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Abstract: Traditional Japanese orchards control the growth height of fruit trees for the convenience of
farmers, which is unfavorable to the operation of medium- and large-sized machinery. A compact,
safe, and stable spraying system could offer a solution for orchard automation. Due to the complex
orchard environment, the dense tree canopy not only obstructs the GNSS signal but also has effects
due to low light, which may impact the recognition of objects by ordinary RGB cameras. To overcome
these disadvantages, this study selected LiDAR as a single sensor to achieve a prototype robot
navigation system. In this study, density-based spatial clustering of applications with noise (DBSCAN)
and K-means and random sample consensus (RANSAC) machine learning algorithms were used
to plan the robot navigation path in a facilitated artificial-tree-based orchard system. Pure pursuit
tracking and an incremental proportional–integral–derivative (PID) strategy were used to calculate
the vehicle steering angle. In field tests on a concrete road, grass field, and a facilitated artificial-tree-
based orchard, as indicated by the test data results for several formations of left turns and right turns
separately, the position root mean square error (RMSE) of this vehicle was as follows: on the concrete
road, the right turn was 12.0 cm and the left turn was 11.6 cm, on grass, the right turn was 12.6 cm
and the left turn was 15.5 cm, and in the facilitated artificial-tree-based orchard, the right turn was
13.8 cm and the left turn was 11.4 cm. The vehicle was able to calculate the path in real time based on
the position of the objects, operate safely, and complete the task of pesticide spraying.

Keywords: LiDAR; tree trunk detection; orchard

1. Introduction

Driven by rapid socioeconomic development and urbanization, young populations are
leaving rural areas to work in other industries in cities [1]. In Japan, more than 60% of the
farmer population is over the age of 65. Japan’s rapidly aging agricultural society will not
only reduce Japan’s food self-sufficiency but also lead to a downturn in domestic agricultural
business, which may reduce revenues [2]. To solve the problems of an aging population and
labor shortages, many machines have been developed to assist in agricultural production. With
the development of this machinery, agriculture has become less dependent on human labor.
Especially in the areas of extensive farming and fixed planning areas, advanced automation has
the opportunity to bring time efficiency and high economic benefits because of timeliness and
efficiency in operation. Crops that require pesticides and herbicides can affect human health,
and machinery is a necessary alternative to ensure flexibility and safety [3]. Pesticide spraying
is essential; however, there is a high risk of chemical contamination due to overapplication
of conventional speed sprayers. From flowering to fruiting, pesticide spraying needs to
be repeated several times to protect from pest invasion. In some cases, farmers also spray
pesticides manually, and pesticides can enter farmers’ bodies through their respiratory
systems, affecting their health. Furthermore, most orchards in Japan are conventional, and
farmers control the height of tree growth according to their operations, causing limited
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operating space in the orchard, and the branches not only scratch the machinery but also
block the driver’s view, thus making it unfavorable to operate medium- and large-sized
machinery in orchards due to hampered navigation. Therefore, compact and unmanned
agricultural machinery has the potential to overcome the problem of maneuvering with an
appropriate autonomous guidance system.

In an autonomous agricultural guidance system, navigating with accurate positional
information through sensors and surrounding environmental information is required for
vehicle movement in the designed path. In agricultural automation and robotics applications,
vehicle navigation is important in outdoor environments, which are complex and uncertain
compared to indoor conditions [4]. An orchard navigation system includes three parts:
environment detection, path planning, and navigation control [5]. Currently, the main
sensors used for environmental sensing are the global navigation satellite system (GNSS),
machine vision, light detection and ranging (LiDAR), and multi-sensor fusion. The GNSS
offers the highest accuracy in open field navigation and has brought significant success
using the Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) with higher
accuracy [6]. However, the performance of GNSS-based navigation depends highly on GNSS
signal quality; orchard navigation is the most complex, and interruptions occur in RTK-GNSS
signals because high and dense canopies are frequently encountered [7]. Because Japanese
orchards use nets and are compact with dense branches, GNSS signals can be affected, and
many farmland orchards do not have base stations set up to use GNSS directly.

Conventional machine turning is also difficult to achieve with GNSS-based oriented
sensors. A machine-vision-based navigation system relies on a camera to acquire images in
real time, obtains the robot’s position and attitude through feature clustering, threshold
segmentation or path line extraction, and finally generates control signals for robot move-
ment and steering. With the advantages of high flexibility, rich and complete information
acquisition, and low influence from complex environments, machine vision is widely used
in the field of agricultural navigation [8,9]. This method requires a clear contrast between
the fruit trees and the background features on the ground, but high and dense weeds
commonly grow at the bottom of the fruit trees, making the boundary between the trees
and the ground shift or even undetectable. Environmental light has a large impact on
machine vision; in the dark or at night, the accuracy of machine vision is low, and even
in the daytime, the shadows of surrounding plants (such as weeds) also affect the accu-
racy [10]. Due to the complex and variable agricultural environment, the use of only one
sensor technology is increasingly unable to meet the accuracy and stability performance of
navigation systems. In this case, multi-sensor fusion technology has been introduced to
combine several sensors into a system to fuse data and obtain more accurate navigation
and positioning information [11]. To obtain the absolute position and absolute heading of a
robot, the inertial measurement unit (IMU) is often used in combination with the RTK-GPS
to improve system robustness [12,13]. However, the RTK-GNSS and IMU systems together
also increase algorithmic complexity and sensor costs, even though it is difficult to reach
reliability in orchard navigation systems. In contrast, LiDAR is less affected by external
environmental conditions, more resistant to interference, can directly obtain obstacle depth
information, and has the characteristics of fast processing speed to satisfy real-time detec-
tion. LiDAR cloud points and pattern matching with machine learning algorithms have
significant potential to narrow down the complexity of the navigation system.

