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Abstract

A fractal is a geometric shape containing involved structure at arbi-
trarily small scales. Examples of fractals abound, but a class of fractals
have attracted particular attention: fractals which occur as attractors of
iterated function systems.

An iterated function system (IFS) is a family of contractions f; on R?,
where k € {1,...,n} and n > 2. According to Hutchinson [14], there is
a unique nonempty compact subset F' of R, called the attractor of IFS
{f1,--., fn}, such that

F =] fu(P). (0.1)
k=1

In particular, F' is called a self-similar set, if fi’s are similitudes. Cer-
tain self-similar sets are well known: the middle-third Cantor set, the Koch
snowflake, the Sierpinski gasket, the Sierpinski carpet and the Heighway
dragon. And there are a lot of researches on properties of self-similar sets
in the history.

The notion of fractal dimension of a set is central to nearly all fractal
studies. Roughly speaking, a fractal dimension is a tool to measure the
complexity of a set.

Two fundamental and important fractal dimensions are Box-counting
dimension and Hausdorff dimension, the specific definition is in Falconer
[11]. Some effort has been devoted to calculating these two dimensions of
IFS attractors (c.f Falconer [12]). Thereinto, an important result is about
self-similar sets: if a self-similar set satisfies the open set condition (OSC)
then the Hausdorff dimension of it satisfies the dimension formula and is
equal to the Box-counting dimension of it. The definition of OSC is found
in Falconer [11], [12]. And this condition ensures that the components
fe(F) of F do not overlap too much.

Except the class of self-similar sets, there are many other classes of
IFS attractors. We focus on a class called fractal necklaces which are
generated by the necklace IFSs (NIFSs). The NIFS {f1,..., fn} is an IFS
satisfying that n > 3 and fi’s are homeomorphisms with

a singleton if |/m —k|=1orn—1
Jm (F) O fi(F) = (0.2)
0 if 2<|m—k/<n-2

for all distinct m,k € {1,...,n}. For example, the usual IFS of the
Sierpinski gasket is a NIFS and the Sierpinski gasket is a fractal necklace.

Here we discuss a basic remaining topological question for fractal neck-
laces. We can check that every fractal necklace is path-connected. And
it seems like that fractal necklaces have no cut points. We say that a
point = of a connected topological space X is a cut point, if X \ {z} is
not connected.

However, counter intuitively, some fractal necklaces have cut points.
We first consider which fractal necklaces in R? have no cut points. In
Chapter 1.1, We give two subclasses of fractal necklaces and prove that
every necklace in these two classes has no cut points. Thereinto, one sub-
class is called good necklaces, another subclass is called stable necklaces



of bounded ramification. These two subclasses are not mutually inclusive.
Also, we prove that every stable self-similar necklace in R? has no cut
points, whilst an analog for self-affine necklaces is false.

We know that distinct IFSs can generate the same attractor. However,
by the definition of NIFS, it seems like that the NIF'S of a fractal necklace
is unique in a certain sense. In Chapter 1.1, some properties of necklace
have been given by its NIF'S, if we can show the uniqueness of NIF'S, these
properties only depend on the necklace.

In Chapter 1.2, we prove every good necklace has a unique NIFS in a
certain sense. By the same idea, we can get that two good necklaces admit
only rigid homeomorphisms and thus the group of self-homeomorphisms
of a good necklace is countable. In addition, a certain weaker co-Hopfian
property of good necklaces is also obtained. The above rigidity and the
weaker co-Hopf property on fractals have been studied by C. Bandt and
T. Retta [9].

We conjecture that these theorems in Chapter 1.2 hold for all neck-
laces. However, it seems very difficult to prove (disprove) this conjecture.

Besides the research of dimensions, we also consider some basic geo-
metric questions for IFS attractors. For example, we are concerned about
the convex hulls of IF'S attractors.

Let A be a d X d contractive matrix and d; € R®. The convex hull of
the attractor of IFS {f; | i = 1,2,...m} with f; = Az + d; is studied by
Strichartz-Wang [30]. They observed an important property of extreme
points of the convex hull and deduced that the attractor has a polygonal
convex hull if and only if there exists a positive integer s such that A° is
a scalar matrix.

Kirat-Kocyigit [20] considered the case that the linear part of f; may
not be identical and proved that, if the attractor has a polygonal convex
hull, the vertices must have eventually periodic codings. We make a little
progress on Kirat-Kocyigit’s result in Chapter 2: Let K be the attractor
of an IFS {f; | i =1,2,...m} on the complex plane C with

fi(z) = aiz+ b, a;,b; € C, 0 < Ja;| < 1.

Suppose K is not a singleton. If eventually periodic word 4142 - - - (41 - - - 5&)°°

in {1,2,...m}" is a coding of an extreme point of co(X) then
Qjy Ajy -+ - Ay > 0.

Besides, Kirat-Kocyigit [20] also gaves a sufficient and necessary con-
dition such that the attractor of a given IFS has a polygonal convex hull.
Moreover, they found a way to check their condition, but the termination
is not discussed.

Since the Kirat-Kocyigit’s condition is not easy to check, the discussion
for the convex hulls of IFS attractors is far from over. We devote some
effort to study the convex hulls of dragon curves.

The dragon curves is a family of self-similar fractals in R?, they can
be regard as the attractors of the following IFSs in the complex plane:

fi(z) =az and fa(z) =1-—az,



—in
where a:=a(n) = Qecosn and n € (0,7/3).

The dragon curve has also been obtained as the limit of the renormal-
ized paperfolding curves in the Hausdorff metric as well; see R. Albers [1]
and S. Tabachnikov [31].

When n = 7, the dragon curve is well-known as Heighway dragon.
Heighway dragon has some properties, for examples: Heighway dragon
never traverses itself; Heighway dragon can tile the plane; as a non-self-
crossing space-filling curve, Heighway dragon has fractal dimension ex-
actly 2. More detailed results are in C. Davis and D.E. Knuth [10].

Motivated by properties of Heighway dragon, Tabachnikov [31], Albers
[1], Allouche et al [3], and Kamiya [19] studied similar questions for dragon
curve with an arbitrarily fixed angle 7,

In Chapter 2, we say that the convex hull of a dragon curve is a
polygon. To our knowledge, this is the first example of a parameterized
family of fractals whose convex hull is a polygon. In most cases, we can
give the values of vertices of polygonal convex hull of a dragon curve.
Besides, we are also concerned that if the dragon curves satisfies OSC and
when a dragon curve is an arc. These are what we want to study in the
future.
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1 Fractal necklaces

1.1 Fractal necklaces with no cut points
1.1.1 Introduction

Let I = {1,2,--- ,n}. For each k € I let f;, : R? — R? be a contractive map
satisfying
|fr(@) = fr()] < cklz —y|

for all z,y € R?, where ¢ € (0,1). According to Hutchinson [15], there is a
unique nonempty compact subset F of R%, called the attractor of { f1, fa, -+, fal,
such that

F =] fu(F). (L1)

k=1
We call {f1, fa, -+, fn} an iterated function system (IFS) of F.

Definition 1. An attractor F with an IFS {fi, fa, -+, fa} on R? is called
a fractal necklace or a necklace for short, if n > 3 and fix’s are contractive
homeomorphisms of R satisfying

a singleton if lm—k|=1o0rn—1

fm(F)mfk(F):
0 if2<|m—kl<n-2

for each pair of distinct digits m,k € I. In this case, the ordered family
{f1, f2, -, fn} is called a necklace IFS or a NIFS. We say that F is self-similar
(self-affine), if fr’s are similitudes (affine maps).

Figure 1.1.1 illustrates two planar self-similar necklaces. The first one is
generated by 3 similitudes of ratio 1/2 and the second one is generated by 6
similitudes of ratio 1/3. They arise as examples of many papers for various
purposes; see for example [25, 27]. Among the results of [27], Tyson and Wu
proved that these two necklaces are of conformal dimension 1.

YT
i
7

Sk

Figure 1: Two self-similar necklaces in R2.

It is not difficult to see that every fractal necklace is path-connected and
locally path-connected; see [14, 17]. It is natural to ask whether every necklace



has no cut points. The answer is no; see Section 1.1.2. Hereafter we say that
a point x of a connected topological space X is a cut point, if X \ {z} is not
connected. The present paper is devoted to the following question. For a study
on cut points of self-affine tiles we refer to [2].

Question 1. Which necklaces in R? have no cut points?

We start by notations. From now on denote by F' a necklace with a NIFS
{f1, fas-+ » fn} on R2, if it is not specified. For every integer m > 0 and every
word o = iyig - iy € I™ we write f, for fi, o fi, 0o f; and Fy for f,(F),
where I° = {(} and fy = id. The set F, is called an m-level copy of F. Denote
by Cpn(F) the family of m-level copies of F' and let

A copy of F always means a member of C(F).

For each k € I denote by z; the unique common point of the 1-level copies
Fy and Fy41. The ordered points z1, 22, - - , 2, are called main nodes of F'. For
every subset A of F' denote respectively by intz A and Jr A the interior and the
boundary of A in the relative topology of F. Thus O F), = {zk_1, 2} for every
k € I. Hereafter we prescribe

Fn+1 = F1 and 20 = Zn-
Definition 2. We say a necklace F' is good, if OpFy, ¢ Fy; for any k,j € 1.

Equivalently, a necklace F' is good, if F' and F} are the only two copies
containing O Fy, for each k € I.

Let I* = UpP_oI™ and let o € I*. Since fi’s have been assumed to be
homeomorphisms of RY, F,, is a necklace with an induced NIFS

{foofiofstjel}

whose main nodes are f,(z1), fs(22), -, fo(2n). The phrase, m-level copies of
F,, is now meaningful.

Definition 3. We say a necklace F is stable, if for each k € 1
ﬂ{ijZijﬁaFFk#w,jEI}ZQ. (1.2)
Hereafter §f denotes the cardinality.

By the above definitions, every good necklace is stable. Additionally, every
necklace F' with the condition that z;_; or z; is a main node of F}, for each
k € I is stable.

For each z € F and for every integer m > 0 let

Con(F,2) = {A € Cp(F): 2z € A} (1.3)



and C(F, z) = USS_oCr (F, 2). Let
em(2) == e (F, 2) := §C(F, 2) (1.4)

denote the number of m-level copies containing z. Thus ¢;(z) = 1 or 2, and
c1(z) = 2 if and only if z is a main node of F'. Note that for each A € C,,,(F, z)
there is one or two copies B € Cp41(F, 2) lying in A. We have

em(2) < emy1(2) < 2¢m(2).

It then follows that {¢,(2)}5°_; is a nondecreasing integer sequence satisfying
1 < cem(z) < 2™ for each m > 1.

Definition 4. We say a necklace F is of bounded ramification, if the sequence
{em(26) 1501 is bounded for each k € I.

Equivalently, a necklace F is of bounded ramification, if 7=1(x) is finite for
any x € F, where 7 : > — F is the code map (see [11]). By the definition, if
there is a main node zj such that it is a main node of each copy A € C(F, z),
then F is not of bounded ramification. Such necklaces can be found in Figure
3 and Figure 4(b).

The main results are as follows.
Theorem 1.1. Every good necklace in R% has no cut points.
Theorem 1.2. Fvery stable necklace of bounded ramification has no cut points.

An attractor with an IFS {fy, fa,- -+ , f» } on R is said to satisfy the open set
condition (OSC), if there is a nonempty bounded open subset V of R? such that
F1(V), f2o(V), -+, fu(V) are pairwise disjoint open subsets of V'; see [11, 26].

Theorem 1.3. Every stable self-similar necklace in R with the OSC has no
cut points.

Actually, we shall show that every self-similar necklace in R? with the OSC
is of bounded ramification, which together with Theorem 1.5 implies Theorem
1.3.

As a corollary of a theorem of Bandt and Rao [8], every self-similar necklace
in R? satisfies the OSC. Thus, Theorem 1.3 gives the following corollary.

Corollary 1. Every stable self-similar necklace in R? has no cut points.

Remark 1.1. A self-similar necklace of bounded ramification in R? may have
cut points; see Example 1.

Remark 1.2. A stable self-affine necklace in R? may have cut points; see Ex-
ample 2.

Remark 1.3. Stable necklaces of bounded ramification and good necklaces are
not mutually inclusive; see Example 3.



Without assuming F' is self-similar, we have the following result.
Theorem 1.4. Every planar necklace with no cut points satisfies the OSC.

The paper is organized as follows. In Section 1.1.2, we give examples of
necklaces to show Remarks 1, 2 and 3. Then we prove Theorem 1.1 in Section
1.1.3, Theorem 1.5 in Section 1.1.4, and Theorems 1.3 and 1.4 in Section 1.1.5.
In the light of our results we put some further questions in Section 1.1.6.

1.1.2 Examples

We first show by an example that a planar self-similar necklace of bounded
ramification may have cut points.

