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1 Introduction
The notion of a d-complete poset was introduced by Robert A. Proctor ([15, 16]). A
d-complete poset is a finite poset which satisfies some local conditions described in terms
of double-tailed diamonds (see Section 2.3), and can be regarded as extensions of Young
diagrams and shifted Young diagrams, having similar properties to the hook length prop-
erty ([17]) and the jeu de taquin property ([18]) for Young diagrams. So, it is natural to
expect that d-complete posets play important roles in the combinatorial representation
theory as Young diagrams and shifted Young diagrams do.
We recall the fundamental relation between d-complete posets and finite-dimensional

simple Lie algebras (for the details, see Section 3.2). Let g be a simply-laced finite-
dimensional simple Lie algebra, with I the index set of simple roots. Let W = 〈si | i ∈ I〉
be the Weyl group, where si is the simple reflection corresponding to i ∈ I. Let λ be a
dominant integral weight of g, and set Wλ := {w ∈ W | wλ = λ}. We know that each
coset in W/Wλ has a unique element whose length is minimal among the elements in
the coset; we regard W/Wλ as a subset of W by taking the complete system of these
“minimal-length coset representatives” for the cosets in W/Wλ. Let ≤s (resp., ≤w) be
the partial order on Wλ corresponding to the Bruhat order (resp., weak Bruhat order)

on W/Wλ ⊂ W under the canonical map Wλ
∼→ W/Wλ ⊂ W . If λ is minuscule (in this

case, ≤s is identical to ≤w), then there exists a connected self-dual d-complete poset
(Pλ,≤) such that (Wλ,≤s) = (Wλ,≤w) and (F(Pλ),⊆) are isomorphic as posets, where
F(Pλ) is the set of order filters of Pλ ([15, Section 14]). Furthermore, using a unique map
κ : Pλ → I called the coloring, we construct an I-colored d-complete poset (Pλ,≤, κ, I).
Then, there exists a unique order isomorphism f : Wλ → F(Pλ) satisfying the condition
that µ → siµ is a cover relation in Wλ if and only if f(siµ)\f(µ) consists of one element
x with κ(x) = i ([16, Proposition 9.1]). There are some important applications of these
results. For example, the problem counting the λ-minuscule elements in W is reduced
to the combinatorial problem counting the “standard tableaux” for the corresponding
d-complete posets ([22, Theorem 3.5]). Also, the “colored hook formula” for d-complete
posets obtained in [13] is a generalization of the famous hook length formula for Young
diagrams in terms of the reflections in the positive roots of g.
In this thesis, we study the relation between the Weyl group orbit through a dominant

integral weight for a multiply-laced finite-dimensional simple Lie algebra and the set
of order filters in a d-complete poset. To do this, we use the “folding” technique (see
Section 4.1). Assume that g is of type An, Dn, E6, and let h be a Cartan subalgebra of
g. Let σ : I → I be a non-trivial automorphism of the Dynkin diagram of g; note that
σ canonically induces a Lie algebra automorphism of g such that σ(h) = h, and a linear
automorphism on the dual space h∗ of h. Then the fixed point subalgebra g(0) := {x ∈
g | σ(x) = x} is isomorphic to a multiply-laced finite-dimensional simple Lie algebra with
the set J of σ-orbits in I its index set of simple roots and h(0) := {h ∈ h | σ(h) = h}
its Cartan subalgebra. Let W̃ = 〈s̃p | p ∈ J〉 ⊂ GL(h(0)∗) be the Weyl group of g(0).

We know that the subgroup Ŵ := {w ∈ W | σwσ−1 = w} of W is isomorphic to W̃ .

Let res : h∗ → h(0)∗ be the restriction map. The map res|Ŵλ gives a bijection Ŵλ onto

W̃ res(λ) for a dominant integral weight λ of g.
Now, let λ be a minuscule dominant integral weight of g, and (Pλ,≤) the corresponding

d-complete poset mentioned above; recall the order isomorphism f : Wλ → F(Pλ). We
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define f̃ : W̃ res(λ) → F(Pλ) by f̃ ◦ res = f , and set F̃(Pλ) := Im(f̃) ⊂ F(Pλ). The
following is the first main theorem of this thesis.

Theorem 1.1 (= Theorem 4.11).

(1) The poset (W̃ res(λ),≤w) is isomorphic to the poset (F̃(Pλ), ⊴̃), where ⊴̃ is a

partial order on F(Pλ) defined in terms of an involution S̃p (p ∈ J) on F(Pλ).

(2) The poset (W̃ res(λ),≤s) is isomorphic to the poset (F̃(Pλ),⊆).

In addition, in the case that g is of type An, we give an explicit description of F̃(Pλ)
(see Theorem 5.4).
In order to prove Theorem 1.1, we introduce a J-colored d-complete poset (Pλ,≤, κ̃, J),

where κ̃ is a new coloring naturally induced by the coloring κ for (Pλ,≤) and the Dynkin
diagram automorphism σ : I → I. Based on this coloring κ̃, we define a new impartial
combinatorial game, named “Multiple Hook Removing Game” (MHRG for short) which is
a variation of Hook Removing Game (HRG for short); HRG is an impartial combinatorial
game whose game positions are (shifted) Young diagrams, and in which each of two
players (called A and B) alternately removes one hook from the (shifted) Young diagram
(given as a game position in his/her turn). HRG was introduced by Mikio Sato (see [19]
and [20]), who also gave a formula for the G-values (or the Sprague-Grundy values). Our
MHRG is an impartial combinatorial game whose rules are as follows (see also Example
1.2 below):

(M1) The starting position is a Young diagram Y s with a numbering α : Y s → Z>0. All
game positions are Young diagrams Y contained in Y with a numbering α|Y .

(M2) Given a Young diagram Y with the numbering α|Y , each player chooses a box in
Y and removes the hook h corresponding to the box on his/her turn. Let Aα(h)
be the multiset of the numbers (in boxes) in the hook h, and let Y ′ be the Young
diagram obtained by removing h from Y , with the numbering α|Y ′ .

(M2a) If there does not exist any box in Y ′ whose corresponding hook h′ satisfies
Aα(h

′) = Aα(h) as multisets, then the player’s turn is over, and the next
player is given Y ′.

(M2b) If there exists a box in Y ′ whose corresponding hook h′ satisfies Aα(h
′) =

Aα(h), then the player must choose one such boxes, and remove the hook h′

corresponding to the box. Let Y ′′ be the Young diagram obtained by removing
h′ from Y ′, with the numbering α|Y ′′ .

(M2c) Do the same operation as (M2a) and (M2b), with Y ′ replaced by Y ′′. As long
as such a box exists, repeat this operation.

(M3) The winner is the player who removes the last remaining hook in the diagram.

In this thesis, we mainly treat MHRG(m,n) for m,n ∈ Z>0, which is MHRG whose
starting position Y s is the rectangular Young diagram Ym,n of size m × n with the
“unimodal numbering” αm,n (see Section 6.2); this numbering αm,n is derived from the
coloring κ̃ for the case that g is of type A (and hence g(0) is of type B or C).

Example 1.2. At the beginning of MHRG(3, 5) played by A and B, the following Young
diagram Y = Y3,5 with the numbering α3,5 is given to the player, say A, having the first
move, as the starting position.
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Y =

3 4 3 2 1

2 3 4 3 2

1 2 3 4 3

If the player A removes the hook h corresponding to the box (2, 4) from Y , then A obtains
Y ′ (with α3,5|Y ′) below:

Y =

3 4 3 2 1

2 3 4 3 2

1 2 3 4 3

−→ Y ′ =

3 4 3 2 1

2 3 4 3

1 2 3

Note that Aα3,5
(h) = [2, 3, 4] (as multisets). Since there does not exist a box in Y ′ whose

corresponding hook h′ satisfies Aα3,5
(h′) = Aα3,5

(h) = [2, 3, 4], the player A’s turn is
over. If the player B removes the hook h′ corresponding to the box (2, 1) from Y ′, then
B obtains Y ′′ (with α3,5|Y ′′) below:

Y ′ =

3 4 3 2 1

2 3 4 3

1 2 3

−→ Y ′′ =
3 4 3 2 1

2 3

Note that Aα3,5
(h′) = [3, 4, 3, 2, 1] (as multisets). Notice that the box (1, 2) in Y ′′ is

a unique box in Y ′′ whose corresponding hook h′′ satisfies Aα3,5
(h′′) = Aα3,5

(h′) =
[3, 4, 3, 2, 1]. Because of (M4b), B must remove the hook h′′ from Y ′′, and obtains Y ′′′

(with α3,5|Y ′′′) below:

Y ′′ =
3 4 3 2 1

2 3
−→ Y ′′′ =

3

2

If the player A removes the hook h′′′ corresponding to the box (1, 1) from Y ′′′, then A
obtains the empty Young diagram ∅:

Y ′′′ =
3

2
−→ ∅

In this case, the winner is the player A.

We remark that the Young diagram Y ′′ above is not appear as a position of
MHRG(3, 5). In general, not every Young diagram contained in Ym,n is a position
of MHRG(m,n). Motegi [12] gave a characterization of the set of all game positions

in MHRG(m,n); our proof of Theorem 5.4 (describing F̃(Pλ) in the case of type A)
essentially came from Motegi’s proof for this result.
Now, by computer, we obtain the following table on the G-value of the starting position

Y s = Ym,n in MHRG(m,n) for each 1 ≤ m,n ≤ 9. By Table 1, we make the following
conjectures (1)-(4) on the G-value of the starting position Ym,n:

(1) If m ≤ n and m + n is even, then the G-value of the starting position Ym,n

in MHRG(m,n) is equal to the G-value of the starting position Ym,n+1 in
MHRG(m,n+ 1).

(2) The sequence {G(Y1,n)}n≥1 of the G-values of the starting positions Y1,n in
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m\n 1 2 3 4 5 6 7 8 9

1 1 1 3 3 5 5 7 7 9
2 1 3 3 1 1 1 1 1 1
3 3 3 0 0 0 0 3 3 10
4 3 1 0 4 4 2 2 5 5
5 5 1 0 4 1 1 14 14 18
6 5 1 0 2 1 7 7 0 0
7 7 1 3 2 14 7 0 0 10
8 7 1 3 5 14 0 0 8 8
9 9 1 10 5 18 0 10 8 1

Table 1 G-value of the starting position Ym,n in MHRG(m,n) for 1 ≤ m,n ≤ 9.

MHRG(1, n) for n ≥ 1 is arithmetric periodic.
(3) The sequence {G(Y2,n)}n≥2 of the G-values of the starting positions Y2,n in

MHRG(2, n) for n ≥ 2 is periodic.
(4) The G-value of the starting position in MHRG(n, n) and MHRG(n, n+1) is equal

to
⊕

1≤k≤n k, where
⊕

i ai denotes the nim-sum (the addition of numbers in binary

form without carry) of all ai’s.

In this thesis, we prove the following four theorems which show that our conjectures
above are true. Let T (Ym,n) be the subset of F(Ym,n) consisting of all positions in
MHRG(m,n).

Theorem 1.3 (= Theorem 8.7). Let m,n ∈ Z>0 be such that m ≤ n and m+n is even.
There exists an isomorphism E from MHRG(m,n) to MHRG(m,n + 1). Therefore, it
holds that G(Y ) = G(E(Y )) for every Y ∈ T (Ym,n), and hence G(Ym,n) in MHRG(m,n)
is equal to G(Ym,n+1) in MHRG(m,n+ 1).

Theorem 1.4 (= Theorem 9.1). Let m = 1 and n ∈ Z>0. In MHRG(1, n),

T (Y1,n) =

{
F(Y1,n) if n is odd,

F(Y1,n) \ {Y1,n2
} if n is even.

Moreover, for 0 ≤ l ≤ n such that Y1,l ∈ T (Y1,n),

G(Y1,l) =

 l if n is odd,
l if n is even and l < n/2,

l − 1 if n is even and n/2 < l.

In particular,

G(Y1,n) =

{
n if n is odd,

n− 1 if n is even.

Theorem 1.5 (see Lemma 9.4, Theorem 9.5, and Corollary 9.6). Let m = 2 and n′ ∈
Z>0. In MHRG(2, 2n′),

T (Y2,2n′) = F(Y2,2n′) \ {(k′
1,k

′
2) ∈ F(Y2,2n′) | k′

1 + k′
2 = 2n′}.

Moreover, the list of those Y = (k1,k2) ∈ F(Y2,2n′) with k1 + k2 > 2n′ whose G-values
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are 0, 1 or 2 is given by Table 7 (see p.47). In particular, in MHRG(2, n) for n ≥ 2, the
G-value of the starting position Y2,n is given as follows:

G(Y2,n) =


3 if n = 2, 3,

2 if n 6= 2, 3, and n ≡ 2, 3 mod 8,

1 otherwise.

Theorem 1.6 (see Theorem 10.15 and Corollary 10.16). For n ∈ Z>0, MHRG(n, n+1)
and HRG(SYn) are isomorphic, where HRG(SYn) is the Hook Removing Game whose
starting position is the triangular shifted Young diagram of size n. In particular, both
G(Yn,n) in MHRG(n, n) and G(Yn,n+1) in MHRG(n, n + 1) are equal to G(SYn) =⊕

1≤k≤n k in HRG(SYn).

This paper is organized as follows. In Section 2, we review Young diagrams and
(colored) d-complete posets. Also, we introduce an involution Sc on F(P ) for each color
c. In Section 3, we fix our notation for finite-dimensional simple Lie algebras, and review
the orders ≤s,≤w on Wλ. Also, we explain the fundamental relation between d-complete
posets and simply-laced finite-dimensional simple Lie algebras. In Section 4, we review
the “folding” technique for a simply-laced finite-dimensional simple Lie algebra, and then
introduce “J-colored” d-complete posets by using it. Also, we prove Theorem 1.1 above.
In Section 5, we give an explicit description of F̃(Pλ) in the case that g is of type An. In
Section 6, we fix our notation for impartial combinatorial games. Also, we review hooks
in Young diagrams, and then introduce the impartial combinatorial game MHRG(m,n).
In Section 7, we explain the diagonal expression for a Young diagram. In Section 8 (resp.,
9, 10), we prove Theorem 1.3 (resp., Theorems 1.4, 1.5, 1.6) above.

■Acknowledgements The author would like to thank Professor Daisuke Sagaki for his
continuous support and helpful advice. The author also would like to thank Tomoaki
Abuku and Yuki Motegi for their valuable discussions.
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2 d-complete Posets and Coloring
Denote by Z>0 the set of all positive integers and Z≥0 the set of all non-negative integers.

2.1 Young Diagram

A Young diagram is a finite collection of boxes arranged in left-adjusted rows where the
row lengths are in non-increasing order. Let m ∈ Z>0, and let k1, . . . ,km ∈ Z≥0 be such
that k1 ≥ · · · ≥ km ≥ 0. Then, the set Y = (k1, . . . ,km) := {(i, j) ∈ Z2 | 1 ≤ i ≤ m, 1 ≤
j ≤ ki} is called the Young diagram corresponding to (k1, . . . ,km).
An element of a Young diagram is called a “box” and each box is located by a pair

(i, j). For example, the Young diagram (6, 6, 5, 3, 3) is given as follows:

Y =

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3)

(5, 1) (5, 2) (5, 3)

Fig. 1 Young diagram (6, 6, 5, 3, 3)

For i ∈ Z>0, the subset {(i, j) | j ∈ Z} ∩ Y of Y is called the i-th row of Y . Similarly,
for j ∈ Z>0, the subset {(i, j) | i ∈ Z} ∩ Y of Y is called the j-th column of Y .
For a Young diagram Y , let F(Y ) denote the set of all Young diagrams contained in Y .

Also, let #(Y ) denote the number of boxes contained in Y . It is obvious that if Y ′ ⊆ Y ,
then #(Y ′) ≤ #(Y ).
For fixed m,n ∈ Z>0, we denote by Ym,n := {(i, j) ∈ Z2 | 1 ≤ i ≤ m, 1 ≤ j ≤ n} the

rectangular Young diagram.

2.2 Shifted Young Diagram

Shifted Young diagrams are described as follows (see [14] for additional details). Let
m ∈ Z>0, and let k1, . . . ,km ∈ Z>0 be such that k1 > · · · > km > 0. The set S =
(k1, . . . ,km) := {(i, j) ∈ Z2 | i ≤ j, 1 ≤ i ≤ m, 1 ≤ j ≤ ki} is called the shifted
Young diagram corresponding to (k1, . . . ,km). An element of the shifted Young diagram
is called a box, and the shifted Young diagram is described in terms of boxes as follows.
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S = (7, 6, 4, 3, 2) =

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

(2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

(3, 3) (3, 4) (3, 5) (3, 6)

(4, 4) (4, 5) (4, 6)

(5, 5) (5, 6)

For i ∈ Z>0, the subset {(i, j) | j ∈ Z} ∩ S of S is called the i-th row of S. Similarly,
for j ∈ Z>0, the subset {(i, j) | i ∈ Z} ∩ S of S is called the j-th column of S. We call
h(S) := max{i | (i, j) ∈ S} the height of S.
For a shifted Young diagram S, let F(S) denote the set of all shifted Young diagrams

contained in S.
For fixed n ∈ Z>0, we denote by SYn = {(i, j) ∈ Z2 | 1 ≤ i ≤ n, i ≤ j ≤ n} the

triangular shifted Young diagram.

2.3 d-complete Posets

Let (P,≤) be a poset. When x is covered by y in P , we write x → y. For x, y ∈ P , we
set [x, y] := {z ∈ P | x ≤ z ≤ y}, which we call an interval. A subset F is called an order
filter if every element in P greater than an element in F is always contained in F . Let
F(P ) be the set of all order filters in P . Let (P,≤)∗ denote the order dual set of (P,≤).
If (P,≤) is isomorphic, as a poset, to (P,≤)∗, then (P,≤) is said to be self-dual. If the
Hasse diagram of P is connected, then the P is said to be connected.

Definition 2.1 ([15, Section 2]). For k ≥ 3, we define a poset dk(1) by the following
conditions (1) and (2) (see also Figure 2):

(1) dk(1) consists of 2k − 2 elements wk, wk−1, · · · , w3, x, y, z3, · · · , zk−1, zk.
(2) The partial order on dk(1) is as follows:

wk < wk−1 < · · · < w3, w3 < x < z3, w3 < y < z3,

x 6≤ y, x 6≥ y, z3 < · · · < zk−1 < zk.

We call dk(1) the double-tailed diamond. Also, we define d−k (1) := dk(1)\{zk} for k ≥ 3.

Definition 2.2 ([15, Section 2]). Let P be a poset, and x, y ∈ P . For k ≥ 3 (resp.,
k ≥ 4), if the interval [x, y] is isomorphic to dk(1) (resp., d

−
k (1)), then we say that [x, y]

is a dk-interval (resp., d
−
k -interval). If w, x, y ∈ P satisfy w → x and w → y, then we say

that {w, x, y} is a d−3 -interval.

Definition 2.3 ([15, Section 3]). Let P be a poset. Let k ≥ 4 (resp., k = 3), and let
I = [x, y] (resp., I = {w, x, y}) be a d−k -interval in P . If I ∪ {z} is not a dk-interval for

any z ∈ P , then the d−k -interval I is called an incomplete d−k -interval. If there is another

d−k -interval I
′ = [x′, y′] (resp., I ′ = {w′, x′, y′}) such that I \ {min I} = I ′ \ {min I ′} and

min I 6= min I ′, then the d−k -interval I is called an overlapping d−k -interval.
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d3(1) d4(1) d5(1) d6(1) d−3 (1) d−4 (1) d−5 (1) d−6 (1)

Fig. 2 Double-tailed diamonds.

Definition 2.4 ([15, Section 3]). A finite poset P is called a d-complete poset if P
satisfies the following conditions (D1)-(D3):

(D1) There is no incomplete d−k -interval in P for any k ≥ 3.
(D2) If I is a dk-interval in P for some k ≥ 3, then there is no element that is not

included in I and is covered by max I.
(D3) There is no overlapping d−k -interval in P for any k ≥ 3.

Shape Shifted shape Inset Swivel Bat

Fig. 3 Connected, self-dual d-complete posets.

Definition 2.5 ([15, Section 4]). Let P be a d-complete poset. We define the top tree
TP of P to be the subset of P consisting of all elements x ∈ P satisfying the condition
that

(T) #{z ∈ P | y → z} ≤ 1 for every y ∈ P such that x ≤ y.

Proposition 2.6 ([15, Sections 3 and 14],[16, Proposition 8.6]). Let P be a d-complete
poset.

(1) If P is connected, then P has a unique maximum element.
(2) For each w ∈ P \ TP , there are unique z ∈ P and k ≥ 3 such that [w, z] is a

dk-interval.
(3) A connected self-dual d-complete poset is isomorphic, as a poset, to one of those

in Figure 3.
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Example 2.7. (1) For m,n ∈ Z>0, we define a partial order on the rectangular Young
diagram Ym,n as follows. If i1 ≥ i2 and j1 ≥ j2, then (i1, j1) ≤ (i2, j2). Then the poset
(Ym,n,≤) is a d-complete poset of Shape class in Figure 3. The top tree TYm,n

of Ym,n

is identical to the set of those boxes in the first row or in the first column; see the right
diagram in Figure 4.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

• • • •

•

Fig. 4 The Young diagram corresponding to Y2,4 and its top tree.

(2) For n ∈ Z>0, we define a partial order on the triangular shifted Young diagram
SYn as that on Ym,n. Then the poset (SYn,≤) is a d-complete poset of Shifted Shape
class in Figure 3. The top tree TSYn

of SYn is identical to the set of those boxes in the
first row or in the second column; see the right diagram in Figure 5.