LiDAR is used to scan the surrounding environment in real time and returns accurate
distance information using the time-of-flight principle. Laser navigation has advantages
such as high ranging accuracy, good resolution, and strong anti-interference ability [14].
LiDAR can overcome the limitations of low light and the interruption of RTK-GNSS signals.
There are several methods used to process LiDAR data. The density-based clustering
algorithm (DBSCAN) is capable of detecting arbitrary shapes of clusters in spaces of any
dimension, and this method is very suitable for LiDAR data segmentation [15]. To set
the parameter searching radius and to make it more consistent with different point cloud
environments, automatic searching radius ε estimation was proposed based on the average
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of nearest neighbors’ maximum distance [16]. In line detection, 2D point clouds returned
by LiDAR use several algorithms such as, random sample consensus (RANSAC) [17,18],
Hough transform [19,20], the least squares method [21], and a line segment detector
(LSD) [22]. Simultaneous localization and mapping (SLAM) technology developed the
GNSS-independent VineSlam localization mapping method and the vineyard-specific path
planner “AgRobPP” was reported. This method provided good results in mapping and
path planning and could control the robot to perform a variety of tasks [23]. However,
3D LiDAR point cloud data required extensive processing of computational costs and
computational requirements [24]. Therefore, Saike et al. processed 3D LiDAR data in 2D to
achieve autonomous navigation operations in a greenhouse [25].

Therefore, the purpose of this study was to develop a compact robot for spraying in
orchards using LiDAR for tree trunk detection. To develop a single sensor-based navigation
system, fusion of several machine learning algorithms is proposed to achieve a navigation
system that is not affected by lighting conditions. Trunk detection can be performed
using LiDAR to achieve a navigation system that is not affected by lighting conditions.
Considering that the DBSCAN algorithm has the potential to exclude noise points through
the density clustering of points, this study first used the DBSCAN algorithm to process
the 2D point cloud returned by LiDAR to obtain the object’s position. Since the trees in
the orchard are planted in columns, the trees can be used as a reference for path planning
based on the positions of the left and right sides. Therefore, in the second step, the K-means
algorithm is described to divide the objects into two groups on the left and right. Some trees
in the orchard may be surrounded by shelves, and to reduce the influence of these factors
on the path planning results, in the third stage, this study used the RANSAC algorithm to
exclude the influence of noise points on the boundary line calculation as much as possible.

In the Materials and Methods section, the hardware system architecture used in the
study and the algorithms used for LiDAR navigation is introduced, as well as the software
environment. The Results section discusses the feasibility of the method proposed in this
study based on several experiments on different sites. In the Discussion section, the results
of the study are analyzed and future modifications are proposed to overcome deficiencies
of the proposed method and prototype. The final section concludes the paper and presents
perspectives on the proposed developments and further recommendations.

2. Materials and Methods

In this research, the methodology was divided into two sections: the small and compact
prototype development and the navigation system using LiDAR based on several machine
algorithms to process cloud points for pattern matching and path planning in orchards.

2.1. Experimental Prototype Vehicles and the Installation of Sensors
2.1.1. Vehicle

An EJ20® electric cart (CANYCOM, Fukuoka, Japan) was the experimental vehicle, which
was configured as the prototype vehicle and modified for a Japanese compact orchard to
provide the opportunity for easy maneuvering. This product was originally used to assist
workers in carrying goods, which requires manual start and control of its direction and has
no automatic moving function; however, this vehicle has a complete motor drive control
system. Therefore, the electric car was modified for control using a microcontroller-based
command system (Figure 1). This vehicle was controlled by steering the rear wheels; therefore,
to realize automatic steering, a stepper motor (pk296a1-sg36®, Oriental Motor Co., Ltd., Tokyo,
Japan) was installed at its steering rear axle and driven by a stepper motor driver (TB6600,
ViaGasaFamido, Shenzhen, China). This reduction stepping motor has a maximum torque of
12 N·m, and even in the soil, the torque can be increased by reducing the rotation speed to
provide enough force to control the vehicle steering. The original vehicle was controlled by a
rotary potentiometer (B5K, Keyestudio, Shenzhen, China), which was used to control the start
of the vehicle as well as the speed by dividing the voltage. This study connected the rotary
potentiometer and the servo motor (SG90, Keyestudio, Shenzhen, China) to achieve accurate
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speed control by using signals. The orchard system was facilitated using artificial trees for
forward movements and turning inside rows.

Figure 1. Two-dimensional LiDAR-based navigation system design for facilitated orchards using a
converted electrical vehicle as a spraying robot.

The system was developed using a microcontroller to send different commands to Ar-
duino (UNO R3, Keyestudio, Shenzhen, China) and to control the motor, potentiometer, and
spraying device to complete the task of automatic pesticide spraying in orchards (Figure 2).

Figure 2. Operational flow of the sensors and 2D LiDAR to enable the spraying system to work.
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2.1.2. Pesticide Spraying System

A pesticide spraying system was developed using a pesticide tank that was located on
the vehicle, and the pump was installed inside the tank. The pump was controlled using
an Arduino control relay to turn on/off the pump. The nozzle was installed on the top
of the vehicle. This vehicle was equipped with a signal tower controlled by two channel
relays: a green light when the vehicle was safe to operate and a red light when the robot
malfunctioned or stopped.

2.1.3. LiDAR

A LiDAR system (SICK LMS511-20100 PRO®, Waldkirch, Germany) was chosen as the
sensor in this study. The LiDAR system was installed at the front of the vehicle to detect the
road (Figure 3). A 24 V power supply unit was used as the power converter (200305_JPN,
DROK, Guangzhou, China). The LiDAR was operated with an angular scanning range
of 190◦, and the resolution was 0.25◦. The working distance of the LiDAR system was
designed within a range of 80 m. Calibration was performed to confirm the highest accuracy
of detection. After receiving the command, the LMS511 emitted infrared rays from right
to left in each 0.25◦ interval starting from −5◦, and the distance was calculated based on
the time difference of infrared ray return, which returned 761 points of distance in one
scan. The LiDAR system can only obtain the distance value of each point; therefore, it is
necessary to cluster the points by using an algorithm to find the position of the objects and
plan the path.

Figure 3. Sensors and connection for the robotic system.

2.2. Path Planning Algorithm

In this study, three algorithms were used to process the LiDAR-returned cloud points
sequentially. First, the returned points were clustered by the density-based spatial clustering
of applications with noise (DBSCAN) to find the tree trunk position. K-means was used to
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discriminate between the left and right sides of the tree. Two straight lines were calculated
as the boundary lines using random sample consensus (RANSAC). Finally, the midline
was calculated as the planning path for navigation (Figure 4).

