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Chapter 1

Introduction

1.1 MOTIVATION

Partial differential equations (PDEs) are of great interest to many scientists due to their
wide-ranging applications in fields such as mathematics, physics, and engineering. Numer-
ical analysis is commonly used to solve PDEs since most real-life PDE problems cannot be
solved analytically. For instance, predicting fluid behavior in complex shapes is of particu-
lar significance in various fields, including product design, disaster reduction, and weather
forecasting. However, solving these problems using classical solvers is time-consuming
and challenging. Machine learning has emerged as a promising alternative for addressing
these complex problems because, unlike classical solvers, it can leverage data that is similar

to the state being predicted.

The main challenge in tackling complex phenomena like fluids mechanics using ma-
chine learning is to achieve good generalization performance, mainly owing to the follow-

ing two reasons:

* Variable degrees of freedom: Classical numerical analysis methods discretize con-
tinuous fields of physical quantities (e.g., temperature or velocity fields) into vari-
ables at finite points in a mesh. The number of points, which correspond to the

degrees of freedom of the analysis model, can vary depending on the shape of inter-

1



2 1. Introduction

est, which requires some flexibility of the machine learning model to tolerate such

uncertainty.

* Large number of degrees of freedom: A practical analysis often consists of a
huge number of degrees of freedom, typically over a million. This is considerably
larger than typical machine learning datasets, such as CIFAR-10 (Krizhevsky et al.,
2009), which has 3072 features per sample. The number of possible states in such
a complex system can be large and a purely data-driven approach may not cover

them due to the curse of dimensionality.

To address these challenges, we must incorporate appropriate assumptions and knowl-
edge about the phenomena of interest into the machine learning model, which is known
as inductive bias. Numerous studies have successfully introduced various inductive biases,
such as local connectedness using graph neural networks (GNNs) (Chang & Cheng, |[2020;
Sanchez-Gonzalez et al., [2020; [Pfaff et al., [2021}; Brandstetter et al., 2022)). These studies
have shown that GNNs are effective in constructing PDE solvers as they can handle inputs

with an arbitrary number of degrees of freedom.

Although these methods have made significant progress in solving PDEs using ma-
chine learning, there is still room for improvement. Specifically, we can incorporate more
inductive biases to reduce the numbers of degrees of freedom, for example, by considering
only half of the analysis domain if the phenomenon has bilateral symmetry, such as in the

aerodynamic analysis of a symmetric aircraft.

First, the physical symmetry regarding isometric transformation, i.e., E(n) transforma-
tions, must be addressed when considering PDEs in Euclidean spaces because the nature
of physical phenomena in such spaces does not change under these transformations. Thus,
models that can accurately reflect physical symmetries, which are known as equivariant

functions regarding the transformation of interest, must be used.

Second, there is a need for an efficient and provable way to satisfy mixed boundary
conditions, i.e., Dirichlet and Neumann. Rigorous fulfillment of Dirichlet boundary condi-
tions is indispensable because they are hard constraints, with different Dirichlet conditions

corresponding to different problems users would like to solve.
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Finally, we need to enhance the treatment of global interactions to predict the state
after a long time, when interactions tend to be global. GNNs have excellent generalization
properties because of their locally connected nature, but they may miss global interactions

owing to their localness.

1.2 OBJECTIVE AND SCOPE

In this dissertation, we focus on mesh-based time-dependent numerical analysis. Mesh-
based methods are widely utilized in practical numerical analysis due to their ability to
handle complex shapes often encountered in industrial design. Time-dependent analysis
typically demands a significant amount of computational time, as compared with steady-
state analysis, because of the small time step required to ensure stable computation of the
time evolution. Therefore, we aim to exploit the full potential of machine learning for

conducting mesh-based time-dependent analyses.

The objective of this study is to develop a machine learning method that addresses
the challenges previously discussed. We aim to build a machine learning model with the

following key features:

1. Flexibility to handle arbitrary meshes using GNNs
2. E(n)-equivariance to account for physical symmetries

3. Computational efficiency to provide faster predictions than conventional numerical

analysis methods
4. Capability to rigorously consider boundary conditions

5. Stability for predicting over long time steps by considering global interactions

In a previous study (Horie et al., 2021)), we introduced IsoGCN, a computationally ef-
ficient GNN that features E(n)- invariance and equivariance, hence, complying with the
first three requirements outlined above. Specifically, this model simply modifies the defini-
tion of an adjacency matrix essential for describing a graph, to realize E(n)-equivariance.
Because the proposed approach relies on graphs, it can handle complex shapes that are usu-

ally modeled using mesh or point cloud data structures. Furthermore, a specific form of the
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IsoGCN layer can describe essential physical laws by acting as a spatial differential opera-
tor. Additionally, we demonstrated the computational efficiency of the proposed approach
for processing graphs with up to 1M vertices, which are common in real physical simula-
tions, as well as its capacity to produce faster prediction with the same level of accuracy
compared with conventional finite element methods. Consequently, an IsoGCN can suit-
ably replace physical simulations thanks to its power to express physical laws and faster,

scalable computation. The corresponding implementation code and dataset are available

onlindl]

Similarly, in a follow-up study (Horie & Mitsume (2022)), we proposed a physics-
embedded neural network (PENN), which is a machine learning framework featuring prop-
erties 3, 4, and 5 in the above list. We built PENN based on an IsoGCN to capture physical
symmetry and ensure fast prediction. Furthermore, we developed a method for consid-
ering mixed boundary conditions and modified the stacking of GNNs using a nonlinear
solver, enabling the natural inclusion of global interactions in GNNs through global pool-
ing and improving their interpretability. By conducting numerical experiments, we demon-
strated the improved predictive performance of the model when dealing with Neumann
boundary conditions, as well as its ability to correctly fulfill Dirichlet boundary condi-
tions. This method displayed state-of-the-art performance compared with that of a clas-
sical, well-optimized numerical solver and a baseline machine learning model in terms of
speed-accuracy trade-off. The implementation code and dataset used for the experiments

are also available online?]

1.3 OUTLINE OF DISSERTATION

In Chapter 2] we provide an overview of the background necessary for discussing our
research. We introduce essential machine learning models, particularly GNNs, that can
learn PDEs on complex shapes. In addition, we establish the concept of equivariance,
which is the focus of this study, and review the basics of numerical analysis and its rela-

tionship to graphs.

Ihttps://github.com/yellowshippo/isogen-iclr2021
“https://github.com/yellowshippo/penn—neurips2022


https://github.com/yellowshippo/isogcn-iclr2021
https://github.com/yellowshippo/penn-neurips2022
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Chapter [3] presents IsoGCN, our essential computationally efficient GNN model with
E(n)-equivariance. First, we elaborate on the motivation for equivariance. Then, we explain
the method and prove its equivariance and its relationship to numerical analysis. Finally,

we report numerical experiments that demonstrate the effectiveness of IsoGCNs.

Chapter]|discusses PENNs, which can correctly satisfy boundary conditions and global
interactions based on IsoGCNs. Here, we describe the methods for handling Dirichlet
and Neumann boundary conditions, and for including global interactions using a nonlin-
ear solver. Subsequently, we demonstrate the superiority of the proposed method through

numerical experiments.

Finally, in Chapter[5] we summarize the main conclusions of this dissertation and men-
tion the limitations of the research, pointing out an interesting future direction to address

them.
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Chapter 2

Background

2.1 MACHINE LEARNING

In this section, we review the basics of machine learning and the essential models for

learning numerical analysis.

2.1.1 FOUNDATIONS OF SUPERVISED LEARNING

For the purposes of this study, we focus on supervised learning, which is informally
defined as constructing a function that maps a given input to a given output as accurately

as possible.

Supervised learning involves minimizing the error between the given target and the
prediction from the machine learning model. Let D,, := {(x; € X,y; € V)}", denote
a given training dataset, where X and ) are the input and output spaces, respectively. A
machine learning model with a set of learnable parameters 6 is defined as fy : X — ).

Training is expressed as follows:

0" := argmin R,,(6), (2.1
0
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where the training loss R,,(0) is:

n

Ral6) =+ 3" L(fule), ) @2)

i=1
and £ : Y x Y — R s the loss function, which serves as an error scale.

Although training is performed using a training dataset, the goal of supervised learn-
ing is to obtain a model applicable to the statistical population behind the dataset, unlike
a typical optimization problem where it is sufficient to obtain an optimal model for the
given data. However, because evaluating a model using a population in a practical set-
ting is not feasible, we evaluate the trained model using a test dataset D'%%, = {(x!*" €
Xyt € Y)}*7", Which is different from the training dataset but sampled from the same

distribution. The population loss is approximated as follows:

R(07) :=E[L(fo- (2),y)] (2.3)
1 ntest ‘ ‘
R 2 LFo (), 4, 2.4)
=1

where E[-] is the expected value.

As an example of supervised learning, let us consider linear regression. If X = Y =R,
it becomes a one-dimensional linear regression, which is the simplest case. In this case, the

machine learning model is expressed as:

fo(z) =wz+0b (2.5)
0= (weRbeR). (2.6)

Using the least squares method, we define the loss function as

ﬁ(ypredictiona ytarget) = (yprediction - ytarget)2- (27)
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This can be easily generalized to higher-dimensional cases by letting

X = R%» (2.8)
Y = Rbous (2.9)
fo(z) =Wz +b (2.10)
0 = (W € Rbouwxdin p ¢ Rbout), (2.11)

where d;,, and d,; are the input and output dimensions, respectively. For more information

on machine learning, including supervised learning, see Bishop (20006).

2.1.2 GRAPH NEURAL NETWORKS (GNNS)

This section provides an overview of the foundations of graph neural networks (GNNs),
which are a class of neural networks designed to handle graph-structured data. GNNs were
first proposed by Baskin et al.| (1997)); Sperduti & Starita (1997), and subsequently im-
proved by (Gort et al., 2005; |Scarselli et al., 2008). Because various data can be regarded
as graphs, GNNs have a broad range of application domains such as 3D shape recogni-
tion (Fey et al., 2018}; Monti et al., | 2017), structural chemistry (Gilmer et al., 2017; Klicpera
et al., 2020), and social network analysis (Fan et al.,|2019).

2.1.2.1 GRAPH

A finite graph G = (V, £) is defined as a tuple of a finite set of vertices (nodes) V and
edges £ C V x V. In general, note that the edges are directed, i.e., that (u,v) € £ does not
imply (v,u) € £. However, in this dissertation we assume that all graphs are undirected
(i.e., (u,v) € & implies (v,u) € & for all u,v € V) because of Newton’s third law of
motion, which states that every action has an equal and opposite to reaction. The set of

neighboring vertices of v is defined as:

N, :={u e V|(v,u) € £}. (2.12)
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The square matrix describing the edge connectivity of a graph is called the adjacency

matrix and defined as:

A € RVIxIVI (2.13)

1 ifedge (v;,v;) € €
Ay = ge (v, vy) (2.14)
0 otherwise,

where |V| denotes the number of vertices in the index set J = {1,2,...,|V|}. Although
the definition of an adjacency matrix depends on the indexing of the vertices, adjacency
matrices of the same graph but with different indexing can be shown to be isomorphic

using the permutation 7 : J — J to describe the changes in indices. Using the permutation

matrix, P € RIVI*VI defined as:

1 ifrw(z) =7
P, = i) = (2.15)
0 otherwise,

one can show that:
A'= PAP', (2.16)

where A}; = Ay x(j) is the adjacency matrix with permutated indices. Figure 2.1|presents
an example of a graph and its permutated representation. Because the discussion regarding
permutations of graph vertex indices is well defined, in the subsequent discussions we

represent vertices using an index, i.e., v; — .

The graph Laplacian matrix L can be defined as:

L=D-A, (2.17)
where D is the degree matrix of the graph, which is defined by:
Ay ifi=
Dy { 2 / (2.18)

0 otherwise.
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(a) (b)

4 5 2 1
1, 2 3 6 5, 4 3 6
(©)
1100 00 000 010 000001
101100 000100 01 110 0
1010100 1001000 , 1010100
A_011100P_010000A_011010
000001 1 00 000 000 110
000 01 0 000 001 100 000

Figure 2.1: (a) An example of a graph, (b) the same graph with permutated indices, and (c)

corresponding adjacency and permutation matrices.

For the path graph with five vertices shown in Figure[2.2] the adjacency matrix is expressed

as follows:

01 00O
10100
A=101010 (2.19)
00101
000T1O0

Thus, the graph Laplacian matrix is:

L=|l0 -1 2 -1 0 (2.20)
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As will be discussed in Section [2.2.4] the graph Laplacian matrix is closely related to the

Laplacian operator.

1. 2. 3 4 5
o —0 0 0 o

Figure 2.2: A path graph with five vertices.

A function defined at a set of vertices fiertex : V — R¥ is called a vertex signal or
vertex feature. Similarly, a function defined at a set of edges feqqe : £ — RY is called an
edge signal or edge feature. Graph signal processing is a research domain that deals with
node and edge signals on graphs, that is, graph signals. For more details regarding graph

signal processing, refer to, e.g., Ortega et al.| (2018)); |Dong et al. (2020).

2.1.2.2 POINTWISE MLP

One of the most basic neural network models is the multilayer perceptron (MLP). An
L-layer MLP; : Rd%» — R g defined as a stacking of affine transformations and

component-wise functions, called activation functions, as follows:

MLP(x) :=c®) o Affine!™ o ¢E"Vo Affine“ Vo ... 0o o Affine™(z) (2.21)

Affine® (b)) :=WORO 4 pO Vie{1,2,...,L} (2.22)
WO gAY xd? vie{1,2,...,L} (2.23)

b cr4Y vie{1,2,...,L} (2.24)

oDl v [ =] oOw) vie{1,2,...,L}, (2.25)

where dV) = d;, and d“tD = d ., and WO, b0 and o are the weight matrix, bias, and

activation function, respectively. An MLP is known as a universal approximator (Hornik,
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1991} Cybenko, 1992; [Nakkiran et al., 2021)) that can approximate any continuous function
if the number of hidden features d") (I # 1, L) is increased.

However, an MLP cannot handle an input with an arbitrary length by itself because the
dimensions of the input are fixed. Instead, one can use a pointwise MLP to handle inputs
with arbitrary lengths. An L-layer pointwise MLP, PointwiseMLP, : RVI*din — RIVIXdout
is constructed by separately applying an L-layer MLP, MLP;, : R%» — R%u¢ to each point,

as follows:

MLP (Bin 1)
o B MLP[ (R 2)
PointwiseMLP (H;,) := ‘ (2.26)

MLP, (R, v)

H, = v e RIVIxdin (2.27)
hin v

where every MLP represents an identical function. Figure [2.3] (a) presents the architecture
of a pointwise MLP. It can be seen that an MLP “pointwise” is applied, resulting in the

capability to incorporate an arbitrary input length.

Alternatively, a pointwise MLP is expressed as:

PointwiseMLP 1 (H},) =) o PointwiseAffine™ o - - 0 M o PointwiseAfﬁne(l)(Hm),

(2.28)

where
PointwiseAffine (HY) :=HOW® 4+ 1,,,p" vie{l,2,....L} (229
WO R xd® Vie{l,2,....L}  (2.30)

bV crIx@? vie{1,2,....L} (230
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1
1y =| | eR™ (2.32)

Because the trainable parameters in the model do not depend on the number of vertices,
pointwise MLPs can handle arbitrary input lengths, i.e., arbitrary graphs, but they ignore
the edges, that is, the connections between vertices. Nevertheless, pointwise MLPs are

widely used as part of GNNs because of their simplicity.

(a)
hi, ;
(b)
Message function: @
fmessage (hin,z’7 hin,ja ein,ij)
@
% Update function
(c)

Message function: hin,j hout,j

Aijhin \}fin’k = AN
7

hin 7
% hout,i
Update function

Figure 2.3: Schematic diagrams of (a) pointwise MLP, (b) MPNN, and (c) GCN.

2.1.2.3 MESSAGE PASSING NEURAL NETWORKS (MPNNS)

The term GNN is an umbrella denomination for any neural network that can handle
graph-structured data. Although there are many GNN variants, most are unified under
the concept of message passing neural networks (MPNNs) (Gilmer et al., 2017), which

comprise two main parts: the message function fessaga and update function fypqate. One
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MPNN operation is defined as:

MPNN({hin,i}i€V7 {ein,ij}(i,j)eg) ::fupdate(hin,ia mz) (233)
m; = Z fmessage(hin,i7 hin,ja ein,ij)a (234)
JEN;

where {hi,; }icy and {ein 5} (i j)ee are the vertex and edge features, respectively. Note that

Smessage and fipdate are machine learning models usually based on neural networks.

Figure [2.3](b) shows a schematic of an MPNN. The message function models the effect
from neighboring vertices. A typical example of an update function is a pointwise MLP that
predicts the state of vertices using vertex features and aggregated messages. The trainable
parameters of the message and update functions independent of the number of vertices
or edges, which implies that an MPNN can handle a graph with arbitrary dimensions. A
single MPNN layer considers neighboring vertices as one hop away, hence, the information

of vertices k-hops away can be considered by stacking £ MPNN layers.

2.1.2.4 GRAPH CONVOLUTIONAL NETWORK (GCN)

Generally, deep neural networks are used for message passing, which can incur tremen-
dous computational cost. In contrast, the Graph Convolutional Network (GCN) developed
by [Kipf & Welling| (2017) is a considerable simplification of an MPNN, that uses a linear

message-passing scheme expressed as:
GCN(H,,) := PointwiseMLP_,(AH,,), (2.35)
where A denotes a renormalized adjacency matrix with self-loops and defined as:
A:=D'?AD '/, (2.36)

where A is an adjacency matrix of the graph with added self-connections and D is the

degree matrix of A.
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The formulation of a GCN comprehends that of an MPNN, as follows:

m; = Z fmessage (him hin,j) = Z Aij hin,j

JEN;U{i} JEN;U{i}
~ [AH,| 2.37)

fupdate(m;) = MLP—1(m;), (2.38)

Note that Equation m is derived based on the fact that A; = 0 (if j ¢ N; U {i}).
From Equation [2.37| one can consider that GCNs use linearized message passing, which
can accelerate their. Furthermore, if the graph is sparse, i.e., |€| < |V|?, implying that the
number of actual edges |£| is significantly smaller than the possible number of edges |V|?,
efficient algorithms can be utilized for sparse matrix operations. Figure (c) shows the
architecture of a GCN and Figure [2.4] shows an example of GCN operation. Owing to its
computational efficiency, a GCN is the basis for constructing our proposed [soGCN, a fast

machine learning model to learn physics, as presented in Chapter 3]

01 100 30000 20 4/5 4/5 0 0
101 11| 050001 |45 12 12 6/5 6V5
A= 1101 1| D=|00500 A:%4\/512 12 6V5 65
0110 1 00 0 40 0 6v5 6v5 15 15
01 110 000 0 4 0 6v5 6v5 15 15

1
hout,l - [GCN(Hm)h = MLP (%[20}“11,1 + 4\/5hin,2 + 4\/§hin,3])

Figure 2.4: An example of a graph and its corresponding adjacency matrix A, degree
matrix D, renormalized adjacency matrix A, and resulting output k1. their can be seen
that the GCN model considers information on neighboring vertices through a weighted sum

determined from the graph structure.

If we consider a graph with no edges, then A;; = 0 (Vi,j € {1,2,...,[V|}) and D =
I}y, where I denotes an identity matrix of size |V|. In such case, the GCN layer becomes

a pointwise MLP PointwiseMLP ;. (Iy|H;,) = PointwiseMLP;_; (Hj,). Therefore, the
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GCN model can be considered a generalization of a pointwise MLP for a model-capturing

graph structure.

2.1.3 EQUIVARIANCE

Equivariance is an essential concept for characterizing the predictable behavior of a
function under certain transformations, such as rotation or translation. Because this is

closely related to group theory, we first introduce groups and related concepts.

2.1.3.1 GROUP THEORY

A group is a set G with a binary operation (usually called “multiplication”), - : GXG —

G, that satisfies the following requirements:

(Associativity) Va,b,c € G, (a-b)-c=a-(b-c) (2.39)
(Identity element) dest.Vae G, e-a=a-e=a (2.40)
(Inverse element) Va € G,3b € G s.t. a-b=b-a=e. (2.41)

For a group GG and a set X, a (left) group action is a function - : G x X — X, which

satisfies the following conditions:

(Identity) Vo e X, e-r==x (2.42)
(Compatibility) Va,b € G,Vz € X, a-(b-z)=(a-b)-x, (2.43)
where e is the identity element of the group. We denote a(a, ) := a - © when we must

clarify that the operation is a group action.

Groups appear in various fields, such as physics, engineering, and computer science;
next, we provide a few examples of groups and their actions. A first example is the general
linear group GL(n), the set of all n-dimensional invertible matrices. One can confirm
GL(n) is a group because the multiplication of matrices is associative, the identity matrix

is in GL(n), and by definition an inverse matrix always exists for a given element in GL(n).

Another example is the orthogonal group O(n), the set of n-dimensional orthogonal

matrices representing rotation and reflection, which also satisfies the group requirements.
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In addition, one can consider the multiplication between an element of O(n) and an n-
dimensional vector € R". Such multiplication satisfies the definition of group action as
well. Furthermore, a rank-2 tensor T € R™*" can be transformed into an orthogonal matrix
U € O(n) By computing o(U,T) = UTU ", Which is also a group action. Therefore,
the concrete form of a group action might differ depending on the set on which the group

acts.

Two more examples of groups are the symmetric group S,, a group of permutations,
and the Euclidean group E(n), which is a group of isometric transformations, namely,
translation, rotation, and reflection. In particular, E(n) plays an essential role in developing
neural PDE solvers because most physical phenomena occur in the Euclidean space, with

its essence remaining the same under E(n) transformations.

2.1.3.2 EQUIVARIANT MODEL
A function f : X — Y is said to be G-equivariant when:
Vge GV e X, f(g-x) =g f(x), (2.44)
assuming that the group G acts on both X and Y. The concept of equivariance is also

explained by the following commutative diagram:

X 24X

ol

y -2, v

In particular, when:

Vg € G, f(g-x) = f(x), (2.45)

f is said to be G-invariant, and the corresponding commutative diagram is as follows:

X 24X

N
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This invariance is a special case of equivariance because g - x = x qualifies as a group

action (trivial group action).