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 2) (2, 3) (2, 4) (2, 5)

(3, 3) (3, 4) (3, 5)

(4, 4) (4, 5)

(5, 5)

• • • • •

•

Fig. 5 The shifted Young diagram corresponding to SY5 and its top tree.

In what follows, we use Young diagrams and shifted Young diagrams for d-complete
posets of Shape and Shifted Shape classes. For a given subset X in these d-complete
posets P , we indicate an element in X (resp., in P \X) by a white box (resp., gray box).
For example, the left diagram in Figure 6 indicates the subset {(1, 1), (1, 2), (1, 3), (2, 1)}
of Y2,4, which is in fact an order filter of Y2,4. The right diagram in Figure 6 indicates
the subset {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 3)} of SY5, which is in fact an order
filter of SY5.

2.4 Colored d-complete Posets and Involutions on F(P )

Let (P,≤) be a poset, and let C be a set. We call a map κ : P → C a coloring of P with
C the set of colors, and the quadruple (P,≤, κ, C) a colored poset.

Proposition 2.8 ([16, Proposition 8.6]). Let (P,≤) be a d-complete poset, and let C
be a set such that #C = #TP . There exists a coloring κ : P → C of P satisfying the
following conditions (a) and (b):

10



Fig. 6 Examples of order filters of d-complete posets.

(a) The restriction of κ : P → C to the top tree TP is a bijection from TP onto C.
Namely, each element of TP has a different color from each other.

(b) If [w, z] is a dk-interval for some k ≥ 3, then κ(w) = κ(z).

Moreover, this coloring of P with C the set of colors is unique, up to the coloring of the
top tree TP in (a). In this case, we call the quadruple (P,≤, κ, C) a colored d-complete
poset.

2 3 4 5

1 2 3 4

5 4 3 2 1

6 4 3 2

5 4 3

6 4

5

Fig. 7 Colored d-complete posets.

Proposition 2.9 ([16, Section 3]). Let (P,≤, κ, C) be a colored d-complete poset.

(1) Let x, y ∈ P . If there is the covering relation between x and y, or if x and y are
incomparable, then κ(x) 6= κ(y), that is, x and y have distinct colors.

(2) Let I be an interval of P . If I is a totally order set, then κ(x) 6= κ(y) for all
elements x, y ∈ I with x 6= y, that is, each element in I has a distinct color from
each other.

(3) For each c ∈ C, the subset κ−1({c}) consisting of elements in P having the color
c is a totally order set.

Definition 2.10. Let (P,≤, κ, C) be a finite colored poset. For each c ∈ C, we define
maps Ac, Rc, Sc : F(P ) → F(P ) as follows. For each F ∈ F(P ),

Ac(F ) :=
⋃

F ′∈F(P )

F ′\F⊆κ−1({c})

F ′, Rc(F ) :=
⋂

F ′∈F(P )

F\F ′⊆κ−1({c})

F ′,

Sc(F ) :=

{
(Ac(F ) \ F ) ∪Rc(F ) if (Ac(F ) \ F ) ∪Rc(F ) ∈ F(P ),

F otherwise.
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Remark 2.11. It is obvious by the definition that Ac(F ) ⊇ F ⊇ Rc(F ). If F satisfies
Rc(F ) = F (resp., Ac(F ) = F ), then Sc(F ) = Ac(F ) (resp., Sc(F ) = Rc(F )). Also, it
can be easily verified that Ac(F ) ⊇ Sc(F ) ⊇ Rc(F ).

Example 2.12. Let P = Y2,4 = , and define a coloring κ : P → {1, 2, 3}

for P by
2 3 2 1

1 2 3 2
. Let F =

2 3 2 1

1 2 3 2
; notice that F is an order filter of

P . Then, A2(F ), R2(F ), S2(F ) are as follows:

A2

 2 3 2 1

1 2 3 2

 =
2 3 2 1

1 2 3 2
,

R2

 2 3 2 1

1 2 3 2

 =
2 3 2 1

1 2 3 2
,

S2

 2 3 2 1

1 2 3 2

 =
2 3 2 1

1 2 3 2
.

Lemma 2.13. Let (P,≤, κ, C) be a colored poset. For every F ∈ F(P ) and c ∈ C, the
following hold.

(1) Ac(Sc(F )) = Ac(F ).
(2) Rc(Sc(F )) = Rc(F ).
(3) Sc(Sc(F )) = F . Namely, the map Sc : F(P ) → F(P ) is an involution on F(P ).

Proof. By the definition of Sc(F ), it suffices to consider the case that (Ac(F )\F )∪Rc(F )
is an order filter of P .
(1) Since all elements of Ac(F ) \ Rc(F ) have the color c and since Sc(F ) ⊇ Rc(F ),

all elements of Ac(F ) \ Sc(F ) also have the color c. Hence, Ac(F ) ∈ {F ′ ∈ F(P ) |
F ′ \ Sc(F ) ⊆ κ−1({c})}, and hence Ac(Sc(F )) ⊇ Ac(F ) by the definition of Ac. This
inclusion relation also implies that all elements in Ac(Sc(F )) \ Ac(F ) have the color c.
By the definition of Ac, all elements in Ac(F ) \ F have the color c. Hence, Ac(Sc(F )) ∈
{F ′ ∈ F(P ) | F ′\F ⊆ κ−1({c})}. By the definition of Ac, we obtain Ac(Sc(F )) ⊆ Ac(F ).
Therefore, Ac(Sc(F )) = Ac(F ).
(2) Similar to Part (1).
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(3) We compute

(Ac(Sc(F )) \ Sc(F )) ∪Rc(Sc(F ))

= (Ac(F ) \ ((Ac(F ) \ F ) ∪Rc(F ))) ∪Rc(F )

= ((Ac(F ) \ (Ac(F ) \ F )) ∩ (Ac(F ) \Rc(F ))) ∪Rc(F )

= (F ∪Rc(F )) ∩ ((Ac(F ) \Rc(F )) ∪Rc(F ))

= F ∩Ac(F )

= F

Therefore, (Ac(Sc(F ))\Sc(F ))∪Rc(Sc(F )) is an order filter of P , and Sc(Sc(F )) = F .

Definition 2.14. Let (P,≤, κ, C) be a colored poset. We define an order ⊴ on F(P )
as follows. For F, F ′ ∈ F(P ), F ⊴ F ′ if there exists a sequence of order filters F =
F0, F1, . . . , Fn−1, Fn = F ′ such that for all i ∈ {0, 1, . . . , n − 1}, there exist ci ∈ C such
that Sci(Fi) = Fi+1 ⊃ Fi.

Lemma 2.15. Let (P,≤, κ, C) be a colored d-complete poset. For an order filter F of
P and a color c ∈ C, the symmetric difference of F and Sc(F ) has at most one element.

Proof. Suppose, for a contradiction, that the symmetric difference of F and Sc(F ) has
more than one element. Let x, y be the elements of the symmetric difference, with x 6= y.
Because both x and y have the color c, it follows from Proposition 2.9(3) that either
x < y or x > y holds; we may assume that x < y. Because both F and Sc(F ) are order
filters, we deduce that either x, y ∈ F \ Sc(F ) or x, y ∈ Sc(F ) \ F holds. Assume that
x, y ∈ F \ Sc(F ). Since x < y, there exists an element z ∈ P such that x → z and z ≤ y.
Because x ∈ F , and F is an order filter, we see that z ∈ F . Similarly, because y /∈ Sc(F ),
and Sc(F ) is an order filter, we see that z /∈ Sc(F ). Thus we get z ∈ F \ Sc(F ); in
particular, z has the color c. However, this contradicts Proposition 2.9(1); recall that
x → z, and x has the color c. A proof for the case that x, y ∈ Sc(F ) \ F is similar.

Remark 2.16. Let (P,≤, κ, C) be a colored d-complete poset. By Lemma 2.15, it is
clear that for F, F ′ ∈ F(P ), F ⊆ F ′ if and only if F ⊴ F ′. In particular, (F(P ),⊆) and
(F(P ),⊴) are order isomorphic.

3 Weyl Groups and d-complete Posets

3.1 Finite-dimensional Simple Lie Algebras

Let g = g(A) be a finite-dimensional simple Lie algebra over C, with A = (aij)i,j∈I the
Cartan matrix. Denote by h a Cartan subalgebra of g, Π∨ = {hi | i ∈ I} ⊂ h the set
of simple coroots, Π = {αi | i ∈ I} ⊂ h∗ the set of simple roots, ∆+ ⊂ h∗ the set
of positive roots, ∆− ⊂ h∗ the set of negative roots, Λi ∈ h∗(i ∈ I) the fundamental
weights, and ei, fi ∈ g(i ∈ I) the Chevalley generators. Let W = 〈si | i ∈ I〉 be the Weyl
group of g, where si is the simple reflection in αi for i ∈ I. For β ∈ ∆+, β

∨ ∈ h denotes
the dual root of β, and sβ ∈ W denotes the reflection in β; recall that if β = w(β′) for
β′ ∈ ∆+ and w ∈ W , then sβ = sw(β′) = wsβ′w−1.

Definition 3.1. Let λ be a dominant integral weight of g. We define the order ≤s
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on the Weyl group orbit Wλ through λ as follows. For µ, µ′ ∈ Wλ, µ ≤s µ′ if there
exists a finite sequence µ = µ0, µ1, . . . , µk−1, µk = µ′ of elements in Wλ and a finite
sequence β0, . . . , βk−1 of elements in ∆+ such that sβi

(µi) = µi+1 and µi(β
∨
i ) > 0 for

each i ∈ {0, 1, . . . k − 1}.

Lemma 3.2. Let µ be an integral weight of g, and β ∈ ∆+. For w ∈ W , if µ <s sβ(µ)
and w(β) ∈ ∆+, then w(µ) <s wsβ(µ).

Proof. Since sw(β)(wµ) = wsβw
−1(wµ) = wsβ(µ), and since w(µ) 6= wsβ(µ), either

w(µ) <s wsβ(µ) or w(µ) >s wsβ(µ) holds. By the definition of ≤s, there exists n ∈ Z>0

such that sβ(µ) = µ − nβ. Thus, wsβ(µ) = w(µ − nβ) = w(µ) − nw(β). Because
w(β) ∈ ∆+, we obtain w(µ) <s wsβ(µ), as desired.

Proposition 3.3 ([11, Lemma 4.1]). Let µ1, µ2 ∈ Wλ, and i ∈ I.

(1) If µ1 ≤s µ2 , µ1(hi) ≥ 0 and µ2(hi) ≤ 0, then µ1 ≤s si(µ2).
(2) If µ1 ≤s µ2 , µ1(hi) ≥ 0 and µ2(hi) ≤ 0, then si(µ1) ≤s µ2.
(3) If µ1 ≤s µ2 , µ1(hi) ≤ 0 and µ2(hi) ≤ 0, then si(µ1) ≤s si(µ2).
(4) If µ1 ≤s µ2 , µ1(hi) ≥ 0 and µ2(hi) ≥ 0, then si(µ1) ≤s si(µ2).

Definition 3.4. Let λ be a dominant integral weight of g. We define the order ≤w

on Wλ as follows. For µ, µ′ ∈ Wλ, µ ≤w µ′ if there exists a finite sequence µ =
µ0, µ1, . . . , µk−1, µk = µ′ of elements in Wλ and a finite sequence j0, . . . , jk−1 of elements
in I such that sji(µi) = µi+1 and µi(hj) > 0 for each i ∈ {0, 1, . . . , k − 1}.

Remark 3.5 (see, e.g., [8, Section 4.3] and [4, Section 2.4]). Let λ be a dominant integral
weight, and Wλ := {w ∈ W | wλ = λ} the stabilizer of λ; we have the canonical bijection
W/Wλ → Wλ,wWλ 7→ wλ. It is known that Wλ is the subgroup of W generated by
si for i ∈ I such that λ(hi) = 0, and each coset in W/Wλ has a unique element whose
length is minimal among the element in the coset; we regard W/Wλ as a subset of W
by taking the minimal-length coset representative from each coset in W/Wλ. The poset
W/Wλ in the restriction of the Bruhat order (resp., the weak Bruhat order) on W is
order isomorphic to (Wλ,≤s) (resp., (Wλ,≤w)) under the canonical map W/Wλ → Wλ
above.

3.2 Order Isomorphism between Wλ and F(Pλ)

Let g be a finite-dimensional simple Lie algebra over C.

Definition 3.6. Let λ be a dominant integral weight of g. We call λ a minuscule weight
if λ satisfies (wλ)(hi) ∈ {−1, 0, 1} for all w ∈ W and i ∈ I.

Table 2 below is the list of minuscule weights of simply-laced finite-dimensional simple
Lie algebras; the vertices of the Dynkin diagram are numbered as Figure 8.

Remark 3.7 ([8, Lemma 11.1.18] and Remark 3.5). Assume that λ is minuscule. For
µ, µ′ ∈ Wλ, µ ≤s µ

′ if and only if µ ≤w µ′. Therefore, (Wλ,≤s) and (Wλ,≤w) are order
isomorphic.

Proposition 3.8 ([15, Section 14]). Assume that g is simply-laced. Let λ be a minuscule
weight of g. There exists a connected, self-dual d-complete poset Pλ such that (Wλ,≤s)
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g minuscule weight λ
An Λ1, . . . ,Λn

Dn Λ1,Λn−1,Λn

E6 Λ1,Λ5

E7 Λ6

E8 none

Table 2 Minuscule weights; simply-laced case.

1 2 3

1

1 1

2

2 2

3

3 3 44 5 5 6

6 7

n − 1

n − 1n − 2

n

n

An : Dn :

E6 : E7 :

1 2 3 4 5 6 7

8

E8 :

Fig. 8 Simply-laced Dynkin diagrams.

and (F(Pλ),⊆) are isomorphic, as posets (see also Table 3).

g minuscule weight λ corresponding d-complete poset Pλ

An Λi(1 ≤ i ≤ n) Yi,n−i+1 (Shape)
Dn Λ1 SYn−1 (Shifted Shape)
Dn Λn−1,Λn dn(1) (Inset)
E6 Λ1,Λ5 Swivel
E7 Λ6 Bat

Table 3 The d-complete posets Pλ corresponding to minuscule weights λ.

Keep the setting in Proposition 3.8, with λ = Λi for some i ∈ I such that Λi is
minuscule. We know from [16, Proposition 8.6] that the graph obtained from the Hasse
diagram of the top tree TPλ

of Pλ by replacing each allow by an edge is identical to the
Dynkin diagram of g; in particular, #I = #TPλ

. By Proposition 2.8, we can obtain the
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colored poset (Pλ,≤, κ, I) such that κ|TPλ
: TPλ

→ I is the graph isomorphism and the

maximum element of Pλ (notice that it is contained in TPλ
) is sent to the i under the

map κ. We call (Pλ,≤, κ, I) the I-colored d-complete poset for the minuscule weight λ.

Proposition 3.9 ([16, Proposition 9.1]). Keep the notation and setting in Proposition
3.8. Let (Pλ,≤, κ, I) be the I-colored d-complete poset. There exists a unique order

isomorphism f : (Wλ,≤s)
∼→ (F(Pλ),⊆) such that for µ ∈ Wλ and i ∈ I, there exists

the cover relation µ → siµ in Wλ if and only if f(si(µ)) \ f(µ) consists of one element
having the color i.

Example 3.10. Let g be of type A5, and λ = Λ2; in this case, the corresponding
(connected, self-dual) d-complete poset PΛ2

is Y2,4. Let (PΛ2
,≤, κ, I) be the I-colored

d-complete poset, with the coloring κ as in Figure 7. The Hasse diagrams of (WΛ2,≤s)
and (F(PΛ2),⊆) are given in Figure 9 below:

(0, 1, 0, 0, 0)

(1,−1, 1, 0, 0)

(1, 0,−1, 1, 0)

(1, 0, 0,−1, 1)

(1, 0, 0, 0,−1)

(−1, 1, 0, 0,−1)

(0,−1, 1, 0,−1)

(0, 0,−1, 1,−1)

(0, 0, 0,−1, 0)

(0, 0,−1, 0, 1)

(0,−1, 1,−1, 1)

(−1, 1, 0,−1, 1)(0,−1, 0, 1, 0)

(−1, 1,−1, 1, 0)

(−1, 0, 1, 0, 0)

s4

s4

s4

s4

s3

s3

s3

s3

s2

s2

s2

s2

s1

s1

s1

s1

s5

s5

s5

s5

∅

S4

S4

S4

S4

S3

S3

S3

S3

S2

S2

S2

S2

S1

S1

S1

S1

S5

S5

S5

S5

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

1

1

1

1

1

1

11

1

1

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

Fig. 9 (WΛ2,≤s) and (F(PΛ2),⊆) of type A5

The next corollary follows from Remark 2.16 and Proposition 3.9.

Corollary 3.11. Assume that g is simply-laced. Let λ be a minuscule weight of g, and
let (Pλ,≤) be the d-complete poset such that (F(Pλ),⊆) is isomorphic to (Wλ,≤s) (see
Proposition 3.8). Let (Pλ,≤, κ, I) be the I-colored d-complete poset, and let f : (Wλ,≤s

)
∼→ (F(Pλ),⊆) be the order isomorphism in Proposition 3.9. For µ ∈ Wλ and i ∈ I,

f(si(µ)) = Si(f(µ)).
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For F ∈ F(Pλ) and i ∈ I, we define ci(F ) := #{x ∈ F | κ(x) = i}. Because λ is
minuscule, we see that if there exists the cover relation µ → si(µ) in Wλ, then µ(hi) = 1
and si(µ) = µ− αi. Hence we have the next corollary.

Corollary 3.12. For µ ∈ Wλ and F = f(µ),

µ =
∑
i∈I

(#(Si(F ))−#(F ))Λi = λ−
∑
i∈I

ci(F )αi.

For F ∈ F(Pλ), we define

g(F ) :=
∑
i∈I

(#(Si(F ))−#(F ))Λi = λ−
∑
i∈I

ci(F )αi.

By Corollary 3.12, g : (F(Pλ),⊆)
∼→ (Wλ,≤s) is the inverse of f .

We will use the following proposition later.

Proposition 3.13 ([16, Proposition 8.6]). Keep the notation and setting in Proposition
3.8. Let (Pλ,≤, κ, I) be the I-colored d-complete poset. If there exists the covering
relation between x, y ∈ Pλ, then the color κ(x) of x is adjacent to the color κ(y) of y in
the Dynkin diagram of g.

4 Order Isomorphism between W̃ res(λ) and F̃(Pλ)

4.1 Folding of a Lie Algebra

We review the “folding” of a simply-laced finite-dimensional simple Lie algebra; for the
details, see [9, Sections 7.9 and 7.10] and [5, Section 9.5] in example.
Let g be the finite-dimensional simple Lie algebra of type An, Dn or E6; we use the

notation in Section 3.1. Let σ be a non-trivial graph automorphism of the Dynkin
diagram of g. Denote by 〈σ〉 the cyclic group generated by σ (in the group of permutations
on I), and J the set of 〈σ〉-orbits on I. We say that p ∈ J satisfies the orthogonality
condition if aij = aji = 0 for all i, j ∈ p with i 6= j; notice that p ∈ J does not satisfy the
orthogonality condition if and only if g is of type A2n and p = {n, n + 1}. It is known
that the graph automorphism σ induces a (unique) Lie algebra automorphism of g such
that σ(ei) = eσ(i), σ(fi) = fσ(i), σ(hi) = hσ(i) for i ∈ I; we set g(0) := {x ∈ g |σ(x) = x}.
For each p ∈ J , we define Hp, Ep, Fp ∈ g(0) as follows:

(1) If p satisfies the orthogonality condition, then

Hp :=
∑
i∈p

hi, Ep :=
∑
i∈p

ei, Fp :=
∑
i∈p

fi.

(2) If p does not satisfy the orthogonality condition, then

Hp := 2
∑
i∈p

hi, Ep :=
∑
i∈p

ei, Fp := 2
∑
i∈p

fi.

Proposition 4.1 (see, e.g., [9, Sections 7.9 and 7.10]). The fixed point subalgebra g(0)
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1 1

11

1 2

2 2

2

2

3

33

3 3

4 45

6n − 1

n − 1 n − 1 n

n

n

n + 1

n + 1 n + 1n + 22n − 22n − 22n − 1 2n − 12n2n − 3

A2n−1 : A2n :

Bn :Cn :

Dn+1 : E6 : D4 :

G2 :F4 :Bn :
1′ 1′ 1′

1′1′ 2′ 2′

2′ 2′2′ 3′ 3′

3′3′ (n − 1)′ (n − 1)′

(n − 1)′ n′

n′ n′

4′

Fig. 10 The Dynkin diagram of g, its (non-trivial) graph automorphism σ : I → I,
and the Dynkin diagram of the fixed point subalgebra g(0).

is generated by {Hp, Ep, Fp}p∈J , and is isomorphic to a multiply-laced finite-dimensional
simple Lie algebra; see Figure 10 and Table 4.

type of g A2n A2n−1 Dn+1 E6 D4

order of σ 2 2 2 2 3
type of g(0) Bn Cn Bn F4 G2

Table 4 g, σ, and g(0). The vertices of the Dynkin diagram of g(0) are “numbered”
as Figure 10.

