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Aging disrupts circadian clocks, as evidenced by a reduction in the amplitude 
of circadian rhythms. Because the circadian clock strongly influences sleep–
wake behavior in mammals, age-related alterations in sleep–wake patterns 
may be attributable, at least partly, to functional changes in the circadian clock. 
However, the effect of aging on the circadian characteristics of sleep architecture 
has not been well assessed, as circadian behaviors are usually evaluated through 
long-term behavioral recording with wheel-running or infrared sensors. In this 
study, we  examined age-related changes in circadian sleep–wake behavior 
using circadian components extracted from electroencephalography (EEG) and 
electromyography (EMG) data. EEG and EMG were recorded from 12 to 17-week-
old and 78 to 83-week-old mice for 3 days under light/dark and constant dark 
conditions. We analyzed time-dependent changes in the duration of sleep. Rapid 
eye movement (REM) and non-REM (NREM) sleep significantly increased during 
the night phase in old mice, whereas no significant change was observed during 
the light phase. The circadian components were then extracted from the EEG 
data for each sleep–wake stage, revealing that the circadian rhythm in the power 
of delta waves during NREM sleep was attenuated and delayed in old mice. 
Furthermore, we used machine learning to evaluate the phase of the circadian 
rhythm, with EEG data serving as the input and the phase of the sleep–wake 
rhythm (environmental time) as the output. The results indicated that the output 
time for the old mice data tended to be delayed, specifically at night. These results 
indicate that the aging process significantly impacts the circadian rhythm in the 
EEG power spectrum despite the circadian rhythm in the amounts of sleep and 
wake attenuated but still remaining in old mice. Moreover, EEG/EMG analysis is 
useful not only for evaluating sleep–wake stages but also for circadian rhythms 
in the brain.
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1. Introduction

Many biological processes exhibit circadian rhythms that help organisms adapt to 
environmental cycles. These rhythms are regulated by the circadian clock, which is altered with 
aging (Hood and Amir, 2017). In mice, a long free-running period of the behavioral rhythm and 
a decrease in the ability to entrain environmental cycles have been observed (Nakamura et al., 
2011; Sellix et al., 2012). Aging also affects sleep–wake behavior in animals, including humans 
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(Mander et al., 2017). In mice, the amount of sleep during the dark 
period generally increases, whereas wakefulness decreases with age 
(Wimmer et al., 2013; Panagiotou et al., 2017; McKillop et al., 2018). 
In addition to the sleep/wake ratio, the electroencephalography (EEG) 
power changes with age, suggesting that aging induces both 
quantitative and qualitative changes in sleep.

Sleep–wake patterns are strongly governed by the circadian 
clock, as evidenced by the considerable effect of mutations in the 
core clock genes on sleep–wake rhythms (Wisor et  al., 2002; 
Laposky et  al., 2005; Mang et  al., 2016). Conversely, sleep 
deprivation and other sleep interventions also perturb circadian 
rhythms, as demonstrated by studies investigating the impact of 
such interventions on behavioral and physiological characteristics 
(Wisor et al., 2008; Hoekstra et al., 2021; Lu et al., 2021). These 
findings suggest a bidirectional relationship between sleep and the 
circadian clock, both of which have a profound mutual influence 
on each other. Nonetheless, sleep and circadian behavioral 
rhythms are commonly studied independently. Circadian behavior 
is often exemplified by the use of long-term activity recordings 
using wheels or infrared sensors under constant dark conditions 
(DD) to measure behavioral rhythms in rodents. Although such 
methods can capture free-running wheel-running/spontaneous 
activity rhythms or phase responses to stimulation, they present 
significant challenges in accurately tracking sleep–wake stages, 
such as wakefulness, rapid eye movement (REM) sleep, and 
non-REM (NREM) sleep, as well as in assessing qualitative 
changes in sleep.

In contrast, sleep evaluation typically involves EEG and 
electromyography (EMG). EEG represents brain activity patterns 
that are obtained from electrodes positioned near the surface of the 
mouse brain (dura mater) and is an important indicator for 
discerning sleep stages. However, analyzing EEG/EMG data is 
more time-consuming and complex than simply counting wheel-
running activity sessions, which makes it challenging to use EEG/
EMG to assess sleep for a long duration. Consequently, analysis 
evaluating circadian rhythms of sleep amount and quality using 
EEG/EMG has been relatively uncommon. Previous studies have 
evaluated diurnal variations in delta power during NREM sleep as 
an indicator of sleepiness, revealing periodic changes throughout 
the day (Wisor et al., 2008; Wimmer et al., 2013). Nevertheless, 
there have been limited comprehensive analyses of circadian 
fluctuations in the EEG power spectrum, and the impact of aging 
on these circadian components remains largely unknown.

