PNP. Both terminals of the 

cleaved protein were capped by methylation. All missing hydrogen atoms were added using 

the Protonate 3D utility. Finally, energy minimization of the complex structure was performed. 

Energy minimization was performed in two stages. First, only the added hydrogen atoms were 

minimized with the energy minimization utility until a threshold value of 0.00001 kcal mol-1 

Å-2 was set. Finally, the protein complex was minimized to a threshold-set value of 0.01 kcal 

mol-1 Å-2. 

 

4-3-2. Preparation of MD simulations 

Using the complex structure constructed in section 4-3-1, I constructed a simulation system 

for MD simulations. To create topology files, I used the LEaP function of AMBER1450. The 

molecular force field of ff14SB49 was used for the protein, and the custom force field was made 

by Walker et al.99, 100 used for the NADH/NAD+. The periodic boundary of the MD simulation 

was set at a distance of 12 Å from the complex. The TIP3P water model was placed in the 

solvation box.101 In order to neutralize the target system, I added counter ions and physiological 

conditions were set to 150 mM KCl. The topology files created by the LEaP function are in 

AMBER format. It were converted to GROMACS format using the acpype.py script because 

the MD simulation requires GROMACS format.73 

 

4-3-3. MD simulation 

I was used the GROMACS package 2018 for all MD simulations.74 First, constraints were 

imposed on the entire system and steep minimization was performed. Energy minimization was 

performed step-by-step. First, energy minimization was performed only for the missing 
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hydrogen atoms given by Protonate 3D utility. A constraint of 1000 kJ mol-1 nm-2 was imposed 

on the protein atoms except for the hydrogen atoms, which were minimized in 10,000 steps. 

Next, since the orientation of side chains may not be stable in X-ray crystal structures due to 

packing and other effects. Energy minimization of side chains of protein was performed. A 

constraint of 1000 kJ mol-1 nm-2 was imposed on the main chain atoms and minimized in 10,000 

steps. Finally, the minimization was performed in 10,000 steps without any constraints (total 

30,000 steps). The threshold for energy minimization was set at 10 kJ mol-1 nm-2. Next, 

annealing of water molecules automatically placed by the Leap function was performed. The 

simulation was repeated 10 times, with constraints placed on atoms other than water molecules, 

and the entire system was heated from 0 to 300 K during 100 ps. Next, the entire system was 

heated from 0 to 300 K during 300 ps. The NVT ensemble (T = 300 K) was employed in the 

annealing and heating simulations. For protein atoms except hydrogen atoms, the temperature 

was controlled using the v-rescale method with a constraint constant of 1000 kJ mol-1 nm-2. 102 

Then, an equilibrium calculation of 700 ps was performed using the NPT ensemble (T = 300 K 

and P = 1 bar) with the Nosé-Hoover76, 77 and Parrinello-Rahman methods78, 79 for temperature 

and pressure control. The constraining constant, excluding hydrogen atoms in the protein, 

decreased gradually every 100 ps from 1000 kJ mol-1 nm-2 to 10 kJ mol-1 nm-2. In addition, an 

equilibration calculation of 500 ps was performed with the temperature set to 300 K in the NPT 

ensemble. After a series of equilibration simulations were completed, a final production 

calculation of 100 ns was performed in the NPT ensemble. All simulations were performed 

with a time step of 2 fs. All hydrogen atoms were constrained by applying the LINCS method.75 

The thermostat-barostat coupling time was set to 1.0 ps-1. A particle mesh Ewald algorithm was 

used for the long-range electrostatic interaction.103 The cutoff value was set to 10 Å. The 

compression ratio was set to 4.5 × 10-5 bar.  
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4-3-4. FMO Calculation 

All FMO calculations were performed by using the GAMESS program package.104 I used 

the density functional tight coupling (DFTB) method105 with the 3ob parameter set106, 107 for 

the FMO calculations. In order to account for solvent effects, I used the PCM method.108 The 

DFTB calculations used Grimme's DFT-D3 dispersion correction to account for dispersion 

interactions.109, 110 

 

4-4. Results and Discussion 

 

