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Machine learning models are often trained under the assumption that the training distri-
bution (source domain) and test distribution (target domain) are independent and identically
distributed. However, in reality, machine learning models are often deployed in applications
where test data and training data are drawn from different distributions. The predictive
performance of models trained in such a situation may decrease significantly.

One of the most common strategies to improve machine learning models’ performance on
out-of-distribution data is unsupervised domain adaptation (UDA). UDA assumes that labeled
data from the source domain and unlabeled data from the target domain are obtainable. With
these data, UDA methods are able to train a model that can perform well on the target domain.

However, in reality, it is often difficult to obtain unlabeled data from the target domain. We
consider two situations in this thesis. First, machine learning models need to handle unseen
environments in many applications. In this situation, the target domain is unpredictable.
Hence, it is impossible to collect data from the target domain. Second, certain types of data
are hard to collect. For example, when the task we want to solve is related to private data,
since eliminating privacy is expensive, collecting private data is difficult. In this situation, it
is hard to collect task-relevant data from the target domain.

In this thesis, we consider two settings, domain generalization (DG) and zero-shot domain
adaptation (ZSDA), to improve the machine learning model’s domain generalization ability
in the above two situations. DG aims to utilize data from multiple source domains to build
machine learning models that can handle unseen target domains. ZSDA sim to utilize task-
irrelevant data from the target domain to build machine learning models that can solve task-
of-interest in the target domain.

To solve DG and ZSDA tasks, we consider two strategies, data augmentation and repre-
sentation learning. First, data augmentation aims to provide new data to the training data.
The domain generalization ability of the machine learning model can be improved when the
augmented data can simulate the domain changes. Second, representation learning aims to
design the features extracted from the training data carefully. When extracted features are
domain-invariant, the resulting models are naturally able to handle different domains.

In this thesis, we discuss how to utilize data augmentation and representation learning to
solve DG and ZSDA tasks.

Academic Advisors: Principal: Jun Sakuma
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Chapter 1

Introduction

In recent years, machine learning systems have achieved great success in different tasks.
Image classification is one of the tasks that have been widely progressed. Machine learning
models have gone from only being able to achieve good performance on simple digital
classification tasks [2] to now being able to handle large-scale complex classification tasks
accurately [3]. These successes largely depend on assuming that training and test data are
independent and identically distributed. This assumption is reflected in the specific process
of training and using machine learning models. A common process is first to collect data
from an environment, later use that data to train a machine learning model, and eventually
apply that model to the same environment.

However, in reality, machine learning models are often deployed in applications where
test data and training data are drawn from different distributions. For example, a medical
diagnostic model trained using data from hospital A may need to diagnose medical data
from hospital B. In such a situation, the predictive performance of machine learning models
trained may decrease significantly [4]. The performance drop will happen even in simple
digital classification tasks [5]. As Figure 1.1 shows, when training data and test data are
both grey-scale or colorful images, a classification model can achieve very good results on
test data. However, when training data and test data are from different domains, the model’s
classification accuracy is only 52.25 %. This issue is commonly referred to as domain shift
[6]. More specifically, a domain is defined as a joint distribution between samples and their
label. The domain of training data is defined as the source domain, and the domain of
target data is defined as the target domain. When the source domain and target domain
are different but related, such as P (y|x) can be commonly shared, we call domain shift
happens.

1.1 Motivation

A large amount of research attempts to improve the model’s performance when domain
shifts occur [1, 7, 8, 9, 10]. A popular strategy is to collect unlabeled data from the test
environment and use these data to improve the generalization ability of the model in the test
environment. For example, unsupervised domain adaptation (UDA) [5] is one of the most
common settings to alleviate domain shift with this strategy. UDA assumes that labeled
data from the source domain and unlabeled data from the target domain are available. UDA
aims to train a model that can generalize the target domain. A certain number of UDA
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Figure 1.1: An illustration of a classification model’s performance under domain shift

methods show outstanding performance on alleviating domain shifts [1, 7, 11].
UDA methods rely on the availability of unlabeled data from the target domain. However,

it is often not easy to obtain data from the target domain in reality. Generally, we consider
two situations where it is difficult to obtain data from the target domain:

1. When the target domain is unpredictable, it is difficult to collect data from
the target domain. For example, self-driving car models need to handle various
weather conditions. Due to the variation of the environment, it is difficult to specify
the road conditions that will be faced in the future.

2. Although it is possible to specify the target domain, it is hard to collect
data we want to predict in that target domain. For example, if we want to utilize
unsupervised domain adaptation algorithms to adapt a diagnostic model trained on
hospital A to hospital B, we need to collect unlabeled medical data from hospital B.
However, since medical data are usually private, it is expensive or time-consuming to
eliminate private information from these data.

In the above two situations, the usability of UDA methods will be greatly reduced. To
tackle domain shifts under these situations, domain generalization (DG) [12, 8] and zero-
shot domain adaptation (ZSDA) [9, 13, 14] settings are designed, respectively. The main
difference between DG, ZSDA, and UDA is whether the task-related data can be obtained
from the target domain.

When handling unseen target domains, there is no way to specify all possible target
domains that we may encounter. However, it is possible to specify several possible target
domains to encounter. For example, we can not specify all possible weather conditions when
we train a self-driving car system. But, we can specify several possible weather conditions,
such as rainy and cloudy. Then, we can collect data from these possible weather, and
we then train a model with these data and expect this model to generalize to the unseen
weather condition. DG is designed to realize the above procedure. DG assumes data from
multiple domains are available, and the goal of DG is to train a model that can generalize
to unseen domains. Since the test data is from an unknown domain, DG seeks to improve
the generalization ability of the model in a general sense and expect such generalization
ability can work on an unknown domain. An illustration of DG is shown in Figure 1.2.
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On the other hand, in the second situation, we consider that the target domain can be
specified, but task-relevant data is unobtainable in the target domain. Hence, what we need
is a model that works well in a particular domain. Models that perform well for a particular
domain are clearly easier to obtain than models that perform well in a general sense. Hence,
DG would be an expensive setting to solve the second situation, as DG would seek to solve a
much harder problem. We propose a zero-shot domain adaptation (ZSDA) method to solve
the second situation. ZSDA involves two tasks. We call the classification task we want to
solve the task-of-interest (ToI), we call the classification task that is irrelevant to the ToI
irrelevant task (IrT). ZSDA assumes that we can obtain ToI data from the source domain
and IrT data from both the source and target domains, and domain shift is shared with
the ToI data and IrT data. For example, as Figure 1.2 shows, we want to train a model
for classifying dogs, and we need to tackle the domain shift between the photo domain and
the sketch domain. Here, the dog classification task is ToI. However, for some reason, we
can not get dog images from the sketch domain. ZSDA assumes that we can obtain guitar
images from both the photo and sketch domains. Here, the guitar classification task is IrT.
In this case, the difference in the domain is the difference between photo style and sketch
style, no matter it is a dog classification task or a guitar classification task. Hence, it is
possible to utilize guitar images from both the photo and sketch domains to learn the style
difference between the photo and sketch styles. Then, we can utilize learned style differences
and dog images from the photo domain to train a model that can generalize to the sketch
domain.

This thesis focuses on DG and ZSDA settings for alleviating domain shifts when task-
relevant data from the target domain is unavailable. There are four differences between DG
and ZSDA settings.

1. Number of domains: DG involves more than three domains, while ZSDA only
involves two domains.

2. Number of tasks: In the DG setting, only one task is involved. We only need to
handle differences caused by domains. In contrast, in the ZSDA setting, we need to
deal not only with the difference between source and target domains but also with the
difference between relevant and irrelevant tasks.

3. Characteristics of target domain: In the DG setting, it is impossible to obtain
any information from the target domain since the target domain is not specified during
the model training. However, in the ZSDA setting, the target domain is specified, we
can utilize task-irrelevant data from the target domain to predict the characteristics
of target domain.

4. Goal: DG aims to improve the model’s domain generalization ability in a general
sense, ZSDA aim to improve the model’s generalization ability in a specific domain.

1.2 Approach

In this thesis, we mainly focus on two types of strategies to solve DG and ZSDA tasks:

3



Figure 1.2: An illustration of domain generalization (DG) setting and zero-shot domain adaptation
(ZSDA) setting. The blue box denotes the data that can be obtained during training. The red
box denotes the data that can not be obtained during training. The goal of these two settings is
to train a model that can predict data in the red box

1. Data augmentation. Data augmentation aims to increase the amount of training
data by generating new data from existing training data. Data augmentation [9, 7] has
been found to be a very effective strategy for alleviating domain shifts. With diverse
training data, the machine learning model is forced to learn more invariant features.
The invariant feature will lead to better domain generalization ability [15].

2. Representation learning. In general, we can divide a neural network into two parts,
the last layer of the neural network is a linear classifier, and the rest of the neural
network learns to provide representations to this classifier. Representation learning
aims to design the representation, also called features, drawn from the data carefully
for different purposes. In the context of alleviating domain shift, learning domain-
invariant features is a common strategy. Domain-invariant features are not affected
by changing of domains. if a classifier is based on such features to make predictions,
such a classifier should be also not affected by changing of domains.

In Chapter 3, we propose a novel data augmentation technique for solving the DG task. In
Chapter 4, we propose a framework that contains a novel representation learning objective
for solving the ZSDA task.

1.3 Contribution

In this section, we list two contributions made in this thesis, which provide novel and
effective solutions to DG and ZSDA.

1. Generative Adversarial Domain Augmentation (GADA) (Chapter 3): The
first contribution is a data augmentation-based method for DG task. GADA aims to
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augment training data with diverse and difficult samples. We see three advantages
of our proposal. First, we propose a flexible framework that utilizes the worst-case
data-generating distribution represented by a generative model. More specifically,
we propose utilizing domain codes to control the behavior of the generative model.
The data-generating distribution is consequently adapted by optimizing the domain-
code distribution so that it helps to improve the domain generalization ability. This
framework can be easily extended to other tasks that require control of the data-
generating distribution of a generative model. Second, our proposal serves as a data
augmentation-based method. Due to the flexibility of the data augmentation method-
ology, our framework can be easily combined with other domain generalization algo-
rithms. We remark that, to the best of our knowledge, our proposal is the first data
augmentation-based method that exploits the worst-case data-generating distribution
characterized by generative models that can represent semantically different domains.
Third, experiments on three benchmarks indicate our proposal shows superior domain
generalization ability.

2. Dual Mixup Contrastive Learning (DMCL) (Chapter 4): The second contri-
bution is a representation method for the ZSDA task. DMCL aims to adapt a classical
representation learning method, domain adversarial training (DAT) [1], to the ZSDA
setting for learning domain-invariant features. To achieve this, we extend the mixup
[16] technique and combine it with DAT so that DAT can work with domains with dif-
ferent label spaces. Also, we design a dual-level contrastive learning objective to force
feature disentanglement so that the classifier will rely on domain-invariant features
more. With these designs, DMCL has the following merits. First, in the whole frame-
work, unlike most other related work, we do not rely on generative models. Hence,
DMCL requires fewer computational resources. Second, the model structure in DCML
is similar to that of the classical DAT, so some further enhancement methods for this
structure can be combined with our approach [17]. Third, we evaluate our proposal
on two benchmarks. The experimental results suggest that our proposal successfully
adapts DAT in the ZSDA setting and achieves good domain adaptation ability.

1.4 Outline

The rest of the thesis is organized as follows.

1. Chapter 2 introduces existing work that aims to alleviate domain shifts. More specif-
ically, we review existing work related to five settings designed to overcome domain
shits, which are unsupervised domain adaptation (UDA), partial domain adaptation
(PDA), source-free domain adaptation (SFDA), domain generalization (DG), and zero-
shot domain adaptation (ZSDA).

2. Chapter 3 presents a novel data augmentation method for domain generalization
tasks. This method aims to augment training data with diverse and difficult images.

3. Chapter 4 presents a representation method for zero-shot domain adaptation meth-
ods. This method aims to learn domain-invariant features when the source and target
domain contain different label spaces.
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4. Chapter 5 summarizes this thesis and draws overall conclusions. We also discuss
future research directions in this chapter.

1.5 List of publications

This thesis is based on the following articles. The first and second articles are for the
domain generalization task (Chapter 3), which is a task designed for the first situation, and
the third is for the zero-shot domain adaptation task (Chapter 4).

1. Yu Zhe, Kazuto Fukuchi, Youhei Akimoto, Jun Sakuma, "Domain Generalization Via
Adversarially Learned Novel Domains," in 2022 IEEE International Conference on
Multimedia and Expo (ICME), Taipei, Taiwan, 2022 pp. 1-6.

2. Yu Zhe, Kazuto Fukuchi, Youhei Akimoto, Jun Sakuma, "Domain Generalization via
Adversarially Learned Novel Domains," in IEEE Access, vol. 10, pp. 101855-101868,
2022, doi: 10.1109/ACCESS.2022.3209815.

3. Yu Zhe, Kazuto Fukuchi, Jun Sakuma, Zero-shot domain adaptation based on dual-
level mix and contrast. in Information-Based Induction Sciences and Machine Learning
(IBISML) 2022-53.
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Chapter 2

Literature Review

In this chapter, we introduce some related works that investigate how to alleviate domain
shifts in the image classification task. In Section 2.1, we give a preliminary definition of
the problem we aim to solve. In Section 2.2, we review unsupervised domain adaptation
methods. In Section 2.3, we review partial domain adaptation methods. In Section 2.4,
we review source-free domain adaptation methods. These works all rely on data from the
target domain to alleviate domain shifts. In Section 2.5 and Section2.6, we discuss domain
generalization methods and zero-shot domain adaptation methods. Section 2.5 and Sec-
tion2.6 are directly related to our focus, which attempts to overcome domain shifts without
obtaining task-relevant data from the target domain. Section 2.7 gives a discussion about
introduced methods and settings. A comparison of characteristics of the above settings is
shown in Table 2.1.

Table 2.1: A comparison among different settings

Topic

Can we obtain
task-relevant
data from the
source domain

Can we obtain
task-relevant
data from the
target domain

Can we specify
target domain

Do we need to
handle differnet
label space

number of domains number of tasks

UDA Yes Yes Yes No 2 1
PDA Yes Yes Yes Yes 2 2
SFDA No Yes Yes No 2 1
DG Yes No No No More than 3 1
ZSDA Yes No Yes Yes 2 2

2.1 Preliminary

In this thesis, we focus on the classification task when domain shifts happen. In this
section, we first provide the necessary notations and definitions used in this section. This
thesis considers how to overcome domain shift under the supervised learning framework;
hence we first introduce supervised learning.

Supervised learning refers to utilizing labeled datasets to train machine learning models
that can generalize to the test data. Formally, let X be the input space and Y be the
label space. Given a training dataset Dtrain that contain N labeled training examples,
Dtrain = {(xi, yi)}N

i=1, supervised learning algorithms aim to learn a machine learning model
f : X → Y . Then, the trained model f is used to classify samples from a test dataset
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Dtest = {(xi)}M
i=1. When the training data and test data are independent and identically

distributed, we call the IID assumption holds. When the IID assumption holds, a model
that performs well in the training dataset is expected to perform well in the test dataset.
However, IID assumption may not hold in some cases, and we focus on a special case domain
shift.

Let X be the input space and Y be the label space. A domain is defined as a joint
distribution PXY on X × Y . For the sake of simplicity, we often use P to refer to PXY . We
denote the domain of the training data as source domain P s and denote the domain of the
test data as target domain P t. When P s 6= P t, the IID assumption does not hold, and we
call this domain shift happens.

Also, in this thesis, we use the label set to distinguish between different classification
tasks. Given task A and task B with label sets Ca and Cb if Ca = Cb, then task A and task
B are the same task. Otherwise, these two tasks are different tasks. In Section 2.3 and
Section 2.6, we will introduce settings that involve two tasks.

2.2 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to utilize labeled data from the source domain
and unlabeled data from the target domain to train a model that can generalize to the target
domain [1]. This setting is the most common and basic setting to alleviate domain shifts.
The solution to the other settings is basically inspired by the UDA approach. Hence we
first review classical strategies for solving UDA in this section.