Example 1. We use the complex number notation. Let {f1, -+, fa4} be a
NIF'S on the complex plane C defined by

z 4 a, if je{1,7,13,19}
fi(z) =
115—1—&3' ifj€{1,2,~-',24}\{1,7,13,19},

where a1, as, -+ , a4 € C satisfy

faa(1) = f1o f13(i), f1o fi3(1) = fa(d)
Je(1+1i) = fro fi9(0), fro fio(1+1) = fs(0)
J12(7) = fiz o f1(1), fizo fi1(i) = fia(1)

f18(0) = fig o fr(1+1), fio0 f7(0) = fao(1 +1)
fi(X+1i) = f341(0), j €{2,4,9,11}

fi(1) = fj1(4), j € {3,5,20,22}

(Z) fj+1 ) j e {8, 10,15, 17}

(

fi
f] 0) fj+1(1+l) VES {147 16,21723}

The planar self-similar necklace F' generated by {f1, fo, f3, - , f2a} is illustrated
in Figure 2. It has the following properties.

Figure 2: A planar self-similar necklace of bounded ramification and with cut
points
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(1) F is not stable, in fact, for the 1-level copy F one has
{Flj . Fl] ﬂaFFl 7& @7] S {172a 724}} = {FI(IS)}a

so F does not satisfy (1.2). Here the bracketed number in the subscript empha-
sises that it is a digit.

(2) F is of bounded ramification, indeed, given a main node z; and an integer
m > 1, F' has only two m-level copies containing zj.

(3) (141)/4 is a cut point of F'. In fact, F'\ Fy(y3) is obviously not connected.
By zooming we see that

F\ Fiasy, F\ Fiasyias), F\ Fiasyasias)y,

are not connected and tend to F'\ {(1 4 ¢)/4} increasingly, by which one easily
shows that F'\ {(1 4 ¢)/4} is not connected, as desired.

Next we give an example of stable planar self-affine necklaces with cut points.

Example 2. Let Ty and 77 be two closed solid isosceles triangles sharing a
common vertex zg and of different sizes, whose angles at zy are a pair of vertical
angles and whose opposite sides are parallel. Let T'= Ty UT}. Let V be the set
of the four extremal points of T. Let {f1, fo, -+, fo} be a family of invertible
contractive affine maps of R? satisfying the following conditions:
WVl _f(l)CT
2) 8(f;(T)NV) =1for each j € {1,2,5,6}.
3) VN (fs(T)U fu(T)) = 0.
D B0 Jul0) = V)0 JuV) i 2 m and ) 01,61
5)/1(T) N f6(T) = {20} and f1(20) = fs(20) = 20.
o) 1 (T} e = Loy 2 (08 05}
7) Fu(T) O fnT) = O i [ — k| > 2.
Then {fi, f2,--- , fo} is a NIFS which generates a self-affine necklace F' in R2.
The first step construction of F is illustrated in Figure 3, where the shadow part
consists of f1(T), f2(T),-- , f6(T). Their connecting points are main nodes of
F. 2y is a main node and a cut point of F.

Zo

Figure 3: The first step construction of a stable planar self-affine necklace with
cut points.

The necklace F' is not of bounded ramification, in fact, by condition 5) we
have

Cm(F, Zo) = {Fhiz“'im : iliz .. Zm S {1,6}m} and Cm(Zo) =2™

11



for each integer m > 0, so {¢m(20) 55— is unbounded.

The necklace F is stable. In fact, given k € {1,6}, we have zy € (OpFj) N
Fi1 N Fig, so

ﬁ{Fk]FkJmaFFk#®7j€{l72a76}}22

On the other hand, given k € {2,3,4,5}, we have OpFy, C fi(V) and £ (fx(V)N
Fy;) <1 foreach j € {1,2,3,4,5,6}, so § ((OpFr) N Fr;) < 1, and so

ﬁ{ijijmaFFk 7é®7]€ {1723 76}} 22
This proves that F' is stable.

Finally, we show by examples that stable necklaces of bounded ramification
and good necklaces are not mutually inclusive.

Example 3. Let us see Figure 4. The left one is a planar self-similar necklace
generated by {f1, f, f3}, where

/6% 574/6
fi(z) = %7 fa(z) = %, f3(z) = S 2

Let F be this necklace and let I = {1,2,3}. Then for each k € T
8H{Fkj : Fij NOpFy #0, j € 1} =2,

so I is stable. On the other hand, it is of bounded ramification because
em(21) = em(22) = 3 and cp(23) =2

for each integer m > 1, where 21, 22, 23 are main nodes of F. In addition,
noticing that Fy3 D drF1, we conclude that F' is not good.

i

Jhd
/AN
‘»’J-' *‘\\‘g

Figure 4: Stable necklaces of bounded ramification and good necklaces are not
mutually inclusive.

Next let 0 < a < \/3/6 be given. For z = x + iy € C let

T + iy 1
n(z) = —5— 02(2) =91(2) + 3,

12



27mi 27

g3(z) =e 5 g1(2) + 1, ga(z) = €% gi(2) +
N 1+4z'\/§

Then {g1,92, - , g6} is a NIFS which generates is a self-affine necklace. It is
illustrated on the right of Figure 4. For each k € {1,2,--- ,6} we easily see that
F and Fj, are the only two copies containing dr F), and that

3+iV3
4

g95(2) = e % gi(z) , 96(2) = % g1(2).

Cm(zg) = 2™

for each m > 1. Thus F is good but not of bounded ramification.

1.1.3 The Proof of Theorem 1.1

In this section we prove Theorem 1.1: Every good necklaces has no cut points.
The following lemma will be used.

Lemma 1.1. Let X be a connected metric space, E be connected and dense in
X, andx € X. If x is a cut point of X, then x belongs to E and is a cut point
of E.

Proof. Suppose E\{z} is connected. Since E is dense in X, E\{z} is so. It then
follows from E \ {z} € X \ {z} € X that X \ {«} is connected, contradicting
the assumption that z is a cut point of X. Thus = belongs to E and is a cut
point of E. O

As prescribed, F is a necklace with a NIFS {f1, fo,--- , fn} on R%. Let z,u €
F and let k be a positive integer. We say that a finite sequence (A4, As, -+ , An)
of k-level copies of F' is a k-level chain from z to u, if

N N-1
.%‘EAl\UAj,UEAN\UAJ‘,
j=2 j=1

and

a singleton if |j —m|=1
Aijm: jam€{1a27"'aN}'
0 if |j—m|>2

In this case, we also say that U;VZIAj is a k-level chain. By convention we
prescribe UM, A; = UNT'A; =0, if N = 1.

Let (A1, A, -+, An) be a k-level chain of F. Denote by z; the unique
point of A; N A, for each j € {1,2,---, N —1}. We call the ordered points
T1,Ta9, - ,Tny_1 the connections of the chain.

By Lemma 1.1, to prove a topological space has no cut points, it suffices to
show that it has a connected dense subset with no cut points. We shall show

13



that every good necklace has Property I and that every necklace with Property I
has a connected dense subset with no cut points. Here we say that a necklace F’
has Property I, if each of its 1-level copies Fj has an arc from zp_1 to z; which
passes through at least two main nodes of Fj. By convention an arc means a
subset homeomorphic with the unit interval [0, 1].

The necklace F' in Example 1 does not have Property I, indeed, F; does not
have a wanted arc with Property I. On the other hand, there are necklaces with
Property I, but they are not good. The left necklace in Figure 4 is one of such.

Now we have made the preparations to prove Theorem 1.
The proof of Theorem 1.1. Let x,u € F.

Claim 1. For each k > 1, F has a k-level chain I'y from x to u. They satisfy
Fk+1 Cc I'y and

k k k k (k+1
@2, 2} @ 2D, Gy,
where mgk), xgk), e 7365\12 are the connections of I'y.

Proof. 1t is obvious that F' has a 1-level chain from z to w.

Suppose F has a k-level chain (A4, Az, -+, Ax) from z to u for an integer
k > 1. In the case where N = 1, one has z,u € A;. As is known, A; has a
1-level chain from x to u. Such a chain of A, is clearly a (k + 1)-level chain of F’
from z to u. For the case N > 1 let 21,29, - ,xn_1 be the ordered connections
of the chain (A;, A2, -, An). Then A; has a 1l-level chain from x to x1, A;
has a 1-level chain from x;_; to x; for each j € {2,3,--- , N — 1}, and Ay has
a 1-level chain from xny_; to u. These N chains arranged in the evident order
yield a (k + 1)-level chain of F' from z to w.

By induction, for each k& > 1, F' has a k-level chain from x to u with the
additional requirements.

Claim 2. F has an arc from z and u.

Proof. For each k > 1 let 'y be a k-level chain of F' from z to v and let

xgk) chk), e (k) be its ordered connections as in Claim 1. Let
(o)
Y= ﬂ Fk.
k=1

Then + is a compact subset of F' containing the connections of I'y, for all k. We
are going to show that - is an arc from x to u.

Let -
k k k
k=1

Then X is dense in 7. On the other hand, X is a well ordered set with an

ordering induced by those of {x(k), (k ), e ,xgl\;z}, k > 1. We may choose a

14



dense subset -
k) (k k
Y = U{yi )7y£ )7"' 7y](\rk)}
k=1

of the interval [0, 1] such that the map h : X — Y defined by

h(xEk)) = yj('k)’ j = 1327 e 7Nk:7 k Z 1
is an order-preserving homeomorphism. Now we easily see that h can be ex-
tended to a homeomorphism of + onto [0, 1].

Claim 3. Every good necklace has Property L.

Proof. By the proof of Claim 2, each chain I' of F' from z to w has an arc
from x to u and such an arc contains the connections of I'.

Suppose F' is good. To check Property I, we fix £k € I. Note that the
connections of every 1-level chain of F} are main nodes of Fj.

Case 1. Either z,_1 or z; is a main node of Fj. Let I" be 1-level chain of F},
from zx_1 to zx. Since F is good, I' contains at least two 1-level copies of F,
so its connections are nonempty. Let v be an arc of ' from z;_1 to z;. Then
contains at least two main nodes of Fj,.

Case 2. Neither zp_q nor z; is a main node of Fj. In this case, there is a
unique pair [,j € I such that z;_; € Fjy and 2, € Fy;. Since F' is good, we
have [ # j.

Subcase 1. FyNFy; = 0. Let T be 1-level chain of Fy, from z;_; to z. Then
I" contains at least three 1-level copies of F}, so I' has at least two connections.
Let v be an arc of I from z;_1 to zx. Then v contains at least two main nodes
of F}c.

Subcase 2. Fj; N Fy; # 0. In this subcase, Fi; N Fy; is a singleton whose
unique point is denoted by w. Let

L= U Fi;.

i€1,iF£liF#]

Then L can be regarded as a 1-level chain of F}, from a to b, where {a,b} = Op L.
And we may assume that a € Fi; and b € F;. Clearly, a,b are main nodes of
F},. Since F is good, Fj; has a 1-level chain A from 2,1 to a and Fj; has a 1-
level chain B from b to z;, such that w ¢ AUB. Thus ANL = {a}, LNB = {b},
and AN B = (. Let v4 be an arc of A from z,_; to a, vy, be an arc of L from
a to b, and yp be an arc of B from b to z;. Then v4 U~ U~p is an arc from
21 to z; which contains at least two main nodes of Fj,.

Claim 4. Every necklace with Property I has no cut points.

Proof. Suppose F' satisfies Property 1. For each k € I let 4*) be an arc of
Fy from zp_; to zx which passes through at least two main nodes of Fj. Let

v=J™.

kel
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Then v is a circle of F' passing through all main nodes of F, where a circle
means a subset homeomorphic with the geometric circle. Let

E= U fU(’Y)'
oel*

Then each f,(7) is a circle with

fo{z1, 22, 20} C fo(y) C Fo (1.5)

and F is dense in F'. In addition, by the construction of «y, we have

1(fe(V) N foj(7)) = 2

for each o € I and each j € I, from which we easily infer that E is connected
and has no cut points. Now, by Lemma 1.1, we get that F' has no cut points.
This completes the proof of Theorem 1.1.

Remark 1.4. Let F' be a necklace. By Claim 2, F is path-connected. We
further conclude that F' is locally path-connected, indeed, for each z € F and
each integer m > 1 the set

U 4

A€eC,, (F,z)

is a path-connected neighborhood of z, where C,,(F, z) is a family of m-level
copies of F' defined by (1.3).

1.1.4 The proof of Theorem 1.2

In this section we prove Theorem 1.2: Every stable necklace of bounded rami-
fication has no cut points.

Let F be a necklace with a NIFS {f1, fo, -+, fn} on R%. Let

MF: U {fa(zl)vfa(ZQ)v"' 7fa(zn)}' (16)

oel*

Then = € Mp if and only if x is a main node of some copy of F'. Also, we use
the notations C,(F, z) and ¢, (F, z) from (1.3) and (1.4). As each copy A of F'
is a necklace with an induced NIFS, the notations M4, C,,(4, 2) and ¢, (4, 2)
are self-evident.

Lemma 1.2. Suppose F is stable. Then every point of F\ Mg is not a cut
point of F'.

Proof. Fix z € F'\ M. Then, by the definition of Mg, for each m > 1 there is
a unique m-level copy containing z, so ¢, (F,z) = 1 and z € intgV,,, where V,,
denotes the unique member of C,,(F, z). Let

Upn = U A. (1.7)

Ae Cm(F)\CWL(F’Z)

16



Then U,, UV, = F and
UnNV,, =0rU,, = 0rV,,. (18)

Furthermore {U,, }5°_; is increasing with

F\{z} = | Un. (1.9)

Let
L, = U B. (1.10)
BeC, (Vm)\cl(vmvz)

Then L,, is connected and
Uni1 =Up U Ly,. (1.11)

We claim that U, is connected for every m > 1. In fact, U; is a 1-level chain
of F, so it is connected. Assume that U, is connected for an integer m > 1.
We are going to prove that U,,+1 is connected.

