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Abstract: Several studies have been conducted on scaling limits for Markov-modulated infinite-
server queues. To the best of our knowledge, most of these studies adopt an approach to prove the
convergence of the moment-generating function (or characteristic function) of the random variable
that represents a scaled version of the number of busy servers and show the weak law of large numbers
and the central limit theorem (CLT). In these studies, an essential assumption is the finiteness of the
phase process and, in most of them, the CLT for the number of busy servers conditional on the phase
(or the joint states) has not been considered. This paper proposes a new method called the moment
approach to address these two limitations in an infinite-server batch service queue, which is called the
M/MX/∞ queue. We derive the conditional weak law of large numbers and a recursive formula that
suggests the conditional CLT. We derive series expansion of the conditional raw moments, which are
used to confirm the conditional CLT by a symbolic algorithm.

Keywords: queueing model; infinite server; asymptotic analysis; weak law of large numbers; central
limit theorem; moment approach; raw moment; factorial moment; stirling number; symbolic algorithm
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1. Introduction

Infinite-server queues have a wide range of applications as an approximation for
queues with a sufficient number of servers and have been studied for a long time. In
particular, studies have been conducted on the scaling models, where the arrival and
transition rates of the phase are scaled by a factor. For example, Blom et al. [1] considered an
infinite-server queue with arrival and service rates depending on the state of the Markovian
background process. They derived the weak law of large numbers and the central limit
theorem (CLT) for the number of busy servers under heavy traffic. To the best of our
knowledge, most of these studies have adopted an approach to prove the convergence
of the moment-generating function (or characteristic function) of the random variable
that represents the number of busy servers [1–5]. The limitations of this approach are:
(i) the state space of the phase (e.g., Markovian background state in [1]) is finite, and
(ii) the number of busy servers conditional on the phase has not been considered (it should
be noted that only [5] derives the CLT in terms of a matrix representation for the two-
dimensional joint states of the M/G/∞ queue in a random environment, by using the
characteristic function in Kolmogorov differential equations of the joint state probabilities).

This paper proposes a new method called the moment approach for the analysis of
scaling models of a special class of infinite-server queues. In a nutshell, the idea is to prove
the convergence of an arbitrary order moment of the random variable for the scaled number
of the number of busy servers conditional on the phase to the corresponding moments of
the targeting distribution. The proposed approach may have the following advantages:

Mathematics 2023, 11, 2088. https://doi.org/10.3390/math11092088 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092088
https://doi.org/10.3390/math11092088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5002-4946
https://doi.org/10.3390/math11092088
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092088?type=check_update&version=2


Mathematics 2023, 11, 2088 2 of 20

1. Models whose phases have infinite state space can be considered, as long as their joint
moments (of the phase and number of busy servers) are explicitly obtained.

2. Scaling limits for the number of busy servers conditional on the phase can be considered.

As the first to investigate this approach, we consider an infinite-server batch service
queue, which is called the M/MX/∞ queue. The batch size distribution X is an infinite sup-
port discrete distribution. The M/MX/∞ queue has several applications where customers,
products, or data are served in a group (whose size is determined by an arbitrary distribu-
tion), for example, transportation systems such as shuttle buses and ride-sharing, logistic
systems such as home delivery service, and batch-processing in data centers [6,7]. The
detailed settings of the M/MX/∞ queue are described in the next section. Note that most
related studies (e.g., [6,8,9]) assume a finite support distribution, although many discrete
distributions have infinite support, for example, geometric and Poisson distributions. Re-
garding the scaling model, our previous research [7] derived the weak law of large numbers
and the CLT of the number of busy servers for the M/MX/∞ queue. However, this research
imposed the constraint that X follows a finite support distribution in order to adapt to [1].
In this study, we consider the scaling limits for the number of busy servers conditional
on the number of waiting customers and the batch size of the M/MX/∞ queue with an
arbitrary support batch-size distribution. In particular, we prove the conditional weak law
of large numbers and a recursive formula suggesting the conditional CLT. Furthermore, we
derive series expansions of the conditional moments and propose a symbolic computation
algorithm to confirm the CLT.

The reminder of this paper is organized as follows. First, we describe the M/MX/∞
queue in detail in Section 2. In Section 3, we summarize the results of the previous
research and prepare some lemmas. Based on Section 3, we present the main results in
Section 4. Furthermore, some symbolic computation results for the proof of CLT are shown
in Section 5. Finally, concluding remarks are presented in Section 6.

2. M/MX/∞ Queue and Preliminary Results

This section summarizes the existing results of the M/MX/∞ queue that were obtained
in [7]. The arrival process of customers is a Poisson process with rate λ, and the service
time follows an exponential distribution with rate µ. The batch size distribution and
its probability generating function (PGF) are defined as qc = P(X = c) (c = 1) and
Ψ(z) = ∑∞

c=1 zcqc, respectively. We define the j-th factorial moment Bj as

Bj = E[X(X− 1) . . . (X− 1 + j)],

and we assume that Bj < ∞ for any j. Once the number of waiting customers reaches X, all
these customers are served by one server for an exponentially distributed time with mean
1/µ, and a new batch size is newly determined by X. Let I(t), S(t), and U(t) denote the
number of busy servers, number of waiting customers in the system, and size of the batch
collecting customers, respectively, at time t. In addition, defining

V1 = {(0, 1)},

Va = {(1, a), (2, a), . . . (a− 1, a)} (a = 2),

V = {V1,V2,V3, . . . }

U = Z× V ,

it is clear that {(I(t), S(t), U(t)) | t = 0} becomes an irreducible continuous-time Markov
chain with the state space U . Moreover, let I, S, and U denote I(t), S(t), and U(t) in the
steady state, respectively.

We can also denote the stationary distribution and PGF as

πi,k,c = lim
t→∞

P(I(t) = i, S(t) = k, U(t) = c),
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Πk,c(z) =
∞

∑
i=0

πi,k,czi, 0 5 k 5 c− 1, 1 5 c z 5 1,

respectively. The stationary distribution πi,k,c and PGF Πk,c(z) are given by Lemma 1.

Lemma 1 (Theorem 1 in [7]). πi,k,c and Πk,c(z) are given as follows:

πi,k,c =
1
i!