In this study, we  conducted a precise evaluation of circadian 
rhythms in sleep–wake patterns of aged mice, with a particular focus 
on the EEG power spectrum. We  first confirmed that changes in 
sleep–wake patterns are associated with aging, as previously shown. 
We extracted circadian components from the EEG power spectrum of 
each sleep–wake stage and observed that time-dependent changes in 
the power spectrum during NREM sleep were significantly attenuated 
in aged mice. Furthermore, we developed a machine learning-based 
method to reconstruct circadian phases from short-term (1 h) EEG 
data, which enabled us to assess age-mediated circadian phase 
alterations at a higher time resolution. Specifically, we found that the 
circadian phase was significantly delayed at all sleep–wake stages in 
aged mice. Our method represents a promising high-throughput 
approach for evaluating the circadian phase and sleep scoring in 
future studies.

2. Materials and methods

2.1. Animals

All animal experiments were approved by the Animal Experiment 
and Use Committee of the University of Tsukuba and adhered to NIH 
guidelines. C57BL/6 J wild-type male mice, purchased from The 
Jackson Laboratory, were used for EEG measurements. The young 
(n = 13) and aged (n = 20) mice were 12–17 weeks and 78–83 weeks 
old, respectively. Food and water were provided ad libitum.

2.2. Surgery

Male mice were anesthetized by isoflurane inhalation (Pfizer, 
United States) and fixed to a stereotaxic frame. The electrodes 
were implanted on the mouse cortex. Two stainless-steel screws 
for EEG recording were placed, each at +1.4 mm AP and + 1.2 mm 
ML from the bregma and − 2.6 mm AP and + 1.2 mm ML from the 
lambda and connected to a 4-pin headmount. Two insulated 
silver wires for EMG recording, connected to the same 
headmount, were inserted into the neck muscles bilaterally. An 
anchor screw was then positioned on the skull. The entire 
assembly was fixed to the skull with dental cement. The mouse 
skin was sutured using a sanitized thread.

2.3. EEG/EMG recording

EEG/EMG was recorded from freely moving mice as described 
previously (Hasegawa et al., 2022). Mice were entrained to a 12:12 
light–dark (LD) cycle with lights turning on at 8:00 am and off at 
8:00 pm. They were single-housed in a recording chamber for at least 
3 days to habituate to the environment. EEG and EMG were recorded 
for 3 days under the LD condition 1–3 weeks after the electrode 
implantation surgery. The EEG/EMG signals were amplified and 
filtered (EEG: 0.5–250 Hz, EMG: 16–250 Hz). 50 Hz EEG and EMG 
signals were also filtered since the power supply frequency in Japan 
(50 Hz) possibly causes artificial noise signals. The EEG and EMG 
signals were acquired using SleepSignRecorder (KISSEI COMTEC, 
Nagano, Japan) at a sampling rate of 128 Hz, which is the same 
frequency as used in the previous study for the neural network model 
described later (Tezuka et al., 2021). Eight young mice and 10 aged 
mice were kept in the LD condition for 4 days after the measurement 
and then transferred to DD. The EEG and EMG of these mice were 
measured again from the second day in DD for 3 days. Environmental 
time is presented as zeitgeber time (ZT) under both LD and 
DD conditions.