4-4-1. Evaluation of structural stability of active and inactive states of Src-Kinase 

 

I confirmed by MD simulation that the structures of the active and inactive states 

obtained by X-ray crystal structure are stable structures. The modeled structures of the active 

and inactive states were sampled by 100ns MD simulation as the initial structure. RMSD values 

were calculated from the calculated trajectory data of both structures with the initial structure in 

the inactive state as the reference structure. The average RMSD values were 3.8 Å for the active 

state and 1.3 Å for the inactive state. The difference between the average RMSD values of the 

two structures suggests that the inactive and active states exist in different and stable 

conformations as protein conformations. Furthermore, the respective RMSD values during the 

simulation varied stably with respect to the average value, indicating that both structures are 

thermally stable. This allowed verify the stability of the modeled structures. As a result, we 

have decided to use these trajectory data for future analyses of interactions between amino acid 

residues using the RF-FMO method. 

 

4-4-2. Extraction of amino acid residues important for the conformational change of 

Src tyrosine Kinase between active and inactive states by RF-FMO 

RF-FMO analysis was performed using trajectory data obtained from MD simulations as 
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input. The results obtained by this RF-FMO analysis are the amino acid residues that are 

important for the conformational change of Src tyrosine kinase between the active and inactive 

states. The results of the RF-FMO analysis are shown in below. The RMSD was calculated 

based on the trajectory data for the active and inactive states (Figure 20a and b). The respective 

initial structures were used as reference structures for the RMSD. From these RMSD values, 

histograms for both states were calculated (Figure 21a and c). Based on these histograms, we 

sampled 50 structures for each of the active and inactive states (100 structures in total). The 

structures sampled up were randomly and sampled from structures within a standard deviation 

of the median value. The RMSD histograms of all sampled structures are showed in Figure 21b 

and d. FMO calculations were performed for all sampled up structures. Finally, Gini 

importance values of amino acid residues and pair interaction energies between the amino acid 

residues were calculated using the flow shown in Scheme 3. The Gini importance values for the 

amino acid residues and interaction energy of each amino acid residue were calculated with the 

following parameters. The number of estimators was set to 30, the maximum depth to 4, and the 

number of iterations to 1000. The calculated Gini importance values were sorted in order of 

increasing value and plotted on a graph (Figure 22). The features with the highest Gini 

importance values (the area with red background in the graph) were considered as the features 

extracted by RF-FMO. Finally, 32 of the 623 amino acid residues were automatically extracted, 

yielding an extraction rate of 5.1% (Table 3). In addition, 61 of the 34453 interaction energies 

were extracted, yielding an extraction rate of 0.2% (Table 4). From this 34453 x 100 = 

3445300 interaction data set, RF-FMO automatically detected significant interaction pairs. 

This analysis is difficult to perform manually. The development of RF-FMO allow us to 

perform this analysis. The RF-FMO analysis is also based on the dynamic interaction energy 

sampled by the MD simulation. This is different from the static interaction analysis of a single 

structure by conventional FMO, which is also an advantage of this method over conventional 

methods. 
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Figure 20. RMSD calculated from 

MD simulation results of (a) active 

state and (b) inactive state. 

 

 

 

Figure 21. The histogram of RMSD in (a) active state and (c) inactive state structures. The 

RMSD histogram of the sampled structures from (b) active state trajectory and (d) inactive 

state trajectory. 
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Figure 22. (a) The Gini importance values of the betweenness centrality of amino acid 

residues are sorted and plotted in order of high value. Amino acid residues located in the area 

where the plot is painted red are considered as amino acid residues extracted by RF-FMO. (b) 

The Gini importance values of the pair interaction energy are sorted and plotted in high order 

of value. Pair interaction energy located in the area where the plot is painted red are 

considered as pair interaction energy extracted by RF-FMO. 

 

 

Table 3. List of the amino acid residues detected by RF-FMO analysis. 