Let h(0) be the subspace of h spanned by {Hp}p∈J , which is a Cartan subalgebra
of g(0). Denote by res : h∗ → h(0)∗, µ 7→ µ|h(0), the restriction map, and set βp :=
res(αi) ∈ h(0)∗ for p ∈ J , where i is an arbitrary element in the 〈σ〉-orbit p; note that
βp is independent of the choice of i ∈ p. The set of simple coroots and the set of simple

roots of g(0) are given by {Hp}p∈J and {βp}p∈J , respectively. Denote by ∆̃+ ⊂ h(0)∗

the set of positive roots of g(0), and ∆̃− ⊂ h(0)∗ the set of negative roots of g(0). For

p ∈ J , we define s̃p(ν) := ν − ν(Hp)βp for ν ∈ h(0)∗. Then, W̃ := 〈s̃p | p ∈ J〉 is the
Weyl group of g(0).
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For each p ∈ J , we define ŝp ∈ W as follows:

(1) If p satisfies the orthogonality condition, then

ŝp :=
∏
k∈p

sk.

(2) If p does not satisfy the orthogonality condition, that is, if g is of type A2n and
p = {n, n+ 1} (see also page 17), then

ŝp := snsn+1sn = sn+1snsn+1.

Lemma 4.2. For p ∈ J , s̃p(res(µ)) = res(ŝp(µ)) for all µ ∈ h∗.

Proof. If p satisfies the orthogonality condition, then we compute

res(ŝp(µ)) = res

µ−
∑
i∈p

µ(hi)αi

 = res(µ)− res(µ)(Hp)βp = s̃p(res(µ)).

If p does not satisfy the orthogonality condition, then we compute

res(ŝp(µ)) = res(µ− µ(hn + hn+1)(αn + αn+1))

= res(µ)− res(µ)(Hp)βp = s̃p(res(µ)).

Since σ acts on h =
⊕

i∈I Chi, σ naturally acts also on h∗ by (σ(µ))(h) = µ(σ−1(h))
for µ ∈ h∗ and h ∈ h; we see that σ(Λi) = Λσ(i), σ(αi) = ασ(i) for i ∈ I. Notice that

σsiσ
−1 = sσ(i) for i ∈ I in GL(h∗). Hence, σWσ−1 ⊆ W .

Proposition 4.3 ([5, Proposition 9.17]). Set Ŵ := {w ∈ W | σwσ−1 = w}. There is a

group isomorphism from Ŵ onto W̃ such that ŝp 7→ s̃p. Therefore Ŵ is the subgroup of
W generated by {ŝp}p∈J .

Remark 4.4. Because W̃ and Ŵ are generated by {s̃p}p∈J and {ŝp}p∈J , we see by

Lemma 4.2 that res(Ŵλ) = W̃ res(λ) for every (dominant) integral weight λ.

Let Λ̃p ∈ h(0)∗(p ∈ J) be the fundamental weights of g(0). We can easily show the
following lemma.

Lemma 4.5. Let p ∈ J , and i ∈ p.

(1) If p satisfies the orthogonality condition, then res(Λi) = Λ̃p.

(2) If p does not satisfy the orthogonality condition, then res(Λi) = 2Λ̃p.

Lemma 4.6. Let λ be a dominant integral weight of g, and let µ1, µ2 ∈ Ŵλ. If res(µ1) =

res(µ2), then µ1 = µ2. Therefore the map res|Ŵλ : Ŵλ → W̃ res(λ) is bijective (see
Remark 4.4).

Proof. For each i = 1, 2, let ŵi ∈ Ŵ be such that µi = ŵiλ, and let w̃i ∈ W̃ be such
that res ◦ ŵi = w̃i ◦ res (see Lemma 4.2). We have w̃1res(λ) = res(ŵ1λ) = res(µ1) =
res(µ2) = res(ŵ2λ) = w̃2res(λ). Since res(λ) is a dominant integral weight for g(0) by
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Lemma 4.5, it follows that w̃1
−1w̃2 ∈ 〈s̃p | (res(λ))(Hp) = 0〉, and hence ŵ1

−1ŵ2 ∈ 〈ŝp |
(res(λ))(Hp) = 0〉. Observe that (res(λ))(Hp) = 0 if and only if λ(hi) = 0 for all i ∈ p.

Thus we obtain ŵ1
−1ŵ2(λ) = λ, and hence µ1 = ŵ1λ = ŵ2λ = µ2, as desired.

Notice that σ preserves ∆ and ∆+,∆−.

Lemma 4.7. Let λ be a dominant integral weight of g.

(1) For each µ ∈ Ŵλ and p ∈ J , either µ(hi) ≥ 0 for all i ∈ p or µ(hi) ≤ 0 for all
i ∈ p.

(2) For each µ ∈ Ŵλ and p ∈ J , if µ(hi) > 0 (resp., µ(hi) < 0) for some i ∈ p, then
µ <w ŝp(µ) (resp., µ >w ŝp(µ)).

Proof. (1) Let w ∈ Ŵ be such that µ = wλ. Because µ(hi) = (wλ)(hi) = λ(w−1hi) =
λ((w−1αi)

∨), and because λ is a dominant integral weight, it suffices to show that either
w−1αi ∈ ∆+ for all i ∈ p or w−1αi ∈ ∆− for all i ∈ p. If w−1αi ∈ ∆+ (resp., w−1αi ∈
∆−) for some i ∈ p, then w−1ασ(i) = w−1σαi = σw−1αi ∈ ∆+ (resp., ∈ w−1αi ∈ ∆−).
Since p is a 〈σ〉-orbit, the assertion above follows.
(2) We give a proof only for the case that µ(hi) > 0 for some i ∈ p, and #p = 2;

the proofs for the other cases are similar. Since µ(hi) > 0, it follows that µ <w si(µ).
If p = {i, j}, then we see by part (1) that µ(hj) ≥ 0. Assume that p satisfies the
orthogonality condition. Then,

sjsi(µ) = sj(µ− µ(hi)αi) = sj(µ)− µ(hi)sj(αi)

= µ− µ(hj)αj − µ(hi)αi = si(µ)− µ(hj)αj ≥w si(µ).

Thus we obtain µ <w si(µ) ≤w sjsi(µ) = ŝp(µ), as desired. Assume that p does not
satisfy the orthogonality condition. Then,

sjsi(µ) = sj(µ− µ(hi)αi) = sj(µ)− µ(hi)sj(αi)

= µ− µ(hj)αj − µ(hi)(αi + αj) = µ− µ(hi)αi − µ(hi)αj − µ(hj)αj

= si(µ)− µ(hi)αj − µ(hj)αj >w si(µ),

sisjsi(µ) = si(si(µ)− µ(hi + hj)αj) = µ− si(µ(hi + hj)αj)

= µ− µ(hi + hj)(αi + αj) = µ− µ(hi)αi − µ(hj)αi − µ(hi + hj)αj

≥w µ− µ(hi)αi − µ(hi + hj)αj = sjsi(µ).

Thus we obtain µ <w si(µ) <w sjsi(µ) ≤w sisjsi(µ) = ŝp(µ), as desired.

Definition 4.8. We set Q+ :=
∑

i∈I Z≥0αi. For ν =
∑

i∈I miαi ∈ Q+, we define the

height ht(ν) of ν by ht(ν) :=
∑

i∈I mi. Similarly, we set Q̃+ :=
∑

p∈J Z≥0βp. For

ξ =
∑

p∈J npβp ∈ Q̃+, we define the height ht(ξ) of ξ by ht(ξ) :=
∑

p∈J np.

Lemma 4.9. Let λ be a dominant integral weight, and µ1, µ2 ∈ Ŵλ. Then, µ1 ≤s µ2 if
and only if res(µ1) ≤s res(µ2).

Proof. First, we show the “if” part. We see that res(λ) − res(µ2) ∈ Q̃+ since res(λ) is

dominant and res(µ2) ∈ W̃ res(λ). We show the assertion by induction on h̃ := ht(res(λ)−
res(µ2)). If h̃ = 0, then res(µ2) = res(λ). Because res(λ) − res(µ1) ∈ Q̃+, and because
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res(µ1) − res(λ) = res(µ1) − res(µ2) ∈ Q̃+ by the definition of ≤s on W̃ res(λ), we get
res(µ1) = res(λ). Now, for i = 1, 2, we see that λ−µi ∈ Q+. Since res(λ−µi) = res(λ)−
res(µi) = res(λ)−res(λ) = 0, we deduce that λ = µi. Thus, we obtain µ1 = λ ≤s λ = µ2.

Assume that h̃ > 0. In this case, there exists p ∈ J such that res(µ2)(Hp) < 0, because

res(λ) is a unique dominant integral weight in W̃ res(λ); note that ht(res(λ)−s̃pres(µ2)) <

h̃. Here, we give a proof only for the case that p = {i, j} with i 6= j, and p satisfies the
orthogonality condition; the proofs for the other cases are similar. If res(µ1)(Hp) ≥ 0,
then we get res(µ1) ≤s s̃pres(µ2) by Proposition 3.3 (1). By the induction hypothesis, it
follows that µ1 ≤s ŝp(µ2). Because µ2(hi +hj) = res(µ2)(Hp) < 0, we see by Lemma 4.7
that ŝp(µ2) = sjsi(µ2) ≤s si(µ2) ≤s µ2. Thus we obtain µ1 ≤s µ2. If res(µ1)(Hp) ≤ 0,
then we get s̃pres(µ1) ≤s s̃pres(µ2) by Proposition 3.3 (3). By the induction hypothesis, it
follows that ŝp(µ1) ≤s ŝp(µ2). Similarly to the case above, we deduce that ŝp(µk)(hi) ≤ 0
and siŝp(µk)(hj) ≤ 0 for k = 1, 2. By Proposition 3.3 (4), we obtain siŝp(µ1) ≤s siŝp(µ2),
and then µ1 = sjsiŝp(µ1) ≤s sjsiŝp(µ2) = µ2, as desired.

Next, we show the “only if” part by the induction on h := ht(λ− µ2). If h = 0, then
we see by the same argument as above that µ1 = µ2 = λ. Hence, res(µ1) ≤s res(µ2).
Assume that h > 0. Then there exists i ∈ I such that µ2(hi) < 0. Let p ∈ J be such that
i ∈ p. Here, we give a proof only for the case that p = {i, j} with i 6= j, and p satisfies
the orthogonality condition; the proofs for the other cases are similar. By Lemma 4.7,
µ2(hj) ≤ 0 and ŝp(µ2) = sjsi(µ2) ≤s si(µ2) <s µ2; note that ht(λ− ŝp(µ2)) < h. Assume
that µ1(hi) ≥ 0. It follows from Proposition 3.3 (1) that µ1 ≤s si(µ2). Also, we see by
Lemma 4.7 (1) that µ1(hj) ≥ 0. By Proposition 3.3 (1), we get µ1 ≤s sjsi(µ2) = ŝp(µ2).
By the induction hypothesis, it follows that res(µ1) ≤s s̃pres(µ2). Because res(µ2)(Hp) =
µ2(hi + hj) < 0, we have s̃pres(µ2) ≤s res(µ2), and hence res(µ1) ≤s res(µ2). Assume
that µ1(hi) ≤ 0. It follows from Proposition 3.3 (3) that si(µ1) ≤s si(µ2). Also, we
see by Lemma 4.7 (2) that (si(µ1))(hj) ≤ 0. By Proposition 3.3 (3), we get ŝp(µ1) =
sjsi(µ1) ≤s sjsi(µ2) = ŝp(µ2). By the induction hypothesis, it follows that s̃pres(µ1) ≤s

s̃pres(µ2). Because res(µ1)(Hp) ≤ 0 and res(µ2)(Hp) ≤ 0, we obtain res(µ1) ≤s res(µ2)
by Proposition 3.3 (4), as desired.

4.2 J-colored d-complete Poset

Let g be a simply-laced finite-dimensional Lie algebra, and let σ be a non-trivial graph
automorphsim of the Dynkin diagram of g (see Figure 10). Let λ be a minuscule weight
of g. Recall from Proposition 3.8 that there exists a connected self-dual d-complete poset
(Pλ,≤) such that (Wλ,≤s) and (F(Pλ),⊆) are isomorphic. Let (Pλ,≤, κ, I) be the I-
colored d-complete poset (see the comment after Proposition 3.8). By Proposition 3.9

and Corollary 3.11, there exists a unique order isomorphism f : (Wλ,≤s)
∼→ (F(Pλ),⊆)

such that f(si(µ)) = Si(f(µ)) for all µ ∈ Wλ and i ∈ I. Because the map res|Ŵλ :

Ŵλ → W̃ res(λ) is bijective (see Lemma 4.6), we can define a map f̃ : W̃ res(λ) → F(Pλ)
by the following commutative diagram (4.1):
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(F(Pλ),⊆)Ŵλ

Wλ

W̃ res(λ)

⊆

f

f̃

res

f |Ŵλ

⟲

(4.1)

We define F̃(Pλ) := Im(f̃) ⊆ F(Pλ) (see also (4.3) below).

Definition 4.10. Keep the setting above. We define a map κ̃ : Pλ → J to be the
composition of κ : Pλ → I and the canonical projection I ↠ J . We call the colored poset
(Pλ,≤, κ̃, J) the J-colored d-complete poset corresponding to g(0) and res(λ).

For F ∈ F(Pλ) and p ∈ J , we define c̃p(F ) := #{x ∈ F | κ̃(x) = p}. By Corollary

3.12, it follows that for µ ∈ Ŵλ and F = f(µ),

res(µ) = res(λ)−
∑
p∈J

(∑
i∈p

ci(F )

)
βp = res(λ)−

∑
p∈J

c̃p(F )βp.

We define g̃ : F̃(Pλ) → W̃ res(λ) by

g̃(F ) := res(λ)−
∑
p∈J

c̃p(F )βp

for F ∈ F̃(Pλ). It can be easily checked that g̃ is the inverse of f̃ .

Denote by Ãp, R̃p, S̃p : F(Pλ) → F(Pλ) (p ∈ J) the maps in Definition 2.10 for the J-

colored d-complete poset (Pλ,≤, κ̃, J). Also, we define the order ⊴̃ on F(Pλ) in exactly
the same way as Definition 2.14. Namely, for F, F ′ ∈ F(Pλ), F ⊴̃ F ′ if there exists
a sequence of order filters F = F0, F1, . . . , Fn−1, Fn = F ′ in F(Pλ) such that for each

i ∈ {0, 1, . . . , n− 1}, there exists pi ∈ J such that S̃pi(Fi) = Fi+1 ⊃ Fi.

Theorem 4.11. Keep the notation and setting above.

(1) The poset (W̃ res(λ),≤w) is isomorphic to the poset (F̃(Pλ), ⊴̃) under the map

f̃ : W̃ res(λ) → F̃(Pλ).

(2) The poset (W̃ res(λ),≤s) is isomorphic to the poset (F̃(Pλ),⊆) under the map

f̃ : W̃ res(λ) → F̃(Pλ).

Example 4.12. Let g be of type A5, and λ = Λ2. Recall from Example 3.10 that
the corresponding (connected, self-dual) d-complete poset PΛ2

is Y2,4, and the I-colored
d-complete poset (PΛ2

,≤, κ, I) is the left diagram in Figure 7. In this case, g(0) is of

type C3, and res(Λ2) = Λ̃2′ . The J-colored d-complete poset (PΛ2
,≤, κ̃, J) is below. The

Hasse diagrams of (W̃ Λ̃2′ ,≤w) and (F̃(PΛ2
), ⊴̃) (resp., (W̃ Λ̃2′ ,≤s) and (F̃(PΛ2

),⊆)) are
given in Figure 11 (resp., Figure 12).
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g λ g(0) res(λ) Pλ

A2n−1 Λ1, . . . ,Λn Cn Λ̃1′ , . . . , Λ̃n′ Shape

A2n Λ1, . . . ,Λn−1,Λn Bn Λ̃1′ , . . . , Λ̃(n−1)′ , 2Λ̃n′ Shape

Dn+1 Λ1 Bn Λ̃1′ Inset

Dn+1 Λn Bn Λ̃n′ Shifted Shape

E6 Λ1 F4 Λ̃4′ Swivel

D4 Λ1 G2 Λ̃2′ Shifted Shape

Table 5 Correspondence between g, λ, g(0), res(λ), and P

(0, 1, 0)

(1,−1, 1)

(1, 1,−1)

(2,−1, 0)

(−2, 1, 0)

(−1,−1, 1)

(−1, 1,−1)

(0,−1, 0)

(1, 0,−1)

(1,−2, 1)

(−1, 2,−1)

(−1, 0, 1)

s̃2′

s̃2′

s̃2′

s̃3′

s̃3′

s̃3′

s̃3′

s̃2′

s̃2′

s̃1′

s̃1′

s̃1′

s̃1′

s̃1′

∅

S̃2′

S̃2′

S̃2′

S̃3′

S̃3′

S̃3′

S̃3′

S̃2′

S̃2′

S̃1′

S̃1′

S̃1′

S̃1′

S̃1′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

1′

1′

1′

1′

1′

1′

1′

1′
2′

3′

3′

3′

3′

3′

3′

3′

3′

3′

3′
3′

3′

2′

2′

2′

2′

2′

2′

2′

2′
1′

1′

1′

1′

Fig. 11 (W̃ Λ̃2′ ,≤w) and (F̃(PΛ2), ⊴̃) of type C3

.

4.3 Proof of Theorem 4.11

Keep the notation and setting in the previous section.

Definition 4.13. For p ∈ J , we define Ŝp : F(Pλ) → F(Pλ) as follows:

(1) If p satisfies the orthogonality condition, then

Ŝp :=
∏
k∈p

Sk;

23



(0, 1, 0)

(1,−1, 1)

(1, 1,−1)

(2,−1, 0)

(−2, 1, 0)

(−1,−1, 1)

(−1, 1,−1)

(0,−1, 0)

(1, 0,−1)

(1,−2, 1)

(−1, 2,−1)

(−1, 0, 1)

∅

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

2′

1′

1′

1′

1′

1′

1′

1′

1′
2′

3′

3′

3′

3′

3′

3′

3′

3′

3′

3′
3′

3′

2′

2′

2′

2′

2′

2′

2′

2′
1′

1′

1′

1′

Fig. 12 (W̃ Λ̃2′ ,≤s) and (F̃(PΛ2),⊆) of type C3

.

we see by Lemma 3.11 that Ŝp does not depend on the order of the product of
Sk’s.

(2) If p does not satisfy the orthogonality condition, that is, if g is of type A2n and
p = {n, n+ 1} (see page 17), then

Ŝp := SnSn+1Sn = Sn+1SnSn+1;

the second equality follows from Lemma 3.11, together with snsn+1sn =
sn+1snsn+1.

We need the following fact to prove Lemma 4.15 below.

Proposition 4.14 ([7, page 23]). Let P be an arbitrary poset, and let F ∈ F(P ) be an
order filter of P .

(1) For x ∈ F , x is a minimal element of F if and only if F \ {x} is an order filter.
(2) For x ∈ F , x is a maximal element of P \ F if and only if F ∪ {x} is an order

filter.

Lemma 4.15. Let µ ∈ Wλ, and set F := f(µ) ∈ F(Pλ). It holds that

S̃p(F ) = Ŝp(F ) for all p ∈ J. (4.2)

Proof. First, we assume that p ∈ J satisfies the orthogonality condition. The case that
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#p = 1 is easy. Assume that #p = 2 (the proof for the case that #p = 3 is similar). Let
we write p as: p = {i, j}, with i, j ∈ I, i 6= j. We deduce by Lemma 2.15 that for each
k ∈ p = {i, j}, Sk(F ) satisfies one of the following:

(i) Sk(F ) = Ak(F ) = F t {xk} for some xk ∈ Pλ \ F ; in this case, Rk(F ) = F .
(ii) Sk(F ) = Rk(F ) = F \ {xk} for some xk ∈ F ; in this case, Ak(F ) = F .
(iii) Sk(F ) = Ak(F ) = Rk(F ) = F .

Here, we give a proof only for the case that both Si(F ) and Sj(F ) satisfy (i); the proofs
for the other cases are similar. In this case, there exist xi, xj ∈ Pλ \ F such that
Si(F ) = Ft{xi} and Sj(F ) = Ft{xj}; note that κ(xi) = i and κ(xj) = j. By Definition
4.13, we have Sj(F t {xi}) = SjSi(F ) = SiSj(F ) = Si(F t {xj}). Since κ(xi) = i and
i 6= j, we see from the definition of Sj that when we apply Sj to F t {xi}, xi is not
removed. Hence, xi ∈ Sj(F t {xi}) = SjSi(F ). Similarly, xj ∈ SjSi(F ). Since the
symmetric difference of SjSi(F ) and F has at most two element by Lemma 2.15, we see

that SjSi(F ) = Ft{xi}t{xj}. Therefore, it suffices to show that S̃p(F ) = Ft{xi}t{xj}.
Suppose, for a contradiction, that F ⊋ R̃p(F ). Let y be a minimal element of F \R̃p(F ).

Because R̃p(F ) is an order filter by the definition of R̃p, we deduce that y is a minimal
element of F . Hence, by Proposition 4.14 (1), F \ {y} is an order filter of Pλ. Note that
κ̃(y) = p, and recall that κ̃(y) = p if and only if κ(y) = i or κ(y) = j. Assume that
κ(y) = i. Since F \{y} is an order filter of Pλ satisfying F \(F \{y}) = {y} ⊆ κ−1({i}), we
see by the definition of Ri that Ri(F ) 6= F . Similarly, if κ(y) = j, then Rj(F ) 6= F . Thus
we conclude that Ri(F ) 6= F or Rj(F ) 6= F . However, this contradicts the assumption

that both Si(F ) and Sj(F ) satisfy (i). Therefore, R̃p(F ) = F , and hence S̃p(F ) = Ãp(F ).

