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Chapter 1

Background

1.1 Historical data in clinical trials

A randomized controlled trial (RCT) with placebo or standard care is the gold

standard for determining the efficacy of a test treatment. RCTs contribute to

the generation of unbiased treatment effect estimates and control for type I

error in hypotheses testing. For medical product development in major disease

areas, it is relatively easy to conduct RCTs with appropriate sample sizes,

which regulatory agencies require. Appropriate RCTs play an important role in

evidence-based medicine. However, it is often difficult to conduct appropriate

RCTs involving participants with rare diseases or children.

The prevalence of rare diseases is defined as less than five per 10,000 per-

sons (Orphan Medicinal Product Regulation, 2000), meaning the number of

patients is small. However, due to the presence of several rare diseases in the

world, many patients suffer from rare diseases (Unkel et al., 2016). There

are several obstacles to the development of drugs and medical devices for the

treatment of rare diseases. First, it is difficult to design and conduct appro-

priate clinical trials to investigate the efficacy of a test treatment because of
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the small number of patients. Hence, in the development of rare diseases, it

is difficult to construct sufficient evidence from two independent RCTs, as is

the case with major diseases. Second, the development of rare diseases may be

hampered by insufficient knowledge of their clinical course. Third, the small

number of patients with rare diseases may diminish the commercial interest

toward further development. To solve these problems, the research on clinical

trial methodologies and statistical issues to evaluate novel therapies for rare

diseases has increased in recent years. Additionally, the European Medicines

Agency (EMA) published a guideline on clinical trials for small populations

(European Medicines Agency, 2006). In this guideline, the options of internal

controls or external controls, which may be historical, are presented as control

groups for clinical trials. In many cases, it is preferable to use internal control

groups; however, under certain circumstances, it is acceptable to use historical

controls. Historical control data include participants assigned to placebo or

the (current) standard of care in previous clinical trials. The U.S. Food and

Drug Administration (FDA) guidance suggests that the use of historical con-

trols may be acceptable, in particular, in cases of serious rare diseases with

unmet medical needs (Food and Drug Administration, 2015). Therefore, reg-

ulatory agencies have recognized that historical controls can be used to solve

the problem of insufficient sample sizes for rare diseases.

Conducting clinical trials in children presents several challenges. The ethi-

cal issues that place children at risk in clinical trials and small sample sizes have

limited the development of pediatric medical products. To address these issues,

design and analysis methodologies unique to pediatric clinical trials are being

considered instead of applying the usual methodologies of adult clinical trials.

One way to increase the feasibility of pediatric clinical trials is to extrapolate

data from adult and other pediatric trials (Dunne et al., 2011; Gamalo-Siebers
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et al., 2019). The International Conference on Harmonization (ICH) published

the ICH E11A draft guideline which defines pediatric extrapolation as an ap-

proach to provide evidence in support of the effective and safe use of drugs in

the pediatric population when it can be assumed that the course of the disease

and the expected response to a medicinal product would be sufficiently simi-

lar between the pediatric and reference (adult or other pediatric) population

(European Medicines Agency, 2017). Extrapolating external data (adult or

other pediatric data) can be used to reduce necessary evidence obtained from

the pediatric population in pediatric clinical trials, depending on the similari-

ties between the target pediatric population and the source population of the

external data. Regulatory agencies have taken notice of data extrapolation,

and the FDA draft guidance (regarding medical devices) (Food and Drug Ad-

ministration, 2016) and EMA reflection paper (European Medicines Agency,

2018) have been published. Therefore, in pediatric clinical trials, the use of

external data is mainly considered in the context of extrapolating adult or

other pediatric data.

Practically, there are various resources for historical/external data that can

be used (Ghadessi et al., 2020). Examples include real-world data, patient reg-

istries, and completed clinical trials. Ghadessi et al. (2020) presented several

examples of applications for approval that use these data as historical data.

Many such cases where ethical issues prevent the establishment of concur-

rent control groups in RCTs, use historical data instead of concurrent control

groups. Figure 1 (A) shows this approach. The advantage of using historical

data instead of a concurrent control group is that it allows all participants in

a current trial to receive a test treatment. Though very attractive, it has the

disadvantage of not being able to evaluate the efficacy of a test treatment un-

der comparison, as in RCTs. To overcome this disadvantage, an approach that
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Figure 1: (A): Using historical data instead of a concurrent control group. (B)
Incorporating historical data into current trials while assigning participants to
the treatment and control groups.

incorporates historical data into current trials while assigning participants to

the control group is attracting increasing attention (Lim et al., 2018). Figure

1 (B) shows this approach. Under this approach, since the current trial is an

RCT, comparability can be ensured, and the degree to which historical data

are used can be determined according to the similarity of historical data to the

current control groups. Hereafter, when historical data are used for this pur-

pose, they are referred to as historical control(s). Pocock (1976) proposed six

conditions under which historical controls are acceptable. These conditions are

intended to ensure the comparability of current treatment and control groups.

In reality, the resources of historical controls do not always meet these condi-

tions. Hence, when the comparability of current trials is violated, clinical trial

designs and analysis methods that allow for a flexible adjustment of the degree

of use of historical controls are needed.

Bayesian approaches have attracted attention as a flexible way of using his-

torical controls (Viele et al., 2014). These approaches can incorporate beliefs
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about the relationship between a parameter of control data in the current trial

(current control) and parameters of historical controls into the prior distribu-

tion. The use of the Bayesian approach is also considered in the FDA draft

guidance for medical devices and is increasingly used in practice (Food and

Drug Administration, 2010). For example, a placebo-controlled phase II trial

of secukinumab for ankylosing spondylitis incorporated historical controls us-

ing a Bayesian meta-analytic approach (Baeten et al., 2013). The cited study

successfully demonstrated the efficacy of secukinumab in reducing allocation

to the current control arm by incorporating historical controls. The use of

historical controls using Bayesian approaches is gradually being realized and

is expected to rise in the future.

1.2 Historical control data by Bayesian

approaches

Several Bayesian approaches for incorporating historical controls into the anal-

ysis of the current trial have been hitherto proposed. These approaches make

various assumptions regarding the relationships between the parameters of

the current and historical controls. Spiegelhalter et al. (2004) classified the

assumptions regarding this relationship into six categories.

The simple assumptions are “Irrelevance” and “Equal.” “Irrelevance” as-

sumes that historical controls provide no relevant information. If this is the

case, the analysis is performed using the current trial without the use of his-

torical controls. “Equal” assumes that parameter of interest θ is common in

the current and historical controls. If this is the case, simple pooled current

and historical controls are analyzed as the control group in the current trial.

Figure 2 illustrates “Exchangeable” assumption. “Exchangeable” assumes
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Figure 2: “Exchangeable” assumption relating to parameters of current and
historical controls: single arrows represent a distribution, and long dashed
double-dotted arrows represent exchangeable cases. µ denotes the overall mean
parameter.

that the current and historical controls are similar, meaning that their param-

eters can be considered exchangeable. Several methods using this assumption

have been proposed and are called meta-analytic approaches. The first meta-

analytic approach, proposed by Neuenschwander et al. (2010), assumes that

the parameters of interest of the current and historical controls follow an identi-

cal distribution and shrink toward the overall mean according to between-trial

heterogeneity. Schmidli et al. (2014) proposed a robustified meta-analytic ap-

proach that considers the conflict between the current and historical controls.

Banbeta et al. (2019) demonstrated that, when between-trial heterogeneity

is large, the meta-analytic approaches can control for type I error rate to a

significant level. However, when no between-trial heterogeneity exists, the sta-

tistical power of the meta-analytic approaches could not approach that of an

analysis pooling the current and historical controls.

Figure 3 illustrates “Equal but discounted” assumption. “Equal but dis-
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Figure 3: “Equal but discounted” assumption relating to parameters of cur-
rent and historical controls: single arrows represent a distribution and dotted
arrows represent discounting likelihood.

counted” assumes that the parameter of interest θ is common in the current

and historical controls, but the precision decreases to discount the historical

controls. Power priors use this assumption and down-weight the likelihood of

the historical controls using power parameters (Chen et al., 2000). Banbeta

et al. (2019) and Gravestock and Held (2019) extended the power prior for

the case of multiple historical controls with binary endpoints. However, the

power priors have yet to be developed for multiple historical controls with

time-to-event endpoints.

Figure 4 illustrates “Potential biases” assumption. “Potential biases” as-

sumes that differences in the parameters of interest between the current con-

trol and each historical control exist. These differences are called “potential”

biases because their cause cannot be identified since they are due to a lack

of quality or unmeasured factors in the historical controls. By assuming a

Bayesian shrinkage prior distribution for the potential bias parameters, meth-

ods that assume the potential biases are implemented as if the current and
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Figure 4: “Potential biases” assumption relating to parameters of current and
historical controls: single arrows represent a distribution and long dashed ar-
rows represent existing potential biases. βh denotes the potential bias param-
eter which is the difference between the parameter of interest of the current
control θCC and that of the hth historical control θh.

historical controls are simply pooled when there are no potential biases in the

current and historical controls. Hence, the choice of prior distribution should

be made carefully. Pocock (1976) proposed a method that assumes a normal

distribution for the potential bias parameters. This method is necessary for

determining the variance parameter of the normal distribution to adjust the

degree of shrinkage of the potential bias parameters. However, as no pro-

cedure has been proposed to determine this adjustment parameter, Pocock’s

method is not commonly used. A commenturate prior (Hobbs et al., 2011)

focuses on a scenario in which only one historical control exists. Hobbs et al.

(2012) expanded the commenturate prior so that multiple historical controls

can be used, but the relationship between multiple historical controls is not

considered.

“Functional dependence” assumes that the parameter of the current control
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is a logical function of the parameters of the historical controls but is not widely

used.

As the meta-analytic approaches evaluate the overall mean including the

current and historical controls, the parameter of interest of the current control

is shrunk toward the overall mean. Hence, the meta-analytic approaches do

not directly evaluate the differences in the parameters of interest between the

current control and each historical control. The power priors cannot deal with

multiple historical controls when time-to-event endpoints are assumed. For

scenarios with multiple historical controls, the methods of assuming “Potential

biases” are not well developed.
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Chapter 2

Purpose

In this study, I propose a novel method for incorporating multiple historical

controls based on a horseshoe prior, which is a type of global–local Bayesian

shrinkage prior. The proposed method assumes that “Potential biases” be-

tween the parameters of interest of the current and historical controls exist.

The horseshoe prior is applied to concentrate the potential bias on 0. The

proposed method solves the problems of the existing methods. First, when no

between-trial heterogeneity exists, unlike the meta-analytic approaches, the

power of the proposed method is expected to approach that of an analysis

pooling the current and historical controls. Second, the power priors have yet

to be developed for multiple historical controls with time-to-event endpoints.

However, the proposed method deals with them easily. Furthermore, when

there are few heterogeneous historical controls, I expect that the proposed

method can avoid the influence of the heterogeneous historical controls due to

the properties of the horseshoe prior. This dissertation is based on Ohigashi

et al. (2022). In the following chapters in this dissertation, through two anal-

yses of clinical trial examples and simulation studies, I compare the proposed

and existing methods.
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Chapter 3

Methods

3.1 Existing methods

In this section, I review the meta-analytic approaches and the power priors to

incorporate the multiple historical controls into a current control in a parallel

randomized controlled trial.

3.1.1 Meta-analytic approach

I introduce the meta-analytic approach and its robustified version. Let DCC

denote the current control data. Let Dh(h = 1, . . . ,H) denote the historical

control data. Let θCC and θh denote interested model parameters for the

current and historical controls, respectively.

Under the framework of meta-analytic approaches (Neuenschwander et al.,

2010; Schmidli et al., 2014), the following two methods are available for eval-

uating θCC: the meta-analytic combined (MAC) and meta-analytic predictive

(MAP) approaches. The MAC approach consists of a single analysis based on

a hierarchical model for the current and historical controls and has a lower

computational cost than the MAP approach. The MAP approach can con-
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struct a prior distribution of the current control parameter (MAP prior) using

a hierarchical model for the historical controls at the design stage of a cur-

rent trial. Schmidli et al. (2014) showed that the MAC and MAP approaches

are equivalent. However, the MAP approach requires an approximation of

the Markov chain Monte Carlo (MCMC) sample when the MAP prior is con-

structed. Therefore, even a good approximation of the MAP prior does not

ensure that the posterior distribution of the MAP approach (using the approx-

imation) approximates that of the MAC approach (Holzhauer, 2020; Zhang

et al., 2021). Hence, the MAC approach is applied as a meta-analytic ap-

proach in this study because it is simple.

The MAC approach assumes that θCC, θ1, . . . , θH independently follow a

normal distribution,

θCC, θ1, . . . , θH ∼ N(µ, τ 2), (1)

where the hyperparameters µ and τ 2 denote the overall mean and the between-

trial variance and are usually assigned as a non-informative prior and a weakly

informative prior (e.g., half-normal distribution N+(·)), respectively (Neuen-

schwander et al., 2010). However, a conflict between the current and historical

controls often exists. Considering this case, a robustified meta-analytic ap-

proach is proposed (Schmidli et al., 2014). The robustified meta-analytic ap-

proach consists of a mixture prior of exchangeable and non-exchangeable com-

ponents. More specifically, the robustified meta-analytic approach assumes

that

θCC ∼ (1− wR)× N(µ, τ 2) + wR × pR, (2)

where pR is a robust component (vague prior); and wR is a mixture proportion

18



of the robust component. In many cases, a constant value (e.g., 0.1) is usually

used for wR (Schmidli et al., 2014; Hupf et al., 2021).

For binary endpoints, the number of responses of the current and historical

controls yCC, yh follow a binomial distribution with the sample size of nCC, nh

at the response rate of πCC, πh. The logit transform (θCC = logit(πCC), θh =

logit(πh)) is often used with the meta-analytic approaches (Neuenschwander

et al., 2010; Schmidli et al., 2014). When time-to-event endpoints are used,

I consider a scenario where individual participant data are available. The

meta-analytic approach for summary data (e.g., Kaplan–Meier curves) was

proposed by Roychoudhury and Neuenschwander (2020). For a participant

i, I observed that time-to-event data (ti, νi). ti denotes an observed time, νi

denotes whether ti is a time to an event (νi = 1) or right censoring (νi = 0). I

use indicator variables ICC
i , Ihi to distinguish among the hth historical control

group (ICC
i = 0 and Ihi = 1), the current control group (ICC

i = 1 and Ihi = 0),

and the current treatment group (ICC
i = 0 and Ihi = 0). Using these indicator

variables, I assume the proportional hazards model (Han et al., 2017; Smith

et al., 2020):

λi = λCT exp

(
θCCI

CC
i +

H∑
h=1

θhI
h
i

)
, (3)

where λi is the hazard for each participant; λCT is the hazard for the participant

belonging to the current treatment group; −θCC is the log hazard ratio of the

current treatment group to the current control group; and −θh is the log hazard

ratio of the current treatment group to the hth historical control group.
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3.1.2 Power prior

3.1.2.1 Single historical control

Initially, I introduce a case of incorporating a single historical control. Let

DH denote the historical control data. Let L(·) denote the likelihood function.

In the power prior, the interested model parameter θ is common between

the current and historical controls. A power parameter δH is used for down-

weighting the historical control.

The power prior for incorporating a single historical control is defined as

(Ibrahim and Chen, 2000):

π(θ|DH, δH) ∝ L(θ|DH)
δHp(θ).

The power parameter δH is a fixed value between 0 (ignoring the historical

control) and 1 (pooling the historical control for the current control). To

avoid arbitrary selection of the power parameter, a joint prior distribution for

θ and δH is also proposed (Ibrahim and Chen, 2000):

π(θ, δH|DH) ∝ L(θ|DH)
δHp(θ)p(δH). (4)

The power prior in (4) does not satisfy the likelihood principle. In addition,

the posterior distribution of the power parameter δH tends to be estimated at 0

regardless of the degree of conflict between the current and historical controls

(Duan et al., 2006; Neuenschwander et al., 2009). To deal with this problem,

a modified power prior (MPP) is proposed as follows (Duan et al., 2006):

π(θ, δH|DH) ∝
L(θ|DH)

δHp(θ)p(δH)

C(δH)
,
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where C(δH) =
∫
θ
L(θ|DH)

δHp(θ)dθ is the scaling constant used to satisfy the

likelihood principle. In many cases, a computing of the C(δH) is complex;

therefore, an algorithm-based approach or an approximation is used (van Ros-

malen et al., 2018). However, in the scenario using binomial likelihood, C(δH)

could be computed analytically (Banbeta et al., 2019). In this scenario, Grave-

stock et al. (2017) proposed an empirical Bayesian method for estimating the

power parameter with one historical control for binary endpoints.

Based on these discussions, the power prior for binomial likelihood is ex-

tended to the case of multiple historical controls.

3.1.2.2 Multiple historical controls

It is necessary to consider a conflict between the current control and each

historical control (Chen et al., 2000). For binary endpoints, several methods

estimating δh are proposed. For time-to-event endpoints, a method estimating

the power parameter for pooled historical controls is proposed (van Rosmalen

et al., 2018; Brard et al., 2019). However, no method is proposed for estimat-

ing δh based on the degree of conflict between the current control and each

historical control for time-to-event endpoints. Therefore, the power priors for

binary endpoints are considered in this dissertation.

Banbeta et al. (2019) suggested three MPP approaches for multiple his-

torical controls with binary endpoints. I introduce two methods considering

the relationship between the historical controls. In many cases, the histori-

cal controls are checked for (their) achievement of Pocock’s criteria (Pocock,

1976). Therefore, the incorporated historical control data are interpreted as

homogeneous with each other. The dependent MPP (DMPP) assumes that
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the power parameters follow a beta distribution, that is,

δ1, . . . , δH ∼ Beta(αδ, βδ).

The hyperparameters αδ and βδ adjust the degree for incorporating the his-

torical controls. These hyperparameters are reparameterized to the mean µδ

and the variance σ2
δ of the beta distribution as the mean µδ =

αδ

αδ+βδ
and the

variance σ2
δ = µδ(1−µδ)

αδ+βδ+1
. For binary endpoints, the DMPP can be given by

πDMPP (θ,δ, µδ, σ
2
δ |D) ∝

θΣδhyh+αθ−1(1− θ)Σδh(nh−yh)+βθ−1Πp(δh|µδ, σ
2
δ )p(µδ)p(σ

2
δ )

B(Σδhyh + αθ,Σδh(nh − yh) + βθ)
,

where δ = (δ1, . . . , δH),D = (D1, . . . , DH), B(·, ·) represents a beta func-

tion. αθ and βθ are the parameters for the initial prior distribution, p(θ) ∼

Beta(αθ, βθ). The robust DMPP (RDMPP) accounts for the conflict between

the current and historical controls by using a robust component. The prior

distribution of δ consists of a mixture distribution of the p(δh|µδ, σ
2
δ ) and a

robust component as with the robustified meta-analytic approach. The prior

distribution of δ is given by

δh ∼ (1− wR)× p(δh|µδ, σ
2
δ ) + wR × pR(δh).