2.2.1 Problem setting

We first introduce a formal definition of UDA. UDA assumes that we have two domains,
a source domain P s

XY and a target domain P t
XY . Also, UDA assumes that the source

domain and target domain have the same label space. UDA assumes that we can have a
labeled dataset that contains N data-label pairs drawn from domain P s

XY , namely Ds =
{(xs

i , ys
i )}N

i=1 with (xs
i , ys

i ) ∼ P s
XY . Also, we have a unlabeled dataset that contains M

samples drawn from target domain, namely Dt = {(xt
i)}

M
i=1. The goal of UDA is to train a

model with a generalization ability to the target domain.

2.2.2 Adversarial Learning-based Methods

One of the most classical strategies to solve UDA is adversarial-based methods [1, 7, 18,
19]. These methods attempt to learn domain-invariant features to solve the UDA task.
Domain-invariant features refer to features that are not affected by domain changes. If
the classification model only relies on domain-invariant features, the model should not be
affected by the domain shifts. In general, the adversarial-based method introduces a domain
classifier that classifies whether a sample comes from the source or target domain. Then,
by adversarially optimizing the feature extractor with the domain classifier, the features
extracted from the source and target domains will become more and more domain invariant.

Adversarial-based strategy is first introduced to solve UDA tasks by [1]. They proposed
a method termed domain adversarial training (DAT). As Figure 2.1 shows, DAT designs
a model which contains a feature extractor (green in Figure 2.1), a label classifier (blue

8



Figure 2.1: A illustration of domain adversarial training, [1]

in Figure 2.1), and a domain classifier (red in Figure 2.1). During the backpropagation,
a gradient reversal layer will reverse the gradient from the domain classifier, thus forcing
the feature extractor to learn features that can not be used to classify the domain, i.e.,
domain-invariant features.

DAT was found to be a very effective method for solving UDA. Lots of studies follow
the idea of DAT and try to improve this method. [20] argued that the performance of
DAT relies heavily on the domain classifier. However, in the DAT method, the domain
classifier is only trained by classifying the domain information of samples, which is a binary
classification task. Hence such domain classifiers may not be able to explore the intrinsic
structure of data distribution. To improve the performance of the domain classifier, [20]
designed a data augmentation method, termed domain mixup, which augments training
with intermediate samples between domains. With this data augmentation method, the
domain classifier is required to not only classify the source and target domains but also
to capture the intermediate status between the source and target domains. Hence, the
resulting domain classifier is able to have a better discriminative ability to judge the domain
information of samples. Adversarial learning with such domain classifier also show better
domain adaptation ability.

[11] discussed that DAT only aims to learn domain-invariant features but ignores ex-
tracting task-specific features. In certain situations, the features learned by DAT will have
limited discriminative ability in the target domain. To overcome this issue, [11] designed a
novel model which contains one feature extractor and two classifiers. This method can be
divided into three steps. In the first step, two classifiers and the feature extractor is trained
by minimizing cross-entropy loss to predict the labels of samples correctly. In the sec-
ond step, two classifiers are trained by maximizing the discrepancy between their outputs.
In the third step, the feature extractor is learned by minimizing the discrepancy between
outputs from outputs of two classifiers. The first step ensures the discriminative ability
of learned features, and the second and third steps ensure the domain-invariant ability of
learned features.

[21] pointed out that DAT may suffer from model collapse due to the separate design
of the label classification task and domain classification task. To alleviate this issue, [21]
proposed a novel method for increasing interaction between label and domain classifiers.
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More specifically, their adversarial objective encourages mutually inhibitory relations be-
tween category and domain predictions. They showed that this novel adversarial objective
alleviates the model collapse issues and achieves better domain adaptation ability than
DAT.

2.2.3 Generative model-based methods

A certain number of works [22, 23, 24] attempt to utilize a generative model to solve
UDA tasks. The generative model is often used for two purposes in the UDA setting.
First, some methods [22] utilizes a generative model to perform data augmentation. They
design a generative model for synthesizing novel data and augment training data with these
synthesized data. Second, some methods [23, 24] introduce an additional task that performs
data reconstruction of the source and target data by a generative model. These works show
that such additional task is helpful in improving the model’s domain adaptation ability.

[22] designed an image-to-image translation model, termed domain flow generation (DLOW),
to represent data generating distribution of intermediate domains between the source and
target domains. DLOW model takes an image and an additional probability vector as in-
puts and outputs an image with a style specified by the probability vector. By varying
the probability vector, DLOW can synthesize diverse images. They then show that aug-
menting training data with data drawn from the diverse intermediate domains improves the
classification model’s domain adaptation ability.

[23] argued that explicitly learning and separating representations that are shared between
domains and representations which is unique in each domain can improve the model’s do-
main adaptation ability. Hence, they proposed a special model which contains encoders,
decoders, and a classifier. The encoders and decoders are used to realize a data reconstruc-
tion task, and the encoders and a classifier are used to classify input samples. By training
whole models with the classification and data reconstruction tasks, they showed that the
performance on the classification task can be further improved.

[24] proposed a generative model, termed cycle-consistent adversarial domain adaptation
(CyCADA), which attempts to overcome domain shifts at both the feature level and pixel
level. At the pixel level, this model is trained with a data reconstruction task that attempts
to convert data in the source domain into the target domain. Mapping source data into
the target domain will alleviate domain shifts in the pixel level. At the feature level, this
model utilizes domain adversarial training for learning domain-invariant features. With
two-level adaptation, CyCADA shows superior domain adaptation performance than one
level adaptation-based method.

2.3 Partial domain adaptation

2.3.1 Motivation and problem setting

With the development of big data evolution, more and more large-scale data sets have
emerged, such as ImageNet [25]. Pre-training machine learning models on these large
datasets first and then fine-tuning to specific tasks later becomes a popular strategy when
we want to build a machine learning model. In the fine-tuning process, there are two issues.
First, the specific task we are interested in usually has a smaller label set than big datasets’
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label sets. Second, we may need to handle the domain shift issue when we retrain the
model. In this situation, UDA methods are hard solutions to alleviate domain shifts since
UDA methods usually assume the label set in the source and target domains are the same.
The partial domain adaptation (PDA) setting is introduced for alleviating domain shifts in
this situation [26, 27].

PDA assumes that we have two domains, a source domain P s
XY on X s × Ys and a target

domain P t
XY on X t × Y t. The target domain label space is contained in the source domain

label space, Y t ⊆ Ys. PDA assumes that we can have a labeled dataset that contains N

data-label pairs drawn from domain P s
XY , namely Ds = {(xs

i , ys
i )}N

i=1 with (xs
i , ys

i ) ∼ P s
XY .

Also, we have a unlabeled dataset that contains M samples drawn from target domain,
namely Dt = {(xt

i)}
M
i=1. The goal of PDA is to train a model with a generalization ability

to the target domain.

2.3.2 Partial domain adaptation methods

[26] first introduced the PDA problem, and they proposed Partial Adversarial Domain
Adaptation (PADA) to solve the PDA problem. PADA is a variant of domain adversarial
training, and the key idea is to learn domain-invariant features through adversarial training.
The special feature of this method is to reduce the weight of data with classes that are not
contained in the target domain label set during the adversarial training. With this strategy,
the PDA setting will become more and more like a UDA setting during the training. Down-
weighting the samples from the outlier source classes (classes that are only contained in
the source domain) is the most common strategy for solving the PDA settings. A certain
number of works follow this line [27, 28, 29].

[10] considered another strategy to solve the PDA problem. Unlike [26], they believe data
with outlier source classes are also helpful in improving the model’s domain adaptation
ability. They augured that although outlier data are not helpful in the classification tasks
we are interested in, these data may have meaningful features that can be used in aligning
features in different domains. For example, considering we want to train a model for dog-cat
classification, the fox images are not helpful for this classification task. However, we can
learn features such as the tail and fur from both cat, dog, and fox images. When we map
these features from both the source and target domains into the same space, we can obtain
domain-invariant features. Models built on such domain-invariant features will have good
domain adaptation ability. With this intuition, [10] proposed Implicit Semantic Response
Alignment (ISRA) to discover disentangled features, then they utilized adversarial learning
to map these features into the same space. During this process, the feature extractor
can learn domain-invariant features. Experimental results suggest this method lead to
outstanding domain adaptation ability in the PDA setting.

2.4 Source-free domain adaptation

2.4.1 Motivation and problem setting

When we utilize UDA methods to alleviate domain shifts, we need to collect data from both
the source and target domains. However, this strategy is often difficult to use in certain
situations. For example, the source and target domains refer to two different hospitals.
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Applying UDA methods in this situation means two hospitals must share sensitive medical
data, which is generally difficult to do in reality. Several works [30, 31] have made efforts
to reduce private data sharing by introducing the source-free domain adaptation (SFDA)
setting. In the SFDA setting, instead of collecting data from the source domain, a model
trained using the source domain data is given.

Formally, SFDA assumes that we have two domains, a source domain P s
XY on X s × Ys

and a target domain P t
XY on X t × Y t. The target domain label space is the same as the

source domain label space. SFDA assumes that we can have a pre-trained model fs, which is
trained on source domain data. Also, we have a unlabeled dataset that contains M samples
drawn from target domain, namely Dt = {(xt

i)}
M
i=1. SFDA aims to train a model with a

generalization ability to the target domain.

2.4.2 Source-free domain adaptation methods

[30] first considered the SFDA setting in order to protect data privacy while overcoming
domain shifts. Their key idea to solve SFDA is to utilize the pre-trained source model to
assign labels to unlabeled target data. Then, train a target model with target data and their
pseudo labels. Due to domain shifts, the source model is not able to assign correct labels
to all target data. Hence, [30] hypothesized and verified that samples with low self-entropy
measured by the pre-trained source model are more likely to have correct pseudo labels.
Another issue is that only a few target data have reliable pseudo labels. To address this
issue, they proposed a self-learning framework that progressively updates the target model.
Surprisingly, the model trained by their method achieves outstanding domain adaptation
ability without source data.

[32] pointed out that the pseudo-labeling-based method often results in a certain num-
ber of samples with the wrong label. Machine learning models trained on such data will
have limited discriminative ability. On the other hand, they found although conditional
generative adversarial networks (cGANs) are also trained on labeled data, the performance
of cGANs is rarely affected by data with wrong labels. Hence, they proposed a variant
of cGANs to synthesize samples with the target style. They proposed to jointly train the
generative model and the classifier. The classifier will continuously improve the domain
adaptation ability by training on target samples that are continuously generated by the
generative model.

[33] argued that if the source model and target model can both learn a certain type
of representation, termed domain generic representations, the SFDA task can be solved.
The domain generic representations have two characteristics: first, the representations are
invariant between source and target domains; second, the representations have a good dis-
criminative ability. They then extended a data augmentation technique, termed mixup [16],
to force the source model to learn domain generic representations. Then, when they learn
target models, they also proposed to utilize this mixup technique. This technique can be
combined with other SFDA methods since this method only perform data augmentation
when they learn the source and target models. Although this method only makes a simple
modification, it shows outstanding domain adaptation performance in the SFDA setting.
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2.5 Domain generalization

2.5.1 Motivation and problem setting

Till now, we introduced UDA, PDA, and SFDA settings. A common assumption of these
settings is the ability to specify the target domain and obtain data from the target domain.
However, we often need to deal with the unseen target domain. If the target domain is an
unseen domain, we can not obtain data from this domain. UDA, PDA, and SFDA methods
may be hard solutions to alleviate domain shifts. Domain generalization (DG) setting is
designed to improve the model’s generalization ability on the unseen target domains [34]. To
achieve this, DG assumes that data from multiple source domains are available and utilize
multiple source domains to train a model that can generalize to unseen target domains.

Formally, assume we have a set of multiple datasets D = {Dk}K
k=1. Domain generalization

assumes that each dataset Dk contains i.i.d. data-label pairs drawn from domain P k
XY ,

namely Dk =
{(

xk
i , yk

i

)}Nk

i=1 with
(
xk

i , yk
i

)
∼ P k

XY . We assume that all domains have the
same label set. The DG task aims to train a classifier with a generalization ability to unseen
domains by utilizing given datasets for training.

2.5.2 Domain generalization methods

In Chapter 3, we propose a data augmentation-based method for solving DG tasks. Hence,
this section will mainly introduce data augmentation-based DG methods.

Data augmentation is one of the most common ways to solve the DG task. We divided
these methods into three main categories: adversarial data augmentation methods [35],
generative model-based data augmentation methods [36, 22], and domain-invariance-based
methods [37, 38]. Also, there are some methods that do not fall into these categories [8, 12].

Adversarial data augmentation aims to augment training data with samples drawn from
a fictitious domain that is "hard" for the model to classify, expecting that training with such
augmented data will improve the classifier’s domain generalization ability. [35] proposed
a minimax optimization problem to find a distribution that is hard for the classifier to
predict, i.e., the worst-case distribution, under the condition that the Wasserstein distance
from the original data generation distribution to the synthesized distribution is within a
certain distance. Their method, termed GUD, then trains the classifier with the worst-case
distribution. They reported that the generalization ability to unseen domains is improved
by training the model with the worst-case distribution.

Generative model-based data augmentation [36, 22] methods utilize the generative model
to synthesize images with novel domains and augment training data with these synthesized
images. Given training samples drawn from multiple domains that are mutually semanti-
cally different from each other, [36] proposed a generative model that can synthesize novel
domains that are apart from every training domain in the sense of the Wasserstein distance
while maintaining semantic information. Then, they augment the training data with sam-
ples generated by the proposed generative model. They report that their proposal, termed
L2A-OT, can improve the model’s generalization ability. [22] proposed a generative model
named the domain flow generator, termed DLOW, which can synthesize intermediate do-
mains among semantically different domains. They report that augmenting training data
with samples uniformly drawn from the synthesized domains is beneficial to improving the
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classification model’s domain generalization ability. These works train the generative model
and the classification model independently. The data provided by the generative model is
not directly designed for the classifier.

Some works attempt to design the generative model with the training of the classifier.
[39, 40] proposed jointly training the generative model for data augmentation and the classi-
fication model for improving the classification model’s domain generalization ability. During
the training process, [39] (Wang2021) attempted to train the generator to maximize the mu-
tual information between the synthesized images and the source images. [40] (yang2021)
attempted to train the generator to maximize the divergence between features extracted
from synthesized images and original training data. Although different strategies are pro-
posed in these methods, they both aim to synthesize the augmented data that can result in
diverse features for the classifier. The experimental results show that these methods achieve
better domain adaptation ability than independently trained generative model-based meth-
ods.

A recent work [41] proposed a framework called MBDG. This work considered the same
training objective as the adversarial data augmentation; they want to improve the clas-
sification model’s performance over the worst-case domain. However, unlike [35], which
attempted to solve a minimax optimization problem, [41] made several assumptions on the
data generation process and the labeling mechanism to transform the minimax optimization
problem into a relaxed problem that removes the inner maximization. Then, they proposed
an algorithm to solve the relaxed problem by using a generative model that simulates the as-
sumed data generation process. This work is related to both adversarial data augmentation
and generative model-based augmentation. It utilizes samples generated by a generative
model to improve the model’s performance over the worst-case distribution. Empirically,
they report that their algorithm improves the classification model’s domain generalization
ability on several datasets. However, their experimental results also show that MBDG only
leads to good domain generalization ability in certain domains, such as the sketch domain
in the PACS dataset, while in certain domains, this method does not perform well.

Domain-invariance-based methods attempt to augment training data without distinguish-
able domain features [37, 38]. [37] proposed CrossGrad, which augments training data with
adversarial examples obtained from a special classifier, termed the domain classifier, that
distinguishes training domains. The adversarial examples obtained from the domain clas-
sifier are expected to have few domain-level features. [38] followed this idea and proposed
DDAIG; they utilized an additional neural network to generate the domain classifier’s ad-
versarial perturbation instead of the gradient-based perturbation. These studies aim to
augment training data with samples that fool the domain classifier. By this approach, they
can obtain samples with domain-invariance features.

In addition to those discussed above, [8] (JiGen) forced the model to solve additional
jigsaw puzzles by augmenting training data with image patches and achieving outstanding
performance on the DG task. [12] (Mix-style) proposed augmenting training data with
features synthesized by linear combinations of features learned by the classifier.

Another common approach to tackling the DG problem is a special type of representation
learning, domain-invariance feature learning [5, 18, 19, 42, 43]. The intuition of these
works is that invariant features learned from different domains can be generalized to unseen
domains. For instance, a popular technique in this line is domain adversarial learning [5] and
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its variant [18, 19], which attempts to learn a representation that cannot be distinguished
among multiple domains. In addition, a method that has recently gained attention is
invariant risk minimization (IRM) [42, 43], which aims to learn a representation such that
the optimal linear predictor on top of this representation is identical over all source domains.
Domain-invariance features and data augmentation are mutually complementary. A certain
number of data augmentation methods can be combined with domain-invariance feature
learning methods [36, 12].

