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Abstract

A fractal is a geometric shape containing involved structure at arbi-
trarily small scales. Examples of fractals abound, but a class of fractals
have attracted particular attention: fractals which occur as attractors of
iterated function systems.

An iterated function system (IFS) is a family of contractions fk on Rd,
where k ∈ {1, . . . , n} and n ≥ 2. According to Hutchinson [14], there is
a unique nonempty compact subset F of Rd, called the attractor of IFS
{f1, . . . , fn}, such that

F =

n⋃
k=1

fk(F ). (0.1)

In particular, F is called a self-similar set, if fk’s are similitudes. Cer-
tain self-similar sets are well known: the middle-third Cantor set, the Koch
snowflake, the Sierpinski gasket, the Sierpinski carpet and the Heighway
dragon. And there are a lot of researches on properties of self-similar sets
in the history.

The notion of fractal dimension of a set is central to nearly all fractal
studies. Roughly speaking, a fractal dimension is a tool to measure the
complexity of a set.

Two fundamental and important fractal dimensions are Box-counting
dimension and Hausdorff dimension, the specific definition is in Falconer
[11]. Some effort has been devoted to calculating these two dimensions of
IFS attractors (c.f Falconer [12]). Thereinto, an important result is about
self-similar sets: if a self-similar set satisfies the open set condition (OSC)
then the Hausdorff dimension of it satisfies the dimension formula and is
equal to the Box-counting dimension of it. The definition of OSC is found
in Falconer [11], [12]. And this condition ensures that the components
fk(F ) of F do not overlap too much.

Except the class of self-similar sets, there are many other classes of
IFS attractors. We focus on a class called fractal necklaces which are
generated by the necklace IFSs (NIFSs). The NIFS {f1, . . . , fn} is an IFS
satisfying that n ≥ 3 and fk’s are homeomorphisms with

fm(F ) ∩ fk(F ) =


a singleton if |m− k| = 1 or n− 1

∅ if 2 ≤ |m− k| ≤ n− 2
(0.2)

for all distinct m, k ∈ {1, . . . , n}. For example, the usual IFS of the
Sierpinski gasket is a NIFS and the Sierpinski gasket is a fractal necklace.

Here we discuss a basic remaining topological question for fractal neck-
laces. We can check that every fractal necklace is path-connected. And
it seems like that fractal necklaces have no cut points. We say that a
point x of a connected topological space X is a cut point, if X \ {x} is
not connected.

However, counter intuitively, some fractal necklaces have cut points.
We first consider which fractal necklaces in Rd have no cut points. In
Chapter 1.1, We give two subclasses of fractal necklaces and prove that
every necklace in these two classes has no cut points. Thereinto, one sub-
class is called good necklaces, another subclass is called stable necklaces
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of bounded ramification. These two subclasses are not mutually inclusive.
Also, we prove that every stable self-similar necklace in R2 has no cut
points, whilst an analog for self-affine necklaces is false.

We know that distinct IFSs can generate the same attractor. However,
by the definition of NIFS, it seems like that the NIFS of a fractal necklace
is unique in a certain sense. In Chapter 1.1, some properties of necklace
have been given by its NIFS, if we can show the uniqueness of NIFS, these
properties only depend on the necklace.

In Chapter 1.2, we prove every good necklace has a unique NIFS in a
certain sense. By the same idea, we can get that two good necklaces admit
only rigid homeomorphisms and thus the group of self-homeomorphisms
of a good necklace is countable. In addition, a certain weaker co-Hopfian
property of good necklaces is also obtained. The above rigidity and the
weaker co-Hopf property on fractals have been studied by C. Bandt and
T. Retta [9].

We conjecture that these theorems in Chapter 1.2 hold for all neck-
laces. However, it seems very difficult to prove (disprove) this conjecture.

Besides the research of dimensions, we also consider some basic geo-
metric questions for IFS attractors. For example, we are concerned about
the convex hulls of IFS attractors.

Let A be a d× d contractive matrix and di ∈ Rd. The convex hull of
the attractor of IFS {fi | i = 1, 2, . . .m} with fi = Ax+ di is studied by
Strichartz-Wang [30]. They observed an important property of extreme
points of the convex hull and deduced that the attractor has a polygonal
convex hull if and only if there exists a positive integer s such that As is
a scalar matrix.

Kirat-Kocyigit [20] considered the case that the linear part of fi may
not be identical and proved that, if the attractor has a polygonal convex
hull, the vertices must have eventually periodic codings. We make a little
progress on Kirat-Kocyigit’s result in Chapter 2: Let K be the attractor
of an IFS {fi | i = 1, 2, . . .m} on the complex plane C with

fi(z) = aiz + bi, ai, bi ∈ C, 0 < |ai| < 1.

SupposeK is not a singleton. If eventually periodic word i1i2 · · · il(j1 · · · jk)∞

in {1, 2, . . .m}N is a coding of an extreme point of co(K) then

aj1aj2 · · · ajk > 0.

Besides, Kirat-Kocyigit [20] also gaves a sufficient and necessary con-
dition such that the attractor of a given IFS has a polygonal convex hull.
Moreover, they found a way to check their condition, but the termination
is not discussed.

Since the Kirat-Kocyigit’s condition is not easy to check, the discussion
for the convex hulls of IFS attractors is far from over. We devote some
effort to study the convex hulls of dragon curves.

The dragon curves is a family of self-similar fractals in R2, they can
be regard as the attractors of the following IFSs in the complex plane:

f1(z) = az and f2(z) = 1− āz,
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where a := a(η) =
e−iη

2 cos η
and η ∈ (0, π/3).

The dragon curve has also been obtained as the limit of the renormal-
ized paperfolding curves in the Hausdorff metric as well; see R. Albers [1]
and S. Tabachnikov [31].

When η = π
4

, the dragon curve is well-known as Heighway dragon.
Heighway dragon has some properties, for examples: Heighway dragon
never traverses itself; Heighway dragon can tile the plane; as a non-self-
crossing space-filling curve, Heighway dragon has fractal dimension ex-
actly 2. More detailed results are in C. Davis and D.E. Knuth [10].

Motivated by properties of Heighway dragon, Tabachnikov [31], Albers
[1], Allouche et al [3], and Kamiya [19] studied similar questions for dragon
curve with an arbitrarily fixed angle η,

In Chapter 2, we say that the convex hull of a dragon curve is a
polygon. To our knowledge, this is the first example of a parameterized
family of fractals whose convex hull is a polygon. In most cases, we can
give the values of vertices of polygonal convex hull of a dragon curve.
Besides, we are also concerned that if the dragon curves satisfies OSC and
when a dragon curve is an arc. These are what we want to study in the
future.
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1 Fractal necklaces

1.1 Fractal necklaces with no cut points

1.1.1 Introduction

Let I = {1, 2, · · · , n}. For each k ∈ I let fk : Rd → Rd be a contractive map
satisfying

|fk(x)− fk(y)| ≤ ck|x− y|

for all x, y ∈ Rd, where ck ∈ (0, 1). According to Hutchinson [15], there is a
unique nonempty compact subset F of Rd, called the attractor of {f1, f2, · · · , fn},
such that

F =

n⋃
k=1

fk(F ). (1.1)

We call {f1, f2, · · · , fn} an iterated function system (IFS) of F .

Definition 1. An attractor F with an IFS {f1, f2, · · · , fn} on Rd is called
a fractal necklace or a necklace for short, if n ≥ 3 and fk’s are contractive
homeomorphisms of Rd satisfying

fm(F ) ∩ fk(F ) =

 a singleton if |m− k| = 1 or n− 1

∅ if 2 ≤ |m− k| ≤ n− 2

for each pair of distinct digits m, k ∈ I. In this case, the ordered family
{f1, f2, · · · , fn} is called a necklace IFS or a NIFS. We say that F is self-similar
(self-affine), if fk’s are similitudes (affine maps).

Figure 1.1.1 illustrates two planar self-similar necklaces. The first one is
generated by 3 similitudes of ratio 1/2 and the second one is generated by 6
similitudes of ratio 1/3. They arise as examples of many papers for various
purposes; see for example [25, 27]. Among the results of [27], Tyson and Wu
proved that these two necklaces are of conformal dimension 1.

Figure 1: Two self-similar necklaces in R2.

It is not difficult to see that every fractal necklace is path-connected and
locally path-connected; see [14, 17]. It is natural to ask whether every necklace
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has no cut points. The answer is no; see Section 1.1.2. Hereafter we say that
a point x of a connected topological space X is a cut point, if X \ {x} is not
connected. The present paper is devoted to the following question. For a study
on cut points of self-affine tiles we refer to [2].

Question 1. Which necklaces in Rd have no cut points?

We start by notations. From now on denote by F a necklace with a NIFS
{f1, f2, · · · , fn} on Rd, if it is not specified. For every integer m ≥ 0 and every
word σ = i1i2 · · · im ∈ Im we write fσ for fi1 ◦ fi2 ◦ · · · ◦ fim and Fσ for fσ(F ),
where I0 = {∅} and f∅ = id. The set Fσ is called an m-level copy of F . Denote
by Cm(F ) the family of m-level copies of F and let

C(F ) =

∞⋃
m=0

Cm(F ).

A copy of F always means a member of C(F ).
For each k ∈ I denote by zk the unique common point of the 1-level copies

Fk and Fk+1. The ordered points z1, z2, · · · , zn are called main nodes of F . For
every subset A of F denote respectively by intFA and ∂FA the interior and the
boundary of A in the relative topology of F . Thus ∂FFk = {zk−1, zk} for every
k ∈ I. Hereafter we prescribe

Fn+1 = F1 and z0 = zn.

Definition 2. We say a necklace F is good, if ∂FFk 6⊂ Fkj for any k, j ∈ I.

Equivalently, a necklace F is good, if F and Fk are the only two copies
containing ∂FFk for each k ∈ I.

Let I∗ = ∪∞m=0I
m and let σ ∈ I∗. Since fk’s have been assumed to be

homeomorphisms of Rd, Fσ is a necklace with an induced NIFS

{fσ ◦ fj ◦ f−1σ : j ∈ I}

whose main nodes are fσ(z1), fσ(z2), · · · , fσ(zn). The phrase, m-level copies of
Fσ, is now meaningful.

Definition 3. We say a necklace F is stable, if for each k ∈ I

]{Fkj : Fkj ∩ ∂FFk 6= ∅, j ∈ I} ≥ 2. (1.2)

Hereafter ] denotes the cardinality.

By the above definitions, every good necklace is stable. Additionally, every
necklace F with the condition that zk−1 or zk is a main node of Fk for each
k ∈ I is stable.

For each z ∈ F and for every integer m ≥ 0 let

Cm(F, z) = {A ∈ Cm(F ) : z ∈ A} (1.3)
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and C(F, z) = ∪∞m=0Cm(F, z). Let

cm(z) := cm(F, z) := ] Cm(F, z) (1.4)

denote the number of m-level copies containing z. Thus c1(z) = 1 or 2, and
c1(z) = 2 if and only if z is a main node of F . Note that for each A ∈ Cm(F, z)
there is one or two copies B ∈ Cm+1(F, z) lying in A. We have

cm(z) ≤ cm+1(z) ≤ 2cm(z).

It then follows that {cm(z)}∞m=1 is a nondecreasing integer sequence satisfying
1 ≤ cm(z) ≤ 2m for each m ≥ 1.

Definition 4. We say a necklace F is of bounded ramification, if the sequence
{cm(zk)}∞m=1 is bounded for each k ∈ I.

Equivalently, a necklace F is of bounded ramification, if π−1(x) is finite for
any x ∈ F , where π : I∞ → F is the code map (see [11]). By the definition, if
there is a main node zk such that it is a main node of each copy A ∈ C(F, zk),
then F is not of bounded ramification. Such necklaces can be found in Figure
3 and Figure 4(b).

The main results are as follows.

Theorem 1.1. Every good necklace in Rd has no cut points.

Theorem 1.2. Every stable necklace of bounded ramification has no cut points.

An attractor with an IFS {f1, f2, · · · , fn} on Rd is said to satisfy the open set
condition (OSC), if there is a nonempty bounded open subset V of Rd such that
f1(V ), f2(V ), · · · , fn(V ) are pairwise disjoint open subsets of V ; see [11, 26].

Theorem 1.3. Every stable self-similar necklace in Rd with the OSC has no
cut points.

Actually, we shall show that every self-similar necklace in Rd with the OSC
is of bounded ramification, which together with Theorem 1.5 implies Theorem
1.3.

As a corollary of a theorem of Bandt and Rao [8], every self-similar necklace
in R2 satisfies the OSC. Thus, Theorem 1.3 gives the following corollary.

Corollary 1. Every stable self-similar necklace in R2 has no cut points.

Remark 1.1. A self-similar necklace of bounded ramification in R2 may have
cut points; see Example 1.

Remark 1.2. A stable self-affine necklace in R2 may have cut points; see Ex-
ample 2.

Remark 1.3. Stable necklaces of bounded ramification and good necklaces are
not mutually inclusive; see Example 3.
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Without assuming F is self-similar, we have the following result.

Theorem 1.4. Every planar necklace with no cut points satisfies the OSC.

The paper is organized as follows. In Section 1.1.2, we give examples of
necklaces to show Remarks 1, 2 and 3. Then we prove Theorem 1.1 in Section
1.1.3, Theorem 1.5 in Section 1.1.4, and Theorems 1.3 and 1.4 in Section 1.1.5.
In the light of our results we put some further questions in Section 1.1.6.

1.1.2 Examples

We first show by an example that a planar self-similar necklace of bounded
ramification may have cut points.

Example 1. We use the complex number notation. Let {f1, · · · , f24} be a
NIFS on the complex plane C defined by

fj(z) =


z
3 + aj if j ∈ {1, 7, 13, 19}

z
15 + aj if j ∈ {1, 2, · · · , 24} \ {1, 7, 13, 19},

where a1, a2, · · · , a24 ∈ C satisfy

f24(1) = f1 ◦ f13(i), f1 ◦ f13(1) = f2(i)

f6(1 + i) = f7 ◦ f19(0), f7 ◦ f19(1 + i) = f8(0)

f12(i) = f13 ◦ f1(1), f13 ◦ f1(i) = f14(1)

f18(0) = f19 ◦ f7(1 + i), f19 ◦ f7(0) = f20(1 + i)

fj(1 + i) = fj+1(0), j ∈ {2, 4, 9, 11}
fj(1) = fj+1(i), j ∈ {3, 5, 20, 22}
fj(i) = fj+1(1), j ∈ {8, 10, 15, 17}
fj(0) = fj+1(1 + i), j ∈ {14, 16, 21, 23}.

The planar self-similar necklace F generated by {f1, f2, f3, · · · , f24} is illustrated
in Figure 2. It has the following properties.

