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Abstract: Uniaxial ferroelectrics with tetragonal tungsten bronze structure are important
functional materials with photorefractive, electrooptic, piezoelectric, and pyroelectric properties.
SrxBa1−xNb2O6 (SBN100x) with x > 50 is known as a typical uniaxial relaxor ferroelectric, while
CaxBa1−xNb2O6 (CBN100x) undergoes nearly normal ferroelectric phase transitions. Single crystals of
CSBN100x = [x(CBN28) + (1 − x) (SBN61)] = xCa0.28Ba0.72Nb2O6 + (1 − x) Sr0.61Ba0.39Nb2O6 with
nominal x = 0.00, 0.25, 0.50, 0.75, and 1.00 were studied to clarify the dynamical properties at the
crossover from relaxor (x = 0) to normal (x = 1) ferroelectric behavior. The longitudinal acoustic
(LA) and transverse acoustic (TA) modes and a central peak (CP) related to the relaxation process of
polarization fluctuations along the polar c-axis were studied in uniaxial ferroelectric CSBN single
crystals as a function of temperature via Brillouin scattering spectroscopy. A CBN28 (x = 1.00) crystal
shows the sharp elastic anomaly of the LA mode in the gigahertz range toward Curie temperature, Tc.
However, those of CSBN25 (x = 0.25) and SBN61 (x = 0.00) crystals show diffusive anomalies due
to stronger random fields. The relaxation time determined from the width of a CP shows a critical
slowing down in the vicinity of Tc. The elastic anomaly and slowing down of relaxation time of
CSBN100x crystals become diffusive in the vicinity of Tc as the CBN28 content decreases. The origin
of the crossover from relaxor to normal ferroelectric phase transitions is discussed in terms of the
difference in the A1 and A2 sites’ occupancies.

Keywords: Brillouin scattering; ferroelectric; relaxor; acoustic modes; elastic properties; slowing down

1. Introduction

Ferroelectricity is defined by the existence of a spontaneous polarization, the direction
of which is switchable by an external electric field [1]. Uniaxial ferroelectric materials
with a tetragonal tungsten bronze (TTB) structure are technologically important for optical
applications involving electro-optic, nonlinear optic, photorefractive, pyroelectric, and
piezoelectric properties [2]. In light of recent environmental problems, Pb-free ferroelectrics
and their functional properties have become important [3]. In TTB ferroelectrics, the
direction of spontaneous polarization is restricted to the polar c-axis, which is why they
are also called uniaxial ferroelectrics [4]. The structural formula of TTB ferroelectrics is
expressed by (A1)2(A2)4(C)4-(B1)2(B2)8O30, with corner-sharing distorted BO6 octahedra as
shown in Figure 1. The smallest C site is occupied only by Li, such as in K3Li2Nb5O15(KLN).
In ferroelectric Ba2NaNb5O15 (BNN), which is well known by its excellent second harmonic
generation, all the A1 and A2 sites are occupied by Ba2+ and Na1+ ions, respectively. BNN
belongs to the filled TTB ferroelectrics due to their complete occupation of A1 and A2
sites and undergoes a normal ferroelectric phase transition with a sharp dielectric anomaly
in the vicinity of a ferroelectric Curie temperature, Tc, which is the highest among TTB
ferroelectrics [2,5]. In contrast, the A1 sites of SrxBa1−xNb2O6 (SBN100x) are occupied in
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part by Sr2+ ions, and the A2 sites are occupied in part by both Ba2+ and Sr2+ ions. Since
1/6 (A1 + A2) sites remain unoccupied, it belongs to the so-called unfilled (open) TTB
ferroelectrics due to the incomplete occupancy of A1 and A2 sites. The empty A1 and/or
A2 sites cause the charge disorder and are the main sources of quenched random fields
(RFs), which enhance the relaxor features characterized by the frequency dispersion of
dielectric susceptibility and diffusive phase transition [6,7]. In SBN, the strength of RFs
increases as the Sr content of smaller (1.12 Å) Sr2+ ions increases, and SBN has attracted
much attention as a typical uniaxial relaxor ferroelectric [8].
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Figure 1. Crystal structure of ab plane, which is perpendicular to the polar c-axis, in tetragonal tung-
sten bronze ferroelectrics. There are three different interstices (two square A1, four pentagonal A2,
and four trigonal C sites in a unit cell).