If the conflict exists, the historical controls should not be incorporated. Thus,

a half-normal distribution with a small variance concentrated close to zero is

used for the robust component pR(δh) (Banbeta et al., 2019).

Gravestock and Held (2019) proposed an empirical Bayesian method for

estimating the power parameters for the multiple historical controls with bi-

nary endpoints. If I assume a flat initial prior on θ, the prior distribution for
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θ with the current control could be given by

π(θ, δ|D) =
1

C(δ)

∏
nh

yh


δh

θδhyh(1− θ)δh(nh−yh)

 p(δ)

=

∏
nh

yh


δh

θδhyh(1− θ)δh(nh−yh)

 p(δ)

∏
nh

yh


δh
B(Σδhyh + 1,Σδh(nh − yh) + 1)

= p(θ|δ,D)p(δ),

where p(θ|δ,D) ∼ Beta(θ|Σδhyh + 1,Σδh(nh − yh) + 1) and scaling constant

C(δ) is given by

C(δ) =

∫ 1

0

∏
nh

yh


δh

θδhyh(1− θ)δh(nh−yh)

 dθ

=
∏

nh

yh


δh
B(Σδhyh + 1,Σδh(nh − yh) + 1).

The marginal likelihood for the empirical Bayes is

p(δ|DCC,D) ∝
∫ 1

0

L(θ|yCC, nCC)p(θ, δ|D)dθ

=

∫ 1

0

nCC

yCC

 θyCC(1− θ)nCC−yCC

× Beta(θ|Σδhyh + 1,Σδh(nh − yh) + 1)dθ

=

nCC

yCC

 B(yCC + Σδhyh + 1, nCC − yCC + Σδh(nh − yh) + 1)

B(Σδhyh + 1,Σδh(nh − yh) + 1)
,

23



where the integral is arranged using relationships among beta density, binomial

density, and beta-binomial density. The empirical Bayes estimator is

δ̂ = argmax
δ

(δ|DCC,D).

Because the beta-binomial density is known that there is no analytical form

for the maximum likelihood estimator, I use a numerical optimization method

by the R-package StudyPrior (Gravestock and Held, 2019; Gravestock, 2018).

3.2 Proposed method

In this section, I review the horseshoe prior and propose a method for incor-

porating the multiple historical controls based on the horseshoe prior.

3.2.1 Horseshoe prior

For each of the observations i = 1, . . . , n, consider the single continuous out-

come yi with several explanatory variables given by

yi = βTxi + ϵi, ϵi ∼ N(0, σ2), i = 1, . . . , n,

where xi is the D-dimensional vector of the explanatory variable, β contains

the corresponding weights, and σ2 is the noise variance. The horseshoe prior

is set for the regression coefficients βT = (β1, . . . , βD) except the intercept β0:

βj|λj, τ ∼ N(0, λ2
jτ

2), λj ∼ C+(0, 1), τ ∼ C+(0, στ ), j = 1, . . . , D.

C+(0, στ ) is a half-Cauchy prior on the positive reals with a scale parameter

στ . The global shrinkage parameter τ adjusts the degree of shrinking of all
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the coefficients toward zero. The local shrinkage parameter λj allows some

of the coefficients to avoid shrinkage. Carvalho et al. (2010) proposed that

a prior distribution for the global shrinkage parameter is τ ∼ C+(0, 1). For

ease of notation with comparing the density of the horseshoe with the other

shrinkage prior, I assume fixed values of σ = τ = 1 and suppress conditioning

on these terms. Figure 5 shows the densities for the horseshoe, Cauchy, and

Laplace priors. Although the density function of the horseshoe prior lacks a

closed-form representation, it behaves essentially like log(1 + 2/β2
j ) and can

be well approximated by elementary functions, as detailed in Theorem 1 of

Carvalho et al. (2010). The horseshoe density is more concentrated on 0 than

the Cauchy and Laplace densities. The tail of the horseshoe density is similar

to that of the Cauchy density.

The horseshoe prior has the two good properties of tail-robustness and

efficiency when a large signal is observed, and the true mean is 0. For more
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Figure 5: Comparison of the horseshoe, Cauchy, and Laplace densities. The
horseshoe density is more concentrated on 0 than the Cauchy and Laplace
densities. The tail of the horseshoe density is similar to that of the Cauchy
density.
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details, see Carvalho et al. (2010).

3.2.2 Proposed method

In this study, I propose a method in which the parameter estimates of the

current and historical controls do not shrink toward an overall mean; rather,

the historical controls shrink toward the current control. I define the potential

bias βh, namely, the difference in the parameter of interest between the current

control θCC and the hth historical control θh, as θh = θCC+βh. However, since

I evaluate whether or not the circumstances in which the historical controls

have been performed are similar to those of the current control using Pocock’s

criteria (Pocock, 1976) in advance, I expect the historical controls to follow

the same distribution as the current control. Therefore, the horseshoe prior is

applied to concentrate the potential bias βh on 0 as

βh ∼ N(0, λ2
hτ

2), λh ∼ C+(0, 1), τ ∼ C+(0, 1).

When there is no conflict between the current control and hth historical control,

the posterior distribution of the potential bias βh is estimated to concentrate on

0 using the shrinkage characteristics of the horseshoe prior. When the current

control and each of the few historical controls conflict, the potential biases

between them avoid shrinkage by estimating the posterior density around 0 of

λh to be low. If the many historical controls conflict with the current control,

the posterior density around 0 of τ is also estimated to be low.

When assuming binary or time-to-event endpoints or incorporating partic-

ipant-level covariates, the proposed method can be used in the same way as

the meta-analytic approaches described in Section 3.1.1.
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3.2.3 Property of the proposed method

I examine the property of detecting the heterogeneous historical control by the

proposed method in scenarios in which it conflicts with the current control.

The effective number of non-zero coefficients meff proposed by Piironen and

Vehtari (2017a) is an indicator of the number of regression coefficients that

are not shrunk by the horseshoe prior and that could be used in situations

applying generalized linear models. In this study, such an indicator could be

interpreted as the number of heterogeneous historical controls. As a simple

example, I consider the posterior distributions of meff in scenarios with one

heterogeneous historical control. I assume scenarios in which four and eight

historical controls exist; the numbers of participants are 30 and 90 per group;

the response rate of both the current and the homogeneous historical controls

is 0.5; and the response rate of the heterogeneous historical control is 0.5, 0.4,

0.3, and 0.2. Figures 6 and 7 show the posterior distributions of meff with 30

and 90 participants, respectively. In the scenario in which the response rate

of the heterogeneous historical control is 0.2 with either 30 or 90 participants,

the posterior distribution of meff is estimated to concentrate on 1. When the

response rate of the heterogeneous historical control is 0.3 with 90 participants,

the posterior distribution of meff is estimated to be around 1; however, with 30

participants, the posterior distribution of meff around 0 remains high. Figures 8

and 9 show the posterior distributions of the λh of the heterogeneous historical

control and those of τ . The posterior distributions of τ also change according

to the response rate of the heterogeneous historical control. According to the

above examples, evaluating the magnitude of the conflict between the current

and historical controls using the proposed method is influenced by between-

trial heterogeneity and the sample size of each historical control.

Pocock’s method (Pocock, 1976) and Holzhauer’s method (Holzhauer, 2020)
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Figure 6: Posterior distributions of meff in the scenarios with 30 participants.
As the response rate of the heterogeneous historical control increases, the den-
sity of meff = 0 decreases. When the response rate is 0.2, the posterior dis-
tribution of meff is estimated to concentrate on 1. meff denotes the effective
number of non-zero coefficients. H denotes the number of historical controls.
n denotes the number of participants per group. πHetero denotes the response
rate of the heterogeneous historical control.
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Figure 7: Posterior distributions of meff in the scenarios with 90 participants.
As the response rate of the heterogeneous historical control increases, the den-
sity ofmeff = 0 decreases. Unlike the case of 30 participants, when the response
rate is 0.3, the posterior distribution of meff is estimated to concentrate on 1.
meff denotes the effective number of non-zero coefficients. H denotes the num-
ber of historical controls. n denotes the number of participants per group.
πHetero denotes the response rate of the heterogeneous historical control.
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Figure 8: Posterior distributions of λh and τ in the scenarios with 30 partici-
pants. As the response rate of the heterogeneous historical control increases,
the densities of τ = 0 and λhetero = 0 decrease. The density of τ = 0 with eight
historical controls is higher than that with four historical controls. H denotes
the number of historical controls. n denotes the number of participants per
group. πHetero denotes the response rate of the heterogeneous historical control.
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Figure 9: Posterior distributions of λh and τ in the scenarios with 90 partici-
pants. As the response rate of the heterogeneous historical control increases,
the densities of τ = 0 and λhetero = 0 decrease. The density of τ = 0 with eight
historical controls is higher than that with four historical controls. The density
around lambda = 0 in the scenario with 90 participants is higher than that in
the scenario with 30 participants. This suggests that heterogeneous historical
controls can be clearly distinguished when the sample size is large. H denotes
the number of historical controls. n denotes the number of participants per
group. πHetero denotes the response rate of the heterogeneous historical control.
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are similar to the proposed method. Pocock’s method assumes that the histor-

ical controls are a potentially biased representation of the distribution of the

current control, which is similar to the assumption of the proposed method.

However, it is necessary to determine a parameter to adjust the degree of

shrinkage of the potential biases. Therefore, I do not employ Pocock’s method

in the clinical trial examples and simulation studies because no rule for decid-

ing the parameter has been proposed under that method. Holzhauer’s method

averages both a model in which the parameters of interest of the current and

historical controls follow an identical distribution and a model in which the

parameters of interest of the historical controls follow a distribution with a

different mean from that of the current control. Holzhauer’s method thus dif-

fers from the proposed method, as it does not evaluate the potential biases

between the current control and each historical control.

In summary, the proposed method has the following two novelties: (1) it

directly evaluates the differences in the parameters of interest between the cur-

rent control and each historical control; and (2) unlike power priors, it easily

deals with the multiple historical controls when time-to-event endpoints are

assumed. As the meta-analytic approaches evaluate the overall mean includ-

ing the current and historical controls, the parameter of interest of the current

control θCC is shrunk toward the overall mean. Thus, when a few heteroge-

neous historical controls exist, I expect the proposed method to improve the

estimated accuracy of θCC more than the meta-analytic approaches. This is

the primary difference between the proposed and meta-analytic approaches.

32



Chapter 4

Results

4.1 Case study

In this section, I apply the proposed and existing methods discussed in Sections

3.1 and 3.2 to two clinical trial examples. Section 4.1.1 provides an example

with a binary endpoint. Section 4.1.2 provides an example with a time-to-event

endpoint.

4.1.1 Binary endpoint

This example contains five trials included in a Cochrane review (Prefontaine

et al., 2009; Isogawa et al., 2020). These trials target Crohn’s disease and com-

pare the efficacy of azathioprine at a dose of 2.0 mg/(kg·day) with a placebo.

The outcome is a binary endpoint (i.e., the achievement of maintenance of

remission). Table 1 lists the observed data. The most recent D’Haens trial is

regarded as the current trial, while the other trials are regarded as the histor-

ical trials. Therefore, only the information on the placebo group is extracted

from the historical trials. Since the response rate of the Lemann trial is much

higher than those of the other historical controls and the current control, it is

33



Table 1: Observed response rate of the azathioprine and placebo groups from
five trials.

Remission / Total (%)

Trial Source Azathioprine Placebo

Current D’Haens et al. (2008) 18 / 32 (56.3) 9 / 29 (31.0)
Historical 1 Lemann et al. (2005) 36 /43 (83.7)
Historical 2 O’Donoghe et al. (1978) 8 / 27 (29.6)
Historical 3 Rosenberg et al. (1975) 4 / 10 (40.0)
Historical 4 Willoughby et al. (1971) 2 / 5 (40.0)

desirable to avoid the large impact of incorporating the Lemann trial.

A Beta(1, 1) prior is assumed for the response rate of the current control

in all the fully Bayesian methods. A N(0, 1002) prior is assumed for the treat-

ment effect on the response rate scale. In the “Pooled” data analysis that

includes the current and historical controls without accounting for between-

trial heterogeneity, a Beta(1, 1) prior is assumed for the common response rate

of the current and historical controls. In the “EX” method, the full exchange-

ability MAC approach is applied with the between-trial standard deviation

(SD) following a N+(0, 1) prior and the overall mean following a N(0, 1002)

prior. In the “EXNEX” method, the robustified MAC approach is applied

with the robust component constructed as wR = 0.1 and using a N(µ, 1002)

prior. In the “DMPP” method, the hyperparameters µδ and σ2
δ are assumed

to have a U(0, 1) prior and a InverseGamma(0.01, 0.01) prior, respectively. In

the “RDMPP” method, δh is assumed to have a N+(0, δ2δ/6.25) prior for the

robust component pR(δh) (Banbeta et al., 2019). In the “EBPP” method, the

empirical Bayesian power prior described in Section 3.1.2.2 is applied using the

R package StudyPrior. In the “HS” method, the proposed method presented

in Section 3.2.2 is applied. The computations involve MCMC computations

in fully Bayesian methods. These are conducted using Stan via the cmdstanr
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package (version 0.4.0) within R version 4.1.1 for Windows. For all the fully

Bayesian methods, a quadruple chain of sufficient length is run. Convergence

is assessed using R̂ (Gelman et al., 2013), which provides information on the

convergence of the algorithm. The length of the chain is fixed to reach a

criterion of R̂ < 1.03.

Table 2 shows the posterior distributions of the treatment effect (difference

between the response rates of the azathioprine and placebo groups) estimated

using the above methods. The posterior mean of the treatment effect in the

“Current” data analysis is 23.7%. In the “Pooled” data analysis, the posterior

mean is 4.4%. The posterior means of the other methods lie between these

two percentages. The posterior means of EX, EXNEX, EBPP, and HS are

close to that of the “Current” data analysis. This means that EX, EXNEX,

EBPP, and HS are less influenced by the heterogeneous historical control (i.e.,

Lemann trial).

The posterior SD of the treatment effect using RDMPP is larger than

Table 2: Summary statistics of posterior distribution of the treatment effect
in terms of the response rate (%).

Method Mean SD 95% CI

Current 23.7 11.7 0.0, 45.6
Pooled 4.4 9.6 −14.3, 22.9
EX 22.5 11.7 −0.9, 44.7
EXNEX 22.6 11.8 −1.1, 45.0
DMPP 11.2 11.2 −10.6, 33.7
RDMPP 17.1 12.2 −7.0, 40.3
EBPP 23.0 10.2 2.7, 42.4
HS 22.1 10.6 0.8, 42.3

SD: standard deviation; CI: credible interval; Current, current data anal-
ysis; Pooled, pooled data analysis; EX, full exchangeability meta-analytic
combined method; EXNEX, robustified meta-analytic combined method;
DMPP, dependent modified power prior; RDMPP, robust dependent mod-
ified power prior; EBPP, empirical Bayesian power prior; HS, proposed
method using horseshoe prior.
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that of the “Current” data analysis. This means that the RDMPP is strongly

influenced by the heterogeneous historical control. The posterior SDs using EX

and EXNEX are equivalent to that of the “Current” data analysis, whereas

those using EBPP and HS are smaller. This means that the EBPP and HS

could incorporate positively the homogeneous historical controls and avoid the

impact of incorporating the heterogeneous historical control.

The 95% credible intervals (CIs) of the treatment effect using EBPP and

HS do not include zero, whereas those of the other methods include zero.

Figure 10 shows the posterior distributions of the potential bias βh between

the log-odds of the current control and each historical control using HS. Only
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Figure 10: Posterior distributions of the potential bias between the log-odds
of the current control and each historical control using HS. Only the poste-
rior distribution of the potential bias of the heterogeneous historical control
(Lemann trial) is estimated to be far from zero. This suggests that HS could
distinguish the heterogeneous historical controls. βh denotes the potential bias
parameter which is the difference between the log-odds of the current control
and that of the hth historical control. HS, proposed method using horseshoe
prior.

36



the posterior distribution of the potential bias of the heterogeneous historical

control (Lemann trial) is estimated to be far from zero.

4.1.2 Time-to-event endpoint

This example contains four trials from Project Data Sphere (https://www.

projectdatasphere.org/), an open-source repository of individual-level pa-

tient data from phase IIB/III oncology trials. Table 3 shows some basic infor-

mation on the trials used in this example, which target extensive-stage small

cell lung cancer. The interventions of the current and historical controls are

platinating agents (carboplatin or cisplatin) and etoposide. The interventions

of the current treatment are LY2510924, carboplatin, and etoposide. The out-

come is progression-free survival (PFS). LY2510924 does not show a significant

effect in the current trial (Salgia et al., 2017). However, when the treatment

effect limited to the intervention period (4 months) is focused on, the hazard

ratio suggests a slight treatment effect. Hence, in this example, the time-

to-event data are only considered up to 4 months, and all data thereafter are

censored for 4 months. Figure 11 illustrates the Kaplan–Meier plots for PFS in

each group, showing no clear difference between the current control and three

historical controls. I also conduct an analysis that considers participant-level

Table 3: Available information in Project Data Sphere on extensive stage small
cell lung cancer trials.

ClinicalTrials.gov ID Intervention Useable N

Current NCT01439568
LY2510924

Carboplatin+Etoposide
47

Carboplatin+Etoposide 42
Historical 1 NCT00003299 Cisplatin+Etoposide 283
Historical 2 NCT00363415 Carboplatin+Etoposide 203
Historical 3 NCT00143455 Cisplatin+Etoposide 450
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Figure 11: Kaplan–Meier plots for each group. There is no clear differ-
ence between the Kaplan–Meier plot of the current control and those of the
three historical controls, and the survival rates of PFS are also similar. PFS,
progression-free survival.

covariates. Table 4 shows the baseline characteristics recorded in common for

the current and historical trials.

In all the methods, a Gamma(0.01, 0.01) prior is assumed for the base-

line hazard that describes the risk for individuals in the current treatment

group. In the “Current” data analysis, a N(0, 102) prior is assumed for the

log-hazard ratio between the current control and current treatment. In the

“Pooled” data analysis, a N(0, 102) prior is assumed for the log-hazard ratio

between all the control groups and current treatment. In the “EX” method,

the full exchangeability MAC approach is applied for the proportional hazards

model with the overall mean and between-trial SD following a N(0, 102) and a

N+(0, 0.5) prior, respectively. In the “EXNEX” method, the robustified MAC

approach is applied with the robust component constructed as wR = 0.1 and
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Table 4: Baseline characteristics recorded in common for the current and his-
torical trials.

Study N
Sex (female)

(%)
Age (≥ 65)

(%)

Number of
metastases
(≥ 3) (%)

Current
Treatment

47 25 (53.2) 24 (51.1) 41 (87.2)

Current
Control

42 25 (59.5) 26 (61.9) 39 (92.9)

Historical 1 283 130 (45.9) 96 (33.9) 61 (21.6)
Historical 2 203 48 (27.1) 67 (33.0) 125 (61.6)
Historical 3 450 122 (23.6) 177 (39.3) 246 (54.7)

using a N(µ, 1) prior. This robust component consists of a weakly informative

prior with a mean centered at the mean of the MAC and a variance equal to one

(an approximate unit-information prior for exponential data on the log scale)

(Roychoudhury and Neuenschwander, 2020). In the “HS” method, the HS

prior described in Section 3.2.2 is applied for the proportional hazards model.