Figure 2: A planar self-similar necklace of bounded ramification and with cut
points
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(1) F is not stable, in fact, for the 1-level copy F1 one has

{F1j : F1j ∩ ∂FF1 6= ∅, j ∈ {1, 2, · · · , 24}} = {F1(13)},

so F does not satisfy (1.2). Here the bracketed number in the subscript empha-
sises that it is a digit.

(2) F is of bounded ramification, indeed, given a main node zk and an integer
m ≥ 1, F has only two m-level copies containing zk.

(3) (1+i)/4 is a cut point of F . In fact, F \F1(13) is obviously not connected.
By zooming we see that

F \ F1(13), F \ F1(13)1(13), F \ F1(13)1(13)1(13), · · · ,

are not connected and tend to F \ {(1 + i)/4} increasingly, by which one easily
shows that F \ {(1 + i)/4} is not connected, as desired.

Next we give an example of stable planar self-affine necklaces with cut points.

Example 2. Let T0 and T1 be two closed solid isosceles triangles sharing a
common vertex z0 and of different sizes, whose angles at z0 are a pair of vertical
angles and whose opposite sides are parallel. Let T = T0 ∪T1. Let V be the set
of the four extremal points of T . Let {f1, f2, · · · , f6} be a family of invertible
contractive affine maps of R2 satisfying the following conditions:

1) V ⊂ ∪6k=1fk(T ) ⊂ T .
2) ](fj(T ) ∩ V ) = 1 for each j ∈ {1, 2, 5, 6}.
3) V ∩ (f3(T ) ∪ f4(T )) = ∅.
4) fk(T ) ∩ fm(T ) = fk(V ) ∩ fm(V ) if k 6= m and {k,m} 6= {1, 6}.
5)f1(T ) ∩ f6(T ) = {z0} and f1(z0) = f6(z0) = z0.
6) ] (fj(T ) ∩ fj+1(T )) = 1 for j ∈ {1, 2, 3, 4, 5}.
7) fk(T ) ∩ fm(T ) = ∅ if |m− k| ≥ 2.

Then {f1, f2, · · · , f6} is a NIFS which generates a self-affine necklace F in R2.
The first step construction of F is illustrated in Figure 3, where the shadow part
consists of f1(T ), f2(T ), · · · , f6(T ). Their connecting points are main nodes of
F . z0 is a main node and a cut point of F .

Figure 3: The first step construction of a stable planar self-affine necklace with
cut points.

The necklace F is not of bounded ramification, in fact, by condition 5) we
have

Cm(F, z0) = {Fi1i2···im : i1i2 · · · im ∈ {1, 6}m} and cm(z0) = 2m
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for each integer m ≥ 0, so {cm(z0)}∞m=0 is unbounded.

The necklace F is stable. In fact, given k ∈ {1, 6}, we have z0 ∈ (∂FFk) ∩
Fk1 ∩ Fk6, so

]{Fkj : Fkj ∩ ∂FFk 6= ∅, j ∈ {1, 2, · · · , 6}} ≥ 2.

On the other hand, given k ∈ {2, 3, 4, 5}, we have ∂FFk ⊂ fk(V ) and ] (fk(V )∩
Fkj) ≤ 1 for each j ∈ {1, 2, 3, 4, 5, 6}, so ] ((∂FFk) ∩ Fkj) ≤ 1, and so

]{Fkj : Fkj ∩ ∂FFk 6= ∅, j ∈ {1, 2, · · · , 6}} ≥ 2.

This proves that F is stable.

Finally, we show by examples that stable necklaces of bounded ramification
and good necklaces are not mutually inclusive.

Example 3. Let us see Figure 4. The left one is a planar self-similar necklace
generated by {f1, f2, f3}, where

f1(z) =
eπi/6z√

3
, f2(z) =

z + 1

3
, f3(z) =

e5πi/6z√
3

+
2

3
, z ∈ C.

Let F be this necklace and let I = {1, 2, 3}. Then for each k ∈ I

]{Fkj : Fkj ∩ ∂FFk 6= ∅, j ∈ I} = 2,

so F is stable. On the other hand, it is of bounded ramification because

cm(z1) = cm(z2) = 3 and cm(z3) = 2

for each integer m ≥ 1, where z1, z2, z3 are main nodes of F . In addition,
noticing that F13 ⊃ ∂FF1, we conclude that F is not good.

(a)

(b)

Figure 4: Stable necklaces of bounded ramification and good necklaces are not
mutually inclusive.

Next let 0 < α <
√

3/6 be given. For z = x+ iy ∈ C let

g1(z) =
x+ iαy

2
, g2(z) = g1(z) +

1

2
,
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g3(z) = e
2πi
3 g1(z) + 1, g4(z) = e

2πi
3 g1(z) +

3 + i
√

3

4

g5(z) = e
πi
3 g1(z) +

1 + i
√

3

4
, g6(z) = e

πi
3 g1(z).

Then {g1, g2, · · · , g6} is a NIFS which generates is a self-affine necklace. It is
illustrated on the right of Figure 4. For each k ∈ {1, 2, · · · , 6} we easily see that
F and Fk are the only two copies containing ∂FFk and that

cm(zk) = 2m

for each m ≥ 1. Thus F is good but not of bounded ramification.

1.1.3 The Proof of Theorem 1.1

In this section we prove Theorem 1.1: Every good necklaces has no cut points.
The following lemma will be used.

Lemma 1.1. Let X be a connected metric space, E be connected and dense in
X, and x ∈ X. If x is a cut point of X, then x belongs to E and is a cut point
of E.

Proof. Suppose E\{x} is connected. Since E is dense in X, E\{x} is so. It then
follows from E \ {x} ⊂ X \ {x} ⊂ X that X \ {x} is connected, contradicting
the assumption that x is a cut point of X. Thus x belongs to E and is a cut
point of E.

As prescribed, F is a necklace with a NIFS {f1, f2, · · · , fn} on Rd. Let x, u ∈
F and let k be a positive integer. We say that a finite sequence (A1, A2, · · · , AN )
of k-level copies of F is a k-level chain from x to u, if

x ∈ A1 \
N⋃
j=2

Aj , u ∈ AN \
N−1⋃
j=1

Aj ,

and

Aj ∩Am =

 a singleton if |j −m| = 1

∅ if |j −m| ≥ 2
j,m ∈ {1, 2, · · · , N}.

In this case, we also say that ∪Nj=1Aj is a k-level chain. By convention we

prescribe ∪Nj=2Aj = ∪N−1j=1 Aj = ∅, if N = 1.

Let (A1, A2, · · · , AN ) be a k-level chain of F . Denote by xj the unique
point of Aj ∩ Aj+1 for each j ∈ {1, 2, · · · , N − 1}. We call the ordered points
x1, x2, · · · , xN−1 the connections of the chain.

By Lemma 1.1, to prove a topological space has no cut points, it suffices to
show that it has a connected dense subset with no cut points. We shall show
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that every good necklace has Property I and that every necklace with Property I
has a connected dense subset with no cut points. Here we say that a necklace F
has Property I, if each of its 1-level copies Fk has an arc from zk−1 to zk which
passes through at least two main nodes of Fk. By convention an arc means a
subset homeomorphic with the unit interval [0, 1].

The necklace F in Example 1 does not have Property I, indeed, F1 does not
have a wanted arc with Property I. On the other hand, there are necklaces with
Property I, but they are not good. The left necklace in Figure 4 is one of such.

Now we have made the preparations to prove Theorem 1.

The proof of Theorem 1.1. Let x, u ∈ F .

Claim 1. For each k ≥ 1, F has a k-level chain Γk from x to u. They satisfy
Γk+1 ⊂ Γk and

{x(k)1 , x
(k)
2 , · · · , x(k)Nk

} ⊆ {x(k+1)
1 , x

(k+1)
2 , · · · , x(k+1)

Nk+1
},

where x
(k)
1 , x

(k)
2 , · · · , x(k)Nk

are the connections of Γk.

Proof. It is obvious that F has a 1-level chain from x to u.
Suppose F has a k-level chain (A1, A2, · · · , AN ) from x to u for an integer

k ≥ 1. In the case where N = 1, one has x, u ∈ A1. As is known, A1 has a
1-level chain from x to u. Such a chain of A1 is clearly a (k+1)-level chain of F
from x to u. For the case N > 1 let x1, x2, · · · , xN−1 be the ordered connections
of the chain (A1, A2, · · · , AN ). Then A1 has a 1-level chain from x to x1, Aj
has a 1-level chain from xj−1 to xj for each j ∈ {2, 3, · · · , N − 1}, and AN has
a 1-level chain from xN−1 to u. These N chains arranged in the evident order
yield a (k + 1)-level chain of F from x to u.

By induction, for each k ≥ 1, F has a k-level chain from x to u with the
additional requirements.

Claim 2. F has an arc from x and u.

Proof. For each k ≥ 1 let Γk be a k-level chain of F from x to u and let

x
(k)
1 , x

(k)
2 , · · · , x(k)Nk

be its ordered connections as in Claim 1. Let

γ =

∞⋂
k=1

Γk.

Then γ is a compact subset of F containing the connections of Γk for all k. We
are going to show that γ is an arc from x to u.

Let

X =

∞⋃
k=1

{x(k)1 , x
(k)
2 , · · · , x(k)Nk

}.

Then X is dense in γ. On the other hand, X is a well ordered set with an

ordering induced by those of {x(k)1 , x
(k)
2 , · · · , x(k)Nk

}, k ≥ 1. We may choose a
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dense subset

Y =

∞⋃
k=1

{y(k)1 , y
(k)
2 , · · · , y(k)Nk

}

of the interval [0, 1] such that the map h : X → Y defined by

h(x
(k)
j ) = y

(k)
j , j = 1, 2, · · · , Nk, k ≥ 1

is an order-preserving homeomorphism. Now we easily see that h can be ex-
tended to a homeomorphism of γ onto [0, 1].

Claim 3. Every good necklace has Property I.

Proof. By the proof of Claim 2, each chain Γ of F from x to u has an arc
from x to u and such an arc contains the connections of Γ.

Suppose F is good. To check Property I, we fix k ∈ I. Note that the
connections of every 1-level chain of Fk are main nodes of Fk.

Case 1. Either zk−1 or zk is a main node of Fk. Let Γ be 1-level chain of Fk
from zk−1 to zk. Since F is good, Γ contains at least two 1-level copies of Fk,
so its connections are nonempty. Let γ be an arc of Γ from zk−1 to zk. Then γ
contains at least two main nodes of Fk.

Case 2. Neither zk−1 nor zk is a main node of Fk. In this case, there is a
unique pair l, j ∈ I such that zk−1 ∈ Fkl and zk ∈ Fkj . Since F is good, we
have l 6= j.

Subcase 1. Fkl∩Fkj = ∅. Let Γ be 1-level chain of Fk from zk−1 to zk. Then
Γ contains at least three 1-level copies of Fk, so Γ has at least two connections.
Let γ be an arc of Γ from zk−1 to zk. Then γ contains at least two main nodes
of Fk.

Subcase 2. Fkl ∩ Fkj 6= ∅. In this subcase, Fkl ∩ Fkj is a singleton whose
unique point is denoted by w. Let

L =
⋃

i∈I,i6=l,i6=j

Fki.

Then L can be regarded as a 1-level chain of Fk from a to b, where {a, b} = ∂FL.
And we may assume that a ∈ Fkl and b ∈ Fkj . Clearly, a, b are main nodes of
Fk. Since F is good, Fkl has a 1-level chain A from zk−1 to a and Fkj has a 1-
level chain B from b to zk such that w 6∈ A∪B. Thus A∩L = {a}, L∩B = {b},
and A ∩ B = ∅. Let γA be an arc of A from zk−1 to a, γL be an arc of L from
a to b, and γB be an arc of B from b to zk. Then γA ∪ γL ∪ γB is an arc from
zk−1 to zk which contains at least two main nodes of Fk.

Claim 4. Every necklace with Property I has no cut points.

Proof. Suppose F satisfies Property I. For each k ∈ I let γ(k) be an arc of
Fk from zk−1 to zk which passes through at least two main nodes of Fk. Let

γ =
⋃
k∈I

γ(k).
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Then γ is a circle of F passing through all main nodes of F , where a circle
means a subset homeomorphic with the geometric circle. Let

E =
⋃
σ∈I∗

fσ(γ).

Then each fσ(γ) is a circle with

fσ({z1, z2, · · · , zn} ⊂ fσ(γ) ⊂ Fσ (1.5)

and E is dense in F . In addition, by the construction of γ, we have

](fσ(γ) ∩ fσj(γ)) ≥ 2

for each σ ∈ I∗ and each j ∈ I, from which we easily infer that E is connected
and has no cut points. Now, by Lemma 1.1, we get that F has no cut points.

This completes the proof of Theorem 1.1.

Remark 1.4. Let F be a necklace. By Claim 2, F is path-connected. We
further conclude that F is locally path-connected, indeed, for each z ∈ F and
each integer m ≥ 1 the set ⋃

A∈Cm(F,z)

A

is a path-connected neighborhood of z, where Cm(F, z) is a family of m-level
copies of F defined by (1.3).

1.1.4 The proof of Theorem 1.2

In this section we prove Theorem 1.2: Every stable necklace of bounded rami-
fication has no cut points.

Let F be a necklace with a NIFS {f1, f2, · · · , fn} on Rd. Let

MF =
⋃
σ∈I∗
{fσ(z1), fσ(z2), · · · , fσ(zn)}. (1.6)

Then x ∈ MF if and only if x is a main node of some copy of F . Also, we use
the notations Cm(F, z) and cm(F, z) from (1.3) and (1.4). As each copy A of F
is a necklace with an induced NIFS, the notations MA, Cm(A, z) and cm(A, z)
are self-evident.

Lemma 1.2. Suppose F is stable. Then every point of F \MF is not a cut
point of F .

Proof. Fix z ∈ F \MF . Then, by the definition of MF , for each m ≥ 1 there is
a unique m-level copy containing z, so cm(F, z) = 1 and z ∈ intFVm, where Vm
denotes the unique member of Cm(F, z). Let

Um =
⋃

A∈Cm(F )\Cm(F,z)

A. (1.7)
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Then Um ∪ Vm = F and

Um ∩ Vm = ∂FUm = ∂FVm. (1.8)

Furthermore {Um}∞m=1 is increasing with

F \ {z} =

∞⋃
m=1

Um. (1.9)

Let
Lm =

⋃
B∈C1(Vm)\C1(Vm,z)

B. (1.10)

Then Lm is connected and

Um+1 = Um ∪ Lm. (1.11)

We claim that Um is connected for every m ≥ 1. In fact, U1 is a 1-level chain
of F , so it is connected. Assume that Um is connected for an integer m ≥ 1.
We are going to prove that Um+1 is connected.