2.4. Automated sleep–wake stage scoring 
using a neural network model

Sleep–wake stages were determined based on the UTSN-L 
model, which is a neural network model for automatic sleep–
wake stage scoring developed in a previous study (Tezuka et al., 
2021) using EEG/EMG data for 3 days in LD or DD. This model 
is a convolutional neural network using a one-channel EEG (raw 
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signal and spectrum) and zeitgeber time, and shows 90% overall 
accuracy. This model classifies every 10 s-EEG data into one of 
the following sleep–wake stages: wakefulness (WAKE), REM 
sleep, or NREM sleep. Because this model also uses past EEG data 
for prediction, it does not output results for the first 100 s. 
Therefore, the sleep–wake stages for the first 100 s were manually 
classified. The parameters for the model trained in a previous 
study1 were also used for neural network scoring in this study. 
Because this model uses only EEG data, wakefulness was 
determined again by the threshold of EMG power after scoring. 
First, the log10 value of the standard deviation of the EMG power 
every 10 s was calculated as the amplitude. The threshold value 
was determined by applying Otsu’s binarization (Otsu, 1979) to 
the amplitudes for all time periods. The epochs in which the 
EMG amplitude exceeded the threshold were determined as 
WAKE, regardless of the result of the neural network scoring. 
After sleep–wake stage scoring, the hourly averages of sleep/wake 
amounts were calculated, and the amplitude, phase, and period 
of the rhythm of each sleep–wake stage were determined by 
cosine fitting. Cosine fitting was performed with the least squares 
method using Python (lmfit).2

2.5. Calculation of circadian components 
in EEG power spectra

Fourier transform was performed for the EEG data every 10 s to 
obtain the EEG power spectra at each epoch, which corresponds to 
sleep–wake stage scoring. EEG power spectra were obtained for every 
0.1 Hz from 0 to 16 Hz. The standard deviation of the EMG data every 
10 s was calculated and defined as the EMG amplitude. The hourly 
average EEG power spectra and EMG amplitude for each sleep–wake 
stage were then calculated. Next, to determine the amplitude and 
phase of the EEG power rhythms, we obtained the amplitude A and 
the peak time tp of the EEG power at each frequency. The EEG power 
was normalized as follows:

 EEG EEG EEG EEGnorm i f hourly i f ave f ave f, , , , , ,/= −( )  (1)
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where EEG EEGhourly i f norm i f, , , ,and  are the hourly averaged EEG 
power and normalized EEG power at the i time point at the frequency 
f, respectively, EEGave f,  is the average EEG power, and T is the 
measurement length (T = 72 h). This calculation was performed for all 
frequencies. The first Fourier component was then obtained using the 
following equation:

1 https://github.com/tarotez/sleepstages

2 https://lmfit.github.io/lmfit-py
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where τ = 24 h and the average interval t∆  = 1 h. Using COS and SIN , 
the amplitudes A and peak time t p  were determined as follows:

 A COS SIN= +2 2
, (4)

 
t SIN COSp = ( ) ∗arctan /2 2 24, π

 (5)

We applied these calculations to EEG power rhythms at each 
frequency and sleep–wake stage.

2.6. Estimation of circadian time using EEG 
power spectra

We constructed phase estimation models using machine learning 
for the correspondence between the EEG power spectra of each sleep–
wake stage and environmental time. The models were constructed 
using the normalized EEG power spectra of each sleep–wake stage as 
the input and the environmental time as the output. The spectral 
distribution was normalized by dividing each spectrum by the sum of 
the spectral densities. The environmental time is represented as a 
point on a circular unit, that is, cos / sin /ZT ZT24 2 24 2∗( ) ∗( ){ }π π,

, where ZT represents zeitgeber time, and the model was constructed 
for the x and y components. The subjective circadian time was 
estimated from the angle between x and y, that is, estimated time = 
arctan /2 2 24y x,( ) ∗π . We  used linear regression, the k-nearest 
neighbor method, a support vector machine, and a random forest 
algorithm as the regression models. Similarly, we  estimated the 
subjective circadian time using the hourly averages of the spectrum 
without distinguishing sleep–wake stages and the spectral distribution 
of all sleep–wake stages as input. The Python library “scikitlearn” 
(version 1.2.0)3 was used to construct each model. Default parameters 
were used for all the hyperparameters of each regression model. In the 
random forest algorithm, the importance of each input for estimation 
was also calculated using this library.

We evaluated the accuracy of the models by leave-one-out cross-
validation using the LD condition of young mice as a control. First, 
we selected one of the mice, trained the model using the EEG data of 
the other mice, and predicted the subjective time of the selected 
mouse based on the trained model. This process was repeated for all 
mice to verify the accuracy of the model. Here, the accuracy of the 
estimation model was defined as the mean value of 
cos /Estimated time −( ) ∗{ }ZT 24 2π . When the estimation error is 

3 https://github.com/scikit-learn/scikit-learn
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small, this value approaches 1, and when the estimated time is in 
reverse phase, i.e., Estimated time − =ZT 12 , it approaches −1. 
Therefore, the closer this value is to 1, the more accurate the 
prediction. For mice other than young and in the LD condition, 
prediction models were constructed based on data from all young 
mice in the LD condition, and the subjective time was predicted based 
on that model.