LYS272 GLY274 PHE278 THR289 THR301 MET302 PHE307 GLU310 GLY421 PHE424 

GLU332 ILE336 SER345 ARG379 ASN381 TYR382 VAL383 ASP386 PRO425 TRP428 

ALA389 GLY406 ARG409 LEU410 ILE411 GLU412 ASP413 GLU415 ILE441 SER443 

TYR416 GLN420         
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Table 4. List of the interacting amino acid residue pairs detected by RF-FMO analysis. 

THR301-GLY279 PHE307-LEU297 GLU310-LYS295 PHE424-TYR416 LYS427-PRO425 

VAL328-PHE307 GLU332-GLY300 GLU332-LEU297 PRO425-ASP386 ILE441-ASN381 

ILE336-ILE294 ILE336-ALA311 ILE336-GLU310 PRO425-TYR416 TRP428-ASP386 

ILE336-LEU297 PHE349-SER345 VAL383-VAL377 LYS423-ASP413 SER447-ASP386 

ALA389-SER345 ALA389-LEU350 GLY406-HIE384 PHE424-ALA422 THR429-PHE424 

GLY406-VAL383 LEU407-ASP386 ALA408-GLY406 PHE424-GLN420 GLU454-TRP428 

ALA408-ASP386 ALA408-GLU310 ARG409-TYR382 ALA418-TYR416 GLU510-ARG379 

ARG409-GLU310 ARG409-VAL383 ARG409-GLY406 GLN420-GLU415 LYS423-GLU415 

ARG409-ARG385 LEU410-ALA408 LEU410-PHE307 TYR416-ALA408 ASP413-ILE411 

LEU410-TYR382 LEU410-GLY406 LEU410-GLU310 ASN414-GLU412 TYR416-ILE411 

LEU410-ASN381 ILE411-TYR382 ILE411-VAL383 THR417-ASP413 ALA418-GLU415 

ILE411-MET302 ILE411-PHE278 ILE411-ARG409 GLU412-THR301 GLU412-ARG409 

GLU412-MET302     

 

The amino acid residues and PIE extracted by RF-FMO were used for structural analysis. 

The extracted amino acid residues were projected onto the X-ray crystal structure in the inactive 

state (Figure 23a and b). These figures suggest that the automatically extracted amino acid 

residues are in or around the A-loop. This suggests that the A-loop is important for the 

conformational change between the active and inactive states. Furthermore, the structural 

relationship between the two amino acid residues was analyzed for the interaction energies 

extracted by RF-FMO analysis. The analysis revealed that the interaction network of Lys295, 

Glu310, and Arg409 was important (Table 4). Comparing these three residues in the active and 

inactive states, it was found that Lys295 and Glu310 form a strong salt bridge in the active state. 

On the other hand, Glu310 and Arg409 formed salt bridges in the inactive state (Figure 23c and 

d). These results suggest that the conformational change between the active and inactive states 
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of Src tyrosine kinase is due to a change in the interaction pattern of Glu310. The results of 

RF-FMO analysis are consistent with Sultan et al.1 and Ozkirimli and Post,111 and support the 

validity of the RF-FMO analysis constructed in this study. These suggest that RF-FMO is a 

useful tool for automatically analyzing the results of large numbers of FMO calculations and 

easily extracting important amino acid residues. 

In summary, in the active form, Lys295 and Glu310 interact, and Arg409 is no longer 

immobilized by interaction with Glu310. This changes the A-loop into a flexible, fully 

extended loop structure. In contrast, in the inactive form, Glu310 and Arg409 on the A-loop 

form salt bridges, suggesting that the A-loop folds compactly to form a helical structure (red). 

 

 

Figure 23. Extracted residues by RF-FMO were showing in (a) front view and (b) side view. 