Since F is stable, we may take two distinct copies A,B ∈ C1(Vm) such that
A ∩ ∂FVm 6= ∅ and B ∩ ∂FVm 6= ∅, so one has A ∩ Um 6= ∅ and B ∩ Um 6= ∅ by
(1.8). Without loss of generality assume B 6= Vm+1. Then B ⊂ Lm by (1.10).
Therefore

Um ∩ Lm 6= ∅. (1.12)

Since Lm is connected and Um has been assumed to be connected, we get from
(1.11) and (1.12) that Um+1 is connected.

By induction, Um is connected for every m ≥ 1, which together with (1.9)
implies that F \ {z} is connected, so z is not a cut point. This completes the
proof.

The proof of Theorem 1.2. Suppose F is stable and of bounded ramification.
We are going to prove that F has no cut points. As Lemma 1.2 was proved, it
suffices to prove that every point of MF is not a cut point of F .

Let z ∈ MF be given. Then there is a copy E of F such that z is a main
node of E. In what follows we assume that E is the biggest copy of F with this
property. Then z is a main node of E and z ∈ intFE. To show that F \ {z} is
connected, it suffices to prove that E \ {z} is connected.

Since F is of bounded ramification, {cm(E, z)}∞m=1 is bounded. Thus we
may take an integer k ≥ 1 such that

cm(E, z) = ck(E, z)

for all integers m ≥ k, which in turn implies that z is not a main node of any
copy A ∈ Ck(E, z).

Therefore z ∈ A \ MA for each A ∈ Ck(E, z). Since A is stable by the
assumption condition, we have by Lemma 1.2 that A \ {z} is connected.

Now that A \ {z} is connected for each A ∈ Ck(E, z), by which we easily see
that B \ {z} is connected for each B ∈ Ck−1(E, z). Step by step, we get that
E \ {z} is connected. This completes the proof.
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1.1.5 The proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let F be a self-similar necklace with a NIFS {f1, f2, · · · , fn}
on Rd satisfying the OSC. We are going to show that F is of boundary ramifi-
cation.

Let Cm(F, z) and cm(z) be defined as (1.3) and (1.4). We have to show that
{cm(zk)}∞m=1 is bounded for each main node zk of F .

Given zk and m, let τ ∈ Im be a word such that

Fτ ∈ Cm(F, zk) and diam(Fτ ) = min
A∈Cm(F,zk)

diam(A).

For each A ∈ Cm(F, zk) we may take a copy Ã ∈ C(F, zk) such that

Ã ⊆ A and c∗diam(Fτ ) < diam(Ã) ≤ diam(Fτ ), (1.13)

where c∗ = min1≤j≤n cj and c1, c2, · · · , cn ∈ (0, 1) are respectively the similarity
ratios of f1, f2, · · · , fn. Then we get cm(zk) copies of comparable diameters,
which are denoted as

Fσ1
, Fσ2

, · · · , Fσcm(zk)
(1.14)

where σ1, σ2, · · · , σcm(zk) ∈ I∗ are the corresponding words. It follows from
(1.13) that

cm(zk)⋃
j=1

Fσj ⊂ B(zk,diam(Fτ )),

where B(zk,diam(Fτ )) is the closed ball of radius diam(Fτ ) centred at zk. Since
the NIFS satisfies the OSC, there is a nonempty bounded open set V of Rd such
that f1(V ), f2(V ), · · · , fn(V ) are pairwise disjoint subsets of V . Thus

fσ1(V ), fσ2(V ), · · · , fσcm(zk)
(V )

are pairwise disjoint. On the other hand, as V is bounded, we may take a
constant H ≥ 1 such that V ⊂ B(zk, Hdiam(F )). Then

cm(zk)⋃
j=1

fσj (V ) ⊂ B(zk, Hdiam(Fτ )). (1.15)

By comparing volumes we get from (1.15) that

cm(zk) min
1≤j≤cm(zk)

Vol(fσj (V )) ≤ wd(Hdiam(Fτ ))d, (1.16)

where wd denotes the volume of the d-dimensional unit ball. Since the NIFS
consists of similitudes of Rd, one has by (1.13)

Vol(fσj (V ))

Vol(fτ (V ))
=

(
diam(fσj (V ))

diam(fτ (V ))

)d
=

(
diam(Fσj )

diam(Fτ )

)d
≥ cd∗ (1.17)
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for every j ∈ {1, 2, · · · , cm(zk)}, which together with (1.16) yields

cm(zk)cd∗Vol(fτ (V )) ≤ wd(Hdiam(Fτ ))d. (1.18)

Therefore

cm(zk) ≤ wd(Hdiam(Fτ ))d

cd∗Vol(fτ (V ))
=
wd(Hdiam(F ))d

cd∗Vol(V )
.

Thus the sequence {cm(zk)}∞m=1 is bounded. This proves that F is of bounded
ramification. Now Theorem 1.3 follows by Theorem 1.5.

Proof of Theorem 1.4. Let F be a planar necklace with no cut points. We
are going to show that F satisfies the OSC.

By the proof of Theorem 1.1, F has a circle. Thus R2 \F has infinitely many
bounded components by the definition of F and Jordan’s curve theorem. Let U
be a fixed bounded component of R2 \ F . Then

∂U ⊂ F and U ∩ F = ∅.

Let {f1, f2, · · · , fn} be a NIFS of F . Since fk’s have been assumed to be con-
tracting homeomorphisms of R2, we have that, for every σ ∈ I∗, the image
fσ(U) of U under fσ is a bounded component of R2 \ Fσ with

∂(fσ(U)) ⊂ Fσ and fσ(U) ∩ Fσ = ∅. (1.19)

We are going to show that fσ(U) is a bounded component of R2 \F for each
word σ ∈ I∗. First, we have by (1.19) and the definition of F

n−1⋃
j=3

Fj ⊂ f1(U) or

n−1⋃
j=3

Fj

 ∩ f1(U) = ∅.

Moreover, since diam(F ) > diam(F1), we have

F2 \ f1(U) 6= ∅ or Fn \ f1(U) 6= ∅.

Next we show that f1(U) ∩ F = ∅ under the assumption that F has no cut
points. In fact, if not, we encounter several different cases and, in each case,
there is a digit k ∈ {2, n} such that

f1(U) ∩ Fk 6= ∅ and Fk \ f1(U) 6= ∅,

which implies that either z1 or zn is a cut point of F , contradicting the assump-
tion on F .

Similarly, for each k ∈ I we have fk(U)∩ F = ∅, which together with (1.19)
implies that fk(U) is a bounded component of R2 \ F . For each word σ ∈ I∗,
arguing as above step by step, we get fσ(U) ∩ F = ∅, so fσ(U) is a bounded
component of R2 \ F .
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Let m, k ∈ I be distinct and let σ, τ ∈ I∗. By the above conclusions,
fm(fσ(U)) and fk(fτ (U)) are two distinct components of R2 \ F , so

fm(fσ(U)) ∩ fk(fτ (U)) = ∅. (1.20)

Now let
V =

⋃
σ∈I∗

fσ(U).

It is obvious that fk(V ) ⊂ V for every k ∈ I. On the other hand, we see by
(1.20) that fm(V ) and fk(V ) are disjoint for distinct m, k ∈ I. This proves that,
with the open set V , the NIFS satisfies the OSC. The proof is completed.

1.1.6 Some further questions

• The OSC problem

We just proved that every planar necklace with no cut points satisfies the
OSC. However, the proof is invalid for necklaces in Rd, d ≥ 3. Actually, we
easily check that every necklace is of topological dimension 1. Therefore, for
a necklace F in Rd, d ≥ 3, we see that Rd \ F does not have any bounded
components. We do not know if every necklace with no cut points satisfies the
OSC in the higher dimensional case. It is open even for self-similar necklaces.

• Conformal dimension of self-similar necklaces

Tyson and Wu [27] proved that the two necklaces in Figure 1 are of conformal
dimension 1. We thus ask: Can one develop a unified method to prove that a
big class of self-similar necklaces are of conformal dimension 1?

1.2 Topological Rigidity of good fractal necklaces

1.2.1 Introduction

The fractal necklaces had been introduced by the author in [24], where some
conditions for fractal necklaces with no cut points are obtained. The present
paper is devoted to studying the topological rigidity of good fractal necklaces.
Roughly speaking, a subset of Rd is rigid in a certain sense if the group of
its related automorphisms is small. We refer to [6, 7] for the quasisymmetric
rigidity of Schotty sets and square carpets.

A map f : Rd → Rd is contracting, if there exists 0 < c < 1 such that
|f(x) − f(y)| ≤ c|x − y| for all x, y ∈ Rd. Let {f1, f2, . . . , fn} be a family
of contracting maps of Rd. According to Hutchinson [14], there is a unique
nonempty compact subset F of Rd, called the attractor of {f1, f2, . . . , fn}, such
that F = ∪nk=1fk(F ).
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The attractor F is called a fractal necklace or a necklace, if n ≥ 3 and
f1, f2, . . . , fn are contracting homeomorphisms of Rd satisfying

fm(F ) ∩ fk(F ) =

 a singleton if |m− k| = 1 or n− 1

∅ if 2 ≤ |m− k| ≤ n− 2
(1.21)

for all distinctm, k ∈ {1, 2, . . . , n}. In this case, the ordered family {f1, f2, . . . , fn}
is called a necklace iterated function system (NIFS).

Let I = {1, 2, . . . , n}. For every integerm ≥ 0 and every sequence i1i2 . . . im ∈
Im write fi1i2...im for the composition fi1 ◦ fi2 ◦ · · · ◦ fim and Fi1i2...im for
fi1i2...im(F ), where we prescribe I0 = {ε} and fε = id. We call Fi1i2...im an
m-level copy of F . Denote by Cm(F ) the collection of m-level copies of F and
let C(F ) = ∪∞m=0Cm(F ). From now on a copy of F means an m-level copy of F
for some m ≥ 0. By the definition, two distinct copies A, B of F have one of
the following four relationships:

A ⊂ B; B ⊂ A; A ∩B = ∅; A ∩B is a singleton. (1.22)

For every k ∈ I denote by zk the unique common point of the 1-level copies
Fk and Fk+1. We call the ordered points z1, z2, . . . , zn the main nodes of F . We
say that two main nodes zk and zm are adjacent, if |k −m| = 1 or n − 1. For
a subset A of F denote respectively by ∂FA and intFA the boundary and the
interior of A in the relative topology of F . Then we have ∂FFk = {zk−1, zk} for
each k ∈ I and ] ∂FA ≥ 2 for each A ∈ ∪m≥1Cm(F ). Hereafter denote by ] the
cardinality and prescribe

Fn+1 = F1 and z0 = zn. (1.23)

We say that a fractal necklace F with a NIFS {f1, f2, . . . , fn} is good, if
](Fkj ∩ ∂FFk) ≤ 1 for all k, j ∈ I. In this case, we also say that the NIFS is
good. Equivalently, F is good if and only if Fk is the smallest copy containing
{zk−1, zk} for each k ∈ I.

Figure 5: A necklace that is not good but has cut points.
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Let F be a fractal necklace. Then F is path-connected and locally path-
connected. Moreover, if F is good then it has no cut points. Figure 1 presents a
necklace that is not good and has cut points. All of these can be found in [24].
J. Kigami [18, 19] established harmonic calculus on p. c. f. self-similar sets. It
is clear that our fractal necklaces satisfy the p. c. f. property.

It should be mentioned that necklaces can be defined by language of fractal
structures used by C. Penrose [22], C. Bandt and K. Keller [5], and C. Bandt
and T. Retta [9]. In the present paper, some questions are the same as that of
[9].

For a necklace, its copies and main nodes and the goodness have been defined
by its given NIFS. Since two distinct NIFSs may generate the same necklace, it
is natural to ask whether or not these properties of necklaces are independent
of their NIFSs.

Let τ and s be two permutations of I, where

τ(k) =

 k + 1 if 1 ≤ k < n

1 if k = n
(1.24)

and s(k) = n− k + 1 for all k ∈ I. Let Gn be the group generated by τ and s.
Then Gn is a dihedral group of 2n elements. Let F be a necklace with a NIFS
{f1, f2, . . . , fn} on Rd and σ ∈ Gn. We easily see that {fσ(1), fσ(2), . . . , fσ(n)}
remains to be a NIFS of F .

We shall prove that every good necklace has a unique NIFS in the following
sense.

Theorem 1.5. Let F be a necklace with a good NIFS {f1, f2, . . . , fn} on Rd.
Then for each NIFS {g1, g2, . . . , gm} of F we have

(1) m = n and
(2) There is a permutation σ ∈ Gn such that gk(F ) = fσ(k)(F ) for each

k ∈ I.

Remark 1.5. By Theorem 1.5, we see that, if F is a necklace with a good
NIFS, then all NIFSs of F are good and its copies and main nodes are actually
independent of the choice of its NIFSs. Note also that the conclusion (2) here
does not imply gk = fσ(k).

Definition 5. We say that a homeomorphism of two necklaces F and G is
rigid, if the image of every m-level copy of F is an m-level copy of G for every
m ≥ 0.

Denote by h(F,G) the family of homeomorphisms of F onto G.

Theorem 1.6. Let F and G be two topologically equivalent good fractal neck-
laces in Rd. Then every homeomorphism of F onto G is rigid. Furthermore,
h(F,G) is countable, in particular, the group h(F, F ) of homeomorphisms of F
is countable.
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A topological space X is co-Hopfian, if every topological embedding of X
into itself is onto; see [13, 21, 23]. By contrast, we prove that every good fractal
necklace has a weaker co-Hopfian property as follows.

Theorem 1.7. Let F and G be two topologically equivalent good necklaces in
Rd and let h be a topological embedding of F into G. Then h(F ) is a copy of G.

Remark 1.6. In Theorem 1.7, the assumption that F and G are topologically
equivalent can not be removed off. Indeed, a good necklace F may have a subset
that is a good necklace, but it is not any copy of F . The readers easily see this
from the standard Sierpinski gasket.

Remark 1.7. The above rigidity and the weaker co-Hopf property on fractals
have been studied by C. Bandt and T. Retta [9]. For finite-to-one and good
necklaces, our Theorems 1.6 and 1.7 can be obtained by Theorem 5.1 of [9].
However, it is easy to construct a good necklace that is not finite-to-one, for
example, Figure 2 illustrates a good self-affine necklace with six main nodes in
a triangle, where the vertices and midpoints of sides of the triangle are its main
nodes. Thus our results and those of [9] are not completely overlapped. Besides,
our strategy in the proof of these results is different from that of [9].

Figure 6: A necklace that is good but not finite-to-one.