The disadvantage of SBN in application is the relatively low Curie temperatures. The
CaxBa1−xNb2O6 (CBN100x) compounds also belong to the unfilled TTB structure and
show quite similar physical properties to SBN, while their Curie temperatures are much
higher than those of SBN [9]. Therefore, the excellent optical and ferroelectric properties of
CBN make them potential candidates for applications at relatively high temperatures [10].
Recently, CBN nanopowders were synthesized. Their analysis of the various optical
properties, especially the photorefractive effect, suggests that CBN nanopowders can be
potentially applied for ultrahigh-density optical data storage [11]. In CBN, most of the
smaller (0.99 Å) Ca2+ ions occupy A1 sites, whereas the relatively larger (1.34 Å) Ba2+ ions
predominantly occupy the A2 sites [12,13]. Thus, in contrast to SBN with strong RFs, the
lower degree of disorder of the Ca2+ and Ba2+ ions of CBN causes the weak RFs, and the
diffusive nature of CBN is weaker than that of SBN [14]. In the Brillouin scattering study
of CBN28, the intense central peak (CP) caused by polarization fluctuations along the
c-axis was clearly observed in the vicinity of Tc. The relaxation time determined by the CP
width clearly shows critical slowing down towards Tc, reflecting a weakly first-order phase
transition under weak RFs [15].

Within the quasi-ternary CaNb2O6-SrNb2O6-BaNb2O6 system, selected
CaxSryBa1−x−yNb2O6 (CSBN) compounds were grown via the Czochralski method in
a tungsten–bronze-type structure [16]. The solid solution of CSBN is technologically im-
portant due to the coexistence of the high Tc of CBN and excellent functionality of SBN.
In fundamental science, the crossover of CSBN from weak RFs of CBN with a nearly
normal ferroelectric nature to strong RFs of SBN with a relaxor nature is very interesting
regarding control of the strength of RFs only by Ca content. Since there are three kinds
of cations, Ca2+, Sr2+, and Ba2+, with increasing ionic radii occupying A1 and A2 sites,
the degree of freedom to control physical properties increases. The Curie temperatures of
xCBN28-(1 − x) SBN61 (CSBN100x) are shown in Figure 2. As the Ca content increases
in CSBN, Tc monotonically increases, and the ferroelectric phase transition becomes less
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diffusive due to the decrease of disorder, which indicates the suppression of the RFs [17,18].
In addition, it is worth mentioning here that the above composition formula of the CSBN
system may be expressed in a more compact fashion: (i) x = 0, Sr0.61Ba0.39Nb2O6 for SBN61,
(ii) x = 0.25, Ca0.07Sr0.458Ba0.472Nb2O6 for CSBN25, (iii) x = 0.50, Ca0.14Sr0.305Ba0.555Nb2O6
for CSBN50, (iv) x = 0.75, Ca0.21Sr0.153Ba0.637Nb2O6 for CSBN75, and (v) x = 1.00,
Ca0.28Ba0.72Nb2O6 for CBN28.
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Figure 2. Ferroelectric Curie temperatures of calcium strontium barium niobate crystals with TTB
structure. The dotted line is a linear fitting.

Brillouin scattering is the inelastic light scattering by thermally excited sound waves
and has been used as a non-contact and non-destructive method to obtain elastic constants
in the gigahertz range [19]. In the present study, the elastic properties and dynamical insta-
bility of CSBN100x crystals were investigated by using Brillouin scattering spectroscopy.