Figure 4. Path planning algorithm from cloud point clusters received from the 2D LiDAR system.

2.2.1. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a density-based clustering algorithm consisting of two parameters: the
radius ε and the minimum number of points minPoints. Through DBSCAN clustering, the
points were classified as core points, border points and noise points. The neighborhood of
p was the set of neighbors within distance ε, denoted by Nε(p). The number of points in
p’s ε-neighborhood was denoted by |Nε(p)|.

• Core points: If |Nε(p)| ≥minPoints, then p is a core point, and all the points in this
set, together with p, belong to the same cluster.

• Border points: They are directly reachable from the core point; however, |Nε(p)| < minPoints
belongs to the same cluster with the core point.

• Noise points: A point that is not included in any cluster.

The DBSCAN algorithm returned all clusters by checking the neighborhood of each
point in the dataset in an arbitrary order. If p was a core point, a new cluster C containing
p was created. Then, the new cluster was expanded by iteratively adding non-clustered
points that could be directly density-reachable from at least one point in C. The expansion
of C finished when all density-reachable points from p were added to C. The DBSCAN
algorithm ended with every point in the dataset being assigned to a cluster or marked as a
noise point (Figure 5) [26].

Figure 5. DBSCAN algorithm for core points of the object from the cloud points of the 2D LiDAR system.



Sensors 2023, 23, 4808 7 of 26

2.2.2. K-Means Clustering

The K-means clustering algorithm is an unsupervised method designed to split a given
unlabeled data distribution into a fixed number K of clusters in which each group shares
common characteristics [27]. This algorithm was used to minimize intraclusteral variance,
which can be formulated as expression (1) based on optimization [28]. After classification,
each class existed as a virtual cluster center ui. Therefore, the closeness (E), which represents
the closeness of the sample around each clustering center, can be expressed as:

E =
k

∑
i=1

∑
S∈Ci

‖Xn − ui‖ (1)

where given a sample set S, the set can be expressed as S = {X1, X2, . . . , Xn}, where n is
the total number of samples. ui is the sample mean of class i. In this research, K-means
was used to divide the trunk into left and right clusters; thus, the i value was 2 (Figure 6).
Ci is the set of class i. The smaller E is, the higher the similarity of the clustered samples.
The determined number of clusters, clustering centers, and the traversal order of samples
affected the accuracy of the K-means clustering algorithm.

Figure 6. Diagram of the K-means algorithm for clustering two sets of cloud points on the left and
right sides of the midline of the 2D LiDAR system. (a) Cloud points that need to be clustered. (b) First
clustering is based on random virtual cluster centers. (c) Calculate the new virtual cluster center based
on the previous clustering result. (d) By multiple iterations, the clustering result of the closeness
minimum value is the final result.

2.2.3. RANSAC

RANSAC is a data clustering algorithm, which is a density-based clustering nonpara-
metric algorithm. This algorithm simply iterates two steps: generating a hypothesis by
random samples and verifying the hypothesis with the remaining data to estimate the
mathematical model from a set of data containing outliers [29]. RANSAC needs to set three
parameters before operation: the threshold value, which is the distance from the point to
the line (DPL), the inline point proportion threshold (ProT), and the maximum operation
times Max_Number. For the calculation, the first two points were randomly selected to
match line L, and then, the formula of L was obtained. The distance D from all data points to
line L was calculated, and if D < DPL, the point was in line; otherwise, it was classified as out
of line, and the in-line proportion of ProT_current was calculated after assigning all the points.
The proportion was compared with the saved best proportion, and the larger proportion was
recorded. When the proportion was greater than the set ProT or reached the set maximum
operation time, the calculation of the RANSAC algorithm was completed (Figure 7).
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Figure 7. Diagram of the RANSAC algorithm for determining the boundary line of cloud points
received from the 2D LiDAR system. (a) Cloud points that need to be clustered. (b) Randomly select
two points to make a line L. (c) The distance D from data points to line L was calculated, if D < DPL,
the point was in line (yellow point); otherwise, it was classified as out of line (blue point). (d) After
several iterations until ProT_current was greater than the set ProT, the calculation was completed.

2.3. Vehicle Guidance

The vehicle was guided at the forward speed until it reached the end of the tree rows, and
the number of tree trunks was not enough to use the above method for trajectory planning. In
this study, when the vehicle was operated at the road end point (the midpoint of the last two
trees), the vehicle steering angle was set based on the distance to the trunk from the LiDAR
system (Figure 8). Vehicle steering was started, and the LiDAR system continued to scan
the surrounding environment information. DBSCAN and K-means were used to continue to
distinguish the location of the surrounding trunks. Until the vehicle was turned to the next
road in which the left and right sides obtained enough points returned from the tree trunk, the
steering ended and continued to operate according to the path planning algorithm.

Figure 8. U-turn of the field experiment for the navigation of the experimental robots (the road end
point is the center point of the last two trees). The steering path was planned according to the distance
from the tree trunk.
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2.4. Control System
2.4.1. Trajectory Tracking Control

The path tracking of the robot was divided into three types according to the model used:
kinematic-model-based path tracking, dynamic-model-based path tracking, and path tracking
that does not require a model. The mathematical model based on dynamics requires a force
analysis of the tires and many considerations of the farmland soil. Most of the parameters
in the dynamic principle are difficult to determine, leading to a mathematical model that
is challenging. The kinematic-model-based path tracking method determines the turning
direction and angle of the robot based on the robot’s current position and heading parameters.
Therefore, the robot could travel along the established route. The kinematic or dynamic-model-
based path tracking method has a negative impact on the robot’s path tracking performance
due to inaccurate modeling or drastic changes in model parameters. The pure pursuit tracking
method was used in this study, which did not require a model. The pure pursuit tracking
model is a model that describes the path tracking of a robot with a fixed forward visual
distance using geometric equations. The model is simple, intuitive, and easy to implement.
The core purpose of the model is to determine a suitable forward-looking distance.