∞

∑
n=0

f (k,c)
n+i

(−1)n

n!
, Πk,c(z) = Fk,c(z− 1), (1)

where

f (0,1)
n =

n!
(

λ

µn + λ

)
1−Ψ

(
λ

µn + λ

) n−1

∏
l=1


Ψ
(

λ

µl + λ

)
1−Ψ

(
λ

µl + λ

)
×

1
E[X]

,

f (k,c)
n =

n!
(

λ

µn + λ

)k+1

1−Ψ
(

λ

µn + λ

) n−1

∏
l=1


Ψ
(

λ

µl + λ

)
1−Ψ

(
λ

µl + λ

)
×

qc

E[X]
,

1 5 k 5 c− 1, 2 5 c.

with the convention that ∏0
l=1 = 1, and

Fk,c(z) =
∞

∑
n=0

f (k,c)
n

zn

n!
.

Proof. The proof is given by Appendix A.

Based on Lemma 1, Lemma 2 can be shown immediately.

Lemma 2. Let I(k,c) denote the conditional random variable for the number of busy servers when
S = k, U = c, that is,

P(I(k,c) = i) =
P(I = i, S = k, U = c)

P(S = k, U = c)
,

under the steady state. The n-th factorial moment is defined as

f(k,c,n) = E[I(k,c)(I(k,c) − 1)(I(k,c) − 2) . . . (I(k,c) − n + 1)],

and this can be calculated as follows:

f(k,c,n) =

n!
(

λ

µn + λ

)k+1

1−Ψ
(

λ

µn + λ

) n−1

∏
l=1


Ψ
(

λ

µl + λ

)
1−Ψ

(
λ

µl + λ

)
.

Proof. The stationary probability that the number of waiting customers is k and the size
of the batch collecting customers in progress is c at the moment a customer arrives at the
system is given by

P(S = k, U = c) =
qc

E[X]
.

By substituting this result for Lemma 1, we obtain Lemma 2.
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Here, let F̂k,c(z) denote the factorial moment-generating function (FMGF) of the
conditional number of busy servers given by

F̂k,c(z) =
∞

∑
n=0

f(k,c,n)
zn

n!
.

Then Lemma 3 can be naturally shown.

Lemma 3. The steady state probabilities and PGF, i.e.,

Π̂k,c(z) :=
∞

∑
i=0

P(I(k,c) = i)zi,

for the conditional number of busy servers are given as follows:

P(I(k,c) = i) =
1
i!

∞

∑
n=0

f(k,c,n+i)
(−1)n

n!
and Π̂k,c(z) = F̂k,c(z− 1). (2)

Proof. Lemma 2 and the discussion of Lemma 1 yield the conclusion.

Remark 1. In what follows, let the symbol with the superscript (N) denote the corresponding one
where λ is replaced by Nλ. For example, f (N)

(k,c,n) represents f(k,c,n) where λ is replaced by Nλ

as follows:

f (N)
(k,c,n) =

n!
(

Nλ

µn + λ

)k+1

1−Ψ
(

Nλ

µn + Nλ

) n−1

∏
l=1


Ψ
(

Nλ

µl + Nλ

)
1−Ψ

(
Nλ

µl + Nλ

)
.

Some asymptotic results for the M/MX/∞ queue are also proven in [7]. In [7], a weak
law of large numbers and CLT for the number of busy servers under heavy traffic regime and
the constraint that X follows a finite support distribution were proven (see Lemmas 4 and 5).
The method of the proof complies with [1]. Due to the assumption for X, M/MX/∞ can
be considered a special case of the model in [1]. To prove Lemmas 4 and 5, it is enough
to prove

lim
N→∞

E[I(N)]

N
=

λ

E[X]µ
, (3)

and

lim
N→∞

E[(I(N) − E[I(N)])2]

N
=

λ

µ

E[X]2 + E[X] + V[X]

2E[X]3
. (4)

Equations (3) and (4) can be proven by using the closed-form expressions of the factorial
moments in Lemma 1. We omit the detail of the proof in this paper (see [7]). Note that (3)
and (4) are true for any distributions of X. Assuming that X has finite support, Lemmas 4
and 5 are established due to [1].

Lemma 4 (Theorem 5 in [7]). Under the constraint that X follows a finite support distribution,

N−1 I(N) converges in the distribution to
λ

E[X]µ
(:= g) as N → ∞.

Lemma 5 (Theorem 6 in [7]). Under the constraint that X follows a finite support distribution,

N1/2

(
I(N)

N
− g

)
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converges to a random variable with normal distribution with a zero mean and variance σ2, where

σ2 :=
λ

µ

E[X]2 + E[X] + V[X]

2E[X]3
,

as N → ∞.

3. Preliminaries for the Moment Approach

This section presents the preliminaries for the moment approach in Section 4.

Lemma 6 (Theorem 1 in [10]). Let {Fn(x)} be a sequence of distribution functions for which
the moments

Mr(n) =
∫ ∞

−∞
xrdFn(x)

exist for all r = 0, 1, 2, . . . . Moreover, let F(x) be a distribution function in which the moments

Mr =
∫ ∞

−∞
xrdF(x),

exist for all r = 0, 1, 2, . . . . If
lim

n→∞
Mr(n) = Mr,

for all r = 0, 1, 2, . . . , and if F(x) is uniquely determined by the sequence of moments M0,
M1, M2, · · · , then

lim
n→∞

Fn(x) = F(x)

for each continuity point of F(x).

Lemma 7 (Theorem 1 in [11]). For a random variable X with mk = E[Xk] and fk = E[X(X−
1) . . . (X− k + 1)],

mn =
n

∑
k=0

S(n, k) fk,

for n = 1, where S(n, k) is the Stirling number of the second kind,

S(n + 1, k) = kS(n, k) + S(n, k− 1),

with the initial conditions S(0, 0) = 1 and S(n, 0) = S(0, n) = 0.

Lemma 8. The following fact is well known:
Letting X denote the random variable that follows the normal distribution with mk = E[Xk] and
variance σ2, we obtain

mn+1 = m1mn + nσ2mn−1.

Lemma 9. For an arbitrary number a, the following relationship holds:

Ψ
(

1
1 + ax

)
= 1 +

∞

∑
i=1

i

∑
j=1

Bj

j!
(−ax)i.

Proof. We define the function h(x) as

h(x) = Ψ
(

1
1 + ax

)
=

∞

∑
i=0

h(i)(0)
i!

xi.

We can easily calculate the derivative h(i)(x) and prove this lemma.
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Lemma 10. For an arbitrary natural number c, the following relationship holds:(
1

1 + cx

)k+1
=

∞

∑
i=0

k+iCi(−cx)i,

where kCi = k!/{i!(k− i)!}.