Most numerical analysis schemes and models for physical simulations have equivari-
ance. The principle of material objectivity (Ignatieft, |1996)), which is similar to equivari-
ance, is considered essential for constitutive laws. For instance, the tensor product between
two rank-1 tensors fi04 : R"XR" 3 (v, u) — v®u € R™"is O(n)-equivariant because,

for any orthogonal matrix U:

[,fprod(a(Ua ’U)a O((U, u))]” - [U’U ® U’U,L]
= [Uv];[Uu];

= E UikUkszUz
Kl

T
= E UikvkulUlj
kl

= [Uv®uU']

ij

= [o(U, fprod(v,u))]ij, (2.46)

satisfying the definition of equivariance (Equation|2.44)). The squared norm operator f,om :

R" 3 v — ||[v]|> € Ris O(n)-invariant because

From(a(U,)) = U’
= (Uv) - (Uv)
= Z Uirvr Uy

ikl

= fnorm (’U), (247)
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which satisfies the definition of invariance (Equation|2.45)). Here, d;;, is the Kronecker delta,
defined as:
1 ifi=y

0 otherwise.

In addition to O(n), a symmetric group S,, is also worth considering because it corre-
sponds to the permutation of the vertex indices. In numerical analysis, we choose arbitrary
indexing for the nodes and elements in the meshes. Therefore, permutation equivariance is
an essential indicator for a preferable numerical analysis schemeﬂ We can demonstrate a
GCN layer operation (Equation [2.35) is permutation equivariant for all permutation matri-

ces as follows: P,

GCN(a(P, H)) = PointwiseMLP(a(P, AH))
= PointwiseMLP(PAP'"PH))
— PointwiseMLP(PAH))

~

= P PointwiseMLP(AH))
— o(P,GCN(H)). (2.49)

We use the fact that any permutation matrix is orthogonal, i.e., PT = P! and that all

pointwise MLP layers are trivially permutation equivariant.

Group equivariant convolutional neural networks (CNNs) were first proposed by |[Cohen
& Welling (2016) for discrete groups. Subsequent studies have categorized such networks
as continuous groups (Cohen et al., 2018), three-dimensional data (Weiler et al., 2018]),
and general manifolds (Cohen et al., [2019). These methods are based on CNNs; thus,
they cannot directly handle mesh or point cloud data structures. Specifically, 3D steerable
CNNs (Weiler et al., 2018) which use voxels (regular grids) and are deemed relatively
easy to handle, are inefficient because they represent both occupied and empty parts of an

object (Ahmed et al., 2018). In addition, a voxelized object tends to lose smoothness of

"However, several schemes are not permutation equivariant, e.g., one iteration in the successive over-
relaxation (SOR) method. Nevertheless, we can assume that the entire SOR process is nearly permutation-
equivariant if it converges to an accurate solution.
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its shape, which can lead to a drastically different behavior in a physical simulation, as is

typically observed in heat analyses and computational fluid dynamics.

Thomas et al. (2018)); Kondor| (2018) discussed how to provide rotation equivariance
to point clouds. Specifically, Thomas et al.|(2018) proposed a tensor field network (TFN),
which is a point-cloud-based rotation and translation equivariant neural network, whose

layer can be written as:

HY), = TEN,({H }iso) = 0 HY, + YN Wha; —2) HY,  (2.50)
k>0 j#i
k+1 J
Whz) = 3 d%(llzl) Y Yimla/llz)Q%,. @51
J=|k—1| m=—J

where H (ﬁ(l)

in,i out,i

): is a type-/ input (output) features at the ith vertex, ¢'F : Rsg — R
is a trainable function, Y,, is the mth component of the .Jth spherical harmonic, and Q"%
is the Clebsch-Cordan coefficient. The SE(3)-Transformer (Fuchs et al., 2020) is a TEN
variant with self-attention. Dym & Maron| (2020) showed that both the TFN and SE(3)-

Transformer are universal in terms of translation, rotation, and permutation equivariance.

E(n)-equivariance is essential for solving physical PDEs because it describes rigid-
body motion, i.e., translation, rotation, and reflection. |Ling et al.| (2016) and Wang et al.
(2021) introduced equivariance into a simple neural network and a CNN to predict flow
phenomena. Both studies showed that the predictive and generalization performance im-

proved due to equivariance.

2.2 NUMERICAL ANALYSIS

In this section, we review the foundations of PDEs to clarify the problems we aim to
solve and introduce related works in which machine learning models are used to solve

PDEs.

2.2.1 PARTIAL DIFFERENTIAL EQUATIONS (PDES) WITH BOUNDARY CONDITIONS

The general form of the spatiotemporal PDEs for a field, u : (0,7) x Q — R?, of

a d-dimensional physical quantity defined in an n-dimensional domain, 2 C R", can be
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expressed as follows:

%—":(t, ) = D(u)(t, z) (t,x) € (0,T) x O (2.52)

u(t =0,x) = do(x) x e (2.53)
u(t,z) = u(t,x) (t,x) € (0,T) X ODirichlet (2.54)
f(Vu(t,z),n(x)) =0 (t,2) € (0,T) X O eumann; (2.55)

where 0Qpirichies and O 2Neumann are mixed Dirichlet and Neumann boundary conditions,
respectively, such that 9Qpiichier N ONeumann = @ and OQpiricntet U O2Neumann = 082, 9
denotes the boundary of (2, * is a known function, D is a known nonlinear differential oper-
ator, which can be nonlinear and contains spatial differential operators, and n(x) denotes
the normal vector at * € 0f). Equation is called the Dirichlet boundary condition,
where the value of 0Qpjicuiet 1S Set as a constraint, whereas Equation corresponds to
the Neumann boundary condition, where the value of the derivative u in the direction of 1

is set to O Neumann rather than . w is the solution of the (initial) boundary value problem
when it satisfies Equations [2.52]—[2.55]

Equation may represent various types of PDEs. For instance, in the case of the

heat equation:
Dheat(u) = ¢V - Vu, (2.56)

where u is the temperature field (d = 1) and c is the diffusion coefficient. For an incom-
pressible Navier—Stokes equations:

1

Drs(u) = —(u-V)u + o

V -Vu — Vp, (2.57)

where V - u = 0 expresses the incompressible condition, w denotes the flow velocity field,

p is the pressure field, and Re denotesthe Reynolds number.
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2.2.2 DISCRETIZATION

PDEs must be defined in a continuous space for the differentials to be meaningful.
Discretization can be applied to both space and time to enable computers to easily solve

the PDE.

In the numerical analysis of complex-shaped domains, we commonly use meshes (dis-
cretized shape data), which can be regarded as a graph, as shown in Figure We denote
the position of the ith vertex as x; and the value of a function f, g, ... atx; as f; g;, . ...
Therefore, {f;}icv, {gi}icy, and ... are the vertex featureﬂ For concrete examples of

spatial discretization, see Section [2.2.4]

(a) (b)

Spatial discretization
(meshing)

>

Figure 2.5: Examples of (a) a domain (2 and (b) a mesh representing the corresponding

discretized domain.

One of the simplest methods to discretize time is the explicit Euler method which is
formulated as:

u(t + At,z;) ~ u(t,z;) + D(u)(t, z;)At, (2.58)

where u(t, ;) is updated via a small increment D(w)(t, ;) At. Another way to discretize

time is the implicit Euler method formulated as:

u(t + At, x;) = u(t,z;) + D(u)(t + At, x;) At, (2.59)

2Strictly speaking, the components of the PDE, e.g. D and €2, can be different before and after discretiza-
tion. However, we use the same notation regardless of discretization to keep the notation simple.
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which solves Equation [2.59] rather than simply updating the variables to ensure that the
original PDE is numerically satisfied. The equation can be viewed as a nonlinear optimiza-

tion problem by formulating it as:

r(v) :=v —u(t,-) — D(v)At (2.60)
Solve, r(v)(x;) =0, Vi € {1,...,|V|}, (2.61)

where 7 : (Q — R?) — (2 — R?) is the operator of the residual vector of the discretized
PDE. Since r is a map from functions 2 — R¢ to functions 2 — RY, r(v) : Q — R is

also a function. Therefore:

r(v)(x;) = v(z;) — u(t, ;) — D(v)(x;)At € R? (2.62)
corresponds to the error in the current numerical solution v at z;. If
r(v)(xz;) = 0, v satisfies the discretized equation at ;. Here, by
letting V. = (v(x) ,v(z2)',...,o(@y)")T € RM and UE) =

(w(t,z:) " ult, )", ... u(t,zp) )T € RV, Equation and Equation [2.61]

become:

R(V):=V —U(t) — D(V)At € R (2.63)
Solvey R(V') =0. (2.64)

The solution to Equation corresponds to U(t + At) = (u(t + At,x,) ", u(t +
At,xo)T, . u(t+ Aty )T e RV
2.2.3 NONLINEAR SOLVER AND OPTIMIZATION

2.2.3.1 BASIC FORMULA FOR ITERATIVE METHODS

Because Equation [2.64] can be a nonlinear and high-dimensional problem, there is no

general formula for solving it. A common method to obtain an approximate solution is to
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apply an iterative method to a linearized system, such as:

vl — Ut (2.65)
Vit — vl Ayl (2.66)

where AVl is an unknown update of the approximate solution. The first-order approxi-

mation can be applied to obtain the update, as follows:
RV L AV ~ R(VI) 4 Vy @ R(VIHAVT = 0, (2.67)

where Vy ® R € RWVIX4Vl denotes the Jacobian matrix of R with respect to V. Instead

of using Equation [2.61] we can iteratively solve Equation

If a function ¢ : RVl — R satisfying Vy ¢ = R exists, solving Equation cor-
responds to the optimization of ¢ in an (d|V|)-dimensional space, where |)/| denotes the
number of vertices in the considered mesh. Therefore, the implicit Euler method is closely
related to optimization in a high-dimensional space. From this viewpoint, the Jacobian ma-
trix Vy ® R corresponds to the Hessian matrix Vy ® Vy ¢. However, it should be noted
that the Hessian matrix is always symmetric, which is not always the case for the Jacobian

matrix.

2.2.3.2 NEWTON-RAPHSON METHOD AND QUASI-NEWTON METHOD

The Newton—Raphson method solves Equation as follows:
AV = _[Vy @ R(VIH] T RV, (2.68)

which requires solving a linear system with a large number of degrees of freedom, (d|V|).
Solving such a large system of linear equations occasionally requires considerable compu-
tational resources and time. To address this issue, quasi-Newton methods approximate the

inverse of the Jacobian matrix using a matrix H ¥ to obtain:

AV ~ —HU RV, (2.69)
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Various methods can be used to initialize, compute, and update H @A key concern in
quasi-Newton methods is their massive memory consumption because H [ could be dense
even if Vy ® R is sparse. Thus, a lot of effort has been dedicated to reducing the memory

demand of this method, as in|Liu & Nocedal|(1989).

2.2.3.3 GRADIENT DESCENT METHOD

The gradient descent method implements yet another approximation, as follows:
AV ~ —oll RV, (2.70)

where ol € R is a scalar that controls the update magnitude. The approximation has no

error when all eigenvalues \; (i € 1,...,d|V)|) are the same, i.e., \; = )\, because:
A
Vy @ RV =Q Q! (2.71)
A
= QM Q7! (2.72)
= Mgy, (2.73)

where @ where is the eigenvectors matrix. Thus, by letting af! = 1/), we can show that
Equations @ and are the same. In contrast, if the eigenvalues are not identical and
broadly distributed, the gradient descent approximation introduces some error. This fact is
reasonable because such a situation corresponds to a linear system with a large condition

number for the matrix Vy R(V'1) and, hence, constitutes a challenging problem.

The update using gradient descent is expressed as:
Vit — vl _ ol (v, (2.74)

This method is termed gradient descent because R(V'1) corresponds to the “gradient”, and

the equation is updated to reduce the error.
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ol is typically determined using line search. However, owing to the high computational
cost of this search, ol can be fixed to a small value «, which corresponds to the explicit

Euler method with a time step size At because

Vit = vil o Rr(V1) (2.75)
=Vl —a [V -U(t) - D(VIT)At] (2.76)
= (1-a)VI 4 aU(t) + D(VIHaAtL. (2.77)

If we explicitly write the first few steps:

vO=U@) (2.78)
VI =(1-a)VO+aU)+D(VP)aAt (2.79)
= U(t) + D(U(t))aAt, (2.80)

obtaining the same update scheme as that in Equation For more information regard-
ing optimization, including quasi-Newton methods and gradient descent, see, e.g., Luen-

berger et al.|(1984).

2.2.3.4 BARZILAI-BORWEIN METHOD

Barzila1 & Borwein| (1988) suggested another simple, yet effective, way to determine
the step size ol in the gradient-descent method by using a two-point approximation of the
secant equation underlying the quasi-Newton method. Using this method, we can derive
the step size for the current state as:

i [V[z’] — V[i—ll} . [R(V[i]) — R(v[i—ll)}

= = RV - RVISD)] RV - ROV G

MO

We now derive Equation|2.81

First, to avoid using future information, we assume that

AV Z vl yli-1 o R(vI-1, (2.82)
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instead of using Equation which contains the state at a future step (i + 1). Equa-
tion 2.82]implies:

1
alid’

Vy @ RV ~ (2.83)

By substituting Equation into Equation and replacing ¢ with (¢ — 1), we obtain:

4 . 1 :
R(V) = R(VI"Y) + —AVEY
o ?

where AR = R(VI) — R(VI-1), We want to find a good al! that best satisfies
Equation in terms of least squares. Thus, we obtain OCE}B as follows:

all, :=arg min £17(a) (2.85)

R > L0 (a) ::% HAV[F” — OzAR[F”H2 (2.36)

Because of the convexity of the problem, it is sufficient to find an « that satisfies:

ALl
da

= (Av[i—lJ - a};']BAR[i—“) (~ARIY) =0 (2.87)

BB

Using the linearity of the inner product, we obtain:
—Avl L AR 4 oL AR AR = 0,

therefore,

0 Avli—1 . ARl
app = AR . AR

(2.88)

Equation [2.88|1s equivalent to Equation [2.81
As can be seen, the derivation above aims to establish an QE]B that satisfies Equa-
tion [2.84] as closely as possible for all vertices and all feature components. This means

that 041@13 contains global information because it considers all vertices, making the inclu-
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sion of global interactions possible. Additionally, aE}B is E(n)-invariant because it is scalar

that is independent of coordinates. Therefore, 041[;]13 is suitable for realizing efficient PDE
solvers with E(n)-equivariance. Owing to its satisfactory balance between low computa-
tional cost and accuracy, the Barzilai-Borwein method is adopted to develop the neural

nonlinear solver presented in Chapter

2.2.4 NUMERICAL ANALYSIS FROM A GRAPH REPRESENTATION VIEW

In this section, we provide an overview of several numerical analysis methods and dis-
cuss how they are related to graphs. In particular, we see that the discretized representation
of spatial differentiation is closely related to graphs. For simplicity, we consider the heat

equation D = ¢V - V. However, the same discussion holds for other PDEs.

2.2.4.1 FINITE DIFFERENCE METHOD

The finite difference method (FDM) is one of the most basic numerical analysis
schemes. This method is typically applied to structured grids, where the space is discretized

using lines (1D), squares (2D), or cubes (3D), as shown in Figure 2.6

ut
®
u(t7xi+1)
w(t,z;_q) ult,xi) @
\ © e s s
h
® ® ® o o—

Figure 2.6: An example of a 1D w field spatially discretized using FDM.
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In FDM, the gradient operator can be expressed as:

u(t,z + h) — u(t, z)
h Y

0
%u(t, T) & (2.89)

where h denotes the step size of the spatial discretization. The Laplacian operator is com-

puted as follows:

ult,z+h) —u(t,z)

V- Vu(t,z) = V -
~ lult,x+h) —u(t,z)] = [u(t,z) —u(t,x — h)]
h h
N % [u(t,a +h) +u(t,z — h) = 2u(t, 2)]. (2.90)

If the vertex positions are denoted using indices as follows:

$i+1:$+h
T, =T

Ti—1 =T — h.
The spatially discretized heat equation becomes

toag) = — [ult, 2ir) — 2ult, 2;) + ult, vie1)] (2.91)

PTha 12

This expression involves interactions between vertices, that is, edge connectivity, implying

a graphical structure. By using a matrix form, we can write:

u(t, r;_

0 c ( 2

En u(t, x;) ==z | -1 2 -1 ... u(t,x;) |- (2.92)
u(t, Tiy1)

Note that the matrix appearing on the right-hand side has the same form as the Laplacian

graph matrix, computed in Equation [2.20}, meaning that the Laplacian operator corresponds
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to the Laplacian graph matrix in a spatially discretized settingﬂ By denoting Equation m

as
0 c
aU(t) = —ﬁLFDMU(t); (2.93)
one can see that
c

in the present case. The temporal discretization methods discussed in Section[2.2.2]can be

applied to Equation For instance, using the explicit Euler method, we obtain:

Ut + At) ~ U(t) — %LFDMU(t)At. (2.95)

where the coefficient cAt/h?, is the diffusion number, which must be less than 1/2 for

stable computation.

f@,j 1)

Figure 2.7: An example of 2D w field spatially discretized using FDM and its corresponding

edge connectivity.

3The matrices may differ on the boundary, where some boundary conditions are required.
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For the 2D case, we denote the vertex positions using the following indices:

T;j+1 = &4 + hey
wi_Lj =&; — hex ZBZ',]‘ =& :I:Hl,j = XI; + hew

Lij—1 = Li — hey,

where e, and e, denote the unit vectors in the X and Y directions, respectively. A sim-
ilar discussion leads to the following spatially discretized representation of the 2D heat

equation:
—u(t, @) = —— [~u(t, i1 ;) — ult, Tir15)
—u(t, @i j-1) — u(l, @i j41) + du(t, @ )], (2.96)

which also corresponds to the Laplacian matrix of a corresponding graph, as shown in

Figure

2.2.4.2 FINITE ELEMENT METHOD (FEM)

The finite element method (FEM) utilizes a set of functions called shape functions,

N : R™ — R, for the spatial discretization of the weak form of the PDE of interest.

First, we obtain the weak form by integrating the PDE over the domain {2 And multi-

plying by an arbitrary test function v, as follows:

/Qv(m)%u(t,w)dﬁ(m) = / v(x)cV - Vu(t, z)dQ(x). (2.97)

Using
/QV-(U(w)Vu(t, x))dQ(x)

= /Q(Vv(w)) (Vu(t,z))dQ(x) + / v(x)V - Vu(t, z)dQ(x), (2.98)

Q
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we obtain:

c/Qv(a:)V - Vu(t, z)dQ(x)

— ¢ /Q V- (v(2)Vult, 2))dz) — ¢ / (Vo(@)) - (Vult, @))d(x).

Q
(2.99)

Using Stokes’ theorem, the first term on the right-hand side is transformed into:

c/ V- (v(x)Vu(t,x))dQ(x) = c/ v(x)(Vu(t,z)) - n(x)dl(x), (2.100)
Q b

Q

where n(x) is the normal vector at € 9f). Now, if we assume (Vu(t,z)) - n(x) = 0
for all x € 0¢), i.e., the adiabatic condition, Equation [2.100|is equal to zero. Therefore, the

equation to solve is:

/Q v(m)%u(t,m)d()(cc) - / (Vo(@)) - (Vult, 2))d(x). 2.101)

Q

Next, we consider the spatial discretization using the set of shape functions

{Ni(x)}iequ,... vy Which is typically required to satisfy the following properties:

VeeQ, Y Nix)=1 (2.102)
ie{l,...,|V|}

Vie{l,...,|V|}, supp(LV;) : compact (2.103)

\V/Z,j < {1,7|V|}7 NZ(QZ]) :5ij7 (2104)

where supp(N;) := {x € Q|N;(x) # 0} is the closed support of N; (- denotes closure), and
compactness corresponds to the notion of a bounded and closed subset of the Euclidean
space. A typical example of a shape function is the Lagrange interpolating polynomial
shown in Figure 2.8] Using a Lagrange interpolating polynomial of degree one, one can

approximate the field of v and v as follows:

ut, @)~ > Ni(@)u(t) (2.105)

ie{1,...,|V[}
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v@)~ Y Ni(@), (2.106)

i€{1,...,[V|}

where u;(t) and v; and denotes the value of u(t, ;) and v(x;), respectively.

Figure 2.8: An example of a 1D u field spatially discretized using FEM.

Using the shape function, we discretize Equation [2.101]as follows:

0
> / N s 00e) = = [ (FN@p) - (N @y (0)a0(a)
Z o /Q Ni(@) N, (2)d ) — —c%:uj(t) /Q (VNi(@)) - (VN;(2))d).

(2.107)

By letting

M;; = /N Q) () (2.108)

Ky = /Q(VN( 2)) - (VN (@))dQ(x). (2.109)
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one can obtain:

0
MEU(t) = KU (t). (2.110)
In particular, for the 1D case:
—2c/h ifi=j
Ki; = c/h ifli—j]=1, (2.111)

0 otherwise

thus establishing a relationship to the graph Laplacian matrix in the FEM case. Finally, we

obtain:

0
aU(t) =M 'KU(t). (2.112)
Again, we confirm that the spatial discretization introduces interactions between vertices,
that is, graph-like message passing. The connectivity of the graph corresponding to the 2D
case is shown in Figure 2.9] It should be noted that the connectivity of the graph is not

necessarily the same as the edges of the mesh.