2. Experimental Methods

CSBN100x single crystals were grown via the Czochralski method [16] for the nominal
compositions, x = 0.00, 0.25, 0.5, 0.75, 1.00. The CSBN single crystals were grown at the Insti-
tute of Electronic Materials Technology (Poland) under the guidance of Prof. T. Lukasiewicz.
Their structural measurements were published [20,21]. The real composition of the crystals
obtained was checked with the use of ICP-OES (inductively coupled plasma–optical emis-
sion spectroscopy) method and the result was published [22]. It has appeared that the real
composition was, within uncertainties, satisfactorily close to the established one. Single
crystalline plates were cut along [100] (a-plate) and [001] (c-plate) with optically polished
5 × 5 mm2 surfaces and 1 mm thickness. Brillouin scattering spectra were measured
at the back scattering geometry using a high-contrast 3 + 3 passes tandem Fabry–Perot
interferometer, as shown in Figure 3 [19]. The exciting source was a diode-pumped solid
state (DPSS) laser with a wavelength of 532 nm and a power of 100 mW. Scattered light was
detected using a photon counting system. The specimen’s temperature was controlled us-
ing a cooling/heating stage (Linkham, THMS600, Salfords, UK) with a stability of ±0.1 ◦C.
Using an a-plate, longitudinal acoustic (LA) and transverse acoustic (TA) modes–which
propagate along the a-axis—and the CP of polarization fluctuations along the ferroelectric
c-axis were measured. Using a c-plate, LA and TA modes—which propagate along the
c-axis—were measured.
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Figure 3. Schematic illustration of experimental setup of Brillouin scattering measurement with
tandem multipass Fabry–Perot interferometers.

3. Results and Discussion
3.1. Elastic Anomaly of LA Modes

The temperature dependences of Brillouin scattering spectra of a CSBN50 crystal mea-
sured at the backward scattering geometry using a- and c-plates are shown in Figures 4 and 5,
respectively. The direction of the wave vector of a scattered phonon is parallel to the a-axis for
an a-plate and to the c-axis for a c-plate. The spectrum at 160 ◦C in Figure 4 shows doublets of
TA and LA modes which propagate along the a-axis at about 32 and 59 GHz, respectively. The
broad Rayleigh wings observed at 0 GHz are a CP with A1(z) symmetry, which is related to
the polarization fluctuations along the ferroelectric c-axis. The maximum of intensity of a CP
was observed at 152 ◦C. The spectrum at 160 ◦C in Figure 5 shows TA and LA modes which
propagate along the c-axis at about 32 and 48 GHz, respectively. However, a CP related to the
polarization fluctuations in the ab-plane, which is perpendicular to the ferroelectric c-axis, was
not observed at all the temperatures.
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Figure 4. Temperature dependences of Brillouin scattering spectra measured by backward scattering
geometry using the a-plate of a CSBN50 crystal. The wave vector q of the scattered phonon is parallel
to the a-axis. Doublets of TA and LA modes which propagate along the a-axis were also observed. An
intense CP was observed at zero frequency shift.
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Figure 5. Temperature dependence of Brillouin scattering spectra measured by backward scattering
geometry using the c-plate of a CSBN50 crystal. The wave vector q of the scattered phonon is parallel
to the c-axis. Doublets of TA and LA modes which propagate along the c-axis were observed. No CP
was observed.

The measured Brillouin spectra were fitted using Voigt functions, a convolution of
Lorentzian and Gaussian functions, for which the width of the Gaussian function was
fixed as an instrumental function. The temperature dependence of frequency shift and
width of the LA mode, which propagates along the ferroelectric c-axis, were determined
by the fitting, as shown in Figure 6. Upon cooling from the high temperature above the
Burns temperature, TB = 520 ◦C, the LA frequency shows the remarkable softening toward
Tc = 152 ◦C. Upon cooling from the high temperature, the LA mode width shows a remark-
able increase toward Tc. Such an elastic anomaly is related to the temperature evolution of
polar nanoregions (PNRs) triggered by the RFs [15,23]. In the ferroelectric phase, the width
gradually decreases due to the freezing of PNRs into stable nanodomains.

