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The introduction of categorical closure operators by D. Dikranjan and E. Giuli [Topology Appl. 27, 129–
143 (1987; Zbl 0634.54008)] was the point of departure for study of topological structures on categories,
which eventually motivated the introduction of categorical interior [S. J. R. Vorster, Quaest. Math. 23,
No. 4, 405–416 (2000; Zbl 0974.18003)] and neighborhood operators [D. Holgate and J. Šlapal, Topology
Appl. 158, No. 17, 2356–2365 (2011; Zbl 1232.54018)]. While the categorical interior operators were shown
to be pleasantly related to neighborhood operators, a nice relationship between closure and neighborhood
operators had been lacking until the categorical topogenous structures were introduced [D. Holgate et
al., Appl. Categ. Struct. 24, No. 5, 447–455 (2016; Zbl 1359.54003); https://etd.uwc.ac.za/xmlui/
handle/11394/7081]. The conglomerate of categorical topogenous structures is order isomorphic to the
conglomerate of all neighborhood operators containing both the conglomerate of all interior operators as
reflective subcategories.
Categorical syntopogenous structures are a natural generalization of categorical topogenous structures,
providing a convenient setting to investigate a quasi-uniform structure on a category [D. Holgate and M.
Iragi, Topology Appl. 263, 16–25 (2019; Zbl 1420.18003)]. The use of syntopogenous structures allows of
description of a quasi-uniformity as a family of categorical closure operators.
This paper studies a number of categorical quasi-uniform structures induced by functors. The authors de-
part from a category C with a proper (E , M)-factorization system, defining the continuity of a C-morphism
with respecct to two syntopogenous structures on C and using it to describe the quasi-uniformities induced
by pointed and copointed endofunctors of C.
Thinking of categories supplied with quasi-uniformities as large spaces, the continuity of C-morphisms is
generalized to functors. It is shown that for an M-fibration or a functor that has a right adjoint, one can
obtain a concrete construction of the coarsest quasi-uniformity for which the functor is continuous.
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