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Abstract

A trading problem can be classified into the following four kinds: a selling problem and a buying problem, each of which, moreover, falls
into a problem with reservation price mechanism (opponent trader proposes the trading price) and a problem with posted price mechanism
(leading trader proposes the trading price). Let us refer to a group of the four problems as the quadruple-asset-trading-problems. The
main objective of the paper is twofold: the construction of a general theory which integrates the quadruple-asset-trading-problems and the
analyses of some basic models of these problems by using the theory. To attain the objective, some novel ideas are introduced in the present
paper: symmetry, analogy, initiating time, quitting penalty, market restriction, etc. which will lead us to quite a new horizon that has not
been perceived at all by any researcher. The most notable findings obtained from the analyses of these basic models are the following two.
One is the drastic collapse of symmetry between the selling problem and the buying problem, the other is the existence of null-time-zone,
at every point in time on which any decision-making activity makes no sense at all. Especially, the latter finding could confront us with
the all-around review of the whole discussion that has been made thus far for a trading problem as a decision process. Furthermore
interestingly, when the zone is over all points in time on the planning horizon, excluding the deadline, it follows that all activities of the
decision-making that are scheduled for over the entire planning horizon are swallowed up into the deadline as if all substances, even light,
fall into a black hole. Finally, we propose the enormous number of models for asset trading problems which have not yet been posed so far
and wind up this study with insisting that the treatment of these problems are almost impossible without the integration theory.

As far as the laws of mathematics refer to reality,

they are not certain,

and as far as they are certain,

they do not refer to reality.

Albert Einstein

— This study starting with this apothegm ends with this apothegm (see C27.4(p.267) ) —

This is the first substantial version of “An integration of the optimal stopping problem and the optimal pricing problem”

https://commons.sk.tsukuba.ac.jp/discussion/page/27 (No.1084/2004)

The integration theory posed in this present version is exemplified by use of some generalized models of the asset selling problem in [20,
Ee & Ikuta (2006)]. Let us refer to the above original paper as ver.000 and to the present paper as ver.001. According to the progress
of our study, this will be updated as ver.002, ver.003, · · ·

∗Readers will be bewildered by different uncommon notions, concepts, definitions, events, results, findings, etc. appearing in the present
paper (see Alice’s 1(p.9) , 2(p.36) , 3(p.36) , 4(p.36) , 5(p.37) , and 6(p.53) ).
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OIT Optimal-Initiating-Time [òúıt]
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Chapter 1

Introduction

1.1 Two Examples
To begin with, let us here give two examples which convey a flavor of problems treated throughout the present paper.

Example 1.1.1 (selling problem) Suppose that you have to sell your car up to a specified date (deadline) for a compelling
reason (for instance, you must suddenly return to your mother country by order of the head office) and that a buyer who wants to
buy it for a certain price has just appeared. If the price is high enough, you will sell the car to the buyer, but if not so, you will
hesitate to sell. Then, if you sell, you might incur the risk that a buyer proposing a higher price may appear in the future. Conversely,
if you do not sell, you might incur the risk that any buyer proposing a higher price may not appear in the future; in the worst case, no
buyer could appear up to the deadline at all; if so, you must sell it for a giveaway price or dispose of it by paying some cost. Taking
such risks into consideration, you have to determine whether or not to sell it to each buyer who will successively appear. The above
scenario implies that you must sell the car for a lower and lower price as getting closer and closer to the deadline, or equivalently you
must set the minimum permissible selling price (reservation price) so as to become lower and lower as getting closer and closer to the
deadline.

We can also consider a buying problem which is the inverse of the above selling problem, described as below.

Example 1.1.2 (buying problem) Suppose that you have to buy a car up to a specified date (deadline) and that a seller who
wants to sell a car for a certain price has just appeared. If the price is low enough, you will buy the car from the seller, but if not so,
you will hesitate to buy. Then, if you buy, you might incur the risk that a seller proposing a lower price may appear in the future.
Conversely, if you do not buy, you might incur the risk that any seller proposing a lower price may not appear in the future; in the worst
case, no seller could appear up to the deadline at all; if so, you must buy a car for a very high price in a black market. Taking such
risks into consideration, you have to determine whether or not to buy a car from each seller who will successively appear. The above
scenario implies that you must buy a car for a higher and higher price as getting closer and closer to the deadline, or equivalently you
must set the maximum permissible buying price (reservation price) so as to become higher and higher as getting closer and closer to
the deadline.

The above two problems have been already investigated so far under the name “optimal stopping problem”, implying “when

to stop the behavior of “not selling the asset” in the former problem or “not buying the asset” in the letter problem”. The

earliest papers for these problems can be traced back to 1960’s as long as we know [43,1961][0005] [30,1962][0521] [10,1971][0014]

[34,1973][0525] .

Now, the above two problems would seem to be special cases of different decision-making problems that have been treated so

far in the fields of operational research and economics. In the present paper, however, we will try to thoroughly and in detail

clarify all aspects of the two problems by introducing some novel ideas: symmetry, analogy, initiating time, quitting penalty,

market restriction, etc. which have not been perceived by any researcher at all, including the authors in the past. After having

finished reading the paper, it will be known that the above two problems which seem to be symmetrical at a glance are not

always so and, moreover, that this study in the present paper will throw a new light and open up a genuinely new horizon not

only for the above two problems but also for a more generalized decision processes (see Section A5(p.291) ).

1.2 Quadruple-Asset-Trading-Problems
Before proceeding with our study, below let us review a general framework of a selling problem and a buying problem. First, let

us have an eye to the fact that an economic behaviour is basically constituted by different types of transactions, in each of which

different models of trading assets (house, car, a lot of land, etc.), commodities (wheat, copper, gasoline, etc.), and goods (fruit,

fish, clothes, etc.) have been posed and examined thus far. As general terms, let us refer to an item traded there as the asset

and to a problem of trading an asset as the asset trading problem, ATP for short. In addition, let us refer to persons involved in

ATP as traders, consisting of a seller and a buyer, who face an asset selling problem† and an asset buying problem respectively,‡

†[30,1962][0521] , [32,1963][0303] , [3,1977][0080] , [38,1983][0138] , [37,1983][0136] , [40,1990][0390] , [7,1991][0506] , [33,1993][0480] , [44,1993][0494] ,
[36,1995][0356] , [27,1995][0374] , [45, 1995][0500] , [4, 1995][0491] , [47,1997][0282] , [9, 1997][0393] , [12,1998][0389] , [21,1999][0308] , [1, 1999][0371] , [13,
2001][0387] , [35,2002][0388] , [11,2002][0319] , [15,2004][0413] , [19,2005][0507] , [16,2005][0517]

‡[9,1998][0393] , [11,2002][0319] .
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denoted by ASP and ABP respectively for short. Now, a leading trader and its opponent trader in ASP (ABP) are a seller (buyer)

and a buyer (seller) respectively, and each of ASP and ABP is furthermore separated into the two cases, depending on which of

leading trader and opponent trader proposes a trading price. Accordingly, it follows that ATP consists of the following four kinds

of problems:

⟨1⟩ ASP in which a buyer as an opponent trader proposes a buying price,

⟨2⟩ ABP in which a seller as an opponent trader proposes a selling price,

⟨3⟩ ASP in which a seller as a leading trader proposes a selling price,

⟨4⟩ ABP in which a buyer as a leading trader proposes a buying price.

In ATP in which an opponent trader proposes a trading price ⟨1/2⟩, a leading trader faces the problem of determining whether

or not to accept the trading price proposed by the opponent trader (buying price/selling price). Then, the leading trader must

set the optimal reservation price as a threshold based on which it is judged whether or not to accept it. It is called the problem

with reservation price mechanism,§ R-mechanism for short; let us represent the problem as ATP[R] for short. In ASP[R], the
reservation price is the minimum permissible selling price; a seller (leading trader) is willing to sell the asset if and only if the

proposed price is greater than or equal to it. In ABP[R], the reservation price is the maximum permissible buying price; a buyer

(leading trader) is willing to buy the asset if and only if the proposed price is less than or equal to it. On the other hand, in

ATP in which a leading trader proposes a trading price ⟨3/4⟩, the leading trader faces the problem of determining the trading

price to propose (selling price/buying price). It is called the problem with posted price mechanism,¶ P-mechanism for short; let

us represent the problem by ATP[P]. From the above, one sees that ATP consists of the four kinds of problems, ASP[R], ABP[R],
ASP[P], and ABP[P] respectively, called the quadruple-asset-trading-problems. Furthermore, let us represent models for the above

four problems by ASM[R], ABM[R], ASM[P], and ABM[P] respectively, called the quadruple-asset-trading-models.

1.3 Two Motives

The writing of the present paper was strongly urged by the motives of trying to answer to the two questions below:

Motive 1 Is a buying problem always symmetrical to a selling problem ?

From long before this study started, we had been continuing to conceive a näıve question “Does a buying problem

and a selling problem always become symmetrical each other in the sense that once a property of the latter problem is

known, its corresponding property of the former problem can be immediately and easily known by merely changing the

signs of variables, parameters, constants, etc. appearing within the description of the property of the latter problem ?

and vice versa ?” Our final answer to the above näıve question to which almost all researchers, including even the

authors in the past, had called no unambivalent attention is “nay !”.

Motive 2 Can the theory integrating quadruple-asset-trading-problems exist ?

Before starting to write this paper, we had widely read many papers related to these problems and spontaneously

obtained a rude expectation that there might exist “a common denominator” at the base of all discussions developed

there. This feeling led us to the insight that the common denominator is closely involved with a function called the

T -function (see Section 5.1.1(p.17) ). Urged by this insight, we had before long a faint anticipation that there could

exist a theory integrating the quadruple-asset-trading-problems, and finally we were led to a ray of hope that the

construction of the theory can first become possible by introducing the concepts of symmetry and analogy, and in the

final stage, fortunately we succeeded in its construction.

1.4 Four Novel Factors

In the present paper we introduce the following four novel factors:

Factor 1 Search skip (see Concept 2c(p.10) )

A leading trader has an option whether to conduct the search for opponent trader or to skip it.

Factor 2 Quitting penalty (see A6(p.7) )

This is a penalty by accepting which a leading trader can quit the process.

Factor 3 Market restrictions (see A7(p.8) and Chapter 16(p.99) )

It will be shown later that the successful construction of the integration theory can become possible under the basic

premise that a price ξ, whether reservation price or posted price, is defined on (−∞,∞). However, since the price

is positive in a usual transaction, i.e., ξ ∈ (0,∞), the above premise must be said to be irrational a little bit from a

practical viewpoint. To remove the irrationality the paper employs the methodology of restricting results obtained

on (−∞,∞) to ones on (0,∞), called the market restriction (see Chapter 16(p.99) ).

§[4,1995][0491] , [6,2001][0490]
¶[5,1998][0492] ,[6,2001][0490] ,[22,1994][0283] ,[44,1993][0494] ,[45,1995][0500]
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Factor 4 Optimal initiating time (see Section 7.2.4(p.34) )

When encountering a decision problem, normally we lean to at once trying to initiate its treatment; however, from a

managerial and/or economical viewpoints it might become better to postpone its initiation, which inevitably leads us

to the notion of the optimal-initiating-time (see Section 7.2.4(p.34) ). Quite strangely enough, thus far we had not been

able to find any literature at all in which this rational thinking is taken into consideration in the study of decision

problems.

It will be known later that the introduction of the above four factors will lead us to quite a new horizon for the whole study of

asset trading problems.

5



6



Chapter 2

Assumptions and Concepts

2.1 Basic Assumptions
The section provides the basic assumptions that will be employed in models of asset trading problems dealt with in the present

paper.

A1 Points in time

The process of trading proceeds intermittently on points in time equally spaced on a finite length of time axis as shown in

Figure 2.1.1 below. Let us refer to each point in time as the time, which is numbered backward from the final point in time,

time 0 (deadline), as 0, 1, · · · . Accordingly, if the present point in time is time t, then the two adjacent times t+1 and t− 1

are the previous point in time and the next point in time respectively.

-• • • • • time
time 0time 1· · ·time t− 1time ttime t + 1

(deadline)(next)(present)(previous)

Figure 2.1.1: Points in time

A2 Absolutely necessary condition

In ASP (ABP), the seller (buyer) who is a leading trader must necessarily sell out his asset on hand (buy an asset from an

appearing seller) up to time 0. In other words, the seller (buyer) is not absolutely allowed to quit the selling process (buying

process) without selling (buying) the asset.

A3 Stop of process

In ATP[R] the process stops when the leading trader accepts a price proposed by an opponent trader, and in ATP[P] the process
stops when an opponent trader accepts a price proposed by the leading trader. In the present paper we use distinctively

the terms “stop” and “terminate”; the former is used when the process stops at a point in time before the deadline and the

latter is used when it terminates at the deadline.

A4 Search cost

A cost s ≥ 0, called the search cost, must be paid to search for opponent traders.

A5 Opponent trader appearing probability λ

If the search is conducted at a certain point in time, then an opponent trader appears at the next point in time with a

probability λ (0 < λ ≤ 1).

A6 Quitting penalty

Assume 0 < λ < 1 (i.e. λ ̸= 1). Then, it is possible that no opponent trader appears at the next point in time even if

the search is conducted. Accordingly, this assumption, as long as leaving all other conditions intact, inevitably leads us

to the possibility that no opponent trader appears at all points in time over the entire planning horizon, including the

deadline. If so, it follows that a leading trader must be faced with the situation of having to quit the process at the terminal

point in time of the process (deadline) without trading the asset, which contradicts the assumption A2. One of the most

general requirements that can be taken when encountering such a situation is the introduction of a penalty ρ [20,Ee & Ikuta

(2006)][0514] , implying that the leading trader can quit the process in exchange for the penalty; in this sense, let us call the

penalty the terminal quitting penalty. Now, we can consider also the case that such a quitting penalty ρ is available also at

every point in time besides the terminal point in time of the process; let us call the ρ the intervening quitting penalty. Note

here that there exists a fine difference in its implication between a selling problem and a buying problem as stated below.

a. Selling Problem: When confronting such a situation in a selling problem, the seller (leading trader) will endeavor to

devise means of selling out the asset, for example, by proposing a giveaway price ρ (a very low price) to a buyer whom

he can then contact.

7



b. Buying Problem: When confronting such a situation in a buying problem, the buyer (leading trader) will endeavor to

buy the asset by proposing a very high price ρ to a seller whom he can then contact.