Figure 2.9: An example of 2D spatially discretized unstructured grid for FEM (black) and
its corresponding edge connectivity (blue). The connectivity of the graph is not necessarily

the same as the edges of the mesh.
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2.2.4.3 LEAST SQUARES MOVING PARTICLE SEMI-IMPLICIT (LSMPS) METHOD

The least qquares moving particle semi-implicit (LSMPS) method is a mesh-free tech-
nique for solving PDEs proposed by [Tamai & Koshizuka (2014). Although the scheme
proposes a general method to approximate the differential up to an arbitrary order, for sim-
plicity, we introduce only the first-order gradient model, which, using the LSMPS method,

is expressed as

(Vu)|, =M, N B (2.113)
ZN 2y =zl T, =]
T — &; T — Iy
M, : ils 2.114
anz—wzn R @119

where u : 2 — R is a scalar field, u; denotes u(x;), and w;; is a weight determined
depending on the distance between x; and x;. Because this method does not require a

mesh, N, is determined using the effective radius set by the users.

The first-order model is derived using the first-order Taylor expansion as follows:

uj =~ u; + (2 — ;) - (Vu)l, , Vi €N (2.115)
Since Vul,, is what we want to obtain, and we let Vul,, = X, then we rewrite the
equation as:
LT i—MNOVJEN (2.116)
[&; — l&; — i

We consider a situation in which |A;| > n (n denotes the spatial dimension), then one can
obtain X; in terms of least squares, by defining a weighted evaluation function J(X;) as

follows:

1 —x; — 2
J(X;) ;:_szj qu—M ] (2.117)
2 : &) — ] |z — ]
JEN;
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The best approximation to the gradient X ~ Vul,, in terms of least squares can be

obtained when Vx, J(X/) = 0, therefore, we solve:

VxJ(X7) = > wy [M'X‘*— L L —0 (2118)

Uz —l ey -] e -

For any vectors v, w € R", the following condition holds:

(v-w)v = (v®v)w, (2.119)
because
[(v-w)v], = Z VR WEY; (2.120)
k
= (vivg)wy, (2.121)
k
= [(v @ v)w];. (2.122)
Therefore, by substituting
{—wj — T -X;} e e B { LT g BT B X (2.123)
a2 — 4] [ =il Lz =zl llz; -
into Equation[2.118] we get:
Z{ ARy i } =y e (2.124)
v Ul =l e — ] Py II% mzll a0 — |
By solving this, we finally obtain:
X = TL"Ti o T T Z Ui T i (2.125)
Sl ] ol | 22 PERICE

which is equivalent to Equation [2.113]

Although the Laplacian model can be derived in a different manner, one can apply

the gradient operator twice, and then compute the trace to obtain a representation of the
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Laplacian operator. Nevertheless, we again confirm that Equation [2.113] introduces edge
connectivity through the spatial differentiation. The LSMPS model is also important be-
cause it is used as the foundation of our IsoGCN model, owing to its high generalizability,

as seen in Chapter



Chapter 3

IsoGCN: E(n)-Equivariant Graph

Convolutional Network

3.1 INTRODUCTION

Graph-structured data embedded in Euclidean spaces can be utilized in many differ-
ent fields such as object detection, structural chemistry analysis, and physical simulations.
Graph neural networks (GNNs) have been introduced to deal with such data. The cru-
cial properties of GNNs include permutation invariance and equivariance, as seen in Sec-
tion Besides permutations, E(n)-invariance and equivariance must be addressed
when considering graphs in Euclidean spaces because many properties of objects in the
Euclidean space do not change under translation and rotation. Due to such invariance and

equivariance, we can expect:

1. the interpretation of the model is facilitated;
2. the output of the model is stabilized and predictable; and
3. the training is rendered efficient by eliminating the necessity of data augmentation,

as discussed in the literature (Thomas et al., 2018} Weiler et al., 2018} [Fuchs et al., [2020).

E(n)-invariance and equivariance are inevitable, especially when applied to physical

simulations, because every physical quantity and physical law is either invariant or equiv-

39
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ariant to such a transformation. Another essential requirement for such applications is
computational efficiency because the primary objective of learning a physical simulation is
to replace a computationally expensive simulation method with a faster machine learning

model.

In this chapter, we present IsoGCNs, a set of simple yet powerful models that pro-
vide computationally-efficient E(n)- invariance and equivariance based on GCNs (Kipf &
Welling, 2017). Specifically, by simply tweaking the definition of an adjacency matrix,
the proposed model can realize E(n)-invariance. Because the proposed approach relies on
graphs, it can deal with the complex shapes that are usually presented using mesh or point
cloud data structures. Besides, a specific form of the IsoGCN layer can be regarded as a
spatial differential operator that is essential for describing physical laws. In addition, we
have shown that the proposed approach is computationally efficient in terms of process-
ing graphs with up to 1M vertices that are often presented in real physical simulations.
Moreover, the proposed model exhibited faster inference compared to a conventional fi-
nite element analysis approach at the same level of accuracy. Therefore, soGCN models
can suitably replace physical simulations regarding its power to express physical laws and
faster, scalable computation. The corresponding implementation and the dataset are avail-
able onlind]

The main contributions of the present study can be summarized as follows:

* We construct E(n)- invariant and equivariant GCNS, called IsoGCNs for the speci-

fied input and output tensor ranks.

* We demonstrate that an I[sSoOGCN model enjoys competitive performance against
state-of-the-art baseline models on the considered tasks related to physical simula-

tions.

* We confirm that [IsoGCNs can be scalable to graphs with 1M vertices and achieve
inference considerably faster than conventional finite element analysis, while exist-

ing state-of-the-art baseline machine learning models cannot.

'https://github.com/yellowshippo/isogen-1iclr2021
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3.2 RELATED PRIOR WORK

3.2.1 GCN

Our IsoGCN models are based on GCN (Kipf & Welling, 2017), a lightweight GNN
model, because GCN shows computational efficiency compared to other GNNs, where
message functions are constructed using deep neural networks (Equations [2.35] and [2.37).
In addition, GCN models can be E(n)-invariant if all input features are E(n)-equivariant

because the renormalized adjacency matrix is also invariant.

However, since the message function in the GCN models is determined only by in-
formation on edge connectivities in the graphs, there have been difficulties in capturing
geometrical information of meshes, e.g., the distance between vertices and angles between
edges. GCN models can consider geometrical information, e.g., by feeding vertex posi-
tions to the model; however, this kind of ad-hoc solution will destroy the E(n)-invariance,
resulting in unstable prediction for geometrical data. The IsoGCN model successfully in-
corporates geometrical data through IsoAM (Equation [3.8), a set of adjacency matrices

reflecting the geometry of meshes while retaining the computational efficiency of GCNS.

3.2.2 TFN

Another essential basis of our model is TEN (Thomas et al., 2018)) (Equation [2.50).
Their model incorporates SE(3)- invariance and equivariance, where SE(3) is a subgroup
of E(3) without reflection. The idea of TFN is to guarantee SE(3)-equivariance using spher-
ical harmonics, which are SE(3)-equivariant functions, and nonlinear neural networks are
applied to the norm of relative positions of vertices so that equivariance is not destroyed

due to nonlinearity.

The TFN model achieves high expressibility based on spherical harmonics and message
passing with nonlinear neural networks. However, for this reason, considerable computa-
tional resources are required. In contrast, the present study allows a significant reduction in
the computational costs because it eliminates spherical harmonics and nonlinear message
passing. From this perspective, IsoGCNs are also regarded as a simplification of the TFN,

as seen in equation [3.43]
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3.2.3 GNN MODEL FOR PHYSICAL SIMULATION

Several related studies, including those by [Sanchez-Gonzalez et al.| (2018}; 2019); |Alet
et al. (2019); Chang & Cheng| (2020) focused on applying GNNs to learn physical sim-
ulations. These approaches allowed the physical information to be introduced to GNNs;

however, addressing E(n)-equivariance was out of the scope of their research.

In the present study, we incorporate E(n)-invariance and equivariance into GCNs,
thereby, ensuring the stability of the training and inference under E(n) transformation.
Moreover, the proposed approach is efficient in processing large graphs with up to 1M

vertices that have a sufficient number of degrees of freedom to express complex shapes.

3.3 METHOD

In this section, we discuss how to construct IsoGCN layers that correspond to the E(n)-

invariant and equivariant GCN layers. To formulate a model, we assume that:

1. only attributes associated with vertices and not edges; and

2. graphs do not contain self-loops.

Here, n denotes the dimension of the Euclidean space we are working on.

3.3.1 DISCRETE TENSOR FIELD

Figure 3.1: Schematic diagrams of (a) rank-1 tensor field H ") with the number of features

equaling 2 and (b) the simplest case of G;;... = 0,041 () — x;) = Aij(x; — ;).
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First, we introduce the concept of discrete tensor fields, which play an essential role to
constract E(n)-equivariant models. In the present study, we refer to tensor as geometric
tensors, i.e., a rank-p tensor field u : Q —®¢c R™ is equivariant with regard to the
orthogonal transformation using U expressed as:

U: ug)kzmkp — Uk1llUk’2l2 .. Ukplpu(p) 3.1

lllz...lp :

To exploit the expressive power of neural networks, we consider a collection of d; tensors

with rank-p such as:

h®) = (u® @ w® ). RN (3.2)

i

vV
dy items

This is a collection of rank-p tensor field, so note that
h®(z) € RI**" (3.3)
and

U0 = Uit Uty - Uiy, ) (3.4)

gilila...lp

hold.

Now, we consider a discrete rank-p tensor field HP) € RIVI*dxn" " aq follows:

HY = _ : (3.5)

h® (wIVO

where d; denotes the number of features (channels) of H®, and &, € Q C R is the

position of the ith vertex. An example of the discrete tensor field is shown in Figure
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(a). With the indices, we denote H Z-(.p ) kiks. k.o Where ¢ permutes under the permutation of
3giR1R2...Rp

vertices and k1, . . . , k, refers to the Euclidean representation. g is the index of features, so

invariant with regard to permutation and E(n) transformation. Thus, under the permutation

7, H® is equivariant with regard to the vertex indices:

. (o) (p)
- Hi§9§k1k2---kp = Hw(i);g;klkg...k:p’ (36)

and under orthogonal transformation U, H ) is equivariant with regard to the dimensional

indices:

U:H“’)klk%kPH Z Ui Usgt - - - Upyt, HE) (3.7)

495 Gigilila..dp”
l17l27"'7lp

We use discrete tensor fields for inputs, hidden state, and outputs of our IsoGCN models.

3.3.2 ISOMETRIC ADJACENCY MATRIX (ISOAM)

Before constructing an [soGCN, an isometric adjacency matrix (IsoAM), which is at

the core of the IsoGCN concept must be defined.

3.3.2.1 DEFINITION OF [SOAM

An IsoAM G € RIVPx1xn ig defined as:

d
R > Gyj,.. == gij == Z Tji (), — ), (3.8)
klEV k£l
where G;... is a slice in the spatial index of G, and Tjj;,; € R™™" is an untrainable trans-
formation invariant and orthogonal transformation equivariant rank-2 tensor defined de-
pending on the problem of interest. Note that we denote G;..;, to be consistent with the
(p)

notation of the discrete tensor field H,

iigkr k..., DECAUSE 7 and j permutes under the vertex

permutation and k represents the spatial index while the number of features is always 1.
The IsoAM can be viewed as a weighted adjacency matrix for each direction and reflects
spatial information while the usual weighted adjacency matrix cannot because a graph has

only one adjacency matrix. Also, [SOAM can be viewed as a rank-1-tensor-valued matrix
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expressed as:

g1 gi2 cen g1y
g21 g2 . g2y

G = ) ) ) ) . 3.9
gyt gy)2 e gy

For the simplest case, one can define T;;,; = 0;0;1A4;;1,, (Figure (b)), where 9;; is
the Kronecker delta, A is the adjacency matrix of the graph, and I, is the n-dimensional
identity matrix that is the simplest rank-2 tensor. With the simplification, the definition of

IsoAM (Equation [3.8)) is expressed as:
gij = Aij(x; — x;). (3.10)

In the case of the path graph with five vertices (Figure[2.2), it can be expressed as:

0 Ty — T 0 0 0
T — o 0 XT3 — o 0 0
G = 0 Ty — T3 0 Ty — T3 0 . (3.11)
0 0 T3 — Ty 0 Ty — Ty
0 0 0 Ty — 5 0

Therefore, one can see the IsoAMs are based on relative positions of vertices, which are

translation invariant and orthogonal transformation equivariant.

In another case, T;j;; can be determined from the geometry of a graph, as defined
in Equation Nevertheless, in the bulk of this section, we retain T}, abstract to cover
various forms of interaction, such as position-aware GNNs (You et al., 2019). Here, GG is

composed of only untrainable parameters and thus can be determined before training.
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3.3.2.2 PROPERTY OF ISOAM

Here, we present the properties of the IsoAM defined by Equation We let R? >

d(x;, xi) = (xr, — x;) for the proofs. Note that G is expressed using d(x;, ;) as

Gij.. = gij = Z Tz'jkzd(wl,wk)- (3.12)

eV, k4L

Proposition 3.3.1. IsoAM defined in Equation is translation invariant and orthogonal
transformation equivariant, i.e., for any E(n) transformation ¥t € R", U € O(n),T
z—Uzx+t,

T Gij;;k g Z Uk’lGij;;l' (313)
l

Proof. First, we demonstrate the invariance with respect to the translation with V¢ € R<.

d(x;, x;) is transformed invariantly as follows under translation:

d(a:l—l—t,a:]%—t) = [$j+t— (CUZ—i‘t)]
_mz>

= (x;
=d(x;, z;). (3.14)
By definition, T;;,; is also translation invariant. Thus,

Z Tjpd(z, +t,x, + 1) Z T jud(x;, i)
K€V kAL k1€ k£l

= Gij,;.. (3.15)

We then show an equivariance regarding the orthogonal transformation with VU € O(d).

d(zx;, z;) is transformed as follows by orthogonal transformation:

d(le, Ua:j) = UQ?j - Ua:l
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By definition, T;; is transformed to U EjklU‘l by orthogonal transformation. Thus,

> UTyU 'dUx,Uxy) = > UTyU 'Ud(x, )

klEV k£l klEV k#l
=UG;j.... (3.17)
Therefore, G is translation invariant and an orthogonal transformation equivariant. U

Here, we define essential operations between [soAMs and discrete tensor fields. Based
on the definition of the GCN layer in the equation [2.35] let G + H® ¢ RV*/*d denote

the convolution between G and the rank-0 tensor field H(© ¢ RIVI*d a5 follows:

(G+HO), ZGMHO) (3.18)

With a rank-1 tensor field HV ¢ RVIXfxd et G © HY € RVI*f and G & G €

RIVIXIVI denote the contractions which are defined as follows:

(GoHY), => GyuHu, (3.19)
g,k

(GOG),, =) GG (3.20)
7,k

The contraction of [soAMs G ® G can be interpreted as the inner product of each compo-

nent in the IsoOAMs. Thus, the subsequent proposition follows.

Proposition 3.3.2. The contraction of IsoAMs G © G is E(n)-invariant, i.e., for any E(n)
transformationVt e R3. U € O(d), T:x - Uz +t, GO G — G & G.

Proof. Here, G ® G is translation invariant because G is translation invariant. We prove

rotation invariance under an orthogonal transformation VU € O(n). In addition, G ® G is
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transformed under U as follows:

chij;;k:G(jl;;k'_> Z Ukaij;;mUknGjl;;n

j7k jik7m7n

= Z UkmUknGij;;mGjl;;n

j7k7m7n

T
= Y UniUinGijinGin

j7k7m7n

= Z 0mnGijim Gt (. property of the orthogonal matrix)

jm,mn
= Z GijimGjtzim
J
= Z GijikGitsike- (".- Change the dummy index m — k)
.k
(3.21)

Therefore, G ® G is E(n)-invariant. O

With a rank-p tensor field H® e RIVI*/*@” et G H®) € RV*M*d"? and GRG €

RVIXVIxd denote the tensor products defined as follows:

(G ® H(p))i;g;kmlmg...mp = Z GinkHj(';pg);mlmg...mp? (322)
J

(G® G)il;;klkzg = Z Gijisk Gjtskr - (3.23)
J

The tensor product of [soAMs G ® G can be interpreted as the tensor product of each of

the IsoAMs components. Thus, the subsequent proposition follows:

Proposition 3.3.3. The tensor product of the IsoAMs G® G is E(n)-equivariant in terms of
the rank-2 tensor, i.e., for any E(n) transformationVt € R3, U € O(d),T : ¢ — Uz + ¢,
ande,jEl,,W,(G@G) HUklllnglg(G(gG)

ij5;k1ke ij5;lla”
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Proof. G ® G is transformed under VU € O(n) as follows:

Z Gz] k’G]l im T Z Uk’nGlj nUmoG]l ;0

n,o

- Z Uknsz nGjl oU (324)

n,o

By regarding G;..,Gji..o as one matrix H,,, it follows the coordinate transformation of

rank-2 tensor U HU for each i, J,and [. L]

This proposition is easily generalized to the tensors of higher ranks by defining the pth

tensor power of G as follows:

0
XG=1 (3.25)
1
® G=G (3.26)
-1
éG:(ng@G (p>1). (3.27)

Namely, Q" G is E(n)-equivariant in terms of rank-p tensor. Also, one can compute the

tensor product between the rank-p [soAM and rank-q discrete tensor field as follows:

(6r) (8 e

Let K (¢+1)
= <®G> ® (G ® H")
Let H(a+2)
= HtP) (3.28)

Similarly, the convolution can be generalized for ()" G' and the rank-0 tensor field H ()

RIVIXf as follows:

p
[(@ G) * H(D)] =Y <® G> HY. (3.29)
i;g;k1ka.. kp J igs;k1ka.. kp
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The contraction can be generalized for Q) G' and the rank-q tensor field H(@ ¢ RIVIx/xd

(p > q) as specified below:

(6¢)or

p
_ (@)
o Z ® G Hj;g;m1m2...mq'
q igk1ka. kp_gmima..myq

i;g;k1k2...kp_q Jymi,ma,...,m
(3.30)
For the case p < ¢, the contraction can be defined similarly.
By construction, one can see the the [IsoAM is permutation equivariant as:
7:G— PGP, (3.31)

where P is the corresponding permutation matrix, as discussed in [Maron et al.| (2018)).
This property is the same as that of ordinary adjacency matrices. The contraction and

tensor product of IsoAMs are also permutation equivariant because:

7:G®G~— PGP'® PGP' (3.32)
= PGoGP' (3.33)
7:G®G+— PGP' ® PGP' (3.34)
= PGRGP'. (3.35)

This discussion is also easily generalized for the higher order tensor cases.

Finally, we can conclude that convolution, contraction, and tensor product between
rank-p IsoAM and discrete tensor field are permutation and E(n)-equivariant because each
component has such equivariance. Therefore, these operations are essential to construct

E(n)-equivariant GCN layers, IsoGCNs.

3.3.3 CONSTRUCTION OF ISOGCN

Using the operations defined above, we can construct IsoGCN layers, which take the
discrete tensor field of any rank as input, and output the tensor field of any rank, which can

differ from those of the input.
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3.3.3.1 E(n)-INVARIANT LAYER

As can be seen in Proposition(3.3.1} the contraction of soAMs is E(n)-invariant. There-
fore, an E(n)-invariant layer with a rank-0 input discrete tensor field and rank-0 output dis-
crete tensor field, [soGCNq o : RV*ds 5 HO sy H®) ¢ RVIxdow can be constructed
as

g9

out

— I50GCNg_o(H”) = PointwiseMLP ((G ©G) Hff’) . (336)

where PointwiseMLP : RVIxdin — RVIxdouw jg the pointwise MLP defined in Equa-
tion By defining L := G ® G € RV*VI it can be simplified as

H(O)

out T

PointwiseMLP (LH&”) , (3.37)

which has the same form as a GCN (equation [2.35]), with the exception that Ais replaced
with L. It is noteworthy that L incorporates geometry information, which was missing
in the GCN formulation, even though the equations are similar. Therefore, we see that

IsoGCN successfully leverages geometry information in addition to graph topology.

An E(n)-invariant layer with the rank-p input tensor field and rank-0 output tensor field,
[soGCN,_,g : RVIxdinxn” 5 H — H | € RVIxdout can be formulated as

H(f)> . (3.38)

If p = 1, such approaches utilize the inner products of the vectors in R, these operations

H(Eut -

p
Is0GON,_,o(H*)) = PointwiseMLP ([@G

correspond to the extractions of a relative distance and an angle of each pair of vertices,

which are employed in Klicpera et al. (2020).

3.3.3.2 E(n)-EQUIVARIANT LAYER

To construct an E(n)-equivariant layer, one can use linear transformation, convolution
and tensor product to the input tensors. If both the input and the output tensor ranks are
greater than 0, one can apply neither nonlinear activation nor bias addition because these

operations will cause an inappropriate distortion of the isometry because E(n) transforma-
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tion does not commute with them in general. However, a conversion that uses only a linear
transformation, convolution, and tensor product does not have nonlinearity, which limits
the predictive performance of the model. To add nonlinearity to such a conversion, we can
first convert the input tensors to rank-0 ones, apply nonlinear activations, and then multiply

them to the higher rank tensors, as done in TFN model (Equation [2.50).

To achieve nonlinearity, first we define the E(n)-equivariant pointwise MLP layer,

EquivariantPointwiseMLP : RIVIXdinxn? _y RIVIXdouxn” " aq follows:

EquivariantPointwiseMLP(H.”) := PointwiseMLP (HHi(f)

2
) @feat Hl(rI:) @feat W7
(3.39)

where (), is the multiplication in the feature direction and W € R%n*dout ig a trainable
weight matrix. The pointwise MLP, PointwiseMLP : RIVI*dinxn? _y RIVIxdouwxn” "jg cho-
sen to have the consistent output dimension. Using the index notation, Equation turns
into:

EquivariantPointwiseMLP (H,”

in

)] 1;g;k1k2...kp

- [PointwiseMLP (HH}?
h

2 (p)
ﬂ [Hi;’ ] Wiy
ishs i;hiki1ka.. kp

(3.40)

One can easily see that EquivariantPointwiseMLP defined in Equation [3.39|is translation

invariant and orthogonal transformation equivariant because

? () ()
> |HY =] (3.41)
i i;g;k1ka...kp 1;g;k1k2...kp

P kkgkp

is E(n)-invariant. We use ||-||” instead of ||-|| in the function because computation of ||-||
requires computation of the square root, which leads extreme gradient around zero. One
can regard EquivariantPointwiseMLP as an equivariant function that does not change the

input tensor rank and may change the number of features.
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The nonlinear E(n)-equivariant layer with the rank-p input discrete tensor ﬁeld and the
rank-q (p < ¢) output discrete tensor field, IsoGCN,,_,, : RIVIxdmnxn? 5 H ) s H(()ut €
RVIxdouxn? " can be defined as:

(3.42)

a—p
H (q)t = IsoGCN,,,,(H;, () ) := EquivariantPointwiseMLP ( [® G

If p =0, weregard G ® H® as G + H, If p = ¢, one can add the residual

H(P)) .