3. Results

3.1. Sleep–wake patterns in young and 
aged mice

In this study, we employed a neural network model (Tezuka et al., 
2021) to analyze the sleep–wake stages of young (12–17 weeks old) and 
old mice (78–83 weeks old) under LD and DD conditions (Figure 1). 
To evaluate the accuracy of the automated scoring, a portion of the 
EEG data was manually scored (Supplementary Figure S1). The results 
indicated that during the dark period (ZT12-24), the duration of 
NREM and REM sleep increased, and wakefulness time decreased in 
old mice, whereas small changes were observed during the light period 
under LD conditions (Figure 2; Supplementary Figure S2). Young mice 
showed a sharp increase in wakefulness after the light-to-dark 
transition (ZT12), whereas the change was more gradual in aged mice. 
These results are consistent with those of previous studies (Wimmer 
et al., 2013; Panagiotou et al., 2017; McKillop et al., 2018). Likewise, in 
old mice under DD, there was an increase in the amount of sleep and 
a decrease in wakefulness during the subjective night. The amplitude 

of the sleep–wake rhythm, as calculated by their amounts, was 
decreased, and the phase was slightly delayed in old mice when the 
phase was calculated using the amounts of NREM and REM sleep 
(Supplementary Figures S3, S4). Additionally, old mice showed a large 
distribution in the peak time of each stage, suggesting a variation in the 
degree of circadian phase disturbance among aged individuals.

3.2. Circadian rhythm components in EEG

We utilized Fourier transformation to calculate EEG power 
spectra from data collected every 10 s and subsequently determined 
the average power spectra for each sleep–wake stage. The spectra 
varied between the light and dark phases for each sleep–wake stage 
(Figure 3), indicating that sleep quality was time-dependent. However, 
aged mice exhibited less pronounced variations in the EEG power 
spectra during NREM sleep between the light and dark periods than 
young mice. Similar fluctuations in the spectra were also observed 
between the subjective day (ZT0-12) and night (ZT12-24) under DD 
conditions (Supplementary Figure S5), implying the involvement of 
the circadian clock.

We calculated the hourly averaged EEG power and presented 
selected examples of EEG power rhythms at a specific frequency, 
where the changes in EEG power were large between day and night 
(Figure 4). Diurnal fluctuations in EEG power were evident across all 
sleep–wake stages in both the LD and DD conditions. The delta wave, 
generally regarded as a < 4 Hz wave in NREM sleep that reflects 
drowsiness, exhibited reduced variability in aged mice during both LD 
and DD (Figure 4). Moreover, the rhythm amplitudes of EEG power 

FIGURE 1

Representative EEG and EMG signals during each sleep–wake stage in young (A) and old (B) mice. Sleep–wake stage was determined by the neural 
network model. Each panel shows typical signals during each stage, which were scored by the neural network model.

https://doi.org/10.3389/fnins.2023.1173537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Masuda et al. 10.3389/fnins.2023.1173537

Frontiers in Neuroscience 05 frontiersin.org

at 9 Hz during wakefulness in old mice were smaller than those of 
young mice in LD but not in DD, suggesting that light input may 
influence EEG power spectra and that this effect can be attenuated 
by aging.

To clarify the changes in circadian rhythm components in EEG 
with age, we calculated the amplitude and peak time of EEG power 
and EMG amplitude rhythms at each sleep–wake stage and frequency 
(Figure 5; Supplementary Figure S6). In the LD condition, EEG power 
at different frequencies peaked at different environmental times, in 

which the peak time continuously fluctuated according to the 
frequency (Figure 5A; Supplementary Figure S7A). The peak times of 
the specific frequencies also varied among sleep–wake stages. Peak 
times of EEG power rhythms tended to be distributed in the middle 
of the light or dark period (ZT = 6 or 18). However, some frequencies, 
such as 2 Hz in NREM, showed a peak around ZT0, suggesting that 
the rhythm of EEG power was not a result of the response to the light–
dark transition but was regulated by an intrinsic signal from the 
circadian clock. The amplitude of the EEG power rhythms varied 

FIGURE 2

Sleep–wake patterns in young and old mice. Each point is the amount of each sleep–wake stage per hour (n = 13 in young mice and 20 in old mice in 
LD, 8 in young mice and 10 in old mice in DD conditions). Error bars indicate standard error. Blue and red dots represent values for young and old 
mice, respectively. Yellow and gray areas indicate light and dark conditions, respectively. The results of the comparison of young and old mice by t-test 
at each time point are shown in Supplementary Figure S2.