We shall introduce and characterize extremal 2-cuts for good necklaces in
Section 2. Using this characterization and some related properties of extremal
2-cuts, we shall prove the above theorems in Section 3. We conjecture that
these theorems hold for all necklaces. However, since the extremal 2-cuts for
general necklaces are more elusive, it seems very difficult to prove (disprove)
this conjecture.

1.2.2 2-cuts of necklaces with no cut points

In this section we discuss the 2-cuts of necklaces with no cut points and the
related topological invariants.

Let X be a connected topological space and A ⊂ X. We say that A is a cut
of X, if X \A is not connected and X \B is connected for each B ( A. A cut
consisting of k points is called a k-cut. A 1-cut is also called a cut point.
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For each subset A of X define

N(A,X) = sup{ncp(C) : C is a component of X \A}, (1.25)

where C is the closure of C in X, ncp(C) denotes the number of cut points of
C, a component means a maximal connected subset. We say that a component
C of X \A is extremal, if ncp(C) = N(A,X).

For each integer k ≥ 1 define

Nk(X) := sup{N(A,X) : A is a k-cut of X}. (1.26)

We say that a k-cut A of X is extremal, if N(A,X) = Nk(X).

Lemma 1.3. Let h : X → Y be a homeomorphism of two connected topological
spaces. Then we have the followings.

(1) Let A be a cut of X. Then h(A) is a cut of Y and

N(h(A), Y ) = N(A,X).

Moreover, C is an extremal component of X\A if and only if h(C) is an extremal
component of Y \ h(A).

(2) Let k ≥ 1 be an integer. Then Nk(Y ) = Nk(X). Moreover, A is an
extremal k-cut of X if and only if h(A) is an extremal k-cut of Y .

Proof. It is immediate.

Lemma 1.4. Let X be a connected and locally connected metric space. Let A
be a k-cut of X, where k ≥ 1 is an integer. Then we have

1) ∂XC = A for every component C of X \A, and
2) U \A is not connected for each neighborhood U of A in X, where a subset

U of X is called a neighborhood of A, if A ⊂ intXU .

Proof. 1) Let C be a component of X \ A. Then C is closed in X \ A. Since
X is locally connected and A is finite, X \ A is locally connected, so C is also
open in X \A. Thus ∂XC ⊆ A.

Next we prove A ⊆ ∂XC. Since C is open in X \ A, we easily see that C is
open in (A \ ∂XC)∪ (X \A). On the other hand, since C is closed in X \A, we
have

C = (C ∪ ∂XC) ∩ (X \A).

As ∂XC ⊆ A is proved, we have (C ∪ ∂XC) ∩ (A \ ∂XC) = ∅, so

C = (C ∪ ∂XC) ∩ ((A \ ∂XC) ∪ (X \A)).

Thus C is also closed in (A \ ∂XC) ∪ (X \A).
It then follows that (A \ ∂XC) ∪ (X \A) is not connected. Since A is a cut

of X, we get A \ ∂XC = ∅, so A ⊆ ∂XC.
2) Let U be a neighborhood of A. Suppose U \A is connected. Then X \A

has a component C with C ⊃ U \A, so

A ⊂ intX(C ∪A) (1.27)
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As mentioned, C is open in X \ A, which together with (1.27) implies that
C ∪ A is open in X. On the other hand, as was shown, one has ∂XC = A,
which together with (1.27) implies that ∂X(C ∪ A) = ∅, so C ∪ A is closed in
X. Since X is connected, we then get C ∪ A = X, which yields C = X \ A, a
contradiction.

Remark 1.8. Under the condition of Lemma 1.4, if x is a cut point of X and
U is a connected neighborhood of x then x is a cut point of U .

From now on denote by F a necklace with a NIFS {f1, f2, . . . , fn} on Rd and
by z1, z2, . . . , zn its ordered main nodes. As mentioned, we prescribe z0 = zn.
The main results of this section are the following theorems.

Theorem 1.8. If F has no cut points, then N2(F ) = n − 2 and {zk−1, zk},
k ∈ I, are extremal 2-cuts of F . Moreover, if F is good, then {zk−1, zk}, k ∈ I,
are the only extremal 2-cuts of F .

Theorem 1.9. If F has no cut points and k ∈ I, then F \ Fk is an extremal
component of F \ {zk−1, zk}. Moreover, if F is good, then F \ Fk is the only
extremal component of F \ {zk−1, zk}.

The assumption that F is good can not be removed off for the related results
in Theorem 1.8 and Theorem 1.9.

Example 4. Let T be a closed solid triangle of vertices 0, 1, v in the complex
plane, whose corresponding angles α, β, γ satisfy 4β < 2α < γ. Appropriately
choosing a real number a ∈ (0, 1), we may construct a planar self-similar neck-
lace F by 4 similarity maps as in Figure 3, such that its ordered main nodes
z1, z2, z3, z4 are 0, a, a+ (1− a)v, v respectively. This necklace is not good and
has no cut points (see [24], Theorem 2). By the first implication of Theorem
1.3 we have N2(F ) = 2. We easily check that

{a+ a(1− a), a+ a(1− a) + (1− a)2v}

is an extremal 2-cut of F , but it is not equal to {zk−1, zk} for any k ∈ {1, 2, 3, 4}.
On the other hand, F \{z2, z3} has three components, two of which are extremal.

Figure 7: A necklace that is not good and has no cut points.
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Let i1i2 . . . im ∈ Im. Since f1, f2, . . . , fn have been assumed to be home-
omorphisms of Rd, we easily see that Fi1i2...im is a necklace with an induced
NIFS

{fi1...im ◦ f1 ◦ f−1i1...im , fi1...im ◦ f2 ◦ f
−1
i1...im

, . . . , fi1...im ◦ fn ◦ f−1i1...im}

whose main nodes are fi1...im(z1), fi1...im(z2), . . . , fi1...im(zn) and whose 1-level
copies are Fi1...im1, Fi1...im2, . . . , Fi1...imn. Let

MF =

∞⋃
m=0

⋃
i1...im∈Im

{fi1...im(z1), fi1...im(z2), . . . , fi1...im(zn)}.

Therefore z ∈MF if and only if z is a main node of some copy of F .

From now on we assume that F has no cut points. Thus each copy of F has
no cut points.

The proof of Theorems 1.8 and 1.9 will occupy the rest part of this section.
The connectedness and local connectedness of a necklace F and the assumption
that F has no cut points will be used frequently.

Lemma 1.5. Suppose F has no cut points. Let k,m ∈ I, k 6= m. Then we
have the following statements.

1) {zk, zm} is a cut of F .
2) If zk and zm are not adjacent then F \{zk, zm} has exactly two components

and N({zk, zm}, F ) < n− 2.
3) F \ Fk is a component of F \ {zk−1, zk}.
4) The set of cut points of F \ Fk is {z1, z2, . . . , zn} \ {zk−1, zk}.
5) For each z ∈ {z1, z2, . . . , zn} \ {zk−1, zk}, F \ Fk \ {z} has exactly two

components, one containing zk−1 and the other containing zk.

Proof. It is obvious.

Lemma 1.6. Suppose F has no cut points and {z, w} is a cut of F . Let A =
Fi1i2...im ∈ C(F ) be the smallest copy such that {z, w} is a cut of Fi1i2...ij for
each 0 ≤ j ≤ m. Then we have

1) Both z and w are main nodes of A, and
2) A \ {z, w} has exactly two components with N({z, w}, A) ≤ n− 2.

Proof. 1) Under the assumption, since

lim
m→∞

max
C∈Cm(F )

diam(C) = 0,

the smallest copy A = Fi1i2...im such that {z, w} is a cut of Fi1i2...ij for each
0 ≤ j ≤ m does exist.

To show that z and w are main nodes of A, it suffices to prove

{z, w} ∩ intAB = ∅
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for each B ∈ C1(A). In fact, suppose there is a copy B ∈ C1(A) such that
{z, w} ∩ intAB 6= ∅. Without loss of generality assume z ∈ intAB. As z is a cut
point of A \ {w}, it follows from Lemma 1.4 that z is a cut point of B \ {w}, so
w ∈ B and {z, w} is a cut of B, contradicting the minimality of A.

2) There are two cases as follows.
Case 1. z and w are nonadjacent main nodes of A. By Lemma 1.5, A has

exactly two components with N({z, w}, A) < n− 2.
Case 2. z and w are adjacent main nodes of A. Let B ∈ C1(A) be the copy

such that ∂AB = {z, w}. By Lemma 1.5, A\B is a component of A\{z, w} whose
closure has exactly n−2 cut points. On the other hand, by the minimality of A
we see that B\{z, w} is another component of A\{z, w} whose closure has no cut
points. Thus A \ {z, w} has exactly two components with N({z, w}, A) = n− 2
in this case.

Lemma 1.7. Suppose F has no cut points, {z, w} is a cut of F , and i ∈ I. If
{z, w} is a cut of Fi then

N({z, w}, F ) ≤ max{n− 2, N({z, w}, Fi)}. (1.28)

Proof. There are two possible cases.
Case 1. {z, w} = {zi−1, zi}. In this case, F \Fi is a component of F \ {z, w}

whose closure has exactly n−2 cut points and the other components of F \{z, w}
are those of Fi \ {z, w}. Thus (1.28) holds.

Case 2. {z, w} 6= {zi−1, zi}. Then, by Lemma 1.4, F \Fi is not a component
of F \ {z, w}. So there is a component A of F \ {z, w} with

A ) F \ Fi.

Clearly, Fi \ {z, w} has at most two components intersecting {zi−1, zi}.
Subcase 1. Fi \ {z, w} has only one component B with

B ∩ {zi−1, zi} 6= ∅.

In this subcase, one has

A = (F \ Fi) ∪B and {zi−1, zi} ⊂ B.

Then, by the statement 5) of Lemma 1.5, we see that the cut points of A belong
to those of B, so ncp(A) ≤ ncp(B).

Subcase 2. Fi \ {z, w} has two components C and D with

C ∩ {zi−1, zi} = {zi−1} and D ∩ {zi−1, zi} = {zi}.

In this subcase,
A = (F \ Fi) ∪ C ∪D.

By Lemma 1.4, one has {z, w} = C ∩D, so C ∪D is connected, which together
with the statement 5) of Lemma 1.5 implies that the cut points of A belong to
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those of C ∪D. As Fi has no cut points, we easily see that C ∪D has no cut
points, so ncp(A) = 0.

Thus, for both subcases we have ncp(A) ≤ N({z, w}, Fi). As the other
components of F \ {z, w} belong to those of Fi \ {z, w}, we get N({z, w}, F ) ≤
N({z, w}, Fi), so (1.28) holds in Case 2.

Proof of the first implication of Theorem 1.8. Suppose F has no cut
points. We are going to show that N2(F ) = n − 2 and that {zk−1, zk}, k ∈ I,
are extremal 2-cuts of F .

First, we show
N({z, w}, F ) ≤ n− 2 (1.29)

for each cut {z, w} of F .
Let Fi1i2...im be the smallest copy such that {z, w} is a cut of Fi1i2...ij for

each 0 ≤ j ≤ m. If m = 0, (1.29) follows from Lemma 1.6 directly. If m ≥ 1,
by Lemma 1.7 we have

N({z, w}, Fi1i2...ij−1
) ≤ max{n− 2, N({z, w}, Fi1i2...ij )}

for all 1 ≤ j ≤ m, which together with Lemma 1.6 implies

N({z, w}, F ) ≤ max{n− 2, N({z, w}, Fi1i2...im)} ≤ n− 2.

This proves (1.29), and thus we have N2(F ) ≤ n− 2.
Secondly, by Lemma 1.5, given k ∈ I, {zk−1, zk} is a 2-cut of F and F \ Fk

is a component of F \ {zk−1, zk} with ncp(F \ Fk) = n− 2, so

N({zk−1, zk}, F ) ≥ n− 2,

which yields N2(F ) ≥ n− 2.
To sum up, we have N2(F ) = N({zk−1, zk}, F ) = n− 2 for each k ∈ I. This

completes the proof.

Suppose F has no cut points. Then F \ Fk is connected with

ncp(F \ Fk) = n− 2

for each k ∈ I. However, F \ Fi1i2 may not be connected for i1i2 ∈ I2; see for
example the necklace in Figure 1. And, in the case F \ Fi1i2 is connected, it is
possible that ncp(F \ Fi1i2) > n−2; see for example the Sierpinski triangle. By
contrast, we have the following lemma.

Lemma 1.8. Suppose F is good. Then we have
1) F \A is connected for each A ∈ ∪∞m=1Cm(F ), and
2) ncp(F \A) < n− 2 for each A ∈ ∪∞m=2Cm(F ) with ] ∂FA = 2.

Proof. 1) The assumption implies that F has no cut points; see [24]. So F \ Fk
is connected for each k ∈ I. Let lj ∈ I2. Then F \Fl and Fl \Flj are connected.
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Since F is good, we may take a point x ∈ (∂FFl) \ Flj . Then (F \ Fl) ∪ {x} is
connected. Observing

((F \ Fl) ∪ {x}) ∩ (Fl \ Flj) = {x}

and
F \ Flj = (F \ Fl) ∪ {x} ∪ (Fl \ Flj),

we see that F \Flj is connected. Inductively, we get that F \A is connected for
each A ∈ ∪∞m=1Cm(F ).

2) We first prove that ncp(F \A) < n−2 for each A ∈ C2(F ) with ] ∂FA = 2.
Let such a copy A be given. We may write A = Flk and ∂FFlk = {z, w}, where
lk ∈ I2. Then we have the following facts.

(a) ∂FlFlk = {z, w}, so z and w are two adjacent main nodes of Fl.

(b) Fl \ Flk is connected with ncp(Fl \ Flk) = n− 2.
(c) Fl \ Flk = ∪j∈I, j 6=kFlj .
(d) F \ Flk = (F \ Fl) ∪ (Fl \ Flk).
(e) ∂F (F \ Fl) ⊂ Fl \ Flk.
(f) Let u be a main node of Fl with u 6∈ {z, w}. Then u is a cut point of

Fl \ Flk and Fl \ Flk \ {u} has exactly two components, one containing z and
the other containing w.

We only prove (e). Since ∂F (F \ Fl) = ∂FFl = {zl−1, zl}, the task is to
show {zl−1, zl} ⊂ Fl \ Flk. Suppose it is false, say zl 6∈ Fl \ Flk. Then one has
zl ∈ Flk, so zl ∈ ∂FFlk. By (a), zl is a main node of Fl, so there is a copy Flj
such that {zl} = Flj ∩ Flk. Then by (c) we get zl ∈ Fl \ Flk, a contradiction.