(3.43)

connection (He et al.,|2016) in Equation Ifp>q,

out —

pP—q
H'Y = Is0GON,_,,(H")) := EquivariantPointwiseMLP ( [@ G

In general, the nonlinear E( ) equivariant [soGCN layer with the rank- P,,;, to rank-

Pax Input tensor field {H (p) } and the rank-q output tensor field H, (Eul can be defined
Pmln
as:
Pmax
HY) —TsoGCN ., ({Hﬁ”} ) (3.44)
Pp=Pmin

Pmax
.=EquivariantPointwiseMLP (H?) + Fyaper ({IsoGCNp%q(HiEf))} ) ,
p=Pnin

(3.45)

where Fy,iher denotes a function such as summation, product and concatenation in the
feature direction. One can see that this layer is similar to that in the TFN (Equation [2.50),

while there are no spherical harmonics and trainable message passing in the IsoGCN model.

To be exact, the output of the layer defined above is translation invariant. To out-
put translation equivariant variables such as the vertex positions after deformation (which
change accordingly with the translation of the input graph), one can first define the ref-
erence vertex position x,.s for each graph, then compute the translation invariant output
using equation and finally, add @,.¢ to the output. For more detailed information on

IsoGCN modeling, see Section [3.3.5]
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3.3.4 ISOAM REFINED FOR NUMERICAL ANALYSIS

The IsoAM G is defined in a general form for the propositions to work with various
classes of graph. In this section, we concretize the concept of the IsoAM to apply an
IsoGCN to mesh-structured numerical analysis data. Here, a mesh is regarded as a graph
regarding the points in the mesh as vertices of the graph and assuming two vertices are

connected when they share the same element (cell), as seen in Figure 2.9

3.3.4.1 DEFINITION OF DIFFERENTIAL ISOAM

As seesn in Section [2.2.4] the graph connectivities are closely related to spatial dif-
ferentiation. Therefore, it is natural to construct a graph reflecting the structure of spatial
differentiation. Here, we define the differential IsoAM, a concrete instance of IsoOAMs re-

fined for numerical analysis.

The differential Iso0AM G, G € RVI*IVIxd 5 defined as follows:

Gijp = éij;;k — 0ij Z Gtk (3.46)
1

A~ w ¢ — w
Gije = M —L—"—w;; A 3.47
J55¢ 7 ||33] _ $i|’2wj ](m) ( )

L, — I T, — &L
M; = ® wiAyg(m), (3.48)
2 o] ® T~ 00

where RVl 5 A(m) := min (37}, A*, 1) is an adjacency matrix up to m hops and
w;; € Ris an untrainable weight between the ith and jth vertices that is determined depend-
ing on the tasks’] Although one could define w;; as a function of the distance ||z; — ;]
w;; was kept constant with respect to the distance required to maintain the simplicity of the

model with fewer hyperparameters.

By regarding

Tijre = 00 M wij Agi(m)/||ae; — ;]| (3.49)

2 M, is invertible when the number of independent vectors in {@x; — x;}; is greater than or equal to the
space dimension n, which is true for common meshes, e.g., a solid mesh in 3D Euclidean space.
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in equation one can see that G is qualified as an [soAM. Because a linear combination
of IsoAMs is also an IsoAM, G is an [soAM. Thus, they provide translation invariance and
orthogonal transformation equivariance. G can be obtained only from the mesh geometry

information, thus can be computed in the preprocessing step.

Here, G is designed such that it corresponds to the gradient operator model used in the
LSMPS method(Tamai & Koshizuka, 2014) (Equation while we added A;;(m) fac-
tor to work on graphs. As presented in Table G is closely related to many differential
operators, such as the gradient, divergence, Laplacian, Jacobian, and Hessian. Therefore,
the considered IsoAM plays an essential role in constructing neural network models that
are capable of learning differential equations. In the following sections, we discuss the con-
nection between the IsoAM for numerical analysis G and the differential operators such as

the gradient, divergence, the Laplacian, the Jacobian, and the Hessian operators.

Table 3.1: Correspondence between the differential operators and the expressions using the

IsoAM G.

Differential operator Expression

Gradient G+ HO
Divergence GoHY
Laplacian GoGHWO
Jacobian G HWY
Hessian GoGxH®O

3.3.4.2 PARTIAL DERIVATIVE

First let us consider a partial derivative model of a rank-0 discrete tensor field H©) at

the ith vertex and gth feature regarding the kth axis (OH ) /0x),). € R (k € {1,...,n}).

49

Recalling the gradient model of the LSMPS method (Equation [2.113)),

OH® o= HO —HY
< > =M, IZ 19, 9; ) w;; Aij(m)
1;9;

Oy, ' l; — ai|| o — ] 7

=2 Gunl(Hyg — Hy). (3.50)
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3.3.4.3 GRADIENT

G is similar to a graph Laplacian matrix based on G; however, surprizingly, G + H(©)
can be interpreted as the gradient within the Euclidean space. Let V H() ¢ RVI*x/xd pe
an approximation of the gradient of H?). Using Equation the gradient model can be

expressed as follows:

oHY
(VHY), = 5. (3.51)
- Gijk(Hﬁ?; - Hi(;(;);)‘ (3.52)

Using this gradient model, we can confirm that (G * H(O))i;g;k =(V H(O))i;glk because
(G H(0)>i;g;k _ Z Gy H) (3.53)
—Z igssk %ZGzz ik
— Z CijnH) — Z 8y G HY)
— Z Gijsi HLY — Z G HLY
= zj: GAij;;kH;f;); — Z Gz-j;;kH,-(f;); (.- Change the dummy index [ — j)
j J
=" Gir(HY), — HLY)

= <v H(0)>,

ig;k”

(3.54)

Therefore, G can be interpreted as the gradient operator within a Euclidean space.

3.3.4.4 DIVERGENCE

We show that G ® H® corresponds to the divergence. Using Equation the
divergence model <V -H (1)> € RIVI*7 is expressed as follows:

o HO
V-HY) = 3.55
< >1;g; <; axk >i;g; ( )
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=Y GualH) — H). (3.56)
ik
Then, G ® HWY is
<é®H > ZG”’“ Jgk
W
=z(uk%z@0 )
- ZGW wH Jgk ZG“ ’fH
= Z G” & — Hl(z)k) (".- Change the dummy index [ — j)
:<V-H N (3.57)

%395

3.3.4.5 LAPLACIAN OPERATOR

We prove that GoG corresponds to the Laplacian operator within a Euclidean space.

Using Equation , the Laplacian model <V -VH (0)> € RIVI*f can be expressed as

follows:

> G (H, )= G ~HY)
l

=" GGt — Gu) (Hig) — H). (3.58)
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<éij;;k — 0jj Z Gmk) (éﬂ;;k — O Z Gj”””“) Hyj)

ng ijz kH Z Gzy kGJn kHJ(;Og);

7.kn

- Z sz szl kH © + Z sz ka kH

k,l,m k,mmn

- ZGU ijl kH Z GZ] kG]” k’
Gk, Jik,n
~ N 0 A A 0
- Z Gij;;kGil;;kHl(;g); + Z Gij;;ka;;kHi(;g);

k7l7j k?j?”

wM =[]

(" Change the dummy index m — j for the third and fourth terms)

= Gijir( G — G (HS) — HYY))
ikl

(" Change the dummy index n — [ for the second and fourth terms)
=(V'H©Y), . (3.59)

3.3.4.6 JACOBIAN AND HESSIAN OPERATORS

Considering a similar discussion, we can show the following dependencies. For the

Jacobian model, (V @ HW) € RIVIx/xdxd,

oHW
Vo HDY = <—> (3.60
< >z;g;k,‘l 8$l ig X )
— Z Gijual( j g . Hflg)k) (3.61)
=(GeHY), . (3.62)

For the Hessian model, (V @ VH®) e RVIx/xdxd,

o 9
VeovH®), (2 9 o
(VeoVH?), < o H >i.g; (3.63)
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H ) — H(O)) - éim;;l(Hrgg

)
m;g; l;g; 395

Il
)
S
ES
)
<.
3
_
—~
~
(=]

HY)  (3.64)

(3.65)

3.3.5 ISOGCN MODELING DETAILS

To achieve E(n)- invariance and equivariance, there are several rules to follow. Here,
we describe the desired focus when constructing an IsoGCN model. In this section, a rank-
p tensor denotes a tensor the rank of which is p > 1 and ¢ denotes a nonlinear activation

function. W is a trainable weight matrix and b is a trainable bias.

3.3.5.1 ACTIVATION AND BIAS

As the nonlinear activation function is not E(n)-equivariant, nonlinear activation to
rank-p tensors cannot be applied, while one can apply any activation to rank-0 tensors. In
addition, adding bias is also not E(n)-equivariant, so one cannot add bias when performing

an affine transformation to rank-p tensors. Again, one can add bias to rank-0 tensors.

Thus, for instance, if one converts from rank-0 tensors H® to rank-1 tensors using
[soAM G, G x oc(HOW + b) and (G * o(H©))W are E(n)-equivariant functions,
however (G * HO)W + b and o ((G * o(H”))W) are not due to the bias and the
nonlinear activation, respectively. Likewise, regarding a conversion from rank-1 tensors
HW to rank-0 tensors, 0 (G © HV)W +b) and 0 (G © (HVW)) are E(n)-invariant
functions; however, G © (HYW + b) and (G ©® o(H"Y))W + b are not.

To convert rank-p tensors to rank-g tensors (¢ > 1), one can apply neither bias nor non-
linear activation. To add nonlinearity to such a conversion, we can multiply the converted
rank-0 tensors o((Q” G © H®))W + b) with the input tensors H ) or the output tensors
H@.

3.3.5.2 PREPROCESSING OF INPUT FEATURE

Similarly to the discussion regarding the biases, we have to take care of the prepro-
cessing of rank-p tensors to retain E(n)-invariance because adding a constant array and

component-wise scaling could distort the tensors, resulting in broken E(n)-equivariance.
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For instance, H'?) /Std,; [H®)] is a valid transformation to retain E(n)-equivariance,
assuming Std,y [H (p)} € R is a standard deviation of all components of H (), However,
conversions such as H® / Stdcomponent [H (p)] and H® — Mean [H (p)} are not E(n)-
equivariant, assuming that Stdeomponent [H®] € R? is a component-wise standard de-

viation.

3.3.5.3 SCALING

Because the differential IsoAM G corresponds to the differential operator, the scale of

the output after operations regarding D can be huge. Thus, we rescale G using the scaling
- . . 1/2

factor [Meansample,i(G?i;;l + G+ Ghg)| . where Meangmpie; denotes the mean over

the samples and vertices.

3.3.5.4 TENSOR RANK

Although we defined IsoGCN,,_,, in Equations and there are other ways to
model function converting from rank-p discrete tensor field to rank-¢ discrete tensor field.

For instance, in the case of p = 2 and ¢ = 3, one may also define as:

H éi)t = EquivariantPointwiseMLP <G ®GEOGE®H 1(112)> : (3.606)
or
H) = IsoGCN,_,3 0 IsoGCONy_, 4 0 IsoGCN,_ 5 (H). (3.67)

One guideline is to consider PDEs of interest when using the differential IsoAM, as done in
the numerical experiments (Section[3.4). In the other case, generally, tensor rank should not
be dropped unless necessary. Namely, transformation of the tensorrank 2 — 3 —+ 4 — 3
is more preferable compared to thatof 2 -+ 1 — 0 =+ 1 — 2 — 3 to constract the [soGCN

model which converts a rank-2 discrete tensor field to a rank-3 discrete tensor field.

3.3.5.5 IMPLEMENTATION

Because an adjacency matrix A is usually a sparse matrix for a regular mesh, A(m)

in equation is also a sparse matrix for a sufficiently small m. Thus, we can leverage
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sparse matrix multiplication in the ISOGCN computation. This is one major reason why
IsoGCNs can compute rapidly. If the multiplication (tensor product or contraction) of
IsoAMs must be computed multiple times the associative property of the IsoAM can be

utilized.

For instance, it is apparent that
k
[@G] +HY =G (G®...(GxHY)). (3.68)

Assuming that the number of nonzero elements in A(m) equals n and H(®) € RIV*/ then
the computational complexity of the right-hand side is O(n|V|fn*). This is an exponential
order regarding the spatial dimension n. However, n and k are usually small numbers (typi-
cally n = 3and k < 4). Therefore one can compute an IsoGCN layer with a realistic spatial
dimension n and tensor rank k fast and memory efficiently. In our implementation, both a

sparse matrix operation and associative property are utilized to realize fast computation.

3.4 NUMERICAL EXPERIMENTS

To test the applicability of the proposed model, we composed the following two

datasets:

1. a differential operator dataset of grid meshes; and

2. an anisotropic nonlinear heat equation dataset of meshes generated from CAD data.

In this section, we discuss our machine learning model, the definition of the problem, and

the results for each dataset.

Using G defined in Section , we constructed a neural network model considering
an encode-process-decode configuration (Battaglia et al., [2018). The encoder and decoder
were comprised of component-wise MLPs and tensor operations. For each task, we tested

m = 2,5 in Equation [3.47|to investigate the effect of the number of hops considered.
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In addition to the GCN (Kiptf & Welling, 2017), we chose GIN (Xu et al., 2018)),
SGCN (Wu et al.l 2019), Cluster-GCN (Chiang et al., 2019), and GCNII (Chen et al.,
2020) as GCN variant baseline models.

For the equivariant models, we chose the TFN (Thomas et al., 2018) and SE(3)-
Transformer (Fuchs et al., 2020) as the baseline. We implemented these models using
PyTorch 1.6.0 (Paszke et al., 2019) and PyTorch Geometric 1.6.1 (Fey & Lenssen, [2019).
For both the TFN and SE(3)-Transformer, we used implementation of |Fuchs et al. (2020
because the computation of the TFN is considerably faster than the original implemen-
tation, as claimed in Fuchs et al.| (2020). For each experiment, we minimized the mean
squared loss using the Adam optimizer (Kingma & Ba, 2014). The corresponding imple-

mentation and the dataset will be made available online.

3.4.1 DIFFERENTIAL OPERATOR DATASET

3.4.1.1 TASK DEFINITION

To demonstrate the expressive power of IsoGCNs, we created a dataset to learn the
differential operators. We first generated a pseudo-2D grid mesh randomly with only one
cell in the Z direction and 10 to 100 cells in the X and Y directions. We then generated
scalar fields on the grid meshes and analytically calculated the gradient, Laplacian, and

Hessian fields. We generated 100 samples for each train, validation, and test dataset.

For simplicity, we set w;; = 1 in Equation for all (z,5) € £. To compare the
performance with the GCN models, we simply replaced an IsoGCN layer with a GCN or
its variant layers while keeping the number of hops m the same to enable a fair comparison.
We adjusted the hyperparameters for the equivariant models to ensure that the number of

parameters in each was almost the same as that in the IsoGCN model.

We conducted the experiments using the following settings:

1. inputting the scalar field ¢ and predicting the gradient field V¢ (rank-0 — rank-1

tensor);

3https://github.com/FabianFuchsML/se3-transformer—-public
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2. inputting the scalar field ¢ and predicting the Hessian field V ® V¢ (rank-0 —

rank-2 tensor);

3. inputting the gradient field V¢ and predicting the Laplacian field V - V¢ (rank-1

— rank-0 tensor); and

4. inputting the gradient field V¢ and predicting the Hessian field V ® V¢ (rank-1 —

rank-2 tensor).

3.4.1.2 MODEL ARCHITECTURES

(a)
MLP IgGoN Tt
¢ b 1,864 64,64 [64,1] Vo
[tanh, tanh] [Ider’ltity] [Identity]
(0)
MLP é?;(é(;\i Linear
¢ o 118,64 it 64,11 VRV
[tanh, tanh] It der71ti ] [Identity]
()
[s0GCN NLP
[54@61] Lol [64,64,64,64]
Linear [IdCI’ltlty] [tanh7 tanh" Identlty} IESC—N Linear 2
Vol 1,64 L oroq [ 1641 V¢
[Identity] ( I de;ltity] [Identity]
(d)
Isi)GCN MLP
[58371] bl [64,64,64,64]
T [dentity] [tanh, tanh, Identity] ISC%(;C_N T
vgf) | [1,64] [64, 64] — [647'1] 1 V & V(ZS
[Identity] [Ideﬁ tity] [Identity]
l /1 Il |
Encoder Process Decoder

Figure 3.2: The [soGCN models used for (a) the scalar field to the gradient field, (b) the
scalar field to the Hessian field, (c) the gradient field to the Laplacian field, (d) the gradient
field to the Hessian field of the gradient operator dataset. Gray boxes are trainable com-
ponents. In each trainable cell, we put the number of units in each layer along with the

activation functions used. (¥) denotes the multiplication in the feature direction.
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Figure [3.2] represents the IsoGCN model used for the differential operator dataset. We
used the tanh activation function as a nonlinear activation function because we expect
the target temperature field to be smooth. Therefore, we avoid using non-differentiable
activation functions such as the rectified linear unit (ReLU) (Nair & Hinton, 2010). For
GCN and its variants, we simply replaced the [soGCN layers with the corresponding ones.
We stacked m (= 2,5) layers for GCN, GIN, GCNII, and Cluster-GCN. We used an m
hop adjacency matrix for SGCN.

For the TFN and SE(3)-Transformer, we set the hyperparameters to have almost the
same number of parameters as in the [SoOGCN model. The settings of the hyperparameters

are shown in Table [3.2]

Table 3.2: Summary of the hyperparameter setting for both the TFN and
SE(3)-Transformer. For the parameters not in the table, we used the de-
fault setting in the implementation of https://github.com/FabianFuchsML/

se3-transformer-public.

0—1 02 1—-0 1—2

# hidden layers 1 1 1 1
# NL layers in the self-interaction 1 1 1 1
# channels 24 20 24 24
# maximum rank of the hidden layers 1 2 1 2
# nodes in the radial function 16 8 16 22

3.4.1.3 RESULTS

Figure [3.3] and Table [3.3] present a visualization and comparison of predictive perfor-
mance, respectively. The results show that an IsoGCN outperforms other GCN models for
all settings. This is because the [soGCN model has information on the relative position of
the adjacency vertices, and thus understands the direction of the gradient, whereas the other
GCN models cannot distinguish where the adjacencies are, making it nearly impossible to

predict the gradient directions.
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Figure 3.3: (Top) the gradient field and (bottom) the error vector between the prediction
and the ground truth of a test data sample. The error vectors are exaggerated by a factor of

2 for clear visualization.

Adding the vertex positions to the input feature to other GCN models exhibited a perfor-
mance improvement, however as the vertex position is not a translation invariant feature, it
could degrade the predictive performance of the models. Thus, we did not input x as a ver-
tex feature to the Iso0GCN model or other equivariant models to retain their E(n)- invariant

and equivariant natures.

IsoGCNs perform competitively against other equivariant models with shorter predic-
tion time as shown in Table As mentioned in Section G corresponds to the
gradient operator, which is now confirmed in practice. Therefore, it can be found out the
proposed model has a strong expressive power to express differential regarding space with

less computation resources compared to the TFN and SE(3)-Transformer.
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Table 3.3: Summary of the test losses (mean squared error £ the standard error of the
mean in the original scale) of the differential operator dataset: 0 — 1 (the scalar field to the
gradient field), 0 — 2 (the scalar field to the Hessian field), 1 — 0 (the gradient field to the
Laplacian field), and 1 — 2 (the gradient field to the Hessian field). Here, if “x” is “Yes”,

x is also in the input feature.

Lossof 0 -1 Lossof 0 -2 Lossof1 -0 Lossofl1 — 2

Method # hops %1070 x1076 1076 %1076
2 No 151194053 49104036 542524214  59.65 + 0.46
N 2 Yes 147104051 47564035 46379 +£2.08  50.73 % 0.40
5  No 151184053 4899+036 542544214  59.64 & 0.46
5 Yes 147074051 47354035 404924174 4618 + 039
2 No 151184053 43084031 54274 +2.14  59.65 + 0.46
GOND 2 Yes 151144053 40724029 194654+ 1.00 4543 036
5 No 151114053 32854023 542654214  59.66 + 0.46
5 Yes 151134053 31874022 28061 +130 39.38 +0.34
2 No 151174053 5026+038 54290 +2.14  59.65 + 0.46
SGeN 2 Yes 151124053 49.96+037 353294149  59.61 & 0.46
5  No 151124053 55024042 542734214  59.64 + 046
5 Yes 151164053 55084042 127214063 56.97 +0.44
2 No 151234053 4959+037 542544214  59.64 & 0.46
Gen 2 Yes 151144053 47914035 54268 +2.14  59.60 & 0.46
5  No 151184053 50584038 542534214  59.64 %+ 0.46
5 Yes 151144053 48504035 542304214 2537 +0.28
2 No 151194053 33394024 54254+2.14  59.66 % 0.46
Clustor-GEN 2 Yes 147234051 32294024 167734083 17.72+0.17
5 No 151154053 28794021 54251 +£2.14  59.66 % 0.46
5 Yes 146914051 2660+0.19 185214099  18.18 +0.20
N 2 No 247002 0OM 26.69 + 0.24 OOM
5  No 0OM 00M OOM OOM
SE(3) Trans, 2 No 179+£002  3.50+£004  2.52+002 OOM
5  No 212002 00M 7.66 % 0.05 OOM
oGON Oy 1 No 267002 637£007 7185006 1444002
5  No 14194010 21724025 3409+0.19 832009
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Table 3.4: Summary of the prediction time on the test dataset. 0 — 1 corresponds to the
scalar field to the gradient field, and 0 — 2 corresponds to the scalar field to the Hessian
field. Each computation was run on the same GPU (NVIDIA Tesla V100 with 32 GiB
memory). OOM denotes the out-of-memory of the GPU.