Since F is stable, we may take two distinct copies A, B € C1(V},,) such that
ANOrVy, # 0 and BNIrV,, # 0, so one has ANU,, # () and BNU,, # 0 by
(1.8). Without loss of generality assume B # V,,+1. Then B C L, by (1.10).
Therefore

Upm N Ly, # 0. (1.12)

Since L,, is connected and U, has been assumed to be connected, we get from
(1.11) and (1.12) that U,,41 is connected.

By induction, U, is connected for every m > 1, which together with (1.9)
implies that F\ {z} is connected, so z is not a cut point. This completes the
proof. O

The proof of Theorem 1.2. Suppose F' is stable and of bounded ramification.
We are going to prove that F' has no cut points. As Lemma 1.2 was proved, it
suffices to prove that every point of My is not a cut point of F'.

Let z € Mg be given. Then there is a copy F of F such that z is a main
node of F. In what follows we assume that F is the biggest copy of F' with this
property. Then z is a main node of F and z € intpE. To show that F'\ {z} is
connected, it suffices to prove that F \ {z} is connected.

Since F' is of bounded ramification, {c,,(E,z)}2°_; is bounded. Thus we
may take an integer k£ > 1 such that

em(E,2) = cp(E, 2)

for all integers m > k, which in turn implies that z is not a main node of any
copy A € Ci(E, 2).

Therefore z € A\ My for each A € Ci(E,z). Since A is stable by the
assumption condition, we have by Lemma 1.2 that A\ {2} is connected.

Now that A\ {z} is connected for each A € C(E, z), by which we easily see
that B\ {z} is connected for each B € Cx_1(F,z). Step by step, we get that
E\ {z} is connected. This completes the proof.
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1.1.5 The proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let F' be a self-similar necklace with a NIFS { f1, fa,- - -
on R satisfying the OSC. We are going to show that F' is of boundary ramifi-
cation.

Let Cp, (F, z) and ¢, (2) be defined as (1.3) and (1.4). We have to show that
{em () }55_4 is bounded for each main node zj, of F.

Given z; and m, let 7 € I be a word such that

F, € Cy(F, 2z) and diam(F;) = B cmi(% )diam(A).
ECm (Fizg

For cach A € C,,(F, z;) we may take a copy A € C(F, z;) such that

AC A and c,diam(F,) < diam(A) < diam(F, ), (1.13)
where ¢, = minj<j<p ¢j and ¢1, ¢, -+ , ¢, € (0,1) are respectively the similarity
ratios of fi, fa, -, fn- Then we get ¢, (2x) copies of comparable diameters,
which are denoted as

FdlvFazv"' ’ L e (21) (114)
where 01,09, ,0., () € I" are the corresponding words. It follows from
(1.13) that

cm (2k)
U F», € Bz, diam(F,)),
j=1

where B(zy, diam(F})) is the closed ball of radius diam(F’) centred at z;. Since
the NIFS satisfies the OSC, there is a nonempty bounded open set V of R? such
that f1(V), fa(V), -, fn(V) are pairwise disjoint subsets of V. Thus

f<71 (V)v f<72 (V)v e ’fUcm(zk)(V)

are pairwise disjoint. On the other hand, as V is bounded, we may take a
constant H > 1 such that V' C B(zy, Hdiam(F')). Then

cm (zk)

U ., (V) € B(z, Hdiam(F.)). (1.15)
j=1

By comparing volumes we get from (1.15) that

em(zk)  min  Vol(fo, (V) < wa(Hdiam(F))?, (1.16)
1<j<cm(zx)
where wy denotes the volume of the d-dimensional unit ball. Since the NIFS
consists of similitudes of R%, one has by (1.13)

Vol(f,, (V) (diam(faj(V»)d _ (dam(F>>d Sl

Vol(f-(V)) — \ diam(f-(V)) diam(Fy) ) =

18
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for every j € {1,2, -+, cm(zk)}, which together with (1.16) yields
cm (22)VOl(f- (V) < wa(Hdiam(F;))4. (1.18)

Therefore
wq(Hdiam(F,))*  wq(Hdiam(F))?

cAVol(f-(V)) — cdVol(V)

Thus the sequence {c, (2x)}5°_1 is bounded. This proves that F is of bounded
ramification. Now Theorem 1.3 follows by Theorem 1.5.

cm(2k) <

Proof of Theorem 1.4. Let F' be a planar necklace with no cut points. We
are going to show that F' satisfies the OSC.

By the proof of Theorem 1.1, F' has a circle. Thus R?\ F has infinitely many
bounded components by the definition of F' and Jordan’s curve theorem. Let U
be a fixed bounded component of R? \ F. Then

OUC Fand UNF =10.

Let {f1, fo, -, fn} be a NIFS of F. Since fi’s have been assumed to be con-
tracting homeomorphisms of R?, we have that, for every ¢ € I*, the image
f-(U) of U under f, is a bounded component of R? \ F, with

a(f,(U)) C Fy and f,(U)N F, = 0. (1.19)

We are going to show that f,(U) is a bounded component of R? \ F for each
word o € I*. First, we have by (1.19) and the definition of F

n—1 n—1
UFijl(U) or UFj ﬂfl(U):V).
=3 =3

Moreover, since diam(F') > diam(F}), we have

B\ fi(U) # 0 or F, \ f1(U) # 0.

Next we show that f1(U) N F = () under the assumption that F has no cut
points. In fact, if not, we encounter several different cases and, in each case,
there is a digit k € {2,n} such that

fl(U) N Fy, 75 (0 and Fk\fl(U) 75 @,

which implies that either z; or z, is a cut point of F', contradicting the assump-
tion on F'.

Similarly, for each k € T we have f;(U) N F = (), which together with (1.19)
implies that fi,(U) is a bounded component of R? \ F. For each word o € I*,
arguing as above step by step, we get fo(U)NF =0, so fy(U) is a bounded
component of R? \ F.
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Let m,k € I be distinct and let 0,7 € I*. By the above conclusions,
Im(fs(U)) and fr(f-(U)) are two distinct components of R? \ F, so

fm(fU(U))mfk(fT(U)) =0. (1-20)

Now let
V= U f(r(U)
ocel*
It is obvious that fi(V) C V for every k € I. On the other hand, we see by
(1.20) that f,, (V) and fx (V) are disjoint for distinct m, k € I. This proves that,
with the open set V', the NIFS satisfies the OSC. The proof is completed.

1.1.6 Some further questions

e The OSC problem

We just proved that every planar necklace with no cut points satisfies the
OSC. However, the proof is invalid for necklaces in R?, d > 3. Actually, we
easily check that every necklace is of topological dimension 1. Therefore, for
a necklace F in R% d > 3, we see that R?\ F does not have any bounded
components. We do not know if every necklace with no cut points satisfies the
OSC in the higher dimensional case. It is open even for self-similar necklaces.

e Conformal dimension of self-similar necklaces

Tyson and Wu [27] proved that the two necklaces in Figure 1 are of conformal
dimension 1. We thus ask: Can one develop a unified method to prove that a
big class of self-similar necklaces are of conformal dimension 1?7

1.2 Topological Rigidity of good fractal necklaces
1.2.1 Introduction

The fractal necklaces had been introduced by the author in [24], where some
conditions for fractal necklaces with no cut points are obtained. The present
paper is devoted to studying the topological rigidity of good fractal necklaces.
Roughly speaking, a subset of R? is rigid in a certain sense if the group of
its related automorphisms is small. We refer to [6, 7] for the quasisymmetric
rigidity of Schotty sets and square carpets.

A map f : R? — R? is contracting, if there exists 0 < ¢ < 1 such that
If(x) — f(y)| < clz —y| for all 2,y € R% Let {fi, fa,..., fn} be a family
of contracting maps of R%. According to Hutchinson [14], there is a unique
nonempty compact subset I of R?, called the attractor of {f1, fa,..., fu}, such
that F' = U}_, fu(F).
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The attractor F is called a fractal necklace or a necklace, if n > 3 and
fi, f2, ..., fn are contracting homeomorphisms of R? satisfying

a singleton if j/m—kl=1orn—1

fm(F) 0 fr(F) = (1.21)

0 if2<|m—kl<n-2

for all distinct m, k € {1,2,...,n}. In this case, the ordered family { f1, fa,..., fn}
is called a necklace iterated function system (NIFS).

Let I = {1,2,...,n}. Forevery integer m > 0 and every sequence iyis . . .0y, €
I™ write f; 4,..4, for the composition f;, o f;, o---o f; —and Fj;, ., for
firia.i,, (F), where we prescribe I° = {¢} and f. = id. We call F; ;, i an
m-level copy of F. Denote by C,,(F) the collection of m-level copies of F' and
let C(F') = US_oCp, (F'). From now on a copy of F' means an m-level copy of F'
for some m > 0. By the definition, two distinct copies A, B of F' have one of
the following four relationships:

ACB; BCA; AnB =10; AN B is a singleton. (1.22)

For every k € I denote by z; the unique common point of the 1-level copies
Fy and Fy41. We call the ordered points 21, 22, . . ., 2z, the main nodes of F. We
say that two main nodes zj and z,, are adjacent, if |k —m| =1 or n — 1. For
a subset A of F' denote respectively by 0p A and intpA the boundary and the
interior of A in the relative topology of F. Then we have OpFy, = {z)_1, 21} for
each k € I and §0pA > 2 for each A € Uy;,>1Cp, (F'). Hereafter denote by # the
cardinality and prescribe

Fri1 = Fy and 29 = zp,. (1.23)

We say that a fractal necklace F with a NIFS {f1, fa,..., fu} is good, if
8(Fr; N OpFy) < 1 for all k,j € I. In this case, we also say that the NIFS is
good. Equivalently, F is good if and only if F} is the smallest copy containing
{zk—1,2} for each k € I.

Figure 5: A necklace that is not good but has cut points.
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Let F' be a fractal necklace. Then F' is path-connected and locally path-
connected. Moreover, if F' is good then it has no cut points. Figure 1 presents a
necklace that is not good and has cut points. All of these can be found in [24].
J. Kigami [18, 19] established harmonic calculus on p. c. f. self-similar sets. Tt
is clear that our fractal necklaces satisfy the p. c. f. property.

It should be mentioned that necklaces can be defined by language of fractal
structures used by C. Penrose [22], C. Bandt and K. Keller [5], and C. Bandt
and T. Retta [9]. In the present paper, some questions are the same as that of
[9].

For a necklace, its copies and main nodes and the goodness have been defined
by its given NIFS. Since two distinct NIFSs may generate the same necklace, it
is natural to ask whether or not these properties of necklaces are independent
of their NIF'Ss.

Let 7 and s be two permutations of I, where

k+1 if1<k<n
T(k) = (1.24)
1 if k=n

and s(k) =n—k+1for all k € I. Let G, be the group generated by 7 and s.
Then G, is a dihedral group of 2n elements. Let F' be a necklace with a NIFS
{fi,f2y--, fn} on R% and o € G,,. We easily see that {fo)s Jo)s -5 fom)}
remains to be a NIFS of F.

We shall prove that every good necklace has a unique NIF'S in the following
sense.

Theorem 1.5. Let I be a necklace with a good NIFS {fi, fa,..., fn} on R%.
Then for each NIFS {g1,92,-..,9m} of F we have

(1) m =n and

(2) There is a permutation o € G, such that gr(F') = fyu)(F) for each
kel

Remark 1.5. By Theorem 1.5, we see that, if F' is a necklace with a good
NIFS, then all NIFSs of F' are good and its copies and main nodes are actually
independent of the choice of its NIFSs. Note also that the conclusion (2) here
does not imply gx = fo(x)-

Definition 5. We say that a homeomorphism of two necklaces F and G is
rigid, if the image of every m-level copy of F is an m-level copy of G for every
m > 0.

Denote by h(F,G) the family of homeomorphisms of F onto G.

Theorem 1.6. Let F and G be two topologically equivalent good fractal neck-
laces in R%. Then every homeomorphism of F onto G is rigid. Furthermore,
h(F,G) is countable, in particular, the group h(F, F) of homeomorphisms of F
is countable.
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A topological space X is co-Hopfian, if every topological embedding of X
into itself is onto; see [13, 21, 23]. By contrast, we prove that every good fractal
necklace has a weaker co-Hopfian property as follows.

Theorem 1.7. Let F' and G be two topologically equivalent good necklaces in
R? and let h be a topological embedding of F into G. Then h(F) is a copy of G.

Remark 1.6. In Theorem 1.7, the assumption that F' and G are topologically
equivalent can not be removed off. Indeed, a good necklace F' may have a subset
that is a good necklace, but it is not any copy of F'. The readers easily see this
from the standard Sierpinski gasket.

Remark 1.7. The above rigidity and the weaker co-Hopf property on fractals
have been studied by C. Bandt and T. Retta [9]. For finite-to-one and good
necklaces, our Theorems 1.6 and 1.7 can be obtained by Theorem 5.1 of [9].
However, it is easy to construct a good necklace that is not finite-to-one, for
example, Figure 2 illustrates a good self-affine necklace with six main nodes in
a triangle, where the vertices and midpoints of sides of the triangle are its main
nodes. Thus our results and those of [9] are not completely overlapped. Besides,
our strategy in the proof of these results is different from that of [9].