FIGURE 3

Variation in EEG power spectra during day and night. The points are the average of power spectra during day (ZT0-12) and night (ZT12-24) obtained by 
Fourier transform from EEG data every 10 s (n = 13 in young mice and 20 in old mice in LD). The interval of frequency is 0.1 Hz. Error bars indicate 
standard error. Yellow and gray areas indicate light and dark conditions, respectively.
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among frequencies at each sleep–wake stage (Figure  5B; 
Supplementary Figure S6B). Compared with that in young mice, the 
peak time in old mice was delayed at most frequencies in NREM sleep 
and significantly shifted around 5 Hz in wakefulness. Interestingly, the 
peak time calculated by the amount of wakefulness showed no 
significant difference between the two groups 
(Supplementary Figure S3), indicating that the circadian sleep phase 
cannot be precisely evaluated only by the duration of sleep–wake 
stages. In contrast, the amplitude of EEG power rhythms at 4 Hz in 
NREM was significantly decreased in old mice (Figure  5B), as 
previously shown (Figure 4). In DD, the EEG power rhythms also 
exhibited amplitudes and peak times similar to those in the LD 
condition (Figures 5C,D). These results indicate that the rhythms in 
EEG power were autonomous and independent of light signals, in 
other words, regulated by the circadian clock. We also observed that 
the effects of aging were distinct at different sleep–wake stages.

3.3. Estimation of circadian time in aged 
mice

The evaluation of circadian rhythms typically involves 
determining the amplitude and phase (peak time) of the rhythm per 
cycle using methods such as cosine fitting. However, changes in 
circadian rhythms can be time-dependent, and a method that obtains 
a single phase and amplitude from the rhythm of multiple cycles may 
not capture the time-dependent changes in circadian rhythm. Notably, 
in old mice, sleep amounts significantly increased during only the 
night period (Figure 1), showing time-specific alternation. In contrast, 
recent studies have suggested a method to estimate the subjective time 
in individuals from RNA-seq data obtained at a single time point 
(Hesse et al., 2020). The molecular timetable method, a fundamental 
time estimation method that employs mRNA expression data, 

estimates subjective time by identifying which rhythmic genes are at 
peak or trough expression (Ueda et al., 2004). For example, if the 
Period genes that exhibit peak expression around CT12 are at their 
highest, the samples’ subjective time is estimated as CT12. As depicted 
in Figure  4, the EEG power spectra showed different peak times 
depending on the frequency. In other words, each spectral distribution 
is presumed to possess a unique shape at each circadian time, enabling 
the estimation of mice’s subjective time through spectral distributions.

In this study, we developed a circadian time estimation model 
based on the EEG power spectrum. To build the model, we used 
several fundamental machine learning algorithms, such as linear 
regression, k-nearest neighbor method, ridge regression, support 
vector machine, and random forest algorithm, to identify the most 
effective method for predicting the phase. The inputs were set to 
hourly normalized power spectra in NREM sleep, REM sleep, or 
wakefulness, hourly normalized power spectra without distinguishing 
sleep–wake stages, and all sets of spectra in each sleep–wake stage. 
We used normalized power spectra to reduce experimental errors in 
the EEG power, and the circadian rhythm component seen in Section 
3.2 was also observed in the normalized power spectra 
(Supplementary Figures S8–S10). The outputs were set to the 
environmental time.

First, to assess the accuracy of each model, we conducted leave-
one-out cross-validation using data from young mice in the LD 
condition (Figure  6A). Among the various machine learning 
algorithms, the random forest algorithm showed superior 
performance for all input types. The best performance was achieved 
when the sets of EEG power spectra and information on the sleep–
wake stages were used. Feature importance analysis revealed that 
frequencies with larger circadian amplitudes, such as 4 Hz in NREM 
sleep (Figure  5), showed higher importance (Figure  6B). The 
estimation of circadian time can be  broadly categorized into 
discriminating between day and night (SIN) and morning and evening 

FIGURE 4

Circadian oscillation in EEG power. These data represent hourly averages of EEG power at 4 Hz for NREM, 7 Hz for REM, and 9 Hz for WAKE (n = 13 in 
young mice and 20 in old mice in LD, 8 in young mice and 10 in old mice in DD conditions). Error bars indicate standard error. Blue and red dots 
represent values for young and old mice, respectively. Yellow and gray areas indicate light and dark conditions, respectively.
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(COS), and the EEG spectrum in NREM was the most important 
factor for both discriminations (Figure 6C). This indicates that the 
shape of the EEG spectrum in NREM changes more prominently 
depending on the phase of the circadian rhythm than in the other 
sleep–wake stages.