Here note that in the above description the quitting price ρ is implicitly assumed to be positive (i.e., ρ > 0); however, in

order to generalize the discussions that follows, we define it on −∞ < ρ < ∞ (i.e. (−∞,∞)). See Section 16.5(p.100) for

further implication of this convenient extension.

A7 Region of price

In ATP[R] (ATP[P]), the price ξ proposed by an appearing opponent trader (the reservation price ξ of an appearing opponent

trader) is positive in a normal market of the real world (i.e., ξ > 0) or equivalently the region of the price ξ is the interval

(0,∞). However, in order to generalize the discussions that follows, we define it on −∞ < ξ < ∞ (i.e. (−∞,∞)). See

Section 16.1(p.99) for the reason of the practical validity of this convenient extension.

A8 Distribution function

In ATP[R] (ATP[P]) let us assume that the prices proposed by successive opponent traders (the reservation prices of successive

opponent traders), ξ, ξ′, · · · , are independent identically distributed random variables having a continuous distribution

function

F (ξ) = Pr{ξ ≤ ξ} (2.1.1)

with a finite expectation µ where
F (ξ) = 0 · · · (1) ξ ≤ a,

0 < F (ξ) < 1 · · · (2) a < ξ < b,

F (ξ) = 1 · · · (3) b ≤ ξ,

(2.1.2)

for given constants a and b such that
−∞ < a < µ < b <∞. (2.1.3)

Furthermore, for its probability density function f(ξ) let us assume

f(ξ) = 0 · · · (1) ξ < a,

0 < f(ξ) < 1 · · · (2) a ≤ ξ ≤ b,

f(ξ) = 0 · · · (3) b < ξ.

(2.1.4)

Let us represent the set of all possible distribution functions defined above by

F = {F
∣∣ −∞ < a < µ < b <∞}, (2.1.5)

called the distribution function space.

ξ

f(ξ)

µa b
............
.........
...........
..............
.....................................................................................
...........
.........
........
.........
.........
...........
.............
................
.......................................................
.........
.........
...........
.............
.................
...................
...........
..............................................................................................................................................................................................................................................................................................................................................................................................................

Figure 2.1.2: Probability density function f(ξ).

A9 Recallability of once rejected opponent trader

Whether in the model with R-mechanism or in the model with P-mechanism, if an once rejected opponent trader can

be recalled later and accepted, then it is called the recall-model or model-with-recall, conversely, if such recallability is

impossible, then it is called the no-recall-model, model-with-no-recall, or model-without-recall.

A10 Discount factor β

In an asset selling problem, a seller (leading trader) can invest the profit ξ obtained by selling his asset at a given rate of

interest r > 0; as a result, the profit ξ obtained at the present point time increases to (1 + r)ξ a period hence (the next

point in time); accordingly, a profit ξ a period hence is equivalent to (1 + r)−1ξ at the present point in time (see [39,Ross,

1961][0535] ).† Usually (1 + r)−1 is denoted by β = (1 + r)−1 (0 < β ≤ 1), called the discount factor, hence (1 + r)−1ξ = βξ.

Now, let the today’s profit (present point in time) be x and the tomorrow’s profit (next point in time) be y. Then, the

tomorrow’s profit y is evaluated as βy at the point in time of today; accordingly, the comparison between the today’s profit

x and the tomorrow’s profit y should be made by the inequality “x > (= (<)) βy”. Thus, it follows that the comparison

between the today’s profit x and the profit y obtained after n days should be made by the inequality “x > (= (<)) βny”.

On the other hand, in an asset buying problem, a buying price paid by the buyer (leading trader) is a cost, which is not a

currency on hand; in other words, it is what has been already paid, so it can not be invested. Hence, it follows that the

introduction of discount factor β to the cost seems to be beside the question at a glance.

†(1 + r)(1 + r)−1ξ = ξ
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Alice 1 (discount factor for cost) Herein, Alice came to grips with the following question. “But, but —, if this is true,
it follows that the concept of the discount factor cannot be introduced not only to the asset buying problem but also to any other
decision process with the objective of cost minimization !; Is this true ?. Then, Dr. Rabbit clad in the waistcoat-pocket suddenly
appeared in front of her and told to her. The pay of a cost y can be regarded as the occurrence of a loss in the sense of losing
the currency y on hand that should be avoided if it were not paid; in other words, “the today’s cost y” can be regarded as a
synonym of “ the loss of the currency y on hand”; such a cost is usually called the opportunity loss. This scenario further proceeds
as below. Since the today’s currency y as an opportunity loss must increased, if it was not paid, to (1 + r)y = β−1y tomorrow,
the tomorrow’s currency y is evaluated as the currency βy today. Accordingly, since the comparison between the today’s cost x
and the cost y after n days can be replaced by the comparison between the today’s opportunity loss x and the opportunity loss
y after n days, it eventually follows that the former comparison should be made by the inequality “x > (= (<)) βny. From the
above scenario it follows that the discount factor β can and should be introduced to all kinds of costs including the search cost
s. And then, taking a watch out of its waistcoat-pocket and murmuring “Oh dear! Oh dear !, I shall be too late for the faculty
meeting”, Dr. Rabbit disappeared down the hole.

2.2 Two Novel Concepts
The two novel concepts below are introduced over the whole discussion of the present paper.

Concept 1 Recognizing time, starting time, initiating time, and null time zone (see Section 7.1(p.33) )

Since a decision-making is basically a behaviour of human-beings, it first starts only when the existence of the

decision-making problem has been recognized; in other words, it can never start without recognizing its existence.

Now, suppose that the existence of an asset trading problem (ATP) has been recognized at a certain point in time.

Then, let us refer to this point in time as the recognizing time of the process. Next, for different reasons, say making

budgets, arranging staffs, etc., some amount of time will be needed to start actually tackling the problem. Let us

refer to the point in time when all of such preparations finish as the starting time τ of the process. Now, reaching

the starting time, implicitly or unconsciously one will immediately try to initiate the search for an opponent trader

and to make the decision whether or not to make a deal with opponent traders that will appear after that. However,

from a managerial and economic viewpoint, this is not always profitable since there exists the possibility that it can

become better to postpone the initiation of search and decision until a point in time in the future. Let us refer to

such a point in time as the initiating time and to the best of all possible initiating times as the optimal initiating

-time t∗τ ≤ τ , OIT for short (see Figure 2.2.1 below). Let us call the time interval between the starting time τ and

the optimal initiating time t∗τ the null-time-zone, denoted by Nul-TZ (see Sections 7.2.4.6(p.36) ). Quite oddly enough,

however, we were not able to find any works, as long as we know, in which the above time concepts are taken into

account.

-• • • • • • • • • • • • time
· · ·︸ ︷︷ ︸

null-time-zone (Nul-TZ)

0t∗τt∗τ + 1τ τ − 1

deadlineoptimal initiating time (OIT)starting timerecognizing time

Figure 2.2.1: Null-Time-Zone (Nul-TZ)

Concept 2 Enforced-case and allowed-case

As reading the paper more, it will be known that all the concepts below are imperative in making the framework of

each model treated in this paper more clear.

a. Attack-enforced-case and attack-allowed-case

When the existence of a decision-making problem has been recognized, what should be first questioned is whether

it is enforced to attack the decision problem or not.

i. a-E-case: Let us refer to the former as the attack-enforced-case. In this case, even if it is known to yield no

profit, a decision-maker must be resigned to the red ink.

ii. a-A-case: Let us refer to the latter as the attack-allowed (not-enforced)-case in a sense that a leading trader

has the option whether to attack or not, hence, in this case, if it is known to yield no profit, it suffices to quit

the decision-making itself without taking any action.

b. Immediate-initiation-enforced-case and immediate-initiation-allowed-case

Whether a-E-case or a-A-case, the following two cases can be considered, provided that in a-A-case it has been

determined to attack the decision-making problem.

i. ii-E-case: The case that it is enforced to immediately initiate the attack, called the immediate-initiation-

enforced-case.

ii. ii-A-case: The case that it is not enforced to immediately initiate the attack; in other words, the immediate

initiation is allowed as one option, so it is possible to postpone its initiation. For this reason, we call the case

the immediate-initiation-allowed (not-enforced)-case.
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c. Search-Enforced-case and search-Allowed-case

i. s-E-case: The case that once the process has initiated, it is enforced to conduct the search at every point in

time after that, called the search-enforced-case. In this case, as seen in Figure 2.2.2 below, a leading trader

must continue to conduct the search until the process stops.

s-E-case -• • • • • • • • • • • • • • • • time

starting time deadline
τ 0

C C C C C C C C Stop

Figure 2.2.2: Flow of Search-Conducts in s-E-case

ii. s-A-case: The case that even if once the process has initiated, it is allowed to skip the search at every point

in time after that, called the search-allowed (not-enforced)-case. In other words, a leading trader has an

option whether to conduct the search or to skip as long as the process does not stop. In this case, we can

consider different types of the flows of search-Conduct and search-Skip as shown in Figure 2.2.3 below where

“ ” represents the switch from search-Skip to search-Conduct or from search-Conduct to search-Skip.

-• • • • • • • • • • • • • • • • time

starting time deadline
τ 0

Type 1 C C C C C C C C → Stop

Type 2 C C C C C C C C  S S S S C → Stop

Type 3 C C C S S S S C C C C C C → Stop

Type 4 S S S  C C C C  S S S S C → Stop

Type 5 S S  C C C  S S S  C C  S S S  C → Stop

Type 6 S S S S S S S S S  C → Stop

Figure 2.2.3: Different flows of search-Conducts and search-Skips in s-A-case

Definition 2.2.1 (search-Enforced-model and search-Allowed-model) Let us refer to the model of s-E-case and the
model of s-A-case as search-Enforced-model and search-Allowed-model respectively, represented by s-E-model and
s-A-model for short.
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Chapter 3

Tables of Models

3.1 Three Kinds of Models

In the present paper, we consider the following three kinds of models (see A6(p.7) ):

◦ Model 1 in which the quitting penalty ρ (whether “terminal” or “intervening”) is not available.

◦ Model 2 in which only the terminal quitting penalty ρ is available.

◦ Model 3 in which the terminal quitting penalty ρ and the intervening quitting penalty ρ are both available.

3.2 Simplified Symbols

For expressional simplicity, let us employ the following simplified symbols:

R-mech-model → R-model, search-Allowed-model → s-A-model, selling-model → S-model, (3.2.1)

P-mech-model → P-model, search-Enforced-model→ s-E-model, buying-model → B-model. (3.2.2)

3.3 Tables of Models

Models treated in the present paper are classified into the no-recall-model and the recall-model (see A9(p.8) ), each of which is

moreover classified into s-A-model and s-E-model (see Def. 2.2.1(p.10) ).

3.3.1 No-Recall-Model

Let us designate s-A-model with no recall (see Concept 2cii(p.10) (s-A-case)) by

M:x[X][A] (M̃:x[X][A]) x = 1, 2, 3, X = R,P, ‡

and s-E-model with no recall (see Concept 2ci(p.10) (s-E-case)) by

M:x[X][E] (M̃:x[X][E]) x = 1, 2, 3, X = R,P.
Furthermore, let us define the set

Q⟨M :x[X]⟩ = {M:x[R][X], M̃:x[R][X],M:x[P][X], M̃:x[P][X]}, x = 1, 2, 3, X = A, E, (3.3.1)

called the quadruple-asset-trading-models. Table 3.3.1 below provides the bird’s-eye view of Q⟨M :x[X]⟩.

Table 3.3.1: Twenty Four No-recall-Models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{M:1[A]} = { M:1[R][A], M̃:1[R][A], M:1[P][A], M̃:1[P][A] }
Q{M:1[E]} = { M:1[R][E], M̃:1[R][E], M:1[P][E], M̃:1[P][E] }

Q{M:2[A]} = { M:2[R][A], M̃:2[R][A], M:2[P][A], M̃:2[P][A] }
Q{M:2[E]} = { M:2[R][E], M̃:2[R][E], M:2[P][E], M̃:2[P][E] }

Q{M:3[A]} = { M:3[R][A], M̃:3[R][A], M:3[P][A], M̃:3[P][A] }
Q{M:3[E]} = { M:3[R][E], M̃:3[R][E], M:3[P][E], M̃:3[P][E] }

‡Throughout the paper, the model of the asset buying problem (ABP) is represented by the symbol upon which the tilde “˜” is capped
like M̃.
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3.3.2 Recall-Model

Let us designate s-A-model with recall by

rM:x[X][A] (rM̃:x[X][A]) x = 1, 2, 3, X = R,P,
and s-E-model with recall by

rM:x[X][E] (rM̃:x[X][E]) x = 1, 2, 3, X = R,P.
Furthermore, let us define the set

Q⟨rM :x[X]⟩ = {rM:x[R][X], rM̃:x[R][X], rM:x[P][X], rM̃:x[P][X]}, x = 1, 2, 3, X = A, E, (3.3.2)

called the quadruple-asset-trading-models-with-recall as below. Table 3.3.2 below provides the bird’s-eye view of Q⟨rM :x[X]⟩.

Table 3.3.2: Twenty Four Recall-Models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{rM:1[A]} = { rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A] }
Q{rM:1[E]} = { rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E] }

Q{rM:2[A]} = { rM:2[R][A], rM̃:2[R][A], rM:2[P][A], rM̃:2[P][A] }
Q{rM:2[E]} = { rM:2[R][E], rM̃:2[R][E], rM:2[P][E], rM̃:2[P][E] }

Q{rM:3[A]} = { rM:3[R][A], rM̃:3[R][A], rM:3[P][A], rM̃:3[P][A] }
Q{rM:3[E]} = { rM:3[R][E], rM̃:3[R][E], rM:3[P][E], rM̃:3[P][E] }

3.4 Structured-Unit-of-Models
Let us refer to the whole of 24 models defined in each of the above two tables as the structured-unit-of-models, denoted by S(M)

and S(rM) respectively, i.e.,

S(M) = {Q{M :1[A]},Q{M :1[E]},Q{M :2[A]},Q{M :2[E]},Q{M :3[A]},Q{M :3[E]}, (3.4.1)

S(rM) = {Q{rM :1[A]},Q{rM :1[E]},Q{rM :2[A]},Q{rM :2[E]},Q{rM :3[A]},Q{rM :3[E]}. (3.4.2)

3.5 Decisions

What a leading trader should determine in each of the models defined in Tables 3.3.1 and 3.3.2 are as follows:

1. Whether or not to accept the price proposed by an opponent trader (only for R-model),

2. What price to propose (only for P-model),

3. Whether or not to conduct the search for opponent traders (only for s-A-model),

4. When to initiate the process (for all models).
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Chapter 4

No-Recall-Models

In this chapter we provide the strict definitions of no-recall-models in Table 3.3.1(p.11) , by use of which the integration theory

will be constructed in Part 2(p.38) .