Since F t{xi}t{xj} = SjSi(F ) is an order filter of Pλ, we see by the definition of Ãp(F )

that F t {xi} t {xj} ⊆ Ãp(F ) = S̃p(F ).

Suppose, for a contradiction, that S̃p(F ) ⊋ F t{xi}t{xj}. Since F t{xj}, F t{xi} ∈
F(Pλ), it follows from Proposition 4.14 (1) that xi and xj are minimal elements of

F t {xi} t {xj}. Let z be a maximal element of S̃p(F ) \ (F t {xi} t {xj}); note that
κ̃(z) = p, which implies that κ(z) ∈ p = {i, j}. If z and xi are comparable, then z → xi

because F t{xi}t{xj} is an order filter, and xi is a minimal element of F t{xi}t{xj} as
seen above. By Proposition 3.13, κ(z) ∈ {i, j} and κ(xi) = i are adjacent in the Dynkin
diagram of g. However, this contradicts that p satisfies the orthogonality condition. Thus,
z and xi are incomparable. Similarly, we can show that z and xj are incomparable. Thus,

z is a maximal element of S̃p(F )\F . Since S̃p(F ) is an order filter of Pλ, we see that z is
a maximal element of Pλ \F . Hence, by Proposition 4.14 (2), F t{z} is an order filter of
Pλ. Since κ(z) ∈ p = {i, j}, we see by the definitions of Ai and Aj that z is contained in
either Ai(F ) or Aj(F ). However, this contradicts the assumption that both Si(F ) and

Sj(F ) satisfy (i). Therefore, we obtain F t {xi} t {xj} = S̃p(F ), as desired.
Next, we assume that p does not satisfy the orthogonality condition, that is, g is of

type A2n and p = {n, n + 1}. Let λ = Λi. In this case, the corresponding d-complete
poset Pλ is Yi,2n−i+1 (see Example 2.7 (1)), and its I-coloring κ : Pλ → I is given as
follows (see also Figure 7):
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(Pλ,≤, κ, I) =

i . . . ∗ ∗ ∗ ∗ . . . 2n

...
...

...
...

...
...

∗ . . . n n+1 n+2 n+3 . . . ∗

∗ . . . n−1 n n+1 n+2 . . . ∗

∗ . . . n−2 n−1 n n+1 . . . ∗
...

...
...

...
...

...

1 . . . ∗ ∗ ∗ ∗ . . . 2n−i+1

.

In this proof, the boxes having the color n or n + 1 are important; if 1 ≤ i ≤ n (resp.,
n+1 ≤ i ≤ 2n), then κ−1({n}) = {(1, n−i+1), (2, n−i+2), . . . , (i, n)} and κ−1({n+1}) =
{(1, n − i + 2), (2, n − i + 3), . . . , (i, n + 1)} (resp., κ−1({n}) = {(i − n + 1, 1), (i − n +
2, 2), . . . , (n+1, 2n−i+1)} and κ−1({n+1}) = {(i−n, 1), (i−n+1, 2), . . . , (n, 2n−i+1)}).
Notice that the subset κ−1({n, n+ 1}) ⊂ Pλ is a totally order set. Similarly to the case
that p satisfies the orthogonality condition, each of Sn(F ) and Sn+1(F ) satisfies one of
(i),(ii),(iii). Suppose, for a contradiction, that both Sn(F ) and Sn+1(F ) satisfy (i). Then,
there exist xn, xn+1 such that both xn and xn+1 are maximal elements of Pλ \ F , and
κ(xn) = n, κ(xn+1) = n+ 1. However, this contradict the fact that κ−1({n, n+ 1}) is a
totally order set. Therefore, the case that both Sn(F ) and Sn+1(F ) satisfy (i) does not
happen. Similarly, we deduce that the case that both Sn(F ) and Sn+1(F ) satisfy (ii)
does not happen. So, it suffices to consider the other 7 cases.
Now, we give a proof only for the case that Sn(F ) satisfies (i), and Sn+1(F ) satisfies

(iii); the proofs for the other cases are similar. Then, under the description mentioned
at the end of Section 2, F has a “block” of the following form:

F =

...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...

Here, each element corresponding to the right-gray box (with the color n+3 or n− 2) is

not necessarily an element of F . Then, Ŝp(F ) and S̃p(F ) are as follows:
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Ŝp



...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...


= SnSn+1Sn



...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...



= SnSn+1



...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...



= Sn



...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...



=

...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...

.

S̃p



...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...


=

...
...

...
...

. . . n n+1 n+2 n+3 . . .

. . . n−1 n n+1 n+2 . . .

. . . n−2 n−1 n n+1 . . .
...

...
...

...

Thus we obtain S̃p(F ) = Ŝp(F ), as desired.
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Lemma 4.16. For µ ∈ Ŵλ and p ∈ J ,

f̃(s̃p(res(µ))) = S̃p(f̃(res(µ))).

In particular,

F̃(Pλ) = {S̃pn · · · S̃p2 S̃p1(f(λ)) |n ≥ 0, pk ∈ J(1 ≤ k ≤ n)}. (4.3)

Proof. We compute that

f̃(s̃p(res(µ))) = f̃(res(ŝp(µ))) (by Lemma 4.2)

= f(ŝp(µ)) (by the definition of f̃ )

= Ŝp(f(µ)) (by Corollary 3.11)

= Ŝp(f̃(res(µ))) (by the definition of f̃ )

= S̃p(f̃(res(µ))) (by Lemma 4.15).

Proof of Theorem 4.11. (1) By the definitions of ≤w and ⊴̃, it suffices to show that for

µ ∈ Ŵλ and p ∈ J , res(µ) <w s̃p(res(µ)) if and only if f̃(res(µ)) ◁̃ S̃p(f̃(res(µ))).
First, we assume that res(µ) <w s̃p(res(µ)) = res(ŝp(µ)). Because res(µ)(Hp) > 0, there
exists i ∈ p such that µ(hi) > 0. Then we deduce by Lemma 4.7(2) that µ <w ŝp(µ)
in (Wλ,≤w). By the definition of <w and <s, we have µ <s ŝp(µ) in (Wλ,≤s). So we
compute

f(µ) ⊊ f(ŝp(µ)) (by Proposition 3.8)

= Ŝp(f(µ)) (by Corollary 3.11)

= S̃p(f̃(res(µ))) (by the definition of f̃ and Lemma 4.15).

Therefore, we obtain f̃(res(µ)) ◁̃ S̃p(f̃(res(µ))), as desire.

Next, we assume that f̃(res(µ)) ◁̃ S̃p(f̃(res(µ))). Then we have f̃(res(µ)) ⊊
S̃p(f̃(res(µ))). Since f̃(res(µ)) = f(µ) and S̃p(f̃(res(µ))) = f(ŝp(µ)) as seen above, we
get f(µ) ⊊ f(ŝp(µ)). Hence, by Proposition 3.8, µ <s ŝp(µ) in (Wλ,≤s). Write ŝp(µ)
as: ŝp(µ) = µ −

∑
i∈p miαi; since µ <s ŝp(µ), we see that mi ≥ 0 for all i ∈ I, and

m :=
∑

i∈p mi > 0. Because s̃p(res(µ)) = res(µ)−mβp, we obtain res(µ) <w s̃p(res(µ)),
as desire.
(2) For µ1, µ2 ∈ Ŵλ, We deduce

res(µ1) <s res(µ2)

⇔ µ1 <s µ2 (by Lemma 4.9)

⇔ f(µ1) ⊂ f(µ2) (by Proposition 3.8)

⇔ f̃(res(µ1)) ⊂ f̃(res(µ2)) (by the definition of f̃ ).
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5 Explicit Description of F̃(Pλ)

Keep the notation and setting in Section 4.2. We give an explicit description of F̃(Pλ) in
the case that g is of type An; in fact, our description, Theorem 5.4 below, and its proof
are essentially restatements of [12, Theorem 1.1 and its proof ]; however, we give a proof
(in terms of our notation) for the convenience of the readers.
Assume that g is of type An, and λ = Λm with 1 ≤ m ≤ (n+1)/2. We regard Pλ as a

rectangular Young diagram Ym,n−m+1 (see Example 2.7). Note that κ((i, j)) = j− i+m
and κ̃((i, j)) = (min{j − i+m, i− j + n−m+ 1})′.
For i, j, p ∈ Z, we set [i, j] := {k ∈ Z | i ≤ k ≤ j} and

(
[i,j]
p

)
:= {I ⊆ [i, j] | #I = p}.

Definition 5.1. Let Y = (k1, . . . ,km) ∈ F(Ym,n−m+1). We set I(Y ) := {ki+m+1−i |
i ∈ [1,m]}, I(Y ) := {n + 2 − i | i ∈ I(Y )}. Observe that the map I : F(Ym,n−m+1) →(
[1,n+1]

m

)
, Y 7→ I(Y ), is a bijection.

Lemma 5.2. Let Y ∈ F(Ym,n−m+1), and k ∈ [1, n]. Then,

(1) k ∈ I(Y ) and k + 1 6∈ I(Y ) if and only if Sk(Y ) ⊃ Y ;
(2) k 6∈ I(Y ) and k + 1 ∈ I(Y ) if and only if Sk(Y ) ⊂ Y ;
(3) k, k + 1 ∈ I(Y ) or k, k + 1 6∈ I(Y ) if and only if Sk(Y ) = Y .

Proof. Notice that for Y ∈ F(Ym,n−m+1) and k ∈ [1, n], Sk(Y ) satisfies one of the
following (see Lemma 2.15 and Corollary 3.11):

(i) Sk(Y ) = Ak(Y ) = Y t {(i, j)} for some (i, j) ∈ Ym,n−m+1 \ Y .
(ii) Sk(Y ) = Rk(Y ) = Y \ {(i, j)} for some (i, j) ∈ Y .
(iii) Sk(Y ) = Ak(Y ) = Rk(Y ) = Y .

(1) First, we show the “only if” part. Because k ∈ I(Y ), there exists i ∈ [1,m] such
that k = ki +m+ 1− i. Then we see that (i,ki) = (i, k −m− 1 + i) ∈ Y or ki = 0. In
both cases, we get (i, k −m + i) 6∈ Y . Note that κ(i, k −m + i) = k. If i = 1, then we
get Y t {(i, k−m+ i)} ∈ F(Ym,n−m+1) and Sk(Y ) = Y t {(i, k−m+ i)} ⊃ Y . If i > 1,
then ki−1 +m + 1 − (i − 1) > k + 1 by k + 1 6∈ I(Y ). Thus we have k −m + i ≤ ki−1

and (i − 1, k − m + i) ∈ Y . Hence we get Y t {(i, k − m + i)} ∈ F(Ym,n−m+1) and
Sk(Y ) = Y t {(i, k −m+ i)} ⊃ Y .
Next, we show the “if” part. Because Sk(Y ) ⊃ Y , there exists (i, j) ∈ Sk(Y ) such that

Sk(Y ) = Y t {(i, j)} and κ(i, j) = j − i + m = k. Then we see that (i, j − 1) ∈ Y or
j−1 = 0. In both cases, we get ki = j−1 = i−m+k−1. Hence, k = ki+m+1−i ∈ I(Y ).
If i = 1, then max(I(Y )) = k, and hence k + 1 6∈ I(Y ). If i > 1, then (i− 1, j) ∈ Y and
ki−1 ≥ j. Thus we obtain ki−1 + m + 1 − (i − 1) ≥ j + m + 1 − i + 1 = k + 2, which
implies that k + 1 6∈ I(Y ).

(2) Similar to part (1).
(3) Since Sk(Y ) satisfies one of (i)-(iii), the assertion is obvious from parts (1) and

(2).

Remark 5.3. By Lemma 5.2, if k ∈ I(Y ) and k + 1 6∈ I(Y ), then k 6∈ I(Sk(Y )) and
k+1 ∈ I(Sk(Y )). Moreover, either k′ ∈ I(Y ), k′ ∈ I(Sk(Y )) or k′ 6∈ I(Y ), k′ 6∈ I(Sk(Y ))
for k′ ∈ [1, n+ 1] with k′ 6= k, k + 1.

For n ∈ Z>0 and m ∈ Z>0 such that 1 ≤ m ≤ (n + 1)/2, we set SS(Ym,n−m+1) :=
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{Y ∈ F(Ym,n−m+1) | I(Y ) ∩ I(Y ) = ∅}.

Theorem 5.4 (cf. [12, Theorem 1.1]). It holds that F̃(Ym,n−m+1) = SS(Ym,n−m+1).

Proof. We will show that Y ∈ F̃(Ym,n−m+1) if and only if Y ∈ SS(Ym,n−m+1) by

induction on #Y . If #Y = 0, then Y = ∅. It is obvious that ∅ ∈ F̃(Ym,n−m+1). Also,
because I(∅) = {1, 2, . . . ,m} and I(∅) = {n+ 1, n, . . . , n+ 2−m}, with m < n+ 2−m,

it follows that I(∅) ∩ I(∅) = ∅, and hence ∅ ∈ SS(Ym,n−m+1).
Assume that #Y > 0. First, we will show the “only if” part. Because Y 6= ∅,

there exists p ∈ J such that S̃p(Y ) ⊂ Y . Since Y ∈ F̃(Ym,n−m+1), we have S̃p(Y ) ∈
F̃(Ym,n−m+1). By the induction hypothesis, it follows that S̃p(Y ) ∈ SS(Ym,n−m+1).
Here, we give a proof only for the case that #p = 2; the proof for the case that #p = 1
is similar (and simpler). Assume that p satisfies the orthogonality condition. We write

p as: p = {i, n + 1 − i} with i 6= n + 1 − i. By Lemma 4.7, S̃p(Y ) satisfies one of the
following:

(i) S̃p(Y ) ⊂ SiS̃p(Y ), S̃p(Y ) = Sn+1−iS̃p(Y ).

(ii) S̃p(Y ) = SiS̃p(Y ), S̃p(Y ) ⊂ Sn+1−iS̃p(Y ).

(iii) S̃p(Y ) ⊂ SiS̃p(Y ), S̃p(Y ) ⊂ Sn+1−iS̃p(Y ).

We see by Lemma 5.2 that (i) (resp., (ii), (iii)) holds if and only if the following (i)’
(resp., (ii)’, (iii)’) holds:

(i)’ i ∈ I(S̃p(Y )), i+ 1 6∈ I(S̃p(Y )), n+ 1− i 6∈ I(S̃p(Y )), n+ 2− i 6∈ I(S̃p(Y )).

(ii)’ i 6∈ I(S̃p(Y )), i+ 1 6∈ I(S̃p(Y )), n+ 1− i ∈ I(S̃p(Y )), n+ 2− i 6∈ I(S̃p(Y )).

(iii)’ i ∈ I(S̃p(Y )), i+ 1 6∈ I(S̃p(Y )), n+ 1− i ∈ I(S̃p(Y )), n+ 2− i 6∈ I(S̃p(Y )).

Moreover, it can be easily checked that (i)’ (resp., (ii)’, (iii)’) holds if and only if the
following (i)” (resp., (ii)”, (iii)”) holds:

(i)” i 6∈ I(Y ), i+ 1 ∈ I(Y ), n+ 1− i 6∈ I(Y ), n+ 2− i 6∈ I(Y ),
(ii)” i 6∈ I(Y ), i+ 1 6∈ I(Y ), n+ 1− i 6∈ I(Y ), n+ 2− i ∈ I(Y ),
(iii)” i 6∈ I(Y ), i+ 1 ∈ I(Y ), n+ 1− i 6∈ I(Y ), n+ 2− i ∈ I(Y ).

By Remark 5.3, we obtain Y ∈ SS(Ym,n−m+1) for any cases. Assume that p does
not satisfy the orthogonality condition; in this case, n is even, and p = {i, i + 1} with

i = n/2. By Lemmas 4.7 and 5.2, S̃p(Y ) satisfies i ∈ I(S̃p(Y )), i + 1 6∈ I(S̃p(Y )), and

i + 2 6∈ I(S̃p(Y )). Also, Y satisfies i 6∈ I(Y ), i + 1 6∈ I(Y ), and i + 2 ∈ I(Y ). Thus we
obtain Y ∈ SS(Ym,n−m+1), as desired.
Next, we will show the “if” part. Because Y 6= ∅, there exists k ∈ [1, n] such that

k 6∈ I(Y ) and k + 1 ∈ I(Y ); we set p := {k, n + 1 − k} ∈ J . Let Y ′ ∈ F(Ym,n−m+1)
be such that I(Y ′) = I(Y ) t {k} \ {k + 1}; note that #Y ′ = #Y − 1. Assume that
n + 2 − k 6∈ I(Y ′). By Remark 5.3, we have Y ′ ∈ SS(Ym,n−m+1). By the induction

hypothesis, it follows that Y ′ ∈ F̃(Ym,n−m+1). Notice that n/2 + 1 6∈ I(Y ), because
n+2−(n/2+1) = n/2+1. Because k+1 ∈ I(Y ), we have n+1−k 6= k+1. Also, because
k ∈ I(Y ′) and n+2−k 6∈ I(Y ′), we have k 6= n+2−k, and hence n+1−k 6= k−1. Thus, p

satisfies the orthogonality condition. If #p = 1, then p = {k}, and S̃p(Y
′) = Sk(Y

′) = Y
by Lemma 5.2. If #p = 2, then k 6= n+1− k and {k, k+1}∩ {n+1− k, n+2− k} = ∅,
which implies that n+ 2− k 6∈ I(Y ) by Remark 5.3, and n+ 1− k 6∈ I(Y ) by Lemmas

4.7 and 5.2. Hence we have S̃p(Y
′) = Sn+1−kSk(Y

′) = Sn+1−k(Y ) = Y . In both cases,
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we obtain Y ∈ F̃(Ym,n−m+1). Assume that n+ 2− k ∈ I(Y ′). Let Y ′′ ∈ F(Ym,n−m+1)
be such that I(Y ′′) = I(Y ′) t {n + 1 − k} \ {n + 2 − k}; note that #Y ′′ = #Y ′ − 1.
Because n + 2 − (n + 1 − k) = k + 1 6∈ I(Y ), we have Y ′′ ∈ SS(Ym,n−m+1). By the

induction hypothesis, it follows that Y ′′ ∈ F̃(Ym,n−m+1). Because #Y ′′ = #Y − 2,
we have #p = 2. We see by Lemmas 4.7 and 5.2 that if p satisfies the orthogonality
condition, then S̃p(Y

′′) = SkSn+1−k(Y
′′) = Sk(Y

′) = Y . If p does not satisfy the
orthogonality condition, then n + 1 − k = k − 1. Thus we obtain k − 1 ∈ I(Y ′′),

k, k + 1 6∈ I(Y ′′), and hence S̃p(Y
′′) = Sk−1SkSk−1(Y

′′) = Sk−1Y = Y . In both cases,

we obtain Y ∈ F̃(Ym,n−m+1), as desired.

6 The Rules of MHRG(m,n)

6.1 Impartial Combinatorial Games

Combinatorial games satisfy the requirements stated below. One should consult with
Berlekamp, Conway, and Guy [3] for the classical introduction to such games. See Conway
[6] and Siegel [21] for more advanced treatments.

• A combinatorial game is played by two players (we will call them “A” and “B”).
• Two players alternate in making a move.
• There are no chance elements (no moves are determined by rolling dice, etc.).
• No position can appear more than once during a game. And, in particular,
combinatorial games are “short games”-they always end following a finite number
of moves.

In addition, if both players have the same set of options in each position, then the game
is an impartial combinatorial game. As previously mentioned, MHRG(m,n) is such a
game.
Given an impartial combinatorial game G, a game position is called an N -position

(resp., P-position) if the next (resp., previous) player has a winning strategy, and each
game position is either an N -position or a P-position. Additionally, if G is anN -position,
then there exists a move from G to a P-position. If G is a P-position, then there exists
no move from G to a P-position (see [3], [21]).
Let G be an impartial game and set

C(G) = {G′ | G′ is a game position of G} (of course G ∈ C(G)).

If G′ is an option of G, then we write G → G′, and we set

O(G) = {G′ | G → G′} (O(G) ⊂ C(G)).

A transition from G to G′ is, by definition, a sequence G = G0, G1, . . . , Gk = G′, k ∈ Z≥0,
of game positions in C(G) such that

G = G0 −→ G1 −→ · · · −→ Gk = G′.

Definition 6.1. Let G and H be impartial combinatorial games. If there exists a
bijection f : C(G) → C(H) such that f(O(G′)) = O(f(G′)) for all G′ ∈ C(G), then we
say that G is isomorphic to H, and we call f an isomorphism from G to H. In other
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words, G is isomorphic to H if G and H have identical game trees [2].

Definition 6.2. For any proper subset T of Z≥0, we define the minimal excluded number
mex(T ) as follows:

mex(T ) = min(Z≥0 \ T ).

We recall the G-value (or Sprague-Grundy value) of a position in an impartial combi-
natorial game.

Definition 6.3. Let G be a game position. We define G(G) ∈ Z≥0, called the G-value
(or Sprague-Grundy value) of G, by

G(G) := mex{G(G′) | G → G′}.

The following theorem is well-known.

Proposition 6.4 ([21, Chapter IV]). For a game position G, G(G) = 0 if and only if G
is a P-position.

The following proposition can be easily shown.

Proposition 6.5. Let G and H be impartial combinatorial games. If there exists a
bijection f : C(G) → C(H), then G(G′) = G(f(G′)) for all G′ ∈ C(G).