Now, since F \ Flk = F \ Fl ∪ Fl \ Flk, we see from the statement 5) of
Lemma 1.5 and (e) that the cut points of F \ Flk belong to those of Fl \ Flk.
On the other hand, since F is good, one has (∂FFl) \ Flj 6= ∅ for each j ∈ I, so
by (c) and (e) there are two distinct j1, j2 ∈ I \ {k} such that zl−1 ∈ Flj1 and

zl ∈ Flj2 , which together with (f) implies that Fl \ Flk has a cut point that is

not any cut point of F \ Flk. It then follows from (b) that ncp(F \ Flk) < n−2.
Next let A = Fi1i2...im , where i1i2 . . . im ∈ Im, m ≥ 2, and ] ∂FA = 2. Then

F \A, F \ Fi1 and Fi1 \A are connected,

F \A = F \ Fi1 ∪ Fi1 \A, and ∂F (F \ Fi1) = ∂FFi1 ⊂ Fi1 \A.

Thus we have by the statement 5) of Lemma 1.5 that the cut points of F \A
belong to those of Fi1 \A, so

ncp(F \A) ≤ ncp(Fi1 \A). (1.30)

Since ] ∂Fi1...im−1
A = 2, the assumption ] ∂FA = 2 implies

∂FA = ∂Fi1A = · · · = ∂Fi1...im−1
A.

We may repeatedly apply (1.30) to get

ncp(F \A) ≤ ncp(Fi1i2...im−2
\A).
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Since Fi1i2...im−2
\A and F \ Fim−1im are topologically equivalent, we then get

ncp(F \A) ≤ ncp(F \ Fim−1im).

As ncp(F \ Fim−1im) < n− 2 is proved, we get ncp(F \A) < n− 2.

Proof of the second implication of Theorem 1.8. Suppose F is good. We
are going to show that {zk−1, zk}, k ∈ I, are the only extremal 2-cuts of F . As
the first implication of Theorem 1.3 is proved, it suffices to show

N({z, w}, F ) < n− 2 (1.31)

for each 2-cut {z, w} of F with {z, w} 6∈ {{zk−1, zk} : k ∈ I}.
Let such a 2-cut {z, w} of F be given. Let A = Fi1i2...im ∈ C(F ) be the

smallest copy such that {z, w} is a cut of Fi1i2...ij for each 0 ≤ j ≤ m. By
Lemma 1.6, z and w are main nodes of A and A \ {z, w} has exactly two
components, which will be denoted by B and C. Thus there is a subset J of I
such that

B =
⋃
j∈J

Fi1i2...imj and C =
⋃

j∈I\J

Fi1i2...imj . (1.32)

In addition, F \A is connected by 1) of Lemma 1.8. And we have

F \ {z, w} = (F \A) ∪B ∪ C.

Case 1. A = F . By the assumption on {z, w}, we see that z and w are
actually two nonadjacent main nodes of F . The inequality (1.31) follows by
Lemma 1.5.

Case 2. A ∈ ∪∞m=1Cm(F ) and ∂FA = {z, w}. By the assumption on {z, w}
we actually have A ∈ ∪∞m=2Cm(F ). In this case, F \ A, B, and C are the only
three components of F \ {z, w}. By 2) of Lemma 1.8, we have

ncp(F \A) < n− 2.

On the other hand, since F is good, we see that z, w are actually two nonadjacent
main nodes of A, which implies

ncp(B) < n− 2 and ncp(C) < n− 2.

Then the inequality (1.31) follows.
Case 3. A ∈ ∪∞m=1Cm(F ) and ∂FA 6= {z, w}. Since ∂F (F \ A) = ∂FA, we

have by Lemma 1.4 that F \A is not a component of F \{z, w}. Thus F \A meets
exactly one of B and C. Without loss of generality assume that (F \A)∩B 6= ∅.
Then (F \A)∪B and C are the only two components of F \{z, w} and we have
∂FA ⊂ B. Let J be the subset of I such that (1.32) holds. Then ]J ≤ n − 1.
Since F is good, one also has ]J ≥ 2, so

ncp(C) = ](I \ J)− 1 < n− 2.
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Since ∂F (F \ A) = ∂FA ⊂ B, arguing as we did in the proof of 2) of Lemma
1.8, we have that the cut points of (F \A) ∪B belong to those of B and that
B has at least one cut point that is not any cut point of (F \A) ∪B. Thus

ncp((F \A) ∪B) < ncp(B) ≤ ]J − 1 ≤ n− 2.

Then the inequality (1.31) follows. This completes the proof.

Proof of Theorem 1.9. Suppose F has no cut points. Fix k ∈ I. Then
we have N2(F ) = n − 2 by the first implication of Theorem 1.3. Since F \ Fk
is a component of F \ {zk−1, zk} with ncp(F \ Fk) = n − 2, it is an extremal
component of F \ {zk−1, zk}.

Now suppose F is good. Let C be a component of F \ {zk−1, zk} with C 6=
F \Fk. Then C is a component of Fk\{zk−1, zk}. In the case C = Fk\{zk−1, zk},
one has ncp(C) = 0. In the other case, since F is good, there is no copy Fkj
containing {zk−1, zk}, so zk−1 and zk are two nonadjacent main nodes of Fk,
which implies ncp(C) < n − 2. This proves that F \ Fk is the only extremal
component of F \ {zk−1, zk}.

1.2.3 The proof of main results

Proof of Theorem 1.5. Let F be a fractal necklace with a good NIFS
{f1, f2, . . . , fn} on Rd. Then F has no cut points. Let {g1, g2, . . . , gm} be
an arbitrary NIFS of F . We do not know if this NIFS is good at this stage. As
the first implication of Theorem 1.3 is valid for all necklaces with no cut points,
we have

N2(F ) = n− 2 = m− 2,

which yields n = m. We are going to show that there is a permutation σ ∈ Gn
such that gk(F ) = fσ(k)(F ) for each k ∈ I.

Let z1, z2, . . . , zn be the ordered main nodes of F under {f1, . . . , fn} and
w1, w2, . . . , wn be those of F under {g1, . . . , gn}. Thus

{zk−1, zk} = ∂F (fk(F )) and {wk−1, wk} = ∂F (gk(F )).

By the first implication of Theorem 1.3, {wk−1, wk}, k ∈ I, are extremal 2-cuts
of F . By the second implication of Theorem 1.3, {zk−1, zk}, k ∈ I, are the only
extremal 2-cuts of F . Thus we have

{{wk−1, wk} : k ∈ I} = {{zk−1, zk} : k ∈ I}, (1.33)

which implies

{w1, w2, . . . , wn} = {z1, z2, . . . , zn} as sets.

Let j ∈ I satisfy {w1, w2} = {zj−1, zj}. Then we have

w1 = zj and w2 = zj−1 (1.34)
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or
w1 = zj−1 and w2 = zj . (1.35)

First consider the case (1.34). Let σ = τn−js ∈ Gn be a permutation of I.
By the definitions of τ and s in Section 1 we have σ(k) = j − k + 1 for each
k ∈ I, hereafter we identify an integer l with an integer k ∈ I if |l − k| = 0
or n. Thus (1.34) can be written as w1 = zσ(1) and w2 = zσ(2), which implies
wk = zσ(k) for each k ∈ I by using (1.33).

Fix k ∈ I. We then have

{wk−1, wk} = {zσ(k−1), zσ(k)}.

As σ(k − 1) = σ(k) + 1, we have

{zσ(k−1), zσ(k)} = ∂F (fσ(k−1)(F )).

It follows that
∂F (gk(F )) = ∂F (fσ(k−1)(F )).

By the first implication of Theorem 1.9, F \ gk(F ) is an extremal component of
F \ {wk−1, wk}. By the second implication of Theorem 1.9, F \ fσ(k−1)(F ) is
the only extremal component of F \ {wk−1, wk}. Thus

F \ gk(F ) = F \ fσ(k−1)(F ),

which yields
gk(F ) = fσ(k−1)(F ) = fστ−1(k)(F ),

where τ−1 is the inverse of τ . Of course στ−1 ∈ Gn.
As for the case (1.35), let σ = τ j−2 ∈ Gn be a permutation of I. By a slightly

easier argument, we get

∂F (gk(F )) = ∂F (fσ(k)(F )).

Using Corollary 1.9 as above, we have gk(F ) = fσ(k)(F ) for each k ∈ I. The
proof is completed.

Proof of Theorem 1.6. Let F and G be two topologically equivalent good
necklaces in Rd. For clarity let {f1, f2, . . . , fn} be a NIFS of F and {g1, g2, . . . , gm}
be a NIFS of G on Rd. Then, by Lemma 1.3 and Theorem 1.3, we have n = m.
Denote by z1, z2, . . . , zn the ordered main nodes of F and by w1, w2, . . . , wn
those of G. We are going to show that every homeomorphism h ∈ h(F,G) is
rigid.

Fix h ∈ h(F,G). Since {{zk−1, zk} : k ∈ I} is the family of extremal 2-cuts
of F and {{wk−1, wk} : k ∈ I} is that of G by Theorem 1.3, we have by Lemma
1.3

{{h(zk−1), h(zk)} : k ∈ I} = {{wk−1, wk} : k ∈ I}.

Now, arguing as we just did in the proof of Theorem 1.5, there is a permutation
σ ∈ Gn such that

h(fk(F )) = gσ(k)(G)
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for every k ∈ I. This shows that h maps every 1-level copy of F onto a 1-level
copy of G. Inductively, one has that h maps every m-level copy of F onto an
m-level copy of G for every integer m ≥ 1. Thus h is rigid.

Next we show that h(F,G) is countable. For every integer m ≥ 0 write

MF,m =
⋃

i1i2...im∈Im
fi1i2...im{z1, z2, . . . , zn}

and
MG,m =

⋃
i1i2...im∈Im

gi1i2...im{z1, z2, . . . , zn}.

Then MF,m and MG,m are finite sets. Let

MF =

∞⋃
m=0

MF,m and MG =

∞⋃
m=0

MG,m.

Then MF is dense in F and MG is dense in G. Let h ∈ h(F,G). As h was
shown to be rigid, the restriction h|MF

of h is a bijection from MF onto MG

and satisfies h(MF,m) = MG,m for each m ≥ 0.
Let Φ be the collection of bijections φ : MF → MG satisfying φ(MF,m) =

MG,m for each m ≥ 0. Clearly, Φ is countable and

{h|MF
: h ∈ h(F,G)} ⊆ Φ,

so {h|MF
: h ∈ h(F,G)} is countable.

To prove that h(F,G) is countable, it suffices to show the correspondence
h → h|MF

from h(F,G) to {h|MF
: h ∈ h(F,G)} is one-to-one. In fact, let

h, h̃ ∈ h(F,G), h 6= h̃, then there is a point z ∈ F such that h(z) 6= h̃(z), so

h(A) and h̃(A) are disjoint for sufficiently small copy A of F with z ∈ A, and

so h|MF
6= h̃|MF

due to MF dense in F . This completes the proof.

Proof of Theorem 1.7. Let F and G be two topologically equivalent good
fractal necklaces. Let h : F → G be a topological embedding. We are going to
show that h(F ) is a copy of G.

For clarity let {f1, f2, . . . , fn} be a NIFS of F and {g1, g2, . . . , gm} be a NIFS
of G. Denote by z1, z2, . . . , zn the main nodes of F and by w1, w2, . . . , wn those
of G.

Let A be the smallest copy of G such that h(F ) ⊆ A. Without loss of
generality assume A = G. We are going to prove h(F ) = G. Since MG is dense
in G, it suffices to show h(F ) ⊃MG.

By the assumption, h(F ) meets intGB for at least two 1-level copies B of
G. Since h(F ) has no cut points, we see that h(F ) actually meets intGB for all
1-level copies B of G, so

h(F ) ⊃ {w1, w2, . . . , wn}, i.e. h(F ) ⊃MG,0. (1.36)

Next we prove h(F ) ⊃MG,1. It suffices to show for each k ∈ I

h(F ) ⊃ {gk(w1), gk(w2), . . . , gk(wn)}. (1.37)
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By Theorem 1.3, {{zk−1, zk} : k ∈ I} is the family of extremal 2-cuts of F ,
so {{h(zk−1), h(zk)} : k ∈ I} is the family of extremal 2-cuts of h(F ) by Lemma
1.3. On the other hand, {wk−1, wk}, k ∈ I, are obviously extremal 2-cuts of
h(F ) by (1.36). It follows that

{{wk−1, wk} : k ∈ I} = {{h(zk−1), h(zk)} : k ∈ I},

which implies

{h(z1), h(z2), . . . , h(zn)} = {w1, w2, . . . , wn} as sets. (1.38)

Then, arguing as we just did in the proof of Theorem 1.5, there is a permutation
σ ∈ Gn such that for each k ∈ I

∂h(F )(h(fσ(k)(F ))) = ∂G(gk(G)) = {wk−1, wk}. (1.39)

Now fix k ∈ I. By (1.39) and the arguments of (1.36), one has

h(fσ(k)(F )) ⊆ gk(G) or h(fσ(k)(F )) ⊃ {w1, w2, . . . , wn},

in which the latter case does not occur because it contradicts (1.38). Thus we
have

h(fσ(k)(F )) ⊆ gk(G).

Moreover, since G is good, we see by (1.39) that gk(G) is the smallest copy con-
taining h(fσ(k)(F )). Applying (1.36) to the topological embedding h : fσ(k)(F )→
gk(G), we get

h(fσ(k)(F )) ⊃ {gk(w1), gk(w2), . . . , gk(wn)},

which implies (1.37) and thus h(F ) ⊃MG,1.
Inductively, we have h(F ) ⊃ MG,m for every integer m ≥ 0, and so h(F ) ⊃

MG. This completes the proof.
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2 Dragon Curves

2.1 Convex Hulls of Dragon Curves

2.1.1 Introduction

Let A be a d × d matrix and di ∈ Rd. We assume that A is contractive. The
convex hull of the attractor of iterated function system (IFS for short) {fi | i =
1, 2, . . .m} with fi = Ax+di is studied by Strichartz-Wang [30]. They observed
an important property of extreme points of the convex hull and deduced that
the attractor has a polygonal convex hull if and only if there exists a positive
integer s such that As is a scalar matrix. Kirat-Kocyigit [20] considered the case
that the linear part of fi may not be identical and proved that, if the attractor
has a polygonal convex hull, the vertices must have eventually periodic codings.
In contrast with this result, we further get the following theorem.

Theorem 2.1. Let K be the attractor of an IFS {fi | i = 1, 2, . . .m} on the
complex plane C with

fi(z) = aiz + bi, ai, bi ∈ C, 0 < |ai| < 1.

Suppose K is not a singleton. If an eventually periodic word i1i2 · · · il(j1 · · · jk)∞

in {1, 2, . . .m}N is a coding of an extreme point of co(K) then aj1aj2 · · · ajk > 0.