The amino acid residues (magenta ball) extracted by RF-FMO are projected onto the crystal 

structure of the inactive state (A-loop is denoted in orange). The interaction network with 

Glu310, Lys295 and Arg409 in the (c) inactive and (d) active state (A-loop is denoted in red). 
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4-5. Summary 

In this study, I developed a novel analysis tool (RF-FMO) which automatically extracts 

amino acid residues important for conformational changes based on interaction energy values 

calculated by FMO calculations. To validate the developed method, RF-FMO analysis was 

performed on Src tyrosine kinase. As a result, 32 amino acid residues were successfully 

extracted automatically from 623 amino acid residues. The extraction rate was 5.1%. I was 

also able to automatically extract 61 residue pairs out of 34453 interaction energies between 

amino acid residues. The extraction rate was 0.2%. These results indicate that RF-FMO is a 

method that can automatically extract interactions important for conformational changes from 

huge amount of interaction energy data. RF-FMO was very effective due to the amount of 

data that could not be analyzed by artificially performed FMO interaction analysis. This 

analysis method may also be useful for QM/MM calculations when ligand or cofactor 

dynamics are relevant to the enzyme reaction process.112 In the next chapter, we will attempt 

to apply this method to proteins for which the mechanism of conformational change at the 

molecular level is unknown. 

 

 



85 

 

Chapter 5. Theoretical Study on the Control Mechanism of 

hCtBP2 Open-to-Close Transition 

 

 

 

Purpose of this Chapter 

In this chapter, I analyzed CtBP2, a protein for which the mechanism of conformational 

change at the molecular level is unknown, using the RF-FMO constructed in the previous 

chapter, in order to clarify the molecular mechanism of conformational change. 
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5-1. Introduction 

 

5-1-1. C-terminal Binding Protein 2 (CtBP2) 

The C-terminal binding protein (CtBP) family is present in a variety of organisms and 

plays multiple biological roles.113 Although the CtBP family is known to include CtBP1 and 

CtBP2, it is difficult to completely distinguish their functional roles in mammals.33 It is well 

known that CtBPs in mammals act as corepressors that form complexes with transcriptional 

repressors associated with cancer and metabolic diseases.114 In particular, human CtBP2 

(hCtBP2) is known to exhibit dehydrogenase activity.115 It has been suggested that the 

complex formation between hCtBP2 and NADH during this process depends on the 

conformational changes of hCtBP2, its association state, and its intracellular NADH/NAD+ 

status. I have previously investigated the effect of NADH ligand binding on the stability of 

dimer formation by molecular dynamics (MD) simulations.116 However, the detailed 

molecular mechanism by which CtBP2 forms the dimer and the types of atomic-level 

interactions that regulate it have not been elucidated. 

 

5-1-2. Structure of CtBP2 

CtBP has a Rossmann fold-type structure consisting of three domains: an NADH-binding 

domain (NBD), a substrate-binding domain (SBD), and a dimerization loop domain (DLD) 

(Figure 1) The NBD domain binds to NADH/NAD+ and is critical for CtBP function The 

NBD domain binds NADH/NAD+ and plays an important role in CtBP function. Kumar et al. 

also suggested that the conformational change in the SBD, which opens and closes upon 

binding of NADH/NAD+ to the NBD, is important for the activity of CtBP.115 Therefore, in 

this letter, I would like to further identify which amino acid interactions are involved in the 

conformational changes between the open and closed states. 
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Figure 24. The structure of CtBP with NADH/NAD+ (yellow). CtBP has three domains called 

NADH binding domain (NBD, blue), substrate binding domain (SBD, pink) and dimerization 

loop domain (DLD, green). 

 

5-2. Materials and Methods 

 

5-2-1. Construction of initial structure 

The X-ray crystal structure of the hCtBP2/NAD(H) complex (PDB ID: 2OME) was 

used to construct the initial structure. The A and B chains of the X-ray crystal structure were 

extracted and hydrogenated using the Protonate 3D function. The C- and N-termini of the 

proteins were capped with methyl groups; all ligands in the X-ray crystal structure were 

hydrogenated to NADH. Finally, the protein complexes were energy minimized with a 

threshold of 0.01 kcal mol-1 Å-2. All initial structures were constructed using MOE 2016.08.46 

Amber10:EHT force field and Born implicit solvation model were used for minimization. 