Proof. The following transformation is obtained:

(1 + cx)−(k+1) =
∞

∑
i=0

∏i−1
j=0(k + 1 + j)

i!
(−cx)i =

∞

∑
i=0

(k + i)!
k!i!

(−cx)i =
∞

∑
i=0

k+iCi(−cx)i.

The above immediately yields this lemma.

4. Main Results

This section presents the main results of this study. In this section, we consider the
weak law of large numbers and CLT for the number of busy servers conditional on the
number of waiting customers and the batch size of the M/MX/∞ queue with an infinite
support batch-size distribution.

It should be noted that we cannot use the framework of [1]. This is because elements 1
and 2 in Section 1 were not considered in [1]. Bolm et al. [1] derived differential equations
for the moment-generating functions of the random variables which are scaled versions of
the number of busy servers, i.e., N−1 I(N) and N1/2

(
I(N)/N − g

)
in Lemmas 4 and 5, and

then proved the pointwise convergence to the moment-generating functions of degenerate
distribution and normal distribution. However, in our settings, it seems to be difficult to
even derive the differential equations that the conditional number of busy servers, i.e., I(k,c),
satisfies from (A5)–(A7) in Lemma 1. Although the infinite series expression for the PGF is
shown in Lemma 3, it is hard to discuss the limit of this representation directly.

Therefore, as we introduced in Section 1, we tackle this challenging analysis using the
moment approach. Based on Lemma 6, we consider the limit for the explicit expression of
the conditional factorial moments in Lemma 2 and discuss the weak law of large numbers
and CLT.

First, Theorem 1 shows the weak law of large numbers N−1 I(N)
(k,c).

Theorem 1. N−1 I(N)
(k,c) converges in the distribution to g as N → ∞.

Proof. We can rewrite the n-th factorial moment f (N)
(k,c,n) for n = 1 as follows,

f (N)
(k,c,n) = ξ

(N)
(k,c,n) f (N)

(k,c,n−1),

where

ξ
(N)
(k,c,n) =

Ψ
(

Nλ

µ(n− 1) + Nλ

)
(

Nλ

µ(n− 1) + Nλ

)k+1

n
(

Nλ

nµ + Nλ

)k+1

1−Ψ
(

Nλ

nµ + Nλ

) ,

with the initial condition f (N)
(k,c,0) = 1. By using Lemma 9 as x = µ/(Nλ), we obtain

lim
N→∞

ξ
(N)
(k,c,n)

N
=

λ

B1µ
=

λ

E[X]µ
= g =⇒ lim

N→∞

f (N)
(k,c,n)

Nn =

(
λ

E[X]µ

)n
= gn
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for n = 0. From Lemma 7, the n-th raw moment of I(k,c) is given by

m(N)
(k,c,n) =

n

∑
k=0

S(n, k) f (N)
(k,c,n).

Therefore, we obtain

lim
N→∞

E

 I(N)
(k,c)

N

n = lim
N→∞

m(N)
(k,c,n)

Nn = lim
N→∞

∑n
k=0 S(n, k) f (N)

(k,c,n)

Nn =

(
λ

E[X]µ

)n
= gn

for n = 0. By applying Lemma 6, we can prove the lemma.

Next, we move on to the discussion of CLT. We define κ
(N)
(k,c,n) as

κ
(N)
(k,c,n) =

m(N)
(k,c,n)

Nn =
∑n

k=0 S(n, k) f (N)
(k,c,n)

Nn (5)

and obtain the following lemma and theorem.

Lemma 11. The following infinite series expressions hold:

ξ
(N)
(k,c,n)

N
=

∞

∑
i=0

ξ(k,c,n,i)

Ni = g +
∞

∑
i=1

ξ(k,c,n,i)

Ni , and
f (N)
(k,c,n)

Nr =
∞

∑
i=0

f(k,c,n,i)

Ni = gn +
∞

∑
i=1

f(k,c,n,i)

Ni ,

where

ξ(k,c,n,i) =
1
l0

(
ri −

i−1

∑
m=0

ξ(k,c,n,i)li−m

)
, (6)

li =
µ

λ k+iCi

{
−(n− 1)µ

λ

}i
B1 +

µ

λ

i

∑
m=1

k+iCi−m

{
−(n− 1)µ

λ

}i−m i+1

∑
j=1

Bj

j!

{
−nµ

λ

}m
, (7)

ri = k+iCi

(
−nµ

λ

)i
+

i

∑
m=1

i

∑
j=1

Bj

j!

{
−(n− 1)µ

λ

}m

k+iCi−m

(
−nµ

λ

)i−m
, (8)

f(k,c,n,i) =
i

∑
h=0

ξ(k,c,n,h) f(k,c,n−1,i−h), (9)

under initial conditions

ξ(k,c,n,0) = g, f(k,c,0,0) = 1, f(k,c,0,i) = 0 (i = 1).

Proof. Evidently, the following holds:

f (N)
(k,c,n)

Nn =
f (N)
(k,c,n−1)

Nn−1

ξ
(N)
(k,c,n)

N
.

Therefore, we obtain the following relationship for n = 1:

f(k,c,n,i) =
i

∑
h=0

ξ(k,c,n,h) f(k,c,n−1,i−h) (10)

under initial conditions

f(k,c,0,0) = 1, f(k,c,0,i) = 0 (i = 1).
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Here, we obtain the following transformation for ξ
(N)
(k,c,n)/N by applying Lemmas 9 and 10

(we define x = µ/(Nλ) as the second equality).

ξ
(N)
(k,c,n)

N
=

1
N
×

Ψ
(

Nλ

µ(n− 1) + Nλ

)
(

Nλ

µ(n− 1) + Nλ

)k+1

n
(

Nλ

nµ + Nλ

)k+1

1−Ψ
(

Nλ

nµ + Nλ

)

=
1
N
×

1 + ∑∞
i=1 ∑i

j=1
Bj

j!
(−(n− 1)x)i

∑∞
i=0 k+iCi(−(n− 1)x)i × n ∑∞

i=0 k+iCi(−nx)i

−∑∞
i=1 ∑i

j=1
Bj

j!
(−nx)i

.

Therefore, we obtain(
∞

∑
i=0

ξ(k,c,n,i)

Ni

)(
∞

∑
i=0

k+iCi

{
−(n− 1)µ

Nλ

}i
)(
−

∞

∑
i=1

i

∑
j=1

N
Bj

j!

{
−nµ

Nλ

}i
)

=

(
1 +

∞

∑
i=1

i

∑
j=1

Bj

j!