4.1 Model 1

4.1.1 Search-Enforced-Model: Q⟨M :1[E]⟩ = {M:1[R][E] : M:1[P][E], M̃:1[R][E], M̃:1[P][E]}

4.1.1.1 M:1[R][E] and M:1[P][E]
The two are the most basic models of the asset selling problem [8,Ber1995,p.158-162][0044] [46,You1998][0054] †, which are defined

by the following assumptions:

A1. Once the process initiates, at every point in time after that it is enforced to conduct the search for buyers (see Con-

cept 2ci(p.10) (s-E-case), hence the search cost s ≥ 0 is paid at every point in time (see A4(p.7) ).

A2. After the search has been conducted at a point in time t > 0, a buyer (opponent trader) certainly appears at time t − 1

(next point in time), i.e., the buyer appearing probability λ = 1 (see A5(p.7) ).

A3. Prices ξ, ξ′, ξ′′, · · · which successively appearing buyers in M:1[R][E] propose and reservation prices ξ, ξ′, ξ′′, · · · which
successively appearing buyers in M:1[P][E] have been both assumed to be independent identically distributed random

variables having a known continuous probability distribution function F (ξ) = Pr{ξ ≤ ξ} (see A8(p.8) ).

A4. Both terminal quitting penalty ρ and intervening quitting penalty ρ are not available (see A6(p.7) ).

A5. The selling process stops at the point in time when the asset is sold to an appearing buyer (see A3(p.7) ).

- time• • • • • • •
01· · ·t− 1tt + 1t + 2

ξ
z′

6

M:1[R][E]: buying price w proposed by an appearing buyer (opponent trader)
M:1[P][E]: buying price z proposed by the seller (leading trader)

6
?
s

?
s

previous present next deadline

search cost

Figure 4.1.1: M:1[R][E] and M:1[P][E]

The objective is to maximize the total expected present discounted profit, i.e., the expected present discounted value of the

price for which the asset is sold, minus the total expected present discounted value of the search costs which will be paid until

the process stops with selling the asset.

Remark 4.1.1

(a) The starting time τ must be greater than 0, i.e., τ > 0 for the following reason. If τ = 0, there exists no buyer at time 0,
hence the process must stop without selling the asset, which contradicts A2(p.7) .

(b) Suppose the process has proceeded up to time 1. Then, since the search is conducted at that time due to A1(p.13) , a buyer
certainly appears at time 0 due to A2(p.13) . Then, at time 0 (deadline):

1. In M:1[R][E], due to A2(p.7) the seller must sell the asset to the buyer however small the price proposed by the buyer
may be.

2. In M:1[P][E], the seller must propose a price a to the buyer where a is the lower bound of the distribution function F
for the reservation price ξ of the buyer (see Figure 2.1.2(p.8) ). Then, the buyer certainly buys the asset.

†The case with n = 1.
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4.1.1.2 M̃:1[R][E] and M̃:1[P][E]
The two are the models of the asset buying problem, each of which is the inverse of the asset selling problem in Section 4.1.1.1,

defined by the following assumptions:

A1. Once the process initiates, at every point in time after that it is enforced to conduct the search for sellers, hence the search

cost s ≥ 0 is paid at every point in time.

A2. After the search has been conducted at a point in time t > 0, a seller (opponent trader) certainly appears at time t − 1

(next point in time), i.e., the seller appearing probability λ = 1.

A3. Prices ξ, ξ′, ξ′′, · · · which successively appearing sellers in M̃:1[R][E] propose and reservation prices ξ, ξ′, ξ′′, · · · which
successively appearing sellers in M̃:1[P][E] have been both assumed to be independent identically distributed random

variables having a known continuous probability distribution function F (ξ) = Pr{ξ ≤ ξ}.

A4. Both terminal quitting penalty ρ and intervening quitting penalty ρ are not available.

A5. The buying process stops at the point in time when the asset is bought by an appearing seller.

- time• • • • • • •
01· · ·t− 1tt + 1t + 2

ξ
z′

6

M̃:1[R][E]: selling price w proposed by an appearing seller (opponent trader)

M̃:1[P][E]: selling price z proposed by the seller (leading trader)

66
s

6
sprevious

present next

deadline

Figure 4.1.2: M̃:1[R][E] and M̃:1[P][E]

The objective is to minimize the total expected present discounted cost, i.e., the expected present discounted value of the price

for which the asset is bought, plus the total expected present discounted value of the search costs which will be paid until the

process stops with buying the asset.

Remark 4.1.2 Herein it should be noted that the direction of the vector representing a trading price ξ or z′ and the direction
of the vector representing a search cost s are converse in Figures 4.1.1 (selling model) and identical in 4.1.2 (buying model).

4.1.2 Search-Allowed-Model 1: Q⟨M :1[A]⟩ = {M:1[R][A], M:1[P][A], M̃:1[R][A], M̃:1[P][A]}

4.1.2.1 M:1[R][A] and M:1[P][A]
The two are the same as M:1[R][E] and M:1[P][E] in Section 4.1.1.1 only except that A1(p.13) is changed into as follows:

A1. At every point in time t > 0, it is allowed to skip the search (see Concept 2cii(p.10) (s-A-case)); in other words, the seller has

an option whether to conduct the search or to skip.

Remark 4.1.3

(a) The starting time τ must be greater than 0, i.e., τ > 0 for the same reason as in Remark 4.1.1(a).

(b) Suppose the process has proceeded up to time t = 1. Then, if the search is skipped at that time, no buyer appears
at time t = 0, hence the seller is faced with the situation of having to quit the process without selling the asset, which
contradicts A2(p.7) . Accordingly, the search must be necessarily conducted at time t = 1; as a result, a buyer certainly appears
at time 0 due to the assumption A2.

4.1.2.2 M̃:1[R][A] and M̃:1[P][A]
The two are the same as M̃:1[R][E] and M̃:1[P][E] in Section 4.1.1.2 only except that after the process has initiated, it is allowed

to skip the search.
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4.2 Model 2

4.2.1 Search-Enforced-Model 2: Q⟨M :2[E]⟩ = {M:2[R][E], M:2[P][E], M̃:2[R][E], M̃:2[P][E]}
The quadruple models are the same as in Section 4.1.1.1 only except that the assumptions A2(p.13) and A4(p.13) are changed into

as follows:

A2. After the search has been conducted at time t > 0, a buyer appears at the next point in time with a probability λ ≤ 1.

A4. The terminal quitting penalty ρ is available.

- time• • • • • • •
01· · ·t− 1tt + 1t + 2

ξ
z′

6
6
ρ

M:1[R][E]: buying price w proposed by an appearing buyer (opponent trader)
M:1[P][E]: buying price z proposed by the seller (leading trader)

6
?
s

?
s

previous present next deadline

search cost

�λ

-
1 − λ

Figure 4.2.1: M:2[R][E],M:2[P][E], M̃:2[R][E], and M̃:2[P][E]

Remark 4.2.1 In this model it is possible to stop the process by accepting the terminal quitting penalty ρ at time 0, hence
the starting time τ = 0 is permitted since the leading trader can quit the process with accepting the ρ at time 0 even if no
opponent trader exists at time 0. Accordingly, in these models it follows that the starting time τ is greater than or equal to 0,
i.e., τ ≥ 0.

4.2.2 Search-Allowed-Model 2: Q⟨M :2[A]⟩ = {M:2[R][A], M:2[P][A], M̃:2[R][A], M̃:2[P][A]}
The quadruple models are the same as in Section 4.2.1 only except that A1(p.13) is changed as follows:

A1. After the process has initiated, it is allowed to skip the search at every point in time t > 0.

4.3 Model 3

4.3.1 Search-Enforced-Model 3: Q⟨M :3[E]⟩ = {M:3[R][E], M:3[P][E], M̃:3[R][E], M̃:3[P][E]}
The quadruple models are the same as in Section 4.2.1 only except that the assumption A4(p.15) is changed as follows:

A4. In addition to the terminal quitting penalty ρ, the intervening quitting penalty ρ is also available.

- time• • • • • • •
01· · ·t− 1tt + 1t + 2
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M:1[R][E]: buying price w proposed by an appearing buyer (opponent trader)
M:1[P][E]: buying price z proposed by the seller (leading trader)
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Figure 4.3.1: M:3[R][E],M:3[P][E], M̃:3[R][E], and M̃:3[P][E]

4.3.2 Search-Allowed-Model 3: Q⟨M :3[A]⟩ = M:3[R][A], M:3[P][A], M̃:3[R][A], M̃:3[P][A]
The quadruple models are the same as in Section 4.3.1 only except that after the process has initiated, it is allowed to skip the

search.

4.4 Parameter and Parameter Space
Let us refer to λ ∈ (0, 1], β ∈ (0, 1], s ∈ [0,∞), and ρ ∈ (−∞,∞) as the parameter of models, all of which are independent of

the distribution function F . Then, let p = (λ, β, s) for Model 1 and p = (λ, β, s, ρ) for Models 2,3, called the parameter vector,

and let us represent the set of all possible p’s by

P = {p
∣∣ λ = 1, 0 < β ≤ 1, 0 ≤ s} for Model 1, (4.4.1)

P = {p
∣∣ 0 < λ ≤ 1, 0 < β ≤ 1, 0 ≤ s, −∞ < ρ <∞} for Models 2,3, (4.4.2)

called the parameter space.

‡Cartesian product.
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Definition 4.4.1 (total-space) Let us consider the following product (Cartesian product):

P ×F = {(p, F )
∣∣ p ∈P, F ∈ F}, (4.4.3)

called the total-space, depicted as the deformative circle in Figure 4.4.1 below.
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P ×F

Figure 4.4.1: Total-space P ×F

4.5 Different Variations
Different variations can be considered for the models that were defined in the previous sections.

� No-Recall-Model In Section 4.1.1.1 we provided the definition of the most textbookish and basic no-recall-model. Below

let us show its some variations.

⟨1⟩ Limited search budget [25,Iku1992][0236] † This is the model in which the total amount of budget that can be invested in

the search activities is limited. Then, how to allocate the limited budget among search activities in all points in time over

the entire planning horizon ?

⟨2⟩ Price mechanism switching [17,Ee2006][0033] [15,Ee2004][0413]∗ This is the model in which the price mechanism can be

switched between R-mechanism and P-mechanism at every point in time over the planning horizon.

⟨3⟩ Several search areas [26,Iku1995][0261] ‡ For example, let Tokyo, Kyoto, and Osaka be areas in which the leading trader

can search for opponent traders. Suppose he is in Tokyo today. Then, tomorrow, to stay in Tokyo, to move to Kyoto, or to

move to Osaka ?

⟨4⟩ Uncertain deadline [18,Ee2009][0018] In Example 1.1.1(p.3) , let the date of the return home be not yet definite at present; it

may be right now, one week after, or maybe the return directive itself might be countermanded.

� Recall-Model In Section 22.3.1.1.1(p.222) we will provide the three definitions of the most basic recall-models defined in [43,

Sak1961][0005] . Below let us show the three variations of them:

⟨5⟩ Uncertain recall [31,Kar1977][0078] [2,Aki2014][0009] [24,Iku1988][0180] § This is the model in which the recall of opponent

traders once rejected is uncertain.

⟨6⟩ Costly recall [28,Kan1999][0276] ,[29,Kan2005][0034] This is the model in which some cost must be paid to recall opponent

traders once rejected.

⟨7⟩ Reserved recall [41,Sai1998][0275] ,[42,Sai1999][0188] This is the model in which the availability of recall can be reserved by

paying some deposit

Models in the above references are all Model 1, in which the quitting penalty ρ is not available, the search skip is not permitted,

and the initiating time is not introduced. The analyses for models with the quitting penalty ρ, the search skip, and the initiating

time are left as future subjects (see Section 28.3(p.269) ).

� Others In addition to the above variations, we will have other variations in the future which are not yet posed by any

researchers. For example:

⟨8⟩ Multiple assets model This is the model in which multiple assets are traded. In the model, the optimal decision rule

depends on the number of assets that remain without being traded.

⟨9⟩ Lasting effect of search activity This is the model in which the effect of the search activity lasts for a while. The simplest

case of the variation is that its effect disappears with a given probability p at the next point in time; hence it lasts with the

probability 1− p.

⟨10⟩ Search activity impossibility probability For example, as it suddenly rains, you cannot go out to search for buyers.

...

†https://www.orsj.or.jp/˜archive/pdf/e mag/Vol.35 02 172.pdf
∗https://commons.sk.tsukuba.ac.jp/discussion/page/27 No.1098 (2004)
‡https://www.orsj.or.jp/˜archive/pdf/e mag/Vol.38 01 089.pdf
§https://www.orsj.or.jp/˜archive/pdf/e mag/Vol.31 02 145.pdf
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Chapter 5

Underlying Functions

All the functions defined in this chapter are used to derive the systems of optimality equations (see Chapter 6(p.21) ) of the twenty

four models in Table 3.3.1(p.11) .

5.1 Definition

5.1.1 T , L , K , and L of Type R

For any F ∈ F let us define

T (x) = E[max{ξ − x, 0}] (5.1.1)

=
∫∞
−∞ max{ξ − x, 0}f(ξ)dξ, †‡ (5.1.2)

and then define

L (x) = λβT (x)− s, (5.1.3)

K (x) = λβT (x)− (1− β)x− s, § (5.1.4)

L (s) = L (λβµ− s), (5.1.5)

κ = λβT (0)− s (5.1.6)

= L (0) = K (0) = λβT (0)− s (5.1.7)

Let us refer to each of T , L , K , and L as the underlying function of Type R and to κ as the κ-value of Type R. The formula

below will be sometimes used in the rest of the paper.

K (x) + (1− β)x = L (x), (5.1.8)

K (x) + x = L (x) + βx, (5.1.9)

λβE[max{ξ, x}] + (1− λ)βx− s = K (x) + x (5.1.10)

5.1.2 T̃ , L̃ , K̃ , and L̃ of Type R

For any F ∈ F let us define

T̃ (x) = E[min{ξ − x, 0}] (5.1.11)

=
∫∞
−∞ min{ξ − x, 0}f(ξ)dξ, (5.1.12)

and then define

L̃ (x) = λβT̃ (x) + s, (5.1.13)

K̃ (x) = λβT̃ (x)− (1− β)x+ s, (5.1.14)

L̃ (s) = L̃ (λβµ+ s), (5.1.15)

κ̃ = λβT̃ (0) + s (5.1.16)

= L̃ (0) = K̃ (0). (5.1.17)

Let us refer to each of T̃ , L̃ , K̃ , and L̃ as the underlying function of T̃ype R and to κ̃ as the κ̃-value of T̃ype R.