0—1 0—2
Method # parameters Inference time [s] # parameters Inference time [s]
TFN 5264 3.8 5220 OoOM
SE(3)-Trans. 5392 4.0 5265 9.2

IsoGCN (Ours) 4816 0.4 4816 0.7
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3.4.2 ANISOTROPIC NONLINEAR HEAT EQUATION DATASET

3.4.2.1 TASK DEFINITION

To apply the proposed model to a real problem, we adopted the anisotropic nonlinear
heat equation. We considered the task of predicting the time evolution of the temperature
field based on the initial temperature field, material property, and mesh geometry infor-
mation as inputs. We randomly selected 82 CAD shapes from the first 200 shapes of the
ABC dataset (Koch et al., 2019), generate first-order tetrahedral meshes using a mesh gen-
erator program, Gmsh (Geuzaine & Remacle, 2009), randomly set the initial temperature
and anisotropic thermal conductivity, and finally conducted a finite element analysis (FEA)

using the FEA program FrontISTRﬂ (Morita et al.,[2016j Thara et al., 2017).

For this task, we set
wij — ‘/}ei:fective/‘/ieffective7 (369)

where V;°ective denotes the effective volume of the ith vertex (Equation ) Similarly to
the differential operator dataset, we tested the number of hops m = 2, 5. However because
we put four [soAM operations in one model, the number of hops visible from the model is
8 (m = 2) or 20 (m = 5). As is the case with the differential operator dataset, we replaced

an IsoGCN layer accordingly for GCN or its variant models.

In the case of £k = 2, we reduced the number of parameters for each of the baseline
equivariant models to fewer than the IsoGCN model because they exceeded the memory of
the GPU (NVIDIA Tesla V100 with 32 GiB memory) with the same number of parameters.
In the case of k = 5, neither the TFN nor the SE(3)-Transformer fits into the memory of the
GPU even with the number of parameters equal to 10. For more details about the dataset

and the model, see Section|[3.4.2

4https://github.com/FrontISTR/Front ISTR. We applied a private update to FrontISTR to
deal with the anisotropic heat problem, which will be also made available online.
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3.4.2.2 DATASET

The purpose of the experiment was to solve the anisotropic nonlinear heat diffusion

under an adiabatic boundary condition. The governing equation is defined as follows:

QcCcR? (3.70)

% = V- C(T(t,z)VT(t, x) in (3.71)

T(t=0,z) = Tyo(x) in Q (3.72)

VT(t, )|z, - 2(23) = 0 on 99, (3.73)

where T is the temperature field, Tp is the initial temperature field, C € R¥*? is an
anisotropic diffusion tensor and n(x;) is the normal vector at x;, € 0f). The Neumann

boundary condition expressed in Equation corresponds to the adiabatic condition.

Here, C' depends on temperature thus the equation is nonlinear. We randomly generate
C(T = —1) for it to be a positive semidefinite symmetric tensor with eigenvalues varying

from 0.0 to 0.02. Then, we defined the linear temperature dependency the slope of which

is —C(T = —1)/4. The function of the anisotropic diffusion tensor is uniform for each
sample.
The task is defined to predict the temperature field at ¢ = 0.2,0.4,0.6,1.0

(To2,To.4, 106, Tos,T10) from the given initial temperature field 7j ¢, material property,
and mesh geometry. However, the performance is evaluated only with 77 ¢ to focus on
the predictive performance. We inserted other output features to stabilize the trainings.
Accordingly, the diffusion number of this problem is CAt/(Az)? ~ 10.0* assuming
Az ~10.073.

Figure [3.4] represents the process of generating the dataset. We generated up to 9 FEA
results for each CAD shape. To avoid data leakage in terms of the CAD shapes, we first

split them into training, validation, and test datasets, and then applied the following process.

Using one CAD shape, we generated up to three meshes using clscale (a control pa-
rameter of the mesh characteristic lengths) = 0.20, 0.25, and 0.30. To facilitate the training

process, we scaled the meshes to fit into a cube with an edge length equal to 1.
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Using one mesh, we generated three initial conditions randomly using a Fourier series
of the 2nd to 10th orders. We then applied an FEA to each initial condition and material
property determined randomly as described above. We applied an implicit method to solve
time evolutions and a direct method to solve the linear equations. The FEA time step At

was set to 0.01.

During this process, some of the meshes or FEA results may not have been available
due to excessive computation time or non-convergence. Therefore, the size of the dataset
was not exactly equal to the number multiplied by 9. Finally, we obtained 439 FEA results
for the training dataset, 143 FEA results for the validation dataset, and 140 FEA results for
the test dataset.

Initial condition
CAD Mesh Material property FEA results

-

clscale = 0.25

-

3
3
3

TEMPERATURE
-1.0e+00 -0.6-0.4-0.2 0 0.2 04 0.6 1.0e+00
|
_— —

clscale = 0.20

Figure 3.4: The process of generating the dataset. A smaller clscale parameter generates

smaller meshes.
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3.4.2.3 INPUT AND OUTPUT FEATURES

To express the geometry information, we extracted the effective volume of the ith vertex

Vefteetive and the mean volume of the ith vertex V;™°*" which are defined as follows:

; 1
Veﬂectlve — E _V'e 3.74
Z eeNF 4 ( :
EeeNe ‘/6
yjmean _ ZeCN 3.75
i N (3.75)

where N? is the set of elements, including the ith vertex.

For GCN or its variant models, we tested several combinations of input vertex features
T, C, Veflective jrmean apnq g (Table . For the IsoGCN model, inputs were 7,
Jeffective j/mean anq ' Since we construct define the discrete tensor field for each tensor

rank, we have

TO.O (501) Veffective(wl)
TO.O (w2) veffective(wZ)

HY = . ' . € RIVIx3xn® (3.76)

TO.0<33|V|) Veffective(ww‘ ) Vmean(m\\ﬂ)
C \
C

HY = | V| rows € RIVIx1xn? (3.77)
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for input discrete tensor fields and

T0.2(il31) T0.4(=’131) T0.6(331) To.s(iﬂl) Tl.o(ivl)
T0.2($2) T0.4($2) To.6($2) To.s(ﬂfz) Tl.o(wz)
0) _ [V[x5xn°
H, ;= eR
Toz(zp) Toalxp)) Tos(xpy) Tos(zp) Tro(zpy)
(3.78)
for the output discrete tensor field in the present task.
3.4.2.4 MODEL ARCHITECTURES
IsoGCN IsoGCN
G*— Gx*—
[512,512] [512,512] T2
Too MLP [Identity] W [Identity] W MLP To.a
Vestective || [3,128,512] @ @ [512,512,128, 5] >l Tos
Vinear [tanh, tanh]| MLP J MLD J [tanh, tanh, Identity] Tos
[512,512] [512,512] Tio
[tanh] IsoGCN [tanh] IsoGON
L GO— L GO—
Y7 b12,512) [ $7 [512,512] [
[Identity] [Identity]
Linear
C [1,512]
[Identity]

Propagation 1 Propagation 2

Encoder Process

Decoder

Figure 3.5: The IsoGCN model used for the anisotropic nonlinear heat equation dataset.
Gray boxes are trainable components. In each trainable cell, we put the number of units in
each layer along with the activation functions used. Below the unit numbers, the activation
function used for each layer is also shown. (¥) denotes the multiplication in the feature

direction, ® denotes the contraction, and ¢ denotes the addition in the feature direction.

Figure represents the [so0GCN model used for the anisotropic nonlinear heat equa-
tion dataset. We adopted the encode-process-decode configuration (Battaglia et al., 2018)
to leverage the expressive power of neural networks. The encoder embeds the input fea-

tures to a higher dimensional space, 512 dimension in the present case. By increasing the
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dimension of the encoded space, one can expect that the expressive power increases. The

decoder takes the embedded features and outputs features in the desired dimension.

The process part contains two propagation blocks. Although the propagation block

looks complicated, one can see it corresponds to the explicit Euler method (Equation [2.58)):
Tt+At,x)~=T(t,x)+ V- -C(T(t,x))VT(t x)At, (3.79)

because one propagation block is expressed as
Propagation,(H”, H®) = HO + G o H® o MLP(H")G « H?,  (3.80)

where H(®) and H® denotes the rank-0 and rank-2 tensor inputs to the considered prop-
agation block (z = 1,2). Thus, one propagation block proceeds time At because of the
relationship to the Euler method. By stacking this propagation block » times, we can make
time evolution by rAt, making it possible to predict the state after the long time. How-
ever, increasing  may cause longer computation time. Therefore, we keep » = 2 for the

experiment to retain computational efficiency.

For the nonlinear activation function, we used tanh because we expect the target tem-
perature field to be smooth. Therefore, we avoid using non-differentiable activation func-

tions such as the rectified linear unit (ReLU) (Nair & Hinton, 2010).

For GCN and its variants, we simply replaced the IsoGCN layers with the correspond-
ing ones. We stacked m (= 2, 5) layers for GCN, GIN, GCNII, and Cluster-GCN. We used
an m hop adjacency matrix for SGCN.

For the TFN and SE(3)-Transformer, we set the hyperparameters to as many parameters
as possible that would fit on the GPU because the TFN and SE(3)-Transformer with almost
the same number of parameters as in [soGCN did not fit on the GPU we used (NVIDIA
Tesla V100 with 32 GiB memory). The settings of the hyperparameters are shown in
Table
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Table 3.5: Summary of the hyperparameter setting for both the TFN and SE(3)-
Transformer. For the parameters not written in the table, we used the de-
fault setting in the implementation of https://github.com/FabianFuchsML/

se3-transformer—-public.

# hidden layers 1
# NL layers in the self-interaction 1
# channels 16

# maximum rank of the hidden layers 2

# nodes in the radial function 32

3.4.2.5 RESULTS

Figure and Table present the results of the qualitative and quantitative compar-
isons for the test dataset. The IsoGCN demonstrably outperforms all other baseline models.
Moreover, owing to the computationally efficient E(n)-invariant nature of IsoGCNs, it also
achieved a high prediction performance for the meshes that had a significantly larger graph
than those considered in the training dataset. The IsoGCN can scale up to 1M vertices,
which is practical and is considerably greater than that reported in Sanchez-Gonzalez et al.
(2020). Therefore, we conclude that IsoGCN models can be trained on relatively smaller
mesheﬂ to save the training time and then used to apply the inference to larger meshes

without observing significant performance deterioration.

Table |3.7|reports the preprocessing and inference computation time using the equivari-
ant models with m = 2 as the number of hops and FEA using FrontISTR 5.0.0. We varied
the time step (At = 1.0,0.5) for the FEA computation to compute the ¢t = 1.0 time evo-
lution thus, resulting in different computation times and errors compared to an FEA with
At = 0.01, which was considered as the ground truth. Clearly, the IsoGCN is 3- to 5- times
faster than the FEA with the same level of accuracy, while other equivariant models have

almost the same speed as FrontISTR with At = 0.5.

The results show that the inclusion of @ in the input features of the baseline models did

not improve the performance. In addition, if « is included in the input features, a loss of the

SHowever, it should also be sufficiently large to express sample shapes and fields.
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TEMPERATURE
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Figure 3.6: (Top) the temperature field of the ground truth and inference results and (bot-
tom) the error between the prediction and the ground truth of a test data sample. The error

is exaggerated by a factor of 2 for clear visualization.

generalization capacity for larger shapes compared to the training dataset may result as it
extrapolates. The proposed model achieved the best performance compared to the baseline
models considered. Therefore, we concluded that the essential features regarding the mesh

shapes are included in G.

Besides, IsoGCN can scale up to meshes with 1M vertices as shown in Figure [3.7]
The result is surprizing because we trained relatively smaller meshes with several thousand
vertices. Since [soGCN successfully includes the information of the PDE, it can show such

a high generalizability.
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Ground Truth (FEA) p IsoGCN (Ours)

TEMPERATURE

Training samples

Figure 3.7: Comparison between (left) samples in the training dataset, (center) ground truth
computed through FEA, and (right) IsoGCN inference result. For both the ground truth and
inference result, |V| = 1,011, 301. One can see that IsoGCN can predict the temperature

field for a mesh, which is much larger than these in the training dataset.
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Table 3.6: Summary of the test losses (mean squared error =+ the standard error of the mean

in the original scale) of the anisotropic nonlinear heat dataset. Here, if

(13 2

x” 18 “Yes”, x is

also in the input feature. OOM denotes the out-of-memory on the applied GPU (32 GiB).

Loss

Method #hops =« 103

2 No 16.921 £ 0.040

2 Yes 18.483 4 0.025
GIN

5 No 22.961 £ 0.056

5 Yes 17.637 4+ 0.046

2 No 10.427 £ 0.028

2 Yes 11.610 £ 0.032
GCN

5 No 12.139 + 0.031

5 Yes 11.404 4+ 0.032

2 No 9.595 £ 0.026

2 Yes 9.789 £ 0.028
GCNII

5 No 8.377 +£0.024

5 Yes 9.172 £+ 0.028

2 No 7.266 + 0.021

2 Yes 8.532 + 0.023
Cluster-GCN

5 No 8.680 £ 0.024

5 Yes 10.712 4 0.030

2 No 7.317 £0.021

2 Yes 9.083 &+ 0.026
SGCN

5 No 6.426 +0.018

5 Yes 6.519 £ 0.020

2 No 15.661 £0.019
TEN

5 No OOM

2 No 14.164 £+ 0.018
SE(3)-Trans.

5 No OOM

2 No 4.674+0.014
IsoGCN (Ours)

5 No 2.470 £ 0.008
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Table 3.7: Comparison of computation time. To generate the test data, we sampled CAD
data from the test dataset and then generated the mesh for the graph to expand while re-
taining the element volume at almost the same size. The initial temperature field and the
material properties are set randomly using the same methodology as the dataset sample
generation. For a fair comparison, each computation was run on the same CPU (Intel Xeon
E5-2695 v2@2.40GHz) using one core, and we excluded file I/O time from the measured
time. OOM denotes the out-of-memory (500 GiB).

V| =21,289 |V|=155,019 |V|=1,011,301

Loss Loss Loss

< 10~4 Time [s] < 10~4 Time [s] < 10-4 Time [s]

Method

FrontISTR (At =1.0) 109 16.7 6.1 181.7 29 1656.5
FrontISTR (At =0.5) 0.8 30.5 0.4 288.0 0.2 2884.2
TFN 77.9 46.1 30.1 400.9 OOM OOM
SE(3)-Transformer 111.4 31.2 80.3 271.1 OOM OOM
IsoGCN (Ours) 8.1 7.4 4.9 84.1 3.9 648.4
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3.5 CONCLUSION

In this chapter, we introduced the GCN-based E(n)- invariant and equivariant mod-
els called IsoGCN. We discussed the differential IsoAM, an isometric adjacency matrix
(IsoAM) for numerical analysis, that was closely related to the essential differential opera-
tors. The experiment results confirmed that the proposed model leveraged the spatial struc-
tures and can deal with large-scale graphs. The computation time of the IsoGCN model is
significantly shorter than the FEA, which other equivariant models cannot achieve. There-
fore, IsoGCN must be the first choice to learn physical simulations because of its compu-
tational efficiency as well as E(n)- invariance and equivariance. Our demonstrations were
conducted on the mesh structured dataset based on the FEA results. However, we expect
IsoGCNs to be applied to various domains, such as object detection, molecular property

prediction, and physical simulations using particles.
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Chapter 4

Physics-Embedded Neural Network:
Boundary Condition and Implicit

Method

4.1 INTRODUCTION

In Chapter we introduced IsoGCN, a lightweight E(n)-equivariant graph neural net-

work. It can:

* handle an arbitrary mesh thanks to the generalizability of GNN;

e reflect symmetries regarding E(n) transformation that exists in physical phenom-

ena; and

* predict faster than conventional numerical analysis methods and complex GNNs

based on linear message passing scheme.
However, we still miss the following keys to constructing general PDE solvers:

* Treatment of mixed boundary conditions: Mixed boundary condition contains
Dirichlet and Neumann boundary conditions in disjoint boundary regions, as ex-
pressed in Equations [2.54] and [2.55] The IsoGCN model demonstrated in Sec-

tion [3.4.2] considers only adiabatic boundary conditions corresponding to the ho-

81
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mogeneous Neumann boundary condition (Equation [3.73). Therefore, we must

provide a provable way to handle mixed boundary conditions.

* An implicit manner for time evolution: In Section [3.4.2] we constructed [soGCN
models based on the explicit Euler method (Equation [3.80). It can consider interac-
tions between vertices k hop away by stacking k£ IsoGCN layers. However, global
interaction may sometimes occur as in incompressible flow phenomena, where the
speed of sound is regarded as infinity. These global interactions require IsoGCN

layers stacked more than the number of vertices |V

, which may result in huge
computation time. Therefore, we must incorporate implicit time evolution that can

consider global interaction.

* Demonstration in various PDEs: We demonstrated [soGCN’s expressibility using
the heat equation in Section However, there are many PDEs in addition to the
heat equation. Thus, we must show the model can learn various phenomena, such

as the advection-diffusion and incompressible flow problems.

Thus, we introduce physics-embedded neural networks (PENNSs), a machine learning
framework to address these issues by embedding physics in the models. We build our model
based on [soGCN to reflect physical symmetry and realize fast prediction. Furthermore, we
construct a method to consider mixed boundary conditions. Finally, we reconsider a way
to stack GNNs based on a nonlinear solver, which naturally introduces the global pooling
to GNNss as the global interaction with high interpretability. In numerical experiments, we
demonstrate that our treatment of Neumann boundary conditions improves the predictive
performance of the model, and our method can fulfill Dirichlet boundary conditions with
no error. Our method also achieves state-of-the-art performance compared to a classical,
well-optimized numerical solver and a baseline machine learning model in speed-accuracy

trade-off.

Figure [.1] shows the overview of the proposed model. Our main contributions are

summarized as follows:

* We construct models to satisfy mixed boundary conditions: the boundary encoder,

Dirichlet layer, pseudoinverse decoder, and NeumannlsoGCN (NIsoGCN). The
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considered models show provable fulfillment of boundary conditions, while exist-

ing models cannot.

* We propose neural nonlinear solvers, which realize global connections to stably

predict the state after a long time.

* We demonstrate that the proposed model shows state-of-the-art performance in
speed-accuracy trade-off, and all the proposed components are compatible with

E(n)-equivariance.

E(n)-Equivariant Graph Neural Network with boundary conditions

( ){ Neural nonlinear solver }
o——5

Encoded Dirichlet
boundary condition

[ Dirichlet layer + NeumannlsoGCN:

Dirichlet boundary
condition

(e >
Boundary
Encoder

o Encoded Neumann {rreem
Input feature  poundary condition Encoded feature Output feature

Neumann
boundary condition

Figure 4.1: Overview of the proposed method. On decoding input features, we apply
boundary encoders to boundary conditions. Thereafter, we apply a nonlinear solver con-
sisting of an E(n)-equivariant graph neural network in the encoded space. Here, we apply
encoded boundary conditions for each iteration of the nonlinear solver. After the solver

stops, we apply the pseudoinverse decoder to satisfy Dirichlet boundary conditions.

4.2 RELATED PRIOR WORK

We review machine learning models used to solve PDEs called neural PDE solvers,
typically formulated as w(t, 1, ;) ~ Fan(w)(t,, x;) for (t,,x;) € {to,t1,...} X Q,

where Fyy is a machine learning model.

4.2.1 PHYSICS-INFORMED NEURAL NETWORK (PINN)

Raissi et al.| (2019) made a pioneering work combining PDE information and neural
networks, called PINNs, by adding loss to monitor how much the output satisfies the equa-

tions. PINNs can be used to solve forward and inverse problems and extract physical
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states from measurements (Pang et al., 2019; Mao et al.,|2020; Cai et al.,|2021). However,
PINNs’ outputs should be functions of space because PINNs rely on automatic differentia-
tion to obtain loss regarding PDEs. This design constraint significantly limits the model’s
generalization ability because the solution of a PDE could be entirely different when the
shape of the domain or boundary condition changes. Besides, the loss reflecting PDEs helps
models learn physics at training time; however, prediction by PINN models can be out of
physics because of lacking PDE information inside the model. Therefore, these methods
are not applicable in building models that are generalizable over shape and boundary con-
dition variations. As seen in Section [4.3] our model contains PDE information inside and

does not take absolute positions of vertices, thus resulting in high generalizability (See

Figure 4.16).

4.2.2 GRAPH NEURAL NETWORK BASED PDE SOLVER

As discussed in Sections [2.2.2] [2.2.4] and [3.2.3] one can regard a mesh as a graph and

various existing studies demonstrated that GNNs can learn physical phenomena, as seen
in Alet et al.| (2019); |[Chang & Cheng (2020); Pfaff et al.| (2021)). Then, Brandstetter et al.
(2022) advanced these works by suggesting temporal bundling and pushforward trick for
efficient and stable prediction. Their method could also consider boundary conditions by
feeding them to the models as inputs. Here, one could expect the model to learn to satisfy
boundary conditions approximately, while there is no guarantee to fulfill hard constraints
such as Dirichlet conditions. In contrast, our model ensures the satisfaction of boundary
conditions. Besides, most GNNs use local connections with a fixed number of message
passings, which lacks consideration of global interaction. We suggest an effective way to

incorporate a global connection with GNN through the neural nonlinear solver.

4.3 METHOD

We present our model architecture. Following the study done in Section [3.4] we adopt
the encode-process-decode architecture, proposed by Battaglia et al| (2018), which has
been applied successfully in various previous works, e.g., [Pfaff et al. (2021); Brandstetter
et al. (2022). Our key concept is to encode input features, including information on bound-

ary conditions, apply a GNN-based nonlinear solver loop reflecting boundary conditions
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in the encoded space, then decode carefully to satisfy boundary conditions in the output
space. In this section, we continue to use the discrete tensor field (Equation [3.5)) expressed

as:

hi
by

H=| |, 4.1

by,

while we do not write the tensor rank explicitly unless needed.