When we consider the participant-level covariates, a N(0, 102) prior is assumed

for the regression coefficients for the covariate vector. The computations in-

volve MCMC computations in fully Bayesian methods. These are conducted

using Stan via the cmdstanr package (version 0.4.0) within R version 4.1.1 for

Windows.

Table 5 shows the posterior distributions of the unadjusted and adjusted

hazard ratios of the current treatment group to the current control group

estimated using the above methods. The posterior means of the hazard ratio

using EX, EXNEX, and HS lie between those of the “Current” and “Pooled”

data analyses, with or without the covariate adjustment. In particular, the

posterior distribution using HS with the covariate adjustment is close to that

using the “Pooled” data analysis with the covariate adjustment. Figure 12

and 13 show the posterior distributions of the potential bias βh between the
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Table 5: Summary statistics of posterior distributions of the unadjusted and
adjusted hazard ratio of the current treatment group to the current control
group.

Unadjusted Adjusted

Method Mean SD 95% CI Mean SD 95% CI

Current 0.746 0.348 0.271, 1.611 0.783 0.368 0.286, 1.688
Pooled 0.776 0.266 0.346, 1.375 0.843 0.275 0.391, 1.468
EX 0.760 0.280 0.328, 1.399 0.835 0.298 0.369, 1.523
EXNEX 0.760 0.291 0.317, 1.455 0.836 0.298 0.372, 1.524
HS 0.768 0.269 0.344, 1.384 0.842 0.284 0.390, 1.489

SD: standard deviation; CI: credible interval; Current, current data analysis;
Pooled, pooled data analysis; EX, full exchangeability meta-analytic combined
method; EXNEX, robustified meta-analytic combined method; DMPP, depen-
dent modified power prior; RDMPP, robust dependent modified power prior;
EBPP, empirical Bayesian power prior; HS, proposed method using horseshoe
prior.

log-hazard ratios of the current treatment group to the current control group

and those of the current treatment group to each historical control group using

HS. The posterior density of βh = 0 with the covariate adjustment is lower

than that without.

4.2 Simulation study

I evaluate the performance of the proposed and existing methods using simu-

lation studies based on the examples with binary and time-to-event endpoints

in Section 4.1. To analyze the simulation data, I use the same methods and

settings as for the case studies.
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Figure 12: Posterior distributions of the potential bias between the log-hazard
ratios of the current treatment group to the current control group and those
of the current treatment group to each historical control group using HS with
unadjusted analysis. Because the Kaplan–Meier plot of the current control
and those of the three historical controls are similar, the posterior distribution
of βh is estimated to concentrate on 0. βh denotes the potential bias parameter
which is the difference between the log-hazard ratios of the current treatment
group to the current control group and those of the current treatment group
to hth historical control group. HS, proposed method using horseshoe prior.

4.2.1 Binary endpoint

4.2.1.1 Setting

First, I compare the performance of each method in a simple setting. I set the

numbers of participants to 30 and 90 and the numbers of historical controls

to four and eight. Following the clinical trial examples and also considering

scenarios with many historical controls, I set the numbers of historical controls.

Hupf et al. (2021) suggests that even when multiple historical controls are

available, the number is usually less than 10. I also consider scenarios in the

current trial with a 1:2 allocation ratio (i.e., nCC and nCT are 20 and 40,
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Figure 13: Posterior distributions of the potential bias between the log-hazard
ratios of the current treatment group to the current control group and those
of the current treatment group to each historical control group using HS with
adjusted analysis. Because the Kaplan–Meier plot of the current control and
those of the three historical controls are similar, the posterior distribution of
βh is estimated to concentrate on 0. The posterior density of βh = 0 with
the covariate adjustment is lower than that without. βh denotes the potential
bias parameter which is the difference between the log-hazard ratios of the
current treatment group to the current control group and those of the current
treatment group to hth historical control group. HS, proposed method using
horseshoe prior.

and 60 and 120, respectively). To assess the influence of a small number of

historical controls on each method, I also consider scenarios with two and three

historical controls. The numbers of responses are generated from a binomial

distribution for the historical controls and both the treatment and the control

groups of the current trial. The response rate for the jth group πj, where

j = 1, . . . ,H,CC,CT with 1, . . . ,H for the historical controls, CC for the
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current control, and CT for the current treatment, is calculated as follows:

πj = 1/(1 + exp(−Zj)), Zj = α0 + α1Gj + ϵj, ϵj ∼ N(0, τ 2Z),

where Gj is a treatment indicator equal to 0 for the control group and 1 for

the treatment group, and ϵCC = ϵCT because the current trial is a RCT. τ 2Z

is the variance of the trial-specific effect on the log-odds scale that varies by

scenario. Spiegelhalter et al. (2004) and Neuenschwander et al. (2010) sug-

gested that between-trial heterogeneity often lies between 0.01 and 0.25 on the

log-odds scale in practice. I consider τ 2Z = 0, 0.01, 0.09, and 0.25 to be no, low,

moderate, and high between-trial heterogeneity, respectively. Approximating

these heterogeneities as the SD of the response rate yields 0, 2.5, 7.5, and 12.5

(%), respectively. In addition, I consider the scenario in which one of the his-

torical controls follows a different distribution from the current control. I set

the expected difference between the response rates of the current and hetero-

geneous historical controls to 30% and between-trial heterogeneity τ 2Z to 0. I

set the expected response rate to 50% for the current control. Accordingly, the

baseline log-odds is set to α0 = log(0.5/(1− 0.5)) = 0. In the scenarios with a

treatment effect, I set it to 24.52% (14.45%) when the number of participants

in each group is 30 (90) so that the power can reach 50% according to the

chi-square test for the current trial when its response rate is 50%. I show a

list of settings in Table 6, with the main settings in bold.

I simulate 10,000 datasets for each scenario and setting. The methods are

then compared using the frequentist type I error rate and power based on the

equal tail 95% CI of the posterior distribution of the treatment effect. I also

calculate the calibrated power (CP). For the CP, the rejection region is based

on the equal tail CI of the posterior distribution, which yields an observed type
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Table 6: Settings for the number of historical controls, the number of partici-
pants, the allocation ratio, and the between trial heterogeeity for each scenario
in the simulation study with binary endpoint. The mainly discussed settings
are shown in bold font.

Variable Settings

Number of historical controls 2, 3,4,8
Number of participants for each group 30,90
Allocation ratio for the control group nCC

vs. treatment group nCT in the current trial
1 : 1 (30 vs. 30, 90 vs. 90),
1:2 (20 vs. 40, 60 vs. 120)

Between-trial heterogeneity (τ2Z)
No (0), Low (0.01),
Moderate (0.09),
High (0.25),
OneHetero

I error rate of approximately 5% in the simulations (Banbeta et al., 2019). This

calibration uses different rejection regions for each scenario and method. I also

calculate the bias of the posterior mean of the treatment effect as well as the

root mean square deviation (RMSD) of the posterior mean of the treatment

effect and the mean posterior SD (MPSD) of the posterior distribution of the

treatment effect. I generate more than 10,000 data sets and show the results

of the 10,000 times that reach the convergence criteria shown above. The

computations involve MCMC computations in fully Bayesian methods. These

were conducted using Stan via the rstan version 2.19.3 package within R

versions 3.6.3 for Linux.

4.2.1.2 Results

Figures 14 and 15 (Table A.1 and A.2) show the type I error rates and power

with four and eight historical controls, respectively.

In the scenarios in which between-trial heterogeneity is moderate or high,

the type I error rates using DMPP, RDMPP, and HS are slightly inflated. With

an increasing number of participants, the inflated amount of type I error rates

using these methods increases. However, the inflated amount using HS is less
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Figure 14: Type I error rate (%) of the treatment effect in the simulation study
with a binary endpoint. In the scenarios in which between-trial heterogeneity
is moderate or high, the type I error rates using DMPP, RDMPP, and HS are
slightly inflated. In the scenario in which one heterogeneous historical con-
trol exists, the type I error rates using HS are adequately controlled under 5%,
while those using DMPP and RDMPP are sometimes not controlled under 5%.
In all the scenarios and settings, the type I error rates using EX and EXNEX
(EBPP) are controlled (not controlled) under 5%. nj denotes the number of
participants per group. H denotes the number of historical controls. One-
Hetero, one heterogeneity historical control; Current, current data analysis;
Pooled, pooled data analysis; EX, full exchangeability meta-analytic combined
method; EXNEX, robustified meta-analytic combined method; DMPP, depen-
dent modified power prior; RDMPP, robust dependent modified power prior;
EBPP, empirical Bayesian power prior; HS, proposed method using horseshoe
prior.
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Figure 15: Power (%) of the treatment effect in the simulation study with
a binary endpoint. In the scenarios in which there is no between-trial het-
erogeneity, the power using HS is the highest among the methods incorpo-
rating historical controls. When between-trial heterogeneity is moderate or
high, or one heterogeneous historical control exists, the power using DMPP,
RDMPP, and HS increases due to the influence of inflating type I error rates.
nj denotes the number of participants per group. H denotes the number of
historical controls. OneHetero, one heterogeneity historical control; Current,
current data analysis; Pooled, pooled data analysis; EX, full exchangeability
meta-analytic combined method; EXNEX, robustified meta-analytic combined
method; DMPP, dependent modified power prior; RDMPP, robust dependent
modified power prior; EBPP, empirical Bayesian power prior; HS, proposed
method using horseshoe prior.
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than those using DMPP and RDMPP. In the scenario in which one heteroge-

neous historical control exists, the type I error rates using HS are adequately

controlled under 5%, while those using DMPP and RDMPP are sometimes not

controlled under 5%. In all the scenarios and settings, the type I error rates

using EX and EXNEX (EBPP) are controlled (not controlled) for under 5%.

In the scenarios in which there is no between-trial heterogeneity, the power

using HS is highest among the methods incorporating the historical controls.

When between-trial heterogeneity is moderate or high, or one heterogeneous

historical control exists, the power using DMPP, RDMPP, and HS increases

due to the influence of inflating type I error rates. However, the increased

amount of power using HS is less than that using DMPP and RDMPP.

As is shown in Table A.3, in the scenarios in which between-trial hetero-

geneity is between none and high, the CPs using HS and DMPP are similar.

When one heterogeneous historical control exists, the CP using HS is lower

than that using DMPP. Table A.4 shows the average biases. In the scenario in

which one heterogeneous historical control exists, the average biases using HS

are smaller than those using DMPP. Tables A.5 and A.6 show the RMSDs and

MPSDs, respectively. The RMSDs show the degree to which the estimation of

the treatment effect improves by incorporating the historical controls. In the

scenarios in which no between-trial heterogeneity exists, or the heterogeneity

is low, the RMSDs using DMPP, RDMPP, and HS are close to those in the

“Pooled” data analysis. However, when between-trial heterogeneity is moder-

ate or high, only the RMSDs using EX, EXNEX, and EBPP are lower than

those in the “Current” data analysis. The MPSDs show the degree of incor-

porating the historical controls. For all the methods, the MPSDs lie between

those in the “Current” and “Pooled” data analyses. When no between-trial

heterogeneity exists or the heterogeneity is low with eight historical controls,
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the MPSDs using HS are lower than those using the other methods. In all

the scenarios and settings, the MPSDs using EX and EXNEX are higher than

those using the other methods and are close to those in the “Current” data

analysis.

Tables A.7 to A.12 show the results of the simulation study in the settings

with a 1:2 allocation ratio. The power using DMPP, RDMPP, and HS is 7–10%

higher than those in the settings with a 1:1 allocation ratio, suggesting that the

loss of power due to setting a 1:2 allocation ratio is covered by incorporating

historical controls. Since the power using EX and EXNEX increases by 4–8%

in the settings with a 1:2 allocation ratio, the DMPP, RDMPP, and HS could

incorporate historical controls more positively than EX and EXNEX.

Tables A.13 to A.24 show the results of the simulation study in the settings

with two and three historical controls, highlighting that the type I error rates

using HS are roughly similar to those in the setting with four historical controls.

When no between-trial heterogeneity exists and nj = 30, the power using HS

is lower than that using DMPP, RDMPP, and EBPP, but higher than that

using EX and EXNEX. When nj = 90 and between-trial heterogeneity is no

and low, the power using HS and DMPP is the same.

4.2.2 Time-to-event endpoint

4.2.2.1 Settings

As with the settings of the simulation study with binary endpoints, I consider

a current trial and two, three, four, and eight historical controls with 30 and 90

participants per group in each trial as well as scenarios with a 1:2 allocation

ratio (i.e., nCC and nCT are 20 and 40, and 60 and 120, respectively). I

mainly discuss the results with four and eight historical controls, as in the
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binary endpoint case. Time-to-event data are generated from an exponential

distribution of the historical controls and both the treatment and the control

groups of the current trial. The hazard for the ith participant of the jth

group λij, where i = 1, . . . , nj and j = 1, . . . ,H,CC,CT with 1, . . . ,H for

the historical controls, CC for the current control, and CT for the current

treatment, is calculated as follows:

λij = λ0 exp(γGij + ϵj), ϵj ∼ N(0, τ 2λ),

where Gij is a treatment indicator equal to 0 for the control group and 1 for

the treatment group, and ϵCC = ϵCT because the current trial is a RCT. τ 2λ

is the variance in the trial-specific effect on the log-hazard scale that varies

with the scenario. As with the settings of the simulation with the binary end-

point, I consider τ 2λ = 0, 0.01, 0.09, and 0.25 to be no, low, moderate, and high

between-trial heterogeneity, respectively. Approximating these heterogeneities

as the SD of a 4 months survival rate yields 0, 3.5, 10.4, and 17.3 (%), re-

spectively. In addition, I consider the scenario in which there is only one

heterogeneous historical control. I set the hazard ratio of the current control

to the heterogeneous historical control to 0.7. In this scenario, I set between-

trial heterogeneity τ 2λ to 0. The baseline hazard λ0 is determined so that the

4 months survival rate is 0.5. Since the time to censoring is generated from

an exponential distribution, the censoring proportion of each trial and group

is 0.2. In the scenarios with a treatment effect γ, I set it to 0.586 (0.331)

when the number of participants in each group is 30 (90) so that the power

can reach 50% according to the log-rank test for the current trial. I show a

list of settings in Table 7, with the main settings in bold.

I simulate 10,000 datasets for each scenario and setting. The methods are
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Table 7: Settings for the number of historical controls, the number of partici-
pants, the allocation ratio, and the between trial heterogeeity for each scenario
in the simulation study with time-to-event endpoint. The mainly discussed set-
tings are shown in bold font.

Variable Settings

Number of historical controls 2, 3,4,8
Number of participants for each group 30,90
Allocation ratio for the control group nCC

vs. treatment group nCT in the current trial
1 : 1 (30 vs. 30, 90 vs. 90),
1:2 (20 vs. 40, 60 vs. 120)

Between-trial heterogeneity (τ2λ)
No (0), Low (0.01),
Moderate (0.09),
High (0.25),
OneHetero

compared using the frequentist type I error rate and power based on the equal

tail 95% CI of the posterior distribution of the treatment effect. I also calculate

the CP, the bias of the posterior mean of the treatment effect, the RMSD of

the posterior mean of the treatment effect, and the MPSD of the posterior

distribution of the treatment effect. I generate more than 10,000 data sets and

show the results of the 10,000 times that reach the convergence criteria shown

above. The software used for the MCMC computation and settings related to

convergence are the same as in Section 4.2.1.1.

4.2.2.2 Results

Figures 16 and 17 (Table A.25 and A.26) show the type I error rates and

power, respectively. In the scenarios in which between-trial heterogeneity is

moderate or high, the type I error rates using HS are slightly inflated. When

between-trial heterogeneity is low other than when nh = 30 and four historical

controls exist, the type I error rates using HS are slightly inflated. Although

the type I error rates using EX and EXNEX are slightly inflated in several

scenarios, the primary causes are speculated to be the small sample size and

censoring. When one heterogeneous historical control exists, the type I error
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Figure 16: Type I error rate (%) of the treatment effect in the simulation
study with a time-to-event endpoint. In the scenarios in which between-trial
heterogeneity is moderate or high, the type I error rates using HS are slightly
inflated. When between-trial heterogeneity is low other than when nh = 30
and four historical controls exist, the type I error rates using HS are slightly
inflated. When one heterogeneous historical control exists, the type I error
rates using HS are adequately controlled under 5%. nj denotes the number
of participants per group. H denotes the number of historical controls. One-
Hetero, one heterogeneity historical control; Current, current data analysis;
Pooled, pooled data analysis; EX, full exchangeability meta-analytic combined
method; EXNEX, robustified meta-analytic combined method; HS, proposed
method using horseshoe prior.
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Figure 17: Power (%) of the treatment effect in the simulation study with
a time-to-event endpoint. In the scenario in which no between-trial hetero-
geneity exists, the power using HS is approximately 25% higher than that
in the “Current” data analysis. Moreover, the difference in power between
the HS and “Pooled” data analysis is 2–4%, and the power using HS is ap-
proximately 6–8% higher than that using EX and EXNEX. nj denotes the
number of participants per group. H denotes the number of historical con-
trols. OneHetero, one heterogeneity historical control; Current, current data
analysis; Pooled, pooled data analysis; EX, full exchangeability meta-analytic
combined method; EXNEX, robustified meta-analytic combined method; HS,
proposed method using horseshoe prior.
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rates using HS are adequately controlled under 5%.

In the scenario in which no between-trial heterogeneity exists, the power

using HS is approximately 25% higher than that in the “Current” data analysis.

Moreover, the difference in power between the HS and “Pooled” data analysis

is 2–4%, and the power using HS is approximately 6–8% higher than that

using EX and EXNEX. When between-trial heterogeneity is moderate or high,

the difference in power between HS and “Current” data analysis decreases,

although the differences caused by the inflating type I error rates still exist.

Table A.27 shows the CP. In the scenario in which no between-trial hetero-

geneity exists, the CP using HS is higher than that using EX and EXNEX, and

close to the CP in the “Pooled” data analysis. Table A.28 shows the average

biases. When one heterogeneous historical control exists, the average biases

using HS are larger than those using EX and EXNEX, and smaller than those

in the “Pooled” data analysis. Tables A.29 and A.30 show the RMSDs and

MPSDs, respectively. In the scenario in which no between-trial heterogeneity

exists, the RMSDs using HS are close to those in the “Pooled” data analysis.

When one heterogeneous historical control exists, the RMSDs using HS are

close to the RMSDs in the “Pooled” data analysis, while the type I error rates

using HS are not inflated. In all the scenarios and settings, the MPSDs using

EX and EXNEX are higher than those using HS.