The experimental robot had a four-wheel drive and rear-wheel steering system. A
simplified bicycle model was used in the pure pursuit tracking model in the concept of a
geometry schematic. The robot rear axis center point C is shown as the current position
of the robot, O is the instantaneous circle center when the robot was steered, and R is the
instantaneous steering radius (Figure 9). The target point G on the planning path was
selected as the current target position, Ld was the forward-looking distance from the center
point C to the target point G, the arc length of CG was the path that the robot needed to
move to the target position, and δ was marked as the theoretical steering angle required
by the robot. In the next cycle, the robot targets a new driving arc based on the current
position and the target position and calculates a new theoretical steering angle δ. The
current position can be infinitely close to the target position.

Figure 9. Pure pursuit tracking model of the experimental robot.

In the pure pursuit tracking system, the robot’s current position was represented by
P(x, y, ϕ), de was the trajectory tracking horizontal error, ϕe was the heading error, and
θ was the change angle while the robot was steered to the target point G. Based on the
geometric relationship, it can be determined that:

LCN = R− Rcosθ (2)
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LNG = Rsinθ (3)

L2
CN + L2

GN = L2
d (4)

LCN = decosϕe +
√

L2
d − d2

e sinϕe (5)

Equations (2)–(4) are simplified to obtain:

R =
L2

d
2LCN

(6)

The relationship between the instantaneous steering radius, steering angle, and wheel-
base is:

tan δ =
L
R

(7)

Equations (5)–(7) are used to obtain:

δ = arctan
2L
(

decosϕe +
√

L2
d − d2

e sinϕe

)
L2

d
(8)

Equation (8) shows that after determining the suitable forward-looking distance Ld,
the robot’s front wheel angle δ was directly determined by the horizontal error de and
heading error ϕe. These two values were obtained from the distance and angle to the
LiDAR planning path.

2.4.2. Navigation Decision

PID control systems are widely used in industrial process control due to their simple
principle, high robustness, and wide practicality. The PID control system uses proportional
(P), integral (I), and derivative (D) controllers to obtain a desired response [30]. The output
of the controller is the sum of a proportional term, an integrating term, and a differentiating
term, with an adjustable gain for each term [31]. The PID output u(t) can be expressed as in
expression (9):

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

d
dt

e(t) (9)

Kp, Ki, and Kd are all nonnegative and denote the coefficients for the proportional,
integral, and derivative terms, respectively. e is the error between the set value and the
feedback value. In PID control, the proportional part only considers the current error of
the robot in the trajectory path; if the system has deviations, the proportional controller
can react quickly to reduce the error. The integral controller adds the accumulated error
to the original system to cancel the deviation that occurs when the system is stable. The
differential controller is based on the trend of the system and adjusts ahead according to
the trend of the deviation signal.

However, the integration part occupies considerable computational capacity due to
accumulating all the errors, so incremental PID control uses increments instead of the
integration part; the incremental PID can be expressed as expression (10):

u(t) = Kp∆e(t) + Kie(t) + Kd[∆e(t)− ∆e(t− 1)] where ∆e(t) = e(t)− e(t− 1) (10)

Compared to PID control systems, incremental PID control reduces the number of
calculations because the output results are only related to the last three errors, which does
not seriously affect the operation even if there are serious errors in the system.
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2.4.3. Program Platform and GUI

This study used C++ programming on Visual Studio 2017 to achieve communication
with LiDAR and Arduino. To facilitate control and make the results more intuitive, Qt®

was used to build the graphical user interface (GUI). The GUI included control buttons for
LiDAR and Arduino, showing the program operation status and LiDAR planning path result
and the setting of LiDAR parameters. The magnification and scanning range of the LiDAR
result image could be modified by sliding. The black circle in the result image represents the
scanning range, and only the data inside the circle are used for path planning (Figure 10).

Figure 10. Graphical user interface to control the LiDAR system and the microcontroller and visual-
ization of cluster datasets from cloud data points.

3. Results
3.1. Planning Path Calibration on a Concrete Road

This calibration was conducted on a concrete road using cones instead of tree trunks.
The positions of the cones simulated the planting of trees in an orchard, approximately in a
line vertically, and the trunks were not in the same line horizontally (Figure 11).

Figure 11. Calibration of the LiDAR sensor and the robot on the concrete road (cones were used
instead of trees).

In the calibration, the cones were placed randomly in two columns (Figure 12a). The
vehicle was placed tilted, and the detection distance was set to 5 m. The points returned by
the LiDAR system were only distance information, and the information was displayed in the
interface through the calculation of the angle with the sending infrared signal (Figure 12b).
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Figure 12. Path planning results: (a) cone positions; (b) data returned by LiDAR system; (c) DBSCAN
results; (d) K-means results; (e) RANSAC results; and (f) the midline results.

DBSCAN classified points into different clusters based on density; thus, it can accurately
distinguish objects of different sizes (Figure 12c), and different clusters are shown as different
colors. Therefore, this method can be used to detect different sizes of tree trunks in orchards.
It was able to accurately cluster the points of each tree to distinguish the trunk locations.
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The trees in the orchard are linearly arranged, and using K-means, the system can
clearly classify the trees into left and right rows (Figure 12d); red is the tree on the left
side, and green is the tree on the right side. While the vehicle was steered, the K-means
algorithm could classify accurately. Because the scanning range was 5 m, even the clusters
divided by DBSAN were not included in the path calculation.

After K-means classification, the points on the left and right sides were brought into
the RANSAC algorithm to obtain the boundary lines on each side (Figure 12e). RANSAC
could determine which cones were inline based on the location of the cones, and those
cones could be used to calculate the path, while those outside the line would be regarded as
noise points and not brought into the calculation; thus, this algorithm needed more than three
points to obtain results. Finally, the midline was calculated as the planning path (Figure 12f).

3.2. Operation Calibration on a Concrete Road
3.2.1. Calibration of the Curve Path

To test the availability of the algorithm, the first calibration procedure was completed
on a concrete road. A curved route was selected using 18 cones placed on two sides, and
the vehicle was guided along the travel path based on the cone positions detected in real
time. In the curve path correction, the detection distance of the LiDAR system was set to
2 m due to the close workshop. The radius ε of the circle of DBSCAN was set to 0.2 m and
the minPoints was set to 3. The value of K for K-means was 2. The maximum operation
times Max_Number of RANSAC was 300, the inline point proportion threshold (ProT) was
0.6, and the distance from the point to the line (DPL) was 0.05 m. The system calculated
the steering angle by using the pure pursuit tracking method based on the objects’ position
returned by the LiDAR system, iterated by incremental PID to obtain the current required
steering angle and transmitted to Arduino. According to the experimental results, the vehicle
reached the end point and turned in the right (Figure 13) and left directions (Figure 14).