†See [14,DeGroot70][0540] .
‡See Figure A 7.3(p.296) (I) ,
§See Figure A 7.3(p.296) (II) ,
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5.1.3 T , L , K , and L of Type P
For any F ∈ F let us define

p(z) = Pr{z ≤ ξ}, (5.1.18)

T (x) = max
z

p(z)(z − x)† (5.1.19)

and then define
L (x) = λβT (x)− s, (5.1.20)

K (x) = λβT (x)− (1− β)x− s, (5.1.21)

L (s) = L (λβa− s), (5.1.22)

κ = λβT (0)− s (5.1.23)

= L (0) = K (0) (5.1.24)

Let us refer to each of T , L , K , and L as the underlying function of Type P and to κ as the κ-value of Type P. Let us denote
z maximizing p(z)(z − x) by z(x) if it exists, i.e.,

T (x) = p(z(x))(z(x)− x). (5.1.25)

Definition 5.1.1 If there exist multiple z(x), let us define the smallest of them as z(x).

Furthermore, for convenience of later discussions, let us define

a⋆ = inf{x
∣∣ T (x) + x > a} = inf{x

∣∣ T (x) > a− x}, (5.1.26)

x⋆ = inf{x | z(x) > a}. (5.1.27)

Noting that (5.1.18) can be rewritten as p(z) = 1 − Pr{ξ < z} = 1 − Pr{ξ ≤ z} due to the assumption of F being continuous

(see A8(p.8) , we have p(z) = 1− F (z). Accordingly, it can be immediately seen that

p(z)

{
= 1, z ≤ a · · · (1) due to (2.1.2 (1) (p.8) ),

< 1, a < z · · · (2) due to (2.1.2 (2,3)),
(5.1.28)

p(z)

{
> 0, z < b · · · (1), due to (2.1.2 (1,2)),

= 0, b ≤ z · · · (2), due to (2.1.2)3.
(5.1.29)

Example 5.1.1 p(z)(z − x) can be depicted as below.

1

a bx

p(z)

p(z)(z−x)

•
z(x)

z−
x

z
•TP (z(x))

Figure 5.1.1: Graph of p(z)(z − x)

When F is the uniform distribution function, we have

a⋆ = 2a− b (see (A 7.7 (1) (p.297) ) ). (5.1.30)

5.1.4 T̃ , L̃ , K̃ , and L̃ of Type P
For any F ∈ F let us define

p̃(z) = Pr{ξ ≤ z}, (5.1.31)

T̃ (x) = min
z

p̃(z)(z − x), (5.1.32)

†See Figure A 7.4(p.296) .
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and then define

L̃ (x) = λβT̃ (x) + s, (5.1.33)

K̃ (x) = λβT̃ (x)− (1− β)x+ s, (5.1.34)

L̃ (s) = L̃ (λβb+ s), (5.1.35)

κ̃ = λβT̃ (0) + s (5.1.36)

= L̃ (0) = K̃ (0). (5.1.37)

Let us refer to each of T̃ , L̃ , K̃ , and L̃ as the underlying function of T̃ype P and to κ̃ as the κ̃-value of T̃ype P.

Definition 5.1.2 Let us denote z minimizing p̃(z)(z − x) by z̃(x) if it exists, i.e.,

T̃ (x) = p̃(z̃(x))(z̃(x)− x). (5.1.38)

If there exist multiple z̃(x), let us define the largest of them as z̃(x).

Furthermore, for convenience of later discussions, let us define

b⋆ = sup{x
∣∣ T̃ (x) + x < b} = sup{x

∣∣ T̃ (x) < b− x}, (5.1.39)

x̃⋆ = sup{x | z̃(x) < b}. (5.1.40)

Noting that (5.1.31) can be rewritten as p̃(z) = F (z), we can immediately see that

p̃(z)

{
= 0, z ≤ a · · · (1) due to (2.1.2 (1) (p.8) ),

> 0, a < z · · · (2) due to (2.1.2 (2.3)),
(5.1.41)

p̃(z)

{
< 1, z < b · · · (1) due to (2.1.2 (1,2)),

= 1, b ≤ z · · · (2) due to (2.1.2 (3)).
(5.1.42)

5.2 Solutions

(a) Let us define the solutions of the equations L (x) = 0, K (x) = 0, and L (s) = 0, whether Type R or Type P, by xL , xK ,

and sL respectively if they exist, i.e.,

L (xL) = 0 · · · (1), K (xK) = 0 · · · (2), L (sL) = 0 · · · (1). (5.2.1)

If multiple solutions exist for each of the above three equations, we employ the smallest as its solution.

(b) Let us define the solutions of the equations L̃ (x) = 0, K̃ (x) = 0, and L̃ (s) = 0, whether T̃ype R or T̃ype P, by x
L̃ , x

K̃ ,

and sL̃ respectively if they exist.

L̃ (xL̃ ) = 0 · · · (1), K̃ (xK̃) = 0 · · · (2), L̃ ( sL̃) = 0 · · · (1). (5.2.2)

If multiple solutions exist for each of the above three equations, we employ the largest as its solution.

5.3 Primitive Underlying Functions and Derivative Underlying Functions

Sometimes let us refer to each of T - and T̃ -functions as the primitive underlying function and to each of L-, K-, L-, L̃-, L̃-, and
L̃-functions as the derivative underlying function, each of which is defined by use of the primitive underlying function T .

5.4 Identical Representation and Explicit Representation

In the rest of the paper, when we need to distinguish

T , L ,K , L , κ, xL , xK , sL , T̃ , L̃ , K̃ , L̃ , κ̃, x
L̃ , x

K̃ , sL̃ (5.4.1)

between Type R and Type P and between T̃ype R and T̃ype P, let us denote them by

TR , LR , KR , LR , κR, xLR, xKR, sLR, T̃R , L̃R , K̃R , L̃R , κ̃R, xL̃R,
xK̃R,

sL̃R, (5.4.2)
TP , LP , KP , LP , κP, xLP, xKP, sLP, T̃P , L̃P , K̃P , L̃P , κ̃P, xL̃P,

xK̃P,
sL̃P. (5.4.3)

Let us refer to (5.4.1) as the identical representation and to (5.4.2) and (5.4.3) as the explicit representation.
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5.5 Characteristic Vector and Characteristic Element
Let us here define the two vectors, CR consisting of (5.1.3(p.17) )-(5.1.6) and C̃R consisting of (5.1.13(p.17) )-(5.1.16), represented as

respectively

CR = (LR , KR ,LR , κR), C̃R = (L̃R , K̃R , L̃R , κ̃R). (5.5.1)

Likewise, let us define the two vectors, CP consisting of (5.1.20(p.18) )-(5.1.23) and C̃P consisting of (5.1.33(p.19) )-(5.1.36), i.e.,

CP = (LP , KP ,LP , κP), C̃P = (L̃P , K̃P , L̃P , κ̃P). (5.5.2)

Furthermore, adding T - and T̃ -functions to the above vectors, let us define

CT
R = (TR , LR , KR ,LR , κR), C̃T

R = (T̃R , L̃R , K̃R , L̃R , κ̃R), (5.5.3)

CT
P = (TP , LP , KP ,LP , κP), C̃T

P = (T̃P , L̃P , K̃P , L̃P , κ̃P). (5.5.4)

Let us call each of the vectors defined above the characteristic vector and its element the characteristic element. In the identical

representation, the above vectors are all represented by C , C̃ , CT , and C̃T respectively.
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Chapter 6

Systems of Optimality Equations

6.1 Preliminary
In this chapter we derive the system of optimality equations, denoted by SOE for short, for each of the twenty-four models in

Table 3.3.1(p.11) .

Definition 6.1.1 (Conduvt/Skip) For expressional simplicity, below, by Conductt (Skipt) let us represent “Conduct the search
at time t” (“Skip the search at time t”).

Remark 6.1.1 (relationship between SOE and assertion) In general, a model M of a decision process, whether in this
paper or not, has the system of optimality equations, denoted by SOE{M}, which should be said to be a mirror exhaustively
reflecting the entire aspect of the model M. In other words, SOE{M} involves the exhaustive information of the model M as if
a gene has the exhaustive information of a life. This implies that any assertion which is characterized by the sequence {Vt}
generated from SOE{M} can be regarded as an assertion on the model M; conversely, an assertion which is not characterized by
the sequence {Vt} cannot be said to be an assertion on the M.

Below let us represent “buyer (seller) proposing a price w” by “buyer (seller) w” for short.

6.2 Search-Allowed-Model

6.2.1 Model 1

Let us note here that λ = 1 is assumed in this model.

6.2.1.1 M:1[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively. Then, we have

v0(w) = w, (6.2.1)

vt(w) = max{w, Vt}, t > 0, (6.2.2)

where Vt is the maximum of the total expected present discounted profit from rejecting the proposed price w. Then, we have

V1 = βE[v0(ξ)]− s = βE[ξ]− s = βµ− s, (6.2.3)

Vt = max{C : βE[vt−1(ξ)]− s, S : βVt−1}, t > 1, (6.2.4)

where C and S represent the actions of Conducting the search and Skipping the search respectively. Then, since vt−1(ξ) =

max{ξ, Vt−1} = max{ξ− Vt−1, 0}+ Vt−1, we have E[vt−1(ξ)] = T (Vt−1) + Vt−1 for t > 1 (see (5.1.1(p.17) )), hence (6.2.4) can be

written as

Vt = max{βT (Vt−1) + βVt−1 − s, βVt−1}
= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.4(p.17) ) with λ = 1) (6.2.5)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.8(p.17) )). (6.2.6)

� SOE{M:1[R][A]} is given by the set of (6.2.1) – (6.2.4). However, since the sequence {Vt} is generated from the two expressions

(6.2.3) and (6.2.5), due to Remark 6.1.1 it can be reduced to only the two in Table 6.5.1(p.31) (I).

Now, let us here define

St = β(E[vt−1(ξ)]− Vt−1)− s, t > 1. (6.2.7)
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Then, (6.2.4) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 1, (6.2.8)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt). (6.2.9)

From (6.2.2) we can rearrange (6.2.7) as St = β(E[max{ξ, Vt−1}]− Vt−1)− s = βE[max{ξ − Vt−1, 0}]− s. Accordingly, from

(5.1.1(p.17) ) and (5.1.3) with λ = 1 we have

St = βT (Vt−1)− s (6.2.10)

= L(Vt−1), t > 1. (6.2.11)

6.2.1.2 M̃:1[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller w and with no seller respectively. Then, we have

v0(w) = w, (6.2.12)

vt(w) = min{w, Vt}, t > 0, (6.2.13)

where Vt is the minimum of the total expected present discounted cost from rejecting the proposed price w. Then, we have

V1 = βE[v0(ξ)] + s = βE[ξ] + s = βµ+ s, (6.2.14)

Vt = min{βE[vt−1(ξ)] + s, βVt−1}, t > 1. (6.2.15)

Then, since vt−1(ξ) = min{ξ, Vt−1} = min{ξ−Vt−1, 0}+Vt−1, we have E[vt−1(ξ)] = T̃ (Vt−1)+Vt−1 for t > 1 (see (5.1.11(p.17) )),

hence (6.2.15) can be written as

Vt = min{βT̃ (Vt−1) + βVt−1 + s, βVt−1}
= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.14) with λ = 1) (6.2.16)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.14) and (5.1.13) with λ = 1). (6.2.17)

� SOE{M̃:1[R][A]} can be reduced to (6.2.14) and (6.2.16), listed in Table 6.5.1(p.31) (II).

Remark 6.2.1 Note here that the same notations vt(w) and Vt are used for both M:1[R][A] and M̃:1[R][A]. For explanatory
convenience, later on we sometimes represent vt(w) and Vt for M̃:1[R][A] by ṽt(w) and Ṽt respectively. Then (6.2.12)-(6.2.15)
are written as ṽ0(w) = w, ṽt(w) = min{w, Ṽt}, Ṽ1 = βµ+ s, and Ṽt = min{βE[ṽt−1(ξ)] + s, βṼt−1} respectively.
Now, let us here define

S̃t = β(E[vt−1(ξ)]− Vt−1) + s, t > 1. (6.2.18)

Then, (6.2.15) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 1, (6.2.19)
implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (6.2.20)

From (6.2.13) we can rearrange (6.2.18) as S̃t = β(E[min{ξ, Vt−1}]− Vt−1) + s = βE[min{ξ− Vt−1, 0}] + s. Accordingly, from

(5.1.11(p.17) ) and (5.1.13(p.17) ) with λ = 1 we have

S̃t = βT̃ (Vt−1) + s (6.2.21)

= L̃(Vt−1), t > 1. (6.2.22)

6.2.1.3 M:1[P][A]
By vt (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. In this model, since the search must be necessarily conducted at time 1 (see Remark 4.1.3(p.14) (b)), there exists a

buyer at time 0. Suppose the process has proceeded up to time 0. Then, since the seller must necessarily sell the asset at that

time, he must propose the price a† to a buyer appearing at that time (see Remark 4.1.1(p.13) (b2)), thus we have

z0 = a. (6.2.23)

Hence, the profit that the seller obtains at time 0 becomes a, i.e.,

v0 = a. (6.2.24)

†The lower bound of the distribution function for the reservation price (maximum permissible buying price) of the buyer.
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Now, since the search is conducted at time t = 1, we have

V1 = βv0 − s = βa− s. (6.2.25)

In addition, we have

Vt = max{βvt−1 − s, βVt−1}, t > 1. (6.2.26)

If the seller proposes a price z, the probability of a buyer buying the asset is given by p(z) = Pr{z ≤ ξ} (see (5.1.18(p.18) )), hence

we have

vt = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0, (6.2.27)

due to (5.1.19(p.18) ), implying that the optimal price zt which the seller should propose is given by

zt = z(Vt), t > 0, (6.2.28)

due to (5.1.25(p.18) ). Now, since vt−1 = T (Vt−1) + Vt−1 for t > 1 (see (6.2.27)), we can rearrange (6.2.26) as follows

Vt = max{βT (Vt−1) + βVt−1 − s, βVt−1}
= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.21(p.18) ) with λ = 1) (6.2.29)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1, (see (5.1.21) and (5.1.20) with λ = 1) (6.2.30)

� SOE{M:1[P][A]} can be reduced to (6.2.25) and (6.2.29), listed in Table 6.5.1(p.31) (III).