A
A
i _.:;"I N 1"!
Y W,
Ve PR
P | [\
i ,-}I nl;- hY
A, N
g —3- -'i-\._.ﬂ--:"f. . - Y

Figure 6: A necklace that is good but not finite-to-one.

We shall introduce and characterize extremal 2-cuts for good necklaces in
Section 2. Using this characterization and some related properties of extremal
2-cuts, we shall prove the above theorems in Section 3. We conjecture that
these theorems hold for all necklaces. However, since the extremal 2-cuts for
general necklaces are more elusive, it seems very difficult to prove (disprove)
this conjecture.

1.2.2 2-cuts of necklaces with no cut points

In this section we discuss the 2-cuts of necklaces with no cut points and the
related topological invariants.

Let X be a connected topological space and A C X. We say that A is a cut
of X, if X \ A is not connected and X \ B is connected for each B C A. A cut
consisting of k£ points is called a k-cut. A 1-cut is also called a cut point.

23



For each subset A of X define
N(A, X) = sup{ncp(C) : C is a component of X \ A}, (1.25)

where C'is the closure of C'in X, ncp(C) denotes the number of cut points of
C, a component means a maximal connected subset. We say that a component

C of X\ Ais extremal, if necp(C) = N(A, X).
For each integer k > 1 define

Ni(X) :=sup{N(4,X): Aisa k-cut of X}. (1.26)
We say that a k-cut A of X is extremal, if N(A, X) = Ni(X).

Lemma 1.3. Let h: X — Y be a homeomorphism of two connected topological

spaces. Then we have the followings.
(1) Let A be a cut of X. Then h(A) is a cut of Y and

N(h(A),Y) = N(A4, X).

Moreover, C is an extremal component of X\ A if and only if h(C) is an extremal
component of Y \ h(A).

(2) Let k > 1 be an integer. Then Ni(Y) = Ni(X). Moreover, A is an
extremal k-cut of X if and only if h(A) is an extremal k-cut of Y.

Proof. Tt is immediate. O

Lemma 1.4. Let X be a connected and locally connected metric space. Let A
be a k-cut of X, where k > 1 is an integer. Then we have

1) 0xC = A for every component C of X \ A, and

2) U\ A is not connected for each neighborhood U of A in X, where a subset
U of X is called a neighborhood of A, if A C intxU.

Proof. 1) Let C be a component of X \ A. Then C' is closed in X \ A. Since
X is locally connected and A is finite, X \ A is locally connected, so C' is also
open in X \ A. Thus 9xC C A.

Next we prove A C 9xC. Since C is open in X \ A, we easily see that C is
open in (A\ 0xC)U (X \ A). On the other hand, since C is closed in X \ A, we
have

C=(CudxC)n(X\A4).

As OxC C A is proved, we have (C UdxC) N (A\ dxC) =0, so
C = (CUBC) N ((A\9xC)U (X \ A)).

Thus C is also closed in (A \ 0xC) U (X \ A).

It then follows that (A \ dxC) U (X \ A) is not connected. Since A is a cut
of X, we get A\ dxC =10,s0 AC IxC.

2) Let U be a neighborhood of A. Suppose U \ A is connected. Then X \ A
has a component C with C' D U \ A4, so

A Cintx(C'UA) (1.27)
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As mentioned, C is open in X \ A, which together with (1.27) implies that
C U A is open in X. On the other hand, as was shown, one has dxC = A,
which together with (1.27) implies that Ox(C U A) = 0, so C U A is closed in
X. Since X is connected, we then get C U A = X, which yields C = X \ 4, a
contradiction. O

Remark 1.8. Under the condition of Lemma 1.4, if z is a cut point of X and
U is a connected neighborhood of x then x is a cut point of U.

From now on denote by F' a necklace with a NIFS {f1, fa, ..., fn} on R? and
by z1,22,..., 2 its ordered main nodes. As mentioned, we prescribe zg = z,.
The main results of this section are the following theorems.

Theorem 1.8. If F' has no cut points, then No(F) = n — 2 and {zx—1, 21},
k € I, are extremal 2-cuts of F. Moreover, if F is good, then {zx_1,2}, k € I,
are the only extremal 2-cuts of F.

Theorem 1.9. If F' has no cut points and k € I, then F'\ Fy is an extremal
component of F'\ {zr—-1,2r}. Moreover, if F is good, then F \ F}, is the only
extremal component of F\ {zk—1, 21}

The assumption that F' is good can not be removed off for the related results
in Theorem 1.8 and Theorem 1.9.

Example 4. Let T be a closed solid triangle of vertices 0,1, v in the complex
plane, whose corresponding angles «, 3, satisfy 45 < 2a < «y. Appropriately
choosing a real number a € (0, 1), we may construct a planar self-similar neck-
lace F' by 4 similarity maps as in Figure 3, such that its ordered main nodes
21, 22, 23, 24 are 0,a,a + (1 — a)v, v respectively. This necklace is not good and
has no cut points (see [24], Theorem 2). By the first implication of Theorem
1.3 we have Ny(F') = 2. We easily check that

{a+a(l —a),a+a(l—a)+(1—a)*v}

is an extremal 2-cut of F', but it is not equal to {z;_1, 2%} for any k € {1, 2, 3,4}.
On the other hand, F'\ {22, 23} has three components, two of which are extremal.

Figure 7: A necklace that is not good and has no cut points.



Let 4143 ...%,, € I™. Since fi, fa,..., fn have been assumed to be home-
omorphisms of RY, we easily see that Fi iy i, 15 a necklace with an induced
NIFS

-1 -1 -1
{fisimofiofi i s finimofeofi i ooy fivimofnofi i}
whose main nodes are f;, ;. (21), fi;..0,,(22), -, fiy..4,, () and whose 1-level

copies are Fy, ;. 1, Fiy. 2, -y Fiy.i,n- Let

Me=J) U {fiin) fiin(z2), s firin(za)}

M=0 iy...ipy €™
Therefore z € M if and only if z is a main node of some copy of F.

From now on we assume that F' has no cut points. Thus each copy of F has
no cut points.

The proof of Theorems 1.8 and 1.9 will occupy the rest part of this section.
The connectedness and local connectedness of a necklace F' and the assumption
that F' has no cut points will be used frequently.

Lemma 1.5. Suppose F' has no cut points. Let k,m € I, k # m. Then we
have the following statements.

1) {zk, zm} is a cut of F.

2) If z, and zp, are not adjacent then F\{zx, zm } has exzactly two components
and N({zk, zm}, F) <n—2.

3) F\ Fy is a component of F\ {zx—-1, 21}

4) The set of cut points of F'\ Fy is {z1,29,..., 20} \ {2k-1, 2 }.

5) For each z € {z1,22,...,2n} \ {zk=1, 2k}, F'\ Fi \ {2z} has ezactly two
components, one containing zr_1 and the other containing zj.

Proof. 1t is obvious. O

Lemma 1.6. Suppose F has no cut points and {z,w} is a cut of F. Let A =
Fiiy..i,, € C(F) be the smallest copy such that {z,w} is a cut of Fj ,. i, for
each 0 < j < m. Then we have

1) Both z and w are main nodes of A, and

2) A\ {z,w} has exactly two components with N({z,w}, A) <n —2.

Proof. 1) Under the assumption, since

lim max diam(C) =0,
m—00 CeCyp, (F)

the smallest copy A = F;
0 <7 < m does exist.
To show that z and w are main nodes of A, it suffices to prove

vig..iy, SUuch that {z,w} is a cut of F;;, ;, for each

{z,w}NintyB =10
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for each B € C1(A). In fact, suppose there is a copy B € C1(A) such that
{z,w} Nint4 B # (). Without loss of generality assume z € int 4 B. As z is a cut
point of A\ {w}, it follows from Lemma 1.4 that z is a cut point of B\ {w}, so
w € B and {z,w} is a cut of B, contradicting the minimality of A.

2) There are two cases as follows.

Case 1. z and w are nonadjacent main nodes of A. By Lemma 1.5, A has
exactly two components with N({z,w}, A) <n — 2.

Case 2. z and w are adjacent main nodes of A. Let B € C1(A) be the copy
such that 94 B = {z,w}. By Lemma 1.5, A\ B is a component of A\{z, w} whose
closure has exactly n — 2 cut points. On the other hand, by the minimality of A
we see that B\ {z, w} is another component of A\{z, w} whose closure has no cut
points. Thus A\ {z,w} has exactly two components with N({z,w}, A) =n—2
in this case. 0

Lemma 1.7. Suppose F has no cut points, {z,w} is a cut of F', and i € I. If
{z,w} is a cut of F; then

N({z w}, F) <max{n — 2, N({z,w}, F;)}. (1.28)

Proof. There are two possible cases.

Case 1. {z,w} = {#;_1, 2;}. In this case, F'\ F; is a component of F'\ {z,w}
whose closure has exactly n—2 cut points and the other components of F\{z, w}
are those of F; \ {z,w}. Thus (1.28) holds.

Case 2. {z,w} # {zi—1,2:}. Then, by Lemma 1.4, F'\ F; is not a component
of F\ {z,w}. So there is a component A of F'\ {z, w} with

ADF\F,.

Clearly, F; \ {z,w} has at most two components intersecting {z;_1, 2; }.
Subcase 1. F; \ {z,w} has only one component B with

Bn {Zi—h Zz} 75 @
In this subcase, one has
A= (F \ Fz) U B and {Zi—lazi} C E

Then, by the statement 5) of Lemma 1.5, we see that the cut points of A belong
to those of B, so ncp(A4) < ncp(B).
Subcase 2. F; \ {z,w} has two components C' and D with

cn {Zi—17zi} = {Zi—l} and DN {Zi_l,Zi} = {Zl}

In this subcase,
A= (F\F,)uCuD.

By Lemma 1.4, one has {z,w} = CN D, so C'U D is connected, which together
with the statement 5) of Lemma 1.5 implies that the cut points of A belong to
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those of C'U D. As F; has no cut points, we easily see that C'U D has no cut
points, so ncp(A4) = 0.

Thus, for both subcases we have ncp(A) < N({z,w}, F;). As the other
components of F'\ {z,w} belong to those of F; \ {z,w}, we get N({z,w}, F) <

N({z,w}, F;), so (1.28) holds in Case 2. O

Proof of the first implication of Theorem 1.8. Suppose F' has no cut
points. We are going to show that No(F) = n — 2 and that {z;_1,21}, k € I,
are extremal 2-cuts of F.
First, we show
N{zw}, F)<n-—-2 (1.29)

for each cut {z,w} of F.

Let Fj,4,..4, be the smallest copy such that {z,w} is a cut of Fy;,. ;, for
each 0 < j <m. If m =0, (1.29) follows from Lemma 1.6 directly. If m > 1,
by Lemma 1.7 we have

N({va}v Filig...ijfl) S max{n - 2) N({Z7w}7Fi1i2..Jij)}
for all 1 < j < m, which together with Lemma 1.6 implies
N({va}v F) < max{n -2, N({Za w}a Filiz»--im)} <n-—2.

This proves (1.29), and thus we have Ny(F) <n — 2.
Secondly, by Lemma 1.5, given k € I, {zx_1, 2t} is a 2-cut of F' and F'\ F}
is a component of F'\ {zx_1, 2z} with ncp(F \ Fr) =n—2, so

N({zk-1,2}, F) >n—2,

which yields No(F) > n — 2.
To sum up, we have No(F) = N({zk-1,2r}, F) =n—2 for each k € I. This
completes the proof.

Suppose F' has no cut points. Then F'\ F} is connected with
nep(F\ Fy) =n—2

for each k € I. However, F'\ F; ;, may not be connected for iip € I?; see for
example the necklace in Figure 1. And, in the case F'\ Fj,;, is connected, it is
possible that nep(F \ Fj,i,) > n — 2; see for example the Sierpinski triangle. By
contrast, we have the following lemma.

Lemma 1.8. Suppose F' is good. Then we have
1) F\ A is connected for each A € UX_,C,,(F), and
2) nep(F\ A) <n—2 for each A € UX_oCp, (F) with §0p A = 2.

Proof. 1) The assumption implies that F' has no cut points; see [24]. So F'\ F}
is connected for each k € I. Let [j € I?. Then F\ F; and F; \ F}; are connected.
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Since F is good, we may take a point x € (OpF;) \ Fj;. Then (F\ F;) U {z} is
connected. Observing

(F\ ) U{ah) 0 (B Fy) = {z}

and
F\Fj=(F\F)u{z} U\ Fy),

we see that F'\ Fy; is connected. Inductively, we get that F'\ A is connected for
each A € USS_,Cp,, (F).

2) We first prove that ncp(F \ A) < n—2 for each A € Co(F) with §0pA = 2.
Let such a copy A be given. We may write A = Fj, and 9pFj, = {z,w}, where
Ik € I?. Then we have the following facts.

(a) O Fir, = {z,w}, so z and w are two adjacent main nodes of Fj.

(b) F; \ Fj, is connected with nep(F; \ Fix) = n — 2.