Since the LiDAR system was used as the single sensor, the program recorded the
distance between the LiDAR system and the midline, as well as the steering angle and the
operation radius during the U-turn and measured the position of the cones. The vehicle’s
operational path was recovered (Figures 15 and 16), which recorded the position of the
cones and the results of three tests. The position root mean square errors (RMSEs) of the
three right turn calibrations were 18.3 cm, 14.0 cm, and 18.9 cm, and the average value
was 17.1 cm. The left turn calibration position RMSEs were 25.3 cm, 22.7 cm, and 24.3 cm,
and the average value was 24.1 cm (Table 1). In orchard areas, navigation accuracy can be
implemented for spraying operations.

Figure 13. Curve path calibration on the concrete road (right turn). Subfigures (1–9) in order were
the vehicle’s movement path.
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Figure 14. Curve path calibration on the concrete road (left turn). Subfigures (1–9) in order were the
vehicle’s movement path.

Figure 15. Operational path of the vehicle in the curve path calibration (right turn).

Table 1. RMSE results for each calibration and field experiment.

Site
Path

RMSE (cm)
Calibration 1 Calibration 2 Calibration 3 Average

Concrete road

Curve path (right) 18.3 14.0 18.9 17.1
Curve path (left) 25.3 22.7 24.3 24.1
Operational path

(right) 10.4 14.6 10.9 12.0

Operational path
(left) 12.0 11.2 11.7 11.6

Grass
Operational path

(right) 9.4 15.8 12.7 12.6

Operational path
(left) 10.7 18.6 17.3 15.5

Facilitated
artificial-tree-

based
orchard

Operational path
(right) 11.4 14.5 15.5 13.8

Operational path
(left) 18.6 6.7 8.8 11.4
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Figure 16. Operational path of the vehicle in the curve path calibration (left turn).

3.2.2. Calibration of Straight Maneuvers and U-Turns

In the calibration test, 15 cones were placed in three columns to simulate the envi-
ronment at the end of the orchard. In the test, the LiDAR detection distance was set to
3 m, only the cones on the left and right side could be detected, and the cones in the
next column would not affect the planning path. Other parameters were kept the same.
When the vehicle was moved in a straight line, the navigation system determined the
planning path according to the real-time returned cone position data and moved along
the path at a forward speed. When the number of cones on both sides was detected to be
insufficient, the current position of the vehicle was close to the end of the orchard rows,
and the vehicle would travel toward the midpoint of the last two cones. After reaching the
midpoint, the steering angle was calculated based on the distance of the steering center cone,
and the steering angle was maintained until reaching the second and third columns of the
cones. When the LiDAR system detected enough scanning returned points again, the vehicle
navigation system was enabled again using the LiDAR system. In the right-turn (Figure 17)
and left-turn (Figure 18) tests, the cones were placed in the same position, and the vehicle was
able to complete straight maneuvers and U-turns and stopped at the end of the path. The
three routes were tested for right and left turns of the vehicle and recorded (Figures 19 and 20).
The three position RMSEs in the right turn calibrations on the concrete road were 10.4 cm,
14.6 cm, and 10.9 cm, and the average value was 12.0 cm. For the left turn, the calibrations
were 12.0 cm, 11.2 cm, and 11.7 cm, and the average value was 11.6 cm (Table 1).
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Figure 17. Images of vehicle operation on the concrete road (right turn). Subfigures (1–9) in order
were the vehicle’s movement path.

Figure 18. Images of vehicle operation on the concrete road (left turn). Subfigures (1–9) in order were
the vehicle’s movement path.
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Figure 19. Operational path of the vehicle on the concrete road (right turn).

Figure 20. Operational path of the vehicle on the concrete road (left turn).

3.3. Operation Calibration on Grass

To verify that the vehicle could operate properly in the orchard, calibration was also
performed on grass before field testing. In the field, the motor speed was reduced while a
driving test was conducted on the grass field to ensure that the motor had enough torque
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to steer. The experiment was the same as the concrete road, with three tests for each left
turn, right turn (Figures 21 and 22), and the recorded route (Figures 23 and 24). The three
position RMSEs in the right turn calibrations on grass were 9.4 cm, 15.8 cm, and 12.7 cm,
and the average value was 12.6 cm. For the left turn, the calibrations were 10.7 cm, 18.6 cm,
and 17.3 cm, and the average value was 15.5 cm (Table 1).

Figure 21. Images of vehicle operation on grass (right turn). Subfigures (1–9) in order were the
vehicle’s movement path.

Figure 22. Images of vehicle operation on grass (left turn). Subfigures (1–9) in order were the vehicle’s
movement path.
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Figure 23. Operational path of the vehicle on grass (right turn).

Figure 24. Operational path of the vehicle on grass (left turn).

3.4. Field Test in a Facilitated Artificial-Tree-Based Orchard

The test was conducted in the Tsukuba Plant Innovation Research Center (T-PIRC),
University of Tsukuba, facilitated in an orchard environment by placing artificial trees. The
experimental site had a possible lack of trees, similar to natural orchards, and only four
trees were used in the third column. However, the vehicle could still plan the correct route
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based on the algorithm (Figures 25–28). The three position RMSEs in the right turn test
in the facilitated artificial-tree-based orchard were 11.4 cm, 14.5 cm, and 15.5 cm, and the
average value was 13.8 cm. For the left turn, the calibrations were 18.6 cm, 6.7 cm, and
8.8 cm, and the average value was 11.4 cm (Table 1).

Figure 25. Images of vehicle operation in the facilitated artificial-tree-based orchard (right turn).
Subfigures (1–15) in order were the vehicle’s movement path.

Figure 26. Images of vehicle operation in the facilitated artificial-tree-based orchard (left turn).
Subfigures (1–15) in order were the vehicle’s movement path.