In lead-based relaxor ferroelectrics with perovskite structure, it is known that TB = 427 ◦C
and the intermediate temperature, T* = 227 ◦C, are unaffected by compositions [24]. In SBN,
TB = 350 ◦C and T* = 190 ◦C are unaffected by compositions of Sr ions, and in CBN, TB = 517 ◦C
and T* = 367 ◦C are unaffected by compositions of Ca ions [23]. In CSBN—if we assume linear
change in TB and T* for the composition dependence—TB = 434 ◦C and T* = 279 ◦C are expected
for CSBN50, as shown in Figure 6. Upon cooling, the dynamic–static transition and rapid growth
PNRs occur at T*, and the remarkable decrease of the LA frequency and an increase in LA width
occur towards TC due to the scattering of LA phonons by PNRs.

The sound velocity, V, is determined by the frequency shift νB in the Brillouin scattering
spectrum using the equation:

V =
λivB

2n sin θ
2

(1)

where λi, θ, and n are the wavelength of an incident beam, the scattering angle, and the
refractive index of the sample, respectively. The velocity is determined from the frequency
shift. The attenuation, α, is determined using

α =
πΓ
V

(2)

where Γ is the FWHM of the Brillouin peak [25]. The dispersions of refractive indices and
the Curie temperatures were determined in CSBN100x crystals grown using the Czochralski
method [26]. The temperature dependences of LA velocity and LA attenuation calculated
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from the LA shift and width for five CSBN crystals using the values of refractive indices [26]
are shown in Figures 7 and 8, respectively. The LA velocity and attenuation of CBN28
with very weak RFs show remarkable changes in the vicinity of TC = 254 ◦C and a sharp
minimum in the LA velocity. In contrast, in SBN61, with strong RFs, the temperature
dependence of the LA velocity and the attenuation in the vicinity of TC = 72 ◦C are diffusive
in the vicinity of TC. These differences can be caused by the variation in the strength of
RFs, which suppress the sharp changes in the vicinity of TC. The temperature dependences
of LA velocity and attenuation gradually change as the CBN28 content decreases from
normal ferroelectric, such as CBN28, to relaxor SBN61. This crossover was also reported on
the dielectric properties of CSBN ceramics [27]. Such a crossover from normal to relaxor
ferroelectrics was also studied in SBN from Ba- to Sr- rich regions [7,28,29]. Recently, the
crossover from normal to relaxor nature in SBN and CSBN ceramics was studied by the
Rietveld refinement of X-ray diffraction and Raman spectroscopy [18]. The observed site
occupancies at A1 and A2 sites were analyzed using residual entropy calculations. It was
concluded that the origin of the crossover is directly related to the majority of A2 sites
being occupied by Ba2+.

Among elastic constants, the coupling between c33 and the polarization fluctuations
along the ferroelectric c-axis is very strong, while the coupling between other elastic
constants and the order parameters of a ferroelectric phase transition is very week. Con-
sequently, the elastic anomaly of other elastic constants is very small, and it is difficult
to discuss the dynamical properties of a phase transition using the other two elastic con-
stants. Therefore, the elastic anomaly of c33 was analyzed. The difference in temperature
dependences of the elastic stiffness constant c33 = ρV2

LA between CBN28 and CSBN75 is
shown in Figure 9a,b, respectively, where ρ and VLA are the density and LA velocity of
Figure 7, respectively. In comparison with the remarkable softening of elastic constant of
CBN28 towards Tc, that of CSBN25 is suppressed, and the anomaly becomes diffusive. The
elastic anomaly of perovskite ferroelectrics was analyzed by the following equation in the
paraelectric phase.

cij(t) = c0
ij + c1

ijT − c2
ij

(
T − T0

T0

)−n
, for T0 ≤ Tc ≤ T. (3)
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ski method [26]. The temperature dependences of LA velocity and LA attenuation calcu-

lated from the LA shift and width for five CSBN crystals using the values of refractive 

indices [26] are shown in Figures 7 and 8, respectively. The LA velocity and attenuation 

of CBN28 with very weak RFs show remarkable changes in the vicinity of TC = 254 °C and 

a sharp minimum in the LA velocity. In contrast, in SBN61, with strong RFs, the temper-

ature dependence of the LA velocity and the attenuation in the vicinity of TC = 72 °C are 

diffusive in the vicinity of TC. These differences can be caused by the variation in the 

strength of RFs, which suppress the sharp changes in the vicinity of TC. The temperature 