Tables A.31 to A.36 show the results of the simulation study in the settings

with a 1:2 allocation ratio. The power using HS is 6–9% higher than that in

the settings with a 1:1 allocation ratio. As the power using EX and EXNEX is

higher by 2–6% with a 1:2 allocation ratio, the HS could incorporate historical

controls more positively than EX and EXNEX.

Tables A.37 to A.48 show the results of the simulation study in the settings

with two and three historical controls, highlighting that the type I error rates
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using HS are roughly similar to those in the setting with four historical controls.

When no between-trial heterogeneity exists, the difference in power between

the “Pooled” data analysis and HS with two and three historical controls is

larger than that with four and eight historical controls, although the power

using HS is higher than that using EX and EXNEX.
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Chapter 5

Discussion

In this study, I proposed a novel method for incorporating the multiple histori-

cal controls based on the horseshoe prior, a type of global–local shrinkage prior.

When no conflicts between the current control and each historical control ex-

ist (i.e., no heterogeneous historical controls), the proposed method works in

a similar way to the pooled data analysis shown in this dissertation. When

there are few heterogeneous historical controls, it works in a similar way to an

analysis excluding these controls, assuming that they follow a potentially bi-

ased distribution from the distribution of the current control. However, when

many heterogeneous historical controls exist, the proposed method cannot ad-

equately consider the potential biases between the current control and each

heterogeneous historical control. Thus, this method improves the posterior

SD of the treatment effect under a relatively low number of heterogeneous his-

torical controls. Moreover, it easily deals with the multiple historical controls

even if time-to-event endpoints are assumed, unlike power priors.

I verified these features by analyzing two clinical trial examples and con-

ducting the simulation studies with binary and time-to-event endpoints in

order to compare the performances of the proposed and existing methods.
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The analysis of the clinical trial example with a binary endpoint showed

that the proposed method reduced the posterior SD of the treatment effect

by adequately considering the potential bias between the current and hetero-

geneous historical controls. The posterior SDs using the meta-analytic ap-

proaches (EX and EXNEX) were almost equivalent to that of the current

data analysis. These results suggest that the meta-analytic approaches were

strongly influenced by the heterogeneous historical control. If there are his-

torical controls with heterogeneous and relatively large sample sizes, the use

of the meta-analytic approaches is not recommended. The posterior SD using

DMPP was smaller than that of the current data analysis, but the posterior

mean using DMPP was strongly influenced by the heterogeneous historical

control. The posterior mean using RDMPP was not influenced by the hetero-

geneous historical control as much as the posterior means using DMPP, but the

posterior SD using RDMPP was higher than that of the current data analysis.

These results suggest that DMPP strongly incorporates even if there are het-

erogeneous historical controls, and that RDMPP mitigates DMPP’s property

but does not effectively incorporate historical controls.

The analysis of the clinical trial example with a time-to-event endpoint

showed that the proposed method reduced the posterior SD of the treatment

effect because the current and historical controls were homogeneous. The pos-

terior SDs using EX and EXNEX were higher than that of proposed method.

These results confirm the findings by Banbeta et al. (2019) that the statisti-

cal power of meta-analytic approaches could not approach that of an analysis

pooling current and historical controls when no between-trial heterogeneity

exists. These results were similar in the analysis with the participant-level

covariates adjustment, indicating the superiority of the proposed method.

In the simulation studies, I found that the proposed method has the follow-
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ing two advantages over the existing methods: (1) when there is no between-

trial heterogeneity, and four and eight historical controls, its statistical power

is higher than that using the meta-analytic approaches and the power priors;

and (2) when one heterogeneous historical control exists, its average biases

are smaller than those using the power priors. However, when between-trial

heterogeneity is moderate or high, the type I error rates using the proposed

method are somewhat inflated. This result reveals the following limitation of

the proposed method: it may not distinguish between the homogeneous and

heterogeneous historical controls when the current and historical controls are

dispersed. Indeed, as the numbers of the heterogeneous historical controls rise,

the performance of the proposed method deteriorates, which is synonymous

with the fact that as between-trial heterogeneity increases, it performs worse.

Nonetheless, if the comparability of the current and historical controls—often

evaluated using Pocock’s criteria—is lacking, the influence of the heterogeneous

historical controls may be avoided by using the proposed method.

If the observed response rate is equal to 0.5 in the logistic regression anal-

ysis, Piironen and Vehtari (2017a) recommended that the prior distribution

for the global shrinkage parameter be set to C+(0, 2). However, because their

recommendation was derived (empirically) by a simulation study restricted

to certain settings, I did not adopt it in this study. Instead, I set the prior

distribution for the global shrinkage parameter to C+(0, 1).

In terms of practical implications, if I can characterize the numbers of the

heterogeneous historical controls in advance, I can suitably determine the scale

parameter of the prior distribution for the global shrinkage parameter based

on the effective number of non-zero coefficients (Piironen and Vehtari, 2017b).

However, because it is generally difficult to characterize the extent to which

the multiple historical controls differ from the current control when planning a

57



current trial, determining the scale parameter of the prior distribution for the

global shrinkage parameter using the effective number of non-zero coefficients

is unrealistic.

To express the amount of information that the prior/posterior distribu-

tion has as the number of subjects, an effective sample size (ESS) is often

used. When using the historical controls, it is worth considering evaluating

the amount of information corresponding to the number of participants in-

corporated from historical controls. Several ESS calculation methods have

been proposed (Morita et al., 2008, 2012; Hobbs et al., 2013; Neuenschwander

et al., 2020). An effective historical sample size (EHSS), an extension of ESS,

is also proposed (Hobbs et al., 2013; Wiesenfarth and Calderazzo, 2020; Ben-

nett et al., 2021). Based on ESS and EHSS, a method to control the amount

of information corresponding to the number of participants incorporated from

historical controls may be developed in the future.
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Chapter 6

Conclusion

In this dissertation, I proposed a novel method for incorporating the multiple

historical controls based on a horseshoe prior, a type of global–local Bayesian

shrinkage prior. The proposed method assumed that “Potential biases” be-

tween the parameters of interest of the current and historical controls exist.

For making the potential bias close to 0, the horseshoe prior was applied to the

potential bias parameters. To clarify the usefulness of the proposed method

with respect to the existing methods, I analyzed the two clinical trial examples

and conducted the simulation studies with binary and time-to-event endpoints.

In conclusion, I recommend using the proposed method when a sufficient num-

ber of historical controls exist (e.g., H ≥ 4), and no or only a few heterogeneous

historical controls are expected.
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Summary figure

In clinical trials involving children or rare diseases, historical control data can be used to augment
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✓ can deal easily with multiple HCs with time-to-event 

endpoint

Current trial
Treatment group

Current trial
Control group (CC)

Historical control 
data (HC)

Existing methods … ⚫ focus on a scenario when one HC exists
⚫ can not deal with multiple HCs with time-to-event endpoint

Achievement

In case study, 
✓ proposed method 

could distinguish 
the heterogeneous 
HC

In simulation studies, 
✓ when there is no between-trial 

heterogeneity, its statistical power is 
higher than existing methods

✓ when one heterogeneous HC exists, its 
average biases are smaller than existing 
method

Historical control data are used in clinical trials involving children or rare dis-
eases. Several methods have been proposed for using historical control data.
For this situation, I proposed a novel method to apply the horseshoe prior to
potential biases. The proposed method (1) could distinguish the heterogeneous
historical control in case study and (2) improved performance in simulation
studies. βh denotes the potential bias parameter which is the difference be-
tween the parameter of interest of the current control θCC and that of the hth
historical control θh.
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Table A.1: Type I error rate (%) of the treatment effect in the simulation
study with a binary endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 5.10 4.87 4.78 4.84 4.57
nCT = 30, Pooled 5.12 5.53 9.34 16.63 8.17
nh = 30 EX 3.93 3.89 4.26 5.02 4.09

EXNEX 3.84 3.84 4.15 4.87 4.07
DMPP 4.00 4.20 6.00 8.87 5.34
RDMPP 3.92 4.10 5.49 7.74 4.81
EBPP 7.62 7.73 8.02 8.89 9.08
HS 4.14 4.65 6.00 7.79 4.04

H = 8 Current 4.74 4.72 4.79 4.48 4.87
Pooled 4.72 5.08 10.09 18.17 6.22
EX 3.37 3.49 4.43 4.99 3.87
EXNEX 3.35 3.40 4.39 4.94 3.82
DMPP 3.95 4.05 7.16 11.68 4.78
RDMPP 3.86 3.82 6.64 10.50 4.52
EBPP 9.12 8.71 10.06 11.00 11.24
HS 4.35 4.59 8.04 12.16 4.51

nCC = 90, H = 4 Current 4.45 4.87 4.82 4.57 4.40
nCT = 90, Pooled 4.84 6.81 18.52 32.32 18.04
nh = 90 EX 3.33 4.27 4.89 5.13 4.32

EXNEX 3.36 4.32 4.85 5.04 4.44
DMPP 3.67 4.82 9.10 13.57 9.15
RDMPP 3.56 4.61 8.09 10.94 6.94
EBPP 6.53 7.64 8.60 9.05 8.59
HS 3.88 5.00 7.62 8.82 3.81

H = 8 Current 4.74 4.60 4.26 4.43 4.52
Pooled 4.79 6.67 20.54 33.54 8.81
EX 3.47 3.76 5.02 5.07 4.06
EXNEX 3.42 3.73 5.02 4.98 4.09
DMPP 3.78 4.96 13.15 18.35 6.09
RDMPP 3.77 4.70 11.99 16.00 5.44
EBPP 8.87 8.60 10.42 11.05 10.17
HS 4.36 5.72 12.81 13.92 4.09

One Hetero, one heterogeneity historical control.
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Table A.2: Power (%) of the treatment effect in the simulation study with a
binary endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 52.8 52.6 51.4 49.1 54.0
nCT = 30, Pooled 71.0 70.2 67.0 63.8 88.3
nh = 30 EX 59.9 58.8 55.3 51.5 60.6

EXNEX 59.5 58.5 55.1 51.3 60.6
DMPP 65.8 64.9 62.6 59.5 79.9
RDMPP 64.8 63.8 61.4 58.5 77.1
EBPP 66.2 64.8 63.5 60.9 70.1
HS 66.6 65.5 61.9 57.5 70.2

H = 8 Current 53.7 52.4 52.1 50.2 53.9
Pooled 74.2 72.6 70.5 66.8 84.6
EX 65.0 63.4 59.3 53.8 63.6
EXNEX 65.0 63.2 58.9 53.7 63.6
DMPP 70.6 69.7 67.8 64.7 80.7
RDMPP 69.9 68.7 66.9 63.8 79.1
EBPP 68.7 67.7 67.1 65.4 70.3
HS 73.0 71.6 68.9 63.9 76.3

nCC = 90, H = 4 Current 47.7 48.0 47.7 47.8 48.5
nCT = 90, Pooled 70.4 69.3 64.7 62.5 94.8
nh = 90 EX 59.7 58.8 53.0 50.5 54.9

EXNEX 59.4 58.6 53.0 50.4 55.1
DMPP 65.3 65.1 61.2 57.7 85.0
RDMPP 64.4 64.2 60.4 56.9 79.5
EBPP 64.7 64.9 61.8 61.1 67.9
HS 66.0 64.9 58.8 54.5 66.0

H = 8 Current 48.5 48.2 49.1 47.1 48.8
Pooled 73.9 72.7 66.9 63.8 89.6
EX 64.9 62.9 56.1 50.9 57.0
EXNEX 64.7 62.9 56.1 50.9 57.2
DMPP 70.3 69.3 64.7 60.6 84.8
RDMPP 69.6 68.6 64.4 60.1 82.8
EBPP 67.3 67.1 66.1 64.5 69.3
HS 72.6 71.0 64.9 58.4 73.2

One Hetero, one heterogeneity historical control.
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Table A.3: Calibrated power (%) of the treatment effect in the simulation
study with a binary endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 46.8 47.6 49.8 47.8 53.6
nCT = 30, Pooled 71.6 68.7 55.8 39.8 82.9
nh = 30 EX 64.4 63.4 59.0 51.9 63.5

EXNEX 64.3 63.3 59.1 52.0 63.3
DMPP 70.3 67.8 60.8 49.3 79.8
RDMPP 69.8 67.6 60.8 50.4 78.1
EBPP 58.5 58.5 55.7 50.7 59.7
HS 70.0 67.2 59.2 49.8 73.7

H = 8 Current 48.0 49.6 50.6 50.3 47.4
Pooled 74.8 73.5 56.4 40.7 82.2
EX 70.2 69.6 61.6 54.3 67.5
EXNEX 70.2 69.3 61.4 54.4 67.3
DMPP 73.7 73.6 60.1 48.4 80.3
RDMPP 73.4 73.4 60.6 49.7 79.6
EBPP 58.7 58.1 54.9 52.0 58.0
HS 74.4 73.4 59.3 46.9 77.1

nCC = 90, H = 4 Current 51.1 49.6 50.2 48.8 51.3
nCT = 90, Pooled 72.2 65.0 39.6 NA 81.3
nh = 90 EX 66.3 61.5 53.9 49.0 57.5

EXNEX 66.2 61.1 53.9 49.1 57.4
DMPP 71.1 66.0 49.4 39.5 77.6
RDMPP 70.7 65.3 50.9 41.8 74.6
EBPP 62.4 57.0 53.1 48.9 58.9
HS 71.0 65.3 50.7 42.9 69.4

H = 8 Current 51.0 50.9 50.2 48.3 51.1
Pooled 75.5 67.9 37.6 NA 83.7
EX 71.1 66.9 54.2 49.4 60.2
EXNEX 71.2 67.3 54.0 49.6 60.1
DMPP 74.7 69.5 46.7 36.5 82.8
RDMPP 74.5 69.1 48.2 37.7 81.4
EBPP 59.0 58.4 52.7 48.1 57.7
HS 74.8 68.7 45.3 38.5 76.2

One Hetero, one heterogeneity historical control.
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Table A.4: Average bias of the treatment effect in the simulation study with
a binary endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current −0.017 −0.018 −0.022 −0.026 −0.014
nCT = 30, Pooled −0.016 −0.017 −0.021 −0.026 0.045
nh = 30 EX −0.017 −0.017 −0.022 −0.026 0.005

EXNEX −0.017 −0.017 −0.022 −0.026 0.004
DMPP −0.016 −0.017 −0.022 −0.026 0.030
RDMPP −0.016 −0.017 −0.021 −0.026 0.026
EBPP −0.017 −0.018 −0.021 −0.026 −0.003
HS −0.016 −0.017 −0.021 −0.026 0.009

H = 8 Current −0.015 −0.018 −0.019 −0.025 −0.014
Pooled −0.016 −0.018 −0.019 −0.024 0.018
EX −0.016 −0.018 −0.019 −0.025 0.001
EXNEX −0.016 −0.018 −0.019 −0.025 0.000
DMPP −0.016 −0.018 −0.019 −0.024 0.013
RDMPP −0.016 −0.018 −0.019 −0.024 0.012
EBPP −0.015 −0.018 −0.019 −0.025 −0.008
HS −0.016 −0.018 −0.019 −0.024 −0.001

nCC = 90, H = 4 Current −0.006 −0.005 −0.008 −0.009 −0.004
nCT = 90, Pooled −0.005 −0.004 −0.006 −0.009 0.057
nh = 90 EX −0.005 −0.004 −0.007 −0.009 0.004

EXNEX −0.005 −0.004 −0.007 −0.009 0.004
DMPP −0.005 −0.004 −0.006 −0.008 0.041
RDMPP −0.005 −0.004 −0.006 −0.008 0.033
EBPP −0.005 −0.004 −0.007 −0.008 0.004
HS −0.005 −0.004 −0.006 −0.008 0.004

H = 8 Current −0.004 −0.005 −0.005 −0.009 −0.003
Pooled −0.003 −0.004 −0.004 −0.009 0.031
EX −0.003 −0.004 −0.005 −0.009 0.004
EXNEX −0.003 −0.004 −0.005 −0.009 0.004
DMPP −0.003 −0.004 −0.005 −0.009 0.025
RDMPP −0.003 −0.004 −0.005 −0.009 0.023
EBPP −0.003 −0.004 −0.005 −0.009 0.002
HS −0.003 −0.004 −0.004 −0.009 0.001

One Hetero, one heterogeneity historical control.
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Table A.5: RMSD of the treatment effect in the simulation study with a binary
endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 0.113 0.114 0.114 0.114 0.113
nCT = 30, Pooled 0.086 0.088 0.099 0.117 0.095
nh = 30 EX 0.094 0.095 0.099 0.104 0.104

EXNEX 0.094 0.095 0.099 0.104 0.104
DMPP 0.087 0.089 0.094 0.103 0.091
RDMPP 0.088 0.089 0.094 0.102 0.092
EBPP 0.103 0.104 0.106 0.109 0.108
HS 0.088 0.089 0.096 0.104 0.092

H = 8 Current 0.115 0.114 0.115 0.114 0.112
Pooled 0.081 0.084 0.095 0.116 0.082
EX 0.087 0.089 0.095 0.102 0.094
EXNEX 0.087 0.089 0.095 0.102 0.094
DMPP 0.082 0.084 0.091 0.106 0.082
RDMPP 0.083 0.085 0.091 0.104 0.082
EBPP 0.106 0.106 0.109 0.111 0.107
HS 0.082 0.085 0.093 0.107 0.082

nCC = 90, H = 4 Current 0.071 0.071 0.071 0.070 0.072
nCT = 90, Pooled 0.054 0.058 0.079 0.104 0.079
nh = 90 EX 0.059 0.060 0.066 0.069 0.069

EXNEX 0.059 0.060 0.066 0.069 0.069
DMPP 0.055 0.057 0.069 0.079 0.070
RDMPP 0.055 0.057 0.068 0.075 0.068
EBPP 0.064 0.064 0.067 0.069 0.068
HS 0.055 0.058 0.068 0.073 0.060

H = 8 Current 0.072 0.071 0.071 0.070 0.071
Pooled 0.053 0.056 0.078 0.103 0.061
EX 0.056 0.057 0.065 0.068 0.066
EXNEX 0.056 0.058 0.065 0.068 0.066
DMPP 0.054 0.056 0.071 0.084 0.059
RDMPP 0.054 0.056 0.070 0.081 0.059
EBPP 0.066 0.066 0.068 0.069 0.068
HS 0.053 0.056 0.071 0.078 0.054

One Hetero, one heterogeneity historical control.
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Table A.6: MPSD of the treatment effect in the simulation study with a binary
endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 0.115 0.115 0.114 0.113 0.115
nCT = 30, Pooled 0.086 0.086 0.086 0.086 0.086
nh = 30 EX 0.101 0.101 0.104 0.107 0.109

EXNEX 0.101 0.102 0.104 0.107 0.109
DMPP 0.094 0.094 0.094 0.095 0.094
RDMPP 0.095 0.095 0.096 0.097 0.097
EBPP 0.091 0.091 0.092 0.092 0.090
HS 0.092 0.093 0.095 0.098 0.098