(c) Fo \ Fir = Ujer, jziFj.

(d) F\ Fi = (FAR)U (R \ Fig).

(e) aF(F\E) CcC kK \Flk~

(f) Let u be a main node of F; with u & {z,w}. Then u is a cut point of
FE;\ Fiy, and F; \ F;; \ {u} has exactly two components, one containing z and

the other containing w.

We only prove (e). Since dp(F \ F}) = 0rF) = {%_1, 2}, the task is to
show {z;_1,2} C F} \ Fjx. Suppose it is false, say z; € F; \ Fj. Then one has
21 € Fii, s0 2z € OpFii,. By (a), z is a main node of Fj, so there is a copy Fj;
such that {z} = Fj; N Fjx. Then by (c) we get z; € F} \ Fjy, a contradiction.

Now, since F\ Fi, = F\ F; U F; \ F;, we see from the statement 5) of
Lemma 1.5 and (e) that the cut points of F'\ Fj; belong to those of F} \ Fi.
On the other hand, since F is good, one has (OpF;) \ F; # 0 for each j € I, so
by (c) and (e) there are two distinct ji,jo € I\ {k} such that z;_, € Fj;, and
z1 € Fyj,, which together with (f) implies that F} \ Fj; has a cut point that is
not any cut point of F'\ Fy,. It then follows from (b) that ncp(F \ Fi) < n—2.

Next let A = Fj,i,..4,,, where i1ig.. .0y, € I"™, m > 2, and § Op A = 2. Then
F\ A, F\ F;,, and F;, \ A are connected,

F\A:F\F“UF“\A, and@F(F\F“):aFle Cm

Thus we have by the statement 5) of Lemma 1.5 that the cut points of F'\ A
belong to those of F;, \ A, so

nep(F\ A) < nep(F5 \ A). (1.30)
Since f Op,

i1

A = 2, the assumption §0pA = 2 implies
OpA =0, A= =0F A.

U
We may repeatedly apply (1.30) to get
ncp(F \ A) < ncp(Fi1i2---im—2 \A)
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Since Fj iy, i, \A and F\ F; are topologically equivalent, we then get

m—1%m

nep(F\ A) < nep(F \ F;

mflim)'
As nep(F\ F;,,,_,4,,) <n— 2 is proved, we get ncp(F \ A) <n — 2. O

Proof of the second implication of Theorem 1.8. Suppose F' is good. We
are going to show that {zx_1, 2}, k € I, are the only extremal 2-cuts of F'. As
the first implication of Theorem 1.3 is proved, it suffices to show

N{z,w},F)<n—2 (1.31)

for each 2-cut {z,w} of F with {z,w} & {{zx—1,2} : k € T}.

Let such a 2-cut {z,w} of F be given. Let A = F; 4, ;. € C(F) be the
smallest copy such that {z,w} is a cut of Fj;, ;; for each 0 < j < m. By
Lemma 1.6, z and w are main nodes of A and A\ {z,w} has exactly two
components, which will be denoted by B and C. Thus there is a subset J of I
such that

EZ U Fi1i2---imj and 6: U Fi1i2---imj' (132)
jeJ jEINT

In addition, F'\ A is connected by 1) of Lemma 1.8. And we have
F\{z,w}=(F\A)UBUC.

Case 1. A = F. By the assumption on {z,w}, we see that z and w are
actually two nonadjacent main nodes of F. The inequality (1.31) follows by
Lemma 1.5.

Case 2. A € US°_1C,,(F) and Op A = {z,w}. By the assumption on {z,w}
we actually have A € US°_,C,,(F'). In this case, F'\ A, B, and C are the only
three components of F'\ {z,w}. By 2) of Lemma 1.8, we have

nep(F\ A) < n — 2.

On the other hand, since F' is good, we see that z, w are actually two nonadjacent
main nodes of A, which implies

nep(B) <n —2 and nep(C) < n — 2.

Then the inequality (1.31) follows.

Case 3. A € UX_,Cry(F) and OpA # {z,w}. Since Op(F \ A) = OrA, we
have by Lemma 1.4 that F'\ A is not a component of F'\{z, w}. Thus F'\ A meets
exactly one of B and C. Without loss of generality assume that (F'\ A)NB # 0.
Then (F\ A)UB and C are the only two components of F'\ {z,w} and we have
OrA C B. Let J be the subset of I such that (1.32) holds. Then #J < n — 1.
Since F' is good, one also has #J > 2, so

nep(C) =4I\ J)—1<n-—2.
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Since Op (F'\ A) = OpA C B, arguing as we did in the proof of 2) of Lemma
1.8, we have that the cut points of (F'\ A) U B belong to those of B and that
B has at least one cut point that is not any cut point of (F'\ A) U B. Thus

nep((F\A)UB) <nep(B) <#§J—-1<n-—2.

Then the inequality (1.31) follows. This completes the proof.

Proof of Theorem 1.9. Suppose F has no cut points. Fix k& € I. Then
we have No(F') = n — 2 by the first implication of Theorem 1.3. Since F'\ Fj
is a component of F'\ {zx_1, 2} with ncp(F \ F) = n — 2, it is an extremal
component of F\ {zx_1, 2k}

Now suppose F is good. Let C be a component of F \ {zx_1, 2z} with C #
F\ F},. Then C is a component of Fi\{zx—1, z;}. In the case C = F;;\{zx—_1, 21},
one has ncp(C) = 0. In the other case, since F is good, there is no copy Fj;
containing {zx_1, 2k}, so zx—1 and z; are two nonadjacent main nodes of Fy,
which implies ncp(C) < n — 2. This proves that F'\ Fy is the only extremal

component of F'\ {zx_1, 2k }.

1.2.3 The proof of main results

Proof of Theorem 1.5. Let F' be a fractal necklace with a good NIFS
{fi,for-.-, fn} on RZ Then F has no cut points. Let {g1,92,...,9m} be
an arbitrary NIFS of F'. We do not know if this NIFS is good at this stage. As
the first implication of Theorem 1.3 is valid for all necklaces with no cut points,

we have
Noy(F)=n—-2=m -2,

which yields n = m. We are going to show that there is a permutation o € G,
such that gi(F) = fo(k)(F) for each k € I.

Let z1,22,...,2, be the ordered main nodes of F under {f1,...,f,} and
Wy, Wa, . .., w, be those of F under {gi,...,gn}. Thus

{zk-1, 26} = O (fi(F)) and {wi_1,wi} = Op(gk(F)).

By the first implication of Theorem 1.3, {wy_1,w}, k € I, are extremal 2-cuts
of F. By the second implication of Theorem 1.3, {zx_1, 21}, k € I, are the only
extremal 2-cuts of F. Thus we have

{H{wr—1,wi} 1 k€ I} = {{zp—1, 2} : k € I}, (1.33)
which implies

{wi,wa,...,wy} ={2z1,22,...,2,} as sets.
Let j € I satisfy {wi, w2} = {2;-1,%;}. Then we have

w1 = zj and W2 = Zj-1 (134)
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or
w1 = Zj-1 and W2 = zj. (135)

First consider the case (1.34). Let ¢ = 7" Js € G,, be a permutation of I.
By the definitions of 7 and s in Section 1 we have o(k) = j — k + 1 for each
k € I, hereafter we identify an integer ! with an integer k € I if |l — k| = 0
or n. Thus (1.34) can be written as w; = 2,(1) and wa = 2, (2y, which implies
wy = 2, () for each k € I by using (1.33).

Fix k € I. We then have

{wr—1, w} = {20(k-1), Zo(k) }-

As o(k—1) =o(k) + 1, we have

{Zok—1)s 2o (k) } = OF (fo(r—1)(F))-

It follows that
Or (g (F)) = Or (for—1) (F))-

By the first implication of Theorem 1.9, F'\ gx(F') is an extremal component of
F\ {wg_1,wr}. By the second implication of Theorem 1.9, F'\ f,x—1)(F) is
the only extremal component of F'\ {wg_1,wy}. Thus

F\ ge(F) = F\ fok—1)(F),

which yields
gk(F) = fU(k—l)(F) = fo’r*l(k)(F%
where 771 is the inverse of 7. Of course o7~ 1 € G,,.

As for the case (1.35), let ¢ = 7772 € G,, be a permutation of I. By a slightly
easier argument, we get

Or (gk(F)) = Or (for)(F))-

Using Corollary 1.9 as above, we have gy (F) = fo)(F) for each k € I. The
proof is completed.

Proof of Theorem 1.6. Let F and G be two topologically equivalent good
necklaces in R%. For clarity let {f1, f2,..., fn} be a NIFS of F and {g1, 92, ..., Gm}
be a NIFS of G on R?. Then, by Lemma 1.3 and Theorem 1.3, we have n = m.
Denote by z1, z9,...,2, the ordered main nodes of F' and by wi,ws,...,w,
those of G. We are going to show that every homeomorphism h € h(F,G) is
rigid.

Fix h € h(F,G). Since {{zx_1, 2k} : k € I} is the family of extremal 2-cuts
of Fand {{wy_1,wy} : k € I} is that of G by Theorem 1.3, we have by Lemma
1.3

{{h(zk,l),h(zk)} ke I} = {{wk,l,wk} 1k e I}

Now, arguing as we just did in the proof of Theorem 1.5, there is a permutation
o € G, such that

h(fe(F)) = go(r)(G)
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for every k € I. This shows that h maps every 1-level copy of F onto a 1-level
copy of G. Inductively, one has that h maps every m-level copy of F' onto an
m-level copy of G for every integer m > 1. Thus h is rigid.

Next we show that h(F, Q) is countable. For every integer m > 0 write

MF,m - U filiz..‘im{’zl?ZZ?"'?Zn}

G192 0y €™

and
Mem= | guiinfo,22, 0,2}
11920 €I™

Then Mg, and Mg, are finite sets. Let

Mp = U Mg, and Mg = U Mg m.
m=0 m=0
Then My is dense in F' and Mg is dense in G. Let h € h(F,G). As h was
shown to be rigid, the restriction h|y,. of h is a bijection from Mp onto Mg
and satisfies h(Mpm) = Mg m for each m > 0.
Let @ be the collection of bijections ¢ : Mp — Mg satistying ¢(Mp,) =
Mg, m for each m > 0. Clearly, ® is countable and

{hlyie < h € h(F,G)} C 9,

so {h|ay : h € h(F,G)} is countable.

To prove that h(F,G) is countable, it suffices to show the correspondence
h — h|yp, from h(F,G) to {h|ap, : h € h(F,G)} is one-to-one. In fact, let
h,h € h(F,G), h # h, then there is a point z € F such that h(z) # h(z), so
h(A) and h(A) are disjoint for sufficiently small copy A of F' with z € A, and
s0 h|arp # h|n,. due to My dense in F. This completes the proof.

Proof of Theorem 1.7. Let F' and G be two topologically equivalent good
fractal necklaces. Let h : FF — G be a topological embedding. We are going to
show that h(F) is a copy of G.

For clarity let { f1, fo, ..., fn} be a NIFS of F and {g1, g2, - . ., gm } be a NIFS
of G. Denote by z1, 22, ..., z, the main nodes of F' and by wy,ws, ..., w, those
of G.

Let A be the smallest copy of G such that h(F) C A. Without loss of
generality assume A = G. We are going to prove h(F) = G. Since Mg is dense
in G, it suffices to show h(F) D Mg.

By the assumption, h(F') meets intgB for at least two 1-level copies B of
G. Since h(F) has no cut points, we see that h(F') actually meets intg B for all
1-level copies B of G, so

h(F) D) {wl,wg,...,wn}, i.e. ]’L(F) D) MG70. (136)
Next we prove h(F') D Mg . It suffices to show for each k € I

h(F) D {gr(w1), ge(w2), - .-, ge(wn)}. (1.37)
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By Theorem 1.3, {{zx—1,2x} : k € I} is the family of extremal 2-cuts of F,
so {{h(zx-1), h(zk)} : k € I} is the family of extremal 2-cuts of h(F') by Lemma
1.3. On the other hand, {wi_1,wx}, k € I, are obviously extremal 2-cuts of
h(F) by (1.36). It follows that

[ v wg} sk € I} = {{h(z 1), (=0} s k€ T},
which implies
{h(z1),h(22), ..., h(zn)} = {w1,wa,...,w,} as sets. (1.38)

Then, arguing as we just did in the proof of Theorem 1.5, there is a permutation
o € G, such that for each k € I

Oy (P(fomm (F))) = 0a(9r(G)) = {wr—1, wr}. (1.39)

Now fix k € I. By (1.39) and the arguments of (1.36), one has

h(fouy(F)) € gr(G) or  h(fom)(F)) D {wi,wa, ..., wy},

in which the latter case does not occur because it contradicts (1.38). Thus we
have

h(fo) (F)) € 9(G).
Moreover, since G is good, we see by (1.39) that gi(G) is the smallest copy con-
taining h(fox) (F)). Applying (1.36) to the topological embedding h : f, (1) (F) —
gk (G), we get

h(fa(k:) (F)) ) {gk(wl)vgk(w2)’ s agk(wn)}a

which implies (1.37) and thus A(F) D Mg 1.
Inductively, we have h(F) D Mg, for every integer m > 0, and so h(F) D
My¢. This completes the proof.
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2 Dragon Curves

2.1 Convex Hulls of Dragon Curves
2.1.1 Introduction

Let A be a d x d matrix and d; € R?. We assume that A is contractive. The
convex hull of the attractor of iterated function system (IFS for short) {f; | i =
1,2,...m} with f; = Ax+d; is studied by Strichartz-Wang [30]. They observed
an important property of extreme points of the convex hull and deduced that
the attractor has a polygonal convex hull if and only if there exists a positive
integer s such that A® is a scalar matrix. Kirat-Kocyigit [20] considered the case
that the linear part of f; may not be identical and proved that, if the attractor
has a polygonal convex hull, the vertices must have eventually periodic codings.
In contrast with this result, we further get the following theorem.