Figure 27. Operational path of the vehicle in the facilitated artificial-tree-based orchard (right turn).
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Figure 28. Operational path of the vehicle in the facilitated artificial-tree-based orchard (left turn).

4. Discussion

This study used LiDAR as a single sensor to achieve a stable navigation system in
orchards compared to the RGB and GNSS systems. In the case of RGB images, vehicles are
easily affected by light while driving in orchards and cannot accurately identify objects
under low light conditions. The GNSS signals are interrupted due to the dense tree canopy
in the orchard. LiDAR has advantages compared to RGB, and GNSS is not affected by
light and signal quality in orchards. Furthermore, LiDAR has the potential to work at any
time, providing a foundation for automatic navigation of the robot under different lighting
conditions based on the DBSCAN, K-means, and RANSAC algorithms.

4.1. Machine Learning System from Point Clouds

Using the DBSCAN algorithm, the returned point clouds were divided into clusters
based on density to identify the trunks. K-means divided the trunks into left and right
groups and reduced the interference by RANSAC to obtain the appropriate boundary lines.
The centerline was used as the output of the planning path result for the LiDAR-based
navigation system.

4.2. Prototype Testing under the Different Lighting Conditions

In the results section, the results are shown for sufficient light. To demonstrate that
the navigation method proposed in this paper was not affected by the light conditions,
the experiments were conducted under low-light conditions (5–7 pm) (Figure 29). Under
low-light conditions, the LiDAR system could still make the vehicle move according to the
position of the trees.
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Figure 29. Experiment in the facilitated artificial-tree-based orchard under low-light conditions.
(a) was experiment at 5–6 pm. (b) was experiment at 6–7 pm.

4.3. Prototype Testing on Concrete and Grass Using a Facilitated Artificial Tree Pattern

After testing on concrete, grass, and the facilitated artificial-tree-based orchard, the
RMSE results were within 20 cm, indicating that the LiDAR system could operate safely
and stably in those areas (Figure 30).

Figure 30. LiDAR visualization of the cluster datasets: (a) curve path on the concrete road, (b) straight
maneuvers and U-turns on the concrete road, and (c) straight and U-turns on grass.
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In the tests, while conducting turns on the concrete road, the three paths had minor
differences compared to traveling on the designed path on grass and the facilitated artificial-
tree-based orchard. This was due to the experimental vehicle using a stepper motor, which
could affect the accuracy of the motor rotation on the ground where higher torque was needed.
Therefore, during the experiment, the motor rotation speed was reduced, thus increasing the
torque to reduce the error. However, even if there were errors during the U-turn, the vehicle
could return to the planning path using PID control and reach the next row. In this research,
the navigation method was suitable for orchards where trees were densely distributed. In
recent times, Japanese pears have been grown in a systematic way, such as joint tree or
row-based vertical cordon training practices, for ease of automation (Figure 31a,c).

Figure 31. New trends and conventional orchards in Japan. (a) Initial stages of the joint tree training
system for pears at the T-PIRC, (b) conventional orchard at the T-PIRC for pears covered with nets,
(c) row-based vertical cordon training system at the apple research center in Aomori Prefecture in
Japan, and (d) conventional apple orchard at the apple research center in Aomori Prefecture in Japan.

In such joint tree systems, uniform shaped trees are grown in rows that can bring
significant potential for the application of LiDAR to detect trees for path planning with
higher accuracy. In our experiment, the tree-to-tree arrangement was placed at different
distances within a range of 3 to 5 m. Since the trees were located 3 m apart and at least three
tree locations were required to estimate the target position, LiDAR ranging was selected as
10 m from the vehicle. However, while choosing a 10 m scanning range, trees from adjacent
rows were also added to the position estimation system, which affected the navigation
accuracy.

4.4. Prototype Testing on Grass Using a Conventional Tree Pattern

We tested the prototype and proposed LiDAR-based navigation system in the actual
environment; however, due to sparse trees and the presence of high weeds, the navigation
system was not consistent (Figure 32). With the development of agricultural automation,
orchards have been changed to facilitate automated operations by planting trees as a
column; however, since an actual orchard is being prepared, this study used artificial trees
to facilitate the orchard environment in the T-PIRC experimental field.

If there were joint tree systems with a number of trees adjacent to each other, then the
number of returned cloud points would be higher and high navigation performance could
be achieved using the RANSAC algorithm. To facilitate such an environment, research
was conducted to develop such a high-density orchard, and observing the navigation
with only LiDAR is also possible in some limited conditions. However, to achieve more
accurate navigation results, other visual sensors can be used in combination with LiDAR,
such as thermal cameras, which also have high potential under low-light conditions for
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tree detection, as reported in our previous research [32]. To avoid weeds and external
effects, deep learning is also reported with training and testing datasets of tree trunk for
positioning reference. In further research, a combination of thermal-based vision sensors
and LiDAR will be integrated to overcome the limitations of LiDAR for positional accuracy
in the low-light conditions of orchards.

Figure 32. LiDAR visualization of cluster datasets in the actual environment: (a) correct path planning
and (b) wrong path planning.

5. Conclusions

Orchard navigation is a challenging task due to signal interruptions by GNSS and
illumination effects for contemporary vision systems. To overcome these limitations for
orchard automation, LiDAR has the potential to be applied in low-light environments and
GNSS signal interruption areas to obtain accurate distance information in real time. In this
study, LiDAR was used as the only sensor to implement a navigation system in an orchard
with the proposed point clouds data using machine learning principals. Therefore, the
following points are outlined to conclude the contribution of this research and some of the
limitations that will be addressed in future research:

1. Integration of machine learning algorithms, DBSCAN, K-means, and RANSAC, was
performed to detect tree locations, divide them into left and right groups, and calculate
boundary lines to find the midline for the navigation planning path.

2. Integration of the pure pursuit tracking algorithm and the incremental PID control
were performed to calculate the steering angles for navigation. The calculated steering
angles information was sent to the microcontroller to control the stepper motor
rotation to achieve vehicle steering control on the navigation path in real-time.

3. In the concrete road calibration, the positional RMSE in the curve and the U-turn
calibrations were 20.6 cm and 11.8 cm, respectively, indicating that the guidance
system could calculate the path and control the vehicle safely based on the position of
the landmarks in real time.