H = 8 Current 0.115 0.115 0.114 0.113 0.115
Pooled 0.082 0.082 0.082 0.081 0.082
EX 0.095 0.096 0.100 0.105 0.104
EXNEX 0.096 0.096 0.100 0.105 0.104
DMPP 0.088 0.088 0.088 0.088 0.088
RDMPP 0.089 0.089 0.089 0.090 0.089
EBPP 0.086 0.086 0.087 0.086 0.085
HS 0.084 0.085 0.086 0.089 0.087

nCC = 90, H = 4 Current 0.072 0.072 0.071 0.070 0.072
nCT = 90, Pooled 0.055 0.055 0.054 0.054 0.055
nh = 90 EX 0.063 0.064 0.067 0.068 0.071

EXNEX 0.064 0.064 0.067 0.068 0.070
DMPP 0.059 0.059 0.060 0.061 0.061
RDMPP 0.060 0.060 0.061 0.063 0.063
EBPP 0.058 0.058 0.059 0.058 0.058
HS 0.059 0.059 0.062 0.065 0.063

H = 8 Current 0.072 0.072 0.071 0.071 0.072
Pooled 0.053 0.052 0.052 0.052 0.053
EX 0.060 0.061 0.066 0.068 0.069
EXNEX 0.060 0.061 0.066 0.068 0.069
DMPP 0.056 0.056 0.056 0.058 0.056
RDMPP 0.056 0.056 0.057 0.059 0.057
EBPP 0.056 0.056 0.056 0.055 0.055
HS 0.054 0.054 0.057 0.061 0.056

One Hetero, one heterogeneity historical control.
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Table A.7: Type I error rate (%) of the treatment effect in the simulation
study with a binary endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 4.25 4.72 4.86 4.32 4.62
nCT = 40, Pooled 5.03 5.90 11.90 21.23 10.26
nh = 30 EX 2.88 3.36 4.17 4.72 3.98

EXNEX 2.84 3.40 4.18 4.69 3.96
DMPP 3.22 3.58 6.78 10.88 5.85
RDMPP 3.04 3.46 6.07 9.26 5.00
EBPP 8.36 9.18 10.68 11.75 12.32
HS 3.60 4.24 6.81 9.56 4.15

H = 8 Current 4.45 4.54 4.77 4.48 4.56
Pooled 4.58 5.91 13.14 24.26 6.37
EX 2.59 2.93 4.46 5.20 2.91
EXNEX 2.52 2.99 4.37 5.08 2.79
DMPP 3.27 3.97 8.75 16.26 4.42
RDMPP 3.02 3.68 7.96 14.64 4.09
EBPP 11.21 12.21 13.55 14.66 14.68
HS 3.92 5.16 10.22 16.47 4.03

nCC = 60, H = 4 Current 4.25 4.71 4.36 4.39 4.30
nCT = 120, Pooled 4.74 7.83 23.91 38.74 22.95
nh = 90 EX 2.83 3.62 4.87 5.28 4.28

EXNEX 2.85 3.59 4.84 5.34 4.26
DMPP 3.22 4.76 12.69 18.94 11.04
RDMPP 2.98 4.29 10.84 15.43 8.05
EBPP 8.05 9.48 11.36 12.57 12.66
HS 3.42 5.07 10.10 11.10 3.15

H = 8 Current 4.88 4.37 4.32 4.00 4.10
Pooled 5.46 7.88 26.22 41.35 10.92
EX 2.99 3.57 5.25 5.15 3.44
EXNEX 2.99 3.48 5.27 5.03 3.43
DMPP 3.77 5.24 17.79 27.86 6.91
RDMPP 3.59 4.86 15.95 24.50 5.94
EBPP 11.34 11.53 14.34 15.91 14.47
HS 4.61 6.29 17.01 20.58 3.62

One Hetero, one heterogeneity historical control.
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Table A.8: Power (%) of the treatment effect in the simulation study with a
binary endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 49.1 49.1 48.2 46.8 49.4
nCT = 40, Pooled 80.2 79.9 75.9 70.8 94.9
nh = 30 EX 63.2 62.9 59.1 53.3 61.0

EXNEX 62.9 62.2 58.8 53.2 61.1
DMPP 73.6 73.4 70.9 66.6 87.9
RDMPP 71.8 71.7 69.4 65.0 84.4
EBPP 71.3 71.2 69.7 67.1 73.0
HS 74.6 74.1 70.2 63.2 77.2

H = 8 Current 49.5 49.8 48.0 46.7 49.2
Pooled 84.3 83.6 78.2 73.8 92.6
EX 71.7 70.5 62.8 56.2 66.5
EXNEX 71.3 70.3 62.7 56.1 66.4
DMPP 80.4 79.6 74.9 71.2 88.7
RDMPP 79.5 78.7 74.1 70.4 87.3
EBPP 73.9 73.7 71.5 70.4 74.5
HS 83.1 81.8 76.1 70.5 84.9

nCC = 60, H = 4 Current 46.2 45.2 44.7 43.6 45.8
nCT = 120, Pooled 80.2 77.5 69.7 66.3 98.2
nh = 90 EX 63.2 61.0 53.5 48.4 53.8

EXNEX 62.9 60.8 53.4 48.6 53.6
DMPP 74.0 71.6 65.6 61.0 91.7
RDMPP 72.3 69.8 64.4 59.7 86.4
EBPP 71.0 69.9 67.4 65.0 73.6
HS 75.0 71.5 62.4 55.8 71.3

H = 8 Current 46.3 45.8 44.9 43.3 45.5
Pooled 85.4 81.3 72.4 68.0 95.8
EX 72.2 68.7 56.2 49.2 56.3
EXNEX 71.9 68.4 56.1 49.3 56.2
DMPP 81.3 78.0 70.5 65.0 92.5
RDMPP 80.4 77.1 69.8 64.1 90.6
EBPP 73.5 72.9 70.7 69.2 74.8
HS 83.9 79.7 69.2 61.5 82.5

One Hetero, one heterogeneity historical control.
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Table A.9: Calibrated power (%) of the treatment effect in the simulation
study with a binary endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 47.4 47.3 46.7 45.5 47.2
nCT = 40, Pooled 80.2 77.7 60.0 40.1 89.5
nh = 30 EX 72.5 68.6 61.5 53.5 64.8

EXNEX 71.9 68.4 61.0 53.7 64.5
DMPP 79.2 76.9 65.0 50.7 86.5
RDMPP 78.7 76.3 65.0 52.1 84.6
EBPP 64.2 63.0 56.1 51.2 59.3
HS 78.6 75.9 63.0 49.8 79.9

H = 8 Current 48.0 47.8 46.5 46.7 47.3
Pooled 85.9 82.7 62.9 41.1 91.0
EX 80.3 77.4 65.7 55.0 74.1
EXNEX 80.0 77.4 66.0 55.2 74.0
DMPP 85.4 82.7 67.2 49.0 89.9
RDMPP 85.2 82.1 67.7 50.8 89.3
EBPP 63.0 60.8 55.6 50.8 59.4
HS 85.5 82.3 64.3 46.6 86.9

nCC = 60, H = 4 Current 46.5 45.2 47.2 45.2 48.3
nCT = 120, Pooled 81.5 71.6 36.9 NA 88.8
nh = 90 EX 72.1 66.5 53.9 46.2 56.4

EXNEX 72.1 66.2 53.3 46.1 56.1
DMPP 80.1 72.9 47.2 38.0 83.9
RDMPP 79.6 72.4 49.5 40.2 81.3
EBPP 65.0 60.3 52.1 46.0 57.6
HS 79.6 71.1 48.2 39.2 78.6

H = 8 Current 44.2 46.5 46.7 46.6 47.5
Pooled 84.5 76.0 39.5 NA 90.7
EX 78.9 73.5 54.1 47.0 62.6
EXNEX 78.4 73.4 54.1 47.2 62.7
DMPP 83.9 77.5 47.6 34.4 89.2
RDMPP 83.5 77.1 48.6 33.0 88.3
EBPP 62.0 60.0 51.2 46.1 57.7
HS 84.0 76.5 44.3 32.7 84.9

One Hetero, one heterogeneity historical control.
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Table A.10: Average bias of the treatment effect in the simulation study with
a binary endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current −0.012 −0.012 −0.014 −0.021 −0.011
nCT = 40, Pooled −0.013 −0.012 −0.014 −0.020 0.052
nh = 30 EX −0.013 −0.012 −0.014 −0.021 0.013

EXNEX −0.013 −0.012 −0.014 −0.021 0.013
DMPP −0.013 −0.012 −0.014 −0.020 0.040
RDMPP −0.013 −0.012 −0.014 −0.020 0.036
EBPP −0.013 −0.012 −0.014 −0.021 0.004
HS −0.013 −0.012 −0.014 −0.020 0.017

H = 8 Current −0.012 −0.011 −0.016 −0.022 −0.012
Pooled −0.013 −0.012 −0.017 −0.021 0.023
EX −0.013 −0.012 −0.017 −0.021 0.006
EXNEX −0.013 −0.012 −0.017 −0.021 0.006
DMPP −0.013 −0.012 −0.017 −0.021 0.019
RDMPP −0.013 −0.012 −0.017 −0.021 0.018
EBPP −0.012 −0.011 −0.017 −0.022 −0.003
HS −0.013 −0.012 −0.017 −0.021 0.003

nCC = 60, H = 4 Current −0.002 −0.004 −0.005 −0.008 −0.002
nCT = 120, Pooled −0.002 −0.003 −0.005 −0.008 0.061
nh = 90 EX −0.002 −0.003 −0.005 −0.008 0.008

EXNEX −0.002 −0.003 −0.005 −0.008 0.008
DMPP −0.002 −0.003 −0.005 −0.008 0.049
RDMPP −0.002 −0.003 −0.005 −0.008 0.042
EBPP −0.002 −0.003 −0.005 −0.008 0.007
HS −0.002 −0.003 −0.005 −0.008 0.007

H = 8 Current −0.003 −0.003 −0.004 −0.008 −0.003
Pooled −0.002 −0.003 −0.004 −0.008 0.032
EX −0.002 −0.003 −0.004 −0.008 0.006
EXNEX −0.002 −0.003 −0.004 −0.008 0.006
DMPP −0.002 −0.003 −0.004 −0.008 0.028
RDMPP −0.002 −0.003 −0.004 −0.008 0.026
EBPP −0.002 −0.002 −0.004 −0.008 0.003
HS −0.002 −0.003 −0.004 −0.008 0.002

One Hetero, one heterogeneity historical control.
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Table A.11: RMSD of the treatment effect in the simulation study with a
binary endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 0.120 0.121 0.122 0.121 0.122
nCT = 40, Pooled 0.078 0.080 0.095 0.119 0.093
nh = 30 EX 0.088 0.090 0.097 0.105 0.106

EXNEX 0.089 0.090 0.097 0.105 0.106
DMPP 0.080 0.080 0.091 0.106 0.089
RDMPP 0.080 0.081 0.090 0.103 0.089
EBPP 0.104 0.105 0.109 0.113 0.114
HS 0.080 0.081 0.092 0.106 0.088

H = 8 Current 0.122 0.122 0.122 0.121 0.123
Pooled 0.074 0.076 0.091 0.113 0.076
EX 0.080 0.082 0.091 0.101 0.093
EXNEX 0.080 0.082 0.091 0.101 0.093
DMPP 0.074 0.076 0.088 0.105 0.076
RDMPP 0.075 0.076 0.087 0.104 0.076
EBPP 0.109 0.110 0.113 0.116 0.116
HS 0.074 0.076 0.090 0.106 0.075

nCC = 60, H = 4 Current 0.075 0.076 0.075 0.075 0.075
nCT = 120, Pooled 0.049 0.054 0.080 0.107 0.079
nh = 90 EX 0.055 0.058 0.067 0.071 0.072

EXNEX 0.056 0.059 0.067 0.071 0.072
DMPP 0.050 0.054 0.071 0.086 0.071
RDMPP 0.051 0.054 0.069 0.081 0.068
EBPP 0.064 0.066 0.069 0.072 0.070
HS 0.050 0.054 0.069 0.077 0.056

H = 8 Current 0.075 0.076 0.074 0.073 0.075
Pooled 0.046 0.052 0.078 0.105 0.056
EX 0.049 0.054 0.064 0.069 0.066
EXNEX 0.049 0.054 0.064 0.069 0.066
DMPP 0.046 0.051 0.072 0.092 0.054
RDMPP 0.047 0.051 0.071 0.089 0.054
EBPP 0.065 0.067 0.069 0.071 0.070
HS 0.046 0.051 0.072 0.085 0.047

One Hetero, one heterogeneity historical control.
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Table A.12: MPSD of the treatment effect in the simulation study with a
binary endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 0.123 0.123 0.122 0.120 0.123
nCT = 40, Pooled 0.079 0.079 0.078 0.078 0.079
nh = 30 EX 0.101 0.101 0.105 0.109 0.113

EXNEX 0.101 0.102 0.105 0.109 0.113
DMPP 0.089 0.089 0.089 0.090 0.090
RDMPP 0.091 0.091 0.091 0.093 0.093
EBPP 0.086 0.086 0.087 0.087 0.085
HS 0.087 0.087 0.090 0.094 0.096

H = 8 Current 0.123 0.123 0.122 0.121 0.123
Pooled 0.074 0.073 0.073 0.073 0.073
EX 0.091 0.092 0.099 0.106 0.104
EXNEX 0.092 0.093 0.099 0.106 0.105
DMPP 0.081 0.081 0.081 0.081 0.081
RDMPP 0.082 0.082 0.083 0.083 0.083
EBPP 0.080 0.080 0.080 0.080 0.079
HS 0.077 0.077 0.079 0.083 0.080

nCC = 60, H = 4 Current 0.076 0.076 0.076 0.075 0.076
nCT = 120, Pooled 0.050 0.050 0.049 0.049 0.049
nh = 90 EX 0.062 0.063 0.068 0.071 0.074

EXNEX 0.063 0.064 0.068 0.071 0.074
DMPP 0.055 0.055 0.056 0.058 0.057
RDMPP 0.056 0.056 0.058 0.060 0.060
EBPP 0.054 0.055 0.055 0.055 0.054
HS 0.054 0.055 0.060 0.064 0.061

H = 8 Current 0.076 0.076 0.076 0.075 0.076
Pooled 0.047 0.047 0.046 0.046 0.047
EX 0.057 0.058 0.066 0.070 0.071
EXNEX 0.057 0.058 0.066 0.070 0.071
DMPP 0.051 0.051 0.051 0.052 0.051
RDMPP 0.051 0.052 0.052 0.054 0.053
EBPP 0.051 0.052 0.051 0.051 0.050
HS 0.048 0.049 0.052 0.057 0.051

One Hetero, one heterogeneity historical control.
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Table A.13: Type I error rate (%) of the treatment effect in the simulation
study with a binary endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 4.78 5.52 4.73 4.70 4.85
nCT = 30, Pooled 4.81 5.30 8.55 14.87 15.65
nh = 30 EX 3.69 4.39 4.04 4.84 4.79

EXNEX 3.70 4.38 4.06 4.83 4.86
DMPP 3.72 3.97 4.70 6.77 7.17
RDMPP 3.61 4.00 4.33 5.77 6.03
EBPP 5.80 6.57 6.49 7.49 7.73
HS 3.82 4.23 4.37 5.54 5.29

H = 3 Current 5.07 4.66 4.93 5.10 4.82
Pooled 4.96 5.90 16.88 31.18 37.73
EX 4.31 3.86 4.95 5.40 5.05
EXNEX 4.26 3.89 4.92 5.36 5.05
DMPP 4.02 4.25 7.21 9.22 11.99
RDMPP 4.05 4.04 6.27 7.45 7.90
EBPP 6.36 6.11 7.48 8.18 8.01
HS 4.15 4.16 5.58 6.10 4.92

nCC = 90, H = 2 Current 5.46 5.60 5.19 5.05 5.02
nCT = 90, Pooled 4.93 5.32 9.68 17.06 11.08
nh = 90 EX 3.85 3.97 4.37 5.09 4.67

EXNEX 3.86 3.96 4.41 5.09 4.68
DMPP 3.91 4.06 5.54 8.07 6.13
RDMPP 3.81 3.97 5.00 7.09 5.30
EBPP 6.99 6.88 7.80 8.76 8.77
HS 4.00 4.16 5.45 6.81 4.51

H = 3 Current 4.57 4.95 4.96 4.76 4.67
Pooled 4.70 6.47 17.89 33.34 25.28
EX 3.66 4.24 4.79 4.97 4.80
EXNEX 3.63 4.19 4.76 4.97 4.74
DMPP 3.56 4.74 8.13 10.92 11.10
RDMPP 3.50 4.52 7.01 8.72 7.88
EBPP 5.99 6.83 8.05 7.85 8.91
HS 3.57 4.62 6.61 6.57 4.24

One Hetero, one heterogeneity historical control.
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Table A.14: Power (%) of the treatment effect in the simulation study with a
binary endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 49.6 49.2 49.4 48.1 50.2
nCT = 30, Pooled 66.3 65.7 64.1 61.6 93.1
nh = 30 EX 55.3 54.7 53.3 50.3 59.0

EXNEX 55.3 54.4 53.2 50.3 58.8
DMPP 60.1 60.2 59.1 56.0 79.8
RDMPP 59.0 58.8 57.7 54.7 73.4
EBPP 62.1 61.5 60.5 57.5 65.0
HS 58.7 58.3 56.4 52.6 63.2

H = 3 Current 51.0 49.7 50.0 48.1 50.2
Pooled 67.8 66.0 62.5 59.6 98.2
EX 56.4 55.3 52.7 49.1 54.8
EXNEX 56.4 54.9 52.9 48.9 54.7
DMPP 62.0 60.8 58.1 53.2 81.6
RDMPP 60.9 59.7 56.8 52.0 71.0
EBPP 63.1 62.0 59.7 56.2 65.3
HS 59.9 58.6 54.5 50.1 58.6

nCC = 90, H = 2 Current 50.4 49.0 50.1 48.5 49.3
nCT = 90, Pooled 69.8 69.2 67.1 62.8 89.9
nh = 90 EX 58.9 57.3 55.2 52.1 59.2

EXNEX 58.6 57.2 55.1 52.0 59.2
DMPP 64.6 63.2 61.5 58.2 80.0
RDMPP 63.6 61.9 60.2 57.0 76.1
EBPP 65.6 63.9 62.8 60.2 68.0
HS 64.4 62.8 60.2 55.4 67.4

H = 3 Current 50.4 50.4 48.4 47.8 49.8
Pooled 69.9 69.1 63.8 60.6 96.6
EX 58.2 57.9 52.4 49.3 54.7
EXNEX 58.0 57.7 52.4 49.2 54.5
DMPP 64.2 64.0 59.4 54.9 84.8
RDMPP 62.9 62.8 58.3 53.8 76.2
EBPP 64.6 64.1 60.7 58.4 67.2
HS 63.6 62.6 56.5 51.7 62.3

One Hetero, one heterogeneity historical control.
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Table A.15: Calibrated power (%) of the treatment effect in the simulation
study with a binary endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 53.3 47.6 51.9 49.6 53.3
nCT = 30, Pooled 66.7 65.0 55.1 39.4 78.7
nh = 30 EX 59.8 57.3 57.2 51.5 59.8