4.3.1 DIRICHLET BOUNDARY MODEL

As demonstrated theoretically and experimentally in literature (Hornik, 1991; Cybenko),
1992;|Nakkiran et al.,|[2021)), the expressive power of neural networks comes from encoding
in a higher-dimensional space, where the corresponding boundary conditions are not trivial.
However, if there are no boundary condition treatments in layers inside the processor, which
resides in the encoded space, the trajectory of the solution can be far from the one with
boundary conditions. Therefore, boundary condition treatments in an encoded space are

essential for obtaining reliable neural PDE solvers that fulfill boundary conditions.

4.3.1.1 BOUNDARY ENCODER

To ensure the same encoded space between variables and boundary conditions, we use
the same encoder for variables and the corresponding Dirichlet boundary conditions, which

we term the boundary encoder, as follows:

hi :fencode<ui) in (2 (42)

hi :fencode<ﬁ/i) on aQDirichletu (43)

where u; is the value of the Dirichlet boundary condition at ; € 0Qpirichlet-
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4.3.1.2 DIRICHLET LAYER

One can easily apply Dirichlet boundary conditions in the aforementioned encoded

space using the Dirichlet layer defined as:

hi, i o0} irichle
DirichletLayer(h;) = . Zi & Hloiricnier 4.4)

hi, ®; € O0piichet-
This process is necessary to return to the state respecting the boundary conditions after

some operations in the processor, which might violate the conditions.

4.3.1.3 PSEUDOINVERSE DECODER

After the processor layers, we decode the hidden features using functions satisfying:

,fdecode o fencode(qli) - ’az on agzDirichle‘v (45)

This condition ensures that the encoded boundary conditions correspond to the ones in the

original physical space. Demanding that Equation 4.5/ holds for arbitrary u; we obtain:

fdecode o fencode - IdU7 (46)

where 1d,, denotes the identity map from the space of u to the same space. By applying

I oqes @ left inverse function of the encoder, we have:

fdecode = fe—gcodea (47)

which we call the pseudoinverse decoder. It is pseudoinverse because fepncode, in particular

encoding in a higher-dimensional space, may not be invertible. Therefore, we construct
+

encode USINZ pSCUdOII'lVCI‘SC matrices.

We can construct the pseudoinverse decoders for a wide range of neural network archi-

tectures. For instance, the pseudoinverse decoder for an MLP with one hidden layer

h = f(IB) = 09 (WQO’l(Wlw -+ bl) —+ bg) (48)
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can be constructed as:
fr(h) =Wior! (Wi oy (h) — by) — by, (4.9)

where W is the pseudoinverse matrix of W, satisfying W*W = I, and ¢ is an invertible
activation function whose Dom(o) = Im(c) = R. We can confirm that f* is in fact the

pseudoinverse of f as:

frof(x)=Wo" (Wioy" (02 (Waoi(Wix + by) + by)) — by) — by
= Wi ot (W, Wao (Wi + by) + by — by) — by
=W o (o,(Wix + b1)) — by
=W Wiz +b —b
= x. (4.10)

For the activation function, we may choose LeakyReLU

LeakyReLU(x) = - 4.11)

where set a = (0.5 because an extreme value of a (e.g., 0.01) could lead to an extreme
value of gradient for the inverse function. In addition, one may choose activation functions
whose Im(o) # R, such as tanh. However, in that case, we must ensure that the input
value to the pseudoinverse decoder is in Im(o) (in case of tanh, it is (—1, 1)); otherwise,

the computation would be invalid.

4.3.2 NEUMANN BOUNDARY MODEL

Matsunaga et al.| (2020) proposed a wall boundary model to deal with Neumann bound-
ary conditions for the LSMPS method (Tamai & Koshizukal, 2014) (Section , a
framework to solve PDEs using particles. The LSMPS method is the origin of the IsoGCN’s
gradient operator, so one can imagine that the wall boundary model may introduce a so-

phisticated treatment of Neumann boundary conditions into IsoGCN. We modified the wall
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boundary model to adapt to the situation where the vertices are on the Neumann boundary,

which differs from the situation of particle simulations.

4.3.2.1 DEFINITION OF NEUMANNISOGCN (NISOGCN)

Our formulation of IsoGCN with Neumann boundary conditions, which is termed Neu-

mannlsoGCN (NIsoGCN), is expressed as:

NIsoGCNo_,; (H)

. . . . _1 h’(O) h(O) T — &y ~
:= EquivariantPointwiseMLP w;; + wn;g;
ij - a:ZH l; — |

(4.12)

M=y ST BT b wm @, (4.13)
N [l — ac,|| e — |

where g; is the encoded value of the Neumann boundary condition at x; and w; > 0 is
an untrainable parameter to control the strength of the Neumann constraint. As w; — oo,
the model strictly satisfies the given Neumann condition in the direction m;, while the
directional derivatives in the direction of (x; — x;) tend to be relatively neglected. Thus,
we keep the value of w; moderate to consider derivatives in both » and x directions. In
particular, we set w; = 10.0, assuming that around ten vertices may virtually exist “outside”

the boundary on a flat surface in a 3D space.

NIsoGCN is a straightforward generalization of the original IsoGCN by letting n; = 0
when ; ¢ OQNeumann- This model can also be generalized to vectors or higher rank
tensors, similarly to the original IsoGCN’s construction. Therefore, NIsoGCN can express

any spatial differential operator, constituting D in PDEs.

4.3.2.2 DERIVATION OF NISOGCN

Matsunaga et al. (2020) derived a gradient model that can treat the Neumann boundary
condition with an arbitrary convergence rate with regard to spatial resolution. Here, we
derive our gradient model, i.e., NIsoGCN, in a different way to simplify the discussion

because we only need the first-order approximation for fast computation.
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Before deriving NIsoGCN, we review introductory linear algebra using simple norma-
tion. Using a orthonormal basis {ej € Rd|ej ey = 5jk};l:1, one can decompose a vector

v € R" using:

v=> (v-e)e; (4.14)

J

Now, consider replacing the basis {e; € R"}7_; with a set of vectors B = {b; €
R”};"zl, called a frame, that spans the space but is not necessarily independent (thus, n’ >

n). Using the frame, one can assume v is decomposed as:

v="> (v-b;)Ab; (4.15)

J

where A € R™*" is a matrix that corrects the “overcount” that may occur using the frame
(for instance, consider expanding (1,0)" with the frame {(1,0)",(-=1,0)",(0,1)"}). A
set {Ab, ?/:0 is called a dual frame for B. Recalling Equation [2.122] we can find the

concrete form of A considering:

v = AZ(’U - b;)b;

J

= A (b; @ b))v. (4.16)
J
Requiring that Equationmholds for any v € R, one can conclude A = 5 i(b;® b;)"".

Then, we obtain

-1

J

v = [Zb,@bl
l

For more details on frames, see, e.g., Han et al.| (2007).

Now, we can derive NIsoGCN at the ith vertex on the Neumann boundary, by letting

a:j—a:z-
g ——————

B:{\/w_

’ chj — x|

b utvam @.18)
N

Jj€
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In addition, we assume the approximated gradient of a scalar field v at the ith vertex, (Vu),,

satisfies the following conditions:

(V) - T = Ty GeN)  @19)
e, DEET

- wZH

Equation 4.19]is a natural assumption because we expect the directional derivative in the
direction of (x;, —x;)/||x;, — ;|| should correspond to the slope of v in the same direction.
Equation 4.20] is the Neumann boundary condition, which we want to satisfy. Finally,
by substituting Equations [4.18| 4.19] and [4.20] into Equation [4.17, we obtain the gradient

model considering the Neumann boundry consition as:

[ZW 2 “Enml_wz]

lEN, T = wl”

[Z(\/w—;j 2T, - min)*@f”‘@”i]

J

w
”sz - wzH [ — ]

leN;

uj—ui CU]‘—.’L‘Z‘ .
[Z(w]mj—miﬂwj—wiH)+wgn] @2b

J

-1

If we apply the gradient model to a encoded features, we obtain the gradient model in the
NIsoGCN layer, i.e., Equation Similar to the Dirichlet encoder and pseudoinverse
decoder, we could define the specific encoder and decoder for the Neumann boundary
condition. However, this is not included in the contributions of our work because it does
not improve the performance of our model, which may be because the Neumann boundary
condition is a soft constraint in contrast to the Dirichlet one and expressive power seems

more important than that inductive bias.
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4.3.2.3 GENERALIZATION OF NISOGCN

To apply NIsoGCN to H®), a rank p discrete tensor field (p > 1), one can recursively

define the operation as:

NIsoGCN,_1,,(HY) )
NISoGCN, 1 (H®) := | NIsoGCN,_i,,(H®, ) |, (4.22)

SR

NISOGCprlap(H:(;]:D;)S...)

where H. :(’f;)

D € RIVIxdiauwrexn”™ g the jth component of H®) regarding the first spatial
index, resulting in the rank (p — 1) discrete tensor field. In case of a three-dimensional rank

one discrete tensor field H®Y, it can be formulated as:

NIsoGCNo_; (H'Y,

BE]

NIsoGCN, o (HWY) := | NIsoGCNo_, (H'.

NIsoGON, ., (F

<aH§?}1 /8x> <aH§?31 /ay> <aHfj31 /8z>

<aH§?}2/ax> <8H:(;:1;)2/8y> <6H:(;:1;)2/8z> 4.23)
{

<aH§}33/ax> aﬂzﬂ}g/ay> <6HS}3/az>

Q

— (Vo HW), (4.24)

which corresponds to the Jacobian tensor field of H @, Similarly, NIsoGCN to decrease

tensor rank can be defined as:

®) ). (4.25)

E]

+ NIsoGCN,,_1_,(

As discussed in Section [3.3.4.1] IsoGCNs (NIsoGCNs) correspond to spatial differen-
tial operators. Because NIsoGCN contains a learnable neural network (Equation 4.12),

the component learns to predict the derivative of the corresponding tensor rank in an en-
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coded space. This feature of NIsoGCNs enables us to construct machine learning models

corresponding to PDE in the encoded space.

4.3.3 NEURAL NONLINEAR SOLVER

4.3.3.1 IMPLICIT EULER METHOD IN ENCODED SPACE

As reviewed in Section [2.2.1] one can regard solving PDEs as optimization. To con-
struct a neural PDE solver using the implicit Euler method in a high-dimensional encoded

space, we first define the residual and the nonlinear problem in the encoded space based on

Equation as:

Rnisocen(H') :=H' — H(t) — Dnisocon (H') At (4.26)
SOIVQII—IRNISOGCN<H/> :Ov (427)

where H (t) and H' are discrete tensor fields, and Dnisogen is an E(n)-equivariant GNN
reflecting the structure of D using differential operators provided by NIsoGCN (See Sec-
tion for the concrete examples of Dyisocon). Equation corresponds to solving a
PDE in a high-dimensional encoded space, where we can utilize the expressibility of neural

networks.

One may consider solving Equation 4.27)by using the Newton-Raphson method. How-
ever, it may consume huge memory because we embed the input feature into a high-
dimensional space, resulting in a large matrix to solve. In addition, we must use GPUs
to accelerate the training of models, which makes memory limitation more strict. Fur-
thermore, solving linear systems makes the computation graph extremely long, leading to
unstable backpropagation. There are various existing studies to challenge this type of prob-
lem, e.g., Neural ODE (Chen et al., 2018) and implicit GNN (Gu et al., 2020). Besides,
adopting limited-memory quasi-Newton methods (e.g., Liu & Nocedal (1989)) might be in-
teresting as they are supposed to facilitate incorporating global interactions. Nevertheless,
we applied the gradient descent method in this research for simplicity and computational

efficiency. Based on Equation gradient descent in the encoded space can be expressed
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as:

HO —H(t) (4.28)
H[H—l] :HM - Oé[i]RNIsoGCN(H[i]) P> 0’ (429)

where H! denotes the approximated solution at ith step of the iterative nonlinear solver

(as in Section [2.2.3)), not a rank-i discrete tensor field.

4.3.3.2 BARZILAI-BORWEIN METHOD FOR NEURAL NONLINEAR SOLVER

As discussed in Section ol are determined by the line search, requiring addi-
tional computational resource. However, using a small constant value of « results in the
explicit Euler method, which corresponds to simply stacking the GNN layers. Therefore,
we adopt the Barzilai-Borwein method (Barzilai & Borwein, 1988) to approximate o” in
Equation In our case, by applying Equation the step size o!! of gradient descent

is approximated as:

[i] [H" — HI7Y) - [ Raiocon (H™) — Ryiocon (HEY)]

[i] ~ —
A ol = , . (4.30)
BB | Rxtsocen (H ) — RNIsoGCN(H[Z_H)HQ

Here, - denotes the inner product between two discrete tensor fields with the same shape,

1.e.:

H(p) G Z ngkle kszgklkg iy ER (431)

igk1ka...kp

for rank-p discrete tensor fields H® and G®). Besides, |[H||*> := H - H. The inner
product used here corresponds to that for rank-p continuous tensor fields, (h,g) (where

h,g : Q — RireatureXn” ) "hecause:
(h.g) = / h(z) - g(z)d ) (4.32)
NZh% x;)V; (4.33)

effective
E Higkeikg.ky Gisgikik. by Vi : (4.34)
igki1ka...kp
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wherer Veffective denotes the effective volume of the ith vertex (Equation [3.74). One must
note that agp defined here is E(n)-invariant because it is computed using the contraction

between tensors. Therefore, the gradient descent update:
H[H_l] :H[Z] — a][;]BRNIsoGCN(H[i]) (435)

is E(n)-equivariant.

In addition, one can see that computing O'/][;]B corresponds to global pooling because the
inner product is taken all over the mesh (graph). With that view, one can find similarities
between Equation .35 and deep sets (Zaheer et al., 2017). A deep set layer is expressed

as:
DeepSet(H) := o (AH + v1yGlobalPooling(H)) , (4.36)

where )\ and v are trainable parameters, GlobalPooling : RIVI*@featurexn? _y RIXdreature xn?
denotes an operation that aggregates all information in a graph, such as max, mean, and
sum, and 1 = (1,1,...,1)T € RVIX! Deep set is a successful method to learn point cloud
data and has a strong background regarding permutation equivariance. However, E(n)-
equivariance is not considered in their model. Our gradient descent update (Equation
successfully incorporate the strength of the deep set model with E(n)-equivariance and

interpretability in terms of the implicit Euler method.

4.3.3.3 FORMULATION OF NEURAL NONLINEAR SOLVER

Our aim is to use Equation [4.35 approximating the nonlinear differential operator
D in Equation with NIsoGCN. By doing this, we expect the processor, the core of
the encode-decode-processor Architecture, to consider both local and global information,
which may have an advantage over simply stacking GNNs corresponding to the explicit
method as discussed in Section 2.2.21 Combinations of solvers and neural networks are
already suggested in, e.g., NeuralODE (Chen et al., |2018). The novelty of our study is the
extension of existing methods for solving PDEs with spatial structure and the incorporation
of global pooling into the solver in an E(n)-equivariant way, enabling us to capture global

interaction, which we refer to as the neural nonlinear solver.
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Finally, the update from the state at the ith iteration H! to the (i + 1)th in the neural

nonlinear solver is expressed as:
H* = DirichletLayer (H — aff, [H — H' - Dyoon(H)AL]),  437)

where H " is the encoded U (¢). Here, Equation enforces hidden features to satisfy
the encoded PDE, including boundary conditions, motivating us to call our model physics-
embedded neural networks because it embeds physics (PDEs) in the model rather than in

the loss.

4.4 NUMERICAL EXPERIMENTS

Using numerical experiments, we demonstrate the proposed model’s validity, express-

ibility, and computational efficiency. We use three types of datasets:

1. the gradient dataset to verify the correctness of NIsoGCN; and

2. the advection-diffusion dataset to demonstrate capacity of the model for various

PDE parameters; and

3. the incompressible flow dataset to demonstrate the speed and accuracy of the model.

We also present ablation study results to corroborate the effectiveness of the proposed
method. The implementation of our model is based on the original IsoGCN’s code[] Our

implementation is available online

4.4.1 GRADIENT DATASET

As done in Section [3.4.1] we conducted experiments to predict the gradient field from

a given scalar field to verify the expressive power of NIsoGCN.

4.4.1.1 TAKS DEFINITION

We generated cuboid-shaped meshes randomly with 10 to 20 cells in the X, Y, and Z

directions. We then generated random scalar fields over these meshes using polynomials of

'https://github.com/yellowshippo/isogen-iclr2021) Apache License 2.0.
2https://github.com/yellowshippo/penn-neurips2022, Apache License 2.0.
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https://github.com/yellowshippo/penn-neurips2022
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degree 10 and computed their gradient fields analytically. Our training, validation, and test

datasets consisted of 100 samples.

4.4.1.2 MODEL ARCHITECTURE

Figure [4.2] shows the architectures we used for the gradient dataset. The dataset is up-
loaded onlineE] We followed the instruction of |[Horie et al. (2021)) (in particular, Appendix
D.1 of their paper) to make the features and models equivariant. To facilitate a fair compar-
ison, we made input information for both models equivalent, except for M ~* in Equation
Equation which is a part of our novelty. For both models, we used Adam (Kingma &
Ba, |2014)) as an optimizer with the default setting. Training for both models took around
ten minutes using one GPU (NVIDIA A100 for NVLink 40GiB HBM2). Figure #.2] shows

model architectures used for the experiment.

(@) (b)

A ~ — 1
¥, n (& gn | M
! ! '
MLP MLP MLP
2,8,16,16 1,8,16,16 1,16
LeakyReLU, LeakyReLU, Identity LeakyReLU, LeakyReLU, Identity Identity
! ! !
IsoGCN NIsoGCN
16,16 16,16
Identity Identity
'
Concatenation
i
MLP MLP
17,1 1,16
Identity Identity

! !

V) Vi

Figure 4.2: Architecture used for (a) original [ISoOGCN and (b) NIsoGCN training. In each
trainable cell, we put the number of units in each layer along with the activation functions

used.

3https://savanna.ritc.jp/~horiem/penn_neurips2022/data/grad/grad_data.
tar.gz


https://savanna.ritc.jp/~horiem/penn_neurips2022/data/grad/grad_data.tar.gz
https://savanna.ritc.jp/~horiem/penn_neurips2022/data/grad/grad_data.tar.gz
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4.4.1.3 RESULTS

Table .1 and Figure {.3] show that the proposed NIsoGCN improves gradient predic-
tion, especially near the boundary, showing that our model successfully considers Neumann

boundary conditions.

Table 4.1: MSE loss (& the standard error of the mean) on test dataset of gradient predic-
tion. JNeumann 1S the loss computed only on the boundary where the Neuman condition is

set.

Method Vd)(XlO_S) gNeumann(Xlo_g)
Original IsoGCN  192.72 4+ 1.69 1390.95 4+ 7.93
NIsoGCN (Ours) 6.70 £0.15 3.52 £ 0.02
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Figure 4.3: Gradient field (top) and the magnitude of error between the predicted gradient

Difference of gradient

Ground truth Origier{aJ'lﬁIsoGCN NIé&GCN

and the ground truth (bottom) of a test data sample, sliced on the center of the mesh.
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4.4.2 ADVECTION-DIFFUSION DATASET

To test the generalization ability of PENNs regarding PDE’s parameters and time series,

we run an experiment with the advection-diffusion dataset.

4.4.2.1 TASK DEFINITION

The governing equation regarding the temperature field 7" used for the experiment is

expressed as:

1
aa—f — |l o |- vreDv- v (@) e(0,1)xQ (4.38)
0
T(t = 0,2) = 0 zeQ (4.39)
T=T (t,z) € ONDirichlet (4.40)
VT -n=0 (t,x) € INeumann; (4.41)

where ¢ € R is the magnitude of a known velocity field, and D € R is the diffusion
coefficient. Weset Q = {x e R} |0 < 2y < 1A0 < 29 < 1A0 < 23 < 0.01},
8gzDirichlet = {m S o0} | T = O} and 8gZNeumann = 0f) \ 8gzDirichlet .

4.4.2.2 DATASET

We varied ¢ and D from 0.0 to 1.0, eliminating the condition ¢ = D = 0.0 because
nothing drives the phenomena, and and varied T from 0.1 to 1.0 with At = 10~® We
generated fine meshes, ran numerical analysis with a classical solver, OpenFOAME] and
interpolated the obtained temperature fields onto coarser meshes so that we can obtain
high-quality ground truth data. We split the generated data into training, validation, and
test dataset containing 960, 120, and 120 samples. The dataset is uploaded onlineE]

4https://www.openfoam.com/
Shttps://savanna.ritc.jp/-horiem/penn_neurips2022/data/ad/ad_
preprocessed.tar.gz


https://www.openfoam.com/
https://savanna.ritc.jp/~horiem/penn_neurips2022/data/ad/ad_preprocessed.tar.gz
https://savanna.ritc.jp/~horiem/penn_neurips2022/data/ad/ad_preprocessed.tar.gz
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4.4.2.3 MODEL ARCHITECTURE

The strategy to construct PENN for the advection-diffusion dataset is consistent with
one for the incompressible flow dataset (see Section 4.4.3.3)). The input features of the

model are:

» T'(t = 0.0): The initial temperature field

T The Dirichlet boundary condition for the temperature field

(¢,0,0)": The velocity field

c: The magnitude of the velocity

D: The diffusion coefficient

o 705 o=1.0d =20d: Features computed from d, the distance from the Dirichlet

boundary
and the output features are:

t = 0.25): The temperature field at ¢t = 0.25
t = 0.50): The temperature field at t = 0.50
t = 0.75): The temperature field at t = 0.75

t = 1.00): The temperature field at t = 1.00

The encoded governing equation is expressed as:

Hi(t + At) = Hy(t) + Datsoconoacn (Hir) (£ + Af) (4.42)
Drisocen;a-p (Hr) : = —H, - NIsoGCNo_,1 (Hyp) + Hp NIsoGCNy_,1o(Hr),
(4.43)

where encoded discrete tensor fields corresponds to the following:

e Hp: Encoded rank-0 discrete tensor field of T’

e Hp: Encoded rank-0 discrete tensor field of ¢, D, =95 ¢=1.04 and ¢—2:04
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 H_.: Encoded rank-1 discrete tensor field of ¢
The corresponding neural nonlinear solver is:

HT[E'*” — Hz[f} — QE]B Hj[f] — H:[,Q] — DNIsoGCN;A-D(Hg])At] 5 (4.44)

Because the task is to predict time series data, we adopt autoregressive architecture for
the nonlinear neural solver, i.e., input the output of the solver of the previous step (which
is in the encoded space) to predict the encoded feature of the next step (see Figure 4.4).
Figures and 4.6/ present the detailed architecture of the PENN model for the advection-

diffusion dataset experiment.