 

5-2-2. MD Simulation 

Using the model structure constructed in 5-2-1, I constructed a simulation system using the 

LEaP function of the AMBER1450 LEaP function. Protein and NADH were simulated using 

the ff14SB force fields49 and the force field created by Walker et al. respectively.99, 100 A 

solvation box was constructed so that the distance from the complex to the periodic boundary 

was 12 Å. The TIP3P water model was constructed.101 For neutralization, 150 mM KCl was 

added as a counter ion. The constructed AMBER topology files were converted to NAMD 
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format and to GROMACS format using ParmEd117 and GROMACS format using the 

acpype.py script73. 

 

5-2-3. TMD 

Since the open state structure of hCtBP2 has not been previously obtained by X-ray 

crystallography, targeted MD (TMD) calculations were performed using NAMD 2.1115 to 

induce the structural transition from the closed state to the open state. Target MD (TMD) 

calculations were performed to induce a structural transition from the closed state to the open 

state using the model structure. First, the entire system was equilibrated. Next, a conventional 

10 ns MD calculation was performed in the NPT ensemble (300 K, 1 bar), followed by a 9 ns 

TMD simulation with a force constant of 30 kcal mol-1 Å-2. Simulations were performed with 

a time step of 2 fs and the SHAKE method118 was applied to constrain all interatomic bonds. 

For water molecules, the SETTLE method119 was used to constrain every 2 fs. The Langevin 

method was used for temperature control and the Langevin piston Nose-Hoover method for 

pressure control.76, 120 Short-range van der Waals and electrostatic interactions were cut off at 9 

Å. Long-range electrostatic interactions were controlled by the particle mesh Ewald 

algorithm.103 All conventional MD simulations for 100 ns were performed using the 

GROMACS package 2018.1.74 The structure constructed from the crystal structure was used 

as the initial structure of the closed state, and the final structure obtained from the TMD 

simulations was used as the initial structure of the open state. After stepwise equilibration, 

100 ns of generation was performed in the NPT ensemble (300 K, 1 bar), using the 

Nosé-Hoover method76, 77 for temperature control and the Parrinello-Rahman method 78, 79 for 

pressure control. In a series of simulations, the time increment was set to 2 fs and the LINCS 

method75 was applied to constrain all hydrogen atoms. For further long-range electrostatic 

interactions, the particle mesh Ewald algorithm was used.103 
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5-2-4. FMO Calculation 

The GAMESS program package was used for the FMO calculations.104 The density 

functional tight binding (DFTB) method105 was employed and the calculations were performed 

using the 3OB parameter set.106, 107 In the DFTB calculations, Grimme's DFT-D3 dispersion 

correction was used to account for dispersion interactions.109, 110 To account for solvent effects, 

the polarizable continuum model (PCM) was applied to account for solvent effects.108 

 

5-2-5. RF-FMO Analysis 

The RF-FMO method developed by the authors was used to analyze the large number 

of pair interactions obtained from the FMO calculations and to find important amino acid 

residues associated with open/closed conformational transitions. RF-FMO is a machine 

learning based method that is used to determine the importance of a particular pair interaction 

from all pairs in all snapshot structures and all amino acid residues in all snapshot 

structures.121 This may reflect the dynamics of the protein in the interaction analysis. All 

RF-FMO analyses were performed in Python 2.794 using the Scikit-learn library. The MD 

Traj library was used to read and write trajectory data.95 

 

5-3. Results and Discussion 

 

5-3-1. hCtBP2 dynamic structure change between Open state ↔ Closed state 

MD simulations were performed for 100 ns using the open and closed structures of 

hCtBP2 generated from the TMD and the crystal structure, respectively, as initial structures. 

The average RMSD was found to be 2.1 Å for the closed structure and 3.0 Å for the open 

structure. This suggests that the final structure of the TMD simulation did not return to the 

closed state, but remained in another stable state. To further confirm the reliability of the 

obtained open state structure, it was superimposed on the open structure of D-glycerate 

dehydrogenase (PDB ID: 1GDH), a related protein with the same Rossmann fold, and the 
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RMSD value for both was 1.57 Å. This result suggests that TMDs may give hCtBP2 an open 

This result suggests that TMD may give the open structure of hCtBP2. In fact, the initial 

structure was a closed structure with the NBD and SBD closed, whereas the sampled structure 

was an open structure with the NBD and SBD open (Figure 25). These results suggest that 

hCtBP2 can take both open and closed conformations. 