EXNEX 59.8 57.4 56.9 51.6 59.4
DMPP 65.1 63.5 60.7 51.5 73.6
RDMPP 64.5 62.6 60.9 52.6 70.2
EBPP 59.2 56.5 55.9 51.1 57.7
HS 63.3 60.8 59.2 51.3 62.5

H = 3 Current 50.6 50.9 50.2 47.6 50.9
Pooled 67.6 62.9 37.9 NA 78.3
EX 58.9 59.1 52.8 47.9 54.5
EXNEX 58.9 59.3 53.6 47.9 54.5
DMPP 65.4 63.6 51.8 43.3 67.4
RDMPP 64.1 62.8 52.9 45.2 63.2
EBPP 59.8 58.8 53.0 47.7 58.0
HS 62.9 61.9 53.3 47.4 58.9

nCC = 90, H = 2 Current 49.0 47.4 48.9 48.4 49.2
nCT = 90, Pooled 70.0 67.9 55.1 38.2 81.3
nh = 90 EX 63.1 60.7 57.3 51.8 60.3

EXNEX 63.1 60.7 57.3 51.7 60.4
DMPP 68.7 66.4 60.1 48.9 77.9
RDMPP 68.1 65.8 60.3 50.2 75.3
EBPP 59.3 57.5 55.0 50.8 58.8
HS 68.1 65.7 58.8 49.8 69.8

H = 3 Current 51.7 50.5 48.6 48.7 50.8
Pooled 71.2 64.2 38.9 NA 79.6
EX 64.2 61.2 53.0 49.4 55.4
EXNEX 64.0 61.0 53.0 49.3 55.4
DMPP 69.1 64.8 50.8 42.2 71.6
RDMPP 68.5 65.0 52.2 44.7 68.3
EBPP 61.9 59.0 52.1 50.3 57.1
HS 68.5 64.5 51.8 46.9 64.7

One Hetero, one heterogeneity historical control.
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Table A.16: Average Bias of the treatment effect in the simulation study with
a binary endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current −0.016 −0.018 −0.018 −0.026 −0.014
nCT = 30, Pooled −0.016 −0.017 −0.018 −0.026 0.084
nh = 30 EX −0.016 −0.018 −0.018 −0.026 0.011

EXNEX −0.016 −0.018 −0.018 −0.026 0.011
DMPP −0.016 −0.017 −0.018 −0.026 0.049
RDMPP −0.016 −0.018 −0.018 −0.026 0.038
EBPP −0.016 −0.018 −0.018 −0.026 0.004
HS −0.016 −0.018 −0.018 −0.026 0.018

H = 3 Current −0.002 −0.004 −0.005 −0.011 −0.003
Pooled −0.002 −0.004 −0.005 −0.011 0.096
EX −0.002 −0.004 −0.005 −0.011 0.006
EXNEX −0.002 −0.004 −0.005 −0.011 0.006
DMPP −0.002 −0.004 −0.005 −0.011 0.052
RDMPP −0.002 −0.004 −0.005 −0.011 0.034
EBPP −0.002 −0.004 −0.005 −0.011 0.008
HS −0.002 −0.004 −0.005 −0.011 0.007

nCC = 90, H = 2 Current −0.014 −0.017 −0.018 −0.026 −0.016
nCT = 90, Pooled −0.014 −0.017 −0.019 −0.027 0.059
nh = 90 EX −0.014 −0.017 −0.018 −0.026 0.006

EXNEX −0.014 −0.017 −0.018 −0.026 0.006
DMPP −0.014 −0.017 −0.018 −0.026 0.038
RDMPP −0.014 −0.017 −0.018 −0.026 0.031
EBPP −0.014 −0.017 −0.018 −0.026 −0.002
HS −0.014 −0.017 −0.018 −0.026 0.012

H = 3 Current −0.002 −0.003 −0.007 −0.011 −0.004
Pooled −0.002 −0.003 −0.006 −0.011 0.072
EX −0.002 −0.003 −0.007 −0.011 0.004
EXNEX −0.002 −0.003 −0.007 −0.011 0.004
DMPP −0.002 −0.003 −0.007 −0.011 0.047
RDMPP −0.002 −0.003 −0.007 −0.011 0.035
EBPP −0.002 −0.003 −0.007 −0.011 0.005
HS −0.002 −0.003 −0.007 −0.011 0.006

One Hetero, one heterogeneity historical control.
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Table A.17: RMSD of the treatment effect in the simulation study with a
binary endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 0.115 0.115 0.116 0.118 0.114
nCT = 30, Pooled 0.092 0.094 0.103 0.119 0.122
nh = 30 EX 0.102 0.103 0.105 0.111 0.111

EXNEX 0.102 0.103 0.106 0.111 0.111
DMPP 0.094 0.095 0.099 0.105 0.107
RDMPP 0.095 0.097 0.099 0.105 0.106
EBPP 0.104 0.105 0.108 0.113 0.110
HS 0.097 0.098 0.102 0.109 0.109

H = 3 Current 0.072 0.072 0.071 0.071 0.072
Pooled 0.058 0.061 0.079 0.106 0.112
EX 0.064 0.065 0.068 0.070 0.072
EXNEX 0.064 0.065 0.068 0.070 0.072
DMPP 0.059 0.061 0.068 0.074 0.083
RDMPP 0.060 0.061 0.067 0.071 0.077
EBPP 0.064 0.065 0.068 0.070 0.069
HS 0.061 0.062 0.067 0.070 0.068

nCC = 90, H = 2 Current 0.115 0.115 0.116 0.117 0.114
nCT = 90, Pooled 0.088 0.089 0.100 0.119 0.104
nh = 90 EX 0.097 0.097 0.102 0.108 0.106

EXNEX 0.098 0.098 0.102 0.108 0.107
DMPP 0.090 0.090 0.096 0.105 0.097
RDMPP 0.091 0.091 0.096 0.103 0.097
EBPP 0.104 0.104 0.108 0.111 0.108
HS 0.091 0.091 0.098 0.106 0.099

H = 3 Current 0.071 0.071 0.071 0.072 0.072
Pooled 0.056 0.059 0.080 0.109 0.091
EX 0.061 0.062 0.067 0.070 0.071
EXNEX 0.061 0.062 0.067 0.070 0.071
DMPP 0.057 0.059 0.068 0.077 0.076
RDMPP 0.058 0.059 0.067 0.074 0.072
EBPP 0.064 0.064 0.068 0.070 0.068
HS 0.058 0.059 0.067 0.072 0.063

One Hetero, one heterogeneity historical control.
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Table A.18: MPSD of the treatment effect in the simulation study with a
binary endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 0.115 0.115 0.114 0.112 0.115
nCT = 30, Pooled 0.092 0.092 0.092 0.091 0.091
nh = 30 EX 0.107 0.107 0.108 0.109 0.113

EXNEX 0.107 0.107 0.108 0.109 0.113
DMPP 0.100 0.100 0.100 0.101 0.102
RDMPP 0.101 0.101 0.102 0.103 0.105
EBPP 0.096 0.097 0.097 0.098 0.098
HS 0.102 0.102 0.104 0.106 0.110

H = 3 Current 0.071 0.071 0.071 0.070 0.071
Pooled 0.058 0.058 0.058 0.057 0.058
EX 0.067 0.067 0.068 0.069 0.071
EXNEX 0.067 0.067 0.068 0.069 0.071
DMPP 0.062 0.063 0.064 0.065 0.067
RDMPP 0.063 0.064 0.065 0.066 0.070
EBPP 0.061 0.061 0.062 0.062 0.062
HS 0.064 0.064 0.067 0.068 0.069

nCC = 90, H = 2 Current 0.115 0.115 0.114 0.113 0.115
nCT = 90, Pooled 0.088 0.088 0.088 0.087 0.088
nh = 90 EX 0.104 0.104 0.106 0.107 0.111

EXNEX 0.104 0.104 0.106 0.108 0.111
DMPP 0.096 0.096 0.097 0.098 0.098
RDMPP 0.098 0.098 0.099 0.100 0.100
EBPP 0.093 0.093 0.094 0.094 0.093
HS 0.096 0.097 0.099 0.102 0.104

H = 3 Current 0.071 0.071 0.071 0.070 0.071
Pooled 0.056 0.056 0.056 0.055 0.056
EX 0.065 0.065 0.068 0.068 0.071
EXNEX 0.065 0.065 0.068 0.068 0.071
DMPP 0.060 0.060 0.062 0.063 0.063
RDMPP 0.061 0.061 0.063 0.064 0.066
EBPP 0.059 0.060 0.060 0.060 0.059
HS 0.061 0.061 0.064 0.066 0.066

One Hetero, one heterogeneity historical control.

95



Table A.19: Type I error rate (%) of the treatment effect in the simulation
study with a binary endpoint, a 1:2 allocation ratio, and two and three histor-
ical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 5.53 5.05 5.16 4.58 5.26
nCT = 40, Pooled 5.09 5.03 10.37 18.89 21.27
nh = 30 EX 3.63 3.41 4.14 4.35 5.36

EXNEX 3.71 3.42 4.11 4.35 5.25
DMPP 3.52 3.35 5.41 7.59 8.91
RDMPP 3.38 3.28 4.71 6.32 6.91
EBPP 7.41 6.74 8.58 8.86 11.12
HS 3.69 3.58 4.85 5.73 5.80

H = 3 Current 4.58 5.03 5.02 4.83 4.95
Pooled 4.76 6.75 21.40 38.73 52.32
EX 3.07 3.68 4.79 5.23 5.26
EXNEX 3.09 3.69 4.84 5.15 5.29
DMPP 3.10 4.18 9.05 12.72 16.25
RDMPP 2.99 3.91 7.31 9.24 9.73
EBPP 6.48 7.70 9.69 10.11 10.53
HS 3.01 3.88 6.02 6.53 4.63

nCC = 60, H = 2 Current 5.18 5.42 4.87 4.47 5.64
nCT = 120, Pooled 4.80 5.71 11.29 22.15 14.13
nh = 90 EX 2.92 3.37 4.13 4.55 4.81

EXNEX 2.94 3.29 4.16 4.54 4.87
DMPP 3.02 3.58 5.95 9.47 7.15
RDMPP 2.87 3.33 5.39 7.75 6.00
EBPP 8.12 8.57 9.78 10.29 12.25
HS 3.26 3.83 5.75 7.58 4.87

H = 3 Current 5.15 5.22 5.22 4.97 4.94
Pooled 5.65 7.38 23.58 41.13 33.98
EX 3.37 3.58 5.08 5.21 4.72
EXNEX 3.38 3.57 5.02 5.19 4.71
DMPP 3.56 4.41 10.93 15.90 14.48
RDMPP 3.38 4.14 8.88 11.99 9.50
EBPP 7.93 8.56 10.79 11.41 12.02
HS 3.65 4.29 7.76 8.35 3.80

One Hetero, one heterogeneity historical control.
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Table A.20: Power (%) of the treatment effect in the simulation study with a
binary endpoint, a 1:2 allocation ratio, and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 47.9 46.2 46.3 44.6 47.2
nCT = 40, Pooled 74.1 73.7 69.6 66.6 96.9
nh = 30 EX 57.2 56.0 53.1 49.8 59.3

EXNEX 57.1 55.9 52.8 49.8 59.2
DMPP 66.3 65.6 62.6 60.0 85.1
RDMPP 64.3 63.7 60.4 57.4 78.4
EBPP 68.1 66.5 64.1 61.1 70.8
HS 63.3 62.4 58.2 53.8 65.7

H = 3 Current 45.5 46.9 46.1 43.5 46.1
Pooled 73.5 73.0 66.8 63.1 99.7
EX 54.9 54.9 50.4 46.5 53.3
EXNEX 54.6 54.9 50.2 46.3 53.4
DMPP 65.1 65.1 60.4 55.1 86.7
RDMPP 63.0 63.3 58.2 52.6 74.7
EBPP 66.8 66.4 62.7 58.1 70.4
HS 61.2 60.8 54.3 48.9 58.9

nCC = 60, H = 2 Current 47.4 46.9 47.0 45.0 47.0
nCT = 120, Pooled 78.1 78.5 73.9 69.5 95.8
nh = 90 EX 60.6 59.9 57.0 51.7 60.2

EXNEX 60.4 59.8 56.7 51.6 59.8
DMPP 70.6 70.7 67.6 63.5 86.6
RDMPP 68.7 68.5 65.9 61.4 82.1
EBPP 70.4 69.8 67.6 64.1 71.7
HS 70.0 69.4 64.9 58.7 71.5

H = 3 Current 46.0 46.6 45.0 44.8 46.1
Pooled 78.0 76.3 67.8 65.3 99.0
EX 59.4 58.7 51.2 48.1 53.3
EXNEX 59.1 58.4 51.1 47.9 53.2
DMPP 69.9 69.2 62.6 57.8 90.4
RDMPP 67.7 67.4 60.7 56.2 82.4
EBPP 69.3 69.4 64.1 62.2 72.2
HS 68.3 67.3 57.5 52.1 65.2

One Hetero, one heterogeneity historical control.
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Table A.21: Calibrated power (%) of the treatment effect in the simulation
study with a binary endpoint, a 1:2 allocation ratio, and two and three histor-
ical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 46.7 46.2 46.2 46.7 47.1
nCT = 40, Pooled 73.4 73.6 57.0 38.7 84.5
nh = 30 EX 62.3 62.8 56.5 52.1 58.2

EXNEX 62.1 62.5 56.5 52.4 58.0
DMPP 71.6 71.8 61.5 51.9 77.3
RDMPP 70.5 70.7 61.8 53.4 73.3
EBPP 61.6 62.7 55.7 50.3 56.7
HS 68.7 68.5 59.0 51.2 63.0

H = 3 Current 47.1 46.7 46.0 44.3 46.3
Pooled 74.5 68.5 36.6 NA NA
EX 62.3 59.2 51.1 45.9 52.4
EXNEX 62.0 59.2 50.8 45.9 52.7
DMPP 71.5 68.2 49.3 38.8 68.5
RDMPP 70.4 67.5 50.9 41.7 63.9
EBPP 63.6 60.3 50.5 44.5 56.2
HS 68.1 65.3 51.2 43.6 60.4

nCC = 60, H = 2 Current 46.9 45.7 47.2 47.0 45.8
nCT = 120, Pooled 79.0 76.8 59.3 38.6 87.0
nh = 90 EX 68.7 66.5 60.3 53.0 60.7

EXNEX 68.5 66.2 60.0 53.2 60.4
DMPP 77.1 75.3 64.2 52.4 82.0
RDMPP 76.4 74.1 64.6 54.2 79.3
EBPP 64.3 61.5 56.5 52.3 56.4
HS 75.7 73.4 62.2 51.5 71.9

H = 3 Current 45.7 45.8 44.5 44.7 46.4
Pooled 76.3 70.8 37.2 NA 85.2
EX 66.0 63.8 51.2 47.2 54.6
EXNEX 66.0 63.4 51.4 47.0 54.5
DMPP 74.6 71.4 48.9 38.2 76.5
RDMPP 73.8 70.8 50.1 40.1 72.1
EBPP 62.7 60.9 49.6 46.5 56.1
HS 73.5 69.8 50.7 42.5 69.3

One Hetero, one heterogeneity historical control.
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Table A.22: Average bias of the treatment effect in the simulation study with
a binary endpoint, a 1:2 allocation ratio, and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current −0.010 −0.013 −0.017 −0.023 −0.012
nCT = 40, Pooled −0.012 −0.012 −0.017 −0.022 0.098
nh = 30 EX −0.011 −0.013 −0.017 −0.023 0.021

EXNEX −0.011 −0.013 −0.017 −0.023 0.020
DMPP −0.011 −0.013 −0.017 −0.022 0.064
RDMPP −0.011 −0.013 −0.017 −0.022 0.052
EBPP −0.010 −0.013 −0.017 −0.023 0.011
HS −0.011 −0.013 −0.017 −0.023 0.030

H = 3 Current −0.003 −0.001 −0.005 −0.011 −0.003
Pooled −0.003 −0.003 −0.005 −0.010 0.109
EX −0.003 −0.002 −0.005 −0.011 0.010
EXNEX −0.003 −0.002 −0.005 −0.011 0.010
DMPP −0.003 −0.002 −0.005 −0.010 0.068
RDMPP −0.003 −0.002 −0.005 −0.010 0.047
EBPP −0.003 −0.002 −0.005 −0.011 0.012
HS −0.003 −0.002 −0.005 −0.010 0.012

nCC = 60, H = 2 Current −0.011 −0.012 −0.015 −0.022 −0.012
nCT = 120, Pooled −0.012 −0.012 −0.014 −0.021 0.068
nh = 90 EX −0.012 −0.012 −0.015 −0.022 0.015

EXNEX −0.012 −0.012 −0.015 −0.022 0.014
DMPP −0.012 −0.012 −0.015 −0.022 0.049
RDMPP −0.012 −0.012 −0.015 −0.022 0.042
EBPP −0.011 −0.012 −0.015 −0.022 0.005
HS −0.012 −0.012 −0.015 −0.022 0.021

H = 3 Current −0.003 −0.002 −0.006 −0.008 −0.002
Pooled −0.002 −0.002 −0.006 −0.010 0.079
EX −0.003 −0.002 −0.006 −0.008 0.009
EXNEX −0.003 −0.002 −0.006 −0.008 0.009
DMPP −0.003 −0.002 −0.006 −0.008 0.058
RDMPP −0.003 −0.002 −0.006 −0.008 0.046
EBPP −0.003 −0.002 −0.006 −0.008 0.009
HS −0.003 −0.002 −0.006 −0.008 0.010

One Hetero, one heterogeneity historical control.
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Table A.23: RMSD of the treatment effect in the simulation study with a
binary endpoint, a 1:2 allocation ratio, and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 0.121 0.122 0.123 0.123 0.122
nCT = 40, Pooled 0.087 0.087 0.102 0.122 0.128
nh = 30 EX 0.101 0.102 0.107 0.112 0.117

EXNEX 0.101 0.102 0.107 0.112 0.117
DMPP 0.089 0.089 0.097 0.106 0.110
RDMPP 0.090 0.091 0.097 0.105 0.109
EBPP 0.105 0.106 0.111 0.116 0.116
HS 0.093 0.094 0.102 0.110 0.114

H = 3 Current 0.076 0.076 0.075 0.075 0.076
Pooled 0.054 0.058 0.081 0.114 0.121
EX 0.064 0.065 0.069 0.073 0.076
EXNEX 0.064 0.065 0.069 0.072 0.076
DMPP 0.056 0.058 0.069 0.081 0.092
RDMPP 0.057 0.058 0.067 0.076 0.083
EBPP 0.065 0.066 0.070 0.073 0.072
HS 0.059 0.060 0.068 0.074 0.071

nCC = 60, H = 2 Current 0.122 0.122 0.121 0.123 0.122
nCT = 120, Pooled 0.083 0.082 0.098 0.121 0.104
nh = 90 EX 0.095 0.095 0.101 0.109 0.110

EXNEX 0.095 0.095 0.101 0.109 0.111
DMPP 0.085 0.084 0.093 0.106 0.097
RDMPP 0.086 0.085 0.093 0.104 0.096
EBPP 0.105 0.106 0.109 0.115 0.114
HS 0.086 0.085 0.095 0.107 0.098

H = 3 Current 0.076 0.076 0.075 0.076 0.076
Pooled 0.052 0.055 0.081 0.114 0.094
EX 0.059 0.061 0.068 0.073 0.074
EXNEX 0.060 0.061 0.068 0.073 0.074
DMPP 0.053 0.055 0.070 0.084 0.080
RDMPP 0.054 0.055 0.068 0.079 0.075
EBPP 0.064 0.066 0.069 0.073 0.071
HS 0.054 0.056 0.068 0.075 0.062

One Hetero, one heterogeneity historical control.