2.6 Zero-shot domain adaptation

2.6.1 Motivation and problem setting

In some situations, it is possible to specify the target domain, but it is hard to collect
task-relevant data from the target domain. For example, if task-relevant data are private,
it is expensive or time-consuming to remove private information. To alleviate this issue,
zero-shot domain adaptation (ZSDA) methods aim to utilize task-irrelevant data from both
the source and target domain to learn domain shifts between source and target domains.
Then, learned domain shift can be utilized to improve the model’s generalization ability on
the target task-relevant data [9].

In the zero-shot domain adaptation (ZSDA) task, we have two domains, a source domain
Ds, and a target domain Dt. The data samples are also drawn from two tasks, a task of
interest (ToI), which we call a relevant task, and an irrelevant task (IRT). ToI and IrT
have different label sets Cr and Cir, that is Cr ∩ Cir = ∅. For the ToI, we have sample-
label pairs from the source domain, namely we have Dr

s =
{(

xr
sj

, yr
sj

)}N

j=1
where yr

s ∈ Cr.
For the IRT, we have sample-label pairs from both source and target domains, namely
we have Dir

s =
{(

xir
sj

, yir
sj

)}N

j=1
where yir

s ∈ Cir and Dir
t =

{(
xir

tj
, yir

tj

)}N

j=1
where yir

t ∈ Cir,
respectively. We also use a domain label to indicate the domain information of a sample. For
xr

s and xir
s , the corresponding domain label ds is 0, for xir

t the corresponding domain label dt

is 1. Given Dir
s , Dir

t , Dr
s , the goal of the ZSDA task is to learn a model that can generalize

to the distribution of target relevant data, namely distribution of Dr
t =

{(
xr

tj
, yr

tj

)}N

j=1
.

2.6.2 Zero-shot domain adaptation methods

There are mainly two types of methods to solve ZSDA tasks; the generative model-based
methods and the domain-invariant feature learning-based methods. The generative model-
based methods aim to train a generative model, such as generative adversarial networks
(GAN) [44], for synthesizing virtual data that can represent the target ToI data [45, 13].
[9] first introduced the ZSDA setting. They proposed to utilize deep neural networks to
learn the domain shifts, and then the learned domain shift is used to convert source data
into the target domain. [45] extended conditional coupled generative adversarial networks
(CoCoGAN) [46] to learn the joint distribution of data samples across domains and tasks.
Such a generative model is able to synthesize task-relevant samples with target styles. With
these synthesized samples, the domain shifts issue can be alleviated.

Another strategy for solving ZSDA tasks is the domain-invariant feature learning-based
methods [47]. This work aims to force the classifier based on the domain-invariant features
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to make predictions. Domain-invariant features refer to features that do not change with
the domain. If a model is only based on domain-invariant features to make predictions,
then this model should generalize to different domains. [47] can be divided into two stages.
In the first stage, this method extends domain adversarial training [5] to learn domain-
invariant features. In the ZSDA setting, since we do not have samples for ToI in the target
domain, the domain-invariant features are mainly learned with IrT data. Hence, in this
stage, learned features might not generalize to the ToI approximately. To alleviate this
issue, in the second stage, [47] design an attention-based [48] module to fine-tune the model
learned in the first stage so that bias caused by the ZSDA setting can be alleviated. In this
sense, [47] first learns biased features and then removes the bias in the second stage.

In addition to those discussed above, some works consider special zero-shot domain adap-
tation settings. Instead of obtaining task-irrelevant data from the target domain, they
assume some special information can be obtained from the target domain. [14] assumes
that the domain shift can be parameterized by attributes, and such attributes are known
during model training. For example, if the rotation causes the domain shift, then the ro-
tation angle in each domain is their corresponding attribute. They then utilize source and
target domain attributes to improve the model’s generalization ability without target data.
[49] focus on a specific domain shift, which is the illumination shift. They propose a color
invariant layer with this setting to improve the model’s robustness against illumination
changes.

2.7 Summary and discussion

In this Chapter, we have introduced five settings and detailed methods that aim to alleviate
domain shifts.

1. In Section 2.2, we introduced unsupervised domain adaptation, which is the most
basic setting to alleviate domain shift. We also introduced domain adversarial training
(DAT), which is one of the most important methods to alleviate domain shift. DAT
has inspired a lot of subsequent works. In Chapter 4, our proposal also follows this
line.

2. Also, in Section 2.2, we have introduced how a generative model can be used to over-
come domain shifts. A generative model will be used for data augmentation or solving
an additional data reconstruction task. In Chapter 3, we also utilize a generative
model for data augmentation.

3. In Section 2.3, we have introduced the partial domain adaptation (PDA) setting. The
distinctive feature of the PDA is that the source and target domains have different
label spaces. We also review strategies for solving the PDA problem. Although these
methods work well when the target label space is a sub-space of source label space,
these methods can not handle situations when the source and target label space have
no intersection. In Chapter 4, we will consider how to alleviate domain shifts when
the source and target label space have no intersection.

4. In Section 2.4, we introduced the source-free domain adaptation (SFDA) setting and
algorithms. This setting can protect sensitive data in the source domain and overcome
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domain shifts. In Chapter 4, we also investigate how to alleviate domain shifts without
obtaining sensitive data, but we focus on protecting sensitive data in the target domain.

5. Section 2.5 introduced the domain generalization (DG) setting and algorithms. This
section is directly related to Chapter 3. Chapter 3 also focuses on solving the DG prob-
lem. In Chapter 3, we will summarize the limitations of data augmentation methods
presented in this section and propose a novel data augmentation method to overcome
these limitations.

6. Section 2.6 introduced the zero-shot domain adaptation (ZSDA) setting and algo-
rithms. These methods can be divided into two categories, the generative model-based
method and the representation learning-based method. We will show the limitations of
strategies shown in Section 2.6, and will provide a novel representation learning-based
method in Chapter 4.
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Chapter 3

Domain Generalization via
Adversarially Learned Novel
Domains

This chapter proposes a data augmentation method, generative adversarial domain aug-
mentation (GADA), for domain generalization tasks. GADA aims to synthesize data with
both semantically diverse styles and difficulty.

3.1 Introduction

In reality, machine learning models often need to handle unseen target domains. In this
situation, it is difficult to collect data from the target domain. Hence, domain adaptation
methods that assume unlabeled data from the target domain are obtainable are hard solu-
tions. Domain generalization (DG) is designed to solve this problem. DG methods attempt
to utilize multiple training domains to build a machine learning model that can generalize
to the unseen target domain.

As we already discussed in Section 2.5, data augmentation is one of the most common ways
to address domain generalization (DG) problems [36, 22, 35, 41]. By providing diverse data
to the main classifier, the model will learn more domain-invariant features. Among various
data augmentation methods, we focus on two types: adversarial data augmentation [35]
and generative model-based data augmentation [22, 36]. Although these methods exhibit
the good ability to solve DG problems, these methods have some limitations.

1. An adversarial data augmentation method [35] shows that augmenting difficult sam-
ples can improve the model’s domain generalization ability. However, the augmented
data considered in this method are bounded by the Wasserstein distance, resulting
in samples semantically similar to the original training samples. This data augmen-
tation method will achieve limited generalization ability when unseen domains are
semantically different from the training distribution.

2. Generative model-based data augmentation methods [22, 36] utilize generative mod-
els to synthesize augmented samples. These works considered different strategies to
train the generative model, they both aimed to improve the diversity of the gener-
ated images. However, these works have never considered data augmentation with the
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Figure 3.1: An illustration of the DLOW-B model and three domain codes. This model is trained
on three different domains, so the domain code is a 3-dimensional probability vector. We visualize
this model on a 2-dimensional simplex. Here, each point in the 2-dimensional simplex corresponds
to a 3-dimensional domain code. By varying domain codes, the generated images exhibit different
styles.

worst-case distribution using generative models.

We aim to incorporate the advantages of both adversarial data augmentation and genera-
tive model-based methods: it leverages the worst-case distribution with generative models.
To attain these, we need a generative model that can draw samples from distributions repre-
senting semantically different domains. Additionally, we need to control the data-generating
distribution to find the worst-case distribution over semantically different multiple domains.
Considering these requirements, we propose a conditional image-to-image translation model,
which allows us to generate images by specifying a mixture of semantically different styles
over multiple training domains. Namely, we propose to use a special GAN (generative ad-
versarial network) model named DLOW-B that allows controlling the style of generated
images by a probability vector called domain code, which represents the mixture of mul-
tiple domains1. By varying the domain codes, the styles of the generated samples can be
changed. Figure 3.1 shows an example of a DLOW-B model and domain codes.

With this generative model, we then need to find the worst-case data-generating distribu-
tion by controlling the domain code. Thus, we propose two plausible strategies to represent
the domain-code distribution: the first is using a Dirichlet distribution with learnable pa-
rameters to represent the domain-code distribution; the second is using a two-layer neural
network, termed domain-code NN, which takes Gaussian noise as input, and its output

1In different papers, domain code is named differently, such as domain label [50], and domainness [22], we
collectively refer to as domain code. Notably, our framework works with any generative model that satisfies the two
requirements denoted above, such as [51].
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represents the domain-code distribution. Then, we optimize the parameters of the Dirichlet
distribution or the parameters of the domain-code NN so that its output represents a dis-
tribution that gives the lowest predictive performance with the current classification model.
Additionally, we train the classification model with training data augmented with samples
drawn from the worst-case distribution represented by the learnable Dirichlet distribution
or the domain-code NN. We denote our framework with a learnable Dirichlet distribution
as GADA-D and another as GADA-NN.

Experimental results show that GADA-D and GADA-NN surpass the current data aug-
mentation methods in three DG tasks with multiple training domains in most cases. Fur-
thermore, further ablation studies and visualization results show that the proposed adver-
sarial training strategy can learn a ’hard’ domain-code distribution, which helps achieve
good domain generalization ability.

The novelty of this study is summarized as follows.

1. We propose a flexible framework that utilizes the worst-case data-generating distribu-
tion represented by a generative model. More specifically, we propose utilizing domain
codes to control the behavior of the generative model. The data-generating distribu-
tion is consequently adapted by optimizing the domain-code distribution so that it
helps to improve the domain generalization ability.

2. Our proposal serves as a data augmentation-based method. Due to the flexibility of
the data augmentation methodology, our framework can be easily combined with other
domain generalization algorithms. We remark that, to the best of our knowledge, our
proposal is the first data augmentation-based method that exploits the worst-case
data-generating distribution characterized by generative models that can represent
semantically different domains.

3. The experimental results suggest that the proposed method shows superior domain
generalization ability.

3.2 Preliminary

3.2.1 Cycle-Consistent Adversarial Networks

In this work, we utilize a variant of cycle-consistent adversarial networks (CycleGAN) [52]
to synthesize the augmented samples. We also modify a special module in the CycleGAN,
cycle consistent loss, to enforce the generative model to synthesize images with diverse styles.
Hence, we first introduce the CycleGAN model. As Figure 3.2 shows, CycleGAN contains
two generators, GST and GT S , and two discriminators, DS and DT . GST is designed to
convert an image in the source domain to the target domain, and GT S is designed to convert
an image in the target domain to the source domain. DS aims to judge whether an image is
from the source domain, and DT aims to judge whether an image is from the target domain.

Similar to GAN’s design, the generators are trained to fool the discriminators. The
training loss is shown in the following.

LGAN (GT S , DS) = Exs∼ps
X Y

[log DS(xs)] + Ext∼pt
X Y

[log (1 − DS(GT S(xt)))]
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Figure 3.2: An illustration of the CycleGAN model and three domain codes.

LGAN (GST , DT ) = Ext∼pt
X Y

[log DT (xt)] + Exs∼ps
X Y

[log (1 − DT (GST (xs)))]

CycleGAN also proposed a cycle consistent loss to preserve content information in the
input image. The key idea is that if the input image can be recovered from the synthesized
image, then the content information should be preserved in the synthesized iamges. The
cycle-consistent loss is shown in the following.

Lcyc (GST , GT S) = Exs∼ps
X Y

[‖GT S(GST (xs)) − xs‖1]

Lcyc (GT S , GST ) = Ext∼pt
X Y

[‖GST (GT S(xt)) − xt‖1]

With the above training objectives, CycleGAN is able to convert images from the source
domain to images with target styles.

3.2.2 Domain flow generator

In this work, we propose an image-to-image translation model to convert source domains
into novel domains. The proposed model is built on DLOW [22], so we introduce the DLOW
model in this section. DLOW is trained on multiple domains and takes one of the training
domains as the source domain. It can transfer an image from the source domain into an
image with an intermediate style among all training domains. Moreover, [22] considers a
domain-code space that encodes a mixture of multiple training domains. The domain code
z controls the style of the generated images. Assume we have K training domains T1, ..., TK .
z is defined as a K−dim vector, z = [z1, . . . , zK ] with

∑K
k=1 zk = 1, zk ≥ 0. Each element zk

represents the degree of relevance to the target domain Tk. By specifying z at generation
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time, DLOW can convert an image in the source domain into an image with a style specified
by z, which realizes the interpolation of all training domains. One illustration of the domain
codes is shown in Figure 3.1.

The objective function of the DLOW model contains the adversarial loss term and cycle
consistency loss, and DLOW results in two maps: GST , which learns a mapping from source
domain S to target domains T1, ..., TK , and GT S , which learns a mapping from T1, ..., TK to
S. GT S is used to assist the training of GST for persevering categorical semantics, which is
reflected in the cycle consistency loss. We only utilize GST in our proposal, so we take GST

as an example to explain DLOW. For more details, please refer to [22].
For K target domains, the DLOW model introduces K discriminators, DT1 , ..., DTK

, that
distinguish generated images and images from domain T1, ..., TK , respectively. Addition-
ally, the discriminator DS for source domain S distinguishes generated images and images
from the source domain. Then, for each k, the adversarial loss between S and Tk can be
formulated as:

Lk
adv (GST , DTk

) = ExTk
∼pTk [log DTk

(xTk
)] + Exs∼pS [log (1 − DTk

(GST (xs, z))] (3.1)

The full adversarial loss is defined as:

Ladv =
K∑

k=1
zk · Lk

adv (GST , DTk
) s.t.

K∑
k

zk = 1, zk ≥ 0 (3.2)

The cycle consistency loss between S and Tk is defined as:

Lcyc (GST , GT S) = Exs∼pS ‖GT S (GST (xs, z), z) − xs‖1 (3.3)

Then the full objective L is defined as:

L = Ladv + λLcyc,

where λ is a hyperparameter used to balance the two losses in the training process, and
similar losses are also defined for the opposite direction GT S . During the training, in
each epoch, we sample z from a fixed data distribution, and the generators are trained
on minimizing the full objective while discriminators are trained on maximizing the full
objective.

3.3 Proposal

In this section, we propose a generative model-based adversarial data augmentation method,
termed GADA (Generative Adversarial Domain Augmentation), for the domain general-
ization task. GADA aims to train the main classifier with the worst-case distribution
represented by the generative model. To achieve this goal,

1. We first propose a conditional generative model, domain flow with better cycle (DLOW-
B), to synthesize augmented samples. This model takes an image and a probability
vector, termed domain code, as inputs and outputs images with the style specified by
the domain code. See Section 3.3.1 for more details.
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Figure 3.3: An overview of GADA with the domain-code NN. The domain-code NN takes Gaussian
noise as input and outputs a valid domain code. The pretrained DLOW takes both image x and
domain code as input and synthesizes an image with the style specified by the domain code. The
classification model is trained with synthesized images. We optimize the domain code-NN to
maximize the classification loss so that it can represent the worst-case distribution.

2. We then propose utilizing the distribution of domain codes to represent the data-
generating distribution of the DLOW-B model. During this process, we consider two
types of methods to represent the distribution of domain codes. One uses a Dirichlet
distribution, the other uses a neural network, termed domain-code NN, to represent
the distribution of domain codes. See Section 3.3.2 for more details.

3. Finally, we propose a min-max optimization problem to enforce the generative model
to synthesize hard examples by finding the worst-case distribution of domain codes
and, at the same time, train the classifier on the worst-case distribution. See Section
3.3.3 for more details.

The overview of GADA with domain-code NN is shown in Figure 3.3.