 

 Figure 25. Results of TMD simulation. 

(a) RMSD is calculated from the 

trajectories which generated from TMD 

simulation. RMSD was calculated 

based on the closed state initial 

structure. (b) This Figure shows that 

two structures; the initial structure 

(blue) and the final structure of the 

TMD simulation (red). 

 

 

5-3-2. Extraction of amino acid residues important for the conformational change of 

hCtBP2 between Open and Closed states by RF-FMO 

Amino acid residues important for the conformational change between the open and 

closed states of hCtBP2 were automatically extracted in RF-FMO. The RMSD values confirm 

that the open and closed states are well equilibrated for 100 ns (Figure 26a and b). The 

reference structure for calculating RMSD was the initial structure of each structure. A total of 

400 structures were used in the RF-FMO interaction analysis by randomly sampling 200 

structures from both the open and closed states. Their distributions are plotted in Figure 27. 
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For each amino acid residue, a Gini importance value for interaction energy (estimated 

number = 50, maximum depth = 5, number of repetitions = 100,000) and a Gini importance 

value for intersex center per amino acid residue (estimated number = 50, maximum depth = 5, 

number of repetitions = 10,000) were calculated. The calculated Gini importance values were 

sorted in order of increasing value, and the top 5% were considered important features. 

Finally, 25 out of 1,324 amino acid residues (extraction rate: 1.9%, Table 5) and 57 out of 

875,826 interaction pairs (extraction rate: 0.007%, Table 6) were automatically extracted. 

 

 

 Figure 26. RMSD calculated 

from MD simulation results of (a) 

open state and (b) closed state. 
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Figure 27. The histogram of RMSD in (a) open state and (c) closed state structures. The 

RMSD histogram of the sampled structures from (b) open state trajectory and (d) closed state 

trajectory. 

 

The critical amino acid residues extracted by RF-FMO were projected onto the 

structure in a closed state (Figure 28a and b). From this figure, no specific domain was 

identified and the dynamic important residues were found to span all domains. Therefore, I 

next selected important residues based on pair interaction energies and found that His321 was 

extracted because it interacts with multiple amino acid residues (Table 6). These results 

suggest that the His321-mediated interaction network is important for hCtBP2. Therefore, I 

further analyzed the interaction network formed by His321. Figure 28c, d, e and f show the 

local structures of the closed and open states around His321. From these figures, it is clear 

that the switching between the open and closed states is mediated by changes in the 

interaction network formed by His83, Glu301, and His321. In the closed state, His83 and 

His321 form hydrogen bonds (possibly π-π or CH-π interactions) (Figure 28c). In the open 

state, on the other hand, His321 is oriented and forms a hydrogen bond with Glu301 (Figure 
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28d); when His83 and His321 interact, the loop (80-Loop) in which His83 is located shifts 

toward His321 to form the closed structure, but when His321 interacts with Glu 301 interacts 

with His321, the 80-Loop shifts toward the SBD domain and stabilizes the open conformation, 

thus failing to form a stable interaction with His83 (Figure 28e and f). These results indicate 

that the switching between the open and closed states is the result of a change in the 

interaction network formed by His83, Glu301, and His321. 

 

 

Table 5. List of the amino acid residues of hCtBP2 detected by RF-FMO analysis. 

ARG42 ASP43 ASP53 SER64 GLN66 VAL72 VAL72 GLY78 

GLU93 ASP109 ASN110 ASP112 LEU119 CYS124 CYS124 THR138 

LEU145 ARG169 ALA201 PRO211 LEU241 GLY264 ASN269 ARG272 

GLN283 HIS298 ASP312 HIS321 GLU340 GLY347 GLU351  
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Table 6. List of the interacting amino acid residue pairs in hCtBP2 detected by RF-FMO 

analysis. 