6.2 Unimodal Numbering of a Rectangular Young Diagram

For a Young diagram Y , a map α : Y → Z>0 is called a numbering of Y . For a box
(i, j) ∈ Y , if α(i, j) = x, then we say that the box (i, j) has the number x. Let Y be
a Young diagram with a numbering α. For a subset X of Y , we set Aα(X) = [α(i, j) |
(i, j) ∈ X], where [x1, . . . , xN ] denotes the multiset consisting of x1, . . . , xN .
Let m,n ∈ Z>0. For Y ∈ F(Ym,n), we define a special numbering αm,n : Y → Z>0,

called the unimodal numbering of Y , as follows: For (i, j) ∈ Y , we set αm,n(i, j) :=
min{j − i+m, i− j + n} ∈ Z>0. In what follows, the boxes in Y ∈ F(Ym,n) are always
numbered by the unimodal numbering αm,n.

3 3 2 1

2 3 3 2

1 2 3 3

3 4 3 2 1

2 3 4 3

1 2 3

Fig. 13 unimodal numberings

Remark 6.6. Let Y ∈ F(Ym,n). By the definition of unimodal numbering αm,n, we can
easily check the following.

(1) If Y contains the box (m, 1), then it has the number 1. If Y contains the box
(1, n), then it has the number 1.

(2) The boxes (i, j) and (i+ 1, j + 1) have the same number (if they exist in Y ).
(3) The maximum value of αm,n : Ym,n → Z>0 is equal to α̂m,n := b(n+m)/2c, where

bxc := max{y ∈ Z | y ≤ x} for x ∈ R.
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Remark 6.7. Assume that g is of type An, and λ = Λm with 1 ≤ m ≤ (n + 1)/2. As
mentioned in Section 5, we regard Pλ as a rectangular Young diagram Ym,n−m+1. Then
it holds that κ̃(i, j) = (min{j − i+m, i− j + n−m+ 1})′ for (i, j) ∈ Ym,n−m+1. Thus
we have κ̃(i, j) = (αm,n−m+1(i, j))

′. Thus we can regard the J-colored d-complete poset
(Pλ,≤, κ̃, J) as the rectangular Young diagram Ym,n−m+1 with the unimodal numbering
αm,n−m+1.

6.3 Rules of the Multiple Hook Removing Game

In this subsection, we explain the rules of MHRG(m,n).

Definition 6.8. For a box (i, j) of a Young diagram Y ,

h(i, j) = hY (i, j) := {(i, j)} t {(i′, j) ∈ Y | i′ > i} t {(i, j′) ∈ Y | j′ > j}

is called the hook (in Y ) corresponding to the box (i, j).

Definition 6.9. For a box (i, j) of a Young diagram Y , we remove the hook hY (i, j)
corresponding to the box (i, j) as follows:

1. Remove each box in the hook hY (i, j).
2. Move each box (i′, j′) satisfying i′ > i and j′ > j to (i′ − 1, j′ − 1).

We denote by Y \ hY (i, j) the Young diagram obtained by removing the hook hY (i, j)
corresponding to the box (i, j) from Y .

Example 6.10. If we remove the hook corresponding to the box (2, 2) from the Young
diagram Y = (6, 6, 5, 3, 3), then we get Y ′ = Y \ hY (2, 2) = (6, 4, 2, 2, 1).

→
↖ ↖

↖

→

Definition 6.11. Let m,n ∈ Z>0. MHRG(m,n) is an impartial combinatorial game
whose rules are as follows:

(M1) The starting position is a rectangular Young diagram Ym,n with the unimodal
numbering αm,n. All game positions are Young diagrams Y contained in Y with
a numbering αm,n|Y .

(M2) Given a Young diagram Y with the numbering αm,n|Y , each player chooses a box
in Y and removes the hook h corresponding to the box on his/her turn. Let
Aαm,n

(h) be the multiset of the numbers (in boxes) in the hook h, and let Y ′ be
the Young diagram obtained by removing h from Y , with the numbering αm,n|Y ′ .

(M2a) If there does not exist any box in Y ′ whose corresponding hook h′ satisfies
Aαm,n(h

′) = Aαm,n(h) as multisets, then the player’s turn is over, and the
next player is given Y ′.

(M2b) If there exists a box in Y ′ whose corresponding hook h′ satisfies Aαm,n
(h′) =

Aαm,n
(h), then the player must choose one such boxes, and remove the hook h′
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corresponding to the box. Let Y ′′ be the Young diagram obtained by removing
h′ from Y ′, with the numbering αm,n|Y ′′ .

(M2c) Do the same operation as (M2a) and (M2b), with Y ′ replaced by Y ′′. As long
as such a box exists, repeat this operation.

(M3) The winner is the player who removes the last remaining hook in the diagram.

For an example, see Example 1.2 in Introduction.

7 Diagonal Expressions for Young Diagrams and Hooks
The diagonal expression for Y ∈ F(Ym,n) is now defined in terms of the following ele-
ments.
Let a ∈ Zm+n+1

≥0 be given by a = (a−m, a−m+1, . . . , an), where we call ak the k-

th component of a for −m ≤ k ≤ n. For −m < i ≤ 0 (resp., 0 < i ≤ n), we say
that the pair (ai−1, ai) satisfies the adjacency requirement if 0 ≤ ai − ai−1 ≤ 1 (resp.,
0 ≤ ai−1 − ai ≤ 1). Additionally, we say that a satisfies the adjacency requirement if
(ai−1, ai) satisfies the adjacency requirement for all −m < i ≤ n.
For m,n ∈ Z>0, let Dm,n ⊂ Zm+n+1

≥0 denote the set of all elements a = (a−m, . . . , an) ∈
Zm+n+1
≥0 with a−m = an = 0 satisfying the adjacency requirement. Finally, set dk(Y ) :=

#{(i, j) ∈ Y | j − i = k} for k ∈ Z. Note that if k ≤ −m or k ≥ n, then dk(Y ) = 0.

Remark 7.1. For i, j ≥ 2, if (i, j) ∈ Y , then (i − 1, j − 1) ∈ Y . Also, if (i, j) /∈ Y ,
then (i+ a, j + a) /∈ Y for a ∈ Z>0. Hence we see that dk(Y ) = max{min{i, j} | (i, j) ∈
Y, j − i = k} for k ∈ Z.

Given the above setting, the following lemma is easily verified.

Lemma 7.2. The following statements hold.

(1) Let k ≥ 0. Then, (dk(Y ) + 1, dk(Y ) + k + 1) /∈ Y . Moreover, if dk(Y ) > 0, then
(dk(Y ), dk(Y ) + k) ∈ Y .

(2) Let k < 0. Then (dk(Y ) − k + 1, dk(Y ) + 1) /∈ Y . Moreover, if dk(Y ) > 0, then
(dk(Y )− k, dk(Y )) ∈ Y .

Definition 7.3. For every Y ∈ F(Ym,n), the diagonal expression for Y is given by

d(Y ) = dm,n(Y ) = (d−m(Y ), d−m+1(Y ), . . . , dn(Y ))

Lemma 7.4. Let Y ∈ F(Ym,n); recall that dk = dk(Y ) = #{(i, j) ∈ Y | j − i = k} for
k ∈ Z.

(1) If k > 0, then 0 ≤ dk−1 − dk ≤ 1.
(2) If k ≤ 0, then 0 ≤ dk − dk−1 ≤ 1.

Proof. (1) Assume that dk = 0. Then, (1, k + 1) /∈ Y by Lemma 7.2, which implies that
(2, k + 1) /∈ Y . Hence, dk−1 = max{min{i, j} | (i, j) ∈ Y, j − i = k − 1} is equal to 0 or
1 (see Remark 7.1). Thus we obtain 0 ≤ dk−1 − dk = dk−1 ≤ 1. Assume dk > 0. By
Lemma 7.2, it follows that (dk, dk + k) ∈ Y and (dk + 1, dk + k + 1) /∈ Y . Then we have
(dk, dk + k − 1) ∈ Y and (dk + 2, dk + k + 1) /∈ Y . Therefore dk−1 = max{min{i, j} |
(i, j) ∈ Y, j− i = k−1} is dk or dk+1 by Remark 7.1. Thus we obtain 0 ≤ dk−1−dk ≤ 1.
(2) The proof of (2) is similar to that of (1).
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Proposition 7.5. The function dm,n(Y ) is a bijection of F(Ym,n) → Dm,n.

Proof. From Lemma 7.4, the pair (di−1(Y ), di(Y )) satisfies the adjacency requirement
for all −m < i ≤ n. Since d−m(Y ) = dn(Y ) = 0, we have (d−m(Y ), . . . , dn(Y )) ∈ Dm,n.
Also, by the definition of d = dm,n, it is obvious that d is an injection.
For a = (a−m, . . . , an) ∈ Dm,n, we define Y as follows. The box (i, j) is contained

in Y if and only if min{i, j} ≤ aj−i. Note that if j − i ≤ −m or n ≤ j − i, then the
box (i, j) is not contained in Y . We claim that Y is a Young diagram. It suffices to
show that if the box (i, j) is not contained in Y , then neither the box (i + 1, j) nor
(i, j + 1) is contained in Y . If −m < j − i < 0, then min{i, j} = j > aj−i. By the
definition of Dm,n, we have 0 ≤ aj−i − aj−i−1 and aj−i+1 − aj−i ≤ 1. Then we get
min{i+ 1, j} = j > aj−i−1 and min{i, j + 1} = j + 1 > aj−i+1. Hence, by the definition
of Y , we obtain (i + 1, j), (i, j + 1) /∈ Y . The proofs for the cases that j − i = 0 and
0 < j − i < n are similar. Thus we have shown that Y is a Young diagram. Further,
since (m+ 1, 1), (1, n+ 1) /∈ Y , it follows that Y ∈ F(Ym,n).
By the definition of Y , we have dk = ak for −m < k < n. Hence we obtain d(Y ) = a,

which shows that d is a surjection. Thus we have proved that d is a bijection.

Example 7.6. Assume that m = 3 and n = 5. If Y ∈ F(Y3,5) is

Y =

3 4 3 2 1

2 3 4 3

1 2 3

,

then d(Y ) = d3,5(Y ) = (0, 1, 2, 3̇, 2, 2, 1, 1, 0) (if necessary, we will accentuate the 0-th
component by putting a dot above it as above).

Let Y ∈ F(Ym,n), (i, j) ∈ Y and set Y ′ := Y \ hY (i, j). We set i′ := max{x ∈ Z>0 |
(x, j) ∈ Y } and j′ := max{x ∈ Z>0 | (i, x) ∈ Y } For k ∈ Z, it holds that

dk(Y )− dk(Y
′) =

{
1 if j − i′ ≤ k ≤ j′ − i,

0 otherwise.

Hence the diagonal expression of Y ′ is

d(Y ′) = (. . . , dj−i′−1(Y ), dj−i′(Y )− 1, dj−i′+1(Y )− 1, . . . ,

dj′−i−1(Y )− 1, dj′−i(Y )− 1, dj′−i+1(Y ), . . .). (3.1)

Let a = (a−m, . . . , an) ∈ Dm,n , a′ = (a′−m, . . . , a′n) ∈ Zm+n+1
≥0 , and let l, r be such

that −m < l ≤ r < n. If a′k = ak − 1 for l ≤ k ≤ r, and a′k = ak for the other k’s, then

we write a
l,r−→ a′ or a′ = a[l,r]. In this case, the pair (a′k−1, a

′
k) satisfies the adjacency

requirement for all −m < k ≤ n but k = l and r + 1. Hence, if (a′l−1, a
′
l) and (a′r, a

′
r+1)

satisfy the adjacency requirement, then a′ ∈ Dm,n.

Lemma 7.7. Let Y, Y ′ ∈ F(Ym,n). The following are equivalent.

(1) There exists a box (i, j) ∈ Y such that Y ′ = Y \ hY (i, j).

(2) There exist −m < l ≤ r < n such that d(Y )
l,r−→ d(Y ′).

In this case, it holds that l = j − i′ and r = j′ − i, where (i′, j) is the bottom box in the
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j-th column of Y , and (i, j′) is the rightmost box in the i-th row of Y .

Example 7.8. Let Y be as in Example 7.6, and let Y ′ = Y \ hY (1, 4).

Y =

3 4 3 2 1

2 3 4 3

1 2 3

→ Y ′ =

3 4 3

2 3 4

1 2 3

In the diagonal expression, we see that

d(Y ) = (0, 1, 2, 3̇, 2, 2, 1, 1, 0), d(Y ′) = (0, 1, 2, 3̇, 2, 1, 0, 0, 0),

and d(Y )
2,4−−→ d(Y ′).

Proof of Lemma 7.7. The implication (1)⇒(2) and equalities l = j − i′ and r = j′ − i
follow from (3.1). Let us show (2)⇒(1). A proof is given only for the case that l ≤ r ≤ 0.
Proofs of the cases l ≤ 0 ≤ r and 0 ≤ l ≤ r are similar. Notice that dl(Y ), dr(Y ) > 0.
By Lemma 7.2 (2), we have both (dl(Y ) − l, dl(Y )), (dr(Y ) − r, dr(Y )) ∈ Y . Also, by
the adjacency requirement, it follows that dl(Y ) ≤ dr(Y ). Because dl(Y

′) = dl(Y ) − 1
and dr(Y

′) = dr(Y )− 1, we see by Lemma 7.2 (2) that both (dl(Y )− l, dl(Y )), (dr(Y )−
r, dr(Y )) /∈ Y ′, which implied that (dl(Y ) − l + 1, dl(Y )), (dr(Y ) − r, dr(Y ) + 1) /∈ Y ′.
Since dk(Y

′) = dk(Y ) for k < l and r < k, we deduce that for i, j such that j − i < l
or r < j − i, we have (i, j) ∈ Y if and only if (i, j) ∈ Y ′. Hence, both (dl(Y ) − l +
1, dl(Y )), (dr(Y )− r, dr(Y ) + 1) /∈ Y .

Let h be the hook in Y corresponding to the box (dr(Y ) − r, dl(Y )). Since (dl(Y ) −
l, dl(Y )) ∈ Y and (dl(Y )− l+1, dl(Y )) /∈ Y , the bottom box in the dl(Y )-th column of Y
is (dl(Y )− l, dl(Y )). Also, since (dr(Y )− r, dr(Y )) ∈ Y and (dr(Y )− r, dr(Y ) + 1) /∈ Y ,
the rightmost box in the (dr(Y )− r)-th row of Y is (dr(Y )− r, dr(Y )). We see from (3.1)
that the diagonal expression of Y \ h is

(. . . , dl−1(Y ), dl(Y )− 1, dl+1(Y )− 1, . . . , dr−1(Y )− 1, dr(Y )− 1, dr+1(Y ), . . .),

which is equal to d(Y ′). Thus we have proved the lemma.

The next lemma follows from the proof of Lemma 7.7.

Lemma 7.9. Let Y ∈ F(Ym,n) and Y ′ = Y \ hY (i, j) for (i, j) ∈ Y . Also, let −m <

l ≤ r < n be such that d(Y )
l,r−→ d(Y ′) in the diagonal expression. Then, #(hY (i, j)) =

#Aαm,n
(hY (i, j)) = r − l + 1.

Definition 7.10. Let a = (a−m, . . . , an) ∈ Zm+n+1
≥0 . Assume that (ak−1, ak) satisfies

the adjacency requirement for some −m < k ≤ n. If (ak−1− 1, ak) (resp., (ak−1, ak − 1))
also satisfies the adjacency requirement, then we say that (ak−1, ak) is a left (resp., right)
bulge, and we write ak−1 ↘ ak (resp., ak−1 ↗ ak).

The following lemma can be easily verified.

Lemma 7.11. Let a = (a−m, . . . , an) ∈ Zm+n+1
≥0 .

(1) If (ak−1, ak) satisfies the adjacency requirement, then (ak−1, ak) is either a left
bulge or a right bulge.

(2) Assume that (ak−1, ak) satisfies the adjacency requirement. If (ak−1, ak) is a left
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bulge, then (ak−1 − 1, ak) is a right bulge.
(3) Assume that (ak−1, ak) satisfies the adjacency requirement. If (ak−1, ak) is a right

bulge, then (ak−1, ak − 1) is a left bulge.

Lemma 7.12. Let a = (a−m, . . . , an),a
′ = (a′−m, . . . , a′n) ∈ Dm,n. Assume that a′ =

a[l,r] ∈ Dm,n for some −m < l ≤ r < n. Then, al−1 ↗ al, ar ↘ ar+1 and a′l−1 ↘ a′l, a
′
r ↗

a′r+1. Moreover, for −m < k ≤ n with k 6= l, r + 1, if ak−1 ↗ ak (resp., ak−1 ↘ ak),
then a′k−1 ↗ a′k (resp., a′k−1 ↘ a′k).

Proof. Since a′ = a[l,r] ∈ Dm,n, it follows that (al−1, al−1) and (ar−1, ar+1) satisfy the
adjacency requirement. Hence, (al−1, al) is a right bulge and (ar, ar+1) is a left bulge.
By Lemma 7.11 (2) and (3), (a′l−1, a

′
l) is a left bulge and (a′r, a

′
r+1) is a right bulge. By

the definition of a[l,r], we have ak − ak−1 = a′k − a′k−1 for −m < k ≤ n with k 6= l, r+ 1.
Hence, both (al−1, al) and (a′l−1, a

′
l) are both left bulges or rights bulges. Thus we have

proved the lemma.

Let Y ∈ F(Ym,n) be a Young diagram with the unimodal numbering αm,n. By Remark
6.6 (2), it holds that αm,n(i

′, j′) = αm,n(i
′ + a, j′ + a) for all (i′, j′) ∈ Y and a ∈ Z>0

such that (i′ + a, j′ + a) ∈ Y . Hence we see that Aαm,n
(Y ) = Aαm,n

(Y \ hY (i, j)) ∪
Aαm,n

(hY (i, j)) for (i, j) ∈ Y .

Lemma 7.13. For Y ∈ F(Ym,n) and 1 ≤ k ≤ α̂m,n = b(n+m)/2c,

#{x ∈ Aαm,n
(Y ) | x = k} =

{
d−m+k + dn−k if −m+ k 6= n− k,

d−m+k if −m+ k = n− k.

Proof. Assume that −m+ k 6= n− k. Then we compute

#{x ∈ Aαm,n(Y ) | x = k} = #{(i, j) ∈ Y | j − i = −m+ k or n− k}
= #{(i, j) ∈ Y | j − i = −m+ k}+#{(i, j) ∈ Y | j − i = n− k}
= d−m+k + dn−k.

The proof of the case −m+ k = n− k is similar.

Lemma 7.14. Let Y ∈ F(Ym,n) and Y ′ = Y \ hY (i, j) for (i, j) ∈ Y . Let −m <

l ≤ r < n be such that d(Y )
l,r−→ d(Y ′) in the diagonal expression (see (3.1)). Assume

that there exists (i′, j′) ∈ Y ′ such that Aαm,n
(hY ′(i′, j′)) = Aαm,n

(hY (i, j)). Set Y ′′ =

Y ′\hY ′(i′, j′). Then, d(Y ′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′′) in the diagonal expression. Also, there

exists no box (i′′, j′′) ∈ Y ′′ such that Aαm,n
(hY ′′(i′′, j′′)) = Aαm,n

(hY (i, j)).

Example 7.15. Let Y be as in Example 7.6 (note that m = 3 and n = 5), and set Y ′ =
Y \hY (1, 3). Then we have Aα3,5

(hY (1, 3)) = [3, 4, 3, 2, 1]. Notice that Aα3,5
(hY ′(1, 1)) =

[1, 2, 3, 4, 3] = Aα3,5
(hY (1, 3)). Here we set Y ′′ = Y ′ \ hY ′(1, 1) and it follows that

Y =

3 4 3 2 1

2 3 4 3

1 2 3

→ Y ′ =

3 4 3

2 3

1 2

→ Y ′′ =
3

2

In this case,
d(Y ) = (0, 1, 2, 3̇, 2, 2, 1, 1, 0),
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d(Y ′) = (0, 1, 2, 2̇, 1, 1, 0, 0, 0),

d(Y ′′) = (0, 0, 1, 1̇, 0, 0, 0, 0, 0),

and hence d(Y )
0,4−−→ d(Y ′)

−2,2−−−→ d(Y ′′) where −2 = 5− 3− 4 and 2 = 5− 3− 0.

Proof of Lemma 7.14. We set h := hY (i, j) and h′ := hY ′(i′, j′). Since Y ′′ = Y ′ \ h′,

we see by (3.1) that d(Y ′)
l′,r′−−→ d(Y ′′) for some −m < l′ ≤ r′ < n. Now we show that

l′ = m − n − r and r′ = n − m − l. Since Aαm,n(h
′) = Aαm,n(h) and d(Y )

l,r−→ d(Y ′),
we have #Aαm,n(h

′) = #Aαm,n(h) = r − l + 1 by Lemma 7.9. Hence we see that

d(Y ′)
a,a+r−l−−−−−→ d(Y ′′) for some a ∈ Z.

Now it is sufficient to show that a = n−m− r. On the contrary, suppose that a = l.

Note that d(Y ′)
l,r−→ d(Y ′′). Hence we see by Lemma 7.12 that dl−1(Y

′) ↗ dl(Y
′).

Similarly, since d(Y )
l,r−→ d(Y ′), it follows from Lemma 7.12 that dl−1(Y

′) ↘ dl(Y
′).

Thus we get dl−1(Y
′) ↗ dl(Y

′) and dl−1(Y
′) ↘ dl(Y

′), which contradicts Lemma 7.11
(1).
Next, suppose that a 6= l, n−m− r. For k ∈ Z, we define µ(k) := min{k+m,−k+n}.