3.3.1 Domain flow generator with better cycle

As discussed above, we propose controlling the domain-code distribution to control the
behavior of the generative model so that we can find the worst-case distribution. Hence, we
need a generative model that is conditioned by domain codes. The DLOW model already
satisfies our requirements. Empirically, however, we found that the synthesized images of
the DLOW lacked diversity. The style of the generated images does not necessarily change
with the domain code change.

[53] showed that the cycle consistency loss limits the diversity of the generated images.
The cycle consistency loss forces generated images to be recovered to the original image,
so the generated images usually look like the original images. To alleviate this issue, [53]
proposed a weak version cycle consistency loss. Instead of forcing generated images can
be recovered, they enforce that features extracted by the discriminator can be recovered.
Inspired by the weak version of cycle consistency loss, we replace the cycle consistency loss
of the original DLOW model with the weak cycle consistency loss. We call this new model
DLOW-B (domain flow generator with better cycle). The weak cycle consistency loss is
shown in the following:

L̃cyc (GST , GT S , γ) = Exs∼pS (γ ‖fDS
(GT S(GST (xs, z), z)) − fDS

(xs)‖1

+ (1 − γ)‖GT S(GST (xs, z), z) − xs‖1). (3.4)
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Figure 3.4: Comparison of DLOW and DLOW-B

Here, fDS() is the feature extractor of the source domain’s discriminator. γ is a hyperparam-
eter used to balance the pixel-level cycle consistency loss and feature-level cycle consistency
loss.

A comparison of the image quality of DLOW-B and DLOW is shown in Figure 3.4.
These DLOW and DLOW-B models are trained on the same datasets, digits-DG. Digits-
DG contains four digital dataset with different styles. Detailed introduction of digits-DG
is shown in Section 3.4.1. Subjectively DLOW-B generates images with a wider variety of
colors.

3.3.2 Representative data generating distribution by domain-code dis-
tribution

In this study, we aim to train the classifier with a min-max optimization objective, (3.5).
More specifically, during the training process, we aim to optimize PG, that is, the data-
generating distribution of the generative model G so that the loss function is maximized.
Additionally, we optimize the parameters of the classification model F so that the loss of
the classification task is minimized. We can interpret this optimization as distributionally
robust optimization [54]:

min
θF

sup
PG∈P

EPG
[ℓ(θF ; (X, Y ))]. (3.5)

Here, θF are the parameters of the classification model F . ℓ is the loss function, such
as the cross-entropy loss. G represents a generative model, and PG refers to a sample
generating distribution of G, (X, Y ) is sample-label pair drawn from PG. We expect that
the classification model can achieve good performance on PG by optimizing the classification
model through (3.5).

One difficulty in realizing optimization of (3.5) is how to control the generative model’s
behavior so that PG becomes challenging for the classification model. To solve this difficulty,
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we propose to use a generative model, termed DLOW-B, as our generative model G. Then,
by optimizing the distribution of domain codes, the data-generating distribution will be
changed accordingly. We, therefore, seek a way to optimize the domain-code distribution.

It is natural to first consider using an elemental distribution to represent the domain-
code distribution. Then, the domain-code distribution can be optimized by optimizing that
elemental distribution. Since a domain code is a K−dimensional probability vector, we want
a distribution on the simplex. The Dirichlet distribution is an elemental distribution whose
random variable is defined on the simplex. It is parameterized by a vector of positive-valued
parameters α = [α1, . . . , αK ] with αk ≥ 0. Hence, we can readily optimize the Dirichlet
distribution by optimizing α. We propose utilizing the Dirichlet distribution to represent
the distribution of domain codes as our first choice. We denote our framework with this
strategy GADA-D. The advantage of GADA-D is that few parameters need to be optimized.
Since the number of parameters of the Dirichlet distribution is the same as the number of
dimensions of the domain code, which is generally less than 10.

Furthermore, considering that the Dirichlet distribution may not be able to represent a
complex distribution over the simplex, we provide another strategy. The success of deep
learning in recent years has shown that neural networks have great representation ability.
In particular, GAN [44] showed that a neural network can learn a complex distribution from
finite samples. Hence, we propose to use a neural network g, termed domain-code NN, to
represent the distribution of domain codes. Inspired by [44], we introduce a Gaussian prior
c ∼ N (0, 1) to introduce randomness into the neural network. We design the last layer of the
domain-code NN as a softmax layer so that it outputs a probability vector. Therefore, by
choosing c randomly, g(c) works as a distribution in the domain-code space. Although the
number of parameters of the domain-code NN will be large, the domain-code NN have better
representation ability than a Dirichlet distribution. When the multiple training domains
are complex, this strategy can better represent the domain-code distribution. We call our
framework with this strategy GADA-NN.

3.3.3 Generative adversarial domain augmentation

In this section, we propose an algorithm to realize the min-max optimization problem (3.5)
with the DLOW-B model G and the idea of utilizing domain codes.

GADA-D: We denote a Dirichlet distribution as B(), and its parameters as α. Here, α

is defined as a K−dimensional vector, α = [α1, . . . , αK ] with αk ≥ 0. K is the number of
given training domains. Then, by utilizing the distribution of domain codes to represent
the data generating distribution, the objective of (3.5) becomes:

min
θF

sup
α

Ez∼B(α),
(x,y)∼Dsource

[ℓ(θF ; (G(x, z), y))] (3.6)

where (x, y) is an input-label pair drawn from source domain Dsource (DLOW-B is designed
to take samples from one training domain as input, and we denote that the training domain
as the source domain which is randomly selected among all training domains), F is the main
classifier, c ∼ N (0, 1), and ℓ is the cross-entropy loss.

In the inner maximization of (3.6), we directly optimize the parameters of the Dirichlet
distribution α to represent the worst-case distribution of domain codes. To optimize the
parameters of the Dirichlet distribution, we utilize the implicit reparameterization technique
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[55]. With outer minimization, F is trained to minimize the classification loss of the hardest
samples.

GADA-NN: As discussed in Section 3.3.2, the domain-code NN g takes Gaussian noise
c as input. By choosing c randomly, g(c) works as a distribution in the domain-code space.
With this setup, G(x, g(c)) works as a sample generator where two sources of randomness are
involved; one is the choice of x, a sample in the source domain, and the other is c. Therefore,
by utilizing the domain-code distribution to represent the data-generating distribution, the
objective of (3.5) becomes:

min
θF

sup
θg

E c∼N (0,1),
(x,y)∼Dsource

[ℓ(θF ; (G(x, g(c)), y))] (3.7)

where c is K−dim Gaussian noise, c ∼ N (0, 1), ℓ is the cross-entropy loss, and g is the
domain-code NN which takes c as input and outputs a domain code. Since the DLOW-B
model requires the domain code to be a probability vector, we design g to have a softmax
layer as the last layer.

In the inner maximization of (3.7), the domain-code NN g is trained to provide domain
codes so that the classification loss of model F is maximized. In other words, g is trained so
that it generates the hardest samples to classify under the current classification model F .
With the outer minimization, F is trained to minimize the classification loss of the hardest
samples.

To solve the above two bi-level optimization problems (3.6) and (3.7), we follow GAN’s
training strategy and alternatively train the domain-code NN g or the parameters of the
Dirichlet distribution α and the classification model F . We first minimize the objective with
regard to F , then maximize the objective with regard to g or α, and repeat this process.

Moreover, since the image quality of samples generated by the generative model is not as
good as the original training data, we train the classification model on both given training
datasets D = {Dk}K

k=1 and samples generated by G. Empirically, we find that this leads to
better domain generalization ability, as in [35]. Therefore, the actual objective function is
given by:

min
θF

sup
α

Ez∼B(α),
(x,y)∼Dsource

[ℓ(θF ; (G(x, z), y))] + λ
K∑

k=1
E(xk,yk)∼Dk

(ℓ(θF ; (xk, yk))). (3.8)

or

min
θF

sup
θg

E c∼N (0,1),
(x,y)∼Dsource

[ℓ(θF ; (G(x, g(c)), y))] + λ
K∑

k=1
E(xk,yk)∼Dk

(ℓ(θF ; (xk, yk))). (3.9)

Here, λ is used to balance the weight of augmented data and the weight of given training
data. The whole training process of GADA-NN is shown in Algorithm 1.

3.4 Experiments

3.4.1 Experimental setting

Dataset We evaluate our proposed method on three benchmarks. The first benchmark is
digits-DG, which contains four digits datasets including MNIST [2], SVHN [56], MNIST-
M [1], and SYN [1]. These datasets all contain digit images with labels from 0 to 9, but
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Algorithm 1: Proposed method: GADA-NN
Input: Pretrained generative model G, given multiple training datasets D = {Dk}K

k=1,
selected source dataset Dsource, number of steps to apply to the classifier t,
training iteration n, loss function ℓ, weight to balance augmented samples and
given training samples λ

Output: Parameters of classification model θF

i = 0;
for i < n do

j = 0;
for j < t do

Sample minibatch of m Gaussian noise samples {c1, . . . , cm};
Sample minibatch of m examples {(xs

1, ys
1), . . . , (xs

m, ys
m)} from Dsource;

k = 1;
for k < K + 1 do

Sample minibatch of m examples
{

(xk
1 , yk

1), . . . , (xk
m, yk

m)
}

from Dk;
k = k + 1;

end
Update θF by descending its stochastic gradient:
∇θf

1
m

∑m
i=1[ℓ (θF ; G (xs

i , g (ci)) , ys
i ) + λ

∑K
k=1(ℓ(θF ; (xk

i , yk
i )))];

j+ = 1;
end
Sample minibatch of m Gaussian noise samples {c1, . . . , cm};
Update g by ascending its stochastic gradient: ∇θg

1
m

∑m
i=1 ℓ (θF ; G(xs

i , g(ci)), ys
i );

i+ = 1;
end

(a) digits-DG (b) PACS dataset (c) Office-Home dataset

Figure 3.5: Example images from different DG datasets.
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differ in font style, background, and digit color. Some example images are shown in Figure
3.5a. The second benchmark is PACS [57] which contains object images in four domains,
photo (P), art painting (A), cartoon (C), and sketch (S). Object images are labeled with
seven categories: dog, elephant, giraffe, guitar, house, horse, and person. Some example
images are shown in Figure 3.5b. The third benchmark is office-home [58]. It contains four
domains: artistic, clipart, product and real world, and 65 classes. Some example images are
shown in Figure 3.5c.

Implementation details For evaluation, we followed the leave-one-domain-out principle
in [8], which chooses one domain as the test domain while the others are used as training
domains. For a fair comparison, the architecture of classification models followed previous
works [36]. We also followed [36]’s strategy to set the hyperparameters by assuming we
only have limited computational resources. All general hyperparameters, such as the type
of optimizer, the learning rate, and the total number of iterations, are consistent for all
methods. For the only hyperparameter that is needed in our method, λ, we tuned it with
limited trials (less than 5). The experiments in Table 3.1, 3.2, 3.3, 3.4 and 3.5 and Figure 3.6
and 3.7 followed this setting. For the digits-DG, we used a CNN model with four convolution
layers. For PACS and office-home, we used ResNet-18 [59] pre-trained on ImageNet [25].
We designed the domain-code NN as a two-layer neural network with linear and softmax
layers. We set each element in α as 1.0 in the beginning. We used Adam with a learning
rate of 0.001 on the digits-DG task, and we set the batch size as 64 and the total number
of iterations as 6,000. For the PACS and office-home tasks, we used Adam with a learning
rate of 0.0001. We set the batch size as 16 and the total number of iterations as 10,000.
The value of λ is set based on the performance of the training validation set, and the search
space is λ ∈ {0.5, 1, 1.5}. Moreover, [8] showed that hyperparameter selection is important
for domain generalization algorithms. We also show the performance of our algorithm with
sufficient hyperparameters selection in Section 3.4.5.

Comparison methods We compare GADA with several types of works: (1) the most
common baseline ERM which trains a model by empirical risk minimization (ERM) with
all training datasets; (2) generative model-based methods, L2A-OT [36], DLOW [22],
MBDG [41], Yang2021 [40] and Wang2021 [39]; (3) adversarial data augmentation,
GUD [35], which utilizes adversarial data augmentation to solve domain generalization
with a single training domain. For a fair comparison, we modify this method by treating a
mixture of all training datasets as a single training dataset; and (4) other data augmentation
methods, including CrossGrad [37], which augments training data with adversarial exam-
ples obtained by a domain classifier, DDAIG [38], which augments training data without
distinguishable domain features, JiGen [8], which augments training data with shuffled
image patches and Mix-style [12], which augments training data with mixed features. We
compare classification accuracy on the test domain with these comparison methods, and
experimental results are averaged over ten trials with different random seeds. 2

2We get the results of CrossGrad, JiGen, Mix-style, L2A-OT, MBDG, Yang2021, Wang2021 from [12, 40, 41],
JiGen, Mix-style, L2A-OT did not report standard deviation and MBDG, Yang2021, and Wang 2021 did not report
results on all dataset
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3.4.2 Performance on Benchmark dataset

Table 3.1, Table 3.2 and Table 3.3 show the prediction accuracy on the test domain on
the digits-DG, PACS, and office-home benchmarks. Overall, the results show that the
proposed method outperforms the baseline (ERM) and most competitive methods in most
domains on three benchmarks. These results suggest that our method exhibits a more
robust generalization capability than most comparison methods.

However, on average, our method performs worse than MBDG and Yang2021 in the
PACS task and worse than Yang2021 in the Office-Home task (MBDG, Yang2021, and
Wang2021 did not report results on all benchmarks). When we further observe the test
accuracy on a specific test domain, we find that our method outperforms Yang2021 on the
cartoon and sketch domains for the PACS task and on the clipart domain for the office-
home task. Since our proposal is designed to minimize classification loss over the worst-case
domain, we care more about the performance of our proposal over difficult domains. By
comparing the performance of ERM on each domain, we can judge the difficulty of each
domain. ERM should achieve lower accuracy on relatively difficult domains compared with
relatively easy domains. Hence, we can think the sketch and clipart are more challenging
domains compared with other domains in the PACS and office-home dataset. Therefore,
the results in Table 3.2 and Table 3.3 suggest that compared with Yang2021, our proposal
is better at handling difficult domains. This is reasonable since our method is designed to
improve the model’s performance in the most difficult domain, whereas Yang2021 did not
have such characteristics. In contrast, our proposal only gives limited domain generalization
ability on relatively easy domains, such as the photo domain in the PACS task and the real-
world domain in the office-home task. In these relatively simple domains, the performance of
our method is worse than most competitors. We speculate that this phenomenon is because
we only focus on the most challenging domain. We ignore the model’s performance in the
relatively simple domain. If we can find a good balance between relatively easy domains
and difficult domains, our proposal may lead to better domain generalization ability. We
attempt to give a preliminary solution in Section 3.4.5.