To confirm the PENN’s effectiveness, we ran the ablation study on the following set-

tings:

(A) Without encoded boundary: In the nonlinear loop, we decode features to apply

boundary conditions to fulfill Dirichlet conditions in the original physical space

(B) Without boundary condition in the neural nonlinear solver: We removed the Dirich-
let layer in the nonlinear loop. Instead, we added the Dirichlet layer after the (non-

pseudoinverse) decoder.

(C) Without neural nonlinear solver: We removed the nonlinear solver from the model

and used the explicit time-stepping instead

(D) Without boundary condition input: We removed the boundary condition from input

features

(E) Without Dirichlet layer: We removed the Dirichlet layer. Instead, we let the model

learn to satisfy boundary conditions during training.

(F) Without pseudoinverse decoder: We removed the pseudoinverse decoder and used

simple MLPs for decoders.

(G) Without pseudoinverse decoder with Dirichlet boundary layer after decoding: Same

as above, but with Dirichlet layer after decoding.



4.4. Numerical Experiments 101

The training is performed for up to ten hours using the Adam optimizer for each setting.

[ T@=000 |
Encoding
| Hrt=000) |
Neural Neural Neural Neural
Nonlinear Solver Nonlinear Solver Nonlinear Solver Nonlinear Solver
| Hr(t=025) H | Hp(t=050) H | Hp(t=07) H | Hp(t=100 |
Decoding Decoding Decoding Decoding
| T@t=025) | | T@t=050 | | T¢t=07) | | T@E=100) |

Figure 4.4: The concept of the neural nonlinear solver for time series data with autoregres-
sive architecture. The solver’s output is fed to the same solver to obtain the state at the next
time step (bold red arrow). Please note that this architecture can be applied to arbitrary

time series lengths.
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[ 7T@=000 || T | | (c,0,0)" | [c D 050 107 20d
MLP  *1] | MLP MLP
1,16,64 ?@:nﬁﬁfgﬁdf 1,64, 64 5, 64,64
LeakyReLU, Identity £ tanh, Identity tanh, Identity
HIY (t =0.00
Hq[?] (t) 7 ( )
/8
Hq[fl HT Hc HD

Neural Nonlinear Solver

H¥+1]

i | After 8 iterations

Dirichlet Layer

Pseudoinverse
decoder
(Weight share with *1)

[7(t=0.25 T(t=050) T(t=0.75 T(t=1.00)

Figure 4.5: The overview of the PENN architecture for the advection-diffusion dataset.
Gray boxes with continuous (dotted) lines are trainable (untrainable) components. Arrows
with dotted lines correspond to the loop. In each trainable cell, we put the number of units
in each layer along with the activation functions used. The bold red arrow corresponds to

the one in Figure @
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HY | | T H, | Hp
Multiplication
MLP
64,64, 64
tanh, Identity
Dirichlet Layer
NIsoGCNo-»1 NIsoGCNo-1-0
64,64, 64 64,64, 64
tanh, Identity tanh, Identity
S lé] )
— NIEOGCNO*) (HT ) NISOGCN(]_A_A(H,;Z])
% Contraction
—H.. - NIsoGCNg_,, (H[) | Multiplication _ ¢ 64,64, 64
[l tanh, Identity
HDNISOGCN()‘H‘H (HT )

Addition

—H.. - NIsoGCNg_1 (H) + HpNIsoGCNg 11 (HY) = Dyteoconia o (HED)

H¥] - Olg]B [Hg] - Hﬁ” - 'DNIsoGCN;A—D(Hg])At]

Figure 4.6: The overview of the PENN architecture for the advection-diffusion dataset.
Gray boxes with continuous (dotted) lines are trainable (untrainable) components. In each
trainable cell, we put the number of units in each layer along with the activation functions

used.
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4.4.2.4 RESULTS

Tabled.2]presents the results of the ablation study. We found that the PENN model with
all the proposed components achieved the best performance, showing that all the compo-
nents we introduced contributed to performance. Because the boundary condition applied
is relatively simple compared to the incompressible flow dataset (Section #.4.3), the con-
figuration without the Dirichlet layer (Model (E)) showed the second best performance;

however, the fulfillment of the Dirichlet condition of that model is not rigorous.

Figures and [4.9] show the visual comparison of the prediction with the PENN
model against the ground truth. As seen in the figures, one can see that our model is
capable of predicting time series under various boundary conditions and PDE parameters,
e.g., pure advection (Figure [{.7), pure diffusion (Figure §.8)), and mixed advection and
diffusion (Figure [4.9).

Table 4.2: MSE loss (&£ the standard error of the mean) on test dataset of the advection-

diffusion dataset.

Method T (x107%) Thicichiet (x107%)

(A) Without encoded boundary 54.191 +6.36 0.0000 £ 0.0000

(B) Without boundary condition

) ) 390.828 + 24.58 0.0000 =+ 0.0000
in the neural nonlinear solver

(C) Without neural nonlinear solver 6.630 + 1.21 0.0000 =+ 0.0000
(D) Without boundary condition input  465.492 4 26.47 868.7009 £ 15.5447
(E) Without Dirichlet layer 2.860 £ 2.46 1.1703 + 0.0328

(F) Without pseudoinverse decoder 44.947 + 6.00 9.7130 4+ 0.1201

(G) Without pseudoinverse decoder

with Dirichlet layer after decoding 4.907 = 4.87 0-0000 = 0.0000

PENN 1.795 £ 1.33 0.0000 £ 0.0000
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t=0.25
t = 0.50
t=20.75
t=1.00

Temperature
0.5

0.0 .

- .

Figure 4.7: Visual comparison on a test sample between (left) ground truth obtained from

OpenFOAM computation with fine spatial-temporal resolution and (right) prediction by
PENN. Here, ¢ = 0.9, D = 0.0, and 7' = 0.4.
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t=0.25
t = 0.50
t=20.75
t=1.00

Temperature
0.5

0.0 .

- .

Figure 4.8: Visual comparison on a test sample between (left) ground truth obtained from

OpenFOAM computation with fine spatial-temporal resolution and (right) prediction by
PENN. Here, ¢ = 0.0, D = 0.4, and 7' = 0.3.
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t=0.25
t = 0.50
t=20.75
t=1.00

Temperature
0.0 0.5

- .
Figure 4.9: Visual comparison on a test sample between (left) ground truth obtained from
OpenFOAM computation with fine spatial-temporal resolution and (right) prediction by
PENN. Here, ¢ = 0.6, D = 0.3,and 7' = 0.8.
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4.4.3 INCOMPRESSIBLE FLOW DATASET

We tested the expressive power our model by learning incompressible flow in complex

shapes.

4.4.3.1 TASK DEFINITION

The incompressible Navier—Stokes equations, the governing equations of incompress-

ible flow, are expressed as:

1
%—1; =—(u-V)u+ §V -Vu—-Vp (t,z) € (0,T)xQ (4.45)
u="1 (t,z) € OO, . (4.46)
[Vu+ (Vu)|n=0 (t,x) € 0QW (447
We also consider the following incompressible condition:
V-u=0 (t,x) € (0,T) x Q, (4.48)

which may be problematic when solving these equations numerically. Therefore, it is com-
mon to divide the equations into two: one to obtain pressure and one to compute velocity.
There are many methods to make such a division; for instance, the fractional step method

derives the Poisson equation for pressure as follows:

V- Vp(t+ At z) = Ait(v -a)(t, ), (4.49)

where

uw=u—At (u-V’u,—iV-Vu> (4.50)
Re

is called the intermediate velocity. Once we solve the equation, we can compute the time

evolution of velocity as follows:

u(t + At,x) = u(t,x) — AtVp(t + At, x). (4.51)
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Because the fractional step method requires solving the Poisson equation for pressure,

we also need the boundary conditions for pressure as well:

p=0 (t,z) € 0QF (4.52)
Vp-n=0 (t,x) € 9O | (4.53)

Our machine learning task is also based on the same assumption: motivating pressure pre-
diction in addition to velocity with boundary conditions of both. The task was to predict
flow velocity and pressure fields at ¢ = 4.0 using information available before numerical

analysis, e.g., initial conditions and the geometries of the meshes.

4.4.3.2 DATASET

To generate the dataset, we first generated pseudo-2D shapes, with one cell in the Z
direction, by changing design parameters, starting from three template shapes. Thereafter,
we performed numerical analysis using OpenFOAMﬁ with At = 1073, and the initial
conditions were the solutions of potential flow, which can be computed quickly and stably
using the classical solver. The linear solvers used were generalized geometric-algebraic

multi-grid for p and the smooth solver with the Gauss—Siedel smoother for w.

To confirm the expressive power of the proposed model, we used coarse input meshes
for machine learning models. We generated these coarse meshes by setting cell sizes
roughly four times larger than the original numerical analysis. We obtained ground truth
variables using interpolation. Training, validation, and test datasets consisted of 203, 25,
and 25 samples, respectively. We generated the dataset by randomly rotating and translat-

ing test samples to monitor the generalization ability of machine learning models.

We generated numerical analysis results using various shapes of the computational do-
main, starting from three template shapes and changing their design parameters as shown
in Figure 4.10| For each design parameter, we varied from O to 1.0 with a step size of 0.1,
yielding 11 shapes for type A and 121 shapes for type B and C. The boundary conditions
were set as shown in Figures and These design and boundary conditions were

Shttps://www.openfoam.com/
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110 4. Physics-Embedded Neural Network: Boundary Condition and Implicit Method

chosen to have the characteristic length of 1.0 and flow speed of 1.0. The viscosity was set

to 1073, resulting in Reynolds number Re ~ 103,

The linear solvers used were generalized geometric-algebraic multi-grid for p and the
smooth solver with the Gauss—Siedel smoother for w. Numerical analysis to generate each
sample took up to one hour using CPU one core (Intel Xeon CPU E5-2695 v2@2.40GHz).
The dataset is uploaded online[|

Type A
1.0 I
al b2
—>
1.0 I 101
Type B
0}
—
b1
10}
Type C
1.0 I IOI
— —>
Z X c1 Co

Figure 4.10: Three template shapes used to generate the dataset. ai, by, b2, ¢1, and ¢, are

the design parameters.

7 https://savanna.ritc. jp/~horiem/penn_neurips2022/data/fluid/fluid_
data.tar.gz.partala—-e]


https://savanna.ritc.jp/~horiem/penn_neurips2022/data/fluid/fluid_data.tar.gz.parta[a-e]
https://savanna.ritc.jp/~horiem/penn_neurips2022/data/fluid/fluid_data.tar.gz.parta[a-e]
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u_<é>
Type A v

u=0
u=0
1
u—(()) 1
Type B 0 i[wﬂw) Jn=0
u=20
u=0
1
u—(O) ]
Type C 0 i[Vu+(Vu)T}n:0

Figure 4.11: Boundary conditions of w used to generate the dataset. The continuous lines

and dotted lines correspond to Dirichlet and Neumann boundaries.

Vp-mn=0_
Type A p=0

vpom=0
Type B p=0

vpmn=0_
Type C = =0

Figure 4.12: Boundary conditions of p used to generate the dataset. The continuous lines

and dotted lines correspond to Dirichlet and Neumann boundaries.
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4.4.3.3 MACHINE LEARNING MODELS

We constructed the PENN model corresponding to the incompressible Navier—Stokes
equation. In particular, we adopted the fractional step method, where the pressure field was
also obtained as a PDE solution along with the velocity field. We encoded each feature in a
4, 8, or 16-dimensional space. After features were encoded, we applied a neural nonlinear
solver containing NIsoGCNs and Dirichlet layers, reflecting the fractional step method
(See Equations and 4.5T1)). Inside the nonlinear solver’s loop, we had a subloop that
solved the Poisson equation for pressure, which also reflected the considered PDE (See
Equation {.49). We looped the solver for pressure five times and four or eight times for
velocity. After these loops stopped, we decoded the hidden features to obtain predictions

for velocity and pressure, using the corresponding pseudoinverse decoders.

For the state-of-the-art baseline model, we selected MP-PDE (Brandstetter et al., 2022
as it also provides a way to deal with boundary conditions. We used the authors’ cod
with minimum modification to adapt to the task. We tested various time window sizes such
as 2, 4, 10, and 20, where one step corresponds to time step size At = 0.1. With changes
in time window size, we changed the number of hops considered in one operation of the
GNN of the baseline to have almost the same number of hops visible from the model when
predicting the state at ¢ = 4.0. The numbers of hidden features, 32, 64, and 128, were
tested. All models were trained for up to 24 hours using one GPU (NVIDIA A100 for
NVLink 40GiB HBM?2).

The strategy to construct PENN for the incompressible flow dataset is the following:

* Consider the encoded version of the governing equation

* Apply the neural nonlinear solver containing the Dirichlet layer and the NIsoGCN

to the encoded equation

* Decode the hidden feature using the pseudoinverse decoder.

Reflecting the fractional step method, we build PENN using spatial differential operators
provided by NIsoGCN. We use a simple linear encoder for the velocity and the associated

Dirichlet boundary conditions. For pressure and its Dirichlet constraint, we use a simple

8https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers


https://github.com/brandstetter-johannes/MP-Neural-PDE-Solvers
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MLP with one hidden layer. We encode each feature in a 16-dimensional space. After fea-
tures are encoded, we apply a neural nonlinear solver containing NIsoGCNs and Dirichlet

layers, reflecting the fractional step method (Equations and 4.51).

The encoded equations are expressed as:

[NIsoGCNj_,0 0 NIsoGCNo_,; (H))|(t + At, x)
1
At

H, =H, - At { H, -NIsoGCN,_,, (H,)

[NISOGCNHO (Hu)] (t, ) (4.54)

1
—R—NISOGCNQ_H o NIsoGCNj_;9 (Hu)} (4.55)
e
H,(t + At,x) =H,(t,x) — At NIsoGCNy_,; (H,) (t + At, ), (4.56)
where H,, is the encoded rank-1 discrete tensor field of w and H,, is the encoded rank-0
discrete tensor field of p. Note that these equations correspond to Equations 4.49]

and [4.51] by regarding IsoGCNs as spatial derivative operators. The corresponding neural

nonlinear solvers are expressed as:

HI = HI — ol [HD — HO — Dyioconns (HD, HYY) At] - (4.57)
DNi1soGCON;NS (HE}, HI[;HI]) = | H[J - NIsoGCNy_,, (H,[f])
1 ‘
— R—NISOGCNQAH @) NISOGCNlﬁQ (H,L[z})
e

+ NIsoGCN (HE+1) || (4.58)
for H,, and
HIH = {9 — Oé}[;;é]DNIsoGCN;prGSSUTe(H][Ji;ﬂ) (4.59)

1 »
DNisoGCN;pressure (HILZJ]) D= (Kt NIsoGCN;_,g o NIsoGCNy_,q (HZS”J))

1 .
_1 i
o NIsoGCN g (hu )) , (4.60)
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for H,, where HY! = H,(t), H"" = H,(t), and H" = H]]. Figures and
4.15|present the PENN model architecture used for the incompressible flow dataset.

The input features of the model are:

* u(t = 0.0): The initial velocity field, the solulsion of potential flow

u: The Dirichlet boundary condition for velocity

* p(t = 0.0): The initial pressure field

p: The Dirichlet boundary condition for pressure

—0.5d ,—1.0d
) )

e ¢ e ¢~ 20d. Features computed from d, the distance from the wall bound-

ary condition
and the output features are:

* u(t = 4.0): The velocity field at ¢ = 4.0

* p(t = 4.0): The pressure field at t = 4.0

As seen in Figure we have a subloop that solves the Poisson equation for pressure
in the nonlinear solver’s loop for velocity. We looped the solver for pressure five times and
eight times for velocity. After these loops stopped, we decoded the hidden features to obtain

predictions for velocity and pressure, using the corresponding pseudoinverse decoders.

To facilitate the smoothness of pressure and velocity fields, we apply GCN layers cor-
responding to numerical viscosity in the standard numerical analysis method. Here, please
note that the PENN model consists of components that accept arbitrary input lengths, e.g.,
pointwise MLPs, deep sets, and NIsoGCNs. Thanks to the model’s flexibility, we can apply

the same model to arbitrary meshes similar to other GNNs.

4.4.3.4 TRAINING DETAILS

Because the neural nonlinear solver applies the same layers many times during the loop,
the model behaved somehow similar to recurrent neural networks during training, which
could cause instability. To avoid such unwanted behavior, we simply retried training by

reducing the learning rate of the Adam optimizer by a factor of 0.5. We found our way of
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| u(t = 0.0) | | @ | | p(t = 0.0) | | D | | o-05d 104 _-20d
mp ! 3 mLp 2 3 MLP
BoundaryEncoder ,; BoundaryEncoder
1,16 (Weight share with *1) 1,8,16 (Weight share with *2) 1,8,16
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H H 16,16
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Figure 4.13: The overview of the PENN architecture for the incompressible flow dataset.
Gray boxes with continuous (dotted) lines are trainable (untrainable) components. Arrows
with dotted lines correspond to the loop. In each trainable cell, we put the number of units

in each layer along with the activation functions used.

training useful compared to using the learning rate schedule because sometimes the loss
value of PENN can be extremely high, resulting in difficulty to reach convergence with
a lower learning rate after such an explosion. Therefore, we applied early stopping and

restarted training using a lower learning rate from the epoch with the best validation loss.

Our initial learning rate was 5.0 x 107*, and we restarted the training twice, which
was done automatically, within the 24-hour training period of PENN. For the ablation
study, we used the same setting for all models. For PENN and ablation models, we used
Adam (Kingma & Ba, |2014) as an optimizer. For MP-PDE solvers, we used the default

setting written in the paper and the code.
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Figure 4.14: The neural nonlinear solver for velocity. Gray boxes with continuous (dot-
ted) lines are trainable (untrainable) components. Arrows with dotted lines correspond to
the loop. In each trainable cell, we put the number of units in each layer along with the

activation functions used.
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Figure 4.15: The neural nonlinear solver for pressure. Gray boxes with continuous (dotted)
lines are trainable (untrainable) components. In each trainable cell, we put the number of

units in each layer along with the activation functions used.
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4.4.3.5 RESULTS

Table 4.3]and Figure 4.16show the comparison between MP-PDE and PENN. The pre-
dictive performances of both models are at almost the same level when evaluated on the
original test dataset. The results show the great expressive power of the MP-PDE model
because we kept most settings at default as much as possible and applied no task-specific
tuning. However, when evaluating them on the transformed dataset, the predictive perfor-
mance of MP-PDE significantly degrades. Nevertheless, PENN shows the same loss value
up to the numerical error, confirming our proposed components are compatible with E(n)-
equivariance. In addition, PENN exhibits no error on the Dirichlet boundaries, showing

that our treatment of Dirichlet boundary conditions is rigorous.

Figure .17 shows the speed-accuracy trade-off for OpenFOAM, MP-PDE, and PENN.
We varied mesh cell size, the time step size, linear sover settings for OpenFOAM to have
different computation speeds and accuracy. The proposed model achieved the best perfor-
mance in speed-accuracy trade-off between all the tested methods under fair comparison

conditions.

Table 4.3: MSE loss (+ the standard error of the mean) on test dataset of incompressible
flow. If "Trans.” is ”Yes,” it means evaluation is done on randomly rotated and transformed
test dataset. “piyicnles 1S the loss computed only on the boundary where the Dirichlet condi-
tion is set for each u and p. MP-PDE’s results are based on the time window size equaling

40 as it showed the best performance in the tested MP-PDEs. For complete results, see

Table

u P UDirichlet DDirichlet
Method Trans. 104 (x1073) (x10~%) (x107%)
MP-PDE No 1.304+0.01 1324001 0454001  0.28+0.02
TW =20 Yes  1953.624+7.62 281.86+0.78 924.73+6.14 202.97 + 3.81
No 4364003 1.174+001 0.00-=0.00 0.00 =+ 0.00
PENN (Ours)

Yes 4.36 = 0.03 1.17£0.01 0.00 £ 0.00  0.00 £ 0.00
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Figure 4.16: Comparison of the velocity field (top two rows) and the pressure field (bottom
two rows) without (first and third rows) and with (second and fourth rows) random rotation
and translation. PENN prediction is consistent under rotation and translation due to the
E(n)-equivariance nature of the model, while MP-PDE’s predictive performance degrades

under transformations.
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Figure 4.17: Comparison of computation time and total MSE loss (v and p) on the test
dataset (with and without transformation) between OpenFOAM, MP-PDE, and PENN. The
error bar represents the standard error of the mean. All computation was done using one

core of Intel Xeon CPU E5-2695 v2@2.40GHz. Data used to plot this figure are shown in

Tables @, and @
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4.4.3.6 ABLATION STUDY RESULTS

Similar to the advection-diffusion dataset case, we validate the effectiveness of our

model through an ablation study on the following settings:

(A) Without encoded boundary: In the nonlinear loop, we decode features to apply

boundary conditions to fulfill Dirichlet conditions in the original physical space

(B) Without boundary condition in the neural nonlinear solver: We removed the Dirich-
let layer in the nonlinear loop. Instead, we added the Dirichlet layer after the (non-

pseudoinverse) decoder.