4. In the grass calibration, the position RMSE of the right and left turns was 14.1 cm,
proving that this navigation system could operate properly on the soil. In the facili-
tated artificial-tree-based orchard, the positional RMSE was 12.6 cm, and a U-turn was
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performed to steer the robot when applying pesticides in the joint-orchard system for
our future research.

5. In this study, an automatic navigation system for orchards was produced using only
2D LiDAR. Not only can the vehicle be driven under any light conditions, but the
computational complexity was also reduced; thus, it does not need to rely on powerful
performance computers.

Therefore, LiDAR can be used in limited conditions as a single sensor for navigation
inside orchards. Since LiDAR can only determine the distance of the object and cannot distin-
guish the type of object, it has certain requirements to facilitate the environment. Compared
with conventional orchard, the accuracy of joint orchard with closely planted fruit trees are get
higher accuracy. However, for flexibility in application in different environments in orchards,
thermal-vision-based sensors, which are robust under low-light conditions, can also be inte-
grated. Therefore, in future research, LiDAR and thermal cameras can be integrated to provide
solutions for orchard robot spraying systems from different infrastructure perspectives to
increase the productivity of orchard operational management.

Author Contributions: Conceptualization, T.A.; methodology, A.J.; software, A.J.; validation, A.J.;
investigation, A.J.; resources, T.A.; data curation, A.J.; writing—original draft preparation, A.J.;
writing—review and editing, T.A.; supervision, T.A.; project administration, T.A.; funding acquisition,
T.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Japanese Society of Promotion Science JSPS Kiban C
(Grant Number 21K05844) and JST SPRING, grant number JPMJSP2124.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and analyzed during this study are avail-
able from the corresponding author upon reasonable request, but restrictions apply to the data
reproducibility and commercially confident details.

Acknowledgments: The authors would like to thank the Tsukuba Plant Innovation Research Center
(T-PIRC), University of Tsukuba, for providing the facilities to conduct this research in its orchards.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. London.

Ser. B Biol. Sci. 2010, 365, 2809–2820. [CrossRef] [PubMed]
2. Usman, M.; Sawaya, A.; Igarashi, M.; Gayman, J.J.; Dixit, R. Strained agricultural farming under the stress of youths’ career

selection tendencies: A case study from Hokkaido (Japan). Humanit. Soc. Sci. Commun. 2021, 8, 19. [CrossRef]
3. Dang, N.T.; Luy, N.T. LiDAR-Based Online Navigation Algorithm for An Autonomous Agricultural Robot. J. Control. Eng. Appl.

Inform. 2022, 24, 90–100.
4. Bergerman, M.; Billingsley, J.; Reid, J.; van Henten, E. Robotics in agriculture and forestry. In Springer Handbook of Robotics;

Springer: Berlin/Heidelberg, Germany, 2016; pp. 1463–1492.
5. Mousazadeh, H. A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramechanics 2013,

50, 211–232. [CrossRef]
6. Sun, H.; Slaughter, D.C.; Ruiz, M.P.; Gliever, C.; Upadhyaya, S.K.; Smith, R.F. RTK GPS mapping of transplanted row crops.

Comput. Electron. Agric. 2010, 71, 32–37. [CrossRef]
7. Li, M.; Imou, K.; Wakabayashi, K.; Yokoyama, S. Review of research on agricultural vehicle autonomous guidance. Int. J. Agric.

Biol. Eng. 2009, 2, 1–16.
8. Subramanian, V.; Burks, T.F.; Arroyo, A.A. Development of machine vision and laser radar based autonomous vehicle guidance

systems for citrus grove navigation. Comput. Electron. Agric. 2006, 53, 130–143. [CrossRef]
9. Takagaki, A.; Masuda, R.; Iida, M.; Suguri, M. Image Processing for Ridge/Furrow Discrimination for Autonomous Agricultural

Vehicles Navigation. IFAC Proc. Vol. 2013, 46, 47–51. [CrossRef]
10. Chen, J.; Qiang, H.; Wu, J.; Xu, G.; Wang, Z.; Liu, X. Extracting the navigation path of a tomato-cucumber greenhouse robot based

on a median point Hough transform. Comput. Electron. Agric. 2020, 174, 105472. [CrossRef]
11. Li, X.; Qiu, Q. Autonomous Navigation for Orchard Mobile Robots: A Rough Review. In Proceedings of the 2021 36th Youth

Academic Annual Conference of Chinese Association of Automation (YAC), Nanchang, China, 28–30 May 2021; pp. 552–557.

https://doi.org/10.1098/rstb.2010.0136
https://www.ncbi.nlm.nih.gov/pubmed/20713386
https://doi.org/10.1057/s41599-020-00688-4
https://doi.org/10.1016/j.jterra.2013.03.004
https://doi.org/10.1016/j.compag.2009.11.006
https://doi.org/10.1016/j.compag.2006.06.001
https://doi.org/10.3182/20130828-2-SF-3019.00045
https://doi.org/10.1016/j.compag.2020.105472


Sensors 2023, 23, 4808 26 of 26

12. Takai, R.; Barawid, O.; Ishii, K.; Noguchi, N. Development of Crawler-Type Robot Tractor based on GPS and IMU. IFAC Proc. Vol.
2010, 43, 151–156. [CrossRef]

13. Shalal, N.; Low, T.; McCarthy, C.; Hancock, N. A review of autonomous navigation systems in agricultural environments. In Proceedings
of the SEAg 2013: Innovative Agricultural Technologies for a Sustainable Future, Barton, Australia, 22–25 September 2013.