Since d(Y ′)
a,a+r−l−−−−−→ d(Y ′′), we have Aαm,n

(h′) = [αm,n(i
′, j′) | (i′, j′) ∈ h′] = [min{j′ −

i′ +m, i′ − j′ + n} | (i′, j′) ∈ h′] = [µ(k) | a ≤ k ≤ a+ r − l]. Note that minAαm,n
(h) =

min[min{j′−i′+m, i′−j′+n} | (i′, j′) ∈ h] = min{min{l+m, l+n},min{r+m, r+n}} =
min{µ(l), µ(r)}. We give a proof only for the case that µ(l) < µ(r). The proofs for the
cases in which µ(l) = µ(r) and µ(l) > µ(r) are similar. If l ≥ n−m− l, then

µ(l) = min{l +m,−l + n} = m+min{l,−l + n−m} = n− l

≥ min{r +m, (n− l) + (l − r)︸ ︷︷ ︸
≤0

} = min{r +m,−r + n} = µ(r),

which is a contradiction. Hence we get l < n−m− l and µ(l) = µ(n−m− l) = l +m.
If l < a < n − m − r, then a + r − l < n − m − l. Then, we have µ(b) = min{b +
m,−b+ n} = min{a+m,−a− r+ l+ n} > min{l+m,−n+m+ l+ n} = l+m = µ(l)
for a ≤ b ≤ a + r − l. Since Aαm,n

(h′) = [µ(k) | a ≤ k ≤ a + r − l], it follows that
µ(l) ∈ Aαm,n

(h) is not contained in Aαm,n
(h′), which is a contradiction. If a < l, then

a+m < l +m < n −m− l +m < −a+ n and µ(a) = min{a+m,−a+ n} = a+m <
l +m = µ(l) = minAαm,n

(h). Hence we obtain µ(a) /∈ Aαm,n
(h), another contradiction.

If n−m− r < a, then a+ r− l+m > −l+n > l+m > −a− r+ l+n and µ(a+ r− l) =
min{a+r− l+m,−a−r+ l+n} = −a−r+ l+n < l+m = µ(l) = minAαm,n(h). Hence
we get µ(a+r− l) /∈ Aαm,n(h), yet another contradiction. Thus we obtain a = n−m−r,
as desired.
Suppose that there exists a box (i′′, j′′) ∈ Y ′′ such that Aαm,n

(h′′) = Aαm,n
(h), where

h′′ := hY ′′(i′′, j′′). Note that Aαm,n(h
′′) = Aαm,n(h

′). Since d(Y ′)
n−m−r,n−m−l−−−−−−−−−−→

d(Y ′′), it follows by the argument above that d(Y ′′ \ h′′) is equal to d(Y ′′)[l,r] or
d(Y ′′)[n−m−r,n−m−l].
If d(Y ′′ \ h′′) = d(Y ′′)[l,r], then we see by Lemma 7.12 that dl−1(Y

′′) ↗ dl(Y
′′) and

dr(Y
′′) ↘ dr+1(Y

′′). Similarly, since d(Y )
l,r−→ d(Y ′), it follows from Lemma 7.12 that

dl−1(Y
′) ↘ dl(Y

′) and dr(Y
′) ↗ dr+1(Y

′). Note that d(Y ′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′′). If
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l = n − m − l + 1, then r ≥ l = n − m − l + 1 ≥ n − m − r + 1 > n − m − r − 1.
Thus we see by Lemma 7.12 that dl−1(Y

′′) ↘ dl(Y
′′) or dr(Y

′′) ↗ dr+1(Y
′′). Thus

we have [dl−1(Y
′′) ↗ dl(Y

′′) and dl−1(Y
′′) ↘ dl(Y

′′)] or [dr(Y
′′) ↘ dr+1(Y

′′) and
dr(Y

′′) ↗ dr+1(Y
′′)], which contradicts Lemma 7.11 (1).

If d(Y ′′\h′′) = d(Y ′′)[n−m−r,n−m−l], then we see by Lemma 7.12 that dn−m−r−1(Y
′′) ↗

dn−m−r(Y
′′). Similarly, since d(Y ′)

n−m−r,n−m−l−−−−−−−−−−→ d(Y ′′), it follows from Lemma 7.12
that dn−m−r−1(Y

′′) ↘ dn−m−r(Y
′′). Thus we get dn−m−r−1(Y

′′) ↗ dn−m−r(Y
′′) and

dn−m−r−1(Y
′′) ↘ dn−m−r(Y

′′), another contradiction of Lemma 7.11 (1).

8 An Isomorphism between Rectangular Diagrams
For fixed m,n ∈ Z>0, it can be easily shown that MHRG(m,n) is isomorphic to
MHRG(n,m). In what follows, we assume that m ≤ n.
Assume that m + n is even. We define c := (n −m)/2; note that c is a non-negative

integer. Here we will prove that MHRG(m,n) is isomorphic to MHRG(m,n+ 1).
Let T (Ym,n) be the subset of F(Ym,n) consisting of all Y ∈ F(Ym,n) such that there

exists a transition from Ym,n to Y , that is, T (Ym,n) = C(MHRG(m,n)).

Remark 8.1. We see by Lemma 7.14 that in MHRG(m,n), the operation (M2b) is
performed at most once, and the operation (M2c) is never performed.

Let Y ∈ T (Ym,n) and Y ′ ∈ O(Y ). By Lemmas 7.7 and 7.14, there exists −m < l ≤
r < n such that

d(Y )
l,r−→ d(Y ′)

or there exist −m < l ≤ r < n and Y ′′ ∈ F(Ym,n) such that

d(Y )
l,r−→ d(Y ′′)

n−m−r,n−m−l−−−−−−−−−−→ d(Y ′).

Definition 8.2. We define the map E : Zm+n+1
≥0 → Zm+n+2

≥0 as follows. If a ∈ Zm+n+1
≥0

is
a = (a−m, . . . , ac−1, ac︸︷︷︸

c-th

, ac+1, . . . , an),

then
E(a) := (a−m, . . . , ac−1, ac︸︷︷︸

c-th

, ac︸︷︷︸
(c+1)-th

, ac+1, . . . , an).

It can be easily verified that

a ∈ Dm,n if and only if E(a) ∈ Dm,n+1. (8.1)

Hence the map E : Zm+n+1
≥0 → Zm+n+2

≥0 induces the map E : F(Ym,n) → F(Ym,n+1) as

follows. For Y ∈ F(Ym,n), we define E(Y ) to be the unique element of F(Ym,n+1) whose
diagonal expression is

E(d(Y )) = (d−m(Y ), . . . , dc−1(Y ), dc(Y ), dc(Y ), dc+1(Y ), . . . , dn(Y )).
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Note that d(E(Y )) = E(d(Y )). Notice, also, that E : F(Ym,n) → F(Ym,n+1) is an
injection. For l, r ∈ Z, we define el, er : Z → Z by

el(k) :=

{
k if k ≤ c,

k + 1 if k > c,
er(k) :=

{
k if k < c,

k + 1 if k ≥ c.

In particular, note that el(k) 6= c+ 1 and er(k) 6= c. The following lemma can be shown
easily.

Lemma 8.3. Let l, r ∈ Z. It holds that el(n−m− k) = n−m+ 1− er(k) for k ∈ Z.

Lemma 8.4. For l, r ∈ Z and a ∈ Zm+n+1
≥0 , it holds that E(a[l,r]) = E(a)[el(l),er(r)].

Therefore, for Y ∈ F(Ym,n), it holds that d(Y )[l,r] ∈ Dm,n if and only if
d(E(Y ))[el(l),er(r)] ∈ Dm,n+1.

Proof. If c < l ≤ r, then l + 1 = el(l), r + 1 = er(r) and

E(a[l,r]) = (. . . , ac︸︷︷︸
c-th

, ac︸︷︷︸
(c+1)-th

, . . . , al−1, al − 1︸ ︷︷ ︸
(l+1)-th

, . . . , ar − 1︸ ︷︷ ︸
(r+1)-th

, ar+1, . . .).

Thus we obtain E(a[l,r]) = E(a)[l+1,r+1] = E(a)[el(l),er(r)].
If l ≤ c ≤ r, then l = el(l), r + 1 = er(r) and

E(a[l,r]) = (. . . , al−1, al − 1︸ ︷︷ ︸
l-th

, . . . , ac − 1︸ ︷︷ ︸
c-th

, ac − 1︸ ︷︷ ︸
(c+1)-th

, . . . , ar − 1︸ ︷︷ ︸
(r+1)-th

, ar+1, . . .).

This implies E(a[l,r]) = E(a)[l,r+1] = E(a)[el(l),er(r)].
If l ≤ r < c, then l = el(l), r = er(r) and

E(a[l,r]) = (. . . , al−1, al − 1︸ ︷︷ ︸
l-th

, . . . , ar − 1︸ ︷︷ ︸
r-th

, ar+1, . . . , ac︸︷︷︸
c-th

, ac︸︷︷︸
(c+1)-th

, . . .).

And, hence, we obtain E(a[l,r]) = E(a)[l,r] = E(a)[el(l),er(r)].
In all cases above, we have E(a[l,r]) = E(a)[el(l),er(r)] for −m < l ≤ r < n. Hence, by

d(E(Y )) = E(d(Y )) and (8.1), we obtain

d(Y )[l,r] ∈ Dm,n
(8.1)⇔ E(d(Y )[l,r]) ∈ Dm,n+1

⇔ E(d(Y ))[el(l),er(r)] ∈ Dm,n+1

⇔ d(E(Y ))[el(l),er(r)] ∈ Dm,n+1,

as desired.

Lemma 8.5. Let Y, Y ′ ∈ T (Ym,n). Assume that Y → Y ′ and E(Y ) ∈ T (Ym,n+1).
Then, E(Y ′) ∈ T (Ym,n+1) and E(Y ) → E(Y ′).

Proof. Since Y → Y ′, it follows from definition that

(a) there exists −m < l ≤ r < n such that d(Y )
l,r−→ d(Y ′) or

(b) there exist −m < l ≤ r < n and Y ′′ ∈ F(Ym,n) such that d(Y )
l,r−→
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d(Y ′′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′).

We give a proof only for the case (b); the proof for the case (a) is easier and entirely
similar.
By Lemma 8.3, we have el(n − m − r) = n − m + 1 − er(r) and er(n − m − l) =

n−m+ 1− el(l). Thus we have

d(E(Y ))
el(l),er(r)−−−−−−→ d(E(Y ′′))

el(n−m−r),er(n−m−l)−−−−−−−−−−−−−−−→ d(E(Y ′))

by Lemma 8.4, which implies that E(Y ) → E(Y ′). Thus we have proved the lemma.

Let Y ′ ∈ T (Ym,n), and let Ym,n = Y0 −→ Y1 −→ · · · −→ Yk = Y ′ be a transition from Ym,n

to Y ′ in MHRG(m,n). Note that E(Y0) = E(Ym,n) = Ym,n+1 ∈ T (Ym,n+1). Also, we
see by Lemma 8.5 that for 0 ≤ p < k, if E(Yp) ∈ T (Ym,n+1), then E(Yp+1) ∈ T (Ym,n+1).
Thus we obtain E(Y ′) ∈ T (Ym,n+1) by inductive argument. Therefore, we obtain

E(T (Ym,n)) ⊂ T (Ym,n+1). (8.2)

Moreover, it is obvious from Lemma 8.5 that

E(O(Y )) ⊆ O(E(Y )) (8.3)

for Y ∈ T (Ym,n+1).

Lemma 8.6. It follows that dc(Y ) = dc+1(Y ) for all Y ∈ T (Ym,n+1).

Proof. Suppose, for a contradiction, that there exists Y ∈ T (Ym,n+1) such that dc(Y ) 6=
dc+1(Y ). Let V ⊂ T (Ym,n+1) be the subset of T (Ym,n+1) consisting of elements Y ∈
T (Ym,n+1) such that dc(Y ) 6= dc+1(Y ); also, let Y0 ∈ V be such that #(Y0) ≥ #(Y ) for
all Y ∈ V . Since c ≥ 0 and (dc(Y0), dc+1(Y0)) satisfies the adjacency requirement, we
have dc(Y0) = dc+1(Y0) + 1 and dc(Y0) ↘ dc+1(Y0).
Since Y0 6= Ym,n+1, there exists Y1 ∈ T (Ym,n+1) such that Y1 → Y0. Note that

#(Y1) ≥ #(Y0), which implies that Y1 /∈ V by the maximality of Y0. Thus we have
dc(Y1) = dc+1(Y1) and dc(Y1) ↗ dc+1(Y1). By Lemma 7.13, we set that for p = 0, 1,
the number tp of boxes in Yp having the number α̂m,n = (m+ n)/2 is equal to dc(Yp) +
dc+1(Yp). Thus, t1− t0 is odd. If two hooks are removed in Y1 → Y0, then the two hooks
have the same multiset of numbers. Thus t1− t0 is even, but this contradict the fact that
t1−t0 is odd. Consequently, one hook is removed in Y1 → Y0. Hence dc(Y0) = dc(Y1) and
dc+1(Y0) = dc+1(Y1)− 1 by 0 ≤ dk(Y1)− dk(Y0) ≤ 1 for −m ≤ k ≤ n. Also, there exists

c+1 ≤ k = k(Y1) < n+1 such that d(Y1)
c+1,k−−−−→ d(Y0) and d(Y0)[n+1−m−k,c] /∈ Dm,n+1.

Note that n+1−m−(c+1) = c. By Lemma 7.12, we have dn−m−k(Y1) ↘ dn+1−m−k(Y1),
dc(Y1) ↗ dc+1(Y1), and dk(Y1) ↘ dk+1(Y1). Now we choose Y1 such that k = k(Y1) is
maximum.

Suppose that Y1 = Ym,n+1. In this case, we have dp(Y1) ↗ dp+1(Y1) for −m ≤
p < n − m, and dp(Y1) ↘ dp+1(Y1) for n − m ≤ p ≤ n. Since c ≤ n − m, we have
dn−m−k(Y1) ↗ dn+1−m−k(Y1) and dn−m−k(Y0) ↗ dn+1−m−k(Y0) by Lemma 7.12. Thus
we have d(Y0)[n+1−m−k,c] ∈ Dm,n+1 by Lemma 7.12, which is a contradiction. Hence we
obtain Y1 6= Ym,n+1. Then, there exists Y2 ∈ T (Ym,n+1) such that Y2 → Y1. Note that
dc(Y2) = dc+1(Y2) and dc(Y2) ↗ dc+1(Y2).

Suppose that dn−m−k(Y2) ↘ dn+1−m−k(Y2) and dk(Y2) ↘ dk+1(Y2). By Lemma
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7.12, we have d(Y2)[c+1,k] ∈ Dm,n+1. Let Y ′
1 ∈ F(Ym,n+1) be the Young diagram whose

diagonal expression is equal to d(Y2)[c+1,k]; also, notice that dc(Y
′
1) 6= dc+1(Y

′
1) and

dn−m−k(Y
′
1) ↘ dn+1−m−k(Y

′
1). Since d(Y ′

1)[n+1−m−k,c] /∈ Dm,n+1, it follows that Y ′
1 ∈

O(Y2) and hence Y ′
1 ∈ V . Since #(Y1) − #(Y0) = #(Y2) − #(Y ′

1), we have #(Y ′
1) =

#(Y2)−#(Y1) + #(Y0) > #(Y0) which contradicts the maximality of Y0.
Suppose that dn−m−k(Y2) ↘ dn+1−m−k(Y2) and dk(Y2) ↗ dk+1(Y2). If two hooks are

removed in Y2 → Y1, then there exist −m < l ≤ r < n and Y ′ ∈ F(Ym,n) such that

d(Y2)
l,r−→ d(Y ′)

n+1−m−r,n+1−m−l−−−−−−−−−−−−−−→ d(Y1).

Since dk(Y2) ↗ dk+1(Y2) and dk(Y1) ↘ dk+1(Y1), we have

d(Y2)
k+1,r−−−−→ d(Y ′)

n+1−m−r,n−m−k−−−−−−−−−−−−→ d(Y1)

or

d(Y2)
l,n−m−k−−−−−−→ d(Y ′)

k+1,n+1−m−l−−−−−−−−−−→ d(Y1).

Thus we have dn−m−k(Y1) ↗ dn+1−m−k(Y1), another contradiction. Hence one hook is
removed in Y2 → Y1. Then there exist p ≥ k + 1 such that

d(Y2)
k+1,p−−−−→ d(Y1).

Note that d(Y1)[n+1−m−p,n−m−k] /∈ Dm,n+1, also, that dn−m−p(Y2) ↘ dn+1−m−p(Y2) and
dp(Y2) ↘ dp+1(Y2). By Lemma 7.12, we have d(Y2)[c+1,p] ∈ Dm,n+1. Let Y

′
1 ∈ F(Ym,n+1)

be the Young diagram whose diagonal expression is equal to d(Y2)[c+1,p]; notice that
dc(Y

′
1) 6= dc+1(Y

′
1). Since d(Y ′

1)[n+1−m−p,c] /∈ Dm,n+1, it follows that Y
′
1 ∈ O(Y2). Hence

Y ′
1 = d(Y2)[c+1,p] = (d(Y2)[k+1,p])[c+1,k] = Y0 which contradicts the maximality of k.
Suppose that dn−m−k(Y2) ↗ dn+1−m−k(Y2) and dk(Y2) ↘ dk+1(Y2). If two hooks are

removed in Y2 → Y1, then there exist −m < l ≤ r < n and Y ′ ∈ F(Ym,n) such that

d(Y2)
l,r−→ d(Y ′)

n+1−m−r,n+1−m−l−−−−−−−−−−−−−−→ d(Y1).

Since dn−m−k(Y2) ↗ dn+1−m−k(Y2) and dn−m−k(Y1) ↘ dn+1−m−k(Y1), we have

d(Y2)
n+1−m−k,r−−−−−−−−→ d(Y ′)

n+1−m−r,k−−−−−−−−→ d(Y1)

or

d(Y2)
l,k−−→ d(Y ′)

n+1−m−k,n+1−m−l−−−−−−−−−−−−−−→ d(Y1).

Thus we have dk(Y1) ↗ dk+1(Y1), another contradiction, hence one hook is removed in
Y2 → Y1. Consequently, there exist p ≥ n+ 1−m− k such that

d(Y2)
n+1−m−k,p−−−−−−−−→ d(Y1).

Note that d(Y1)[n+1−m−p,k] /∈ Dm,n+1 and dn−m−p(Y2) ↘ dn+1−m−p(Y2), dp(Y2) ↘
dp+1(Y2). Since dc(Y2) ↗ dc+1(Y2), we have p 6= c. By Lemma 7.12, we have
d(Y2)[c+1,max(p,n+1−m−p)] ∈ Dm,n+1. Also, notice that c + 1 ≤ max(p, n + 1 − m − p)
since p 6= c. Let Y ′

1 ∈ F(Ym,n+1) be the Young diagram whose diagonal expres-
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sion is equal to d(Y2)[c+1,max(p,n+1−m−p)]; note that dc(Y
′
1) 6= dc+1(Y

′
1). Since

d(Y ′
1)[min{p,n+1−m−p},c] /∈ Dm,n+1, it follows that Y ′

1 ∈ O(Y2) and hence Y ′
1 ∈ V .

If max(p, n + 1 − m − p) ≤ k, then #(Y1) − #(Y0) ≥ #(Y2) − #(Y ′
1) and hence

#(Y ′
1) ≥ #(Y2) − #(Y1) + #(Y0) > #(Y0). If max(p, n + 1 − m − p) > k, then

#(Y2) −#(Y1) > #(Y2) −#(Y ′
1) and, hence, #(Y ′

1) > #(Y1) > #(Y0). In any case, we
obtain #(Y ′

1) > #(Y0), which contradicts the maximality of Y0.
Suppose that dn−m−k(Y2) ↗ dn+1−m−k(Y2) and dk(Y2) ↗ dk+1(Y2). Let Y

′
1 ∈ O(Y2).

If dn−m−k(Y
′
1) ↘ dn+1−m−k(Y

′
1) and dk(Y

′
1) ↘ dk+1(Y

′
1), then by Lemma 7.12, we have

d(Y2)
n+1−m−k,n−m−k−−−−−−−−−−−−−→ d(Y ′)

k+1,k−−−−→ d(Y ′
1)

or

d(Y2)
k+1,k−−−−→ d(Y ′)

n+1−m−k,n−m−k−−−−−−−−−−−−−→ d(Y ′
1)

for Y ′ ∈ F(Ym,n), which is a contradiction. Thus there exists no option Y ′
1 ∈ O(Y2) such

that dn−m−k(Y
′
1) ↘ dn+1−m−k(Y

′
1) and dk(Y

′
1) ↘ dk+1(Y

′
1), which contradicts Y2 → Y1.

Thus we have proved Lemma 8.6.

Theorem 8.7. Let m,n ∈ Z>0 be such that m ≤ n and m + n is even. Then the map
E gives an isomorphism from MHRG(m,n) to MHRG(m,n + 1). Therefore, for each
Y ∈ T (Ym,n), it holds that G(Y ) = G(E(Y )). In particular, G(Ym,n) in MHRG(m,n) is
equal to G(Ym,n+1) in MHRG(m,n+ 1).

Proof. We have shown that the map E : T (Ym,n) → T (Ym,n+1) is injective (see (8.2))
and E(O(Y )) ⊆ O(E(Y )) for Y ∈ T (Ym,n) (see (8.3)). Hence it remains to show that
E(O(Y )) ⊇ O(E(Y )) for Y ∈ T (Ym,n) and E(T (Ym,n)) = T (Ym,n+1).
We first show that E(O(Y )) ⊇ O(E(Y )). Let Y ∈ T (Ym,n), and let X ∈ O(E(Y )).