Figure 6. Temperature dependence of LA frequency shift and width along the ferroelectric c-axis of a
CSBN50 crystal on cooling. The dotted lines show the nearly linear temperature dependences at high
temperatures. T*and TB are the intermediate and Burns temperatures, respectively. The dotted line
arrows indicate the corresponding y-axis.
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Here, c0
ij, c1

ij, and c2
ij are constants. On the right-hand side, the second term is the

anharmonic effect and the third term is the elastic anomaly caused by the fluctuations in
the order parameter. The critical exponent, n, was predicted to be 0.5 for three-dimensional
fluctuations, 1.0 for two-dimensional fluctuations, and 1.5 for one-dimensional fluctuation
of the order parameters [30]. For example, for undoped and Li-doped K(Ta0.6Nb0.4)TiO3
crystals with perovskite structure, the observed exponent of n = 0.5 indicates the three-
dimensional fluctuations of polarization, which are related to the 8-site model of the



Materials 2023, 16, 2502 8 of 12

off-center of B-site ions along the eight equivalent [111] directions [31]. In CBN28, the
fitted value of n = 1.52 indicates the one-dimensional fluctuations in polarization along
the [001] axis, which is suitable for a uniaxial ferroelectric phase transition. In CSBN75,
the fitted value n = 2.17 shows the deviation from the value of theoretical model, in which
structural disorder was not considered. The origin of the deviation from n = 1.5 in CSBN75
is probably attributed to the diffusive nature induced by the RFs.
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Figure 9. Difference in the temperature dependences of the elastic stiffness constant c33 between
(a) CBN28 and (b) CSBN75 crystals. The elastic constant of CBN28 shows a sharp anomaly in the
vicinity of TC, while that of CSBN75 shows the diffusive nature and that the elastic anomaly is smaller.
The solid lines in a paraelectric phase are curves fitted using Equation (3).

3.2. Critical Slowing down Observed by a Central Peak

The relaxation process of the polarization fluctuations along a ferroelectric c-axis has
been observed from the width of the narrow CP in CBN28 [15]. Temperature dependences
of relaxation time determined from the width of a narrow central peak observed using
a-plates of five CSBN crystals were analyzed. In CBN28, the temperature dependences of
relaxation time of polarization fluctuations determined by a central peak along the c-axis
show the critical slowing down toward TC. However, as the CBN28 content decreases, the
slowing down is stretched by the strengthened RFs. In relaxor ferroelectrics, the dielectric
constant ε obeys the extended Curie–Weiss law based on the compositional heterogeneity
model as below [32].

1
ε
=

1
ε0

+
1
ε1

(
T − TC

TC

)γ

, for T > Tc. (4)

Here, ε0 and ε1 are constants and γ is the diffuseness exponent. The case of γ = 1 refers
to the Curie–Weiss law for a normal ferroelectric phase transition, and that of γ = 2 is a
typical relaxor phase transition. For a partially disordered ferroelectric phase transition,
it holds 1 < γ ≤ 2. In Nb-doped Pb(Zr0.75Ti0.25)O3 ceramics, γ = 1.5 was reported [33].
The dielectric properties of CSBN crystals showed that a relaxor nature with noticeable
dielectric dispersion was observed in CSBN25 [22]. The origin of its relaxor properties was
attributed to lower excess oxygen in CSBN25.

In an order–disorder ferroelectric phase transition, the relaxation time τ shows crit-
ical slowing down towards Tc. However, in the ferroelectric phase transitions of relaxor
ferroelectrics, the diffusive nature was observed in the critical slowing down [34]. In
0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-7PT), the slowing down was suppressed below
the intermediate temperature T* and typical critical slowing down was not observed
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near Tc [35]. The local transition from dynamic to static PNRs at T* suppresses fur-
ther slowing down. To describe such a suppressed slowing down by RFs, an empirical
equation of the stretched slowing down was used in the vicinity of Tc, as given by the
following equation [35],

1
τCP

=
1
τ0

+
1
τ1

(
T − TC

TC

)β

, for T > Tc. (5)

where β is the stretched exponent. In the case of β = 1.0, Equation (5) gives the critical
slowing down of normal ferroelectrics. Regarding TTB ferroelectrics, β = 1.0 was reported
for BNN [36] and CBN28 [15]. In the case of β > 1.0, the slowing down of relaxation time
is suppressed and/or stretched by the increase of the strength of RFs. In PMN-17PT and
PMN-56PT, the observed values are β = 2.12 and 1.43, respectively [37]. RFs of PMN-17PT
are stronger than those of PMN-56PT.