Theorem 2.1. Let K be the attractor of an IFS {fi | i = 1,2,...m} on the
complex plane C with

fi(z) = a;z + b;, a;,0; €C, 0<]a;| < 1.
Suppose K is not a singleton. If an eventually periodic word iyis -+ 1;(j1 -+ jr)™
in {1,2,...m}N is a coding of an extreme point of co(K) then a;j aj, -+ aj, > 0.

For an infinite word 145 --- in {1,2,...m}" and an integer k > 1 denote
by fi,..s, the composition f;, o---o fi.. If N2, fi,..i) (K) = 2z, then 414y - - is
called a coding of the point z in K.

Kirat-Kocyigit [20] also gave a sufficient and necessary condition such that
the attractor of a given IFS has a polygonal convex hull. Moreover, they found
an algorithm to check their condition, but the termination of the algorithm is
not discussed.

The present paper is devoted to studying the convex hulls of dragon curves.
Let C be the complex plane. For z € C denote by arg z the argument of z in
[0,27), by Rez and Imz the real and imaginary part of z, and by Z the conjugate
of z. Let n € (0,7/3) and let

e "

a:=a(n) = Seost) (2.1)

The n-Dragon curve K, is the attractor of the IFS
fi(z) = az, fo(z) =1—az, z € C.
In other words, K, is an unique nonempty compact subset of C satisfying
Ky = fl(Kn)UfZ(Kn)~ (2.2)

The n-dragon curve has also been obtained as the limit of the renormalized
paperfolding curves in the Hausdorff metric as well; see [1, 31]. By using their
algorithm, Kirat-Kocyigit [20] verified that the dragon curve K 4 has a polyg-
onal convex hull. We will prove that every dragon curve has this property.
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Theorem 2.2. For each n € (0,7/3) the convex hull co(Ky) is a polygon.

Actually, we find out a countable subset V' of K, and prove that its convex
hull co(V) is a polygon with co(V) = co(kK,).
Given n € (0,7/3), let a, fi1, f2, and K,, be defined as above. One has

1
3 < lal <1, a+a=1, and 2|a|cosn = 1. (2.3)

Let zp be the fixed point of the composition f2211. Then one has zy = ca € K,
by a simple computation, where

1
= 2.4
=T ap (2.4)
For every integer k > 0 let
ZE = ff(Z()), WE = fQ(Zk;)7 and bk = fg(’wk+1). (25)
Then
zp = e wp =1 — cla?a®, and by = a + cla|*a. (2.6)

We define a countable subset V' of K, by
Vi={bo} U{zp: k> 0} U{wy:k>1}. (2.7)
Since zy € K,), one has V C K,, by (2.5). For every integer k > 1 let
Vie = {bo, 20,21, , 2k, W1+ + , Wk} (2.8)

We shall show
co(V) = co(Vi) (2.9)

for sufficiently large integer k depending on 7. Therefore V has a polygonal
convex hull. By the construction of the attractor K, we may further prove
that co(K,,) = co(V'), which gives Theorem 2.2. Detailed proof will be given in
Section 3.

We shall see that, in the proof of Theorem 2.2, the vertices of co(kK,) are
not determined completely. To answer this question, the first work is to find
the smallest integer with the property (2.9). Let

Dr(n) = (1 — |a|*) sin(k — 1)n — |a|* sin(k — 2)n + |a|” sinn. (2.10)

We will show that for each integer k£ > 4 the function ®; has a unique null in
the interval (w/k,m/(k —1)). We denote this zero point of @, by 7. Then the
interval (0,7/3) has a partition as

oo
(0,7/3) = [a, 7/3) U U Mt 15 k) - (2.11)
k=4

For n € (0,m4) we get the following result.
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Theorem 2.3. Let k > 4 be an integer and let n € Nky1,MK). Then the vertices
of the polygon co(K,) are by, 20, 21, , 2k, W1, - - , Wx i clockwise.

We shall prove Theorem 2.1 in Section 2 and Theorem 2.2 in Section 3. For
our purpose, some properties of functions ®; will be given in Section 4. Some
properties of dragon curves will be given in Section 5. Theorem 2.3 will be
proved in Section 6. We give an outline here for the convenience of readers. For
u,v,w € C denote by Zuvw the counterclockwise angle of u — v to w —v. That

is,
w—v

Zuvw = arg .
u—v

Then Zuvw € (0,7) means that v is in the left-hand side of the straight line
passing through u and w of direction (w—u)/|w —u|. We have the implications:

w—v

Zuvw € (0,7) < Im >0« Im(u — v)(w—v) > 0.

It is not difficult to get a generic result for all dragon curves as follows:
Lbozoz1 = L2k hy1 2k42 = LWpWep1 Wi = T — 1

for each n € (0,7/3) and each integer k > 0. Moreover, given k > 4 and
N € [Mk+1,Mk), We may prove

Lzg—12pw1, Lzpwiws, Zwg_1wiby, Lwibozo € (0, )

and
co(Vx) = co(V).

After that, we infer that for each 1 € [ni41, %) the points
b07207217"' y Rk, W1, W2, , Wk

are in turn the vertices of the polygon co(V}) in clockwise. Once these results
are proved, Theorem 2.3 will follow from the proof of Theorem 2.2.

We remark that dragon curves are a class of path-connected self-similar sets
in the plane [14], for which some basic geometric questions are subtle. For
example, we know very little about when a dragon curve satisfies the open
set condition; see [4, 11, 29]. Motivated by a question of Tabachnikov [31],
Albers [1], Allouche et al [3], and Kamiya [16] studied self-intersecting and non-
intersecting dragon curves, but the study on the question when a dragon curve
is an arc is far from conclusive. As for the convex hull of K, we shall see that,
in the case of n € [n4,n/3), the point z4 is no longer any vertex of co(kK,).
Moreover, we shall prove that, if 7 is near to 7/3, it is not true that

bo, 20, 21, 22, 23, W1, W2, W3
are the vertices of the polygon co(K,) in clockwise. See Remark 2.3 at the end

of Section 5. The vertex question of co(K,,) is still open for n € [n4, 7/3).
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2.1.2 The proof of Theorem 2.1
Let K be the attractor of IFS {f,| n =1,2,...,m} on the plane with

fn(2) = anz + by, an,by, € C, 0< |a,| < 1.

Let iyig---4;(J1- - jk)°° be a coding of an extreme point of co(K). We are
going to show aj, aj, - - - a;, > 0.

We may write aj, ---aj, = re'®, where r € (0,1) and a € [0,27) are the
modulus and argument of a;, - --aj,. Then

aj, ---aj, > 0= a=0.
Let w be the unique fixed point of fj,..;,. Then w € K, with coding
(G- k).

Since K is not a singleton, a point v € K exists with v # w. Denote
Vp = f(j,..jp)» (v) for every positive integer p, then v, € K, v, # w and

vp = (aj, - a;)P(v—w) +w = rPeP* (v — w) + w. (2.12)
If @ # 0, in view of (2.12), there is an integer p > 2 such that
w € co({v1,va, -+ ,vp}) and w is not a vertex of co({v1,ve, - ,Up}).
We know that fj,...;, (w) is the point of coding i14s - - - ;(j1 - - - jx)*°. Then
Fivgi (W) € co({ i (V1) firgi (V2)s s Firi (Up)})

and fj,...;, (w) is not a vertex of co({fj,...;, (V1)s fir-ju (V2)s -+, firoju (Up) })-

Since v, € K, then fj,...;, (vp) € K for every positive integer p. The previous
discussion implies that f;,...;, (w) is not an extreme point of co(K'), contradicting
the assumption of Theorem 2.1. This proves a = 0 and thus completes the proof.

2.1.3 The proof of Theorem 2.2

Given n € (0,7/3), let a, fi, f2, Ky, ¢, 2k, Wk, by, @i, V and Vi, be defined
as in Section 1. To prove Theorem 2.2, we only need to show that co(V) is a
polygon and that co(XK,) = co(V'). The definitions of the above parameters and
their relationships will be used frequently without mentioning.

Lemma 2.1. co(V) is a polygon for each n € (0,7/3).

Proof. Let n € (0,7/3). By the definition of zx, we see that there are points of
{2k : k > 0} in the inner part of every quadrant of the plane. Therefore, 0 is an
inner point of the convex hull co(V). By the definition of wy, we easily check
that 1 is also an inner point of co(V'). Since by (2.6)

lim 2z =0 and lim wg =1,
k—o0 k—oo
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there exists an integer n such that {z; : & > n} U {wy : £ > n} is in the inner
part of co(V'). It then follows that

co(V) = co(V,),
so co(V) is a polygon. O
Remark 2.1. By the above proof, co(V') is closed and 0,1 € co(V'). Moreover,
since a* = ¢z = (1 — |a|*)zx_1, one has a* € co(V') for all integers k > 1.

For z € C recall that argz is the argument of z in [0,27). For w,v,w € C
denote by wv the segment of endpoints u and v, and by A(u,v,w) the closed
solid triangle of vertices u,v and w. By the definition, wg = 1 — c|al? is a real
number. It can be nonnegative or negative, depending on the choice of . The
next lemma is useful.

Lemma 2.2. We have wg € A(0, 22, 23) N A(0, 22, Z3), if wo < 0.
Proof. Let 1 € (0,7/3) be given such that wg < 0. Then 1 — |a|? — |a|* < 0,
which occurs only if n € (n/4,7/3). Thus,

argzo = 2w —3n > and argzz =27 —4n < 7,

giving arg z3 < argwy < arg zz. On the other hand, let
1

t=—
la|?

~1. (2.13)

Then t € (0,1) by |a| <1 and 1 — |a|? — |a|* < 0. And we have

(1—t)zg+tzz = ca®(1—t+ta)=ca®(l - ta)
a
|al?

= ca*(—a+|a*) = cla]?a(~1 +a) = —c|a|*.

= ca®(1 +a) =ca*(a—1+|al?)

Thus the segment 2523 intersects the real axis at —c|a|*. Since
1= cla® +cla* = ¢(1 ~[af*) >0,

one has —cla|* < wg. The above facts imply wy € A(0, 29, 23).

Acting on wg € A(0, 22, 23) with f(2) = z, we get wg € A(0, 22, 23), as
desired. O

Lemma 2.3. f1(co(V))U fa(co(V)) C co(V) for each n € (0,7/3).
Proof. Tt suffices to show f1(V)U f2(V) C co(V). Clearly,

HV) ={f1(bo)} U{zk : k = 1} U{fr(we) : k> 1}

39



and
f2(V) = {fa(bo)} U{wy : k = 0} U{bx : k > 0}.

Since
f1(bg) = ala + c|a|4) =a®+ c|a|4a =(1- |a|4)21 + |a|4zo,

we get f1(bg) € co(V). On the other hand, since

b = a+ clal*a® = (1 — |a|*)z0 + |a|*zr_1,
we have by, € co(V) for all integers k > 1. Thus, to complete the proof, we only
need to prove fi(wy), f2(bo), wo € co(V) for all integers k > 1.

The proof of wg € co(V). If wg > 0, since wg = 1 — clal? and 0,1 € co(V), we
have wg € co(V). In the other case, we have wy € A(0, 22, 23) by Lemma 2.2,
so wy € co(V).

The proof of f2(bo) € co(V'). First, we have
falbo) =1 —a(a+cla*) =1 —|a* = ¢lal*a = 1 — |a]® — c|a|* + c|a|*a.
By a long but elementary computation, we get

_ lal*h+ (1 = 2Jal* +]a*) (A — |a]*)
B 1—lal* + al®

Ja(bo)

b

where
h=(1—la]*+a[*)z1 + (|a]* — a]*) 2.

Clearly, h € co(V). As was known, 0,1 € co(V), which gives 1 — |a|? € co(V).
Additionally,

1—2la|* +[al® = (1 —|al*)(1 + [al* —]a[*) > 0.
It then follows that f2(bg) € co(V).

The proof of f1(wk) € co(V') for all integers k > 1. Tt will be done by induction.
We first show fi(w;) € co(V). Since a+a =1 and f1(z) = az, we have

jal*(1 = awo) + (1 — |a|*)awq
= la|* — |a|*awo + awy — |a|?awy = |a|* + awo — |al*wo
= la* + a - cla|?a — |a]* + cla* = a(1 — c|a|* + c|al*a)

= a(l - cla|*a) = aw, = fi(w1).
Thus the proof of fi(w;) € co(V) can be reduced to showing
awp, 1 — awg € co(V). (2.14)
If wy > 0, one has by 0,1,a € co(V)

awg € co(V) and 1 — awy = (1 — wg) + woa € co(V).
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If wy < 0, one has wg € A(0, 29, 23) by Lemma 2.2. Acting on it with f;

and fs respectively, we get

awp = f1(wo) € A(f1(0), f1(22), f1(23)) = A(0, 23, 24)

and

L —awg = fa(wo) € A(f2(0), f2(22), fa(23)) = A1, w2, w3).