Moreover, we can observe that MBDG achieves the highest accuracy in the sketch domain
for the PACS task. MBDG also aims to improve the model’s domain generalization ability
over the worst-case domain. Hence it shows excellent performance in the difficult domain.
However, their algorithm made a strong assumption about the classifier. They require
that the main classifier can give a consistent prediction for samples in different training
domains. However, it is difficult to train such a classifier, especially when training domains
have significant differences. In the PACS dataset, the sketch domain has a very different
visual appearance from other domains. When MBDG takes the sketch domain as one of the
training domains, i.e., when the test domains are cartoon, photo, and art domains, we can
observe that MBDG is not as powerful as solving the sketch domain. In contrast, we did
not make substantial requirements on the target domain; hence compared with MBDG, our
method works on more test domains, and our method outperforms MBDG in the cartoon
and art domains. Moreover, we would like to note that the experimental results of MBDG
in Table 3.2 cannot compare fairly with other results since we obtained the result of MBDG
in [41]. They spent more computational resources to select their hyperparameters. We will
make a fair comparison between our proposal and MBDG in Section 3.4.5.
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Table 3.1: Experimental result on digits-DG with classification accuracy (%) averaged over 10 runs

MNIST SVHN MNIST-M SYN Avg
ERM 96.0 ± 0.2 62.7 ± 0.6 59.6 ± 0.5 78.6 ± 0.5 74.2
CrossGrad [37] 96.7 65.3 61.1 80.2 75.8
JiGen [8] 96.5 63.7 61.4 74.0 73.9
L2A-OT [36] 96.7 68.6 63.9 83.2 78.1
Mix-style [12] 96.5 ± 0.3 64.7 ± 0.7 63.5 ± 0.8 81.2 ± 0.8 76.5
GUD[35] 97.1 ± 0.2 66.7 ± 0.3 63.9 ± 0.3 81.5 ± 0.2 77.3
DDAIG [38] 96.6 ± 0.2 68.6 ± 0.6 64.1 ± 0.4 80.2 ± 0.2 77.6
DLOW [22] 97.6 ± 0.1 68.3 ± 0.5 65.1 ± 0.6 82.2 ± 0.3 78.3
GADA-D 98.1 ± 0.3 72.2 ± 0.5 67.1 ± 0.5 84.9 ± 0.3 80.6
GADA-NN 98.2 ± 0.5 70.2 ± 0.4 66.5 ± 0.5 84.5 ± 0.6 79.9

Table 3.2: Experimental result on PACS with classification accuracy (%) averaged over 10 runs

Art Cartoon Photo Sketch Avg
ERM 77.6 ± 0.5 76.4 ± 0.3 96.3 ± 0.1 69.8 ± 0.6 80.0
CrossGrad 79.8 76.8 93.6 66.8 79.3
Jigen 79.4 75.3 96.0 71.6 80.6
L2A-OT 83.3 78.2 96.2 73.6 82.8
Mix-style 84.1 ± 0.4 78.8 ± 0.4 96.3±0.3 75.9 ± 0.9 83.8
GUD 79.5 ± 0.4 77.2 ± 0.5 94.9 ± 0.2 71.1 ± 0.3 80.7
DDAIG 84.2 ± 0.3 78.1 ± 0.6 95.3 ± 0.4 74.7 ± 0.8 83.1
DLOW 80.7 ± 0.6 76.1 ± 0.5 94.1 ± 0.3 76.7 ± 0.8 81.9
Wang2021[39] 81.4 79.6 95.5 80.6 84.3
Yang2021[40] 85.8 ±0.6 80.7 ± 0.5 97.3±0.3 77.3 ± 0.5 85.3
MBDG [41] 80.6 ± 1.1 79.3 ± 0.2 97.0 ± 0.4 85.2±0.2 85.6
GADA-D 84.3 ± 0.7 82.7 ± 1.1 96.2 ± 0.4 76.8 ± 0.8 85.1
GADA-NN 84.3 ± 1.2 81.4 ± 0.8 96.0 ± 0.8 78.6 ± 0.6 85.1

When we further compare GADA-D and GADA-NN, we find that GADA-D performs
better than GADA-NN on the digits task, and these two methods achieve close performance
in the PACS and office-home tasks. Empirically, we find that GADA-D is easier to optimize
since the number of parameters of the Dirichlet distribution is much less than the neural
network parameters. We speculate that this is why GADA-D achieves better performance
than GADA-NN in some cases. We provide more evidence in Section ??. GADA-NN also
demonstrated clear advantages over GADA-D in certain domains, such as the sketch domain
in the PACS task. As we discussed in Section 3.3.3, a neural network can represent a more
complex distribution than a Dirichlet distribution. Considering that the sketch domain is
the most challenging in the PACS task and that images in this domain show a clear difference
from the other three domains, we expect the sketch domain to be the most complex in the
PACS task. In such a situation, we expect better presentation ability of the neural network
to lead to better domain generalization ability than a Dirichlet distribution. Therefore,
there is a tradeoff between GADA-D and GADA-NN. When computational resources are
limited, we should use GADA-D; otherwise, we should use GADA-NN.

3.4.3 Visualization results

We take an example from the digits-DG task to observe how GADA works. In this exam-
ple, the model is trained on MNIST, SVHN, and MNIST-M. Since we have three training
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Table 3.3: Experimental result on office-home with classification accuracy (%) averaged over 10
runs

Artistic Clipart Product Real World Avg
ERM 58.9 ± 0.3 49.4 ± 0.1 74.3 ± 0.1 76.2 ± 0.2 64.7
CrossGrad 58.4 49.4 73.9 75.8 64.4
Jigen 53.0 47.5 71.5 72.8 61.2
L2A-OT 60.6 50.1 74.8 77.0 65.6
Mix-style 58.7 ± 0.3 53.4 ± 0.2 74.2 ± 0.1 75.9 ± 0.1 65.5
GUD 58.7 ± 0.2 51.6 ± 0.2 74.2 ± 0.3 74.9 ± 0.3 64.9
DDAIG 59.2 ± 0.1 52.3 ± 0.3 74.6 ± 0.3 76.0 ± 0.1 65.5
DLOW 59.2 ± 0.4 51.7 ± 0.4 73.2 ± 0.2 74.4 ± 0.2 64.6
Yang2021 60.7 ± 0.8 52.9 ± 0.3 75.8 ± 0.1 77.2 ± 0.2 66.7
GADA-D 60.1 ± 0.2 53.7 ± 0.3 73.3 ± 0.4 76.2 ± 0.4 65.8
GADA-NN 59.7 ± 0.3 53.1 ± 0.3 73.6 ± 0.7 76.7 ± 0.6 65.7

step 0 step 1000 step 2000 step 3000 step 4000

step 0 step 1000 step 2000 step 3000 step 4000

Figure 3.6: Visualization result of GADA-NN. The top represents how domain codes change during
training, and the bottom represents how generated images change during training

domains, the domain code is a three-dimensional probability vector; we visualize domain
codes on the two-dimensional simplex. We record and visualize 500 generated domain codes
on the two-dimensional simplex every 1,000 steps. Each point refers to one domain code in
Figure 3.6 and Figure 3.7. We also show synthesized images every 1,000 steps in Figures
3.6 and Figures 3.7. For GADA-NN, we can see that generated domain codes concentrate
around the center of the simplex in the beginning. As the learning progresses, the distribu-
tion of domain codes gradually shifts away from the lower right corner (MNIST domain).
This tendency is also reflected in the generated images; we find that the generated im-
ages become increasingly colorful. Intuitively, considering that the MNIST domain is the
easiest domain to classify, the observation that the style of the generated samples is less
and less like MNIST indicates that our adversarial search of worst-case distribution works
successfully. For GADA-D, since we set the initial parameters of the Dirichlet distribution
as (1.0,1.0,1.0), the distribution of domain codes is equivalent to a uniform distribution
over the two-dimensional simplex. We can see that the generated domain codes shift away
from the right corner during the training, and the generated images become more color-
ful. Here, the parameters of the Dirichlet distribution for each 1,000 steps are (1.0,1.0,1.0),
(0.89,1.12,1.05), (0.69,1.19,1.09), (0.41,1.26,1.15) and (0.01,1.45,1.33). This tendency is the
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step 0 step 1000 step 2000 step 3000 step 4000

step 0 step 1000 step 2000 step 3000 step 4000

Figure 3.7: Visualization result of GADA-D. The top represents how domain codes change during
training, and the bottom represents how generated images change during training.

same as that of GADA-NN. Moreover, we can observe that in steps 3,000 and 4,000, the
proportion of color digit images in Figure 3.7 is significantly higher than that in Figure 3.6.
This indicates that GADA-D is easier to optimize than GADA-NN.

3.4.4 Ablation studies

To check the importance of each module in GADA, we perform the following ablation studies
on the digits-DG and PACS tasks.

Importance of the generative model (vs. pixel-level adversarial attack) We
proposed utilizing a generative model to synthesize novel data. Using a generative model
allows us to generate semantically different samples from the original training samples.
We also have other methods for generating augmented data. For example, [35] utilizes a
pixel-level adversarial attack to generate augmented samples. We compare our proposal
with this method and the results shown in the third row in Table 3.4 and Table 3.5. The
results confirm that using a generative model can achieve better accuracy than using a pixel-
level adversarial attack on digits and PACS tasks. These results indicate that augmenting
semantically different samples can improve domain generalization ability more than pixel-
level adversarial examples, and the use of the generative model is necessary.

Importance of adversarially learned domains (vs. nonadversarial) We propose to
train the classification model with adversarially learned domains. To show the importance
of training with the worst-case domain, we replace the worst-case distribution of domain
codes with a nonadversarial distribution of domain codes. Since the domain code is a
probability vector, we compare our proposal with two fixed distributions on the simplex:
uniform distribution on the simplex and logit-normal distribution. Experimental results
on the PACS (the fourth and fifth rows in Table 3.5) and digits datasets (the fourth and
fifth rows in Table 3.4) show that augmenting adversarial learned domains achieves better
domain generalization ability than nonadversarial domains.

Importance of domain-code NN (vs. simple combination) Adversarially perturb-
ing the domain code may be considered instead of learning the worst-case distribution of
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Table 3.4: Ablation studies on digits with classification accuracy (%) averaged over 10 runs

MNIST SVHN MNISTM SYN Avg
GADA-D 98.1 ± 0.3 72.2 ± 0.5 67.1 ± 0.5 84.9 ± 0.3 80.6
GADA-NN 98.2 ± 0.5 70.2 ± 0.4 66.5 ± 0.5 84.5 ± 0.6 79.9
Adversarial attack 97.1 ± 0.2 66.7 ± 0.3 63.9 ± 0.3 81.5 ± 0.8 77.3
Logistic normal 97.9 ± 0.2 70.5±0.5 65.7 ± 0.3 82.7 ± 0.2 79.2
Uniform 98.0 ± 0.1 68.3 ± 0.3 66.7 ± 0.5 83.2 ± 0.4 79.1
Non-distributional 97.8 ± 0.3 68.8 ± 0.4 65.2 ± 0.4 83.6 ± 0.6 78.9

Table 3.5: Ablation studies on PACS with classification accuracy (%) averaged over 10 runs

Art Cartoon Photo Sketch Avg
GADA-D 84.3± 0.7 82.7 ± 1.1 96.3 ±0.4 76.8 ± 0.8 85.1
GADA-NN 84.3± 1.2 81.4 ± 0.8 96.0 ± 0.8 78.6 ± 0.6 85.1
Adversarial attack 79.5 ± 0.4 77.2 ± 0.5 94.9 ± 0.2 71.1 ± 0.3 80.7
Logistic normal 80.8 ± 0.3 78.4 ± 0.7 93.9 ± 0.7 76.4 ± 0.5 82.3
Uniform 81.7 ± 0.6 78.1 ± 0.5 94.5 ± 0.3 76.6 ± 0.8 82.7
Non-distributional 82.2 ± 0.7 79.4 ± 0.9 95.2 ± 0.7 75.8 ± 0.6 83.2

domain codes. Then the training objective becomes:

min
θF

sup
z

E(x,y)∼Dsource ℓ(θF ; (G(x, z), y)) + λ

K∑
k=1

E(xk,yk)∼Dk
(ℓ(θF ; (xk, yk))).s.t.

K∑
k=1

zk = 1, zk ≥ 0 (3.10)

We refer to this objective as a nondistributional method. The nondistributional method
can be considered a simple combination of adversarial data augmentation methods and
generative model-based data augmentation methods. Compared with the nondistributional
method, our method samples domain codes from a learned distribution, which improves the
randomness of the domain codes. Hence, the diversity of augmented samples also increases.
Experimental results on the PACS (the sixth row in Table 3.5) and digits datasets (the sixth
row in Table 3.4) show that using a domain-code NN or learnable Dirichlet distribution
to represent the distribution of domain codes performs better than the nondistributional
method.

3.4.5 Experiment with sufficient hyperparameters selection

The experimental results in Table 3.1, Table 3.2 and 3.3 suggest that our method is not
good at handling relatively easy domains. We speculate that this is because of insufficient
hyperparameter tuning. In our training objective, (3.9) and (3.8), we only use one hyper-
parameter λ to balance the tradeoff between the worst-case domain and the given training
domains, and this hyperparameter is selected from a small space, λ ∈ {0.5, 1, 1.5}, hence,
it is possible that in previous experiments, the value of λ is not properly set. Moreover,
considering that different training domains have different characteristics, giving different
training domains different weights is more appropriate. Hence, we modify our training
objective, and (3.9) and (3.8) become:

min
θF

sup
θg

E c∼N (0,1),
(x,y)∼Dsource

[ℓ(θF ; (G(x, g(c)), y))] +
K∑

k=1
λkE(xk,yk)∼Dk

(ℓ(θF ; (xk, yk))). (3.11)
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Table 3.6: Experimental result of GADA with fine-tuned hyperparameters on digits-DG and PACS
with classification accuracy (%) averaged over 10 runs

MBDG GADA-D GADA-NN GADA-D-F GADA-NN-F

Digits-DG

MNIST - 98.1 ±0.3 98.2±0.5 98.4±0.1 98.5±0.1
SVHN - 72.2 ±0.5 70.2±0.4 74.1±0.4 73.9 ± 0.3
MNISTM - 67.1 ±0.5 66.5 ±0.5 67.8±0.3 67.4±0.4
SYN - 84.9±0.3 84.5±0.6 87.9±0.4 87.6±0.5
Mean - 80.6 79.9 82.1 81.8

PACS

Photo 97.0 ± 0.4 96.2 ±0.4 96.0 ±0.8 97.0 ±0.2 97.2±0.1
Art 80.6 ± 1.1 84.3 ±0.7 84.3 ±1.2 84.7 ±0.8 85.5±0.5
Cartoon 79.3 ±0.2 82.7 ±1.1 81.4 ± 0.8 82.9 ±0.5 82.4 ±0.8
Sketch 82.7 ± 1.1 76.8 ± 0.8 78.6 ±0.6 77.6±0.3 81.2 ± 1.1
Mean 85.6 85.1 85.1 85.5 86.5

or

min
θF

sup
α

Ez∼B(α),
(x,y)∼Dsource

[ℓ(θF ; (G(x, g(c)), y))] +
K∑

k=1
λkE(xk,yk)∼Dk

(ℓ(θF ; (xk, yk))). (3.12)

In (3.11) and (3.12), we introduce more hyperparameters for finding a better balance
among all training domains. To find the appropriate value for these hyperparameters,
we follow [60]’s strategy. We first randomly set the value of all hyperparameters from
a uniform distribution, and then we train a model by our proposal. Finally, we repeat
these processes 20 times, evaluate these 20 models on the training evaluation set, and
choose hyperparameters that can achieve the best validation accuracy as our final hyper-
parameters. We denote modified GADA-D and GADA-NN as GADA-D-F and GADA-NN-F
(F refers to fine-tuned). We would like to note that MBDG also followed this strategy to
tune their hyperparameters.

Table 3.6 reports the performance of GADA-NN-F and GADA-D-F on digits-DG and
PACS tasks. The overall result shows that fine-tuning weights for different domains can
further improve the classification model’s domain generalization ability on both relatively
easy domains and relatively hard domains. Moreover, GADA-NN-F achieves higher aver-
age accuracy than MBDG on the PACS task, which suggests that under a fair setting, our
method exhibits better domain generalization ability than MBDG. We would like to note
that since we spent more computational resources on hyperparameters tuning than in pre-
vious experiments, the experimental results in Table 3.6 are not comparable to most results
in Table 3.1 and Table 3.2 beside MBDG. The current solution requires sufficient computing
resources for hyperparameter selection; hence, we think this is only a preliminary solution.
How to automatically find a good balance between all training domains is an important
question. We leave this as a future direction.

3.5 Further discussion

In this section, we further discuss our proposal in the following aspects:

1. How the number of source domains affects our proposal. More specifically, how will our
approach be affected when we have to use fewer source domains to train the DLOW-B
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Table 3.7: Experimental result of GADA with multiple DLOW-B models

MNIST SVHN MNIST-M SVHN
Single DLOW-B 98.2 70.2 66.5 84.5
Multiple DLOW-B 93.5 57.6 55.7 69.5

model?

2. Why our proposal improves the model’s generalization ability. Especially when the
test domain cannot be obtained by interpolation of the source domain.

3.5.1 How the number of source domains affects our proposal

In the domain generalization setting, we can obtain multiple domains. In our proposal, we
utilize these domains to train a generative model to represent the intermediate domains of
these training domains. When the number of source domains is large, it is often hard to
train a good generative model that can cover all training domains. Hence, in this situation,
we have to train the generative models with part of the source domains. To cover all source
domains, we attempt to train multiple generative models while each generative model is
trained on the part of the source domains. For example, if we have nine domains, then we
train three generative models, and each generative model covers three source domains. Then,
we can replace the single DLOW-B model in the original proposal with multiple DLOW-B
models. We conduct experiments on digital-DG datasets. We train three DLOW-B models
on any two source domains, then we can obtain three DLOW-B models. We also modify our
proposal with three domain-code NNs, each domain-code NN corresponds to a generative
model. We compare this method with our original proposal. The results are shown in Table
3.7.