For an infinite word i1i2 · · · in {1, 2, . . .m}N and an integer k ≥ 1 denote
by fi1···ik the composition fi1 ◦ · · · ◦ fik . If ∩∞k=1fi1···ik(K) = z, then i1i2 · · · is
called a coding of the point z in K.

Kirat-Kocyigit [20] also gave a sufficient and necessary condition such that
the attractor of a given IFS has a polygonal convex hull. Moreover, they found
an algorithm to check their condition, but the termination of the algorithm is
not discussed.

The present paper is devoted to studying the convex hulls of dragon curves.
Let C be the complex plane. For z ∈ C denote by arg z the argument of z in
[0, 2π), by Rez and Imz the real and imaginary part of z, and by z̄ the conjugate
of z. Let η ∈ (0, π/3) and let

a := a(η) =
e−iη

2 cos η
. (2.1)

The η-Dragon curve Kη is the attractor of the IFS

f1(z) = az, f2(z) = 1− āz, z ∈ C.

In other words, Kη is an unique nonempty compact subset of C satisfying

Kη = f1(Kη) ∪ f2(Kη). (2.2)

The η-dragon curve has also been obtained as the limit of the renormalized
paperfolding curves in the Hausdorff metric as well; see [1, 31]. By using their
algorithm, Kirat-Kocyigit [20] verified that the dragon curve Kπ/4 has a polyg-
onal convex hull. We will prove that every dragon curve has this property.
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Theorem 2.2. For each η ∈ (0, π/3) the convex hull co(Kη) is a polygon.

Actually, we find out a countable subset V of Kη and prove that its convex
hull co(V ) is a polygon with co(V ) = co(Kη).

Given η ∈ (0, π/3), let a, f1, f2, and Kη be defined as above. One has

1

2
< |a| < 1, a+ ā = 1, and 2|a| cos η = 1. (2.3)

Let z0 be the fixed point of the composition f2211. Then one has z0 = ca ∈ Kη

by a simple computation, where

c =
1

1− |a|4
. (2.4)

For every integer k ≥ 0 let

zk = fk1 (z0), wk = f2(zk), and bk = f2(wk+1). (2.5)

Then
zk = cak+1, wk = 1− c|a|2ak, and bk = a+ c|a|4ak. (2.6)

We define a countable subset V of Kη by

V = {b0} ∪ {zk : k ≥ 0} ∪ {wk : k ≥ 1}. (2.7)

Since z0 ∈ Kη, one has V ⊂ Kη by (2.5). For every integer k ≥ 1 let

Vk = {b0, z0, z1, · · · , zk, w1 · · · , wk}. (2.8)

We shall show
co(V ) = co(Vk) (2.9)

for sufficiently large integer k depending on η. Therefore V has a polygonal
convex hull. By the construction of the attractor Kη we may further prove
that co(Kη) = co(V ), which gives Theorem 2.2. Detailed proof will be given in
Section 3.

We shall see that, in the proof of Theorem 2.2, the vertices of co(Kη) are
not determined completely. To answer this question, the first work is to find
the smallest integer with the property (2.9). Let

Φk(η) = (1− |a|4) sin(k − 1)η − |a|3 sin(k − 2)η + |a|k sin η. (2.10)

We will show that for each integer k ≥ 4 the function Φk has a unique null in
the interval (π/k, π/(k − 1)). We denote this zero point of Φk by ηk. Then the
interval (0, π/3) has a partition as

(0, π/3) = [η4, π/3) ∪
∞⋃
k=4

[ηk+1, ηk). (2.11)

For η ∈ (0, η4) we get the following result.
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Theorem 2.3. Let k ≥ 4 be an integer and let η ∈ [ηk+1, ηk). Then the vertices
of the polygon co(Kη) are b0, z0, z1, · · · , zk, w1, · · · , wk in clockwise.

We shall prove Theorem 2.1 in Section 2 and Theorem 2.2 in Section 3. For
our purpose, some properties of functions Φk will be given in Section 4. Some
properties of dragon curves will be given in Section 5. Theorem 2.3 will be
proved in Section 6. We give an outline here for the convenience of readers. For
u, v, w ∈ C denote by ∠uvw the counterclockwise angle of u− v to w− v. That
is,

∠uvw = arg
w − v
u− v

.

Then ∠uvw ∈ (0, π) means that v is in the left-hand side of the straight line
passing through u and w of direction (w−u)/|w−u|. We have the implications:

∠uvw ∈ (0, π)⇔ Im
w − v
u− v

> 0⇔ Im(ū− v̄)(w − v) > 0.

It is not difficult to get a generic result for all dragon curves as follows:

∠b0z0z1 = ∠zkzk+1zk+2 = ∠wkwk+1wk+2 = π − η

for each η ∈ (0, π/3) and each integer k ≥ 0. Moreover, given k ≥ 4 and
η ∈ [ηk+1, ηk), we may prove

∠zk−1zkw1, ∠zkw1w2, ∠wk−1wkb0, ∠wkb0z0 ∈ (0, π)

and
co(Vk) = co(V ).

After that, we infer that for each η ∈ [ηk+1, ηk) the points

b0, z0, z1, · · · , zk, w1, w2, · · · , wk

are in turn the vertices of the polygon co(Vk) in clockwise. Once these results
are proved, Theorem 2.3 will follow from the proof of Theorem 2.2.

We remark that dragon curves are a class of path-connected self-similar sets
in the plane [14], for which some basic geometric questions are subtle. For
example, we know very little about when a dragon curve satisfies the open
set condition; see [4, 11, 29]. Motivated by a question of Tabachnikov [31],
Albers [1], Allouche et al [3], and Kamiya [16] studied self-intersecting and non-
intersecting dragon curves, but the study on the question when a dragon curve
is an arc is far from conclusive. As for the convex hull of Kη, we shall see that,
in the case of η ∈ [η4, π/3), the point z4 is no longer any vertex of co(Kη).
Moreover, we shall prove that, if η is near to π/3, it is not true that

b0, z0, z1, z2, z3, w1, w2, w3

are the vertices of the polygon co(Kη) in clockwise. See Remark 2.3 at the end
of Section 5. The vertex question of co(Kη) is still open for η ∈ [η4, π/3).
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2.1.2 The proof of Theorem 2.1

Let K be the attractor of IFS {fn| n = 1, 2, . . . ,m} on the plane with

fn(z) = anz + bn, an, bn ∈ C, 0 < |an| < 1.

Let i1i2 · · · il(j1 · · · jk)∞ be a coding of an extreme point of co(K). We are
going to show aj1aj2 · · · ajk > 0.

We may write aj1 · · · ajk = reiα, where r ∈ (0, 1) and α ∈ [0, 2π) are the
modulus and argument of aj1 · · · ajk . Then

aj1 · · · ajk > 0⇐⇒ α = 0.

Let w be the unique fixed point of fj1···jk . Then w ∈ K, with coding
(j1 · · · jk)∞.

Since K is not a singleton, a point v ∈ K exists with v 6= w. Denote
vp = f(j1···jk)p(v) for every positive integer p, then vp ∈ K, vp 6= w and

vp = (aj1 · · · ajk)p(v − w) + w = rpeipα(v − w) + w. (2.12)

If α 6= 0, in view of (2.12), there is an integer p ≥ 2 such that

w ∈ co({v1, v2, · · · , vp}) and w is not a vertex of co({v1, v2, · · · , vp}).

We know that fj1···jk(w) is the point of coding i1i2 · · · il(j1 · · · jk)∞. Then

fj1···jk(w) ∈ co({fj1···jk(v1), fj1···jk(v2), · · · , fj1···jk(vp)})

and fj1···jk(w) is not a vertex of co({fj1···jk(v1), fj1···jk(v2), · · · , fj1···jk(vp)}).

Since vp ∈ K, then fj1···jk(vp) ∈ K for every positive integer p. The previous
discussion implies that fj1···jk(w) is not an extreme point of co(K), contradicting
the assumption of Theorem 2.1. This proves α = 0 and thus completes the proof.

2.1.3 The proof of Theorem 2.2

Given η ∈ (0, π/3), let a, f1, f2, Kη, c, zk, wk, bk, Φk, V and Vk be defined
as in Section 1. To prove Theorem 2.2, we only need to show that co(V ) is a
polygon and that co(Kη) = co(V ). The definitions of the above parameters and
their relationships will be used frequently without mentioning.

Lemma 2.1. co(V ) is a polygon for each η ∈ (0, π/3).

Proof. Let η ∈ (0, π/3). By the definition of zk, we see that there are points of
{zk : k ≥ 0} in the inner part of every quadrant of the plane. Therefore, 0 is an
inner point of the convex hull co(V ). By the definition of wk, we easily check
that 1 is also an inner point of co(V ). Since by (2.6)

lim
k→∞

zk = 0 and lim
k→∞

wk = 1,
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there exists an integer n such that {zk : k > n} ∪ {wk : k > n} is in the inner
part of co(V ). It then follows that

co(V ) = co(Vn),

so co(V ) is a polygon.

Remark 2.1. By the above proof, co(V ) is closed and 0, 1 ∈ co(V ). Moreover,
since ak = c−1zk−1 = (1− |a|4)zk−1, one has ak ∈ co(V ) for all integers k ≥ 1.

For z ∈ C recall that arg z is the argument of z in [0, 2π). For u, v, w ∈ C
denote by uv the segment of endpoints u and v, and by 4(u, v, w) the closed
solid triangle of vertices u, v and w. By the definition, w0 = 1 − c|a|2 is a real
number. It can be nonnegative or negative, depending on the choice of η. The
next lemma is useful.

Lemma 2.2. We have w0 ∈ 4(0, z2, z3) ∩4(0, z̄2, z̄3), if w0 < 0.

Proof. Let η ∈ (0, π/3) be given such that w0 < 0. Then 1 − |a|2 − |a|4 < 0,
which occurs only if η ∈ (π/4, π/3). Thus,

arg z2 = 2π − 3η > π and arg z3 = 2π − 4η < π,

giving arg z3 < argw0 < arg z2. On the other hand, let

t =
1

|a|2
− 1. (2.13)

Then t ∈ (0, 1) by |a| < 1 and 1− |a|2 − |a|4 < 0. And we have

(1− t)z2 + tz3 = ca3(1− t+ ta) = ca3(1− tā)

= ca3(1− ā

|a|2
+ ā) = ca2(a− 1 + |a|2)

= ca2(−ā+ |a|2) = c|a|2a(−1 + a) = −c|a|4.

Thus the segment z2z3 intersects the real axis at −c|a|4. Since

1− c|a|2 + c|a|4 = c(1− |a|2) > 0,

one has −c|a|4 < w0. The above facts imply w0 ∈ 4(0, z2, z3).

Acting on w0 ∈ 4(0, z2, z3) with f(z) = z̄, we get w0 ∈ 4(0, z̄2, z̄3), as
desired.

Lemma 2.3. f1(co(V )) ∪ f2(co(V )) ⊂ co(V ) for each η ∈ (0, π/3).

Proof. It suffices to show f1(V ) ∪ f2(V ) ⊂ co(V ). Clearly,

f1(V ) = {f1(b0)} ∪ {zk : k ≥ 1} ∪ {f1(wk) : k ≥ 1}
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and
f2(V ) = {f2(b0)} ∪ {wk : k ≥ 0} ∪ {bk : k ≥ 0}.

Since
f1(b0) = a(a+ c|a|4) = a2 + c|a|4a = (1− |a|4)z1 + |a|4z0,

we get f1(b0) ∈ co(V ). On the other hand, since

bk = a+ c|a|4ak = (1− |a|4)z0 + |a|4zk−1,

we have bk ∈ co(V ) for all integers k ≥ 1. Thus, to complete the proof, we only
need to prove f1(wk), f2(b0), w0 ∈ co(V ) for all integers k ≥ 1.

The proof of w0 ∈ co(V ). If w0 ≥ 0, since w0 = 1 − c|a|2 and 0, 1 ∈ co(V ), we
have w0 ∈ co(V ). In the other case, we have w0 ∈ 4(0, z2, z3) by Lemma 2.2,
so w0 ∈ co(V ).

The proof of f2(b0) ∈ co(V ). First, we have

f2(b0) = 1− ā(a+ c|a|4) = 1− |a|2 − c|a|4ā = 1− |a|2 − c|a|4 + c|a|4a.

By a long but elementary computation, we get

f2(b0) =
|a|4h+ (1− 2|a|4 + |a|6)(1− |a|2)

1− |a|4 + |a|6
,

where
h = (1− |a|2 + |a|4)z1 + (|a|2 − |a|4)z2.

Clearly, h ∈ co(V ). As was known, 0, 1 ∈ co(V ), which gives 1 − |a|2 ∈ co(V ).
Additionally,

1− 2|a|4 + |a|6 = (1− |a|2)(1 + |a|2 − |a|4) > 0.

It then follows that f2(b0) ∈ co(V ).

The proof of f1(wk) ∈ co(V ) for all integers k ≥ 1. It will be done by induction.

We first show f1(w1) ∈ co(V ). Since a+ ā = 1 and f1(z) = az, we have

|a|2(1− āw0) + (1− |a|2)aw0

= |a|2 − |a|2āw0 + aw0 − |a|2aw0 = |a|2 + aw0 − |a|2w0

= |a|2 + a− c|a|2a− |a|2 + c|a|4 = a(1− c|a|2 + c|a|2ā)

= a(1− c|a|2a) = aw1 = f1(w1).

Thus the proof of f1(w1) ∈ co(V ) can be reduced to showing

aw0, 1− āw0 ∈ co(V ). (2.14)

If w0 ≥ 0, one has by 0, 1, a ∈ co(V )

aw0 ∈ co(V ) and 1− āw0 = (1− w0) + w0a ∈ co(V ).
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If w0 < 0, one has w0 ∈ 4(0, z2, z3) by Lemma 2.2. Acting on it with f1
and f2 respectively, we get

aw0 = f1(w0) ∈ 4(f1(0), f1(z2), f1(z3)) = 4(0, z3, z4)

and
1− āw0 = f2(w0) ∈ 4(f2(0), f2(z2), f2(z3)) = 4(1, w2, w3).

Therefore aw0, 1− āw0 ∈ co(V ). This proves f1(w1) ∈ co(V ).

Secondly, we show for every integer k ≥ 1

f1(wk+1) = (1− |a|2)f1(wk) + |a|2bk−1. (2.15)

In fact, one has by a+ ā = 1

−ak+1 + ak+2 + |a|2ak+1 + |a|4ak−1 = 0.