Next, we used an estimation model constructed using the random 
forest algorithm, utilizing data from young mice under LD conditions, 
to forecast subject times (Figure 7A). Initially, we compared the actual 
time and estimated time by employing data from young mice in LD 
and DD conditions. The estimated times were close to the actual 
times, whereas there was a substantial shift in the light–dark transition 
(ZT11-12), which was smaller in DD than in LD. Under the DD 
condition, where light does not cause an effect, the EEG spectrum may 
gradually alter in a time-dependent manner around ZT12. We further 
carried out the estimation by employing the model established from 
young mice in the DD condition, yielding similar results 

(Supplementary Figure S11). These results indicate that the estimation 
model created from data from young mice can be used to assess the 
spontaneous circadian rhythm of mice.

Finally, we compared the subject time between young and old 
mice (Figure 7; Supplementary Figure S12). Under LD conditions, 
although a small effect was observed during the light period, the old 
mice showed a large delay in circadian time during the night period. 
The results obtained under the DD condition also showed a phase 
delay during the subjective night period but a small advancement 
during the light period. These results indicate that the circadian phase 
underwent a delay with aging; however, this change was dependent on 
the environmental time. To check the accuracy of these results, we also 
trained the model on the dataset of old mice in LD and predict the 
circadian phase in young and old mice (Supplementary Figure S13). 
The results showed a similar delay of the estimated time in old mice 
in the subjective dark period in DD, and an overall time delay in 

FIGURE 5

Circadian rhythm components in EEG power. (A,B) Peak time (A) and amplitude (B) of the EEG power rhythm at each frequency obtained from the 
hourly EEG power spectra in LD conditions. (C,D) Peak time (C) and amplitude (D) of the EEG power rhythm in DD conditions. Error bars indicate 
standard error. Blue and red dots represent values for young and old mice, respectively. Yellow and gray areas indicate light and dark conditions, 
respectively. The interval of each frequency is 0.1 Hz. The results of the comparison of young and old mice by Mardia–Watson–Wheeler test for peak 
time and t-test for amplitude at each time point are shown in Supplementary Figure S6.
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FIGURE 6

Accuracy of estimation of circadian phase using EEG power spectra in different algorithms. (A) Accuracy of the models constructed by each algorithm. 
The accuracies are shown for each sleep–wake stage, for hourly spectral averages that do not distinguish between sleep–wake stages, and for spectra 
of all stages. The red dotted line indicates the highest value. Each value is the average of five trials. SVM, support vector machine. (B) Importance of 
each frequency at each sleep–wake stage for time estimation. Blue dots (COS) represent the importance of morning/evening discrimination, and 
yellow points (SIN) represent the importance of day/night discrimination. (C) Importance of each sleep–wake stage for time estimation.

FIGURE 7

Estimation of subjective circadian phase based on EEG power spectra. (A) Estimated subjective time of mice in each condition using the model built 
based on the EEG of young mice in LD conditions. Blank circles represent the individual data, and red points represent the mean value of each time. 
(B) Difference in estimated time between young and old mice. The values shown in the figures are averages of time differences. Yellow and gray areas 
indicate light and dark conditions, respectively. The results of the comparison of young and old mice by Mardia–Watson–Wheeler test at each time 
point are shown in Supplementary Figure S8.
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LD. This confirmed that the circadian rhythm of old mice tend to 
be delayed. However, the phase delay in the dark period was modest 
compared to the results of the model trained using the dataset of 
young mice. We also estimated the subject time based on the spectrum 
of each sleep–wake stage. We observed that the phase in old mice was 
delayed at night during NREM sleep, although the circadian times 
were strongly disturbed during REM and wakefulness at night 
(Figure 8; Supplementary Figure S14). In particular, the circadian 
fluctuation in the amount of REM sleep was not largely affected 
(Figure 2); nevertheless, the phase estimated by the spectral power was 
disturbed during REM sleep (Figure 8).