{
−(n− 1)µ

Nλ

}i
)(

r
∞

∑
i=0

k+iCi

{
−nµ

Nλ

}i
)

=⇒
(

∞

∑
i=0

ξ(k,c,n,i)

Ni

)(
∞

∑
i=0

k+iCi

{
−(n− 1)µ

Nλ

}i
)(

nµ

λ

∞

∑
i=1

i

∑
j=1

Bj

j!

{
−nµ

Nλ

}i−1
)

=

(
1 +

∞

∑
i=1

i

∑
j=1

Bj

j!

{
−(n− 1)µ

Nλ

}i
)(

r
∞

∑
i=0

k+iCi

{
−nµ

Nλ

}i
)

=⇒ µ

λ

(
∞

∑
i=0

ξ(k,c,n,i)

Ni

)(
∞

∑
i=0

k+iCi

{
−(n− 1)µ

Nλ

}i
)(

B1 +
∞

∑
i=1

i+1

∑
j=1

Bj

j!

{
−nµ

Nλ

}i
)

=

(
1 +

∞

∑
i=1

i

∑
j=1

Bj

j!

{
−(n− 1)µ

Nλ

}i
)(

∞

∑
i=0

k+iCi

{
−nµ

Nλ

}i
)

.

(11)

Then, we can rewrite (11) as

∞

∑
i=0

ξ(k,c,n,i)

Ni

∞

∑
i=0

li
Ni =

∞

∑
i=0

ri

Ni , (12)

where li and ri are given in (7) and (8), respectively. Therefore, considering (7), (8), and (12),
we obtain

i

∑
m=0

ξ(k,c,n,i)li−m = ri

=⇒ ξ(k,c,n,i) =
1
l0

(
ri −

i−1

∑
m=0

ξ(k,c,n,i)li−m

)
.

This yields the lemma.

Theorem 2. The following recursive formula holds for n = 1. Hereafter, we define the notations
o(x) and O(x), which satisfy limx→0 o(x)/x = 0 and limx→0 O(x)/x = K, respectively, where
K is a non-zero constant.

κ
(N)
(k,c,n+1) = κ

(N)
(k,c,1)κ

(N)
(k,c,n) + n

σ2

N
κ
(N)
(k,c,n−1) + O(N−2)
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Proof. By comparing the coefficients of 1/N in (11) (note that ξ(k,c,n,0) = g), we obtain

ξ(k,c,n,1) =
−2(n− 1)B2

1 + 2(n− k− 1)B1 + nB2

2B2
1

. (13)

Next, we define the following. The coefficient of 1/N of the right-hand side in (14) is
0 (= gn+1 − g× gn).

Nκ
(N)
(k,c,n+1) − Nκ

(N)
(k,c,1)κ

(N)
(k,c,n) − nσ2κ

(N)
(k,c,n−1) =

∞

∑
i=0

a(k,c,n,i)

Ni , (14)

κ
(N)
(k,c,n) =

∞

∑
i=0

b(k,c,n,i)

Ni , (15)

where

a(k,c,n,i) = b(k,c,n+1,i+1) −
i+1

∑
j=0

b(k,c,1,j)b(k,c,n,i+1−j) − nσ2b(k,c,n−1,i), (16)

b(k,c,n,i) =

{
∑n

r=n−i S(n, r) f(k,c,r,r−n+i), i 5 n,
∑n

r=0 S(n, r) f(k,c,r,r−n+i), i = n,
(17)

by using (5). Then, we can find

a(k,c,n,0) = S(n + 1, n)gn + f(k,c,n+1,1) − g f(k,c,n,1) − S(n, n− 1)gn − b(k,c,1,1)g
n − nσ2gn−1

= f(k,c,n+1,1) − g f(k,c,n,1) − ξ(k,c,1,1)g
n + ngn − ngn B2 + 2B1

2(B1)2

= ξ(k,c,n+1,1)g
n − ξ(k,c,1,1)g

n + ngn − ngn B2 + 2B1

2(B1)2

= gn−2nB2
1 + 2nB1 + nB2

2B2
1

+ ngn − ngn B2 + 2B1

2(B1)2

= 0.

(18)

Note that we used some previously derived results for the transformation in (18), namely, (13),

b(k,c,1,1) = ξ(k,c,1,1), σ2 = g
B2 + 2B1

2(B1)2 ,

S(n + 1, n)− S(n, n− 1) = nS(n, n) = n (∵ Lemma 7).

We can easily confirm S(n, n) = 1 for n = 0 due to the definition of Lemma 7, and

f(k,c,n+1,1) − g f(k,c,n,1) = ξ(k,c,n+1,1)g
n (∵ (9)).

This concludes the proof.

Based on Theorem 2 and Lemma 8, we have the normal approximation as follows:

Remark 2. We have the following normal approximation for N � 1:

I(N)
(k,c)

N
≈ Normal

(
g,

σ2

N

)
.
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Based on the above, we have the following conjecture.

Conjecture 1. The following CLT holds:

N1/2

 I(N)
(k,c)

N
− g


converges to a random variable following a normal distribution with a zero mean and variance σ2 as
N → ∞.

Remark 3. Assuming that the CLT in Conjecture 1 holds, we obtain the following insights for the
M/MX/∞ queue under heavy traffic:

• The larger the variance of the batch-size distribution, the larger the variance of the normal
distribution, i.e., the variance of the CLT takes the minimum value for the constant batch size.

• The CLT is equivalent to Lemma 4, i.e., the number of busy servers is independent of the
number of waiting customers and batch size under heavy traffic, although the steady state
probabilities in Lemma 3 show the dependency of these random variables.

In the following, we present a symbolic computation algorithm to confirm CLT in
Conjecture 1. To this end, we prepare the following lemma:

Lemma 12. Provided that

lim
N→∞

Nn/2E

 I(N)
(k,c)

N
− g

n = θn (19)

exists, the necessary and sufficient condition for the CLT in Conjecture 1 is

θn =

{
0 (n is odd)
(n− 1)!!σn (n is even)

(20)

where n!! = ∏
dn/2e−1
k=0 (n− 2k), or

θn+1 = nσ2θn−1, (21)

for n = 1.

Proof. Lemmas 6 and 8 yield the lemma immediately.

Regarding Lemma 12, the following theorem can be proved:

Theorem 3. (19) and (20) in Lemma 12 holds true for 1 5 n 5 4.