Now, let us here define

St = β(vt−1 − Vt−1)− s, t > 1. (6.2.31)

Then, (6.2.26) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 1, (6.2.32)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt). (6.2.33)

From (6.2.27) and (5.1.20(p.18) ) we can rewrite (6.2.31(p.23) ) as

St = βT (Vt−1)− s (6.2.34)

= L(Vt−1), t > 1. (6.2.35)

6.2.1.4 M̃:1[P][A]
By vt (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. In this model, since the search must be necessarily conducted at time 1 (see Remark 4.1.3(p.14) (b)), there exists a

seller at time 0. Suppose the process has proceeded up to time 0. Then, since the buyer must necessarily buy the asset at that

time, he must propose the price b† to a seller appearing at that time (see Remark 4.1.1(p.13) (b2)), thus we have

z0 = b. (6.2.36)

Hence, the cost that the buyer pays at time 0 becomes b, i.e.,

v0 = b. (6.2.37)

Now, since the search is conducted at time t = 1, we have

V1 = βv0 + s = βb+ s. (6.2.38)
In addition, we have

Vt = min{βvt−1 + s, βVt−1}, t > 1. (6.2.39)

If the buyer proposes a price z, the probability of a seller selling the asset is given by p̃(z) = Pr{ξ ≤ z} (see (5.1.31(p.18) )), hence

we have

vt = min
z
{p̃(z)z + (1− p̃(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (6.2.40)

due to (5.1.32(p.18) ), implying that the optimal price zt which the buyer should propose is given by

zt = z̃(Vt), t > 0, (6.2.41)

†The upper bound of the distribution function for the reservation price (minimum permissible selling price) of the seller
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due to (5.1.38(p.19) ). Now, since vt−1 = T̃ (Vt−1) + Vt−1 for t > 1 (see (6.2.40)), we can rearrange (6.2.39) as

Vt = min{βT̃ (Vt−1) + βVt−1 + s, βVt−1}
= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.34(p.19) ) with λ = 1) (6.2.42)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1. (see (5.1.34) and (5.1.33) with λ = 1) (6.2.43)

� SOE{M̃:1[P][A]} can be reduced to (6.2.38) and (6.2.42), listed in Table 6.5.1(p.31) (IV).

Now, let us here define

S̃t = β(vt−1 − Vt−1) + s, t > 1. (6.2.44)

Then, (6.2.39) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 1, (6.2.45)
implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (6.2.46)

From (6.2.40) and (5.1.33(p.19) ) we can rewrite (6.2.44(p.24) ) as

St = βT̃ (Vt−1) + s (6.2.47)

= L̃(Vt−1), t > 1. (6.2.48)

6.2.2 Model 2

6.2.2.1 M:2[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively. Then we have

v0(w) = max{w, ρ}, (6.2.49)

vt(w) = max{w, Vt}, t > 0, (6.2.50)

where
Vt = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0. (6.2.51)

Let us here define
V0 = ρ. (6.2.52)

Then (6.2.50) holds for t ≥ 0 instead of t > 0, i.e.,

vt(w) = max{w, Vt}, t ≥ 0. (6.2.53)

Since vt−1(ξ) = max{ξ, Vt−1} = max{ξ − Vt−1, 0}+ Vt−1 = T (Vt−1) + Vt−1 for t > 0 (see (5.1.1(p.17) )), from (6.2.51) we have

Vt = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}
= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.4(p.17) )) (6.2.54)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0 (see (5.1.8)). (6.2.55)

� SOE{M:2[R][A]} can be reduced to (6.2.52) and (6.2.54), listed in Table 6.5.3(p.31) (I).

Let us here define
St = λβ(E[vt−1(ξ)]− Vt−1)− s, t > 0. (6.2.56)

Then, (6.2.51) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 0, (6.2.57)
implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (6.2.58)

From (6.2.56) and (6.2.50) we have St = β(E[max{ξ, Vt−1}] − Vt−1) − s = βE[max{ξ − Vt−1, 0}] − s. Accordingly, from

(5.1.1(p.17) ) and (5.1.3(p.17) ) we have

St = βT (Vt−1)− s (6.2.59)

= L(Vt−1), t > 0. (6.2.60)
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6.2.2.2 M̃:2[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller w and with no seller respectively. Then, we have

v0(w) = min{w, ρ}, (6.2.61)

vt(w) = min{w, Vt}, t > 0, (6.2.62)
where

Vt = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0. (6.2.63)

Let us here define
V0 = ρ. (6.2.64)

Then (6.2.62) holds for t ≥ 0 instead of t > 0, i.e.,

vt(w) = min{w, Vt}, t ≥ 0. (6.2.65)

Since vt−1(ξ) = min{ξ, Vt−1} = min{ξ − Vt−1, 0}+ Vt−1 = T̃ (Vt−1) + Vt−1 for t > 0 (see (5.1.11(p.17) )), from (6.2.63) we have

Vt = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}
= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.14(p.17) )) (6.2.66)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 0. (see (5.1.14) and (5.1.13)) (6.2.67)

� SOE{M̃:2[R][A]} can be reduced to (6.2.64) and (6.2.66), listed in Table 6.5.3(p.31) (II).

Let us here define

S̃t = λβ(E[vt−1(ξ)]− Vt−1) + s, t > 0. (6.2.68)

Then, (6.2.63) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 0, (6.2.69)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (6.2.70)

From (6.2.68) and (6.2.62) we have S̃t = β(E[min{ξ, Vt−1}] − Vt−1) + s = βE[min{ξ − Vt−1, 0}] + s. Accordingly, from

(5.1.11(p.17) ) and (5.1.13(p.17) ) we have

S̃t = βT̃ (Vt−1) + s (6.2.71)

= L̃(Vt−1), t > 1. (6.2.72)

6.2.2.3 M:2[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a buyer at time t = 0 (deadline). Then, it must be determined whether to accept the terminal

quitting penalty ρ or to sell the asset to the buyer. If the ρ is accepted, the profit which the seller can obtain is ρ. On the other

hand, since the seller must necessarily sell the asset to the buyer due to A2(p.7) , the price a† must be proposed to the buyer; in

other words, the optimal price to propose at time t = 0 is given by

z0 = a, (6.2.73)

hence the profit which the seller obtains at that time is a. Hence, the profit that the seller obtain at time 0 becomes

v0 = max{ρ, a}. (6.2.74)

Suppose there exists a buyer at a time t > 0. Then, since the reservation price (maximum permissible buying price) of the

buyer is ξ, if the seller proposes a price z, the probability of the buyer buying the asset is given by p(z) = Pr{z ≤ ξ} (see

(5.1.18(p.18) )). Hence we have

vt = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0, (6.2.75)

due to (5.1.19), implying that the optimal selling price zt which the seller should propose is given by

zt = z(Vt), t > 0, (6.2.76)

due to (5.1.25). Finally Vt can be expressed as follows.

†The lower bound of the distribution function for the reservation price (the maximum permissible buying price) of the buyer.
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V0 = ρ, (6.2.77)

Vt = max{λβvt−1 + (1− λ)βVt−1 − s, βVt−1}, t > 0. (6.2.78)

For t = 1 we have
V1 = max{λβv0 + (1− λ)βV0 − s, βV0}

= max{λβmax{ρ, a}+ (1− λ)βρ− s, βρ}
= max{λβmax{0, a− ρ}+ βρ− s, βρ}. (6.2.79)

Since vt−1 = T (Vt−1) + Vt−1 for t > 1 from (6.2.75), we can rearrange (6.2.78) as follows.

Vt = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}
= max{λβT (Vt−1) + βVt−1 − s, βVt−1}
= max{K(Vt−1) + Vt−1, βVt−1} (see (5.1.21(p.18) )) (6.2.80)

= max{K(Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.21) and (5.1.20)). (6.2.81)

� SOE{M:1[P][A]} can be reduced to (6.2.77), (6.2.79), and (6.2.80), listed in Table 6.5.3(p.31) (III).

Now, let us here define

St = λβ(vt−1 − Vt−1)− s, t > 0. (6.2.82)

Then, (6.2.78) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 0, (6.2.83)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt). (6.2.84)

From (6.2.75) and (5.1.20(p.18) ) we have

St = βT (Vt−1)− s (6.2.85)

= L(Vt−1), t > 0. (6.2.86)

6.2.2.4 M̃:2[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a seller at time t = 0 (deadline). Then, it must be determined whether to accept the terminal

quitting penalty ρ or to buy the asset from the seller. If the ρ is accepted, the cost which the buyer pays is ρ. On the other

hand, since the buyer must necessarily buy the asset from the seller due to A2(p.7) , the price b† must be proposed to the seller;

in other words, the optimal price to propose at time t = 0 is given by

z0 = b, (6.2.87)

hence the cost which the buyer pays at that time is b. Hence the cost that the buyer pays at time 0 becomes

v0 = min{ρ, b}. (6.2.88)

Suppose there exists a seller at a time t > 0. Then, since the reservation price (minimum permissible selling price) of the seller

is ξ, if the buyer proposes a price z, the probability of the seller selling the asset is given by p̃(z) = Pr{ξ ≤ z} (see (5.1.31(p.18) )).

Hence we have

vt = min
z
{p̃(z)z + (1− p(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (6.2.89)

due to (5.1.32), implying that the optimal buying price zt which the buyer should propose is given by

zt = z̃(Vt), t > 0, (6.2.90)

due to (5.1.38). Finally Vt can be expressed as follows.

V0 = ρ, (6.2.91)

Vt = min{λβvt−1 + (1− λ)βVt−1 + s, βVt−1}, t > 0. (6.2.92)

For t = 1 we have

†The upper bound of the distribution function for the reservation price (the minimum permissible selling price) of the seller.
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V1 = min{λβv0 + (1− λ)βV0 + s, βV0}
= min{λβmin{ρ, b}+ (1− λ)βρ+ s, βρ}
= min{λβmin{0, b− ρ}+ βρ+ s, βρ}. (6.2.93)

Since vt−1 = T̃ (Vt−1) + Vt−1 for t > 1 from (6.2.89), we can rearrange (6.2.92) as follows.

Vt = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}
= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.34(p.19) )) (6.2.94)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1. (see (5.1.34) and (5.1.33)) (6.2.95)

� SOE{M̃:2[P][A]} can be reduced to (6.2.91), (6.2.93), and (6.2.94), listed in Table 6.5.3(p.31) (IV).

Now, let us here define

S̃t = λβ(vt−1 − Vt−1) + s, t > 0. (6.2.96)

Then, (6.2.92) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 0, (6.2.97)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (6.2.98)

From (6.2.89) and (5.1.33(p.19) ) we have

St = βT̃ (Vt−1) + s t > 0. (6.2.99)

= L̃(Vt−1), t > 0. (6.2.100)

6.2.3 Model 3

Since it is proven in Chapter 20(p.211) that Model 3 is reduced to Model 2, the discussions for this model becomes redundant.

Accordingly, below let us confine only to the derivation of the system of optimality equations.

6.2.3.1 M:3[R][A]
By vt(w) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively, expressed as

v0(w) = max{w, ρ}, (6.2.101)

vt(w) = max{w, ρ, Ut}, t > 0, (6.2.102)

V0 = ρ, (6.2.103)

Vt = max{ρ, Ut}, t > 0, (6.2.104)

where Ut is the maximum of the total expected present discounted profit from rejecting both the price w and intervening quitting

penalty ρ in (6.2.102) and from rejecting the intervening quitting penalty ρ in (6.2.104). Then, Ut can be expressed as

Ut = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0. (6.2.105)

For convenience, let us here define U0 = ρ, hence from (6.2.103) we have

V0 = U0 = ρ. (6.2.106)

Then, it follows that both (6.2.102) and (6.2.104) hold true for t ≥ 0 instead of t > 0, i.e.,

vt(w) = max{w, ρ, Ut}, t ≥ 0, (6.2.107)

Vt = max{ρ, Ut}, t ≥ 0, (6.2.108)

thus (6.2.107) can be expressed as

vt(w) = max{w, Vt}, t ≥ 0. (6.2.109)

Accordingly, since E[vt−1(ξ)] = E[max{ξ, Vt−1}] = E[max{ξ − Vt−1, 0}] + Vt−1 = T (Vt−1) + Vt−1 for t > 0 from (5.1.1(p.17) ),

we can rewrite (6.2.105) as
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Ut = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}
= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.4)) (6.2.110)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0 (see (5.1.8)). (6.2.111)

� SOE{M:3[R][A]} can be reduced to (6.2.106), (6.2.108), and (6.2.110), listed in Table 6.5.5(p.31) (I).

6.2.3.2 M̃:3[R][A]
By vt(w) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t ≥ 0 with a seller w and with no seller respectively, expressed as

v0(w) = min{w, ρ}, (6.2.112)

vt(w) = min{w, ρ, Ut}, t > 0, (6.2.113)

V0 = ρ, (6.2.114)

Vt = min{ρ, Ut}, t > 0, (6.2.115)

where Ut is the minimum of the total expected present discounted cost from rejecting both the price w and intervening quitting

penalty ρ in (6.2.113) and from rejecting the intervening quitting penalty ρ in (6.2.115). Then, Ut can be expressed as

Ut = min{C :λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, S : βVt−1}, t > 0. (6.2.116)

For convenience, let us here define U0 = ρ, hence from (6.2.114) we have

V0 = U0 = ρ. (6.2.117)

Then, it follows that both (6.2.113) and (6.2.115) hold true for t ≥ 0 instead of t > 0, i.e.,

vt(w) = min{w, ρ, Ut}, t ≥ 0, (6.2.118)

Vt = min{ρ, Ut}, t ≥ 0, (6.2.119)

thus (6.2.113) can be expressed as

vt(w) = min{w, Vt}, t ≥ 0. (6.2.120)

Accordingly, since vt−1(ξ) = min{ξ, Vt−1} = E[min{ξ − Vt−1, 0}] + Vt−1 = T̃ (Vt−1) + Vt−1 for t > 0 from (5.1.11(p.17) ), we can

rewrite (6.2.116) as follows.

Ut = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}
= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.14)) (6.2.121)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L̃ (Vt−1), 0}+ βVt−1, t > 0 (see (5.1.14) and (5.1.13)). (6.2.122)

� SOE{M̃:3[R][A]} can be reduced to (6.2.117), (6.2.119), and (6.2.121), listed in Table 6.5.5(p.31) (II).