4. Discussion

In this study, we analyzed the sleep–wake patterns of young and 
aged mice and extracted the circadian rhythm component of each 
EEG power spectrum to simultaneously assess sleep and circadian 
rhythms modulated by aging. First, we confirmed the reduction in the 
amplitude of rhythms in sleep–wake patterns with aging owing to a 
decrease in wakefulness during the dark period (Figure 2; Wimmer 
et  al., 2013; Panagiotou et  al., 2017; McKillop et  al., 2018). 
Subsequently, we extracted the circadian rhythm components in the 
EEG power spectra at each stage. The presence of spontaneous 
rhythms in EEG power spectra, even under constant dark conditions 
(Figures 3–5), suggests regulation by the internal clock. The peak time 

and amplitude of the EEG power rhythms varied according to the 
frequencies and sleep–wake stages. Notably, in aged mice, the 
amplitude of the circadian rhythm in the EEG tended to be attenuated, 
particularly during NREM sleep and wakefulness. Furthermore, 
we  employed machine learning to evaluate the modulation of 
circadian rhythms in aged mice with a high temporal resolution 
(Figure 7). We showed that the phase of circadian rhythm was delayed 
in aged mice only during the dark period, and the delay was more 
obvious during REM sleep and wakefulness than in NREM sleep. 
These results confirm that the attenuation and phase delay of circadian 
rhythms with aging occurred at the EEG level and that the effects of 
aging on circadian rhythm and sleep–wake behavior depend on sleep–
wake stages (wakefulness, NREM or REM) and time of day (circadian 
phase), respectively.

We extracted circadian rhythm components from the EEG power 
spectrum. The results showed different circadian rhythms among sleep–
wake stages. Previous studies also showed that the delta power (0.5–4 Hz) 
rhythm of NREM has a peak around ZT0 (Wisor et al., 2008; Wimmer 
et al., 2013), and the 5–7 Hz rhythm of REM and WAKE has a peak 
around ZT6 (Yasenkov and Deboer, 2010). These results are consistent 
with our results (Figure 5). In aged mice, the amplitude of the EEG power 
rhythm was attenuated, especially at 4 Hz (delta wave), during 
NREM. Delta power is an indicator of sleepiness or sleep quality because 
the lack of sleep, such as sleep deprivation, strengthens it (Åkerstedt and 
Gillberg, 1990; Wisor et al., 2008). Thus, it is predicted to be rhythmic, 
lagging behind the sleep–wake pattern, as shown in our results (Figure 5). 

FIGURE 8

Subjective circadian phase in each sleep–wake stage in LD (A) and DD (B) conditions. Blank circles represent the individual data, and red points 
represent the mean value of each time. The time difference between young and old mice and the results of the comparison of young and old mice by 
Mardia–Watson–Wheeler test at each time point are shown in Supplementary Figures S13, S14.
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However, although delta wave usually refers to between 0.5–4 Hz wave, 
the peak time of the EEG power rhythm and the effect of aging vary even 
between them (Figure 5). 0.5 Hz wave showed the peak during the light 
phase and was not affected by aging. On the other hand, the rhythm of 
4 Hz wave power peaks in the middle of the night and was significantly 
attenuated by aging. Therefore, it is likely that these delta powers are 
largely influenced by sleep pressure, but also affected by other factors such 
as the circadian clock. The amount of sleep in the old mice increased at 
night, and the amplitude of the rhythm of the sleep–wake pattern 
decreased (Figure  2). These results indicate an association between 
circadian rhythm attenuation and aging and sleep disorders in the elderly. 
Moreover, disturbances in circadian rhythm in old mice also appeared at 
night, which is the active period for these animals (Figure 8). Although it 
remains unknown whether these changes are caused by changes in either 
circadian rhythm or sleep, the fact that age-associated changes in circadian 
rhythm and sleep–wake behavior are time-dependent suggests the need 
for time-dependent treatment of sleep and circadian rhythm disorders.