ALA172-ARG169 ALA270-LEU241 ALA323-THR138 LEU119-LYS96 

ALA344-GLY78 ALA201-ALA199 ALA201-VAL197 LYS200-ALA201 

ALA323-HIS321 ALA344-GLY78 ARG354-GLU340 NAI365-ARG272 

ARG148-LEU145 ARG169-GLY41 ARG169-TYR82 THR84-SER64 

ARG198-ALA201 ARG272-ASP109 ARG354-GLU340 VAL72-GLU70 

ARG42-ARG169 ARG42-GLU166 ASN110-HIS83 LEU353-GLU351 

ASN269-SER240 ASN315-LEU145 ASN74-VAL72 LEU353-GLU351 

ASP112-LEU87 ASP109-SER106 ASP312-ALA282 MET80-GLY78 

ASP43-ARG169 ASP43-GLU166 ASP43-LEU38 SER173-ARG169 

ASP53-ARG33 CYS44-ARG42 GLU47-ASP43 VAL268-LEU241 

GLY347-ARG343 GLY78-LEU35 HIS242-THR138 ILE68-GLN66 

HIS321-HIS298 HIS321-SER106 HIS321-HIS83 LEU213-PRO211 

HIS321-THR319 HIS141-THR138 HIS298-GLU278 LYS96-GLU93 

ILE68-GLN66 ILE85-SER64 ILE126-CYS124 PRO302-HIS298 

TRP151-LEU145    
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Figure 28. Extracted residues by RF-FMO were showing in (a) front view and (b) top view. 

The amino acid residues (magenta ball) extracted by RF-FMO are projected onto the crystal 

structure of the closed state. Changed the interaction network in His83, Glu301 and His321 

cause Open state ↔ Closed state conformation change. (c) His83 and His321 form a stable 

interaction in the closed state. (d) In the open state, His321 flips toward the Glu301, and 

Glu301 and His321 form an stable interaction. Overall structures of hCtBP2; (e) front view 

and (f) top view. 
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5-3-3. Verification of the Open state ↔ Closed state conformational change pathway 

of hCtBP2 

To determine the structural transition between the two states, the distance between 

Glu301 and His321 and the distance between His83 and His321 were used as population 

variables (CV). Trajectory data for the open and closed states were mapped to the CVs 

(Figure 29a). It can be seen that the upper left cluster represents the open state and the lower 

right region represents the closed state. This means that the open and closed states are well 

characterized by these CVs. Potential.  

Evaluation of the energy surface of the hCtBP2 complex yielded open and closed 

potential energy minima (Figure 29b). This again confirms the formation of a switching 

interaction network between His83, Glu301, and His321. This figure also suggests the 

existence of a metastable intermediate state between the open and closed states. This suggests 

that hCtBP2 undergoes an open ↔ closed conformational change via the intermediate state. 

This was accompanied by changes in the interaction network formed by His83, Glu301, and 

His321. 

 

 

Figure 29. Conformational change pathway between open state and closed state of hCtBP2. 

(a) Trajectory profiles obtained and (b) potential energy surface obtained from MD 

simulations. 
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5-4. Summary 

The results obtained by RF-FMO revealed that the switch between the open and closed 

states is caused by a change in the interaction network formed by His83, Glu301, and His321, 

and succeeded in elucidating the detailed mechanism of the structural change undergone by 

hCtBP2. Furthermore, the potential surface energy of hCtBP2 reveals the existence of an 

intermediate state in the open ↔ closed conformational change. This suggests that the open 

state ↔ closed state conformational change of hCtBP2 is caused by a change in the 

interaction network formed by His83, Glu301, and His321, leading to a conformational 

change from the open state to the closed state via an intermediate state. Bioinformatics such 

as sequence alignment and full consensus design may be useful in the search and design of 

CtBP family proteins without His83, Glu301, and His321. Indeed, His83, Glu301, and His321 

identified in this RF-FMO have been found to be conserved in many sequences of a wide 

variety of CtBP families. This suggests that these amino acid residues may be involved in 

CtBP function. The present RF-FMO analysis clearly indicates that these conserved amino 

acids are important for structural changes at the molecular level of hCtBP2. 
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Chapter 6. Concluding remarks 

 

In this doctoral thesis, I performed computational analysis of several proteins by 

interaction analysis based on the FMO method and revealed new scientific knowledge about 

these proteins. 