6.2.3.3 M:3[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a buyer at time t = 0 (deadline). Then, it must be determined whether to accept the terminal

quitting penalty ρ or to sell the asset to the buyer. If the ρ is accepted, the profit which the seller can obtain is ρ. On the other

hand, since the seller must sell the asset to the buyer due to A2(p.7) , the price a† must be proposed to the buyer, in other words,

the optimal price to propose at time t = 0 is given by

z0 = a, (6.2.123)

hence the profit which the seller obtains at that time is a. Hence the profit that the seller obtains at time 0 becomes

v0 = max{ρ, a}. (6.2.124)

Next we have

†The lower bound of the distribution function for the reservation price (the maximum permissible buying price) of the buyer
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vt = max{ρ,Ht}, t > 0, (6.2.125)

V0 = ρ, (6.2.126)

Vt = max{ρ, Ut}, t > 0, (6.2.127)

where Ht and Ut are defined as follows. Firstly Ht is the maximum of the total expected present discounted profit from

rejecting the intervening quitting penalty ρ. Since a buyer exists due to the above definition of vt and since the reservation

price (maximum permissible buying price) of the buyer is ξ, if the seller proposes a price z, the probability of the buyer buying

the asset is given by p(z) = Pr{z ≤ ξ} (see (5.1.18(p.18) )). Hence we have

Ht = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0 (6.2.128)

due to (5.1.19(p.18) ), implying that the optimal selling price zt which the seller should propose is given by

zt = z(Vt), t > 0, (6.2.129)

due to (5.1.25(p.18) ). Finally Ut is the maximum of the total expected present discounted profit from rejecting the intervening

quitting penalty ρ. Since no buyer exists due to the above definition of Vt, it can be expressed as follows.

Ut = max{ C : λβvt−1 + (1− λ)βVt−1 − s, S : βVt−1}, t > 0. (6.2.130)

For t = 1 we have

U1 = max{λβv0 + (1− λ)βV0 − s, βV0}

= max{λβmax{ρ, a}+ (1− λ)βρ− s, βρ}
= max{λβmax{0, a− ρ}+ βρ− s, βρ}. (6.2.131)

Now, from (6.2.128) we have Ht − Vt = T (Vt) for t > 0, hence from (6.2.125) we have vt − Vt = max{ρ − Vt, Ht − Vt} =

max{ρ − Vt, T (Vt)} · · · ((1)) for t > 0. Since Vt ≥ ρ for t > 0 from (6.2.127), we have ρ − Vt ≤ 0 for t > 0. In addition, since

p(b) = 0 due to (5.1.29 (2) (p.18) ), from (5.1.19) we have T (Vt) ≥ p(b)(b− Vt) = 0. Therefore, since ρ− Vt ≤ 0 ≤ T (Vt), from (1)

we have vt − Vt = T (Vt) for t > 0, i.e., vt = T (Vt) + Vt for t > 0, hence vt−1 = T (Vt−1) + Vt−1 for t > 1. Accordingly (6.2.130)

with t > 1‡ can be rearranged as

Ut = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}
= max{K(Vt−1) + Vt−1, βVt−1} (see (5.1.21(p.18) )) (6.2.132)

= max{K(Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.21) and (5.1.20)). (6.2.133)

For convenience, let U0 = ρ. Then, due to (6.2.126) we have

V0 = U0 = ρ, (6.2.134)

hence it follows that (6.2.127) holds true for t ≥ 0 instead of t > 0, i.e.,

Vt = max{ρ, Ut}, t ≥ 0. (6.2.135)

� SOE{M:3[P][A]} can be reduced to (6.2.134), (6.2.135), (6.2.131), and (6.2.132), listed in Table 6.5.5(p.31) (III).

6.2.3.4 M̃:3[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a seller at time t = 0 (deadline). Then, it must be determined whether to accept the terminal

quitting penalty ρ or to buy the asset from the seller. If the ρ is accepted, the cost which the buyer pays at time 0 is ρ. On the

other hand, since the buyer must buy the asset from the seller due to A2(p.7) , the price b† must be is proposed to the seller; in

other words, the optimal price to propose is given by

z0 = b, (6.2.136)

hence the cost which the buyer pays at that time is b. Hence the buyer pays at time 0 becomes

v0 = min{ρ, b} (6.2.137)

‡Instead of t > 0.
†The upper bound of the distribution function for the reservation price (the minimum permissible selling price) of the seller.
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Next we have
vt = min{ρ,Ht}, t > 0. (6.2.138)

V0 = ρ, (6.2.139)

Vt = min{ρ, Ut}, t > 0, (6.2.140)

where Ht and Ut are defined as follows. Firstly Ht is the minimum of the total expected present discounted cost from rejecting

the intervening quitting penalty ρ. Since a seller exists due to the above definition of vt and since the reservation price (minimum

permissible selling price) of the seller is ξ, if the buyer proposes the price z to an appearing seller, the probability of the seller

selling the asset for the price z is p̃(z) = Pr{ξ ≤ z} (see (5.1.31(p.18) )). Hence we have

Ht = min
z
{p̃(z)z + (1− p̃(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (6.2.141)

due to (5.1.32(p.18) ), implying that the optimal buying price which the buyer should pay is given by

zt = z̃(Vt), t ≥ 0, (6.2.142)

due to (5.1.38(p.19) ). Finally Ut is the minimum of the total expected present discounted cost from rejecting the intervening

quitting penalty ρ. Since no seller exists due to the above definition of Vt, it can be expressed as follows.

Ut = min{C : λβvt−1 + (1− λ)βVt−1 + s, S : βVt−1}, t > 0. (6.2.143)

For t = 1 we have
U1 = min{λβv0 + (1− λ)βV0 + s, βV0}

= min{λβmin{ρ, b}+ (1− λ)βρ+ s, βρ}
= min{λβmin{0, b− ρ}+ βρ+ s, βρ}. (6.2.144)

Now, from (6.2.141) we have Ht − Vt = T̃ (Vt) for t > 0, hence from (6.2.138) we have vt − Vt = min{ρ − Vt, Ht − Vt} =

min{ρ − Vt, T̃ (Vt)} · · · ((2)) for t > 0. Since Vt ≤ ρ for t > 0 from (6.2.140), we have ρ − Vt ≥ 0 for t > 0. In addition, since

p̃(a) = 0 due to (5.1.41 (1) (p.19) ), from (5.1.32(p.18) ) we have T̃ (Vt) ≤ p̃(a)(a− Vt) = 0. Therefore, since ρ− Vt ≥ 0 ≥ T̃ (Vt), from
(2) we have vt − Vt = T̃ (Vt) for t > 0, i.e., vt = T̃ (Vt) + Vt for t > 0, hence vt−1 = T̃ (Vt−1) + Vt−1 for t > 1. Accordingly

(6.2.143) with t > 1 can be rearranged as

Ut = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + Vt−1) + βVt−1 + s, βVt−1}
= min{K̃(Vt−1) + Vt−1, βVt−1} (see (5.1.34)) (6.2.145)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1, t > 1

= max{L̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.34(p.19) ) and (5.1.33(p.19) )) (6.2.146)

(6.2.147)
For convenience, let U0 = ρ. Then, due to (6.2.139) we have

V0 = U0 = ρ, (6.2.148)

hence it follows that (6.2.140) holds true for t ≥ 0 instead of t > 0, i.e.,

Vt = min{ρ, Ut}, t ≥ 0. (6.2.149)

� SOE{M̃:3[R][A]} can be reduced to (6.2.148), (6.2.149), (6.2.144), and (6.2.145), listed in Table 6.5.5(p.31) (IV).

6.3 Search-Enforced-Model
In s-E-model (M:x[X][E] and M̃:x[X][E] with x = 1, 2, 3 and X = R,P) a leading trader needs to make no decision regarding whether

or not to conduct the search. This implies that eliminating the terms related to this decision from the systems of optimality

equations in s-A-model (SOE{M:x[X][A]} and SOE{M̃:x[X][A]}) produces SOE{M:x[X][E]} and SOE{M̃:x[X][E]} respectively. Noting

this, from Tables 6.5.1, 6.5.3, and 6.5.5 we can immediately obtain the systems of optimality equations for s-E-model, which are

given by Tables 6.5.2, 6.5.4, and 6.5.6.

6.4 Assertion and Assertion System
In general, let us call a description on whether or not a given statement is true the assertion, denoted by A, and a set consisting

of some assertions the assertion system, denoted by A . In addition, let us denote an assertion and an assertion system for a

given Model by respectively A{Model} and A {Model}.
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6.5 Summary of the System of Optimality Equations SOE’s

Model 1
Table 6.5.1: Search-Allowed-Model 1

(I) SOE{M:1[R][A]}
V1 = βµ− s, (6.5.1)

Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.2)

(II) SOE{M̃:1[R][A]}
V1 = βµ + s, (6.5.3)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.4)

(III) SOE{M:1[P][A]}
V1 = βa− s, (6.5.5)

Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.6)

(IV) SOE{M̃:1[P][A]}
V1 = βb + s, (6.5.7)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.8)

Table 6.5.2: Search-Enforced-Model 1

(I) SOE{M:1[R][E]}
V1 = βµ− s, (6.5.9)

Vt = K(Vt−1) + Vt−1, t > 1. (6.5.10)

(II) SOE{M̃:1[R][E]}
V1 = βµ + s, (6.5.11)

Vt = K̃(Vt−1) + Vt−1, t > 1. (6.5.12)

(III) SOE{M:1[P][E]}
V1 = βa− s, (6.5.13)

Vt = K(Vt−1) + Vt−1, t > 1, (6.5.14)

(IV) SOE{M̃:1[P][E]}
V1 = βb + s, (6.5.15)

Vt = K̃(Vt−1) + Vt−1, t > 1, (6.5.16)

Model 2
Table 6.5.3: Search-Allowed-Model 2

(I) SOE{M:2[R][A]}
V0 = ρ, (6.5.17)

Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 0. (6.5.18)

(II) SOE{M̃:2[R][A]}
V0 = ρ, (6.5.19)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0. (6.5.20)

(III) SOE{M:2[P][A]}
V0 = ρ, (6.5.21)

V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}, (6.5.22)

Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.23)

(IV) SOE{M̃:2[P][A]}
V0 = ρ, (6.5.24)
V1 = min{λβmin{0, b− ρ}+ βρ + s, βρ}, (6.5.25)
Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.26)

Table 6.5.4: Search-Enforced-Model 2

(I) SOE{M:2[R][E]}
V0 = ρ, (6.5.27)

Vt = K(Vt−1) + Vt−1, t > 0, (6.5.28)

(II) SOE{M̃:2[R][E]}
V0 = ρ, (6.5.29)

Vt = K̃(Vt−1) + Vt−1, t > 0, (6.5.30)

(III) SOE{M:2[P][E]}
V0 = ρ, (6.5.31)

V1 = λβmax{0, a− ρ}+ βρ− s, (6.5.32)

Vt = K(Vt−1) + Vt−1, t > 1, (6.5.33)

(IV) SOE{M̃:2[P][E]}
V0 = ρ, (6.5.34)

V1 = λβmin{0, b− ρ}+ βρ + s, (6.5.35)

Vt = K̃(Vt−1) + Vt−1, t > 1, (6.5.36)

Model 3
Table 6.5.5: Search-Allowed-Model 3

(I) SOE{M:3[R][A]}
V0 = U0 = ρ, (6.5.37)

Vt = max{ρ, Ut}, t ≥ 0, (6.5.38)

Ut = max{K(Vt−1) + Vt−1, βVt−1}, t > 0. (6.5.39)

(II) SOE{M̃:3[R][A]}
V0 = U0 = ρ, (6.5.40)

Vt = min{ρ, Ut}, t ≥ 0, (6.5.41)

Ut = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0. (6.5.42)

(III) SOE{M:3[P][A]}
V0 = U0 = ρ, (6.5.43)

Vt = max{ρ, Ut}, t ≥ 0, (6.5.44)

U1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}, (6.5.45)

Ut = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.46)

(IV) SOE{M̃:3[P][A]}
V0 = U0 = ρ, (6.5.47)

Vt = min{ρ, Ut}, t ≥ 0, (6.5.48)

U1 = min{λβmin{0, b− ρ}+ βρ + s, βρ}, (6.5.49)

Ut = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.5.50)

Table 6.5.6: Search-Enforced-Model 3

(I) SOE{M:3[R][E]}
V0 = U0 = ρ, (6.5.51)

Vt = max{ρ, Ut}, t ≥ 0, (6.5.52)

Ut = K(Vt−1) + Vt−1, t > 0. (6.5.53)

(II) SOE{M̃:3[R][E]}
V0 = U0 = ρ, (6.5.54)

Vt = min{ρ, Ut}, t ≥ 0, (6.5.55)

Ut = K̃(Vt−1) + Vt−1, t > 0. (6.5.56)

(III) SOE{M:3[P][E]}
V0 = U0 = ρ, (6.5.57)

Vt = max{ρ, Ut}, t ≥ 0, (6.5.58)

U1 = λβmax{0, a− ρ}+ βρ− s, (6.5.59)

Ut = K(Vt−1) + Vt−1, t > 1. (6.5.60)

(IV) SOE{M̃:3[P][E]}
V0 = U0 = ρ, (6.5.61)

Vt = min{ρ, Ut}, t ≥ 0, (6.5.62)

U1 = λβmin{0, b− ρ}+ βρ + s, (6.5.63)

Ut = K̃(Vt−1) + Vt−1, t > 1. (6.5.64)
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Chapter 7

Optimal Decision Rules

7.1 Five Kinds of Points in Time
To start with, let us note herein that the optimal decision rule prescribed for each model in Table 3.3.1(p.11) is closely related to

the following four kinds of points in time (see Concept 1(p.9) ).