Although many studies have analyzed EEG for sleep analysis, few 
studies have focused on the phase of the circadian rhythm. In general, 
manual EEG analysis is time-consuming and can create bias by the 
analyst, making it difficult to evaluate circadian rhythms using the 
same criteria. Thus, we used the neural network model developed in 
a previous study (Tezuka et al., 2021) for sleep–wake stage scoring. 
One intent of this analysis was to demonstrate that circadian rhythms 
can be analyzed using large-scale EEG data. By combining automated 
sleep–wake stage scoring with circadian time prediction, it is possible 
to analyze circadian rhythms for large-scale data from various EEG 
databases without any bias. Notably, because the estimation method 
does not require long-term (over 1 d) recording of EEG to output the 
circadian phase, short-term EEG data, which were not intended to 
examine circadian rhythms, can be subjected to re-analysis using our 
method. We utilized this model in the current study because one of its 
features is the use of environmental time as one of its inputs, which 
reduces the time-dependent sleep scoring errors. In addition, because 
the model is capable of real-time analysis of sleep–wake stages, real-
time circadian rhythm phase analysis would also be possible using our 
methods. Newer models have been proposed for machine learning 
EEG analysis; therefore, the accuracy of circadian rhythm phase 
estimation may also be improved using the latest models (Craik et al., 
2019; Phan and Mikkelsen, 2022;Koyanagi et al., 2023). We propose 
that automated and spontaneous evaluation of sleep and circadian 
rhythms can be  useful for high-throughput mutant screening, in 
which sleep and circadian rhythms are usually evaluated by 
separate screenings.

We estimated the subjective circadian time of mice using machine 
learning, and the estimated times were proportional to the 
environmental time under both LD and DD conditions. This indicates 
that EEG rhythms at each sleep–wake stage were not merely responses 
to light–dark transitions but clock-driven spontaneous rhythms and that 
it is possible to evaluate the phase of circadian rhythms without a long 
measurement period, as in behavioral analysis. However, even in young 
control mice, the estimation results were disturbed during the second 
half of the dark period. This may result from the increase in sleep 
amount at this time. The method of averaging hourly spectra may not 
provide sufficient data to evaluate the differences in sleepiness between 
light and dark periods. Therefore, it is necessary to develop methods that 
utilize higher-temporal-resolution data for time prediction. For 
example, previous studies have shown the existence of circadian 

periodicity in fractal structures in EEG (Croce et al., 2018). A more 
detailed extraction of circadian rhythm components in EEG will enable 
the evaluation of circadian rhythm phases with higher accuracy and 
temporal resolution. Apart from EEG and EMG, mice exhibit various 
other biological rhythms such as body temperature and endocrine 
rhythms. Simultaneous measurement of these rhythms with EEG can 
improve our understanding of circadian rhythm changes associated 
with aging, and potentially enhance our ability to predict circadian 
rhythms. The circadian time estimated for the old mice were highly 
disturbed during the night period (Figures 7, 8). However, the disruption 
was more modest when based on the old mice dataset 
(Supplementary Figure S13). It is assumed that when the old mice 
dataset was used for training, EEG powers that had no or weak rhythms 
in the old mice were not used for the estimation, leading to a more stable 
estimated circadian time in the old mice. In other words, the loss of the 
circadian rhythm component in the old mice might have caused the 
delay in the estimated time during nighttime in the old mice. Therefore, 
further development of analysis methods may be necessary to estimate 
the circadian phase reliably, regardless of the dataset used for training.

As demonstrated by previous studies and the present study, aging has 
a significant impact on circadian rhythm and sleep. Moreover, circadian 
rhythm disturbances and sleep disorders also accelerate aging (Kondratov 
et  al., 2006; Sadeghmousavi et  al., 2020; Carroll et  al., 2021; Acosta-
Rodríguez et al., 2022). Therefore, because aging, circadian rhythm, and 
sleep are mutually influential, it is difficult to evaluate them individually. 
Furthermore, circadian behavior has been conventionally analyzed using 
the quantitative fluctuation of behavior (such as counts of wheel-running 
and amounts of sleep) but not from the qualitative aspect. In the present 
study, we reconstructed the circadian phases during each sleep–wake 
stage separately based on spectrum analysis (Figure 8). The results showed 
that the circadian phases in the aged mice were delayed during NREM 
sleep, although significantly disrupted during REM sleep and wakefulness, 
indicating that aging affects circadian rhythms during each stage; 
however, these mechanisms may be  independent. The present study 
indicates that analysis of circadian rhythms using EEG is useful to more 
deeply understand the effect of factors such as aging, which affect both 
sleep–wake and circadian rhythms.
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