100



Table A.24: MPSD of the treatment effect in the simulation study with a
binary endpoint, a 1:2 allocation ratio, and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 0.122 0.122 0.121 0.119 0.122
nCT = 40, Pooled 0.086 0.086 0.086 0.085 0.085
nh = 30 EX 0.109 0.110 0.111 0.113 0.118

EXNEX 0.109 0.110 0.111 0.113 0.118
DMPP 0.098 0.098 0.098 0.099 0.100
RDMPP 0.100 0.100 0.101 0.103 0.106
EBPP 0.093 0.094 0.094 0.095 0.095
HS 0.101 0.102 0.104 0.107 0.114

H = 3 Current 0.076 0.076 0.075 0.074 0.076
Pooled 0.054 0.054 0.053 0.053 0.053
EX 0.068 0.069 0.071 0.072 0.075
EXNEX 0.068 0.069 0.071 0.072 0.075
DMPP 0.060 0.061 0.062 0.064 0.066
RDMPP 0.062 0.062 0.064 0.066 0.071
EBPP 0.058 0.058 0.060 0.061 0.059
HS 0.063 0.064 0.067 0.070 0.072

nCC = 60, H = 2 Current 0.122 0.122 0.121 0.119 0.122
nCT = 120, Pooled 0.081 0.081 0.081 0.081 0.081
nh = 90 EX 0.104 0.105 0.107 0.110 0.115

EXNEX 0.105 0.105 0.107 0.111 0.115
DMPP 0.092 0.092 0.093 0.094 0.094
RDMPP 0.095 0.095 0.096 0.097 0.098
EBPP 0.089 0.089 0.090 0.090 0.088
HS 0.093 0.093 0.096 0.101 0.104

H = 3 Current 0.076 0.076 0.075 0.074 0.076
Pooled 0.051 0.051 0.051 0.050 0.051
EX 0.065 0.066 0.069 0.071 0.075
EXNEX 0.065 0.066 0.070 0.071 0.075
DMPP 0.057 0.057 0.059 0.062 0.060
RDMPP 0.059 0.059 0.061 0.064 0.065
EBPP 0.056 0.056 0.057 0.058 0.056
HS 0.058 0.059 0.063 0.067 0.066

One Hetero, one heterogeneity historical control.
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A.2 Time-to-event endpoint

Table A.25: Type I error rate (%) of the treatment effect in the simulation
study with a time-to-event endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 5.36 4.77 5.11 4.99 4.90
nCT = 30, Pooled 5.45 6.60 20.54 39.53 6.06
nh = 30 EX 4.11 3.78 5.45 5.53 3.89

EXNEX 4.19 3.78 5.29 5.47 3.87
HS 4.64 4.57 8.02 8.72 4.29

H = 8 Current 4.95 4.99 5.24 5.10 4.78
Pooled 5.00 7.52 23.61 42.23 5.92
EX 3.27 4.28 5.63 5.29 3.79
EXNEX 3.35 4.14 5.19 5.15 3.87
HS 4.32 6.27 13.60 14.93 4.94

nCC = 90, H = 4 Current 5.04 5.08 4.89 5.01 5.01
nCT = 90, Pooled 5.63 11.41 38.19 57.76 8.29
nh = 90 EX 4.01 4.65 4.95 5.07 4.36

EXNEX 4.14 4.69 4.87 5.03 4.30
HS 4.52 6.29 8.25 6.59 4.73

H = 8 Current 5.20 5.42 5.15 4.91 5.01
Pooled 4.96 11.99 42.11 62.48 6.21
EX 3.59 5.24 5.11 5.00 3.51
EXNEX 3.54 5.16 5.04 4.90 3.49
HS 4.40 9.19 14.42 10.92 4.82

One Hetero, one heterogeneity historical control.
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Table A.26: Power (%) of the treatment effect in the simulation study with a
time-to-event endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 51.0 52.0 51.1 51.2 50.7
nCT = 30, Pooled 77.6 75.6 65.1 60.5 85.0
nh = 30 EX 66.8 65.5 58.2 54.4 68.7

EXNEX 65.7 64.6 57.5 54.0 67.3
HS 73.2 71.1 62.6 57.0 76.9

H = 8 Current 53.2 51.3 51.4 51.9 52.2
Pooled 81.9 78.8 67.2 61.1 85.8
EX 73.5 69.8 59.3 55.2 74.8
EXNEX 71.9 68.1 58.4 54.7 72.8
HS 80.5 77.2 67.1 60.6 83.5

nCC = 90, H = 4 Current 50.6 50.6 50.1 50.6 50.8
nCT = 90, Pooled 74.5 70.5 61.1 65.2 87.4
nh = 90 EX 63.4 59.6 52.4 51.7 63.5

EXNEX 63.0 59.2 52.4 51.6 62.9
HS 69.6 65.0 55.1 53.2 72.7

H = 8 Current 50.7 50.4 50.3 49.4 50.6
Pooled 78.1 72.5 62.6 66.2 85.1
EX 68.8 62.7 53.4 50.7 67.7
EXNEX 67.7 61.9 52.8 50.6 66.9
HS 76.3 70.7 59.3 53.7 79.4

One Hetero, one heterogeneity historical control.
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Table A.27: Calibrated power (%) of the treatment effect in the simulation
study with a time-to-event endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 50.0 52.6 51.0 52.0 51.3
nCT = 30, Pooled 76.5 71.3 41.9 NA 83.0
nh = 30 EX 69.9 69.0 55.9 54.9 72.2

EXNEX 68.8 68.1 56.3 55.5 70.9
HS 74.7 71.6 54.4 48.7 78.8

H = 8 Current 53.4 51.5 50.9 51.4 53.6
Pooled 82.2 72.9 39.5 NA 84.2
EX 78.6 70.9 57.0 53.7 78.3
EXNEX 77.1 70.0 57.0 53.9 76.6
HS 81.6 73.0 49.8 41.9 83.5

nCC = 90, H = 4 Current 50.4 50.9 50.8 50.9 50.4
nCT = 90, Pooled 73.0 58.7 NA NA 81.5
nh = 90 EX 66.5 61.8 51.6 51.5 64.7

EXNEX 65.8 61.3 51.7 51.8 64.2
HS 71.3 62.1 46.9 47.3 73.3

H = 8 Current 50.0 49.3 50.3 49.6 50.5
Pooled 78.1 58.6 NA NA 82.6
EX 73.2 62.3 53.1 51.1 71.8
EXNEX 72.4 61.3 53.4 51.0 70.8
HS 77.6 60.9 40.4 39.0 79.7

One Hetero, one heterogeneity historical control.
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Table A.28: Average bias of the treatment effect in the simulation study with
a time-to-event endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current −0.002 0.002 −0.004 −0.004 −0.008
nCT = 30, Pooled 0.003 0.001 −0.031 −0.094 0.062
nh = 30 EX 0.006 0.008 −0.002 −0.004 0.035

EXNEX 0.006 0.008 −0.001 −0.004 0.032
HS 0.006 0.006 −0.005 −0.010 0.048

H = 8 Current 0.008 −0.003 −0.002 −0.001 0.004
Pooled 0.011 0.001 −0.032 −0.104 0.043
EX 0.014 0.005 0.000 −0.001 0.035
EXNEX 0.014 0.005 0.001 0.000 0.033
HS 0.013 0.004 −0.005 −0.017 0.041

nCC = 90, H = 4 Current 0.000 0.001 −0.002 0.000 −0.001
nCT = 90, Pooled 0.000 −0.001 −0.034 −0.084 0.061
nh = 90 EX 0.002 0.002 −0.002 0.000 0.024

EXNEX 0.002 0.002 −0.002 0.000 0.023
HS 0.002 0.002 −0.005 0.000 0.031

H = 8 Current −0.002 −0.001 −0.002 −0.005 −0.001
Pooled 0.001 −0.001 −0.035 −0.115 0.034
EX 0.002 0.001 −0.001 −0.005 0.020
EXNEX 0.002 0.001 −0.001 −0.005 0.019
HS 0.002 0.002 −0.005 −0.010 0.021

One Hetero, one heterogeneity historical control.
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Table A.29: RMSD of the treatment effect in the simulation study with a
time-to-event endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 0.295 0.291 0.294 0.291 0.291
nCT = 30, Pooled 0.228 0.241 0.347 0.514 0.233
nh = 30 EX 0.243 0.246 0.277 0.288 0.247

EXNEX 0.245 0.248 0.277 0.287 0.250
HS 0.232 0.240 0.289 0.313 0.236

H = 8 Current 0.291 0.292 0.295 0.293 0.289
Pooled 0.217 0.235 0.359 0.529 0.222
EX 0.227 0.238 0.277 0.286 0.232
EXNEX 0.230 0.240 0.277 0.285 0.235
HS 0.218 0.234 0.315 0.353 0.222

nCC = 90, H = 4 Current 0.168 0.168 0.168 0.165 0.168
nCT = 90, Pooled 0.132 0.159 0.293 0.461 0.144
nh = 90 EX 0.141 0.150 0.165 0.164 0.152

EXNEX 0.142 0.151 0.165 0.164 0.152
HS 0.134 0.150 0.176 0.174 0.142

H = 8 Current 0.169 0.170 0.168 0.168 0.167
Pooled 0.125 0.158 0.302 0.503 0.129
EX 0.132 0.148 0.164 0.167 0.140
EXNEX 0.133 0.149 0.165 0.166 0.141
HS 0.126 0.153 0.199 0.198 0.128

One Hetero, one heterogeneity historical control.
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Table A.30: MPSD of the treatment effect in the simulation study with a
time-to-event endpoint.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 4 Current 0.293 0.292 0.293 0.293 0.293
nCT = 30, Pooled 0.225 0.225 0.225 0.225 0.225
nh = 30 EX 0.256 0.259 0.273 0.282 0.261

EXNEX 0.259 0.262 0.276 0.283 0.263
HS 0.240 0.242 0.257 0.272 0.244

H = 8 Current 0.293 0.293 0.293 0.293 0.293
Pooled 0.217 0.217 0.217 0.217 0.217
EX 0.243 0.248 0.270 0.282 0.248
EXNEX 0.247 0.252 0.273 0.283 0.251
HS 0.223 0.225 0.237 0.256 0.225

nCC = 90, H = 4 Current 0.167 0.167 0.167 0.167 0.167
nCT = 90, Pooled 0.129 0.129 0.129 0.129 0.129
nh = 90 EX 0.148 0.153 0.163 0.165 0.155

EXNEX 0.149 0.154 0.163 0.166 0.156
HS 0.138 0.142 0.157 0.163 0.144

H = 8 Current 0.167 0.167 0.167 0.167 0.167
Pooled 0.124 0.124 0.124 0.124 0.124
EX 0.140 0.147 0.162 0.165 0.148
EXNEX 0.141 0.149 0.163 0.166 0.149
HS 0.128 0.131 0.148 0.159 0.130

One Hetero, one heterogeneity historical control.
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Table A.31: Type I error rate (%) of the treatment effect in the simulation
study with a time-to-event endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 4.93 5.16 5.35 4.98 4.76
nCT = 40, Pooled 5.05 8.50 26.20 45.11 6.39
nh = 30 EX 2.72 3.75 5.85 5.73 3.54

EXNEX 2.76 3.66 5.46 5.24 3.36
HS 3.61 5.44 10.35 11.37 4.12

H = 8 Current 5.21 4.93 5.45 4.86 4.74
Pooled 5.19 7.96 28.74 49.04 5.78
EX 3.22 3.65 6.02 5.54 3.13
EXNEX 3.07 3.61 5.57 5.25 3.00
HS 4.38 6.32 18.30 21.63 4.79

nCC = 60, H = 4 Current 4.88 4.53 5.07 5.13 5.30
nCT = 120, Pooled 4.96 13.17 45.58 65.68 9.17
nh = 90 EX 2.96 4.14 6.04 5.35 4.06

EXNEX 2.92 4.12 5.68 5.35 4.11
HS 3.42 6.70 10.77 9.25 4.33

H = 8 Current 5.17 5.24 4.97 5.01 4.80
Pooled 5.15 15.14 49.37 67.79 6.43
EX 2.97 5.04 5.43 5.14 3.10
EXNEX 2.88 4.91 5.18 4.99 3.06
HS 4.32 11.28 21.22 16.08 4.50

One Hetero, one heterogeneity historical control.
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Table A.32: Power (%) of the treatment effect in the simulation study with a
time-to-event endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 44.0 44.1 45.1 44.2 43.5
nCT = 40, Pooled 84.9 81.7 69.5 64.1 90.9
nh = 30 EX 69.0 66.6 56.9 50.5 70.5

EXNEX 66.9 64.5 55.7 49.6 68.2
HS 79.1 76.1 64.5 56.1 82.9

H = 8 Current 44.0 43.9 44.0 43.1 43.8
Pooled 88.4 85.4 70.9 64.0 91.9
EX 77.8 74.1 58.0 50.1 77.4
EXNEX 74.5 71.1 56.2 49.0 74.3
HS 87.0 83.8 70.3 60.5 89.7

nCC = 60, H = 4 Current 45.1 44.8 42.8 43.3 44.6
nCT = 120, Pooled 82.5 76.1 64.9 69.2 93.4
nh = 90 EX 65.5 60.5 47.7 45.5 64.2

EXNEX 64.3 59.4 47.1 45.3 62.9
HS 76.1 69.8 53.4 48.9 78.7

H = 8 Current 44.7 44.3 43.9 45.0 45.0
Pooled 87.1 79.2 66.3 70.4 92.7
EX 74.7 65.5 49.6 46.6 71.2
EXNEX 72.7 63.7 48.8 46.5 69.3
HS 85.4 77.2 60.0 52.0 87.7

One Hetero, one heterogeneity historical control.
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Table A.33: Calibrated power (%) of the treatment effect in the simulation
study with a time-to-event endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 44.5 43.8 44.5 44.1 44.3
nCT = 40, Pooled 84.9 76.6 40.8 NA 89.4
nh = 30 EX 76.2 71.6 56.3 48.5 76.6

EXNEX 74.2 70.0 56.1 48.5 74.3
HS 82.8 75.9 53.2 42.2 84.8

H = 8 Current 43.6 43.9 42.7 43.1 44.8
Pooled 88.3 80.6 NA NA 90.9
EX 83.0 77.4 57.2 48.7 83.0
EXNEX 80.8 75.4 56.3 48.6 80.1
HS 88.0 81.3 48.9 38.6 90.1

nCC = 60, H = 4 Current 45.3 47.0 43.1 44.0 44.7
nCT = 120, Pooled 82.5 61.1 NA NA 89.1
nh = 90 EX 73.5 63.5 46.3 44.6 67.5

EXNEX 72.4 63.1 46.3 45.1 66.7
HS 79.9 66.2 41.1 39.2 80.5

H = 8 Current 44.1 43.5 45.2 45.1 45.6
Pooled 86.7 64.4 NA NA 91.0
EX 81.1 67.5 48.2 46.4 77.0
EXNEX 79.6 66.4 48.9 46.7 75.3
HS 86.5 67.6 34.7 34.0 88.4

One Hetero, one heterogeneity historical control.
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Table A.34: Average bias of the treatment effect in the simulation study with
a time-to-event endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current −0.009 −0.009 −0.004 −0.007 −0.012
nCT = 40, Pooled 0.003 0.000 −0.027 −0.101 0.067
nh = 30 EX 0.006 0.004 0.001 −0.008 0.043

EXNEX 0.005 0.004 0.002 −0.005 0.039
HS 0.005 0.004 −0.003 −0.017 0.055

H = 8 Current −0.008 −0.009 −0.009 −0.012 −0.013
Pooled 0.003 −0.004 −0.042 −0.126 0.038
EX 0.006 0.002 −0.007 −0.013 0.030
EXNEX 0.006 0.003 −0.006 −0.012 0.027
HS 0.005 0.001 −0.014 −0.033 0.036

nCC = 60, H = 4 Current −0.001 −0.002 −0.008 −0.007 0.001
nCT = 120, Pooled 0.001 −0.002 −0.038 −0.098 0.067
nh = 90 EX 0.002 0.002 −0.008 −0.006 0.032

EXNEX 0.002 0.001 −0.007 −0.006 0.030
HS 0.002 0.001 −0.010 −0.009 0.039

H = 8 Current −0.001 −0.001 −0.003 0.001 −0.002
Pooled 0.002 −0.003 −0.039 −0.125 0.037
EX 0.003 0.001 −0.003 −0.001 0.024
EXNEX 0.003 0.001 −0.003 −0.001 0.022
HS 0.003 0.000 −0.010 −0.015 0.024

One Hetero, one heterogeneity historical control.
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Table A.35: RMSD of the treatment effect in the simulation study with a
time-to-event endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 0.309 0.311 0.313 0.312 0.309
nCT = 40, Pooled 0.201 0.228 0.352 0.533 0.214
nh = 30 EX 0.221 0.236 0.282 0.301 0.234

EXNEX 0.227 0.240 0.282 0.300 0.239
HS 0.206 0.226 0.297 0.336 0.218

H = 8 Current 0.313 0.313 0.312 0.313 0.313
Pooled 0.193 0.214 0.354 0.542 0.197
EX 0.204 0.219 0.275 0.298 0.212
EXNEX 0.211 0.224 0.276 0.297 0.218
HS 0.193 0.212 0.318 0.387 0.198

nCC = 60, H = 4 Current 0.177 0.176 0.179 0.178 0.179
nCT = 120, Pooled 0.116 0.150 0.308 0.494 0.135
nh = 90 EX 0.130 0.144 0.173 0.176 0.149

EXNEX 0.132 0.146 0.173 0.176 0.150
HS 0.119 0.142 0.189 0.194 0.133

H = 8 Current 0.181 0.177 0.179 0.177 0.177
Pooled 0.110 0.149 0.311 0.519 0.116
EX 0.118 0.140 0.171 0.174 0.130
EXNEX 0.122 0.141 0.171 0.174 0.132
HS 0.111 0.144 0.220 0.226 0.114