1. Recognizing time tr ≥ 0,

2. Starting time ts ≥ 0, represented by τ , i.e., τ = ts,

3. Initiating time τ ≥ ti ≥ 0, sometimes represented by t,

4. Deadline td = 0, the final point in time of the decision process. Here by tqd let us denote the smallest of all possible

initiating times, called quasi-deadline, where

tqd = 1 for Model 1 (see Remark 4.1.1(p.13) (a)), (7.1.1)

tqd = 0 for Model 2 (see Remark 4.2.1(p.15) ). (7.1.2)

Model 1-• • • • • • • • • • • • • time· · · · · · td = 0tqd = 1ti = tts = τtr

initiating timestarting timerecognizing time
quasi-deadline

deadline

Model 2-• • • • • • • • • • • • • time· · · · · · td = 0
tqd = 0

ti = tts = τtr

initiating timestarting timerecognizing time
quasi-deadline

deadline

Figure 7.1.1: Four kinds of points in time

Remark 7.1.1 In Chapter 20(p.211) we will show the following two facts:

1. It becomes optimal to accept the intervening quitting penalty ρ at the starting time τ and then stop the process,

2. Model 3 is reduced to Model 2, hence it becomes redundant to discuss any more for Model 3. For this reason, in this chapter
we consider only Model 1 and Model 2.

Remark 7.1.2 (finite planning horizon vs. infinite planning horizon) In the present paper we consider only models
with the finite planning horizon. Our basic standpoint over the whole of this paper lies in a grim reality that a process with the
infinite planning horizon is a product of fantasy created by mathematics, which does not exist in the real world at all; in fact,
it is an inanity to consider a model with the planning horizon of more than 135 hundred millions years. However, we can have
the two reasons for which it becomes still meaningful to discuss the model with the infinite planning horizon. One is that it can
become an approximation for the process with an enough long (finite) planning horizon, the other is that results obtained from
it can provide a meaningful information for the analyses of models with the finite planning horizon (see Section 27.4(p.267) ).

7.2 Four Kinds of Decisions
Here let us recall the four kinds of decision rules that were prescribed in Section 3.5(p.12) .

7.2.1 Whether or Not to Accept the Proposed Price

This is the decision only for R-model. In M:1[R][A] and M:2[R][A] (S-model) let Acceptt⟨w⟩ and Rejectt⟨w⟩ denote “Accept a

price w at time t” and “Reject a price w at time t” respectively. Here suppose that a buyer appearing at a time t has proposed

a buying price w. Then, from (6.2.2(p.21) ) and (6.2.50(p.24) ) we see

w ≥ (≤)Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩). (7.2.1)

Similarly, in M̃:1[R][A] and M̃:2[R][A] (B-model), from (6.2.13(p.22) ) and (6.2.62(p.25) ) we see

w ≤ (≥)Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩). (7.2.2)
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From the above we see that the reservation-price for each of the above models is given by

Vt. (7.2.3)

By At(w) and Rt(w) let us represent here the profits (costs) in S-model (B-model) from respectively accepting and rejecting the

price w proposed at time t. Then, we have At(w) = w and Rt(w) = Vt. Furthermore, let us define

∆t(w)
def
= At(w)−Bt(w) = w − Vt. (7.2.4)

Accordingly, it follows that

∆t(w) ≥ (≤) 0⇔ w ≥ (≤) Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩) (S-model), (7.2.5)

∆t(w) ≤ (≥) 0⇔ w ≤ (≥) Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩) (B-model). (7.2.6)

7.2.2 What Price to Propose

This is the decision only for P-model. In M:1[P][A] (M:2[P][A]) the optimal selling price which a seller who is a leading trader

should propose at a time t is given by

zt = z(Vt) (see (6.2.28(p.23) ) ((6.2.76(p.25) ))). (7.2.7)

Similarly, in M̃:1[P][A] (M̃:2[P][A]) the optimal buying price which a buyer who is a leading trader should propose at a time t is

given by

zt = z̃(Vt) (see (6.2.41(p.23) ) ((6.2.90(p.26) ))). (7.2.8)

7.2.3 Whether or not to Conduct the Search

This is the decision only for s-A-model (see C2cii(p.10) ). Then, the decision rule is given by (6.2.9(p.22) ), (6.2.20(p.22) ), (6.2.33(p.23) ),

(6.2.46(p.24) ), (6.2.58(p.24) ), (6.2.70(p.25) ), (6.2.84(p.26) ), and (23.2.4(p.242) ).

Remark 7.2.1 (posterior-skip-of-search (pSkip)) Figure 7.2.1(I) below sketches the case that once the search-conduct
starts at the optimal initiating time t∗τ , continue it up to the quasi-deadline tqd = 1 (Model 1); it will be known that this case
occurs everywhere in the paper. Contrary to this, Figure 7.2.1(II) schematizes the case that once the search-conduct starts at
the optimal initiating time t∗τ , continue it for a while and then switches to the search-skip at a certain point in time t′; this is
a very rare case that occurs only in Tom’s 19.1.4(p.144) (b3iii), 19.1.12(p.154) (b3iii), and 19.1.15(p.155) (b3iii). Let us call the case the
posterior-skip-of-search, represented by pSkip for short.

(I) -• • • • • • • • • • • • • • • • • • • • • •

recognizing time starting time deadline

tr tr − 1 τ τ − 1

optimal initiating time

t∗τ t∗τ − 1 01· · · · · · ︸ ︷︷ ︸
search-conduct

(II) -• • • • • • • • • • • • • • • • • • • • • •

recognizing time starting time deadline

tr tr − 1 τ τ − 1

optimal initiating time

t∗τ t∗τ − 1 · · · t′ t′ − 1 · · · 01· · · · · · ︸ ︷︷ ︸
search-conduct

↓

search-skip
(posterio-skip-of-search)

Figure 7.2.1: Posterio-Skip-of-Search (pSkip)

7.2.4 When to Initiate the Process (Optimal Initiating Time)

This is a notion only for ii-A-case (see Concept 2bii(p.9) ) defined in both s-E-case and s-A-case (see Concept 2ai,2aii) and in both

R-model and P-model.

7.2.4.1 Revolutionary Switch of Conventional Conception

Throughout the whole of the present paper we treat an activity of “decision-making” as “one unit” which is included in a given

space; let us call the unit the decision-making-unit and the space the decision-making-universe, or the decision-unit and the

decision-universe respectively for short. Of course, it can be also permitted that multiple decision-units are included within

a given decision-universe. What should not be forgot herein is that all decision-units in an decision-universe can be treated

independently each other and that the problem of selecting the best decision-units among them can raise. At a glance, the above

scenario seems to be non-descriptive; however, this perspective is what should be said to be a “revolutionary right-about-face”

in the sense that the switch of this way of viewing yields the novel “null-time-zone” (see Section 7.2.4.6(p.36) ), which furthermore

causes the unbelievable event of “deadline-falling” (see Section 7.2.4.7(p.36) ).

7.2.4.2 Definition

The definition below is only for S-model with tqd = 1 (i.e., Model 1 (tqd = 0 for Model 2)). Suppose that its process has started

at a starting time τ and that a seller (leading trader) has determined to initiate the process at a time t (τ ≥ t ≥ tqd = 1), i.e.,

τ − t periods hence. Then, the total expected present discounted profit at the starting time τ is given by (see Section 20(p.266)

for the definition of Vt)

Itτ
def
= βτ−tVt, τ ≥ t ≥ tqd.

† (7.2.9)
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By t∗τ let us denote t maximizing Itτ on τ ≥ t ≥ tqd, i.e.,

I
t∗τ
τ = max

τ≥t≥tqd
Itτ or equivalently I

t∗τ
τ ≥ Itτ , τ ≥ t ≥ tqd. (7.2.10)

Let us call the t∗τ the optimal initiating time, denoted by OITτ ⟨t∗τ ⟩△. If

I
t∗τ
τ > Itτ for t ̸= t∗τ , (7.2.11)

it is called the strictly optimal initiating time, denoted by OITτ ⟨t∗τ ⟩N. Throughout the paper, let us employ the following

preference rule.

Preference Rule 7.2.1 Let Itτ = It−1
τ for a given t. Then, the seller prefers t − 1 to t as an initiating time, implying that

“Postpone the initiation of the process so long as it is not unprofitable to do so.”

Remark 7.2.2 (implication of the strict optimality of t∗τ) Assume that the optimal initiating time t∗τ is strict in a sense

of (7.2.11). Then, since I
t∗τ
τ > I

t∗τ−1
τ , we have βτ−t∗τVt∗τ > βτ−t∗τ+1Vt∗τ−1, so Vt∗τ > βVt∗τ−1. Accordingly, since max{St∗τ , 0} > 0

from (6.2.8(p.22) ), we have St∗τ > 0, implying that it becomes strictly optimal to conduct the search; in other words, it is not
allowed to skip the search under the above assumption.

7.2.4.3 β-adjusted sequence Vβ[τ ]

First, let us define the sequence consisting of Vτ , Vτ−1, Vτ−2, · · · , Vtqd by V[τ ]
def
= {Vτ , Vτ−1, Vτ−2, · · · , Vtqd}, called the original

sequence and let

t∗′τ = argmaxV[τ ] = argmax{Vτ , Vτ−1, Vτ−2, · · · , Vtqd}.

Next, let us define the sequence Vβ[τ ] = {Vτ , βVτ−1, β
2Vτ−2, · · · , βτVtqd} = {Iττ , Iτ−1

τ , Iτ−2
τ , · · · , Itqdτ }, called the β-adjusted

sequence of V[τ ]. By definition the optimal initiating time t∗τ is given by t attaining the maximum of elements within β-adjusted

sequence Vβ[τ ], i.e.,
t∗τ = argmaxVβ[τ ] = argmax{Vτ , βVτ−1, β

2Vτ−2, · · · , βτVtqd}

Note herein that the monotonicity of the original sequence V[τ ] is not always inherited to the β-adjusted sequence Vβ[τ ], i.e.,

t∗τ ̸= t∗′τ (see Section A5.2.2(p.292)).

7.2.4.4 Three Possibilities

Below let us show the three types of OIT caused by the non-inheritance of monotonicity.

1. Degeneration to the starting time τ

Let t∗τ = τ , i.e., it is optimal to initiate the process at the starting time τ , denoted by ⃝⃝s . Then, the optimal initiating

time t∗τ is said to degenerate to the starting time τ , represented by ⃝s dOITsτ ⟨τ⟩ △ (⃝⃝s △ for short). If the optimal initiating

time t∗τ is strict (see (7.2.11)), it is called the strictly degenerate OIT, represented by ⃝s dOITsτ ⟨τ⟩ N (⃝⃝s N for short).

2. Non-degeneration (τ > t∗τ > tqd)

Let τ > t∗τ > tqd, i.e., the optimal initiating time is between the starting time τ and the quasi-deadline tqd, denoted by ⃝⃝∗ .

Then, the optimal initiating time t∗τ is said to be non-degenerate OIT, represented by ⃝⃝∗ ndOITτ ⟨t∗τ ⟩ △ (⃝⃝∗ △ for short). If

Iττ = Iτ−1
τ = · · · = I

t∗τ
τ ≥ I

tqd
τ as a special case, it is said to be indifferent non-degenerate OIT (see Preference Rule 7.2.1),

represented by ⃝⃝∗ ndOITτ ⟨t∗τ ⟩ ∥ (⃝⃝∗ ∥ for short). If Iττ < I
t∗τ
τ > I

tqd
τ , it is said to be strictly non-degenerate OIT, represented

by ⃝⃝∗ ndOITτ ⟨t∗τ ⟩ N (⃝⃝∗ N for short).

3. Degeneration to the quasi-deadline tqd

Let t∗τ = tqd = 1 (0) for Model 1 (Model 2), i.e., the optimal initiating time is the quasi-deadline, denoted by•dd . Then, the

optimal initiating time t∗τ is said to degenerate to the quasi-deadline tqd, represented by • dOITdτ ⟨tqd⟩ △ (•dd △ for short). If

it is strict, it is called the strictly degenerate OIT, represented by • dOITdτ ⟨tqd⟩ N (•dd N for short). If Iττ = Iτ−1
τ = · · · = I

tqd
τ ,

the degeneration is said to be indifferent, represented by • dOITdτ ⟨tqd⟩ ∥ (•dd ∥ for short).

7.2.4.5 First Search Conducing Time

For example, consider M:2[R][A] (tqd = 0) with the starting time τ = 6 and suppose that Skip6△, Skip5△, Skip4△, Conduct3N,

Conduct2△, Conduct1△. This means that the first-search-conducting-time (f-SCT for short) is t∗∗τ
def
= 3 · · · ((3)).† In this case, since

S6 ≤ 0, S5 ≤ 0, S4 ≤ 0, S3 > 0, S2 ≥ 0, and S1 ≥ 0 from (6.2.9(p.22) ), we have max{S6, 0} = 0, max{S5, 0} = 0, max{S4, 0} = 0,

max{S3, 0} > 0, max{S2, 0} ≥ 0, and max{S1, 0} ≥ 0. Thus, from (6.2.8(p.22) ) we have V6 = βV5, V5 = βV4, V4 = βV3, V3 > βV2,

V2 ≥ βV1, and V1 ≥ βV0, so V6 = βV5 = β2V4 = β3V3 > β4V2 ≥ β5V1 ≥ β6V0 or equivalently I66 = I56 = I46 = I36 > I26 ≥ I16 ≥ I06
due to (7.2.9), hence we have the optimal-initiating-time t∗τ = 3 · · · ((4)) by definition.

†See Section 20(p.266) for the definition of Vt.
†If such a time does not exist, let t∗∗τ = τ (= 6), i.e., the first-search-conducting-time is the starting time τ itself.
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Alice 2 (first search conducting time) When the story has come up to here, after a moment’s reflection, Alice happened to
conceive of an idea; “Since t∗∗τ = t∗τ = 3 from (3) and (4) , as the optimal initiating time we can employ the first search conducting
time t∗∗τ = 3 instead of t∗τ !”. Then, Dr. Rabbit suddenly appeared and told to her “ Surely you are not incorrect, Miss Alice !.
However, the profit attained by initiating the process at the first search conducting time t∗∗τ is the same as the profit attained by
initiating the process at the optimal initiating time t∗τ ; in other words, since the former profit does not become greater than the latter
profit at all, we have no reason why t∗∗τ must be used instead of t∗τ ; accordingly, it suffices to employ t∗τ !! Miss Alice !!! ”. And then,
taking a watch out of the waistcoat-pocket and murmuring “Oh dear! Oh dear! I shall be too late for the faculty meeting”, he
again disappeared down the hole.