We can observe that using one DLOW-B model that can cover three domains achieves
much better results than using three DLOW-B models trained on two source domains. We
believe this result is reasonable. When we train a DLOW-B model on all three training
domains, this DLOW-B model can synthesize samples with intermediate styles between all
three source domains. However, when we train three DLOW-B models on any two source
domains, the synthesized style can only be an interpolation of two source styles. Hence,
if we use multiple DLOW-B models trained on part of source domains, the diversity of
synthesized images is decreased. Therefore, the performance of the whole proposal drops.
However, if the given source domains are too large, it is very difficult to train a DLOW-B
model that can cover all source domains. currently, we may only use multiple DLOW-B
models to solve such DG problems.

3.5.2 Why our proposal improves the model’s generalization ability

We will consider two cases of why our approach works.

1. The target domain can be represented by a combination of all source domains.

2. The target domain can not be represented by a combination of all source domains.
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When the target domain can be represented by a combination of all source domains, the
DLOW-B model can approximately cover the data-generating distribution of the target do-
main. In this situation, it is natural that our proposal can improve the model’s performance
on the target domain.

On the other hand, when the target domain can not be represented by a combination of
all source domains, the DLOW-B model can not cover the data-generating distribution of
the target domain, and the classification model still needs to handle unseen samples. In
this situation, we also observe that our proposal improves the model’s domain generalization
ability, as shown in Table 3.1, Table 3.2 and Table 3.3. We speculate that the improvement
of the domain generalization ability is because our proposals force the model to learn the
domain-invariant features.

As shown in [15, 8], the model will learn better domain-invariant features when more
data are provided even if the training algorithm is ERM. In our proposal, we continuously
feed the model with difficult and diverse data. The model can not obtain good prediction
accuracy on these data due to the difficulty, which means the current features learned
by our model are not domain-invariant enough. Augmenting these data will effectively
force the model to learn better domain-invariant features. On the other hand, diversity
ensures the learned features can keep invariant in more diverse domains. With the above
two expectations, our proposal can train a model that can extract good domain-invariant
features. Ideally, good domain-invariant features should be shared by all domains. For
example, in the digital classification task, the shape is a good domain-invariant feature
shared by all possible domains. Hence, this may be the reason why our proposal can
improve the model’s domain generalization ability even if the target domain can not be
represented by a combination of all source domains.

3.6 Conclusion

In this work, we propose GADA, which utilizes a generative model to perform adversarial
data augmentation. Using a generative model allows generated samples to be different from
original training samples in image style. Moreover, we propose using a domain-code NN
or a trainable Dirichlet distribution to represent the distribution of domain codes. During
the training, we adversarially optimize the domain-code NN or parameters of the Dirichlet
distribution with training the main classifier so that the generative model can generate
more difficult samples. In the evaluation, GADA shows superior performance on three
benchmark tasks. Further ablation studies and visualization show that each module of
GADA is necessary. Moreover, we show that finding a better tradeoff between training
domains and the worst-case domain can further improve the model’s domain generalization
ability.

3.7 Limitation

Our proposal has the following limitations:

1. In the section 3.4.2, we show that our proposal is good at handling difficult test
domains, while when the test domain is relatively domain, the performance of our
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proposal may be worse than other competitors. This is because our proposal aims
to train the model with the data drawn from the worst distribution. In this process,
we ignore the model’s performance on the relatively simple domains. Although we
provide a preliminary solution in Section 3.4.5, this preliminary solution requires large
computational resources. We should try to investigate how to find a good balance
between difficult and simple domains automatically.

2. Our proposal train a generative model to synthesize augmented data. However, train-
ing a good generative model requires relatively large computational resources and
carefully hyper-parameter tuning. Hence, if the computational resources are limited,
our proposal is a hard solution. Fortunately, most of the domain generalization settings
do not limit training resources.
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Chapter 4

Zero-shot domain adaptation
based on dual-level mix and
contrast

This chapter proposes a framework, termed dual mix contrastive learning (DMCL), for
zero-shot domain adaptation (ZSDA) tasks. DMCL is a representation learning method
that aims to learn domain-invariant features between the source and target domains.

4.1 Introduction

When task-relevant is hard to collect in the target domain, unsupervised domain adaptation
methods are hard solutions to alleviate domain shifts. Zero-shot domain adaptation (ZSDA)
is designed for this situation. This setting assumes that domain shift is shared with two
different tasks, task-of-interest (ToI) and irrelevant task (IrT). The goal of ZSDA is to use
task-irrelevant data from both source and target domains to learn the domain shift and then
transfer the learned domain shift to the ToI. For example, as Figure 4.1 shows, we assume
that digital classification is the task we want to solve, and alphabetical classification is an
irrelevant task. We also assume that digital data are hard to obtain and alphabetical data
are easy to obtain. We want to utilize digital data from the source domain to build a model
that can generalize to the target domain. The ZSDA methods aim to utilize alphabetical
data from both source and target domains and digital data from the source domain to build
a digital classification model that can generalize to the target domain.

As already discussed in Section 2.6, previous ZSDA works attempt to utilize two types
of strategies to solve the ZSDA problem. The generative model-based method and domain-
invariant feature learning-based methods. We believe these methods have limitations in the
following aspects:

1. In the generative model-based method, we need to train a generative model. Training
a good generative model requires significant computational resources and careful tun-
ing of the hyperparameters. If the trained generative model is not good enough, such
methods’ performance will decrease significantly. Moreover, when data from more do-
mains or tasks are available, the generative model-based methods are hardly a solution
since it is difficult for the generative model to handle data from many domains.
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Figure 4.1: An example of zero-shot domain adaptation, samples in blue box are available during
training, samples in red box are what we want to classify

2. The domain-invariant feature learning-based methods [47] can be divided into two
stages. In the first stage, this method extends domain adversarial training [5] to learn
domain-invariant features. In the ZSDA setting, since we do not have samples for ToI
in the target domain, the domain-invariant features are mainly learned with IrT data.
Hence, in this stage, learned features might not generalize to the ToI approximately.
To alleviate this issue, in the second stage, [47] design an attention-based [48] module
to fine-tune the model learned in the first stage so that bias caused by the ZSDA setting
can be alleviated. In this sense, [47] first learns biased features and then removes the
bias in the second stage. Considering that not all bias can be completely eliminated
in the second stage, it is important to learn as little bias as possible in the first stage.

In this paper, we present a novel domain-invariant representation learning method, termed
dual mixup contrastive learning (DMCL). Our method aims to learn unbiased domain-
invariant features to solve the ZSDA task without relying on the generative model.

First, although our method relies on virtual data to act as task-relevant data from the
target domain, these virtual data are not generated by a generative model. We extend
mixup technique [16] to a dual-level mixup, which applies mixup on both category-level
and domain-level, to synthesize virtual data to act as the role of target task-relevant data.
Therefore, our method makes the virtual data we rely on easily accessible since mixup
technique does not require heavy computational resources and careful hyperparameter tun-
ing. Compared with previous mixup-based data adaptation methods [61, 20], we combine
dual-level mixup with contrastive learning-based objectives for extending mixup to the
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ZSDA setting. Contrastive learning objectives allow us to carefully design the behavior of
feature extractors with data from multiple domains and tasks. We show that contrastive
learning-based objectives lead to better domain adaptation ability in the ZSDA setting than
distance-based objectives.

Moreover, our proposal is designed to learn unbiased domain-level and task-level fea-
tures directly by extending domain adversarial training to the ZSDA setting. Hence, our
method can be considered as an improvement of [47]’s first stage, and our method can be
combined with the second stage of [47]. We have made the following two efforts to ex-
tend the domain adversarial training to the ZSDA setting. First, the domain adversarial
training largely depends on a domain classifier which is used for distinguishing the domain
of a sample. In the ZSDA setting, it is hard to obtain ToI data from the target domain,
hence trained domain classifier can not generalize to ToI. To overcome this difficulty, we
aim to provide virtual data to act as task-relevant data from the target domain. Then, we
train the domain classifier by augmenting these virtual data so that the resulting domain
classifier can generalize to ToI. Second, we propose two contrastive learning objectives for
encouraging feature disentanglement between domain-level features and task-level features.
Then, domain-level features will be used in domain adversarial training so that the main
feature extractor will learn domain-invariant features. Task-level features will be used in
classification tasks without the influence of the domain.

Our main contribution can be summarized as follows:

1. We propose to use a dual mixup, which generates samples by randomly interpolating
two domains and two tasks. Dual mixup allows to generate various samples belonging
to intermediate tasks and domains without the training of generative models.

2. We propose an extension of domain adversarial training to obtain domain-invariant
features that can generalize over ToI by further forcing the model to distinguish the
dual mixup samples.

3. Samples generated with dual mixup have intermediate class labels and domain labels
that interpolate the two tasks and domains. To exploit the diversity of dual mixup
samples to enhance domain invariance and reduce task biasedness of the features, we
introduce a novel dual-level contrastive learning method that contrasts pairs of samples
at two levels: task and domain.

4. We experimentally demonstrate that our proposal achieves good performance among
several competitors with several datasets. Also, additional experiments verify our
proposal is able to learn domain-invariant features for ToI data.

4.2 Preliminary

4.2.1 Domain adversarial training

This work attempt to extend domain adversarial training in the ZSDA setting. Hence, we
first introduce the domain adversarial training [5].

Domain adversarial training is a classical unsupervised domain adaptation algorithm for
learning domain-invariant features. Let Xs and Ys be the input space and label space of the
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Figure 4.2: An illustration of mixup

source domain, and Xt be the input space of target domain. Let G : X 7→ Rm be the feature
extractor, C : Rm 7→ Y be the category classifiers. Domain adversarial training introduces
an additional domain classifier D : Rm 7→ [0, 1] for distinguishing domain information
of input samples (samples from source domain with domain label 0, samples from target
domain with domain label 1). The domain adversarial training can be formulated as follows:

min
G,C

max
D

Lc(G, C) + λLd(G, D)

Lc(G, C) = E(xs,ys)∼Dsℓ (C (G (xs)) , ys)

Ld(G, D) = Exs∼Ds log D (G (xs)) + Ext∼Dt log
(
1 − D

(
G

(
xt)))

(4.1)

where ℓ is the cross-entropy loss, and λ is a trade-off hyper-parameter. By optimizing
parameters of D, features obtained with G are expected to be domain invariant. Lc is a
classification loss for label classifier, Ld is used to train a domain classifier.

4.2.2 Mixup

Mixup is an important building block in our framework. Hence we introduce mixup in
this section. Category-level mixup [16] performs data augmentation by constructing vir-
tual samples with convex combinations of pair of sample-label pairs (xi, yi) and (xj , yj).
Category-level mixup can be formulated as follows:

x̃ = Mλ (xi, xj) = λxi + (1 − λ)xj

ỹ = Mλ (yi, yj) = λyi + (1 − λ)yj

Where λ ∼ Beta(α, α), for α ∈ (0, ∞).
Inspired by [16], [20] proposed domain-level mixup for training a good domain classifier.

They assume the corresponding domain information also be mixed in equal proportions.
Then, the domain label of the synthesized samples is also a convex combination of the
corresponding domain label of xi and xj .

d̃ = Mλ (di, dj) = λdi + (1 − λ)dj

An example of category-level mixup and domain-level mixup are shown in Figure 4.2.
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Figure 4.3: An illustration of our proposal DMCL. Here GRL refers to a gradient reversal layer.
The red arrow indicates the adversarial learning procedure, the green arrow indicates a standard
training procedure, and the pink arrow indicates the contrastive learning objectives.

4.3 Proposal

4.3.1 Overview

In this section, we propose a learning algorithm, termed dual mixup contrastive learning
(DMCL), for the zero-shot domain adaptation. As discussed above, to solve the ZSDA task,
DMCL aims to learn domain-invariant features that generalize over ToI task. An overview
of our proposal is shown in Figure 4.3.

First, we extend mixup to synthesize intermediate samples between domains and tasks
to fill the absence of target ToI data. Then, we extend domain adversarial training with
intermediate samples to learn domain-invariant features. As shown in Figure 4.3, our model
structure is an extension of domain adversarial neural network with a domain classifier
D ◦ GD, and two task classifiers, Fr ◦ GF for ToI, Fir ◦ GF for IrT. With adversarial
learning (red arrow in Figure 4.3), the feature extractor G is expected to extract domain-
invariant features with maintaining discriminative capability in both ToI and IrT. Here, the
domain invariance of the features is induced by the gradient reversal layer (GRL) which
reverses the gradient by multiplying a negative value during the backpropagation. Also,
the discriminative capability of the features is due to training by cross-entropy loss (green
arrow in Figure 4.3).

As we demonstrate with ablation studies later, domain-invariant features learned by do-
main adversarial training are insufficient to generalize to ToI. Since we can only have IrT
data from both domains, the resulting features are biased toward the IrT task. To deal
with this task bias, we design dual-level contrastive learning objectives (pink arrow in Fig-
ure 4.3). With the first contrastive learning objective, GF is encouraged to be more sensitive
to differences in tasks and class labels while caring less about differences in domains. This
further enhances the domain invariance of the features input to Fr and Fir. Similarly, with
the second contrastive learning objective, GD focuses on domain-related information more
while ignoring task-related information. Hence, the performance of the domain classifier
will be further improved.

Moreover, since GD only learns domain-related features, when G is adversarially trained
with gradient information from GD, only domain-related features are eliminated, and the
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task-related features which are helpful in classification tasks are unaffected. On the other
hand, with adversarial training, G tends to learn domain-invariant features, i.e., the input
of GF becomes domain-invariant. This leads to a better domain invariance of outputs
of GF . Therefore, by training features with the contrastive learning objective and the
domain adversarial training objective alternately, domain-invariance and task-unbiasedness
can enhance each other.

4.3.2 Dual Mixup for intermediate samples

In this work, we provide intermediate data from different domains and tasks to act as
target ToI data with low computation costs. This strategy has third merits. First, these
intermediate data contain information from both source and target domains, also from both
ToI and IrT. A model trained on these data should be able to learn features that work on
different domains and tasks. Second, we can generate intermediate data without using target
ToI data since intermediate data between source ToI data and target IrT already contain
information from two domains and tasks. Third, we synthesize intermediate samples by
mixup. Mixup only requires applying a convex combination on different samples; hence this
method requires low computation resources.

To synthesize intermediate data between both tasks and domains, we extend the mixup
[16] technique. Formally, for xi in Dr

s and xj in Dir = Dir
s ∪ Dir

t , we synthesize virtual data
by x̃ = Mλ (xi, xj).

Then, unlike single-level mixup, we mix both the category label and the domain label for
x̃ by:

ỹ = Mλ (yi, yj) , d̃ = Mλ (di, dj)

where λ ∼ Beta(α, α), for α ∈ (0, ∞).

4.3.3 Domain adversarial training with dual mixup

Using data augmentation with intermediate data synthesized by dual mixup, we extend
the domain adversarial training method for learning domain-invariant features. During this
procedure, we force the domain classifier and label classifier to distinguish samples generated
by mixing samples in different domains and tasks with random proportions. Through this
training, the feature extractor is trained to be able to handle data from different domains
and tasks.

Specifically, we define Cd = D ◦ GD ◦ G, which means Cd(x) = D(GD(G(x))). Similarly,
we define Cr = Fr ◦ GF ◦ G and Cir = Fir ◦ GF ◦ G. Then, the domain adversarial training
with dual mixup samples is shown in the following:

min
G,GF
Fr,Fir

max
GD,D

Ladv = Ld(Cd) + Lmd(Cd) + Lf (Cr, Cir) + Lmf (Cr, Cir). (4.2)

where
Ld(Cd) = Exs∼Ds log (1 − Cd(xs)) + Ext∼Dir

t
log Cd(xt),

Lmd(Cd) = E xi∼Ds

xj∼Dir
t

λ∼Beta(α,α)

λ log(1 − Cd(x̃)) + (1 − λ) log Cd(x̃).
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Lf (Cr, Cir) = E(x,y)∼Dr
s
ℓ(Cr(x), y) + E(x,y)∼Dir ℓ(Cir(x), y)

Lmf (Cr, Cir) = E λ∼Beta(α,α)
xi∼Dr

s ,xj∼Dir

λℓ(Cr(x̃), yi) + (1 − λ)ℓ(Cir(x̃), yir).