The difference in the temperature dependences of the stretched slowing down is shown
in Figure 10 between CSBN75 and CSBN50 crystals. The dotted lines are values fitted using
Equation (5) with β = 1.53 for CSBN75 and β = 1.88 for CSBN50 in a paraelectric phase.
Therefore, as the CBN28 content decreases, the stretched exponent increases monotonically
from β = 1 of the normal ferroelectric case.
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(a) CSBN75 and (b) CSBN50 crystals. The brown triangles and green box are the observed values of
CSBN75 and CSBN50, respectively. The dotted lines are fitted values to Equation (5) with β = 1.53 for
CSBN75 and β = 1.88 for CSBN50.

The CBN28 content dependence of stretched index of five CSBN crystals is shown in
Figure 11. The values of the diffuseness exponent determined by dielectric measurement
using Equation (4) are also plotted for the comparison [27]. These exponents increase from
1.0 as the CBN28 content decreases. These similar dependences in the stretched index and
diffuseness exponent indicate a crossover from a normal ferroelectric-like transition to a
relaxor ferroelectric transition in CSBN.

Recently, the origin of the crossover from normal ferroelectric to relaxor in SBN and
CSBN was discussed on the basis of site occupancy at A1 and A2 sites and residual entropy
calculation [18]. The origin of the relaxor nature is attributed to the larger occupancy ratio
of Sr:Ba at A2 sites. Differently from Sr ions, smaller Ca ions occupy only the A1 site.
Therefore, the larger occupancy ratio decreases as the Ca content increases and the relaxor
nature of SBN is suppressed. As another reason, lower excess oxygen in CSBN25 was also
suggested [22]. To clarify the microscopic origin of the relaxor nature in TTB ferroelectrics,
further studies are necessary.
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4. Conclusions

Three dimensional relaxor ferroelectrics have been extensively studied with respect
to their physical properties and to their origin of relaxor nature. Within this context, the
results on uniaxial relaxor ferroelectrics have not completely been satisfactory. In this paper,
the ferroelectric phase transitions of uniaxial ferroelectrics with tetragonal tungsten bronze
structure were studied. Using Brillouin scattering spectroscopy, the elastic anomaly and
a central peak (CP) with A1(z) symmetry were investigated. SrxBa1−xNb2O6 (SBN100x)
with strong random fields (RFs) undergoes a relaxor ferroelectric phase transition, while
CaxBa1−xNb2O6 (CBN100x) with weak RFs undergoes a nearly normal ferroelectric phase
transition. The crossover from normal to relaxor ferroelectric behaviors was investigated in
xCa0.28Ba0.72Nb2O6-(1 − x)Sr0.61Ba0.39Nb2O6 (CSBN100x) crystals. In a CBN28, crystal, the
sharp elastic anomaly of the LA mode was observed in the vicinity of TC. As the CBN28
content decreases, the anomaly of CSBN100x crystals becomes diffusive. A CSBN0 (SBN61)
crystal shows a typical relaxor nature. In CBN28, the relaxation time determined from
the width of a CP shows critical slowing down in the vicinity of TC. While, as the CBN28
content decreases, slowing down of relaxation time in the vicinity of TC becomes diffusive.
In the gigahertz range, it was observed that two dynamical processes show a crossover
from normal to relaxor nature in uniaxial ferroelectric CSBN100x crystals. The origins of the
crossover from relaxor to normal ferroelectric phase transitions are discussed with regards
to the difference in the A1 and A2 sites occupancies.
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