Using this equality, we get

f1(wk+1) = a− c|a|2ak+2

= a− c|a|2ak+2 + c|a|2(−ak+1 + ak+2 + |a|2ak+1 + |a|4ak−1)

= a− c|a|2ak+1 + c|a|4ak+1 + c|a|6ak−1

= a− c|a|2ak+1 − |a|2a+ c|a|4ak+1 + |a|2a+ c|a|6ak−1

= (1− |a|2)(a− c|a|2ak+1) + |a|2(a+ c|a|4ak−1)

= (1− |a|2)f1(wk) + |a|2bk−1.

Finally, since {bk : k ≥ 0} ⊂ co(V ) and f1(w1) ∈ co(V ) have been proved, by
the formula (2.15) we get f1(wk) ∈ co(V ) for all integers k ≥ 1 by induction.

Proof of Theorem 2.2. Let η ∈ (0, π/3). Since V ⊂ Kη, one has co(V ) ⊆
co(Kη). On the other hand, since co(V ) is closed, the self-similarity construction
of the dragon curve Kη together with Lemma 2.3 implies Kη ⊆ co(V ), which
yields co(Kη) ⊆ co(V ). Thus, co(Kη) = co(V ). It then follows from Lemma 2.1
that co(Kη) is a polygon.

2.1.4 The properties of functions Φk, Ψk, and Θk

Let
Φk(η) = (1− |a|4) sin(k − 1)η − |a|3 sin(k − 2)η + |a|k sin η,

Θk(η) = (1− |a|4) sin η + |a|k+1 sin kη

and
Ψk(η) = sin η + |a|k−2 sin(k + 1)η.

These functions are closely related to the geometry of dragon curves. In what
follows we write A � B if A = CB for some C > 0.
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Lemma 2.4. For each η ∈ (0, π/3) and for each integer k ≥ 1 we have

Im((z̄k−1 − z̄k)(w1 − zk)) � Φk(η) and Im((z̄k − w̄1)(w2 − w1)) � Ψk(η).

Proof. Let η ∈ (0, π/3) and let k ≥ 1 be an integer. Observing that

zk−1 − zk � ak − ak+1 = ak(1− a) = akā � ak−1,

we have

Im((z̄k−1 − z̄k)(w1 − zk))

� Im(āk−1(1− c|a|2a− cak+1))

� Im(āk−1(1− |a|4 − |a|2a− ak+1))

� (1− |a|4) sin(k − 1)η − |a|3 sin(k − 2)η + |a|k+1 sin 2η

= (1− |a|4) sin(k − 1)η − |a|3 sin(k − 2)η + |a|k sin η,

On the other hand, since w2 − w1 = c|a|2(a− a2) = c|a|4, one has

Im((z̄k − w̄1)(w2 − w1)) � Im(z̄k − w̄1)

= Im(cāk+1 − 1 + c|a|2ā) = Im(cāk+1 + c|a|2ā)

� |a|k−2 sin(k + 1)η + sin η,

This completes the proof.

Lemma 2.5. For each integer k ≥ 4 the function Φk(η) has a unique null in
the interval (π/k, π/(k − 1)).

Proof. We first show that Φ4(η) has a unique null in (π/4, π/3). From the
definition

Φ4(η) = (1− |a|4) sin 3η − |a|3 sin 2η + |a|4 sin η

� ((1− |a|4)(3− 4 sin2 η)− 2|a|3 cos η + |a|4

= (1− |a|4)(−1 + 4 cos2 η)− |a|2 + |a|4

= (1− |a|4)(
1

|a|2
− 1)− |a|2 + |a|4

� (1− 2|a|4)(1− |a|2) � 1− 2|a|4.

Since |a| is a strictly increasing function of η, we see from the last relationship
that Φ4(η) has a unique null in (π/4, π/3). Denote this null of Φ4(η) by η4.
Then we have for each η ∈ (0, η4)

1− 2|a|4 > 0. (2.16)

Given an integer k ≥ 5, we are going to show that Φk(η) has a unique null
in (π/k, π/(k− 1)). By the definition of Φk and a simple triangular formula, we
have

Φk(η) = (1− |a|2 − |a|4) sin(k − 1)η + |a|3 sin kη + |a|k sin η.
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Thus
Φk(

π

k
) = (1− |a|2 − |a|4 + |a|k) sin

π

k
> 0

and
Φk(

π

k − 1
) = (−|a|3 + |a|k) sin

π

k − 1
< 0.

We only need to show the derivative Φ′k(η) < 0 for each η ∈ (π/k, π/(k − 1)).
Since the derivative d|a|/dη = 2|a|2 sin η, we have

Φ′k(η) = −8|a|5 sin η sin(k − 1)η + (1− |a|4)(k − 1) cos(k − 1)η

−6|a|4 sin η sin(k − 2)η − |a|3(k − 2) cos(k − 2)η

+2k|a|k+1 sin2 η + |a|k cos η.

Given η ∈ (π/k, π/(k − 1)), since the cosine is decreasing in (0, π), we have

cos(k − 1)η < cos
(k − 1)π

k
= − cos

π

k
< − cos η

and

cos(k − 2)η > cos
(k − 2)π

k − 1
= − cos

π

k − 1
> − cos η.

In addition, since k ≥ 5, we easily get (k − 1) sin2 η ≤ 2 for the given η, in
fact, for k = 5 we have (k − 1) sin2 η < 4 sin2(π/4) = 2, and for k ≥ 6 we have
(k − 1) sin2 η ≤ (k − 1)(π/(k − 1))2 ≤ π2/5 < 2. Therefore

2k|a|k+1 sin2 η + |a|k cos η

= 2k|a|k+1 sin2 η + 2|a|k+1 cos2 η

= 2|a|k+1(1 + (k − 1) sin2 η)

≤ 6|a|k+1 = 12|a|k+2 cos η.

Now, using the above inequalities, we get

Φ′k(η)

cos η
< −(k − 1)(1− |a|4) + (k − 2)|a|3 + 12|a|7.

Then, since |a| < 1/
√

2 for the given η, we get

Φ′k(η)

cos η
< −3(k − 1)

4
+
k − 2

2
√

2
+

3

2
√

2
≤ −3 +

3√
2
< 0.

This proves that Φk has a unique null in (π/k, π/(k − 1)).

For k ≥ 4 denote by ηk the null of Φk in (π/k, π/(k − 1)). Clearly,

1

2
< |a| < 1√

2
for each η ∈ (0,

π

4
)

and
1√
2
≤ |a| < 1

4
√

2
for each η ∈ [

π

4
, η4).
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The latter is due to (2.16). We shall use these two estimates without mentioning
them. The properties of functions Φk, Θk, and Ψk, which will be used in the
proof of Theorem 2.3, are formulated in the following three lemmas.

Lemma 2.6. Θj(η) > 0 for k ≥ 4, η ∈ [ηk+1, ηk), and j ≥ k.

Proof. If k = 4 and η ∈ [η5, η4), one has

Θ4(η) � (1− |a|4) + |a|54 cos η cos 2η

= (1− |a|4) + |a|42 cos 2η

> 1− 2|a|4 > 0.

If k = 4, j ≥ 5, and η ∈ [π/4, η4), one has

Θj(η) = (1− |a|4) sin η + |a|j+1 sin jη

≥ (1− |a|4) sin
π

4
− |a|6

� 1− |a|4 −
√

2|a|6

> 1− 1

2
− 1

2
= 0.

If k = 4, j ≥ 5, and η ∈ [η5, π/4), one has

Θj(η) = (1− |a|4) sin η + |a|j+1 sin jη

≥ (1− |a|4) sin
π

5
− |a|6

≥ (1− |a|4)
2

5
− |a|6

>
3

4
· 2

5
− 1

8
> 0.

If j ≥ k ≥ 5 and η ∈ [ηk+1, ηk), one has

Θj(η) = (1− |a|4) sin η + |a|j+1 sin jη

> (1− |a|4)
2η

π
− |a|k+1

> (1− |a|4)
2

k + 1
− |a|k+1

>
3

2(k + 1)
− (

1√
2

)k+1 > 0.

This completes the proof.

Lemma 2.7. Ψj(η) > 0 for k ≥ 4, η ∈ [ηk+1, ηk), and j ≥ k.

Proof. If k = 4, η ∈ [π/4, η4) and j ≥ 4, one has

Ψj(η) = sin η + |a|j−2 sin(j + 1)η ≥ sin
π

4
− |a|2 > 1√

2
− 1√

2
= 0.
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If k = 4 and η ∈ [η5, π/4), one has

Ψ4(η) > sin
π

5
+ |a|2 sin

5π

4
= sin

π

5
− |a|2 sin

π

4
>

2

5
− 1

2
√

2
> 0

and for j ≥ 5

Ψj(η) = sin η + |a|j−2 sin(j + 1)η >
2η

π
− |a|3 > 2

5
− 1

2
√

2
> 0.

If k = 5 and η ∈ [η6, η5), one has

Ψ5(η) = sin η + |a|3 sin 6η > sin
π

6
− |a|3 > 1

2
− 1

2
√

2
> 0

and for j ≥ 6

Ψj(η) >
2η

π
− |a|4 > 2

6
− 1

4
> 0.

If j ≥ k ≥ 6 and η ∈ [ηk+1, ηk), one has

Ψj(η) >
2η

π
− |a|k−2 > 2

k + 1
− 1

(
√

2)k−2
> 0.

This completes the proof.

Lemma 2.8. Let k ≥ 4. We have the following statements.
(1) Φk(η) > 0 for η ∈ [ηk+1, ηk).
(2) Φj(η) < 0 in both the cases C1 and C2, where

C1: η ∈ [π/k, ηk) and j ∈ {k + 1, k + 2, · · · , 2k − 3};
C2: η ∈ [ηk+1, π/k) and j ∈ {k + 1, k + 2, · · · , 2k − 1}.

Proof. (1) We have Φk(η) > 0 for η ∈ [π/k, ηk) by the proof of Lemma 2.5. In
the case η ∈ [ηk+1, π/k), we have

1− |a|2 − |a|4 > 0, sin(k − 1)η > 0, and sin kη > 0,

which imply

Φk(η) = (1− |a|2 − |a|4) sin(k − 1)η + |a|3 sin kη + |a|k sin η > 0.

(2) Let k ≥ 4. For case C1 one has

π + η ≤ (k + 1)η < (k + 2)η < · · · < (2k − 3)η < 2π − η.

Therefore
sin(j − 1)η ≤ 0 and sin jη < − sin η. (2.17)

Thus, in the case 1− |a|2 − |a|4 ≥ 0, we immediately get

Φj(η) = (1− |a|2 − |a|4) sin(j − 1)η + |a|3 sin jη + |a|j sin η

< −|a|3 sin η + |a|j sin η < 0.
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The other case 1 − |a|2 − |a|4 < 0 occurs only if k = 4 and η ∈ [π/4, η4), for
which we get by (2.16) and (2.17)

Φ5(η) < (|a|4 − |a|2) sin 4η − |a|3 sin η + |a|5 sin η

� − sin 4η − |a| sin η = − sin 4η − |a|2 sin 2η

� −2 cos 2η − |a|2 = 2− 1

|a|2
− |a|2 < 0.

For the case C2 one has 1− |a|2 − |a|4 > 0 and

π + η < (k + 2)η < · · · < (2k − 1)η < 2π − η.

Then Φj(η) < 0 for j ∈ {k + 2, k + 3, · · · , 2k − 1} by an easier argument than
what we just did. In addition, we have Φk+1(η) < 0 for η ∈ [ηk+1, π/k) by the
proof of Lemma 2.5, and thus finish the proof.

2.1.5 The properties of dragon curves

The following properties on dragon curves are useful.

Lemma 2.9. For each η ∈ (0, η4) we have Rez0,Rew1, Imw1 ∈ (0, 1).

Proof. Given η ∈ (0, η4), since 1− 2|a|4 > 0 by (2.16), one has

c|a|4 < 1 and c < 2. (2.18)

Then Rez0 = c|a| cos η = c/2 ∈ (0, 1). As for w1 we have

Imw1 = c|a|3 sin η < |a|−1 sin η = sin 2η ≤ 1

and

Rew1 = 1− c|a|3 cos η = 1− c|a|2

2
> 1− |a|2 > 0.

Then we easily get Rew1, Imw1 ∈ (0, 1). This completes the proof.

Lemma 2.10. ∠1zjw1 ∈ (0, π) for k ≥ 4, η ∈ [ηk+1, ηk), and j ≥ k.

Proof. For η ∈ (0, π/3) one has

Im((1− z̄j)(w1 − zj)) = Im((1− z̄j)(w1 − 1))

� Im((cāj+1 − 1)a) � sin η + c|a|j+1 sin jη

� (1− |a|4) sin η + |a|j+1 sin jη = Θj(η),

which together with Lemma 2.6 implies the desired result.

Lemma 2.11. Let k ≥ 4. We have in both the cases C1 and C2

zj ∈ co({0, zj−1, w1, 1}) and wj ∈ co({1, wj−1, b0, a}).
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Proof. Remember that arg z denotes the argument of z in [0, 2π). Let k ≥ 4.
In the case C1, i.e. η ∈ [π/k, ηk) and j ∈ {k + 1, k + 2, · · · , 2k − 3}, one has

π + η ≤ (k + 1)η < · · · < (2k − 3)η < 2π − η,

arg zk = 2π − (k + 1)η ∈ (π − 2η, π − η],

arg z2k−3 = 2π − (2k − 2)η ∈ (0, 2η], and

0 < arg z2k−3 ≤ arg zj < arg zj−1 ≤ arg zk ≤ π − η.

By Lemma 2.10 we have ∠1zjw1 ∈ (0, π). On the other hand, by Lemma 2.4
and Lemma 2.8(2), we have

Im((w̄1 − z̄j)(zj−1 − zj)) = −Im((z̄j−1 − z̄j)(w1 − zj)) � −Φj(η) > 0.

which implies ∠w1zjzj−1 ∈ (0, π). In summary, the point zj is located in the
sector 0 < arg z < arg zj−1, with ∠1zjw1,∠w1zjzj−1 ∈ (0, π), by which we get

zj ∈ co({0, zj−1, w1, 1}).

Now, acting on this relationship with f2, we get

wj ∈ co({1, wj−1, b0, a}).

In case C2 the argument is the same as that for case C1.

Denote by D(0, r) the closed disk of radius r centered at the origin and by
v0v1 · · · vj the broken segment formed by segments vk−1vk, k = 1, · · · , j. All
η-dragon curves with η ∈ (0, η4) have the following disk property.

Lemma 2.12. For each η ∈ (0, η4) and each integer j ≥ 1 we have

{zk : k ≥ j} ⊂ D(0, |zj |) and z0z1 · · · zj−1 ⊂ C \D(0, |zj |).

Proof. Let η ∈ (0, η4) and j ≥ 1 be given. For every integer k ≥ 0 we have

|zk+1| < |zk|,

which implies
{zk : k ≥ j} ⊂ D(0, |zj |).