One Hetero, one heterogeneity historical control.
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Table A.36: MPSD of the treatment effect in the simulation study with a
time-to-event endpoint and a 1:2 allocation ratio.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 4 Current 0.312 0.312 0.312 0.312 0.312
nCT = 40, Pooled 0.202 0.202 0.202 0.202 0.202
nh = 30 EX 0.248 0.252 0.273 0.290 0.255

EXNEX 0.253 0.257 0.278 0.293 0.260
HS 0.221 0.224 0.245 0.268 0.227

H = 8 Current 0.312 0.312 0.312 0.312 0.312
Pooled 0.191 0.191 0.191 0.191 0.191
EX 0.228 0.234 0.268 0.289 0.235
EXNEX 0.236 0.242 0.274 0.292 0.242
HS 0.198 0.200 0.215 0.241 0.200

nCC = 60, H = 4 Current 0.178 0.178 0.178 0.178 0.178
nCT = 120, Pooled 0.116 0.116 0.116 0.116 0.116
nh = 90 EX 0.144 0.151 0.168 0.174 0.156

EXNEX 0.146 0.153 0.169 0.174 0.157
HS 0.128 0.133 0.156 0.168 0.137

H = 8 Current 0.178 0.178 0.178 0.178 0.178
Pooled 0.109 0.109 0.109 0.109 0.109
EX 0.132 0.142 0.167 0.174 0.144
EXNEX 0.135 0.145 0.169 0.174 0.146
HS 0.114 0.117 0.141 0.160 0.117

One Hetero, one heterogeneity historical control.
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Table A.37: Type I error rate (%) of the treatment effect in the simulation
study with a time-to-event endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 5.23 5.41 5.38 5.11 5.05
nCT = 30, Pooled 5.31 6.39 17.58 32.25 7.95
nh = 30 EX 4.15 4.43 5.37 5.21 4.64

EXNEX 4.10 4.43 5.40 5.06 4.63
HS 4.21 4.53 5.99 5.72 4.72

H = 3 Current 5.42 5.07 5.09 4.98 5.24
Pooled 5.16 6.52 18.83 35.93 7.01
EX 4.00 4.09 5.10 5.91 4.55
EXNEX 4.05 4.16 4.96 5.67 4.45
HS 4.22 4.46 6.36 7.13 4.66

nCC = 90, H = 2 Current 4.60 5.04 5.46 4.94 5.25
nCT = 90, Pooled 4.65 9.50 34.15 53.26 12.68
nh = 90 EX 3.70 4.52 5.44 5.24 5.36

EXNEX 3.71 4.54 5.38 5.19 5.35
HS 3.51 4.94 5.93 5.81 5.49

H = 3 Current 5.29 5.05 5.12 5.02 5.04
Pooled 5.49 10.51 37.66 57.42 9.14
EX 4.15 4.44 5.10 5.33 4.49
EXNEX 4.27 4.35 5.05 5.26 4.45
HS 4.23 5.38 6.37 6.71 4.47

One Hetero, one heterogeneity historical control.
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Table A.38: Power (%) of the treatment effect in the simulation study with a
time-to-event endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 51.4 52.0 51.3 51.6 51.6
nCT = 30, Pooled 72.3 71.2 63.2 59.9 84.7
nh = 30 EX 61.3 61.2 56.3 54.8 66.0

EXNEX 60.4 60.6 55.8 54.5 64.9
HS 64.0 64.0 57.4 54.9 69.5

H = 3 Current 51.8 51.2 51.8 51.6 52.0
Pooled 75.2 73.6 64.8 60.9 85.3
EX 64.5 62.6 57.8 54.9 68.5
EXNEX 63.6 61.7 57.4 54.3 67.2
HS 69.4 67.1 60.3 55.9 75.0

nCC = 90, H = 2 Current 51.1 50.4 50.7 50.4 50.9
nCT = 90, Pooled 69.3 66.2 59.9 65.1 89.6
nh = 90 EX 58.6 55.9 52.3 51.7 60.9

EXNEX 58.2 55.7 52.2 51.6 60.2
HS 61.5 58.5 53.0 51.7 65.4

H = 3 Current 49.9 50.8 50.5 49.7 51.1
Pooled 72.3 68.5 60.3 65.6 89.0
EX 60.4 58.4 52.9 50.8 63.0
EXNEX 59.7 57.9 52.7 50.6 62.3
HS 65.4 62.3 54.7 51.1 70.1

One Hetero, one heterogeneity historical control.
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Table A.39: Calibrated power (%) of the treatment effect in the simulation
study with a time-to-event endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 50.7 50.7 50.1 50.9 51.6
nCT = 30, Pooled 71.6 67.5 41.0 NA 79.2
nh = 30 EX 64.4 63.6 54.8 53.9 67.0

EXNEX 63.5 63.2 54.9 54.4 65.9
HS 66.6 65.3 54.4 52.3 70.4

H = 3 Current 50.4 51.0 51.5 51.8 50.9
Pooled 74.7 70.5 42.6 NA 82.0
EX 67.8 65.0 57.6 51.6 69.8
EXNEX 66.8 64.4 57.5 51.9 68.7
HS 71.5 68.5 56.4 49.8 75.9

nCC = 90, H = 2 Current 52.5 49.9 48.6 50.6 50.0
nCT = 90, Pooled 70.5 55.5 NA NA 78.5
nh = 90 EX 63.0 57.5 50.7 50.5 59.6

EXNEX 62.7 56.7 50.9 50.9 58.9
HS 66.4 58.5 50.2 49.3 63.6

H = 3 Current 49.0 50.4 50.2 49.7 51.1
Pooled 70.7 57.1 NA NA 82.7
EX 63.8 59.8 52.6 49.8 64.3
EXNEX 63.5 59.4 52.6 50.0 64.1
HS 68.0 61.0 50.5 45.7 71.8

One Hetero, one heterogeneity historical control.
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Table A.40: Average bias of the treatment effect in the simulation study with
a time-to-event endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 0.000 0.006 −0.003 −0.003 −0.001
nCT = 30, Pooled 0.005 0.005 −0.026 −0.078 0.110
nh = 30 EX 0.006 0.009 −0.001 −0.004 0.050

EXNEX 0.006 0.009 −0.001 −0.003 0.046
HS 0.006 0.009 −0.003 −0.005 0.062

H = 3 Current −0.001 −0.004 0.001 −0.001 0.004
Pooled 0.006 −0.001 −0.024 −0.084 0.087
EX 0.006 0.002 0.003 −0.001 0.048
EXNEX 0.006 0.002 0.003 −0.001 0.045
HS 0.006 0.002 0.000 −0.005 0.062

nCC = 90, H = 2 Current 0.000 −0.002 −0.001 0.001 0.001
nCT = 90, Pooled 0.001 −0.001 −0.023 −0.077 0.106
nh = 90 EX 0.002 0.000 0.000 0.001 0.029

EXNEX 0.002 0.000 0.000 0.001 0.028
HS 0.002 0.000 −0.001 0.000 0.038

H = 3 Current −0.003 0.001 0.000 −0.003 0.001
Pooled 0.001 −0.002 −0.034 −0.086 0.081
EX 0.000 0.001 0.000 −0.003 0.028
EXNEX 0.000 0.001 0.000 −0.003 0.026
HS 0.001 0.001 −0.002 −0.004 0.037

One Hetero, one heterogeneity historical control.
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Table A.41: RMSD of the treatment effect in the simulation study with a
time-to-event endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 0.297 0.293 0.296 0.292 0.292
nCT = 30, Pooled 0.240 0.252 0.347 0.485 0.265
nh = 30 EX 0.259 0.261 0.282 0.289 0.267

EXNEX 0.261 0.262 0.283 0.288 0.268
HS 0.252 0.255 0.285 0.294 0.265

H = 3 Current 0.296 0.293 0.290 0.295 0.295
Pooled 0.232 0.245 0.344 0.503 0.247
EX 0.249 0.253 0.275 0.291 0.259
EXNEX 0.252 0.255 0.275 0.290 0.261
HS 0.238 0.245 0.282 0.304 0.251

nCC = 90, H = 2 Current 0.164 0.167 0.169 0.168 0.168
nCT = 90, Pooled 0.136 0.160 0.283 0.447 0.175
nh = 90 EX 0.146 0.155 0.167 0.168 0.161

EXNEX 0.147 0.156 0.167 0.168 0.161
HS 0.142 0.153 0.169 0.171 0.160

H = 3 Current 0.169 0.168 0.168 0.168 0.167
Pooled 0.134 0.159 0.294 0.465 0.153
EX 0.144 0.152 0.164 0.168 0.154
EXNEX 0.145 0.153 0.164 0.167 0.155
HS 0.138 0.150 0.169 0.174 0.148

One Hetero, one heterogeneity historical control.
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Table A.42: MPSD of the treatment effect in the simulation study with a
time-to-event endpoint and two and three historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 30, H = 2 Current 0.293 0.293 0.293 0.293 0.293
nCT = 30, Pooled 0.238 0.238 0.238 0.238 0.238
nh = 30 EX 0.269 0.270 0.278 0.284 0.272

EXNEX 0.271 0.272 0.280 0.285 0.274
HS 0.262 0.263 0.274 0.282 0.266

H = 3 Current 0.293 0.293 0.293 0.293 0.293
Pooled 0.231 0.231 0.231 0.231 0.231
EX 0.262 0.264 0.275 0.283 0.266
EXNEX 0.264 0.266 0.277 0.284 0.268
HS 0.249 0.252 0.265 0.277 0.254

nCC = 90, H = 2 Current 0.167 0.167 0.167 0.167 0.167
nCT = 90, Pooled 0.137 0.137 0.137 0.137 0.137
nh = 90 EX 0.156 0.158 0.164 0.166 0.161

EXNEX 0.156 0.159 0.164 0.166 0.162
HS 0.151 0.154 0.163 0.165 0.158

H = 3 Current 0.167 0.167 0.167 0.167 0.167
Pooled 0.132 0.132 0.132 0.132 0.132
EX 0.151 0.155 0.163 0.165 0.158
EXNEX 0.152 0.156 0.164 0.166 0.159
HS 0.144 0.148 0.160 0.164 0.151

One Hetero, one heterogeneity historical control.
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Table A.43: Type I error rate (%) of the treatment effect in the simulation
study with a time-to-event endpoint, a 1:2 allocation ratio, and two and three
historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 5.24 4.96 4.81 4.98 5.35
nCT = 40, Pooled 5.01 6.92 22.29 40.24 9.58
nh = 30 EX 3.36 3.81 4.93 5.87 4.38

EXNEX 3.41 3.77 4.72 5.68 4.34
HS 3.39 3.89 5.87 7.00 4.67

H = 3 Current 4.89 5.40 5.27 5.08 5.14
Pooled 4.69 7.62 25.15 43.98 7.64
EX 2.77 3.64 5.79 5.98 3.92
EXNEX 2.77 3.68 5.36 5.82 3.81
HS 3.17 4.32 8.42 9.01 4.35

nCC = 60, H = 2 Current 5.07 5.48 4.77 5.01 5.04
nCT = 120, Pooled 4.77 11.78 41.04 61.11 16.55
nh = 90 EX 3.31 4.39 5.46 5.38 4.65

EXNEX 3.34 4.43 5.38 5.21 4.65
HS 3.34 4.63 6.45 6.18 5.19

H = 3 Current 4.63 5.27 4.83 5.23 5.05
Pooled 4.99 12.68 45.76 63.15 11.38
EX 2.92 4.49 5.30 5.54 4.22
EXNEX 2.92 4.39 5.11 5.41 4.25
HS 3.31 5.56 8.05 7.62 4.22

One Hetero, one heterogeneity historical control.
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Table A.44: Power (%) of the treatment effect in the simulation study with
a time-to-event endpoint, a 1:2 allocation ratio, and two and three historical
trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 44.3 43.5 42.9 43.9 44.4
nCT = 40, Pooled 78.0 75.3 65.7 63.9 90.3
nh = 30 EX 60.0 58.9 52.7 50.0 65.4

EXNEX 58.7 57.8 51.7 49.2 63.6
HS 64.8 63.6 55.2 51.2 70.7

H = 3 Current 44.3 43.8 44.6 44.1 44.1
Pooled 83.2 80.3 68.3 63.2 91.1
EX 65.4 63.9 55.6 50.0 68.2
EXNEX 63.6 62.4 54.7 49.3 66.1
HS 73.9 71.9 60.8 53.3 78.2

nCC = 60, H = 2 Current 45.0 44.7 45.0 44.7 44.1
nCT = 120, Pooled 76.9 71.3 63.2 68.6 95.4
nh = 90 EX 57.2 53.6 48.6 46.3 58.7

EXNEX 56.2 53.2 48.4 46.1 57.7
HS 62.3 58.1 50.2 46.6 64.8

H = 3 Current 44.3 44.0 44.2 44.3 44.8
Pooled 80.0 74.3 64.2 69.1 94.1
EX 61.6 57.4 48.2 46.5 61.2
EXNEX 60.5 56.5 47.8 46.4 60.1
HS 70.0 64.9 52.0 48.3 72.1

One Hetero, one heterogeneity historical control.
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Table A.45: Calibrated power (%) of the treatment effect in the simulation
study with a time-to-event endpoint, a 1:2 allocation ratio, and two and three
historical trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 43.8 43.7 43.6 44.1 43.4
nCT = 40, Pooled 78.1 70.6 38.3 NA 84.2
nh = 30 EX 66.4 64.3 53.2 46.4 67.1

EXNEX 64.9 62.8 52.7 46.6 65.9
HS 71.2 68.2 51.9 44.8 71.7

H = 3 Current 44.7 42.7 44.0 44.0 43.5
Pooled 83.9 75.0 39.1 NA 87.6
EX 74.2 69.3 53.6 46.8 72.3
EXNEX 72.6 67.3 53.2 47.0 70.1
HS 80.3 73.6 52.0 42.6 79.7

nCC = 60, H = 2 Current 44.8 43.2 45.8 44.7 44.1
nCT = 120, Pooled 77.6 57.0 NA NA 84.5
nh = 90 EX 64.0 56.0 47.2 45.4 59.9

EXNEX 63.0 55.4 47.1 45.3 58.7
HS 68.8 59.7 46.4 42.3 64.6

H = 3 Current 45.6 43.1 44.5 43.5 44.7
Pooled 80.1 59.1 NA NA 87.6
EX 69.8 59.4 47.1 44.7 64.0
EXNEX 68.6 58.5 47.5 44.9 63.0
HS 76.0 62.9 42.8 40.6 74.3

One Hetero, one heterogeneity historical control.

122



Table A.46: Average bias of the treatment effect in the simulation study with
a time-to-event endpoint, a 1:2 allocation ratio, and two and three historical
trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current −0.009 −0.010 −0.016 −0.007 −0.005
nCT = 40, Pooled 0.001 −0.003 −0.032 −0.078 0.124
nh = 30 EX 0.002 0.000 −0.011 −0.006 0.060

EXNEX 0.002 0.000 −0.010 −0.006 0.056
HS 0.002 0.000 −0.011 −0.008 0.074

H = 3 Current −0.008 −0.004 −0.006 −0.009 −0.006
Pooled 0.004 0.004 −0.026 −0.094 0.090
EX 0.005 0.007 0.000 −0.010 0.051
EXNEX 0.005 0.007 0.000 −0.010 0.047
HS 0.005 0.007 −0.002 −0.017 0.066

nCC = 60, H = 2 Current −0.002 −0.002 −0.002 −0.002 −0.003
nCT = 120, Pooled 0.003 −0.003 −0.025 −0.079 0.121
nh = 90 EX 0.002 0.000 −0.001 −0.002 0.035

EXNEX 0.002 0.000 −0.001 −0.002 0.033
HS 0.003 0.001 −0.002 −0.004 0.048

H = 3 Current −0.002 −0.001 −0.002 −0.002 −0.003
Pooled 0.001 −0.003 −0.031 −0.084 0.085
EX 0.001 0.001 −0.001 −0.002 0.031
EXNEX 0.001 0.001 −0.001 −0.002 0.029
HS 0.001 0.001 −0.004 −0.004 0.042

One Hetero, one heterogeneity historical control.
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Table A.47: RMSD of the treatment effect in the simulation study with a
time-to-event endpoint, a 1:2 allocation ratio, and two and three historical
trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 0.315 0.311 0.310 0.310 0.314
nCT = 40, Pooled 0.218 0.238 0.350 0.524 0.255
nh = 30 EX 0.247 0.253 0.280 0.302 0.265

EXNEX 0.251 0.256 0.281 0.301 0.268
HS 0.236 0.245 0.284 0.312 0.260

H = 3 Current 0.311 0.312 0.316 0.312 0.313
Pooled 0.206 0.229 0.356 0.535 0.228
EX 0.230 0.242 0.285 0.304 0.248
EXNEX 0.235 0.246 0.286 0.302 0.252
HS 0.214 0.231 0.294 0.325 0.234

nCC = 60, H = 2 Current 0.180 0.180 0.178 0.177 0.177
nCT = 120, Pooled 0.125 0.156 0.304 0.490 0.175
nh = 90 EX 0.147 0.156 0.172 0.178 0.163

EXNEX 0.149 0.157 0.172 0.177 0.163
HS 0.138 0.151 0.176 0.183 0.160

H = 3 Current 0.177 0.178 0.176 0.178 0.177
Pooled 0.119 0.153 0.314 0.490 0.147
EX 0.136 0.150 0.171 0.177 0.154
EXNEX 0.138 0.151 0.171 0.177 0.155
HS 0.124 0.145 0.182 0.188 0.143

One Hetero, one heterogeneity historical control.
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Table A.48: MPSD of the treatment effect in the simulation study with a
time-to-event endpoint, a 1:2 allocation ratio, and two and three historical
trials.

Between-trial heterogeneity No Low Moderate High One-
τ2 0 0.01 0.09 0.25 Hetero

nCC = 20, H = 2 Current 0.312 0.312 0.312 0.312 0.311
nCT = 40, Pooled 0.218 0.218 0.218 0.218 0.218
nh = 30 EX 0.268 0.270 0.282 0.293 0.273

EXNEX 0.271 0.273 0.285 0.295 0.276
HS 0.256 0.258 0.274 0.289 0.264

H = 3 Current 0.312 0.312 0.312 0.312 0.312
Pooled 0.208 0.208 0.208 0.208 0.208
EX 0.257 0.260 0.277 0.291 0.264
EXNEX 0.261 0.264 0.281 0.294 0.268
HS 0.235 0.238 0.259 0.279 0.243

nCC = 60, H = 2 Current 0.178 0.178 0.178 0.178 0.178
nCT = 120, Pooled 0.125 0.125 0.125 0.125 0.125
nh = 90 EX 0.157 0.161 0.170 0.174 0.166

EXNEX 0.159 0.162 0.171 0.174 0.167
HS 0.149 0.153 0.167 0.173 0.160

H = 3 Current 0.178 0.178 0.178 0.178 0.178
Pooled 0.120 0.120 0.120 0.120 0.119
EX 0.150 0.155 0.169 0.174 0.161
EXNEX 0.152 0.157 0.170 0.174 0.162
HS 0.137 0.142 0.163 0.170 0.148

One Hetero, one heterogeneity historical control.
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