There exists −m < l ≤ r < n such that

d(Y )
l,r−→ d(X) (a)

or there exist −m < l ≤ r < n and X ′ ∈ F(Ym,n) such that

d(Y )
l,r−→ d(X ′)

n−m−r,n−m−l−−−−−−−−−−→ d(X). (b)

By Lemma 8.6, we have dc(E(Y )) ↗ dc+1(E(Y )) and r 6= c.
In the first case (a), we get d(X)[n+1−m−r,n+1−m−l] /∈ Dm,n+1. If l = c + 1, then

dc(X) ↘ dc+1(X) and dc(X) > dc+1(X), which contradicts Lemma 8.6. If l 6= c + 1,
then there exist −m < l0 ≤ r0 < n such that el(l0) = l, er(r0) = r. By Lemma 8.4,
we have d(Y )[l0,r0] ∈ Dm,n and (d(Y )[l0,r0])[n−m−r0,n−m−l0] /∈ Dm,n. Thus the Young
diagram Y ′ ∈ T (Ym,n) whose diagonal expression is equal to d(Y )[l0,r0] ∈ Dm,n is an
option of Y . By the proof of Lemma 8.5, we obtain X = E(Y ′) ∈ E(O(Y )).

Consider the second case (b). If l = c+1, then d(X) = (d(E(Y ))[c+1,r])[n+1−m−r,c] =
d(E(Y ))[n+1−m−r,r]. Then there exist −m < l0 ≤ r0 < n such that el(l0) = n+1−m−
r, er(r0) = r. By Lemma 8.3, we have el(n −m − r0) = el(n −m − r0) + er(r0) − r =
n−m+1−r = el(l0) and hence l0 = n−m−r0. By Lemma 8.4, we have d(Y )[l0,r0] ∈ Dm,n

and (d(Y )[l0,r0])[n−m−r0,n−m−l0] = d(Y )[l0,r0])[l0,r0] /∈ Dm,n. Thus the Young diagram
Y ′ ∈ T (Ym,n) whose diagonal expression is equal to d(Y )[l0,r0] ∈ Dm,n is an option of
Y . By the proof of Lemma 8.5, we obtain X = E(Y ′) ∈ E(O(Y )). If l 6= c + 1, then
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there exist −m < l0 ≤ r0 < n such that el(l0) = l, er(r0) = r. By Lemma 8.4, we have
d(Y )[l0,r0] ∈ Dm,n and (d(Y )[l0,r0])[n−m−r0,n−m−l0] ∈ Dm,n. Thus the Young diagram
Y ′ ∈ T (Ym,n) whose diagonal expression is equal to (d(Y )[l0,r0])[n−m−r0,n−m−l0] ∈ Dm,n

is an option of Y . By the proof of Lemma 8.5, we obtain X = E(Y ′) ∈ E(O(Y )). In any
case, we obtain X ∈ E(O(Y )), as desired.
We next show that E(T (Ym,n)) = T (Ym,n+1). Let X

′ ∈ T (Ym,n+1), and let Ym,n+1 =
X0 −→ X1 −→ · · · −→ Xk = X ′ be a transition from Ym,n+1 to X ′ in MHRG(m,n+1). We
show by induction on k that X ′ ∈ E(T (Ym,n)). If k = 0, then X ′ = Ym,n+1 = E(Ym,n) ∈
E(T (Ym,n)). Assume that k > 0; note that Xk−1 ∈ E(T (Ym,n)) by the induction
hypothesis. Let X ′

k−1 ∈ T (Ym,n) be such that Xk−1 = E(X ′
k−1). Since E(O(X ′

k−1)) =
O(E(X ′

k−1)) = O(Xk−1) as shown above, we get X ′ = Xk ∈ O(Xk−1) = E(O(X ′
k−1)) ⊂

E(T (Ym,n)), as desired. Therefore, we conclude that E(T (Ym,n)) ⊃ T (Ym,n+1) and
hence E(T (Ym,n)) = T (Ym,n+1). This completes the proof of Theorem 8.7.

9 Sprague-Grundy Values of the Starting Position of

MHRG(m,n) with m = 1 or 2

9.1 Case of MHRG(1, n)

Theorem 9.1. Let m = 1 and n ∈ Z>0. In MHRG(1, n),

T (Y1,n) =

{
F(Y1,n) if n is odd,

F(Y1,n) \ {Y1,n2
} if n is even.

Moreover, for 0 ≤ l ≤ n such that Y1,l ∈ T (Y1,n),

G(Y1,l) =


l if n is odd,

l if n is even and l < n/2,

l − 1 if n is even and n/2 < l.

In particular,

G(Y1,n) =

{
n if n is odd,

n− 1 if n is even.

Proof. By Theorem 8.7, it suffices to show the assertion for the case that n is odd.
We set k = (n + 1)/2 ∈ Z>0. We see that for 0 ≤ l ≤ n, the unimodal numbering of

Y1,l ∈ F(Y1,n) is as follows:

1 2 · · · l−1 l if 0 ≤ l ≤ k,

1 2 · · · k−1 k k−1 · · · n+2−ln+1−l if k < l ≤ n.

By this fact, we deduce that in MHRG(1, n) (with odd n), the operation removing two
hooks never takes place. Hence, we obtain O(Y1,l) = {Y1,i | 0 ≤ i < l} for all 0 ≤ l ≤ n.
The assertion of the theorem follows immediately from the latter and the definition of
the G-value.
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9.2 Case of MHRG(2, n)

Let m = 2 and n ≥ 2. Recall that Y = (k1,k2) denotes the Young diagram having k1

boxes in the 1st row and k2 boxes in the 2nd row. If n is even, then MHRG(2, n) is
isomorphic to MHRG(2, n + 1) (see Theorem 8.7). Thus it suffices to study the case in
which n is even; we set n′ := n/2 ∈ Z>0.

Lemma 9.2. Let (k1,k2) ∈ F(Y2,2n′) and k′
1,k

′
2 ∈ Z≥0 with 2n′ ≥ k′

1 ≥ k′
2 ≥ 0.

Then (k1,k2) = (k′
1,k

′
2) if and only if dk′

1−1(Y ) ↘ dk′
1
(Y ), dk′

2−2(Y ) ↘ dk′
2−1(Y ), and

dk−1(Y ) ↗ dk(Y ) for −2 < k ≤ 2n′ = n with k 6= k′
1,k

′
2 − 1.

Proof. If k2 = 0, then (k1, 0) = (k′
1,k

′
2) if and only if k′

2 = 0, d−1(Y ) = 0, dk(Y ) = 1
for 0 ≤ k < k′

1, and dk(Y ) = 0 for k′
1 ≤ k < 2n′. The latter is equivalent to dk′

1−1(Y ) ↘
dk′

1
(Y ), dk′

2−2(Y ) ↘ dk′
2−1(Y ), and dk−1(Y ) ↗ dk(Y ) for −2 < k ≤ 2n′ = n with

k 6= k′
1,k

′
2 − 1.

If k2 > 0, then (k1,k2) = (k′
1,k

′
2) if and only if d−1(Y ) = 1, dk(Y ) = 2 for 0 ≤ k <

k′
2 − 1, dk(Y ) = 1 for k′

2 − 1 ≤ k < k′
1, and dk(Y ) = 0 for k′

1 ≤ k < 2n′. The latter
is equivalent to dk′

1−1(Y ) ↘ dk′
1
(Y ), dk′

2−2(Y ) ↘ dk′
2−1(Y ), and dk−1(Y ) ↗ dk(Y ) for

−2 < k ≤ 2n′ = n with k 6= k′
1,k

′
2 − 1.

Thus we have proved the lemma.

Lemma 9.3. Let Y = (k1,k2) ∈ F(Y2,2n′) and (i, j) ∈ Y . Also, set Y ′ = (k′
1,k

′
2) =

Y \ hY (i, j). Then, k′
1 + k′

2 = 2n′ if and only if there exists a box (i′, j′) ∈ Y ′ such
that Aα2,n

(hY (i, j)) = Aα2,n
(hY ′(i′, j′)). In this case, Y ′′ := Y ′ \ h′

Y (i
′, j′) is equal to

(2n′ − k2, 2n
′ − k1).

Proof. We first show the “if” part. By Lemma 7.7, there exist −2 < l, r < 2n′ such

that d(Y )
l,r−→ d(Y ′). If there exists a box (i′, j′) ∈ Y ′ such that Aα2,n(hY (i, j)) =

Aα2,n(hY ′(i′, j′)), then it follows from Lemma 7.14 that d(Y ′)[2n′−2−r,2n′−2−l] ∈ D2,2n′ .
Note that 2n′ − 2− l + 1 6= l. By Lemmas 7.12 and 9.2, the pair (r, 2n′ − 2− l) is equal
to (k1 − 1,k2 − 2) or (k2 − 2,k1 − 1), and hence k′

1 + k′
2 = (k1 + k2) − (r − l + 1) =

(k1 + k2)− (2− 2n′ + k1 − 1 + k2 − 2 + 1) = (k1 + k2)− (2n′ + k1 + k2) = 2n′.

We next show the “only if” part. As above, assume that d(Y )
l,r−→ d(Y ′). If

k′
1 + k′

2 = 2n′, then dk′
1−1(Y

′) ↘ dk′
1
(Y ′), d2n′−k′

1−2(Y
′) ↘ d2n′−k1−1(Y

′), and

dk−1(Y
′) ↗ dk(Y

′) for −2 < k ≤ 2n′ with k 6= k′
1, 2n

′ − k′
1 − 1. By Lemma 7.12,

we have l = k′
1 or l = 2n′ − k′

1 − 1. If l = k′
1, then r 6= 2n′ − k′

1 − 2 and hence
2n′ − 2 − r 6= k′

1. Thus, d(Y ′)[2n′−2−r,2n′−2−l] = d(Y ′)[2n′−2−r,2n′−2−k′
1]

∈ D2,2n′ .

If l = 2n′ − k′
1 − 1, then r 6= k′

1 − 1 and hence 2n′ − 2 − r 6= 2n′ − 1 − k′
1.

Thus, d(Y ′)[2n′−2−r,2n′−2−l] = d(Y ′)[2n′−2−r,k′
1−1] ∈ D2,2n′ . In both cases, we have

d(Y ′)[2n′−2−r,2n′−2−l] ∈ D2,2n′ , which implies that there exists a box (i′, j′) ∈ Y ′ such
that Aα2,n

(hY (i, j)) = Aα2,n
(hY ′(i′, j′)) (see Lemma 7.14).

Finally, let us show that Y ′′ := Y ′ \ hY ′(i′, j′) is equal to (2n′ − k2, 2n
′ − k1). By

Lemma 7.12, we have

d(Y )
l,r−→ d(Y ′)

2n′−2−r,2n′−2−l−−−−−−−−−−−→ d(Y ′′),

and dl−1(Y
′′) ↘ dl(Y

′′), d2n′−2−r−1(Y
′′) ↘ d2n′−2−r(Y

′′), and dk(Y
′′) ↗ dk(Y

′′) for
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−2 < k ≤ 2n′ with k 6= l, 2n′ − 2 − r. As seen above, the pair (r, 2n′ − 2 − l) is
equal to (k1 − 1,k2 − 2) or (k2 − 2,k1 − 1). If (r, 2n′ − 2 − l) = (k1 − 1,k2 − 2), then
l = 2n′ −k2 > 2n′ − 1−k1 = 2n′ − 2− l. Otherwise, if (r, 2n′ − 2− l) = (k2 − 2,k1 − 1),
then l = 2n′ − 1− k1 < 2n′ − k2 = 2n′ − 2− l. In both cases, we get d2n′−2−k1

(Y ′′) ↘
d2n′−1−k1(Y

′′), d2n′−k2−1(Y
′′) ↘ d2n′−k2(Y

′′), and dk(Y
′′) ↗ dk(Y

′′) for −2 < k ≤ 2n′

with k 6= 2n′ − 1− k1 and k 6= 2n′ − k2. Hence we obtain Y ′′ = (2n′ − k2, 2n
′ − k1) by

Lemma 9.2, as desired.

For Y ∈ F(Y2,2n′), we set OH(Y ) := {Y \ hY (i, j) | (i, j) ∈ Y }. If Y = (k1,k2), then

OH(Y ) = {(k′
1,k2) | k2 ≤ k′

1 < k1} ∪ {(k1,k
′
2) | 0 ≤ k′

2 < k2}
∪ {(k2 − 1,k′

1) | 0 ≤ k′
1 < k2}.

By Lemma 9.3, we can easily show the following lemma.

Lemma 9.4. In MHRG(2, 2n′),

T (Y2,2n′) = F(Y2,2n′) \ {(k′
1,k

′
2) ∈ F(Y2,2n′) | k′

1 + k′
2 = 2n′}.

Moreover, for Y = (k1,k2) ∈ F(Y2,2n′),

(1) if k1 + k2 < 2n′ , then O(Y ) = OH(Y );
(2) if k1 + k2 > 2n′ , then O(Y ) = OH(Y ) \ {(k′

1,k
′
2) ∈ F(Y2,2n′) | k′

1 + k′
2 =

2n′} ∪ {(2n′ − k2, 2n
′ − k1)}.

By Lemma 9.4, the G-value of Y = (k1,k2) ∈ T (Y2,2n′) with k1 + k2 < n = 2n′

is equal to the G-value of the game position corresponding to Y in Sato-Welter game
(see, e.g., [10, Theorem 2]). For later use, we list those Y = (k1,k2) ∈ T (Y2,2n′) with
k1 + k2 < 2n′ whose G-values are 0, 1, or 2.

G(Y ) = 0 G(Y ) = 1 G(Y ) = 2

(2i, 2i)
(1 + 4i, 4i)

(2 + 4i, 1 + 4i)

(2 + 4i, 4i)

(1 + 4i, 1 + 4i)

Table 6 Y = (k1,k2) ∈ F(Y2,2n′) with k1 + k2 < 2n′ whose G-values are 0, 1, or 2.

Theorem 9.5. As above, assume that n is even, and set n′ = n/2. In MHRG(2, 2n′),
the list of those Y = (k1,k2) ∈ F(Y2,2n′) with k1 + k2 > 2n′ whose G-values are 0,1 or
2 is given by Table 7.

Proof. We give a proof only for the case of n′ = 4n′′ for n′′ ∈ Z>0; the proofs of the
cases n′ = 4n′′ + 1, 4n′′ + 2, 4n′′ + 3 for n′′ ∈ Z≥0 are similar. We set Gk := {(k1,k2) ∈
T (Y2,2n′) | k1 + k2 > 2n′,G((k1,k2)) = k} for k ∈ Z≥0.
First, we determine G0. Let Y = (k1,k2) ∈ T (Y2,2n′) with k1 + k2 > 2n′. If k2 < n′

and k2 is even (resp., odd), then we deduce that Y ′ = (k2,k2) (resp., Y
′ = (k2−1,k2−1))

is contained in O(Y ). Since G(Y ′) = 0 by Table 6, we obtain Y /∈ G0.
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n′ G(Y ) = 0 G(Y ) = 1 G(Y ) = 2

4n′′ (n′ + 1 + 4i, n′ + 4i)

(n′ + 2 + 4i, n′ + 1 + 4i)

(n′ + 2, n′)

(n′ + 1, n′ + 1)

(n′ + 4 + 2i, n′ + 4 + 2i)

(n′ + 2, n′ + 2)

(n′ + 3, n′)

(n′ + 4, n′ + 1)

(n′ + 7 + 4i, n′ + 6 + 4i)

(n′ + 8 + 4i, n′ + 7 + 4i)

4n′′ + 1
(n′ + 2 + 4i, n′ + 1 + 4i)

(n′ + 3 + 4i, n′ + 2 + 4i)
(n′ + 2 + 2i, n′ + 2i)

(n′ + 1, n′)

(n′ + 2, n′ − 1)

(n′ + 3, n′ + 1)

(n′ + 5 + 2i, n′ + 5 + 2i)

4n′′ + 2
(n′ + 1 + 4i, n′ + 4i)

(n′ + 2 + 4i, n′ + 1 + 4i)
(n′ + 2 + 2i, n′ + 2 + 2i)

(n′ + 3 + 4i, n′ + 2 + 4i)

(n′ + 4 + 4i, n′ + 3 + 4i)

4n′′ + 3
(n′ + 2 + 4i, n′ + 1 + 4i)

(n′ + 3 + 4i, n′ + 2 + 4i)
(n′ + 1 + 2i, n′ + 1 + 2i)

(n′ + 4 + 8i, n′ + 1 + 8i)

(n′ + 5 + 8i, n′ + 2 + 8i)

(n′ + 6 + 8i, n′ + 3 + 8i)

(n′ + 7 + 8i, n′ + 4 + 8i)

Table 7 Y = (k1,k2) ∈ F(Y2,2n′) with k1 + k2 > 2n′ whose G-values are 0, 1, or 2.

Now, we see by Lemma 9.4 that

O((n′ + 1, n′)) =
(
{(n′, n′)} ∪ {(n′ + 1,k′

2) | 0 ≤ k′
2 < n′}

∪ {(n′ − 1,k′
1) | 0 ≤ k′

1 < n′}
)

\ {(k′
1,k

′
2) | k

′
1 + k′

2 = 2n′} ∪ {(n′, n′ − 1)}
= {(n′ + 1,k′

2) | 0 ≤ k′
2 < n′ − 1}

∪ {(n′ − 1,k′
1) | 0 ≤ k′

1 < n′} ∪ {(n′, n′ − 1)}.

Note that n′ = 4n′′ is even. By Table 6 and the argument above, it can be seen that
O((n′ + 1, n′)) has no position whose G-value is 0. Thus we get G((n′ + 1, n′)) = 0. If
Y ∈ {(n′ +1, n′ +1)}∪ {(k′

1, n
′) | n′ +2 ≤ k′

1 ≤ 2n′}∪ {(k′
1, n

′ +2) | n′ +2 ≤ k′
1 ≤ 2n′},

then (n′ + 1, n′) ∈ O(Y ), which implies that Y /∈ G0.
Similarly, we see by Lemma 9.4 that

O((n′ + 2, n′ + 1)) =
(
{(n′ + 1, n′ + 1)} ∪ {(n′ + 2,k′

2) | 0 ≤ k′
2 < n′ + 1}

∪ {(n′,k′
1) | 0 ≤ k′

1 < n′ + 1}
)

\ {(k′
1,k

′
2) | k

′
1 + k′

2 = 2n′} ∪ {(n′ − 1, n′ − 2)}
= {(n′ + 1, n′ + 1)}

∪
(
{(n′ + 2,k′

2) | 0 ≤ k′
2 < n′ + 1} \ {(n′ + 2, n′ − 2)}

)
∪ {(n′,k′

1) | 0 ≤ k′
1 < n′} ∪ {(n′ − 1, n′ − 2)}.

By Table 6 and the argument above, we deduce that O((n′ + 2, n′ + 1)) has no position
whose G-value is 0. Thus we obtain G((n′ + 2, n′ + 1)) = 0. If Y ∈ {(n′ + 2, n′ +
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2)} ∪ {(k′
1, n

′ + 1) | n′ + 3 ≤ k′
1 ≤ 2n′} ∪ {(k′

1, n
′ + 3) | n′ + 3 ≤ k′

1 ≤ 2n′}, then
(n′ + 2, n′ + 1) ∈ O(Y ), which implies that Y /∈ G0. Therefore, for Y = (k1,k2) ∈
F(Y2,2n′) with n′ ≤ k2 ≤ n′ + 3 and k2 ≤ k1 ≤ 2n′,

Y ∈ G0 if and only if Y = [(n′ + 1, n′), (n′ + 2, n′ + 1)]. (9.1)

Let i ∈ Z>0 with n′+4+4i ≤ 2n′. By Lemma 9.4, (n′+4+4i, n′+4+4i) → (n′−4−
4i, n′−4−4i). Since G((n′−4−4i, n′−4−4i)) = G((4n′′−4−4i, 4n′′−4−4i)) = 0 by Table
6, we obtain G((n′+4+4i, n′+4+4i)) 6= 0. Furthermore, in the same way that (9.1) was
obtained, it can be verified that for Y = (k1,k2) ∈ F(Y2,2n′) with n′+4i ≤ k2 ≤ n′+3+4i
and k2 ≤ k1 ≤ 2n′, Y ∈ G0 if and only if Y = [(n′+1+4i, n′+4i), (n′+2+4i, n′+1+4i)].
Therefore, we obtain

G0 =
(
{(n′ + 1 + 4i, n′ + 4i) | i ≥ 0} ∪ {(n′ + 2 + 4i, n′ + 1 + 4i) | i ≥ 0}

)
∩ F(Y2,2n′),

as desired.
Next, we determine G1. Let Y = (k1,k2) ∈ T (Y2,2n′) with k1 + k2 > 2n′. Similar to

the determination of G0, if k2 < n′, then Y /∈ G1. By Table 6 and G((n′ + 1, n′)) = 0,
we deduce that O((n′ + 2, n′)) and O((n′ + 1, n′ + 1)) have no position whose G-value is
1, but we have a position (n′ + 1, n′), whose G-value is 0. Thus we get G((n′ + 2, n′)) =
G((n′ + 1, n′ + 1)) = 1. If Y ∈ {(k′

1, n
′) | n′ + 2 ≤ k′

1 ≤ 2n′} ∪ {(k′
1, n

′ + 1) | n′ + 1 ≤
k′
1 ≤ 2n′} ∪ {(k′

1, n
′ + 2) | n′ + 1 ≤ k′

1 ≤ 2n′} ∪ {(k′
1, n

′ + 3) | n′ + 2 ≤ k′
1 ≤ 2n′}, then

(n′ +2, n′) ∈ O(Y ) or (n′ +1, n′ +1) ∈ O(Y ), which implies that Y /∈ G1. Therefore, for
Y = (k1,k2) ∈ F(Y2,2n′) with n′ ≤ k2 ≤ n′ + 3 and k2 ≤ k1 ≤ 2n′, Y ∈ G1 if and only
if Y = (n′ + 2, n′), (n′ + 1, n′ + 1).