Therefore awg, 1 — awg € co(V). This proves fi(w1) € co(V).

Secondly, we show for every integer k > 1

fi(wier) = (1= laf*) fi(wk) + a|*br1.
In fact, one has by a +a =1

—aF L g gk 2y |a2ab T 4 Jaftab Tl = 0.
Using this equality, we get

fi(wis1) = a — claf*a**?

— cla?a* ! + clal*aF ! + clalSat
—cla?a** —a)%a + cla|*a* ! + |a|?a + c|a|%aF !

—la]*)(a = clal*a*™") + |a*(a + cla|*a* ")
— lal®) f1(wr) + |al*br—1.

(
(

c|a\2ak+2 +c|a|2(—ak+1 +ak+2+ |a‘2ak+1 + |a|4ak71)

(2.15)

Finally, since {by : kK > 0} C co(V') and f1(w1) € co(V) have been proved, by
the formula (2.15) we get f1(wy) € co(V) for all integers k > 1 by induction. O

Proof of Theorem 2.2. Let n € (0,7/3). Since V C K, one has co(V) C
co(K,). On the other hand, since co(V) is closed, the self-similarity construction
of the dragon curve K, together with Lemma 2.3 implies K, C co(V'), which
yields co(K,) C co(V). Thus, co(K,) = co(V). It then follows from Lemma 2.1

that co(kK,;) is a polygon.

2.1.4 The properties of functions ¢, ¥V, and Oy

Let
Ok (n) = (1 —a|*) sin(k — 1)y — |a|* sin(k — 2)n + |a|* sinn,

Ok(n) = (1 — |al*)sinn + |a|" sin kn

and
Wy (n) = sing + |a|*?sin(k + 1)n.

These functions are closely related to the geometry of dragon curves. In what

follows we write A < B if A = CB for some C > 0.
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Lemma 2.4. For each n € (0,7/3) and for each integer k > 1 we have
Im((Zk—1 — Zx) (w1 — 2x)) X Px(n) and Im((Zx — w1)(wa —wy)) < Vi(n).

Proof. Let n € (0,7/3) and let k > 1 be an integer. Observing that

2h1 — 2k < af —aFtl = ak(l —a) = d'a < a" !,

we have

Im((Z—1 — 2k) (w1 — 21))
= Im((t (1 = clal?a — ca® 1))
(@1 (1 — [af'  |af?a — a**1))
(1 — |a|*) sin(k — 1)n — |a|® sin(k — 2)n + |a|**! sin 29
= (1—|a*)sin(k — 1)y — |a|®sin(k — 2)n + |a|¥ sinn,

On the other hand, since wy — w; = clal?(a — a?) = c|al*, one has

Im((Zk — 11)1)(’[1)2 — wl)) = Im(Zk — 'U_Jl)
= TIm(ca"™ — 1+ cla]?a) = Im(ca* "' + c|a|?a)

= a2 sin(k + 1)n + sinn,
This completes the proof. O

Lemma 2.5. For each integer k > 4 the function ®k(n) has a unique null in
the interval (m/k,7/(k —1)).

Proof. We first show that ®4(n) has a unique null in (7/4,7/3). From the
definition

®y(n) = (1—la|*)sin3n — |a|®sin2n + |a|* sinn
(1 = |a|*)(3 — 4sin*n) — 2|al® cosn + |al*

= (1—la[*)(~=1+4cos’n) —[al* + |a|*
(
(

1
1- Ial4)(W —1) = |af* + |al*

~
=~

1—2la|"(1 - |a*) < 1—2|a|*.

Since |a| is a strictly increasing function of 7, we see from the last relationship
that ®4(n) has a unique null in (7/4,7/3). Denote this null of ®4(n) by 74.
Then we have for each n € (0,n4)

1—2lal* > 0. (2.16)

Given an integer k > 5, we are going to show that ®(n) has a unique null
in (7/k,7/(k—1)). By the definition of ®; and a simple triangular formula, we
have

Dr(n) = (1 —a)® — |a*) sin(k — 1)n + |a|? sin kn + |a|* siny.
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Thus - -
(I)k(ﬁ) =(1- \a|2 - |a|4 + |a|k) sinE >0

and
T

P

A k

We only need to show the derivative ®}.(n) < 0 for each n € (7/k,7/(k — 1)).
Since the derivative d|a|/dn = 2|a|? sinn, we have

) = (—|al® + |a|*) sin il <0.

®,(n) = —8lal’sinysin(k — 1)n+ (1 —|a|*)(k —1)cos(k — 1)n
—6|a|* sinnsin(k — 2)n — |a*(k — 2) cos(k — 2)n
+2k|af Tt sin? n + |a|® cos .

Given n € (w/k,m/(k — 1)), since the cosine is decreasing in (0, 7), we have

k—1
cos(k — 1)n < cosu = fcosz < —cosn
k k
and Lo
cos(k — 2)n > cos(kifl)7T = —cos ki 7 > —cosn.

In addition, since k > 5, we easily get (k — 1)sin®n < 2 for the given 7, in
fact, for k = 5 we have (k — 1)sin®n < 4sin?(7/4) = 2, and for k > 6 we have
(k—1)sin?n < (k —1)(7/(k — 1))? < 7?/5 < 2. Therefore
2k|a|*+1 sin® n + |a|® cosn
= 2k[a|"" ! sin? 7 + 2|a|*T! cos? 7
= 2a/*" (1 + (k—1)sin?7)
< 6la*tt = 12]al* % cos .

Now, using the above inequalities, we get

@3 (n) 4 3 7
e < (k= (U= Jal*) + (k= 2)|of’ + 121"

Then, since |a| < 1/v/2 for the given 7, we get

®j.(n) 3(k—1) k-2 3 3
< - + + <-3+-—=<0.
cosn 4 22 22 T V2
This proves that ®; has a unique null in (7/k,7/(k — 1)). O

For k > 4 denote by 7 the null of @, in (7/k,n/(k —1)). Clearly,

1 1
- <la| < 7 for each n € (O,Z)

2 V2
and 1 1
T
— <|a|] < —= for each n € [—,n4).
ﬁ_\l 7 €[y m)
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The latter is due to (2.16). We shall use these two estimates without mentioning
them. The properties of functions @, O, and ¥y, which will be used in the
proof of Theorem 2.3, are formulated in the following three lemmas.

Lemma 2.6. ©,(n) >0 for k>4, n € [ngy1,nx), and j > k.

Proof. It k =4 and n € [n5,14), one has

O4(n)

X

(1 — |a|*) + |a|’4 cosn cos 2n
= (1 —la|*) + |a|*2cos2n
> 1-2|a*>0.

Iftk=4,7j>5 and n € [7/4,n4), one has

©;(n) = (1—]al*)sinn+ |af*'sinjn
> (1- \a|4)sin% AL
= 1—la*—V2al®
11
> 1—-—=-=0.
2 2

Ifk=4,75>5,and n € [5,7/4), one has

@j(n) = (1- \a|4) sinn + |a\j+1 sin jn
> (1—\a|4)sing—|a\6
2
> (1=la)Z ~alf
3 2 1
> S 2-->0
4 5 8

If j > k>5and n € [ngr1,Mk), one has

©;(n) = (1—la[*)sinn+ |a}*'sinjn

2

> (1= )2 = Jafi+!
™

> (1 falf) e — ol
k+1

3 1 ri
> 0 — (= > 0.
FTTESTRGL
This completes the proof. O

Lemma 2.7. U;(n) >0 for k>4, n € [ng41,mk), and j > k.
Proof. It k=4, n € [r/4,n4) and j > 4, one has

; 1
W;(n) =sinn + |al! "2sin(j + 1)n > sin% —la* > —

1
it
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If k=4 and n € [ns,7/4), one has

) 2 1
U, (n) >sing + \a|2sinz7T :sing - |a|QSin% > WG >0
and for j > 5
) 2 2 1
W;(n) =sinn + |al’ " ?sin(j + 1)n > ?77 —laf® > 5 28 >0
If k=5 and n € [ne,75), one has
U5(n) = sinn + |a|* sin 6 >sinz—|a|3>l—i>0
5(7) = n Ui 6 2 22
and for j > 6
n a2 1
v il 2250
If j > k> 6 and n € [g41, M%), one has
2n k—2 2 1
& > — — > — > 0.
](n) T ‘a’| k41 (ﬁ)k72
This completes the proof. O

Lemma 2.8. Let k > 4. We have the following statements.

(1) x(n) >0 for n € [Ne41, 1)
(2) ®;(n) <0 in both the cases C1 and C2, where

Cl: nen/k,ng) and j €{k+1,k+2,---,2k —3};
C2: n€ ngy1,m/k) andje{k+1,k+2,--- 2k —1}.

Proof. (1) We have ®(n) > 0 for n € [r/k,ni) by the proof of Lemma 2.5. In
the case € [g+1,7/k), we have

1 —la]* - |a|* > 0, sin(k — 1)n > 0, and sinkn > 0,
which imply
() = (1 —|al® — |a*) sin(k — 1)n + |a|? sin kn + |a|* sinn > 0.
(2) Let k > 4. For case C1 one has
T4+n<(k+Ln<(k+2)n<---<(2k—-3)n<2mr—n.

Therefore
sin(j — 1)n < 0 and sin jn < —sinn. (2.17)

Thus, in the case 1 — |a|> — |a|* > 0, we immediately get

®i(n) = (1—la* = lal*)sin(j — 1)n + |af* sinjn + |al siny
< —la]*sinn + |a)’ sinn < 0.
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The other case 1 — |a|? — |a|* < 0 occurs only if k = 4 and n € [r/4,14), for
which we get by (2.16) and (2.17)

d5(n) < (la|* = |al?)sindn — |a|® sinn + |a|® singy

= —sindn — |a|sinn = —sin4n — |a|* sin 27

1
= —2cos2n —|a* =2 — e la* < 0.
a

For the case C2 one has 1 — |a|? — |a|* > 0 and
T+n<(k+2n<---<2k—-1)n<2m—n.

Then ®;(n) < 0 for j € {k+ 2,k +3,--- ,2k — 1} by an ecasier argument than
what we just did. In addition, we have ®y11(n) < 0 for n € [ng41,7/k) by the
proof of Lemma 2.5, and thus finish the proof. O

2.1.5 The properties of dragon curves

The following properties on dragon curves are useful.
Lemma 2.9. For each n € (0,14) we have Rezy, Rewq, Imw; € (0,1).
Proof. Given n € (0,74), since 1 — 2Ja|* > 0 by (2.16), one has
claj* <1 and ¢ < 2. (2.18)
Then Rezp = c|a|cosn = ¢/2 € (0,1). As for wy we have
Imw; = clal®sinn < |a| ™' sinn = sin2n < 1

and
clal?

Rew; =1 — cla|®cosn =1 — >1—la]* > 0.

Then we easily get Rews, Imw, € (0,1). This completes the proof. O
Lemma 2.10. Z1zjw; € (0,7) for k>4, n € Nrg1,mx), and j > k.

Proof. For n € (0,7/3) one has

(1 — 2) (w1 — %)) = In((1 = ;) (w; — 1))

Im((ca’ ™ — 1)a) < sinn + cla|’ T sin jn

(1 — |a|*)sinn + |al’ "' sin jn = 0,(n),

X

which together with Lemma 2.6 implies the desired result. O
Lemma 2.11. Let k > 4. We have in both the cases C1 and C2

zj € co({0, zj_1,w1,1}) and w; € co({1,w;_1,bo,a}).
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Proof. Remember that arg z denotes the argument of z in [0,27). Let k > 4.
In the case C1, i.e. n € [w/k,n;) and j € {k+ 1,k +2,---,2k — 3}, one has

T4+n<(k+1)n<---<(2k—-3)n<2m—n,
arg zr =21 — (k+1)77 S (71'—27777'['—7’}}7
arg zok—3 = 2m — (2k - 2)77 € (07277]7 and
0 <argzon—3 <argz; <argzj_i <argzp <m—r.

By Lemma 2.10 we have Z1zjw; € (0,7). On the other hand, by Lemma 2.4
and Lemma 2.8(2), we have

Im((w1 — 2;)(zj-1 — 25)) = —Im((Zj—1 — 2;) (w1 — 25)) < —=;(n) > 0.

which implies Zwizjz;—1 € (0,m). In summary, the point z; is located in the
sector 0 < arg z < arg z;_1, with Z1z;wq, Zwyz;zj—1 € (0,7), by which we get

zj € co({0, zj_1, w1, 1}).
Now, acting on this relationship with f5, we get
w; € co({1,w;_1,bp,a}).
In case C2 the argument is the same as that for case C1. O

Denote by D(0,r) the closed disk of radius r centered at the origin and by
Vo1 - - - v; the broken segment formed by segments vy_qvg, kK =1,---,75. All
n-dragon curves with 7 € (0,74) have the following disk property.