On the other hand, one has for each t ∈ [0, 1]

|1− t+ ta|2 − |a|4 = (1− t+ t|a| cos η)2 + t2|a|2 sin2 η − |a|4

= (1− t)2 + 2(1− t)t|a| cos η + t2|a|2 − |a|4

= (1− t)2 + (1− t)t+ t2|a|2 − |a|4

= 1− t+ t2|a|2 − |a|4.

If 2|a|2 < 1, we have

1− t+ t2|a|2 − |a|4 > |a|2 − |a|4 > 0.
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If 2|a|2 ≥ 1, we have by (2.16)

1− t+ t2|a|2 − |a|4 = 1− |a|4 + |a|2(t− 1

2|a|2
)2 − 1

4|a|2

≥ 1− |a|4 − 1

4|a|2
� 4|a|2 − 4|a|6 − 1

≥ 2|a|2 − 4|a|6 = 2|a|2(1− 2|a|4) > 0.

Thus |1− t+ ta| > |a|2 for each t ∈ [0, 1]. Then, given j ≥ 1, we have

|(1− t)zj−1 + tzj | > |zj+1| for any t ∈ [0, 1].

It follows that the broken segment z0z1 · · · zj−1 ⊂ C \D(0, |zj |).

2.1.6 The Proof of Theorem 2.3

Let k ≥ 4 and η ∈ [ηk+1, ηk) be given. To prove Theorem 2.3, we first prove
co(Vk) = co(V ), which implies co(Vk) = co(Kη) by the proof of Theorem 2.2.
Secondly, we show that the points b0, z0, z1, · · · , zk, w1, w2, · · · , wk are in turn
the vertices of the polygon co(Vk) in clockwise.

The next lemma is generic for all η-dragon curves with η ∈ (0, π/3).

Lemma 2.13. For each η ∈ (0, π/3) and each integer n ≥ 0 we have

∠b0z0z1 = ∠znzn+1zn+2 = ∠wnwn+1wn+2 = π − η.

Proof. One has
z1 − z0
b0 − z0

=
c(a2 − a)

a+ c|a|4 − ca
= − a

|a|4

and
zn+2 − zn+1

zn − zn+1
=
wn+2 − wn+1

wn − wn+1
= −a.

Thus

∠b0z0z1 = ∠znzn+1zn+2 = ∠wnwn+1wn+2 = arg(−a) = π − η,

as desired.

Lemma 2.14. For k ≥ 4 and η ∈ [ηk+1, ηk) we have

∠zk−1zkw1, ∠zkw1w2, ∠wk−1wkb0, ∠wkb0z0 ∈ (0, π).

Proof. Let k ≥ 4 and η ∈ [ηk+1, ηk) be given. By Lemma 2.8(1), we have
Φk(η) > 0. By Lemma 2.7, we have Ψk(η) > 0. Then by Lemma 2.4, we get

Im((z̄k−1 − z̄k)(w1 − zk)) > 0 and Im((z̄k − w̄1)(w2 − w1)) > 0,

which implies ∠zk−1zkw1,∠zkw1w2 ∈ (0, π).
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Since f2 preserves angles, one has by the action of f2

∠zk−1zkw1 = ∠wk−1wkb0 and ∠zkw1w2 = ∠wkb0f2(w2).

As
f2(w2) = 1− ā(1− c|a|2a2) = a+ c|a|4a = ca = z0,

we then get ∠wk−1wkb0, ∠wkb0z0 ∈ (0, π). This completes the proof.

Lemma 2.15. For k ≥ 4 and η ∈ [ηk+1, ηk) we have 0, 1 ∈ co(Vk).

Proof. Let k ≥ 4 and η ∈ [ηk+1, ηk) be given. We consider two cases.

Case 1. η ∈ [π/k, ηk). We shall prove

0 ∈ 4(z1, zk−1, w1) and 1 ∈ 4(w1, wk−1, b0).

In this case, one has

arg zk−1 = 2π − kη ∈ (π − η, π],

so zk−1 is in the second quadrant of the plane. Since

Im(z̄1w1) = Im(cā2(1− c|a|2a)) � sin 2η − c|a|3 sin η

� 2 cos η − c|a|3 � 1− c|a|4 � 1− 2|a|4 > 0,

one has ∠z10w1 ∈ (0, π). As for the angle ∠zk−10z1, it is obvious that

∠zk−10z1 = (k − 2)η ∈ (0, π).

Since w1 is in the first quadrant by Lemma 2.9, the above facts imply

0 ∈ 4(z1, zk−1, w1),

which in turn implies 1 ∈ 4(w1, wk−1, b0) by the action of f2.

Case 2. η ∈ [ηk+1, π/k). In this case, z1 is in the fourth quadrant; zk is in
the second quadrant due to arg zk ∈ (π − η, π); ∠zk0z1 = (k− 1)η ∈ (0, π); and
w1 is in the first quadrant. These facts imply 0 ∈ 4(z1, zk, w1), which in turn
implies 1 ∈ 4(w1, wk, b0) by the action of f2. This completes the proof.

Let k ≥ 4 and η ∈ [π/k, ηk). One has arg z2k−3 = 2π − (2k − 2)η ∈ (0, 2η].

Lemma 2.16. Let k ≥ 4 and η ∈ [π/k, ηk). In the case arg z2k−3 ∈ (0, η] we
have

z2k−2 ∈ 4(0, z0, 1), z2k−1 ∈ 4(0, z1, z0),

w2k−2 ∈ 4(1, w0, a), and w2k−1 ∈ 4(1, w1, w0).

In the case arg z2k−3 ∈ (η, 2η] we have

z2k−2 ∈ 4(0, 1, z2k−3), z2k−1 ∈ 4(0, z0, 1),

w2k−2 ∈ 4(1, a, w2k−3), and w2k−1 ∈ 4(1, w0, a).
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Proof. We only prove the latter. The proof of the former is similar.
Let k ≥ 4 and η ∈ [π/k, ηk) and assume arg z2k−3 ∈ (η, 2η]. Then

∠z00z2k−1 ≤ η = ∠z001. (2.19)

On the other hand, using the inequality 1− 2|a|4 > 0, we easily get c < 2 and

|z2k−1| = c|a|2k < c|a|4 < c/2 < 1.

As Rez0 = c|a| cos η = c/2, we then get

Rez2k−1 < Rez0 < 1. (2.20)

By (2.19) and (2.20) we obtain z2k−1 ∈ 4(0, z0, 1), which yields w2k−1 ∈
4(1, w0, a) by the action with f2.

Next we prove z2k−2 ∈ 4(0, 1, z2k−3). As arg z2k−3 ∈ (η, 2η] is assumed, we
have

0 < arg z2k−2 < arg z2k−3 < π.

It suffices to show ∠1z2k−2z2k−3 ∈ (0, π), which can be reduced to showing

Im((1− z̄2k−2)(z2k−3 − z2k−2)) > 0. (2.21)

In fact, if k = 4, by using a+ ā = 1, 1− 2|a|4 > 0, c|a|4 < 1, 2|a| cos η = 1,
and |a| > 1/

√
2, one has

Im((1− z̄6)(z5 − z6)) = Im((1− z̄5)(z5 − z6))

� Im(a5 − c|a|10ā) � − sin 5η − c|a|6 sin η

� −4 cos2 η cos 2η − cos 4η − c|a|6

> −4 cos2 η(2 cos2 η − 1)− 2(2 cos2 η − 1)2 + 1− |a|2

= −16 cos4 η + 12 cos2 η − 1− |a|2

� −1 + 3|a|2 − |a|4 − |a|6

= −(1− |a|2)2 + |a|2(1− |a|2)(1 + |a|2)

� −1 + 2|a|2 + |a|4 > −1 + 2|a|2 > 0.

If k > 4, one has 2π − (2k − 3)η ∈ (η, 3η] ⊂ (η, π − η), so

Im((1− z̄2k−2)(z2k−3 − z2k−2))

� − sin(2k − 3)η − c|a|2k−2 sin η

= sin(2π − (2k − 3)η)− c|a|2k−2 sin η

> sin η − c|a|2k−2 sin η > 0.

This proves the inequality (2.21), so we have z2k−2 ∈ 4(0, 1, z2k−3), which in
turn gives w2k−2 ∈ 4(1, a, w2k−3) by the action of f2.

Let k ≥ 4 and η ∈ [ηk+1, π/k). One has arg z2k−1 = 2π − 2kη ∈ (0, 2η].
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Lemma 2.17. Let k ≥ 4 and η ∈ [ηk+1, π/k). For the case arg z2k−1 ∈ (0, η]
we have

z2k ∈ 4(0, z0, 1), z2k+1 ∈ 4(0, z1, z0),

w2k ∈ 4(1, w0, a), and w2k+1 ∈ 4(1, w1, w0).

For the case arg z2k−1 ∈ (η, 2η] we have

z2k ∈ 4(0, 1, z2k−1), z2k+1 ∈ 4(0, z0, 1),

w2k ∈ 4(1, a, w2k−1), and w2k+1 ∈ 4(1, w0, a).

Proof. The proof is the same as that of Lemma 2.16.

Lemma 2.18. For k ≥ 4 and η ∈ [ηk+1, ηk) we have co(V ) = co(Vk).

Proof. Let k ≥ 4 and η ∈ [ηk+1, ηk) be given. One has

a, 0, 1, w0 ∈ co(Vk) (2.22)

by a = c−1z0, Lemma 2.15, and Lemma 2.2. It suffices to prove

{zj : j > k} ∪ {wj : j > k} ⊂ co(Vk). (2.23)

We consider two cases.

Case 1. η ∈ [π/k, ηk). By using (2.22) and Lemma 2.11, we get

zk+1, zk+2, · · · , z2k−3, wk+1, wk+2, · · · , w2k−3 ∈ co(Vk)

by induction. Moreover, we have by Lemma 2.16

z2k−2, z2k−1, w2k−2, w2k−1 ∈ co(Vk)

and
z0z2k−1 ⊂ C \D(0, |z2k|). (2.24)

Then, by (2.24) and Lemma 2.12, we get

{zj : j ≥ 2k} ⊂ D(0, |z2k|) ⊂ co({z0, z1, · · · , z2k−1}).

which in turn implies

{wj : j ≥ 2k} ⊂ co({w0, w1, · · · , w2k−2, w2k−1})

by the action of f2. This proves (2.23).

Case 2. η ∈ [ηk+1, π/k). As we just did, by using (2.22), Lemma 2.11, 2.12,
and 2.17, we may prove (2.23) by showing step in step

zk+1, · · · , z2k−1, wk+1, · · · , w2k−1 ∈ co(Vk),

z2k, z2k+1, w2k, w2k+1 ∈ co(Vk),

and
{zj : j > 2k + 1} ∪ {wj : j > 2k + 1} ⊂ co(Vk).

This completes the proof.
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The proof of Theorem 2.3. Let k ≥ 4 and η ∈ [ηk+1, ηk) be given. By
Lemma 2.18 and the proof of Theorem 2.2, we have

co(Vk) = co(V ) = co(Kη).

Since Lemma 2.13 and Lemma 2.14 have been proved, to show that

b0, z0, z1, · · · , zk, w1, · · · , wk

are the vertices of the polygon co(Kη) in clockwise, it suffices to show that the
broken segment b0z0z1 · · · zkw1 · · ·wkb0 is a loop.

Clearly, z0, b0 are in the lower half-plane and w1 is in the upper half-plane.
Denote by l1 the directed straight line passing through 0 of direction −a/|a|

and by l2 the directed straight line passing through 1 of direction −a/|a|. Then
z0 ∈ l1 and w1 ∈ l2. Since

Im((z̄0 − b̄0)(0− b0)) � − sin η < 0

and
Im((1− b̄0)(w1 − b0)) � (1− 2|a|4) sin η > 0,

we see that b0 is on the right side of l1 and the left side of l2.

Case 1. η ∈ [π/k, ηk). In this case,

π ≤ kη < π + η.

Thus Imwk � sin kη < 0, implying that wk is in the lower half-plane.
Since

Im((z̄0 − z̄j)(0− zj)) � sin jη

and
Im((1− w̄j)(w1 − wj)) � − sin(j − 1)η,

we easily check that the broken segment z0z1 · · · zk−1 is a simple arc on the left
side of l1 and that w1w2 · · ·wk is a simple arc on the right side of l2.

Since
π − 2η < arg zk = 2π − (k + 1)η ≤ π − η, (2.25)

zk is in the upper half-plane. Moreover, since

Im((z̄0 − z̄k)(0− zk)) � sin kη ≤ 0

and

Im((1− z̄k)(w1 − zk)) � (1− |a|4) sin η − |a|k+1 sin kη > (1− |a|4) sin η > 0,

zk is on the right side of l1 and the left side of l2.
The above facts together imply that the broken segment b0z0 · · · zkw1 · · ·wkb0

is a loop.

Case 2. η ∈ [ηk+1, π/k). The proof is similar.
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Remark 2.2. The vertices of the polygon co(Kη) are b0, z0, z1, z2, z3, w1, w2, w3

in clockwise when η = η4. The argument of this case is the same as the proof of
Theorem 2.3.

Remark 2.3. In the case η ∈ (η4, π/3), we have Φ4(η) < 0 by Lemma 2.5.
Then, by Lemma 2.4, we have ∠z3z4w1 ∈ (π, 2π). Moreover, we easily see that
z4 is in the inner part of co(Kη). One may ask: Is it true that co(Kη) is a
polygon of vertices b0, z0, z1, z2, z3, w1, w2, w3 in clockwise?

The answer to this question is no. In fact, by simple computation we get

Im((b̄0 − z̄6)(w3 − z6)) � 6− 9|a|2 − 6|a|4 + 16|a|6 − 7|a|8.

Let h(x) = 6 − 9x − 6x2 + 16x3 − 7x4. Then h(1) = 0 and h′(1) > 0, which
implies Im((b̄0 − z̄6)(w3 − z6)) < 0, provided that η ∈ [η4, π/3) is sufficiently
near to π/3. Moreover, for such η, one has ∠b0z6w3 ∈ (π, 2π), so z6 is not in
the polygon of vertices b0, z0, z1, z2, z3, w1, w2, w3 in clockwise.
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3 Future plan

• Fractal necklaces

1. We want to find the sufficient and necessary condition that fractal neck-
laces having no cut points.

2. We want to know if every necklace satisfies the OSC in the higher dimen-
sional case.

3. We want to prove that copies and main nodes are actually independent of
the choice of NIFSs for every fractal necklace.

• Dragon curves

1. We want to know when a dragon curve is an arc.

2. We want to know when a dragon curve satisfies the open set condition.

• Lagrange spectrum of geometric progressions

1. We want to give the upper bounds for Hausdorff dimension of 2-Lagrange
spectrum of geometric progressions.
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