Here, Ds = Dir
s ∪ Dr

s , Dir = Dir
s ∪ Dir

t , x̃ = Mλ (xi, xj), ℓ is the cross-entropy loss, and α

is hyper-parameter.
In the above training objective, Ld and Lmd force G to learn domain-invariant features

and force D and GD to give high domain classification accuracy. Lf and Lmf are the
classification error of ToI, IrT data, and of their mixup, respectively; this forces Cr and Cir

become to be able to classify ToI and IrT data, respectively.

4.3.4 Dual contrastive learning for disentanglement

We then design two contrastive learning objectives to enhance domain invariance and reduce
task biasedness in the features. We assume that the features extracted from an image can
be divided into two types: domain-related features and task-related features. We expect
the domain-related features to contain information that allows identifying the domain while
it is insensitive to changes in the task and category. In contrast, we expect the task-related
features to contain information that allows identifying category labels while it is insensitive
to changes in the domain. As discussed in section 4.1, disentangling task-related features
from domain-related features helps the model in classifying target ToI data.

We introduce two feature extractors, GF and GD, to realize the feature disentanglement.
GF is used to extract task-related features, GD is used to extract domain-related features.
To enforce feature disentanglement, our key intuition is that when two samples from different
domains but with the same category are fed into GF , their corresponding outputs should
be very similar since these two samples are only different at the domain level. Likewise,
when two samples from different categories but with the same domain are fed into GD, their
corresponding outputs should be the same.

Considering that we have no way of knowing how domain-related and task-related features
are mixed together in target ToI data, we need our model to be able to have the gener-
alized feature disentangled capability. This means our model should be able to achieve
feature disentanglement for data containing different mixes of domain-related and task-
related features. On the other hand, by varying λ, mixup is able to generate intermediate
data containing different proportions of domain information and task information. Hence,
we utilize intermediate data to realize our intuition for obtaining generalized feature disen-
tangled ability. Figure 4.4 explains a high-level concept of the proposed mixup procedure.

Formally, let us consider three mini-batches of K samples Xr
s , X ir

s , X ir
t from Dr

s , Dir
s , Dir

t ,
We first apply mixup on any pair of min-batches of samples from the three mini-batches
with the same λ for obtaining intermediate samples.

A =
{

Mλ

(
Xri

s , Xiri
s

)}K

i=1
, B =

{
Mλ

(
Xri

s , Xiri
t

)}K

i=1

C =
{

Mλ

(
Xiri

s , Xiri
t

)}K

i=1

Then, we get three mini-batches of mixup samples A, B, C. We assume that after apply-
ing mixup, the corresponding category information and the domain information will also
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Figure 4.4: An illustration of dual contrastive learning, here the dashed line indicates apply mixup
on two samples.

be mixed in equal proportions. Then, Ai and Bi contain the same category information
but different domain information, and Bi and Ci contain the same domain information but
different category information.

Considering that the core idea of our intuition is similar to the goal of contrastive learning,
our intuition can be naturally realized by contrastive learning. We take GD as an example
to explain our detailed approach. For GD, our key idea suggests that GD(G(Bi)) and
GD(G(Ci)) should become as similar as possible, which means (Bi, Ci) should be treated
as a positive pair in contrastive learning; we treat the other 2(K − 1) augmented samples
within a minibatch and Bi as 2(K − 1) negative pairs, like did in [62].

Then, given positive and negative pairs, we utilize the normalized temperature-scaled
cross entropy (NT-Xent) loss Lcond

to train GD:

Lcond
(GD) = − log

exp
(
sim

(
zdi

B, zdi
C

)
/τ

)
∑K

j=1,j 6=i
T ∈{B,C}

exp
(
sim

(
zdi

B, zdj
T

)
/τ

) (4.3)

where, sim(u, v) = u>v/‖u‖‖v‖ denote the dot product between l2 normalized u and v.
zdi

B = GD(G(Bi)), zdi
C = GD(G(Ci)), τ is the temperature parameter.

Likewise, GF treats (Ai, Bi) as positive pair. GF is trained by NT-Xent loss Lconf
:

Lconf
(GF ) = − log

exp
(
sim

(
zf i

A, zf i
B

)
/τ

)
∑K

j=1,j 6=i
T ∈{A,B}

exp
(
sim

(
zf i

A, zf j
T

)
/τ

) (4.4)

where, zf i
A = GF (G(Ai)), zf i

B = GF (G(Bi)).
The entire training procedure is performed as follows. We first optimize equation (4.2),

then optimize equation (4.3) and (4.4) with shared intermediate samples. We repeat the
above two steps alternately.
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4.3.5 Adaptive temperature for contrastive learning

There is a limitation with the above contrastive learning objectives. We take Lcond
as an

example to explain this limitation. In this loss, we sample λ from a beta distribution.
When λ is close to 0, Bi and Ci are all similar to Xiri

t . In this situation, zdi
B and zdi

C will
be naturally close to each other. Hence, focusing on the positive pair is meaningless. In
contrast, when λ is close to 1, the difference between Bi and Ci is large. In this situation,
it is difficult to make zdi

B and zdi
C close to each other. We should pay more attention to

the positive pair. However, the equation 4.3 equally treats the above two situations. The
training objective does not take into account the change in focus.

To alleviate this limitation, we propose introducing an adaptive temperature to control
the focus of the training loss. In the original NT-Xent loss, the temperature is usually
a constant hyper-parameter. [63] found when the temperature τ becomes smaller, the
contrastive loss tends to make the positive pairs closer to each other. This means τ should
decrease when we want to focus on positive pair. Inspired by this, we propose an adaptive
temperature to change the focus of NT-Xent loss during the training automatically. Based
on the above discussion, the adaptive temperature should decrease as λ increases. Hence,
we use a function k(λ) to replace τ . k(λ) = max(η, aλ+b), where η is a small positive value
for preventing temperature smaller than 0, a and b are two hyper-parameters, and a < 0.
With this adaptive temperature function, we modify the equation 4.3 as the following. In
our proposal, we set a = −10, b = 10, and η = 0.1.

Ladad
(GD) = − log

exp
(
sim

(
zdi

B, zdi
C

)
/k(λ)

)
∑K

j=1,j 6=i
T ∈{B,C}

exp
(
sim

(
zdi

B, zdj
T

)
/k(λ)

) (4.5)

Empirically, this new contrastive learning objective can improve the model’s domain adap-
tation ability with our proposal. Hence, we use the adaptive temperature in our proposal.

4.4 Experiments

4.4.1 Experimental results on two benchmarks

Datasets We evaluate our proposal on two benchmarks. The first is X-NIST, which consists
of four domains and four classification tasks. X-NIST is based on four datasets, including
MNIST (task M) [64], Fashion-MNIST (task F) [65], EMNIST (task E) [66], NIST (task
N) [67]. Images in these datasets are all in the gray-scale domain (domain G). To test
the domain adaptation performance, we create the color (domain C), edge (domain E),
and negative domains (domain N). The color domain is synthesized by using [5]’s method,
blending the samples with randomly selected patches from the BSDS500 dataset [68]. The
edge domain is created by applying the canny edge detector, and the negative domain is
obtained by subtracting the original pixel value from 255. When conducting experiments,
we choose two of the four tasks as ToI and IrT, but we do not consider the NIST and
EMNIST combinations since their label spaces are not completely different.

The second benchmark is Office-Home datasets. It consists of images from four different
domains: Artistic images (Ar), Clip images (Cl), Product images (Pr), and Real-world
images (Rw). This dataset contains images from 65 object categories for each domain.
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Table 4.1: Experimental result on X-NIST with classification accuracy (%) averaged over 10 runs

Domains Methods ToI MNIST(DM ) FashionMNIST(DF ) NIST(DN ) EMNIST(DE) Average
IrT DF DN DE DM DN DE DM DF DM DF

G→ C

ZDDA 73.2 92.0 94.8 51.6 43.9 65.3 34.3 21.9 71.2 47.0 59.5
CoCoGAN 78.1 92.4 95.6 56.8 56.7 66.8 41.0 44.9 75.0 54.8 66.2
Wang2020 81.2 93.3 95.0 57.4 58.7 62.0 44.6 45.5 72.4 58.9 66.9
DF-ZSDA 68.7 77.0 86.3 40.2 42.3 42.4 45.7 31.3 83.0 66.8 58.4
Ours 76.6 89.2 80.9 45.3 59.5 57.0 50.2 59.2 78.1 60.9 65.7

G→ E

ZDDA 72.5 91.5 93.2 54.1 54.0 65.8 42.3 28.4 73.6 50.7 62.6
CoCoGAN 79.6 94.9 95.4 61.5 57.5 71.0 48.0 36.3 77.9 58.6 68.1
Wang2020 81.4 93.5 96.3 63.2 58.7 72.4 49.9 38.6 78.2 61.1 69.3
DF-ZSDA 79.5 95.5 93.5 33.4 30.7 35.8 53.4 47.0 85.5 74.4 62.9
Ours 87.0 91.5 93.1 59.9 63.8 64.7 48.3 44.2 78.5 71.5 70.3

G→ N

ZDDA 77.9 82.4 90.5 61.4 47.4 62.7 37.8 38.7 76.2 53.4 62.8
CoCoGAN 80.3 87.5 93.1 66.0 52.2 69.3 45.7 53.8 81.1 56.5 68.6
Wang2020 - - - - - - - - - - -
DF-ZSDA 59.7 81.0 90.6 68.7 64.3 77.6 58.7 59.0 77.7 64.0 70.1
Ours 94.6 94.2 97.6 69.8 68.7 78.9 62.7 64.9 86.2 86.4 80.4

C → G

ZDDA 67.4 85.7 87.6 55.1 49.2 59.5 39.6 23.7 75.5 52.0 59.5
CoCoGAN 73.2 89.6 94.7 61.1 50.7 70.2 47.5 57.7 80.2 67.4 69.2
Wang2020 73.7 91.0 93.4 62.4 53.5 71.5 50.6 58.1 83.5 70.9 70.9
DF-ZSDA 98.1 99.1 99.1 88.0 89.1 89.5 69.0 69.1 91.3 92.1 88.4
Ours 92.1 90.3 92.8 86.2 76.2 74.9 65.9 62.8 89.4 75.9 80.7

N→ G

ZDDA 78.5 90.7 87.6 56.6 57.1 67.1 34.1 39.5 67.7 45.5 62.4
CoCoGAN 80.1 92.8 93.6 63.4 61.0 72.8 47.0 43.9 78.8 58.4 69.2
Wang2020 82.6 94.6 95.8 67.0 68.2 77.9 51.1 44.2 79.7 62.2 72.3
DF-ZSDA 64.1 68.7 89.5 58.7 57.2 30.3 58.4 51.0 73.4 56.6 60.8
Ours 95.8 92.4 97.9 75.0 73.9 78.1 64.6 57.2 88.3 87.5 81.1

When conducting experiments, we used 10 random categories from 65 categories as ToI and
the rest as the IrT.

Implementation deatails In all experiments, the classifier Fr, Fir, and D were imple-
mented with one fully connected layer. In the X-NIST benchmark, two feature extractors,
GD and GF , were implemented with three convolutional layers. G was implemented with
three convolutional layers. We set the batch size as 64 and the total number of iterations
as 7,000. In the Office-Home dataset, we utilized ResNet-50 pre-trained on ImageNet. G

was implemented with stages 0 to 3 of ResNet-50. Stage 4 of ResNet-50 was copied into
two parts: GD and GF . We set the batch size as 32 and the total number of iterations
as 15,000. For all tasks, we used Adam with a learning rate of 0.0002. In half of the full
training iterations, the learning rate was decayed by 0.1. More details are shown in the
supplementary.

Comparison methods We compare our proposal with two types of works: (1) the gen-
erative model-based methods, ZDDA [9], CoCoGAN [45], and Wang2020 [13]. (2) Feature
disentanglement-based method, DF-ZSDA [47] 1. For all competitors, the model was trained
on source ToI, source IrT, and target IrT. Then the model was tested on the target ToI
data.

Results Table 4.1 shows the prediction accuracy of the target ToI data for over 10
task combinations on the X-NIST. Overall, these results show that our proposal exhibits a
good domain adaptation ability in the ZSDA setting; our proposal achieves the best average

1We used the official code provided by the author of DF-ZSDA to reproduce DF-ZSDA’s experimental results
on X-NIST. The reproduced results are worse than the results reported in their paper. The experimental results on
office-home datasets are drawn from their paper because the provided code is not prepared for office-home.
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Table 4.2: Experimental result on Office-Home with classification accuracy (%) averaged over 10
runs

Source Pr Rw Ar Cl
Target Ar Cl Rw Ar Cl Pr Cl Pr Rw Ar Pr Rw
CoCoGAN 57.6 53.4 71.7 69.2 51.3 65.8 62.3 69.5 74.5 66.7 74.0 66.4
Wang2020 70.3 60.8 74.8 72.2 61.4 72.2 62.7 71.9 76.3 72.6 75.1 73.9
DF-ZSDA 64.4 69.2 82.0 77.9 76.2 88.5 71.0 76.5 85.1 62.1 68.7 75.1
Ours 67.5 65.1 78.9 74.3 69.0 75.8 72.1 76.7 83.8 69.8 73.0 71.5

accuracy on X-NIST. In particular, our proposal achieves the best performance when domain
shifts happen between the gray-scale domain and the negative domain (the third and fifth
columns in Table 4.1). This is because our proposal relies on the mixup technique, which
assumes that intermediate domains can be obtained by linear interpolating source and
target domains. Gray-scale and negative domains satisfy this assumption very well, so our
proposal performs particularly well. When domain shifts are C → G, our proposal achieves
the second-best result, only worse than DF-ZSDA. When domain shifts are G → C and
G → E (the first and second columns in Table 4.1), the performance gap between our
proposal and the best method, Wang2020, is within four percent. This gap is acceptable
when considering that our proposal does not require heavy computation resources to train
a generative model.

Table 4.2 shows the prediction accuracy of the target ToI data on the office-home. Al-
though the domain shift in this benchmark is more complex than X-NIST, our proposal still
shows good performance to overcome domain shift. Compared with generative model-based
methods, our proposal achieves competitive or better results with fewer training resources.
Compared with DF-ZSDA, our method achieves close results in certain situations. However,
when the source domain is Rw and the target domains are Cl or Pr (the sixth and seventh
columns in Table 4.2), there is a clear gap between our approach and DF-ZSDA. We sus-
pect that the reason for not performing well is that the gap between domains is complex.
This complexity weakens the effect of mixup and therefore affects the performance of our
proposal.

4.4.2 Visualizations

In this work, we are ultimately concerned with the features used to classify ToI data, which
are outputs of GF . We expect GF can learn domain-invariant features and is able to separate
features belonging to different tasks. To verify whether our proposal works as expected, we
visualize the feature space of GF on X-NIST. More specifically, we randomly select 200
samples from source IrT, source ToI, target IrT, and target ToI datasets, respectively.
Then, we utilize t-SNE to visualize features extracted by GF on a two-dimensional space.
In Figure 4.5, we use two ways to colorize feature points. First, we colorize points by their
domain label. We can find the feature distributions of source and target domains are very
similar. This indicates GF can extract domain-invariant features. Then, we colorized points
by their task. We can find that the features of ToI and IrT can be separated, which indicates
our contrastive learning objective works well. With the above observation, we concluded
that our proposal works as expected. Visualizations on more datasets are shown in the
supplementary due to space limits.
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(a) Illustration of domain-invariance (b) Illustration of contrasting task

(c) Illustration of domain-invariance (d) Illustration of contrasting task

Figure 4.5: Visualization results when domain shift is domain G to domain N. At the top, the ToI
is MNIST, IrT is Fashion-MNIST. At the bottom, the ToI is MNIST, IrT is EMNIST.
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Table 4.3: Ablation studies on X-NIST with classification accuracy (%) averaged over 10 runs

Domain shift G→ C G→ E G→ N C→ G N→ G
w/o dual mixup 59.9 63.1 65.2 74.2 76.0
w/o dual contrastive 56.4 66.2 48.4 75.0 61.5
w/o adaptive temperature 61.39 68.59 77.91 76.83 81.73
triplet loss 55.17 44.19 38.35 59.46 56.77
Ours 65.7 70.3 80.4 80.7 81.1

4.4.3 Ablation studies

To check the importance of each module in DMCL, we perform the following ablation studies
on the X-NIST.