Lemma 2.12. For each n € (0,1m4) and each integer j > 1 we have
{zr 1 k> j} C D(0,|z]) and zoz1---zj—1 C C\ D(0,|zl).
Proof. Let n € (0,m4) and j > 1 be given. For every integer k > 0 we have
|zkt1| < |2kl

which implies
{zr : k> j} C D(0,|z]).

On the other hand, one has for each ¢ € [0, 1]
[1—t+tal® —|a|* = (1—t+tla|cosn)® +*|a|* sin®n — |af*
= (1-1)?+2(1 - t)t|al cosn + t*]al* — |a|*
(
1-—

1—t)* + (1= t)t +t*a|* — |a|*
t+t2|al* — |a)*.

If 2|a|? < 1, we have

1—t+tal*> — |a* > |a|* — |a* > 0.
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If 2|al? > 1, we have by (2.16)

1 1
1—t+tal®* —|a|* = 1—a|*+|al*(t - W)z T AP
1
> 1—lal* - = 4|al? — 4]al® — 1
> |al 2aP |al |al
> 2|al* — 4lal® = 2|a*(1 - 2]al*) > 0.

Thus |1 —t + ta| > |a|? for each t € [0,1]. Then, given j > 1, we have
|(1—1t)zj—1 +tz;| > |zj41] for any ¢ € [0, 1].

It follows that the broken segment zpz1 - - - zj_1 C C\ D(0, |z;]). O

2.1.6 The Proof of Theorem 2.3

Let kK > 4 and n € [ng41,mk) be given. To prove Theorem 2.3, we first prove
co(Vi) = co(V'), which implies co(V}) = co(K,,) by the proof of Theorem 2.2.
Secondly, we show that the points by, 29, 21, - , 2k, W1, Wa, - - - , Wy are in turn
the vertices of the polygon co(V}) in clockwise.

The next lemma is generic for all n-dragon curves with n € (0,7/3).
Lemma 2.13. For each n € (0,7/3) and each integer n > 0 we have
Lbozoz1 = L2nZnt+14n+2 = LWpWhny1Wpto =T — 1.

Proof. One has

21 — 2o c(a® — a) a
bp—20 a+cla]*—ca la|*
and
Zn+2 — Zn+1 o Wp+2 — Wp+1 - _qa
Zn T Zn41 Wy — Wn+1
Thus
Lboz021 = LanZnt12nt2 = LWpWni1Whio = arg(—a) = 7 — 1,
as desired. O

Lemma 2.14. For k > 4 and 1 € [ng+1,nr) we have
Lzp—12kw1, Lzpwiws, Lwg_1wiby, Zwibozo € (0, ).

Proof. Let k > 4 and n € [ng41,7x) be given. By Lemma 2.8(1), we have
@4 (n) > 0. By Lemma 2.7, we have Wi (n) > 0. Then by Lemma 2.4, we get

Im((Zx—1 — Zk) (w1 — 2z)) > 0 and Im((Zx — wy1)(we —wy)) > 0,

which implies Zzg_1zpw1, Lzpwiwse € (0, ).
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Since fo preserves angles, one has by the action of f;
Lzp_12zpw1 = Lwg_1wiby and Zzpwiwe = Lwibg fo(ws).

As
fo(wz) =1 —a(l — clal*a?) = a + cla]*a = ca = 2,

we then get Zwg_1wiby, Zwibozo € (0,7). This completes the proof. O
Lemma 2.15. For k >4 and n € [ng+1,nk) we have 0,1 € co(Vy).

Proof. Let k > 4 and n € [ni+1, M%) be given. We consider two cases.
Case 1. n € [7/k,n;). We shall prove

0 € A(z1, zk—1,w1) and 1 € A(wy, wg—1, bo).
In this case, one has
arg zp—1 = 21 — kn € (7 — n, 7,

SO zk_1 is in the second quadrant of the plane. Since

Im(zywy) Im(ca®(1 — cla*a)) = sin2n — c|a|® sinn

X

2cosn —cla]® <1 —¢cla|* <1 —2[a|* >0,

one has Zz10w; € (0, 7). As for the angle Zz;_10z1, it is obvious that
Lz;-10z1 = (k —2)n € (0, ).

Since w; is in the first quadrant by Lemma 2.9, the above facts imply

0 € A(z1, 25—1,w1),

which in turn implies 1 € A(wy,wg—1,bg) by the action of fs.

Case 2. 1 € [ng+1,7/k). In this case, 21 is in the fourth quadrant; zj is in
the second quadrant due to arg z;, € (7 —n,m); ZLz,021 = (k—1)n € (0, 7); and
wy is in the first quadrant. These facts imply 0 € A(z1, 2x, w1), which in turn
implies 1 € A(wy,wg,by) by the action of f5. This completes the proof. O

Let k >4 and n € [n/k,nx). One has arg zo,_3 = 27 — (2k — 2)n € (0, 2.

Lemma 2.16. Let k > 4 and n € [n/k,ng). In the case arg zop—3 € (0,n] we
have
zok—2 € A0, 20, 1), 2251 € A(0, 21, 20),

wok—2 € A(L,wp,a), and war—1 € A(1,wy,wp).

In the case arg zop—3 € (n,2n] we have
zok—2 € A0, 1, 20 —3), 2261 € &0, 20,1),

Wok—2 € A(L,a,wak—3), and wak—1 € A1, wo,a).
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Proof. We only prove the latter. The proof of the former is similar.
Let k > 4 and n € [7/k,n;) and assume arg zz;—3 € (1,2n]. Then

/2002951 < m = Lzy01. (2.19)
On the other hand, using the inequality 1 — 2|a|* > 0, we easily get ¢ < 2 and
|zop—1| = cla** < cla]* < ¢/2 < 1.
As Rezg = cla| cosn = ¢/2, we then get
Rezop_1 < Rezg < 1. (2.20)

By (2.19) and (2.20) we obtain za,_1 € A(0,29,1), which yields war_—1 €
A(1,wp,a) by the action with fs.
Next we prove zop_o € A(0,1, 295_3). As arg zor_3 € (1, 2n] is assumed, we
have
0 < argzop_o < arg zop—3 < .

It suffices to show Z1zo;_o29r—3 € (0, 7), which can be reduced to showing
Im((1 — Zogp—2)(2op—3 — 22—2)) > 0. (2.21)

In fact, if k = 4, by using a +a =1, 1 — 2Ja|* > 0, cla|* < 1, 2|a|cosn = 1,
and |a| > 1/4/2, one has

Im((l — 56)(25 — ZG)) = Im((l — 25)(25 — 26))
Im(a® — c|a|*®a) =< —sin 51 — c|a|® siny

X

X

—4 cos®ncos2n — cos4n — cla|®

—4cos?n(2cos’n — 1) —2(2cos?n — 1)2 +1 — |af?
= —16cos’n+12cos?n —1 — |a|?

1+ 3fal? — faf* — Jaf®

—(1=lal*)* +|al*(1 — |al*)(1 + [a]?)

—1+2la* + |a|* > —1+2[a|? > 0.

V

X

If k > 4, one has 2 — (2k — 3)n € (n,3n] C (n, ™ — n), so

Im((1 — Zop—2)(22k—3 — 22k-2))
= —sin(2k — 3)n — cla** " siny
= sin(2r — (2k — 3)n) — cla/** 2 siny
> sinn — cla/** " 2sinn > 0.
This proves the inequality (2.21), so we have zar_o € A(0, 1, z95—3), which in
turn gives wor—o € A(1, a, wag—3) by the action of f,. O

Let k > 4 and 7 € [ng+1,7/k). One has arg 29,1 = 27 — 2kn € (0, 27].
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Lemma 2.17. Let k > 4 and n € [ng+1,7/k). For the case arg zor—1 € (0,7)]

we have
2ok € A(O,ZQ, 1), 22k4+1 € A(O,Zl,ZO),

wa € A1, wo,a), and wop+1 € A(L,wr,wo).
For the case arg zok—1 € (1, 2n] we have
2ok € A(O7 172216—1)3 22k+1 € A(O;Z()v 1)a
wa € A1, a,wop—1), and wepr1 € A(1,wp,a).

Proof. The proof is the same as that of Lemma 2.16.

Lemma 2.18. For k >4 and n € [ng+1,mk) we have co(V) = co(Vy).

Proof. Let k >4 and n € [nr+1, %) be given. One has
a,0,1,wy € co(Vy)
by a = ¢ '2, Lemma 2.15, and Lemma 2.2. It suffices to prove
{z; 15>k} U{w; : j >k} Cco(Vy).
We consider two cases.
Case 1. n € [7/k,nx). By using (2.22) and Lemma 2.11, we get
ZhA1s 2kt 2, 22k—3, W1, Wht2, "+, Wag—3 € co(Vy)
by induction. Moreover, we have by Lemma 2.16
Z9k—2, Z2k—1, Wak—2, Wak—1 € co(V)

and
2022K—1 C C \ D(O, |Z2k‘)

Then, by (2.24) and Lemma 2.12, we get
{z; 1§ > 2k} C D(0, |221]) C co({20, 21, "+ , Z2r—1})-
which in turn implies
{wj 1 j > 2k} C co{wo, w1, -+, wap—2, wa—1})

by the action of f5. This proves (2.23).

(2.22)

(2.23)

(2.24)

Case 2. 0 € [ngy1,7/k). As we just did, by using (2.22), Lemma 2.11, 2.12,

and 2.17, we may prove (2.23) by showing step in step
241yt s 22k—1, Wi, 0 Wag—1 € co(Vi),

2ok, Z2k+1, Wak, Wak+1 € co(Vi),

and
{zj 1 >2k+1}U{w; : j >2k+ 1} C co(Vy).

This completes the proof.
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The proof of Theorem 2.3. Let &k > 4 and n € [ng+1,7%) be given. By
Lemma 2.18 and the proof of Theorem 2.2, we have

co(Vy) = co(V) = co(K,).
Since Lemma 2.13 and Lemma 2.14 have been proved, to show that
bo, 20, 215+ + 2k, W1, - 00, W

are the vertices of the polygon co(kK,) in clockwise, it suffices to show that the
broken segment bpzpzy - - - zxwy - - - wibp is a loop.
Clearly, zg,bg are in the lower half-plane and w; is in the upper half-plane.
Denote by [y the directed straight line passing through 0 of direction —a/|a|
and by Iz the directed straight line passing through 1 of direction —a/|a|. Then
2o € l1 and wy € l5. Since

Im((io — 130)(0 — bo)) = —sinn <0
and -
Im((1 — bo) (w1 — bp)) < (1 — 2|al*)sinn > 0,
we see that by is on the right side of I; and the left side of 5.
Case 1. n € [7/k,nx). In this case,

T<kn<mw+mn.

Thus Imwy, =< sin kn < 0, implying that wy is in the lower half-plane.
Since
Im((20 — 2)(0 — 2;)) = sin jn
and
Im((1 — w;) (w1 — w;)) < —sin(j — 1)n,

we easily check that the broken segment zyz7 - - - zx_1 is a simple arc on the left
side of [; and that wyws - - - wy is a simple arc on the right side of 5.
Since
m=2n<argzp=27— (k+1)n<m—n, (2.25)

2k is in the upper half-plane. Moreover, since
Tm((Zg — Zx)(0 — 2x)) < sinkn <0
and
Im((1 — Z)(wy — 2)) =< (1 — |a*) siny — |a/*+ L sinkn > (1 — |a]*)sinn > 0,

2k is on the right side of [y and the left side of 5.
The above facts together imply that the broken segment bgzg - - - zrwy - - - wibg
is a loop.

Case 2. 1) € [g4+1,7/k). The proof is similar.
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Remark 2.2. The vertices of the polygon co(K,) are by, 20, 21, 22, 23, W1, W2, W3
in clockwise when n = ny. The argument of this case is the same as the proof of
Theorem 2.3.

Remark 2.3. In the case n € (n4,7/3), we have ®4(n) < 0 by Lemma 2.5.
Then, by Lemma 2.4, we have ZLzszqwy € (m,27m). Moreover, we easily see that
z4 is in the inner part of co(K,). One may ask: Is it true that co(K,) is a
polygon of vertices by, 2g, 21, 22, 23, W1, W, W3 in clockwise?

The answer to this question is no. In fact, by simple computation we get
Im((bo — Z6) (w3 — 26)) < 6 — 9]al® — 6|a|* + 16|al® — 7|al®.

Let h(z) = 6 — 9z — 62% + 162° — T2*. Then h(1) = 0 and h/(1) > 0, which
implies Im((by — Z6)(w3 — 26)) < 0, provided that n € [n4,7/3) is sufficiently
near to w/3. Moreover, for such n, one has Lbyzgws € (,27), so zg is not in
the polygon of vertices by, 2o, 21, 22, 23, W1, Wa, w3 in clockwise.
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3 Future plan

e Fractal necklaces

1.

We want to find the sufficient and necessary condition that fractal neck-
laces having no cut points.

We want to know if every necklace satisfies the OSC in the higher dimen-
sional case.

We want to prove that copies and main nodes are actually independent of
the choice of NIFSs for every fractal necklace.

e Dragon curves

1.

2.

We want to know when a dragon curve is an arc.

We want to know when a dragon curve satisfies the open set condition.

e Lagrange spectrum of geometric progressions

1.

We want to give the upper bounds for Hausdorff dimension of 2-Lagrange
spectrum of geometric progressions.
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