Chapter 2 presented a theoretical analysis of the complex structure of PPARα, a 

ligand-dependent transcription factor involved in the regulation of lipid homeostasis and 

known to ameliorate hypertriglyceridemia, and its novel ligand, pemafibrate using FMO 

calculations. The findings of the interaction analysis of pemafibrate bound to PPARα were 

applied to luciferase assay experiments with mutants, whereby results supporting the 

computational predictions were observed. The unique binding mode of pemafibrate revealed a 

novel recognition pattern for nuclear receptor ligands, suggesting a new basis for ligand 

design, improving ligand binding affinity and selectivity, and providing clues for better 

clinical results. This demonstrates the usefulness of the FMO method for protein-ligand 

interaction analysis. 

In Chapter 3, I used the properties of the FMO method to analyze protein-protein 

interactions. I studied the molecular mechanism of host recognition by morbilliviruses, which 

have high host specificity. FMO calculations were performed on the CDV-H/SLAM complex 

structure constructed by homology modeling, and the FMO results revealed that the 

interaction between the N-terminal portion of SLAM and CDV-H is important for host 

recognition. This finding has provided a steppingstone for the development of therapeutics 

against morbilliviruses, including the measles virus. This study also demonstrated the 

usefulness of the FMO method for analyzing protein-protein interactions. However, when 

intra-protein or protein-protein interaction analysis is performed, the number of interaction 

pairs to be analyzed is huge (about [number of amino acid residues in protein]2 / 2), which 

makes the analysis difficult. Therefore, it was important to develop analytical tools that 
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facilitate the analysis of interactions within or between proteins. 

In Chapter 4, based on the findings in Chapter 3, I established and validated a method 

for efficiently discovering important interactions by combining the Random Forest (RF) 

method, a machine learning algorithm, with interaction analysis based on the FMO method 

(RF-FMO). RF-FMO method, an analysis method that performs FMO calculations on all 

snapshot structures extracted from MD simulations and automatically extracts specific critical 

pair interactions that are important for structural changes. Using the developed RF-FMO 

method by the author, I analyzed Src-Kinase, whose functional expression mechanism has 

been clarified at the molecular level by the wide variety of studies that have been conducted. 

Finally, from a total of 623 residues and 34453 amino acid residue interaction energies, I 

succeeded in automatically extracting 32 (5.1% extraction rate) and 61 residue pairs (0.2% 

extraction rate) that are important in regulating the active-inactive transition. This result 

shows that this method can automatically extract interactions important for conformational 

changes from a huge amount of interaction energy data, replacing the FMO interaction 

analysis that has been performed manually so far. The results of the analysis in this chapter 

are consistent with previous experimental results, demonstrating the usefulness of the 

presented method. In the next chapter, I applied RF-FMO to proteins for which the 

mechanism of conformational change at the molecular level is unknown. 

In Chapter 5, I used RF-FMO to analyze hCtBP2, a protein for which the mechanism of 

conformational change at the molecular level is unknown. hCtBP2 was analyzed by RF-FMO, 

and 25 out of 1324 residues (extraction rate: 1.9%) were automatically extracted, and the 

interaction energy was 57 out of 875826 (extraction rate: 0.007%). Analysis of the extracted 

amino acid residue interaction energy pairs revealed that a large number of interactions with 

His321 were extracted. This result suggests that the His321-mediated interaction network is 

important in hCtBP2. Further analysis of the interaction network of His321 in the open and 

closed states revealed that the switching between the open and closed states is mediated by 



100 

 

changes in the interaction network formed by His83, Glu301, and His321. state by changes in 

the interaction network formed by His83, Glu301, and His321, and succeeded in clarifying 

the detailed mechanism of the structural change. 

The RF-FMO method developed in this study can be used to analyze not only 

Src-Kinase and CtBP2 but also various other proteins. It is expected that the RF-FMO method 

will be used in the future to elucidate the functions of proteins for which detailed molecular 

mechanisms have not yet been elucidated. 
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