Importance of the dual mixup We extend domain adversarial training with mixup
samples. To verify this module is necessary, we remove the mixup samples used in domain
adversarial training. The second row in Table 4.3 shows the averaged classification accuracy
over 10 task combinations of the target ToI data when we remove dual mixup module.
Overall, these results show that the dual mixup module is important. When this module is
removed, the difference in performance can be up to 17%.

Importance of the dual-level contrastive learning We utilize dual-level contrastive
learning to force feature disentanglement between domain-related features and task-related
features. To verify this module is necessary, we remove two contrastive learning objectives.
The third row in Table 4.3 shows that dual-level contrastive learning is important, and only
domain adversarial training is not enough to solve ZSDA. For all domain shifts, removing
contrastive learning objectives leads to worse accuracy on the target domain. This fits our
expectation. Exploring the intrinsic relationships with contrastive objectives is helpful in
solving ZSDA tasks. More ablation studies are shown in the supplementary.

Importance of adaptive temperature We utilize an adaptive temperature to adjust
the focus of contrastive learning objectives automatically. To verify the effectiveness of this
module, we replace the adaptive temperature with a constant temperature with a value of
0.5. The fourth row in Table 4.3 shows that the adaptive temperature can provide a minor
improvement of domain adaptation ability. This module may not be decisive in solving the
ZSDA problem, but the introduction of this module can bring a steady improvement in all
situations on X-NIST.

Another contrastive learning objective In our proposal, we utilize NT-Xent loss to
realize the contrastive learning objective. However, there are some other options to realize
our intuition. For example, triplet loss can also be used to realize contrastive learning
objectives. We take Lcond

as an example. For A, B, C defined in the section 4.3.4, if we
assume Bi as an anchor sample, then Ci is the positive sample, and Ai is the negative
sample. Then, triplet loss is formalized as:

Ltripd
(GD) = max(‖GD(G(Bi)) − GD(G(Ci))‖2−

‖GD(G(Bi)) − GD(G(Ai))‖2 + α, 0) (4.6)

where α is a margin between positive and negative pairs.
This triplet loss can replace Lcond

in our proposal. Similarly, a similar loss shown in the
following can replace Lconf

.
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Ltripf
(GF ) = max(‖GF (G(Bi)) − GF (G(Ai))‖2−

‖GF (G(Bi)) − GF (G(Ci))‖2 + α, 0) (4.7)

The fifth row in Table 4.3 shows the classification accuracy on the target domain when we
use the above two triplet losses to replace dual-level contrastive losses in our proposal. We
can find that there is a large gap between our original proposal and our proposal with triplet
losses. This may be due to the fact that the triplet loss is difficult to optimize. In contrast,
the NT-Xent loss does not have such an issue and leads to good domain adaptation ability.

4.5 Conclusion

In this paper, we propose DMCL to learn domain-invariant features that are not affected by
the difference between tasks. Specifically, we design a dual mixup to synthesize intermediate
samples between tasks and domains. These data bridge the gap of target ToI data. Then
we design two contrastive learning objectives to explore the relationship among data from
two aspects: domain and task. With contrastive learning, our model is able to separate
domain-related features and task-related features. Finally, by applying adversarial learning,
the resulting domain-invariant features are not affected by differences in tasks. In the eval-
uation, DMCL shows good performance in solving zero-shot domain adaptation problems.
Moreover, we visualize our proposal on feature space and confirm our proposal works as
expected.

4.6 Limitation

In this section, we discuss the limitation of our proposal. First, our proposal assumes that
applying the convex combination of two samples at the pixel level will result in samples with
the intermediate domain. This assumption does not always hold. For example, complex
domain shifts such as style transfer will break this assumption. The experimental result on
the Office-Home datasets also suggests that our method does not show superior performance
on the complex domains. Hence, we need to consider other solutions to synthesize samples
in the intermediate domains. Although the generative model [22] seems the best way to
represent the data-generating distribution of intermediate domains, we do not want to
significantly increase computational resources in our proposal. Instead, we may utilize
some extension of mixup, such as CutMix [69], to relax our assumption.

Second, the motivation of this work is to avoid the sharing of private data. By introducing
the zero-shot domain adaptation setting, now, we are able to avoid the sharing of target
private data. However, we still need to utilize private data in the source domain. A simple
solution to this issue would be combining the source-free domain adaptation setting and
the ZSDA setting. Then, we can get rid of the need for private data both in the source and
target domains.
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Chapter 5

Conclusion

In this thesis, we aim to provide solutions to overcome domain shifts when task-relevant
data from the target domain is unobtainable.

In Chapter 3, we propose a data augmentation method, termed GADA, for the domain
generalization setting. This data augmentation method aims to augment training data with
semantically diverse and difficult samples. Empirically, GADA shows superior domain gen-
eralization ability on three benchmarks. Further visualization and ablation studies confirm
our proposal can provide hard samples, and each module in our proposal is important.

In Chapter 4, we propose a representation method, termed DMCL, for the zero-shot
domain adaptation setting. DMCL aims to learn domain-invariant features in the ZSDA
setting. To achieve this, we design dual-level contrastive learning objectives to force feature
disentanglement between domain-level and category-level features. Then, the classifier is
built upon the category-level features. Hence, the classifier will not be affected by domain
shifts. The experimental results suggest this method can lead to good domain adaptation
ability when label space is different in the source and target domains.

5.1 Future work

In the future, we would like to investigate our proposal in the following directions.
Domain adaptation on non-image data First, our two proposals, GADA and DMCL,

aim to alleviate domain shift in the image classification task. However, the domain shift
issue is not only present in image tasks but also in non-image tasks. For example, [70]
argued that neural machine translation models are usually trained with fixed vocabulary
but need to handle open vocabulary. In this situation, the training and test domains are
different, and the domain shift happens. Compared to image tasks, how to mitigate domain
shift in non-image tasks is currently not well studied. It would be exciting and meaningful
to investigate how to extend our proposal in the non-image tasks.

Generalized domain adaptation setting Second, we investigate domain generaliza-
tion and zero-shot domain adaptation settings in this thesis. These settings both limit the
number of domains or tasks that can exist. DG assumes that the source domains and target
domains are both related to the same task, and ZSDA assumes that only two domains and
two tasks exist. However, in reality, we often need to handle a more general setting due to
the large amount of data collected from different media. That is, we have multiple source
domains and multiple target domains, and these domains may be related to multiple tasks.
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In the future, we would like to investigate how to handle this general setting.
Application on realistic datasets Third, we evaluate our proposals on artificial bench-

marks. Although these benchmarks contain realistic images, the domain shifts that existed
in these domains are mainly caused by style transfer. In reality, the domain shift we en-
counter is not only due to a style shift but also illumination change, rotation, etc. Hence,
it is meaningful to test our proposal on more realistic domain shifts.

53



Acknowledgement

I would like to express my deepest gratitude to my advisor Prof. Jun Sakuma for his support
of my PhD study. Through his guidance, I gradually learned how to design experiments,
how to write papers, how to make presentations, etc. If not his dedication, motivation, and
energy, I will never grow up to be a qualified PhD，

I would like to sincerely thank Prof. Youhei Akimoto, and Prof. Kazuto Fukuchi. They
all gave me a lot of valuable comments on my research.

I would like to extend my sincere thanks to my parents. They always tried their best to
support me to do what I want. Without their support, I would never have had a chance to
come to study in Japan.

Finally, I want to thank my labmates, for their help in my life in Japan and their advice
on my research. I am very honored to spend four years with you.

54



References

[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backprop-
agation. In International conference on machine learning, pp. 1180–1189. PMLR, 2015.

[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, Vol. 86, No. 11, pp.
2278–2324, 1998.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pp. 248–255. Ieee, 2009.

[4] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[5] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning research, Vol. 17, No. 1, pp.
2096–2030, 2016.

[6] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang
Chen, Wenjun Zeng, and Philip Yu. Generalizing to unseen domains: A survey on
domain generalization. IEEE Transactions on Knowledge and Data Engineering, 2022.

[7] Yuan Wu, Diana Inkpen, and Ahmed El-Roby. Dual mixup regularized learning for
adversarial domain adaptation. In European Conference on Computer Vision, pp. 540–
555. Springer, 2020.

[8] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana
Tommasi. Domain generalization by solving jigsaw puzzles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2229–2238,
2019.

[9] Kuan-Chuan Peng, Ziyan Wu, and Jan Ernst. Zero-shot deep domain adaptation. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 764–781,
2018.

[10] Wenxiao Xiao, Zhengming Ding, and Hongfu Liu. Implicit semantic response alignment
for partial domain adaptation. Advances in Neural Information Processing Systems,
Vol. 34, pp. 13820–13833, 2021.

55



[11] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum
classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3723–3732, 2018.

[12] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with
mixstyle. arXiv preprint arXiv:2104.02008, 2021.

[13] Jinghua Wang and Jianmin Jiang. Adversarial learning for zero-shot domain adapta-
tion. In European Conference on Computer Vision, pp. 329–344. Springer, 2020.

[14] Masato Ishii, Takashi Takenouchi, and Masashi Sugiyama. Zero-shot domain adapta-
tion based on attribute information. In Asian Conference on Machine Learning, pp.
473–488. PMLR, 2019.

[15] Rowel Atienza. Improving model generalization by agreement of learned representations
from data augmentation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 372–381, 2022.

[16] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. CoRR, Vol. abs/1710.09412, , 2017.

[17] Won Young Jhoo and Jae-Pil Heo. Collaborative learning with disentangled features
for zero-shot domain adaptation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 8896–8905, 2021.

[18] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and
Dacheng Tao. Deep domain generalization via conditional invariant adversarial net-
works. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
624–639, 2018.

[19] Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. Multi-adversarial discrimina-
tive deep domain generalization for face presentation attack detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10023–
10031, 2019.

[20] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun
Zhang. Adversarial domain adaptation with domain mixup. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34, pp. 6502–6509, 2020.

[21] Hui Tang and Kui Jia. Discriminative adversarial domain adaptation. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34, pp. 5940–5947, 2020.

[22] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. Dlow: Domain flow for adaptation
and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2477–2486, 2019.

[23] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and
Dumitru Erhan. Domain separation networks. Advances in neural information pro-
cessing systems, Vol. 29, , 2016.

56



[24] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adap-
tation. In International conference on machine learning, pp. 1989–1998. Pmlr, 2018.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International journal of computer vision, Vol.
115, No. 3, pp. 211–252, 2015.

[26] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial adversarial
domain adaptation. In Proceedings of the European conference on computer vision
(ECCV), pp. 135–150, 2018.

[27] Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance weighted
adversarial nets for partial domain adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 8156–8164, 2018.

[28] Jian Hu, Hongya Tuo, Chao Wang, Lingfeng Qiao, Haowen Zhong, and Zhongliang
Jing. Multi-weight partial domain adaptation. In BMVC, p. 5, 2019.

[29] Shuang Li, Chi Harold Liu, Qiuxia Lin, Qi Wen, Limin Su, Gao Huang, and Zhengming
Ding. Deep residual correction network for partial domain adaptation. IEEE trans-
actions on pattern analysis and machine intelligence, Vol. 43, No. 7, pp. 2329–2344,
2020.

[30] Youngeun Kim, Donghyeon Cho, Kyeongtak Han, Priyadarshini Panda, and Sungeun
Hong. Domain adaptation without source data. IEEE Transactions on Artificial In-
telligence, Vol. 2, No. 6, pp. 508–518, 2021.

[31] Ning Ding, Yixing Xu, Yehui Tang, Chao Xu, Yunhe Wang, and Dacheng Tao. Source-
free domain adaptation via distribution estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7212–7222, 2022.

[32] Pietro Morerio, Riccardo Volpi, Ruggero Ragonesi, and Vittorio Murino. Generative
pseudo-label refinement for unsupervised domain adaptation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3130–3139,
2020.

[33] Jogendra Nath Kundu, Akshay R Kulkarni, Suvaansh Bhambri, Deepesh Mehta,
Shreyas Anand Kulkarni, Varun Jampani, and Venkatesh Babu Radhakrishnan. Bal-
ancing discriminability and transferability for source-free domain adaptation. In Inter-
national Conference on Machine Learning, pp. 11710–11728. PMLR, 2022.

[34] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization
via invariant feature representation. In International Conference on Machine Learning,
pp. 10–18. PMLR, 2013.

[35] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John Duchi, Vittorio Murino, and
Silvio Savarese. Generalizing to unseen domains via adversarial data augmentation.
arXiv preprint arXiv:1805.12018, 2018.

57



[36] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to gen-
erate novel domains for domain generalization. In European Conference on Computer
Vision, pp. 561–578. Springer, 2020.

[37] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi
Jyothi, and Sunita Sarawagi. Generalizing across domains via cross-gradient training.
arXiv preprint arXiv:1804.10745, 2018.

[38] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-
adversarial image generation for domain generalisation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34, pp. 13025–13032, 2020.

[39] Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. Learn-
ing to diversify for single domain generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 834–843, 2021.

[40] Fu-En Yang, Yuan-Chia Cheng, Zu-Yun Shiau, and Yu-Chiang Frank Wang. Adver-
sarial teacher-student representation learning for domain generalization. Advances in
Neural Information Processing Systems, Vol. 34, , 2021.

[41] Alexander Robey, George Pappas, and Hamed Hassani. Model-based domain general-
ization. Advances in Neural Information Processing Systems, Vol. 34, , 2021.

[42] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization. arXiv preprint arXiv:1907.02893, 2019.

[43] Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. In-
variant risk minimization games. In International Conference on Machine Learning,
pp. 145–155. PMLR, 2020.

[44] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,
and Anil A Bharath. Generative adversarial networks: An overview. IEEE Signal
Processing Magazine, Vol. 35, No. 1, pp. 53–65, 2018.

[45] Jinghua Wang and Jianmin Jiang. Conditional coupled generative adversarial net-
works for zero-shot domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3375–3384, 2019.

[46] Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, and
Hwann-Tzong Chen. Coco-gan: Generation by parts via conditional coordinating. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 4512–
4521, 2019.

[47] Won Young Jhoo and Jae-Pil Heo. Collaborative learning with disentangled features
for zero-shot domain adaptation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 8896–8905, 2021.

[48] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

58



[49] Attila Lengyel, Sourav Garg, Michael Milford, and Jan C van Gemert. Zero-shot
day-night domain adaptation with a physics prior. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4399–4409, 2021.

[50] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul
Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-
image translation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8789–8797, 2018.

[51] Alexander H Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-Chiang Frank Wang. A uni-
fied feature disentangler for multi-domain image translation and manipulation. arXiv
preprint arXiv:1809.01361, 2018.

[52] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of the
IEEE international conference on computer vision, pp. 2223–2232, 2017.

[53] Tongzhou Wang and Yihan Lin. Cyclegan with better cycles. 2018.

[54] Christina Heinze-Deml and Nicolai Meinshausen. Conditional variance penalties and
domain shift robustness, 2019.

[55] Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization
gradients. Advances in Neural Information Processing Systems, Vol. 31, , 2018.

[56] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[57] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and
artier domain generalization. In Proceedings of the IEEE international conference on
computer vision, pp. 5542–5550, 2017.

[58] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised domain adaptation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 5018–5027,
2017.

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[60] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv
preprint arXiv:2007.01434, 2020.

[61] Yuan Wu, Diana Inkpen, and Ahmed El-Roby. Dual mixup regularized learning for
adversarial domain adaptation. In European Conference on Computer Vision, pp. 540–
555. Springer, 2020.

[62] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A
simple framework for contrastive learning of visual representations. CoRR, Vol.
abs/2002.05709, , 2020.

59



[63] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 2495–2504, 2021.

[64] Li Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, Vol. 29, No. 6, pp. 141–142, 2012.

[65] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. CoRR, Vol. abs/1708.07747, , 2017.

[66] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an
extension of MNIST to handwritten letters. CoRR, Vol. abs/1702.05373, , 2017.

[67] Patrick J Grother. Nist special database 19. Handprinted forms and characters
database, National Institute of Standards and Technology, Vol. 10, , 1995.

[68] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detec-
tion and hierarchical image segmentation. IEEE transactions on pattern analysis and
machine intelligence, Vol. 33, No. 5, pp. 898–916, 2010.

[69] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with local-
izable features. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 6023–6032, 2019.

[70] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

60


	1_Cover Page
	doctoral_thesis_yuzhe