(C) Without neural nonlinear solver: We removed the nonlinear solver from the model

and used the explicit time-stepping instead

(D) Without boundary condition input: We removed the boundary condition from input

features

(E) Without Dirichlet layer: We removed the Dirichlet layer. Instead, we let the model

learn to satisfy boundary conditions during training.

(F) Without pseudoinverse decoder: We removed the pseudoinverse decoder and used

simple MLPs for decoders.

(G) Without pseudoinverse decoder with Dirichlet boundary layer after decoding: Same

as above, but with Dirichlet layer after decoding.

Table presents the results of the ablation study. Comparison between models with
and without the proposed components shows that the proposed components, i.e., the bound-
ary encoder, Dirichlet layer, pseudoinverse decoder, and neural nonlinear solver, signifi-
cantly improve the models. The neural nonlinear solver in the encoded space turned out
to have the biggest impact on the performance, while the Dirichlet layer ensured reliable

models that strictly respect Dirichlet boundary conditions.

Comparison with Model (A) shows that the nonlinear loop in the encoded space is in-

evitable for machine learning. This result is quite convincing because if the loop is made in
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the original space, the advantage of the expressive power of the neural networks cannot be
leveraged. Comparison with Model (C) confirms that the concept of the solver is effective

compared to simply stacking GNNs, corresponding to the explicit method.

If the boundary condition input is excluded (Model (D)), the performance degrades in
line with |[Brandstetter et al.| (2022)). That model also has an error on the Dirichlet bound-
aries. Model (E) shows a similar result, improving performance using the information of
the boundary conditions. If the pseudoinverse decoder is excluded (Model (F)), the out-
put may not satisfy the Dirichlet boundary conditions as well. Besides, the decoder has
more effect than expected because PENN is better than Model (G). Both models satisfy
the Dirichlet boundary condition, while PENN has significant improvement. This may be
because the pseudoinverse decoder facilitates the spatial continuity of the outputs in addi-
tion to the fulfillment of the Dirichlet boundary condition. In other words, using a simple
decoder and the Dirichlet layer after that may cause spatial discontinuity of outputs. Visual

comparison of part of the ablation study is shown in Figure

Table 4.4: Ablation study on the incompressible flow dataset. The value represents MSE
loss (£ standard error of the mean) on the test dataset. “Divergent” means the implicit

solver does not converge and the loss gets extreme value (~ 10'%).

u p UDirichlet PDirichlet
Method (x10)  (x107%)  (x107%)  (x1079)
Without encoded boundary Divergent Divergent Divergent Divergent
Without boundary condition 65.10 4+ 0.38 21.70+0.09 0.00+0.00 0.00 % 0.00
in the neural nonlinear solver
Without neural nonlinear solver 31.03+0.19 9.81+£0.04 0.0040.00 0.0040.00
Without boundary condition input  20.08 +0.21  3.61 +0.02 59.60 +0.89 1.43 £0.05
Without Dirichlet layer 8.224+0.07 1.41+£0.01 18.20+£0.28 0.38+0.01
Without pseudoinverse decoder 891£0.06 236=£0.02 1.97+£0.06 0.00=+0.00
Without pseudoinverse decoder 5 oo\ (05 1 71 £ 001 0.00£0.00 0.00 % 0.00
with Dirichlet layer after decoding
PENN 4.36 £0.03 1.174+0.01 0.00=+0.00 0.00 =+ 0.00
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Figure 4.18: Visual comparison of the ablation study of (i) ground truth, (ii) the model
without the neural nonlinear solver (Model (C)), (iii) the model without pseudoinverse
decoder with Dirichlet layer after decoding (Model (G)), and (iv) PENN. It can be observed
that PENN improves the prediction smoothness, especially for the velocity field.
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4.4.3.7 DETAILED RESULTS

Table |.5| presents the detailed results of the comparison between MP-PDE and PENN.
Interestingly, the performance of MP-PDE gets better as the time window size increases.
Therefore, our future direction may be to incorporate MP-PDE’s temporal bundling and
pushforward trick into PENN to enable us to predict the state after a far longer time than

we do in the present work.

Tables 4.6/and 4.7| show the speed and accuracy of the machine learning models tested.
PENN models show excellent performance with a lot smaller number of parameters com-
pared to MP-PDE models. It is achieved due to efficient parameter sharing in the proposed
model, e.g., the same weights are used repeatedly in the neural nonlinear encoder. Also, as
pointed out in Ravanbakhsh et al.| (2017), there is a strong connection between parameter
sharing and equivariance. PENN has equivariance in, e.g., permutation, time translation,

and E(n) through parameter sharing, which is in line with them.

Table [4.§| presents the speed and accuracy with various settings of OpenFOAM to seek

a speed-accuracy tradeoff. We tested three configurations of linear solvers:

* Generalized geometric-algebraic multi-grid (GAMG) for p and the smooth solver

for u
* Generalized geometric-algebraic multi-grid (GAMG) for both p and ©

* The smooth solver for p and u
In addition, we tested different resolutions for space and time by changing:

* The number of divisions per unit length: 22.5, 45.0, 90.0

* Time step size: 0.001, 0.005, 0.010, 0.050

Ground truth is computed using the number of divisions per unit length of 90.0 and time
step size of 0.001; thus, this combination is eliminated from the comparison because the

MSE error is underestimated (in particular, zero).
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Table 4.5: MSE loss (+ the standard error of the mean) on test dataset of incompressible
flow. If ”Trans.” is ”Yes”, it means evaluation on randomly rotated and transformed test
dataset. n denotes the number of hidden features, r denotes the number of iterations in the
neural nonlinear solver used in PENN models, and T'W denotes the time window size used

in MP-PDE models.

u p UDirichlet PDirichlet

Method Trans. (x10-4) (x107%) (x1074) (x1073)

PENN No 4.36 £0.03 1.17 £ 0.01 0.00 £+ 0.00 0.00 + 0.00
n=16,r =38 Yes 4.36 £0.03 1.17£0.01 0.00 £ 0.00 0.00 £ 0.00
PENN No 29.09+0.17 11.35+£0.04 0.00 £ 0.00 0.00 £ 0.00
n=16,r =4 Yes 29.09+0.17 11.3540.04 0.00 £ 0.00 0.00 + 0.00
PENN No 177.424+0.93 3570+ 0.12 0.00 + 0.00 0.00 +0.00
n=_8r=3~8 Yes 177.424+0.93 3570+ 0.12 0.00 + 0.00 0.00 + 0.00
PENN No 26.82 +0.16 7.86 4+ 0.03 0.00 +0.00 0.00 +0.00
n=_8r=4 Yes 26.82+0.16 7.86 £+ 0.03 0.00 £ 0.00 0.00 £ 0.00
PENN No 92.80 £0.52  31.4740.13 0.00 £ 0.00 0.00 £ 0.00
n=4,r=38 Yes 92.80 £0.52  31.4740.13 0.00 £ 0.00 0.00 £ 0.00
PENN No 120.35 £ 0.65 35.53+0.12 0.00 + 0.00 0.00 + 0.00
n=4,r=4 Yes 120.35 £ 0.65 35.53+0.12 0.00 + 0.00 0.00 +0.00
MP-PDE No 1.30 4 0.01 1.32 4+ 0.01 0.45 4+ 0.01 0.28 £ 0.02
n =128, TW =20 Yes 1953.62 +7.62 281.86 +0.78 924.73 £6.14  202.97 + 3.81
MP-PDE No 12.08 £ 0.11 6.49 + 0.03 1.36 +£0.01 2.574+0.05
n =128, TW =10 Yes 1468.12 £ 5.75  192.97 £ 0.57 T767.17 £ 4.36 51.87+1.07
MP-PDE No 32.07+0.33 6.22 + 0.05 0.85+0.01 0.92+0.03
n=128,TW =4  Yes 2068.99 + 8.30 180.54 +0.57 284.72 +£1.69 59.21 +1.32
MP-PDE No 58.88 4+ 0.60 9.62 + 0.07 1.02 4+ 0.02 2.83 £0.10
n=128,TW=2 Yes 1853.27 +7.89 219.59 £0.53  965.90 +28.61  358.53 +2.13
MP-PDE No 6.09 + 0.05 5.39+0.03 1.65 4 0.02 2.16 4+ 0.08
n=064,TW =20 Yes 1969.34 +7.50 388.54 £1.12 720.35+5.15  218.06 £+ 8.01
MP-PDE No 38.54+0.32 31.334+0.09 2.04 +0.02 5.87 +0.09
n=064,TW =10 Yes 2738.84 £9.37 171.32 £ 0.60 417.57 4+ 2.49 28.34 +£0.92
MP-PDE No 125.09 + 1.11  21.93 + 0.09 2.274+0.03 5.92+£0.16
n=064,TW =2 Yes 1402.01 +6.03  435.75 + 2.41 384.30 £4.13 57.26 +1.90
MP-PDE No 3246 +0.24 17.40 +£0.07 5.92 +0.05 5.944+0.17
n=232,TW=20 Yes 2201.16 £ 7.59 351.66 £+ 0.82 429.30 £3.27 562.16 + 11.62
MP-PDE No 115.30 £ 1.01  34.97+0.15 10.26 £+ 0.09 6.84+0.14
n=232,TW=10 Yes 2824.76 £8.60 496.33 +1.33 2276.11 £10.57  488.50 + 5.01
MP-PDE No 272.73+£2.07  94.27 +0.45 11.50 £0.12 35.76 £ 0.29
n=232,TW =4 Yes 1973.35 +8.29  554.69 + 4.26 647.31 £7.40 157.85+8.41
MP-PDE No 794.90 £4.68  82.61 +0.40 50.23 +0.91 31.41+1.88
n=232,TW =2 Yes 3240.69 £+ 21.91 443.10 £2.56 2885.30 £41.17 562.08 +19.28
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Table 4.6: MSE loss (& the standard error of the mean) of PENN models on test dataset of

incompressible flow.

# hidden # iterati(?n in # parameter Total 1\1[3SE Total time [s]
feature  the neural nonlinear solver (x1079)
16 8 8432 1.61+£0.01 5.33+0.13
16 4 8,432 14.26£0.03  2.5240.06
8 8 2,100 53.44=£0.11  3.54+£0.08
8 4 2,100 10.54£0.03 2.16+0.04
4 8 596 40.75£0.10 2.86£0.06
4 4 596 47.57£0.10 1.35+0.04

Table 4.7: MSE loss (& the standard error of the mean) of MP-PDE models on test dataset

of incompressible flow.

#f::izn Time window size # parameter T(o;ai é\i[ 3S )E Total (stllgfgl;rans.) Total time [s]
128 20 709,316 1.454+0.01 47723 £0.77  51.61+1.41
128 10 673,484 7.70 £0.02 339.78 £0.57  94.01 £ 2.66
128 4 651,972 9.43 £0.04 38744+ 0.71 137.32£3.91
128 2 644,548  15.51 +£0.07 404.92 £0.67 57.28+1.91
64 20 204,004 6.00 £+ 0.02 585.48 £0.95 13.62+£0.38
64 10 185,356  35.19 £ 0.07 44520 £0.79  23.73 £0.67
64 2 174,740  34.44 +0.10 57595+ 1.76  32.61 £ 1.02
32 20 63,964  20.64 £0.05 571.77 £ 0.79 7.64+0.24
32 10 55,348  46.50 +0.13 778.80+1.12 12.93+£0.39
32 4 49,948 121.55+£0.35 752.03 £3.07 13.99+0.41
32 2 47,924 162.10 +0.44 767.17 £ 2.38 4.55+0.13
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Table 4.8: MSE loss (&£ the standard error of the mean) of OpenFOAM computations on

test dataset of incompressible flow.

127

Solver for u  Solver for p # d1y1s1on At Total MSE (x107%) Total time [s]
per unit length
GAMG Smooth 22.5 0.050 Divergent Divergent
GAMG Smooth 22.5 0.010 6.09 £+ 0.02 6.08 £0.17
GAMG Smooth 22.5 0.005 6.04 £ 0.02 11.57 £ 0.32
GAMG Smooth 22.5 0.001 4.80 £ 0.02 51.43 +1.39
GAMG Smooth 45.0 0.050 Divergent Divergent
GAMG Smooth 45.0 0.010 0.46 £ 0.00 25.124+0.81
GAMG Smooth 45.0 0.005 0.78 £ 0.00 46.71 £1.53
GAMG Smooth 45.0 0.001 1.04 £ 0.00 201.11 £6.29
GAMG Smooth 90.0 0.050 Divergent Divergent
GAMG Smooth 90.0 0.010 Divergent Divergent
GAMG Smooth 90.0 0.005 0.15 4+ 0.00 231.18 £10.38
GAMG GAMG 22.5 0.050 Divergent Divergent
GAMG GAMG 225 0.010 6.05 £ 0.02 6.41 +0.18
GAMG GAMG 22.5 0.005 6.00 £+ 0.02 12.21 £0.34
GAMG GAMG 22.5 0.001 4.80 £ 0.02 55.51 £+ 1.52
GAMG GAMG 45.0 0.050 Divergent Divergent
GAMG GAMG 45.0 0.010 0.46 + 0.00 26.00 + 0.85
GAMG GAMG 45.0 0.005 0.77 £0.00 48.78 £ 1.57
GAMG GAMG 45.0 0.001 1.03 £ 0.00 214.29 £6.62
GAMG GAMG 90.0 0.050 Divergent Divergent
GAMG GAMG 90.0 0.010 Divergent Divergent
GAMG GAMG 90.0 0.005 0.14 £ 0.00 238.94 £ 10.70
Smooth Smooth 22.5 0.050 Divergent Divergent
Smooth Smooth 22.5 0.010 5.59 £ 0.02 85.50 £ 3.05
Smooth Smooth 22.5 0.005 5.41 +£0.02 164.36 £ 7.57
Smooth Smooth 22.5 0.001 4.19 £ 0.02 765.50 £ 29.65
Smooth Smooth 45.0 0.050 Divergent Divergent
Smooth Smooth 45.0 0.010 51.10 £ 0.05 426.07 £ 22.51
Smooth Smooth 45.0 0.005 2.09 £ 0.00 824.71 £ 39.90
Smooth Smooth 45.0 0.001 1.12+£0.00 3960.88 £ 151.93
Smooth Smooth 90.0 0.050 Divergent Divergent
Smooth Smooth 90.0 0.010 Divergent Divergent
Smooth Smooth 90.0 0.005 4493.78 £1.88 3566.05 £ 183.75
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Figure 4.19: The relationship between the relative MSE of the velocity w and inlet velocity.

4.4.3.8 EVALUATION OF OUT-OF-DISTRIBUTION GENERALIZATION

We evaluated the out-of-distribution generalizability of PENN and MP-PDE. The mod-
els with the best accuracy for each method are used for evaluation. The PENN model has
16 hidden features and eight iterations in the neural nonlinear solver, and the MP-PDE

model has 128 hidden features and a time window size of 20.

First, we tested generalizability for Reynolds numbers. We varied Reynolds numbers
from 500 to 2,000 by changing inlet velocity uine¢ from 0.5 to 2.0, while it was 1.0 for the
training dataset. Figures and[4.20|show the generalizability regarding inlet velocities,
and Figure[4.21]shows the visualization of velocity fields with inlet velocities of 2.0 and 0.5
for each method. For evaluation, we used relative MSE because the magnitude of features

may differ drastically with inlet velocity change.

From these figures, one can see that PENN has better accuracy in the lower Reynolds
number range while almost no difference in the higher Reynolds numbers. That may be
because PENN can deal with boundary conditions rigorously, and training data may contain

subdomains where the Reynolds number is small locally.

Then, generalizability regarding shapes is evaluated. We generated ground truth data
with the same procedure as that to generate the training dataset, except that the analy-

sis domains used here are larger. Figures 4.22] {.23] and Table 4.9] present the evaluation
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Figure 4.20: The relationship between the relative MSE of the pressure p and inlet velocity.
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Figure 4.21: The visualization of velocity fields with inlet velocities ;e of 2.0 and 0.5.

results. Here, we did not observe strong generalizability, such as what was observed in Sec-
tion[3.4.2] That may be because the global feature introduced by the neural nonlinear solver
highly depends on the size of the analysis domain, resulting in relatively poor generaliza-
tion ability regarding the analysis domain size. The performance degradation is more sig-
nificant for pressure field prediction than the velocity because it may have stronger global
interactions through the pressure Poisson equation, which is a static problem introducing

global interaction.
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Figure 4.22: The visualization of velocity fields for a larger sample.

4.5 CONCLUSION

We have presented an E(n)-equivariant, GNN-based neural PDE solver, PENN, which
can fulfill boundary conditions required for reliable predictions. The model has superiority
in embedding the information of PDEs (physics) in the model and speed-accuracy trade-
off. Therefore, our model can be a useful standard for realizing reliable, fast, and accurate

GNN-based PDE solvers.

Table 4.9: MSE loss (&£ the standard error of the mean) on the dataset with larger samples.

JNeumann 18 the loss computed only on the boundary where the Neuman condition is set.

Method u(x1073) p(x1072)
MP-PDE 10.335 £ 0.033 4.002 £+ 0.005
PENN (Ours) 4.132£0.009 9.621 £ 0.009
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Figure 4.23: The visualization of pressure fields for a larger sample.

Although the property of our model is preferable, it also limits the applicable domain
of the model because we need to be familiar with the concrete form of the PDE of interest
to construct the effective PENN model. For instance, the proposed model cannot exploit
its potential to solve inverse problems where explicit forms of the governing PDE are not
available for such tasks. Therefore, combining PINNs and PENNSs could be the next direc-

tion of the research community.
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Chapter 5

Conclusion

The main contribution of this dissertation is the development of a general neural PDE

solvers that are:

* E(n)-equivariant thanks to the use of an [soGCN (Chapter (3)); and

* capable of handling mixed boundary conditions and global interactions by applying

the implicit Euler method (Chapter @)).

Through numerical experiments, we demonstrated that our model is capable of accurately
predicting heat phenomena on a mesh that is significantly larger than that used in the train-
ing phase (Section [3.4)). Our approach was also successful in handling various boundary
conditions and PDE parameters, in addition to the global interactions that occur in incom-
pressible flow phenomena (Section d.4). Hereunder, we revisit the objectives outlined in
Chapter [1| and evaluate how they were addressed, indicating any existing limitations and

suggesting potential avenues for future work.

Flexibility to treat arbitrary meshes based on GNNs In this dissertation, we highlight
the flexibility of GNNSs in treating arbitrary meshes. Additionally, GNNs offer other desir-
able characteristics, such as permutation equivariance (Section and a generalizability
coming from locally-connected nature (Section [3.4)). Permutation equivariance is crucial
because a mesh can be indexed in various ways, each corresponding to a permutation of in-

dices. The locally-connected nature of GNNs allows for successful predictions on meshes

133
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larger than those used during training, as demonstrated in Section [3.4] However, due to
that feature, GNNs may struggle to capture global interactions that occur in fields such as
incompressible flow, steady-state analysis, and structural analysis, which will be discussed

in a subsequent work.

E(n)-equivariance to reflect physical symmetries Chapter [3| introduced the [soGCN
model, a GNN with E(n)-equivariance capable of learning mesh-discretized physical phe-
nomena from a relatively small dataset. We confirmed that PENN models also have E(n)-
equivariance (Section [4.4), which means that their added capability to handle boundary
conditions and implicit time evolution is also E(n)-equivariant. However, physical phe-
nomena have other symmetries, such as that with respect to unit changes corresponding
to scaling. In particular, some PDEs do not change under scaling as long as certain di-
mensionless quantities, such as the Reynolds number, remain constant. In contrast, our
current model depend on scaling because we use volume features to improve predictive
performance. Therefore, a possible future direction could be developing a machine learn-
ing model that is, not only permutation- and E(n)-, but also scaling-equivariant. Moreover,
incorporating the conservation property could also lead to more stable and accurate predic-

tions.

Computational efficiency to realize faster predictions than with conventional nu-
merical analysis methods The computational efficiency of the IsoGCN model is due
to its linear message passing and utilization of the sparse structure of mesh-like graphs
(Section [3.3). Additionally, PENN models achieve fast and stable predictions using the
Barzilai-Borwein method, a simplified nonlinear solver for implicit time evolution (Sec-
tion4.3). However, the speedup observed in numerical experiments is of two to five times,
rather than an order of magnitude (Sections[3.4Jand@.4). This might be because we utilized
detailed meshes with a large amount of information. To improve computation speed, a pos-
sible future direction would be to reduce the number of degrees of freedom in the input

mesh.

Accurate consideration of boundary conditions In Chapter 4, we presented a frame-

work for dealing with mixed boundary conditions. Our approach rigorously handles Dirich-



135

let boundary conditions, but there is room for improvement in satisfying Neumann bound-
ary conditions, which is currently done with a certain degree of error. This may be due
to the discretization error inherent in the chosen spatial differential model. To address this
issue, we may consider using higher-order approximations of LSMPS differential operators
or exploring alternative formalizations. For instance, the weak formulation used in methods

such as FEM and FVM might be more accurate in treating Neumann boundary conditions.

Stable prediction over long time steps by accounting for global interactions The
PENN model achieves stable predictions for long-term states due to its use of the implicit
Euler method, as described in Chapter 4§, However, to reduce the computational cost, we
were forced to introduce considerable approximations in the implicit formulation, which
may compromise its benefits. In fact, as shown in Section 4.4.3.8| such approximations
may limit the generalizability of the analysis domain size. To resolve this, we could con-
sider using the quasi-Newton method instead of gradient descent to more accurately solve
the implicit equation. Another option may be to use the multigrid method, where the mesh
is coarsened within the solver to increase the physical distances visible by the one-hop
operation. Additionally, we may also explore the application of the all-to-all connectivity

used in the Transformer model (Vaswani et al., [2017)).

Despite its limitations, the method proposed in this study lays a solid foundation for
the development of practical neural PDE solvers, possessing some desired features, such
as the ability to handle arbitrary shapes and boundary conditions. Thus, our work may
be a crucial step towards achieving efficient, accurate, and versatile PDE solvers that can

contribute to the further advancement of the productivity of human societies.
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