Proof. We prove that (19) and (20) in Lemma 12 hold for 1 5 n 5 4 in a straightforward
manner by using Lemmas 9 and 10. We show the proof for n = 1, 2. We omit the case
n = 3, 4 (the simple outline of the proof for n = 3 is shown in Appendix B).
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The proof for the case n = 1 is shown as follows:

lim
N→∞

N1/2

E
[

I(N)
(k,c)

]
N

− g

 = lim
N→∞

N1/2

 1
N

(
Nλ

µ + Nλ

)k+1

1−Ψ
(

Nλ

µ + Nλ

) − g



= lim
N→∞

N1/2

 1
N

(
1

µ/(Nλ) + 1

)k+1

1−Ψ
(

1
1 + µ/(Nλ)

) − g


= lim

N→∞
N1/2

(
1
N

1
B1µ/(Nλ) + o(N−2)

− g
)

= 0.

(22)

With regard to the case n = 2, we have

E
[
(I(N)

(k,c) − Ng)2
]
= −m(N)

(k,c,1)

2
+ f (N)

(k,c,2) + f (N)
(k,c,1)

= −

(
Nλ

µ + Nλ

)2k+2

{
1−Ψ

(
Nλ

µ + Nλ

)}2 +

2
(

Nλ

2µ + Nλ

)k+1

1−Ψ
(

Nλ

2µ + Nλ

) Ψ
(

Nλ

µ + Nλ

)
1−Ψ

(
Nλ

µ + Nλ

)

+

(
Nλ

µ + Nλ

)k+1

1−Ψ
(

Nλ

µ + Nλ

)

=
(numerator)

(denominator)
+

(
Nλ

µ + Nλ

)k+1

1−Ψ
(

Nλ

µ + Nλ

) ,

where

(numerator) =2
(

Nλ

2µ + Nλ

)k+1
Ψ
(

Nλ

µ + Nλ

){
1−Ψ

(
Nλ

µ + Nλ

)}
−
(

Nλ

µ + Nλ

)2k+2{
1−Ψ

(
Nλ

2µ + Nλ

)}
,

and

(denominator) =
{

1−Ψ
(

Nλ

2µ + Nλ

)}{
1−Ψ

(
Nλ

µ + Nλ

)}2
.
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Considering Lemmas 9 and 10 and letting x denote µ/(Nλ), the numerator and the de-
nominator can be transformed as follows:

(numerator) =2
{

1− 2x + (2x)2 + o(N−3)
}k+1

{
1− B1x +

(
B1 +

B2

2

)
x2 + o(N−3)

}
×{

B1x−
(

B1 +
B2

2

)
x2 + o(N−3)

}
−
{

1− x + x2 + o(N−3)
}2k+2

{
B1x−

(
B1 +

B2

2

)
x2 + o(N−3)

}
=2B1x + 2(k + 1)(−2x)B1x− 2B2

1x2 − 2
(

B1 +
B2

2

)
x2

− 2B1x− (2k + 2)(−x)B1(2x) +
(

B1 +
B2

2

)
(2x)2 + o(N−3)

=− 2B2
1x2 + 2B1x2 + B2x2 + o(N−3)

=
{
−2B2

1 + 2B1 + B2

}( µ

Nλ

)2
+ o(N−3)

=
{
−2E[X]2 + 2E[X] + E[X(X− 1)]

}( µ

Nλ

)2
+ o(N−3),

(denominator) =2B3
1x3 + o(N−4)

=2E[X]3
( µ

Nλ

)3
+ o(N−4).

Therefore, considering (22), we obtain

lim
N→∞

E
[
(I(N)

(k,c) − Ng)2
]

N
= lim

N→∞

1
N

{
−2E[X]2 + 2E[X] + E[X(X− 1)]

}( µ

Nλ

)2
+ o(N−3)

2E[X]3
( µ

Nλ

)3
+ o(N−4)

+ g

=
λ

µ

2E[X] + E[X(X− 1)]
2E[X]3

=
λ

µ

E[X]2 + E[X] + V[X]

2E[X]3
= σ2.

This concludes the proof.

The case of n = 3, 4 can be proved after tedious calculations. The main idea is to
group the terms in the expansion of the central moments, i.e., (I(N)

(k,c)/N − g)n. At the first
glance, this quantity seems to have the order of a constant. However, we must prove that
it has at most the order of N−dn/2e. When n is large, however, the number of terms in the
binomial expansion is also large, and it is difficult to find the rule for grouping these terms
to evaluate the order. As a result, the proof (21) in Lemma 12 for any n is extremely complex
(we demonstrate the difficulty in the proof for the case n = 3 in Appendix B). Therefore, for
the general case of n, we propose a symbolic computation procedure for the proof as in
Lemma 13:

Lemma 13. The recurrence formula (21) holds if

N(n+1)/2
∞

∑
i=1

∑n−1
l=0 nCla(k,c,n−l,i)(−g)l

Ni+1 = o(1) (23)

holds.
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Proof. First, we obtain the following transformation of the central moment using the
binomial theorem and (14) (note that a(k,c,n−l,0) = 0 was proved in (18)):

Nn/2
n

∑
l=0

nClκ
(N)
(k,c,n−l)(−g)l

= Nn/2E

 I(N)
(k,c)

N
− λ

E[X]µ

n
= Nn/2

n−1

∑
l=1

nCl

(
κ
(N)
(k,c,n−l+1) − (n− l)

σ2

N
κ
(N)
(k,c,n−l−1) −

∞

∑
i=1

a(k,c,n−l,i)

Ni+1

)
(−g)l

κ
(N)
(k,c,1)

+ Nn/2κ
(N)
(k,c,n) + Nn/2(−g)n

= Nn/2
n

∑
l=1

nClκ
(N)
(k,c,n−l+1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=1

nCl(n− l)
σ2

N
κ
(N)
(k,c,n−l−1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=1

nCl

∞

∑
i=1

a(k,c,n−l,i)

Ni+1
(−g)l

κ
(N)
(k,c,1)

+ Nn/2κ
(N)
(k,c,n)

= Nn/2
n

∑
l=1

(n+1Cl − nCl−1)κ
(N)
(k,c,n−l+1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=1

n−1Cln
σ2

N
κ
(N)
(k,c,n−l−1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=1

nCl

∞

∑
i=1

a(k,c,n−l,i)

Ni+1
(−g)l

κ
(N)
(k,c,1)

+ Nn/2κ
(N)
(k,c,n)