14. Wang, X.; Pan, H.; Guo, K.; Yang, X.; Luo, S. The evolution of LiDAR and its application in high precision measurement. IOP Conf.
Ser. Earth Environ. Sci. 2020, 502, 012008. [CrossRef]

15. Wang, Y.; Geng, C.; Zhu, G.; Shen, R.; Gu, H.; Liu, W. Information Perception Method for Fruit Trees Based on 2D LiDAR Sensor.
Agriculture 2022, 12, 914. [CrossRef]

16. Wang, C.; Ji, M.; Wang, J.; Wen, W.; Li, T.; Sun, Y. An Improved DBSCAN Method for LiDAR Data Segmentation with Automatic
Eps Estimation. Sensor 2019, 19, 172. [CrossRef]

17. Zhou, M.; Xia, J.; Yang, F.; Zheng, K.; Hu, M.; Li, D.; Zhang, S. Design and experiment of visual navigated UGV for orchard based
on Hough matrix and RANSAC. Int. J. Agric. Biol. Eng. 2021, 14, 176–184. [CrossRef]

18. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

19. Barawid, O.C., Jr.; Mizushima, A.; Ishii, K.; Noguchi, N. Development of an autonomous navigation system using a two-
dimensional laser scanner in an orchard application. Biosyst. Eng. 2007, 96, 139–149. [CrossRef]

20. Chen, J.; Qiang, H.; Wu, J.; Xu, G.; Wang, Z. Navigation path extraction for greenhouse cucumber-picking robots using the
prediction-point Hough transform. Comput. Electron. Agric. 2021, 180, 105911. [CrossRef]

21. Pajares, G.; García-Santillán, I.; Campos, Y.; Montalvo, M.; Guerrero, J.M.; Emmi, L.; Romeo, J.; Guijarro, M.; Gonzalez-de-Santos, P.
Machine-vision systems selection for agricultural vehicles: A guide. J. Imaging 2016, 2, 34. [CrossRef]

22. Akinlar, C.; Topal, C. EDLines: A real-time line segment detector with a false detection control. Pattern Recognit. Lett. 2011, 32,
1633–1642. [CrossRef]

23. Santos, L.C.; Aguiar, A.S.; Santos, F.N.; Valente, A.; Ventura, J.B.; Sousa, A.J. Navigation Stack for Robots Working in Steep Slope
Vineyard. In Intelligent Systems and Applications; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer International Publishing: Cham,
Switzerland, 2021; pp. 264–285.

24. Shalal, N.; Low, T.; McCarthy, C.; Hancock, N. Orchard mapping and mobile robot localisation using on-board camera and laser
scanner data fusion–Part B: Mapping and localisation. Comput. Electron. Agric. 2015, 119, 267–278. [CrossRef]

25. Jiang, S.; Wang, S.; Yi, Z.; Zhang, M.; Lv, X. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and
2D Lidar SLAM. Front. Plant Sci. 2022, 13, 815218. [CrossRef] [PubMed]

26. Chen, H.; Liang, M.; Liu, W.; Wang, W.; Liu, P.X. An approach to boundary detection for 3D point clouds based on DBSCAN
clustering. Pattern Recognit. 2022, 124, 108431. [CrossRef]

27. Troccoli, E.B.; Cerqueira, A.G.; Lemos, J.B.; Holz, M. K-means clustering using principal component analysis to automate label
organization in multi-attribute seismic facies analysis. J. Appl. Geophys. 2022, 198, 104555. [CrossRef]

28. Borlea, I.-D.; Precup, R.-E.; Borlea, A.-B. Improvement of K-means Cluster Quality by Post Processing Resulted Clusters. Procedia
Comput. Sci. 2022, 199, 63–70. [CrossRef]

29. Xu, B.; Jiang, W.; Shan, J.; Zhang, J.; Li, L. Investigation on the Weighted RANSAC Approaches for Building Roof Plane
Segmentation from LiDAR Point Clouds. Remote Sens. 2016, 8, 5. [CrossRef]

30. Goodwin, G.C.; Graebe, S.F.; Salgado, M.E. Control System Design; Prentice Hall: Upper Saddle River, NJ, USA, 2001; Volume 240.
31. Shen, L.; Liu, Z.; Zhang, Z.; Shi, X. Frame-level bit allocation based on incremental PID algorithm and frame complexity estimation.

J. Vis. Commun. Image Represent. 2009, 20, 28–34. [CrossRef]
32. Jiang, A.; Noguchi, R.; Ahamed, T. Tree Trunk Recognition in Orchard Autonomous Operations under Different Light Conditions

Using a Thermal Camera and Faster R-CNN. Sensors 2022, 22, 2065. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3182/20101206-3-JP-3009.00026
https://doi.org/10.1088/1755-1315/502/1/012008
https://doi.org/10.3390/agriculture12070914
https://doi.org/10.3390/s19010172
https://doi.org/10.25165/j.ijabe.20211406.5953
https://doi.org/10.1145/358669.358692
https://doi.org/10.1016/j.biosystemseng.2006.10.012
https://doi.org/10.1016/j.compag.2020.105911
https://doi.org/10.3390/jimaging2040034
https://doi.org/10.1016/j.patrec.2011.06.001
https://doi.org/10.1016/j.compag.2015.09.026
https://doi.org/10.3389/fpls.2022.815218
https://www.ncbi.nlm.nih.gov/pubmed/35360319
https://doi.org/10.1016/j.patcog.2021.108431
https://doi.org/10.1016/j.jappgeo.2022.104555
https://doi.org/10.1016/j.procs.2022.01.009
https://doi.org/10.3390/rs8010005
https://doi.org/10.1016/j.jvcir.2008.08.003
https://doi.org/10.3390/s22052065

	Introduction 
	Materials and Methods 
	Experimental Prototype Vehicles and the Installation of Sensors 
	Vehicle 
	Pesticide Spraying System 
	LiDAR 

	Path Planning Algorithm 
	Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
	K-Means Clustering 
	RANSAC 

	Vehicle Guidance 
	Control System 
	Trajectory Tracking Control 
	Navigation Decision 
	Program Platform and GUI 


	Results 
	Planning Path Calibration on a Concrete Road 
	Operation Calibration on a Concrete Road 
	Calibration of the Curve Path 
	Calibration of Straight Maneuvers and U-Turns 

	Operation Calibration on Grass 
	Field Test in a Facilitated Artificial-Tree-Based Orchard 

	Discussion 
	Machine Learning System from Point Clouds 
	Prototype Testing under the Different Lighting Conditions 
	Prototype Testing on Concrete and Grass Using a Facilitated Artificial Tree Pattern 
	Prototype Testing on Grass Using a Conventional Tree Pattern 

	Conclusions 
	References