We see by Lemma 9.4 that

O((n′ + 4, n′ + 4)) =
(
{(n′ + 4,k′

2) | 0 ≤ k′
2 < n′ + 3}

∪ {(n′ + 3,k′
1) | 0 ≤ k′

1 < n′ + 3}
)

\ {(k′
1,k

′
2) | k

′
1 + k′

2 = 2n′} ∪ {(n′ − 4, n′ − 4)}.

By Table 6 and the argument above, we deduce that O((n′ + 2, n′ + 1)) has no position
whose G-value is 1, but we have a position (n′ − 4, n′ − 4), whose G-value is 0. Thus we
get G((n′ + 4, n′ + 4)) = 1. If Y ∈ {(k′

1, n
′ + 4) | n′ + 5 ≤ k′

1 ≤ 2n′} ∪ {(k′
1, n

′ + 5) |
n′ + 5 ≤ k′

1 ≤ 2n′}, then (n′ + 4, n′ + 4) ∈ O(Y ), which implies that Y /∈ G1. Therefore,
for Y = (k1,k2) ∈ F(Y2,2n′) with n′ + 4 ≤ k2 ≤ n′ + 5 and k2 ≤ k1 ≤ 2n′, Y ∈ G1 if
and only if Y = (n′ + 4, n′ + 4). Similarly, for each i ∈ Z>0 (with n′ + 4 + 2i ≤ 2n′), it
can be verified that for Y = (k1,k2) ∈ F(Y2,2n′) with n′ +4+ 2i ≤ k2 ≤ n′ +5+ 2i and
k2 ≤ k1 ≤ 2n′, Y ∈ G1 if and only if Y = (n′ +4+ 2i, n′ +4+ 2i). Therefore, we obtain

G1 =
(
{(n′ + 2, n′), (n′ + 1, n′ + 1)} ∪ {(n′ + 4 + 2i, n′ + 4 + 2i) | i ≥ 0}

)
∩ F(Y2,2n′)

as desired.
Finally, we determine G2. Let Y = (k1,k2) ∈ T (Y2,2n′) with k1 + k2 > 2n′. Similar
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to G0 and G1, we determine G2 as follows.

• If k2 < n′, then Y /∈ G2.
• If n′ ≤ k2 ≤ n′ + 5 and k2 ≤ k1 ≤ 2n′, then Y ∈ G1 if and only if Y =
(n′ + 2, n′ + 2), (n′ + 3, n′), (n′ + 4, n′ + 1).

• For each i ∈ Z≥0 (with n′ + 6 + 4i ≤ 2n′), if n′ + 6 + 4i ≤ k2 ≤ n′ + 9 + 4i and
k2 ≤ k1 ≤ 2n′, then Y ∈ G0 if and only if Y = (n′ + 7+ 4i, n′ + 6+ 4i), (n′ + 8+
4i, n′ + 7 + 4i).

Therefore, we obtain

G2 =
(
{(n′ + 2, n′ + 2), (n′ + 3, n′), (n′ + 4, n′ + 1)}

∪ {(n′ + 7 + 4i, n′ + 6 + 4i) | i ≥ 0}

∪ {(n′ + 8 + 4i, n′ + 7 + 4i) | i ≥ 0}
)
∩ F(Y2,2n′),

as desired. This complete the proof of Theorem 9.5.

The following is an immediate consequence of Theorem 9.5, together with Theorem
8.7.

Corollary 9.6. Let n ≥ 2. In MHRG(2, n), the G-value of the starting position Y2,n is
given as follows:

G(Y2,n) =


3 if n = 2, 3,

2 if n 6= 2, 3, and n ≡ 2, 3 mod 8,

1 otherwise.

Proof. We can easily calculate the G-value of the starting position in the cases that
n = 2, 3. In the other case, we can prove the equality by Theorem 9.5 and Theorem
8.7.

10 Relation between MHRG and HRG in terms of Shifted

Young Diagrams

10.1 Hooks of a Shifted Young Diagram

Definition 10.1. For a box (i, j) of a shifted Young diagram S, we define

armS(i, j) := {(i′, j′) ∈ S | i = i′, j < j′},
legS(i, j) := {(i′, j′) ∈ S | i < i′, j = j′},
tailS(i, j) := {(i′, j′) ∈ S | j + 1 = i′, j < j′},
hS(i, j) := {(i, j)} t armS(i, j) t legS(i, j) t tailS(i, j).

The set hS(i, j) is called the hook corresponding to the box (i, j).

Example 10.2. In the figures below, the shadowed boxes form the hook corresponding
to the box v = (i, j).
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(a):
v

(b):
v

(c):
v

Definition 10.3. For a box (i, j) of a shifted Young diagram S, we remove the hook
hS(i, j) corresponding to the box (i, j) as follows:

1. Remove all boxes in the hook hS(i, j).
2. Move each box (i′, j′) satisfying j + 1 > i′ > i and j′ > j to (i′ − 1, j′ − 1).
3. Move each box (i′, j′) satisfying i′ > j + 1 to (i′ − 2, j′ − 2).

Example 10.4. If we remove the hook corresponding to the box (2, 3) from the shifted
Young diagram S = (7, 6, 4, 3, 2), then we get S′ = (7, 4, 2).

→
↖ ↖
↖

↖ ↖
↖

→

Definition 10.5. A Hook Removing Game (HRG for short) in terms of shifted Young
diagrams is an impartial combinatorial game. The rules of this game are as follows:

(HS1) Given a shifted Young diagram S, each player chooses a box (i, j) ∈ S, and remove
the hook hS(i, j) corresponding to the box (i, j) from S on his/her turn.

(HS2) The player who makes the empty shifted Young diagram ∅ wins.

We denote HRG (in terms of shifted Young diagrams) whose starting position is a
shifted Young diagram S by HRG(S). It is clear from the definition of HRG(S) that
F(S) is identical to the set of all positions in HRG(S).

Proposition 10.6. Let S = (k1,k2, . . . ,kn) be a shifted Young diagram, and let T be
a shifted Young diagram containing S. The G-value of S in HRG(T ) is equal to

G(S) =
⊕

1≤i≤n

ki,

where
⊕

i ai denotes the nim-sum (the addition of numbers in binary form without carry)
of all ai’s.

While this formula is (apparently) well-known by experts, will deduce it from the
results of [10], or by the fact that HRG(S) is isomorphic to Turning Turtles (for Turning
Turtles, see, e.g., [21, page 182]).

10.2 Diagonal Expression of a Shifted Young Diagram

We now describe the diagonal expression for shifted Young diagrams. Fix n ∈ Z>0. An
element b ∈ Zn+1

≥0 is written as b = [b0, . . . , bn]. Also, we denote by SDn ⊂ Zn+1
≥0 the set

of all elements b = [b0, . . . , bn] ∈ Zn+1
≥0 with bn = 0 satisfying 0 ≤ bk − bk+1 ≤ 1 for 0 ≤

k < n.
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Let S ∈ F(SYn); recall that SYn = {(i, j) ∈ Z2
>0 | 1 ≤ i ≤ n, i ≤ j ≤ n}. We set

dk = dk(S) := #{(i, j) ∈ S | j − i = k} for k ∈ Z. Note that if k ≥ n, then dk = 0.
As in Proposition 7.5, we deduce that sd(S) = sdn(S) := [d0(S), . . . , dn(S)] ∈ SDn for
S ∈ F(SYn) and the fact that the map sd = sdn : F(SYn) → SDn, S 7→ sd(S) is
bijective.

Definition 10.7. We call sd(S) = sdn(S) the diagonal expression of S ∈ F(SYn).

Let b = [b0, . . . , bn] ∈ SDn, b
′ = [b′0, . . . , b

′
n] ∈ Zn+1

≥0 , and 0 ≤ l ≤ r < n. If

b′k =

{
bk − 1 if l ≤ k ≤ r,

bk otherwise,

then we write b
l,r−→ b′. If

b′k =


bk − 2 if 0 ≤ k ≤ r′ < r,

bk − 1 if r′ < k ≤ r,

bk otherwise,

then we write b
0,r−−→ 0,r′−−→ b′ (or b

0,r′−−→ 0,r−−→ b′). Otherwise, if

b′k =


bk − 2 if 0 ≤ k ≤ r′ < r,

bk − 1 if r′ < k ≤ r,

bk otherwise,

then b′ ∈ SDn.

Lemma 10.8. Let S, S′ ∈ F(SYn). The following are equivalent.

(1) There exists a box (i, j) ∈ S such that S′ = S \ hS(i, j).

(2) There exists 0 ≤ l ≤ r < n such that sd(S)
l,r−→ sd(S′) or we have 0 ≤ r′ < r < n

such that sd(S)
0,r−−→ 0,r′−−→ sd(S′).

Let us explain the key point of a proof of the lemma by using some examples. Let
S ∈ F(SYn), and write sd(S) as sd(S) = [d0, . . . , dn] for S ∈ F(SYn). Let us consider
(1) =⇒ (2). If h(S) ≤ j, then the removed hook hs(i, j) is of the form either (b) or (c)

in Example 10.2. Thus, there exist 0 ≤ l ≤ r < n such that sd(S)
l,r−→ sd(S′). For

example, let S be as in Example 10.2, and let S′ = S \ hS(2, 6). Note that the right-half
of S is an (ordinary) Young diagram. Removing the hook hs(i, j) of this form from S
naturally corresponds to removing a hook from the Young diagram (see [14, Chapter 4]).

S = → S′ =
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In the diagonal expression, we see that

sd(S) = [5, 5, 4, 3, 2, 2, 1, 0], sd(S′) = [5, 4, 3, 2, 1, 1, 1, 0],

and hence sd(S)
1,5−−→ sd(S′).

If j < h(S), then the removed hook is of the form (a) in Example 10.2. In this case,

we deduce that sd(S)
0,r−−→ 0,r′−−→ sd(S′) for some 0 ≤ r′ < r < n. For example, let S be as

in Example 10.2, and let S′ = S \ hS(2, 3).

S = → S′ =

In the diagonal expression, we see that

sd(S) = [5, 5, 4, 3, 2, 2, 1, 0], sd(S′) = [3, 3, 2, 2, 1, 1, 1, 0],

and hence sd(S)
0,5−−→ 0,2−−→ sd(S′).

The implication (2) =⇒ (1) can be verified as in Lemma 7.7.

Definition 10.9. A sequence (a−m, . . . , an) ∈ Dm,n is said to be symmetric if ai =
an−m−i for all −m ≤ i ≤ n.

Lemma 10.10.

(1) Let Y ∈ F(Yn,n). The sequence d(Y ) ∈ Dn,n is symmetric if and only if Y ∈
T (Yn,n).

(2) Let Y ∈ F(Yn,n+1). The sequence d(Y ) ∈ Dn,n+1 is symmetric if and only if
Y ∈ T (Yn,n+1).

Proof. By Theorem 8.7, we need only to show part (1) since it is clear that for Y ∈
T (Yn,n), d(Y ) is symmetric if and only if d(E(Y )) is symmetric. We show by induction
on #Y that if Y ∈ T (Yn,n), then d(Y ) = (d−n(Y ), . . . , dn(Y )) ∈ Dn,n is symmetric.
If Y = Yn,n, then d(Yn,n) = (0, 1, . . . , n − 1, n, n − 1, . . . , 1, 0) is symmetric. Assume

that Y 6= Yn,n. Then there exists Ŷ ∈ T (Yn,n) such that Ŷ → Y . Note that d(Ŷ ) =

(d−n(Ŷ ), . . . , dn(Ŷ )) is symmetric by the induction hypothesis, and dk−1(Ŷ ) ↗ dk(Ŷ ) if

and only if d−k(Ŷ ) ↘ d−k+1(Ŷ ) for −n < k ≤ n. Then,

(i) there exist −n < l ≤ r < n such that d(Ŷ )
l,r−→ d(Y ), or

(ii) there exist −n < l ≤ r < n such that d(Ŷ )
l,r−→ d(Ŷ ′)

l′=−r,r′=−l−−−−−−−−→ d(Y ).

Let us consider case (i). Suppose that l 6= −r. Note that dl−1(Ŷ ) ↗ dl(Ŷ ), d−l(Ŷ ) ↘
d−l+1(Ŷ ), dr(Ŷ ) ↘ dr+1(Ŷ ), and d−r−1(Ŷ ) ↗ d−r(Ŷ ). By Lemma 7.12, we have
d−r−1(Y ) ↗ d−r(Y ) and d−l(Y ) ↘ d−l+1(Y ). Thus d(Y )[−r,−l] ∈ Dn,n by Lemma 7.14,

but this is a contradiction. Hence we deduce that l = −r. Then we have d(Ŷ )
−r,r−−−→ d(Y ).

In this case, it is obvious that d(Y ) ∈ Dn,n is symmetric.
Let us consider case (ii). We will show that dk(Y ) = d−k(Y ) for any −n < k < n.

Assume that l ≤ k ≤ r and −r ≤ k ≤ −l. In this case, we have dk(Ŷ ) = dk(Ŷ
′) + 1 =
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dk(Y ) + 2. Since l ≤ −k ≤ r and −r ≤ −k ≤ −l, we have d−k(Ŷ ) = d−k(Ŷ
′) + 1 =

d−k(Y ) + 2 . Thus we have dk(Y ) = dk(Ŷ )− 2 = d−k(Ŷ )− 2 = d−k(Y ). The proofs for
the other cases are similar. Hence d(Y ) ∈ Dn,n is symmetric.
Next, we show that if d(Y ) = (d−n(Y ), . . . , dn(Y )) ∈ Dn,n is symmetric, then Y ∈

T (Yn,n). Let A := {0 ≤ i ≤ n − 1 | di = di+1 + 1} and write it as A = {i1, i2, . . . , ik}.
Then there exists a transition Yn,n = Y0 −→ Y1 −→ Y2 −→ · · · −→ Yk−1 −→ Yk = Y such that

d(Yl−1)
−il,il−−−→ d(Yl) for 1 ≤ l ≤ k. Thus we obtain Y ∈ T (Yn,n), as desired.

Let a = (a−n, an−1, . . . , a−1, ȧ0, a1, . . . , an, an+1) ∈ Dn,n+1. Assume that

â := [a1, a2, . . . , an, an+1] ∈ Zn+1
≥0 .

By the definition of Dn,n+1, we thus have â ∈ SDn.

Definition 10.11. The map A : T (Yn,n+1) → F(SYn) is defined as follows. If the
diagonal expression of Y ∈ T (Yn,n+1) is

d(Y ) = (a−n, an−1, . . . , a−1, ȧ0, a1, . . . , an, an+1),

then we define A(Y ) ∈ F(SYn) to be the shifted Young diagram in F(SYn) whose
diagonal expression is equal to

sd(A(Y )) = [a1, a2, . . . , an, an+1].

Lemma 10.12. Let Y ∈ T (Yn,n+1), and let Y ′ ∈ O(Y ). Also, set S := A(Y ) ∈ F(SYn).
Then there exists S′ ∈ O(S) such that A(Y ′) = S′.

Proof. Since Y ′ ∈ O(Y ), we see that

(i) there exist −n < l ≤ r < n+ 1 such that d(Y )
l,r−→ d(Y ′), or

(ii) there exist −n < l ≤ r < n + 1 and Y ′′ ∈ F(Yn,n+1) such that d(Y )
l,r−→

d(Y ′′)
−r+1,−l+1−−−−−−−→ d(Y ′).

First, we consider case (i). By the proof of Lemma 10.10, we see that l = −r + 1 and

hence d(Y )
−r+1,r−−−−−→ d(Y ′). In this case, we have dr−1(S) = dr(S) + 1. Let S′ ∈ F(SYn)

be such that sd(S)
0,r−1−−−−→ sd(S′). Then we deduce that A(Y ′) = S′.

Next, we consider case (ii). By the proof of Lemma 10.10, we see that l 6= −r+ 1 and
hence d(Y )[l,r], (d(Y )[l,r])[−r+1,−l+1] ∈ Dn,n+1.
Assume that 0 ≤ l ≤ r. In this case, we have dl−2(S) = dl−1(S) and dr−1(S) =

dr(S) + 1. Let S′ ∈ F(SYn) be such that sd(S)
l−1,r−1−−−−−→ sd(S′). Then we deduce that

A(Y ′) = S′.
Assume that l ≤ r ≤ 0. In this case, we have d−r−1(S) = d−r(S) and d−l(S) =

d−l+1(S) + 1. Let S′ ∈ F(SYn) be such that sd(S)
−r,−l−−−−→ sd(S′). Then we deduce that

A(Y ′) = S′.
Assume that l ≤ 0 < r. In this case, we have dr−1(S) = dr(S) + 1 and d−l(S) =

d−l+1(S) + 1. Let S′ ∈ F(SYn) be such that sd(S)
0,−l−−−→ 0,r−1−−−−→ sd(S′). Then we deduce

that A(Y ′) = S′.
Thus we have proved the lemma.
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Let b = [b0, b1, . . . , bn−1, bn] ∈ SDn. Assume that

b̂ := (b−n, bn−1, . . . , b−1, ḃ0, b0, b1, . . . , bn−1, bn) ∈ Z2n+2
≥0 .

By the definition of SDn, we have b̂ ∈ Dn,n+1.

Definition 10.13. The map B : F(SYn) → T (Yn,n+1) is defined as follows. If the
diagonal expression of Y ∈ F(SYn) is

sd(S) = [a0, a1, . . . , an−1, an].

then we define B(S) ∈ T (Yn,n+1) to be the rectangular Young diagram in T (Yn,n+1)
whose diagonal expression is equal to

d(B(S)) = (an, an−1, . . . , ȧ0, a0︸︷︷︸
1st

, a1, . . . , an−1, an︸︷︷︸
(n+1)-th

).

Lemma 10.14. Let S ∈ F(SYn), and let S′ ∈ O(S). Also, set Y := B(S) ∈ T (Yn,n+1).
Then there exists Y ′ ∈ O(Y ) such that B(S′) = Y ′.

Proof. Since S′ ∈ O(S), we see that

(i) there exist 0 ≤ l ≤ r < n such that sd(S)
l,r−→ sd(S′), or

(ii) there exist 0 ≤ r′ < r < n such that sd(S)
0,r−−→ 0,r′−−→ sd(S′).

First, we consider case (i). Assume that l = 0. In this case, dr(S) = dr+1(S) + 1.
Then, we have dr+1(B(S)) = dr+2(B(S)) + 1, d−r−1(B(S)) + 1 = d−r(B(S)), and hence

d(B(S))[−r,r+1] ∈ Dn,n+1 by Lemma 7.12. Let Y ′ ∈ O(Y ) be such that d(Y )
−r,r+1−−−−−→

d(Y ′). Then we deduce that B(S′) = Y ′. Assume that 0 < l ≤ r. In this case,
dl−1(S) = dl(S) and dr(S) = dr+1(S) + 1. Then, we have dl(B(S)) = dl+1(B(S)),
d−l(B(S)) = d−l+1(B(S)), dr+1(B(S)) = dr+2(B(S))+1, d−r−1(B(S))+1 = d−r(B(S)),
and hence d(B(S))[l+1,r+1], (d(B(S))[l+1,r+1])[−r,−l] ∈ Dn,n+1 by Lemma 7.12. Let

Y ′ ∈ O(Y ) be such that d(Y )
l+1,r+1−−−−−→ d(Y ′′)

−r,−l−−−−→ d(Y ′). Then we deduce that
B(S′) = Y ′.

Next, we consider case (ii). In this case, dr(S) = dr+1(S) + 1 and dr′(S) = dr′+1(S) +
1. Then, we have dr+1(B(S)) = dr+2(B(S)) + 1, d−r−1(B(S)) + 1 = d−r(B(S)),
dr′+1(B(S)) = dr′+2(B(S)) + 1, d−r′−1(B(S)) + 1 = d−r′(B(S)), and hence, by Lemma
7.12, we have d(B(S))[−r′,r+1], (d(B(S))[−r′,r+1])[−r,r′+1] ∈ Dn,n+1. Let Y ′ ∈ O(Y ) be

such that d(Y )
−r′,r+1−−−−−→ d(Y ′′)

−r,r′+1−−−−−→ d(Y ′). This implies that B(S′) = Y ′.
Thus we have proved the lemma.

The next theorem follows from Lemmas 10.12 and 10.14.

Theorem 10.15. For n ∈ Z>0, MHRG(n, n + 1) and HRG(SYn) are isomorphic. In
particular, G(Yn,n+1) in MHRG(n, n+ 1) is equal to G(SYn) in HRG(SYn).

Combining Proposition 10.6, Theorems 8.7, and 10.15, we obtain the following corol-
lary.

Corollary 10.16. In MHRG(n, n) (resp., MHRG(n, n+1)), the G-value of the starting
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position Yn,n (resp., Yn,n+1) is equal to

G(Yn,n) = G(Yn,n+1) =
⊕

1≤k≤n

k.

Example 10.17. Assume that n = 3. The G-value of Y3,4 =
3 3 2 1
2 3 3 2
1 2 3 3

is equal to

1⊕ 2⊕ 3 = 0.
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