= Nn/2
n

∑
l=1

(n+1Cl − nCl−1)κ
(N)
(k,c,n−l+1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=0

n−1Cln
σ2

N
κ
(N)
(k,c,n−l−1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=1

nCl

∞

∑
i=1

a(k,c,n−l,i)

Ni+1
(−g)l

κ
(N)
(k,c,1)

+ Nn/2κ
(N)
(k,c,n) + Nn/2n

σ2

N
κ
(N)
(k,c,n−1)

1

κ
(N)
(k,c,1)

= Nn/2
n+1

∑
l=1

n+1Clκ
(N)
(k,c,n−l+1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2 (−g)n+1

κ
(N)
(k,c,1)

− Nn/2
n

∑
l=1

nCl−1κ
(N)
(k,c,n−l+1)

(−g)l

κ
(N)
(k,c,1)

− N−1/2n
σ2

κ
(N)
(k,c,1)

N(n−1)/2
n−1

∑
l=0

n−1Clκ
(N)
(k,c,n−1−l)(−g)l

+ Nn/2
κ
(N)
(k,c,n+1)

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=1

nCl

∞

∑
i=1

a(k,c,n−l,i)

Ni+1
(−g)l

κ(k,c,1)1(N)
− Nn/2 1

κ
(N)
(k,c,1)

∞

∑
i=1

a(k,c,n,i)

Ni+1

= Nn/2
n+1

∑
l=0

n+1Clκ
(N)
(k,c,n−l+1)

(−g)l

κ
(N)
(k,c,1)

− Nn/2
n

∑
l=0

nClκ
(N)
(k,c,n−l)

(−g)l+1

κ
(N)
(k,c,1)

− N−1/2n
σ2

κ
(N)
(k,c,1)

N(n−1)/2
n−1

∑
l=0

n−1Clκ
(N)
(k,c,n−1−l)(−g)l − Nn/2

n−1

∑
l=0

nCl

∞

∑
i=1

a(k,c,n−l,i)

Ni+1
(−g)l

κ
(N)
(k,c,1)

= N−1/2 N(n+1)/2

κ
(N)
(k,c,1)

n+1

∑
l=0

n+1Clκ
(N)
(k,c,n+1−l)(−g)l

− N−1/2n
σ2

κ
(N)
(k,c,1)

N(n−1)/2
n−1

∑
l=0

n−1Clκ
(N)
(k,c,n+1−l)(−g)l

− Nn/2
n

∑
l=0

nClκ
(N)
(k,c,n−l)

(−g)l+1

κ
(N)
(k,c,1)

− Nn/2
n−1

∑
l=0

nCl

∞

∑
i=1

a(k,c,n−l,i)

Ni+1
(−g)l

κ
(N)
(k,c,1)

.

Therefore, we obtain
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N(n+1)/2
n+1

∑
l=0

n+1Clκ
(N)
(k,c,n+1−l)(−g)l − nσ2N(n−1)/2

n−1

∑
l=0

n−1Clκ
(N)
(k,c,n+1−l)(−g)l

= N1/2Nn/2
n

∑
l=0

nClκ
(N)
(k,c,n−l)(−g)l

(
κ
(N)
(k,c,1) − g

)
+ N(n+1)/2

∞

∑
i=1

n−1

∑
l=0

nCl
a(k,c,n−l,i)

Ni+1 (−g)l ,

(24)

and from (15), we find that

N1/2Nn/2
n

∑
l=0

nClκ
(N)
(k,c,n−l)(−g)l

(
κ
(N)
(k,c,1) − g

)
= Nn/2

n

∑
l=0

nClκ
(N)
(k,c,n−l)(−g)l × N1/2

∞

∑
i=1

b(k,c,1,i)

Ni

= o(1).

(25)

Consequently, to prove (21), we must prove (23).

Remark 4. If (23) holds, it follows from Theorem 3, (24), and (25) that (19) exists for all n. Thus,
we have to confirm only (23) and take the limits as N → ∞ in (24) to obtain (21).

To confirm (23), we conduct the procedure in Algorithm 1. We start the procedure
from n = 3 since (23) holds for n = 1, 2 clearly.

Algorithm 1 Procedure to confirm (23).

Step 1 Calculate ξ(k,c,n,i) for 0 5 l 5 n + 1, 0 5 i 5 dn/2e, by (6)–(8).

Step 2 Calculate f(k,c,l,i) for 0 5 l 5 n + 1, 0 5 i 5 dn/2e, by (9).

Step 3 Calculate b(k,c,l,i) for 1 5 l 5 n + 1, 0 5 i 5 dn/2e, by (17).

Step 4 Calculate a(k,c,l,i) for 1 5 l 5 n, 1 5 i 5 dn/2e − 1, by (16).

Step 5 Calculate ∑n−1
l=0 nCla(k,c,n−l,i)(−g)l (:= χ(n, i)) for 1 5 i 5 dn/2e − 1, and if

χ(n, i) = 0 for 1 5 i 5 dn/2e − 1, then we can guarantee (23).

5. Examples of Symbolic Computation

In this section, we show some results of the symbolic computation proposed in
Lemma 5. The experiments were conducted by SymPy, which is a Python library for
symbolic mathematics. Table 1 shows the results of χ(n, i) for 3 ≤ n ≤ 10. Here, ’#’ denotes
a non-zero constant. We can confirm χ(n, i) = 0 for 1 5 i 5 dn/2e − 1 within 3 ≤ n ≤ 10.
That is, it is guaranteed that (21) holds for 3 ≤ n ≤ 10 at least. These results support the
establishment of Conjecture 1.

As examples, we show the detailed results of χ(3, 1), χ(4, 1), χ(5, 1), and χ(5, 2) in
Appendix C.

Table 1. Results for symbolic computation of χ(n, i) (3 ≤ n ≤ 10).

χ(n, i) i = 1 i = 2 i = 3 i = 4 i = 5

n = 3 0 # # # #
n = 4 0 # # # #
n = 5 0 0 # # #
n = 6 0 0 # # #
n = 7 0 0 0 # #
n = 8 0 0 0 # #
n = 9 0 0 0 0 #
n = 10 0 0 0 0 #



Mathematics 2023, 11, 2088 15 of 20

6. Conclusions

In this paper, we proposed the moment approach to analyze scaling models for infinite-
server queues. This method considers the scaling limits for the number of busy servers
conditional on a phase with infinite state space. We applied this method to the M/MX/∞
queue and presented the following results: the weak law of large numbers (Theorem 1), a
recursive formula for the necessary condition of CLT (Theorem 2) that can be utilized for a
normal approximation of the system (Remark 2), and a symbolic computation algorithm
(Lemma 13) to confirm the CLT (Conjecture 1). Some results of the symbolic computation
that support Conjecture 1 were shown in Table 1.

As a future issue, it would be challenging but significant to rigorously prove Conjecture 1,
i.e., to prove (23) explicitly. Another interesting direction to explore is to apply the method
in this study to any other infinite-server queueing system, especially one whose phase has
an infinite state space.
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Appendix A

The poof of Lemma 1 is given by Appendix A. The balance equations of the Markov
chain (I(t), S(t), U(t)) are given by (A1)–(A4).

λπ0,0,1 = µπ1,0,1, i = 0, k = 0, c = 1, (A1)

(λ + iµ)πi,0,1 =
∞

∑
c=2

λπi−1,c−1,c + q1λπi−1,0,1 + (i + 1)µπi+1,0,1,

i = 1, k = 0, c = 1,

(A2)

(λ + iµ)πi,1,c = qcλπi,0,1 + (i + 1)µπi+1,1,c, i = 0, k = 1, c = 2, (A3)

(λ + iµ)πi,k,c = λπi,k−1,c + (i + 1)µπi+1,k,c, i = 0, 2 5 k 5 c− 1, 3 5 c. (A4)

Multiplying (A1)–(A4) by zi, taking the sum over i ∈ Z, and rearranging the result, we
obtain the following system of differential equations:

(µz− µ)Π′0,1(z) = −λΠ0,1(z) +
∞

∑
c=2

λzΠc−1,c(z) + q1λzΠ0,1(z), k = 0, c = 1, (A5)

(µz− µ)Π′1,c(z) = −λΠ1,c(z) + qcλΠ0,1(z), k = 1, 2 5 c, (A6)
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(µz− µ)Π′k,c(z) = −λΠk,c(z) + λΠk−1,c(z), 2 5 k 5 c− 1, 3 5 c. (A7)

However, it is not easy to obtain the solution for the system of differential equations because
the coefficients are not constant. Hence, we use the factorial moment-generating function
method [12]. Letting I, S, and U denote I(t), S(t), and U(t) in the steady state, respectively,
we define the factorial moments as follows:

f (k,c)
0 =

∞

∑
i=0

πi,k,c,

f (k,c)
n = E

[
I(I − 1)(I − 2) . . . (I − n + 1)1{S=k, U=c}

]
, n = 1.

Moreover, we define the FMGF as:

Fk,c(z) =
∞

∑
n=0

f (k,c)
n

zn

n!
= Πk,c(z + 1). (A8)

Using FMGF, we can rearrange (A5)–(A7) as the following system of differential equations:

µzF ′0,1(z) = −λF0,1(z)+
∞

∑
c=2

λ(z+ 1)Fc−1,c(z)+ q1λ(z+ 1)F0,1, k = 0, c = 1, (A9)

µzF ′1,c(z) = −λF1,c(z) + qcλF0,1(z), k = 1, 2 5 c, (A10)

µzF ′k,c(z) = −λFk,c(z) + λFk−1,c(z), 2 5 k 5 c− 1, 3 5 c. (A11)

Equating the coefficients of zn on both sides of (A9)–(A11) yields

(µn + λ) f (0,1)
n =

∞

∑
c=2

λ f (c−1,c)
n + q1λ f (0,1)

n +
∞

∑
c=2

λn f (c−1,c)
n−1 + q1λn f (0,1)

n−1 ,

k = 0, c = 1,

(A12)

(µn + λ) f (1,c)
n = qcλ f (0,1)

n , k = 1, 2 5 c, (A13)

(µn + λ) f (k,c)
n = λ f (k−1,c)

n , 2 5 k 5 c− 1, 3 5 c. (A14)

Furthermore, it is clear by the definition that

f (0,1)
0 =

∞

∑
i=0

πi,0,1 = Π0,1(1), k = 0, c = 1,

f (k,c)
0 =

∞

∑
i=0

πi,k,c = Πk,c(1), 1 5 k 5 c− 1, 2 5 c,

and thus, by substituting z = 1 into (A5)–(A7), we obtain

0 = −λΠ0,1(1) +
∞

∑
c=2

λΠc−1,c(1) + q1λΠ0,1(1), k = 0, c = 1,

0 = −λΠ1,c(1) + qcλΠ0,1(1), k = 1, 2 5 c, (A15)

0 = −λΠk,c(1) + λΠk−1,c(1), 2 5 k 5 c− 1, 3 5 c. (A16)
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From (A15), (A16), and

1 = Π0,1(1) +
∞

∑
c=2

c−1

∑
k=1

Πk,c(1)

=
∞

∑
c=1

cqcΠ0,1(1),

the following holds:

Π0,1(1) = f (0,1)
0 =

1
E[X]

, k = 0, c = 1,

Πk,c(1) = f (k,c)
0 =

qc

E[X]
, 1 5 k 5 c− 1, 2 5 c.

Solving (A12)–(A14) using these initial conditions, we obtain

f (0,1)
n =

n

∏
l=1

∑∞
c=1

(
λl

µl + λ

)(
λ

µ(l − 1) + λ

)c−1
qc

1−∑∞
c=1

(
λ

µl + λ

)c
qc

× 1
E[X]

, (A17)

and

f (0,1)
n =

n!
(

λ

µn + λ

)
1−Ψ

(
λ

µn + λ

) n−1

∏
l=1


Ψ
(

λ

µl + λ

)
1−Ψ

(
λ

µl + λ

)
×

1
E[X]

,

f (k,c)
n =

n!
(

λ

µn + λ

)k+1

1−Ψ
(

λ

µn + λ

) n−1

∏
l=1


Ψ
(

λ

µl + λ

)
1−Ψ

(
λ

µl + λ

)
×

qc

E[X]
,

1 5 k 5 c− 1, 2 5 c,

which yields Lemma 1.

Appendix B

We show the outline of the poof of Theorem 3 for n = 3. First, we obtain the following
transformation.

E
[
(I(N)

(k,c) − Ng)
3
]
= −m(N)

(k,c,1)

3
+ (3m(N)

(k,c,1)

2
− 3m(N)

(k,c,1) + 1) f (N)
(k,c,1) + 3(1−m(N)

(k,c,1)) f (N)
(k,c,2)

+ f (N)
(k,c,3)

= (−m(N)
(k,c,1)

3
+ 3m(N)

(k,c,1)

2
f (N)
(k,c,1) − 3m(N)

(k,c,1) f (N)
(k,c,2) + f (N)

(k,c,3))

+ 3(−m(N)
(k,c,1) f (N)

(k,c,1) + f (N)
(k,c,2) + f (N)

(k,c,1).

After some algebraic manipulations, we obtain

lim
N→∞

−m(N)
(k,c,1)

3
+ 3m(N)

(k,c,1)

2
f (N)
(k,c,1) − 3m(N)

(k,c,1) f (N)
(k,c,2) + f (N)

(k,c,3)

N3/2 = 0,
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lim
N→∞

3(−m(N)
(k,c,1) f (N)

(k,c,1) + f (N)
(k,c,2))

N3/2 = 0,

and

lim
N→∞

f (N)
(k,c,1)

N3/2 = 0.

Therefore, it is clear that the following holds:

lim
N→∞

E
[
(I(N)

(k,c) − Ng)3
]

N3/2 = 0.

Appendix C

The detailed expressions for χ(3, 1), χ(4, 1), χ(5, 1), and χ(5, 2) are given as follows:

χ(3, 1) =
3λ2(B3

1k− B2
1B2/2− B2

1k− B1B2k + 3B1B2/2− B1B3/2 + B2
2
)

B6
1µ2

+
λ2(6B3

1k− 6B3
1 − 6B2

1B2 − 6B2
1k + 12B2

1 − 6B1B2k + 27B1B2 − 5B1B3 + 12B2
2
)

2B6
1µ2

−
λ2(12B3

1k− 6B3
1 − 9B2

1B2 − 12B2
1k + 12B2

1 − 12B1B2k + 36B1B2 − 8B1B3 + 18B2
2
)

2B6
1µ2

= 0,

χ(4, 1) =−
4λ3(B3

1k− B2
1B2/2− B2

1k− B1B2k + 3B1B2/2− B1B3/2 + B2
2
)

B7
1µ3

+
λ3(4B3

1k− 6B3
1 − 5B2

1B2 − 4B2
1k + 12B2

1 − 4B1B2k + 24B1B2 − 4B1B3 + 10B2
2
)

B7
1µ3

−
2λ3(6B3

1k− 6B3
1 − 6B2

1B2 − 6B2
1k + 12B2

1 − 6B1B2k + 27B1B2 − 5B1B3 + 12B2
2
)

B7
1µ3

+
λ3(12B3

1k− 6B3
1 − 9B2

1B2 − 12B2
1k + 12B2

1 − 12B1B2k + 36B1B2 − 8B1B3 + 18B2
2
)

B7
1µ3

=0,

χ(5, 1) =
5λ4(B3

1k− B2
1B2/2− B2

1k− B1B2k + 3B1B2/2− B1B3/2 + B2
2
)

B8
1µ4

−
5λ4(4B3

1k− 6B3
1 − 5B2

1B2 − 4B2
1k + 12B2

1 − 4B1B2k + 24B1B2 − 4B1B3 + 10B2
2
)

B8
1µ4

+
5λ4(6B3

1k− 12B3
1 − 9B2

1B2 − 6B2
1k + 24B2

1 − 6B1B2k + 45B1B2 − 7B1B3 + 18B2
2
)

6B8
1µ4

+
5λ4(6B3

1k− 6B3
1 − 6B2

1B2 − 6B2
1k + 12B2

1 − 6B1B2k + 27B1B2 − 5B1B3 + 12B2
2
)

B8
1µ4

−
5λ4(12B3

1k− 6B3
1 − 9B2

1B2 − 12B2
1k + 12B2

1 − 12B1B2k + 36B1B2 − 8B1B3 + 18B2
2
)

3B8
1µ4

= 0,
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χ(5, 2) =− 5λ3

24B9
1µ3

(
36B4

1k2 + 36B4
1k− 36B3

1B2k− 12B3
1B3 + 18B2

1B2
2

− 24B2
1B2k2 + 24B2

1B2k− 24B2
1B3k + 20B2

1B3 − 7B2
1B4 + 48B1B2

2k

− 42B1B2
2 + 36B1B2B3 − 33B3

2
)

− 5λ3

6B9
1µ3

(
− 12B5

1k + 6B4
1B2 − 60B4

1k2 + 96B3
1B2k− 54B3

1B2 + 30B3
1B3 + 24B3

1k2

− 24B3
1k− 60B2

1B2
2 + 48B2

1B2k2 − 144B2
1B2k + 72B2

1B2 + 48B2
1B3k− 68B2

1B3

+ 13B2
1B4 − 120B1B2

2k + 186B1B2
2 − 84B1B2B3 + 93B3

2
)

+
5λ3

24B9
1µ3

(
− 48B5

1k + 48B5
1 + 48B4

1B2 − 132B4
1k2 + 396B4

1k− 432B4
1 + 420B3

1B2k

− 936B3
1B2 + 132B3

1B3 + 96B3
1k2 − 528B3

1k + 576B3
1 − 438B2

1B2
2 + 120B2

1B2k2

− 1152B2
1B2k + 2088B2

1B2 + 168B2
1B3k− 524B2

1B3 + 43B2
1B4 − 522B1B2

2k

+ 2166B1B2
2 − 432B1B2B3 + 669B3

2
)

− 5λ3

6B9
1µ3

(
− 36B5

1k + 24B5
1 + 30B4

1B2 − 108B4
1k2 + 216B4

1k− 180B4
1 + 288B3

1B2k

− 486B3
1B2 + 90B3

1B3 + 72B3
1k2 − 288B3

1k + 216B3
1 − 261B2

1B2
2 + 96B2

1B2k2

− 708B2
1B2k + 972B2

1B2 + 120B2
1B3k− 308B2

1B3 + 31B2
1B4 − 372B1B2

2k

+ 1158B1B2
2 − 276B1B2B3 + 393B3

2
)

+
5λ3

4B9
1µ3

(
− 24B5

1k + 8B5
1 + 16B4

1B2 − 84B4
1k2 + 84B4

1k− 48B4
1 + 180B3

1B2k

− 204B3
1B2 + 56B3

1B3 + 48B3
1k2 − 120B3

1k + 48B3
1 − 138B2

1B2
2 + 72B2

1B2k2

− 372B2
1B2k + 348B2

1B2 + 80B2
1B3k− 160B2

1B3 + 21B2
1B4 − 228B1B2

2k

+ 528B1B2
2 − 162B1B2B3 + 207B3

2
)

= 0.
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