Alice 3 (jumble of intuition and theory) Moreover, Alice was hit by the following question. For example, suppose that
St < 0 at a time t, meaning that the search-skip becomes strictly optimal at time t. Then, since max{St, 0} = 0, we have
Vt = βVt−1 from (6.2.8(p.22) ), meaning that initiating the process at the time t becomes indifferent to initiating the process at
time t− 1; but, nevertheless, the search skip becomes strictly optimal ! After having mumbled, letting out a strange noise “Is this
a little bit funny ?”, she gave a shout “Such a laughable affair !”. Then, Dr. Rabbit again suddenly appeared and pedantically told
to Alice “The above two results are both ones based on a theory of mathematics, but your confusion is one caused by an intuition;
there does not exist any logical relationship between the two ! Well, your confusion is what is caused by a jumble of intuition and
theory !!”, and then, he again disappeared down the hole as murmuring “Oh dear! Oh dear! I shall be too late !” (see Numerical

Examples 16.8.2(p.109) and 19.1.1(p.174) ).

7.2.4.6 Null-Time-Zone

The section describes a perplexing situation caused by the optimal initiating time t∗τ . Herein let τ > t∗τ , i.e., the optimal

initiating time t∗τ is not the starting time τ (see Figure 7.2.2 below). This event means that no action of making a decision is

taken at every point in time t = τ, τ − 1, · · · , t∗τ +1. Quite strangely enough, however, no researcher, including also the authors

in the past, has become aware of the existence of this grim reality at all thus far which is caused by the introduction of the

concept of OIT. In other words, it follows that thus far we unwittingly or unconsciously have been falling into the senselessness of

engaging in unnecessary decision-making activities over these points in time. Let us refer to each of τ, τ−1, · · · , t∗τ +1 as the null

point in time and the whole of these times as the null-time-zone, denoted as Nul-TZ (see Concept 1(p.9) and Section 7.2.4.1(p.34) ),

i.e.,

Nul-TZ
def
= ⟨τ, τ − 1, · · · , t∗τ + 1⟩. (7.2.12)

-• • • • • • • • • • • • • • • • • • • • • • time︸ ︷︷ ︸
null-time-zone (Nul-TZ)

recognizing time starting time optimal initiating time (OIT) quasi-deadline tqd

deadline

tr τ τ − 1 t∗τ + 1 t∗τ t∗τ − 1 01· · · · · ·

Figure 7.2.2: Null-time-zone in Model 1 with tqd = 1 (Nul-TZ)

7.2.4.7 Deadline-Falling

Alice 4 (black hole) Hereupon, Alice supposed “If the optimal initiating time t∗τ degenerates to the deadline (time 0), then what
will ever happen ?”, and screamed out “If so, it follows that don’t conduct any decision-making activity up to the deadline !; in
other words, the whole of decision-making activities which are scheduled at the starting time τ come to naught as if being sucked
and falling into the deadline !”. Alice was heavily nonplused and cried “It · · · , it is the same as that black hole into which all
physical matters, even light, are squeezed into ! If so, · · · , a decision process with an infinite planning horizon vanishes away toward
an infinite future !! Oh dear!!! Oh dear !!!! · · · ” She hunkered down, and then buried her head in her hands. Then, Dr. Rabbit
again suddenly appeared and told to her a little bit ungraciously “This is a theoretical result that cannot be denied !.”

In this paper, let us call the “being sucked and falling into the deadline” the “deadline-falling” for short see Section 7.2.4.1(p.34) ),

symbolically represented by•dd -falling. This situation can be depicted as the two figures below.

-• • • • • • • • • • • • • • • • • • • • • •︸ ︷︷ ︸
null-time-zone (Nul-TZ)

recognizing time

optimal initiating time • dOITdτ>1⟨1⟩

deadline

tr tr − 1 τ

starting time

τ − 1 t∗τ = 1 0· · · · · ·
........................................................................

................................................................................
..........................................................................................................



- •dd

Figure 7.2.3: Deadline-falling (•dd ) for Model 1

-• • • • • • • • • • • • • • • • • • • • • •︸ ︷︷ ︸
null-time-zone (Nul-TZ)

recognizing time

optimal initiating time • dOITdτ>1⟨0⟩

deadline

tr tr − 1 ττ

starting time

t∗τ = 0· · · · · ·
.........................................................................

.....................................................................................
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Figure 7.2.4: Deadline-falling (•dd ) for Model 2
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Later on we will see that the•dd -falling is not a rare case but a phenomenon which is very often possible. Taking this fact into

consideration, we will inevitably be led to a serious re-examination and re-consideration of not only the decision processes dealt

with in the present paper but also all of more generalized decision processes, for example, Markovian decision processes [23,

Howard,1960][0528] (see Section A5(p.291) ).

7.3 Strong Assertion and Weak Assertion

Alice 5 (strong assertion and weak assertion) For example, consider a case such as the inequality Iττ ≤ Iτ−1
τ ≤ · · · ≤ I0τ .

In this case, the optimal initiating time is t∗τ = 0 by definition, i.e., • dOITdτ ⟨0⟩ △ (see Preference Rule 7.2.1(p.35) ). However,

this inequality includes the equality Iττ = Iτ−1
τ = · · · = I0τ as a special case. Then, Dr. Rabbit again suddenly appeared and told

to Alice a little bit ungraciously “ If I told that the optimal initiating time can be said to be also the starting time τ !, i.e., t∗τ = τ ,
then what to do with ?, Ms. Alice · · · !! ”, and then, murmuring “Oh dear! Oh dear! I shall be too late for faculty meeting”, he
again disappeared down the rabbit-hole.

In the sense of removing a betwixt and between state from our discussions, needless to say, • dOITdτ ⟨0⟩ N (strictly optimal)

is more desirable than • dOITdτ ⟨0⟩ △ (merely optimal). For this reason, let us call the former the strong assertion and the

latter the weak assertion. From this viewpoint, throughout the paper, we will make an effort, as much as possible, to show the

strictness of optimality.
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Part 2

Integration Theory

This part constructs the integration theory.
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Chapter 8

Flow of the Construction of Integration Theory

8.1 Bird’s-Eye View
This chapter provides a bird’s-eye view of the whole flow through which the integration theory will be constructed in the

successive chapters that follows.

←
Chapter 14(p.93)

Analogy Theorem (R̃↔ P̃)
(Derivation of A {M̃:1[P][A]})

SR→R̃

SR̃→R

SP→P̃

S P̃→P

AR→P AP→R AR̃→P̃ AP̃→R̃

Chapter 9(p.41)

Underlying Functions

↓

Chapter 10(p.47)

Proof of A {M:1[R][A]} -�
Chapter 11(p.55)

Symmetry Theorem (R↔ R̃)
(Derivation of A {M̃:1[R][A]})

?

6

?

6

Chapter 12(p.73)

Analogy Theorem (R↔ P)
(Derivation of A {M:1[P][A]})

-�
Chapter 13(p.83)

Symmetry Theorem (P↔ P̃)
(Derivation of A {M̃:1[P][A]})

Figure 8.1.1: The flow of the construction of the integration theory

The above figure states the following.

◦ In Chapter 9(p.41) , lemmas and corollaries for underlying functions are proven.

◦ In Chapter 10(p.47) , A {M:1[R][A]} is proven by using the results in Chapter 9.

◦ In Chapter 11(p.55) , the symmetry theorem (R↔ R̃) is proven, by which A {M̃:1[R][A]} is derived form A {M:1[R][A]}.
◦ In Chapter 12(p.73) , the analogy theorem (R↔ P) is proven, by which A {M:1[P][A]} is derived form A {M:1[R][A]}.
◦ In Chapter 13(p.83) , the symmetry theorem (P↔ P̃) is proven, by which A {M̃:1[P][A]} is derived form A {M:1[P][A]}.
◦ In Chapter 14(p.93) , the analogy theorem (R̃ ↔ P̃) is proven, which gives the relationship between A {M̃:1[R][A]} and

A {M̃:1[P][A]}.

8.2 Connection with Both Directions

We should especially note here that the flow in Figure 8.1.1 above tells us the following:

1. It is only A {M:1[R][A]} that is directly proven.

2. Each of the remaining three A {M̃:1[R][A]} , A {M:1[P][A]} , and A {M̃:1[P][A]} are derived by applying operations SR→R̃,

AR→P, and SP→P̃ to A {M:1[R][A]} .

3. The above four boxes are connected with both directions (↔ ↕), implying that any given box can be derived from any other

box by applying operations SR→R̃, S R̃→R, SP→P̃, S P̃→P, AR→P, AP→R, AR̃→P̃, and AP̃→R̃.
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Chapter 9

Properties of Underlying Functions

This chapter examines the properties of underlying functions TR , LR , KR , and LR and κR-value defined by

(5.1.1(p.17) )-(5.1.6), which are used to clarify the properties of the optimal decision rules for M:1[R][A] in Chapter 10(p.47) that

follows. Throughout the rest of the paper, in general let us denote an assertion concerning XR = TR , LR , KR ,LR , κR by A{XR}
and an assertion system consisting of some assertions A{XR}’s by A {XR}.

9.1 Primitive Underlying Function TR

Lemma 9.1.1 (A {TR }) For any F ∈ F :

(a) T (x) is continuous on (−∞,∞).
(b) T (x) is nonincreasing on (−∞,∞).
(c) T (x) is strictly decreasing on (−∞, b].
(d) T (x) + x is nondecreasing on (−∞,∞).
(e) T (x) + x is strictly increasing on [a,∞).
(f) T (x) = µ− x on (−∞, a] and T (x) > µ− x on (a,∞).
(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).
(h) T (x) ≥ max{0, µ− x} on (−∞,∞).
(i) T (0) = µ if a > 0 and T (0) = 0 if b < 0.
(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.
(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.
(l) If x < y and a < y, then T (x) + x < T (y) + y.

(m) λβT (λβµ− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1.
(n) a < µ.‡

Proof Firstly, for any x and y let us prove the following two inequalities:

−(x− y)(1− F (y)) ≤ T (x)− T (y) ≤ −(x− y)(1− F (x)), (9.1.1)

(x− y)F (y) ≤ T (x) + x− T (y)− y ≤ (x− y)F (x). (9.1.2)

Then, let T (x, y)
def
= E[(ξ − x)I(ξ > y)] for any x and y where if a given statement S is true, then I(S) = 1, or else I(S) = 0.

Since 1 ≥ I(ξ > y) ≥ 0 for any y by definition and since max{ξ−x, 0} ≥ 0 and max{ξ−x, 0} ≥ ξ−x, we have max{ξ−x, 0} ≥
max{ξ − x, 0}I(ξ > y) ≥ (ξ − x)I(ξ > y), hence from (5.1.1(p.17) ) we get T (x) ≥ E[(ξ − x)I(ξ > y)] = T (x, y). Accordingly,

for any x and y we have T (x) − T (y) ≥ T (x, y) − T (y) = E[(ξ − x)I(ξ > y)] − E[(ξ − y)I(ξ > y)] = −(x − y)E[I(ξ > y)].

Since I(ξ ≤ y) + I(ξ > y) = 1, we have T (x) − T (y) ≥ −(x − y)(E[1 − I(ξ ≤ y)]) = −(x − y)(1 − E[I(ξ ≤ y)]). Then, since

E[I(ξ ≤ y)] =
∫∞
−∞ I(ξ ≤ y)f(ξ)dξ =

∫ y

−∞ 1× f(ξ)dξ =
∫ y

−∞ f(ξ)dξ = F (y), we have T (x)− T (y) ≥ −(x− y)(1− F (y)), hence

the first inequality in (9.1.1) holds. Multiplying both sides of the inequality by −1 leads to −T (x)+T (y) ≤ (x−y)(1−F (y)) or

equivalently T (y)−T (x) ≤ −(y−x)(1−F (y)). Then, interchanging the notations x and y yields T (x)−T (y) ≤ −(x−y)(1−F (x)),

hence the second inequality in (9.1.1) holds. (9.1.2) is immediate from adding x − y to (9.1.1). Let us note here that T (x)

defined by (5.1.1) can be rewritten as

T (x) = E[max{ξ − x, 0}I(a ≤ ξ)] + E[max{ξ − x, 0}I(ξ < a) · · · ((1))

= E[max{ξ − x, 0}I(b < ξ)] + E[max{ξ − x, 0}I(ξ ≤ b)]. · · · ((2))

(a,b) Immediate from the fact that max{ξ − x, 0} is continuous and nonincreasing in x ∈ (−∞,∞) for any given ξ.

‡The self-evident assertion is intentionally added here in order to keep the consistency with Lemma 12.2.1(p.77) (n).
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(c) Let y < x < b, hence x − y > 0. Then, since F (x) < 1 due to (2.1.2 (1,2) (p.8) ), we have −(x − y)(1 − F (x)) < 0, so

T (x) < T (y) due to (9.1.1), i.e., T (x) is strictly decreasing on (−∞, b). Here note that for any given x < b we have T (x) ≥ T (b)

due to (b). Let us assume T (x) = T (b) for a given x < b. Then, for any sufficiently small ε > 0 such that b − x > 2ε we

have b > b − ε > x + ε > x, hence T (b) = T (x) > T (b − ε) ≥ T (b) due to the strict decreasingness shown above and the

nonincreasingness in (b), which is a contradiction. Thus, it must be that T (x) ̸= T (b) for any given x < b, so that we have

T (x) > T (b) for any x < b, hence it follows that T (x) is strictly decreasing on (−∞, b] instead of (−∞, b).

(d) Evident from the fact that T (x) + x = E[max{ξ, x}] from (5.1.1(p.17) ) and that max{ξ, x} is nondecreasing in x for any

ξ.

(e) Let a < y < x, hence F (y) > 0 due to (2.1.2 (2,3) (p.8) ). Then, since (x− y)F (y) > 0, we have T (y) + y < T (x) + x from

(9.1.2), i.e., T (x) + x is strictly increasing on (a,∞). Here note that for any given x > a we have T (a) + a ≤ T (x) + x due to

(d). Let us assume T (a) + a = T (x) + x for a given x > a. Then, for any sufficiently small ε > 0 such that x− a > ε we have

a < a+ ε < x, hence T (a) + a = T (x) + x > T (a+ ε) + a+ ε ≥ T (a) + a due to the strict increasingness shown above and the

nondcreasingness in (d), which is a contradiction. Thus, it must be that T (x) + x ̸= T (a) + a for any given x > a, so that we

have T (x) + x > T (a) + a for any x > a, hence it follows that T (x) + x is strictly increasing on [a,∞) instead of on (a,∞).

(f) Let x ≤ a. If a ≤ ξ, then x ≤ ξ, hence max{ξ − x, 0} = ξ − x, and if ξ < a, then f(ξ) = 0 · · · ((3)) due to (2.1.4 (1) (p.8) ).

Thus, from (1) we have T (x) = E[(ξ − x)I(a ≤ ξ)] + 0. Then, since E[(ξ − x)I(ξ < a)] =
∫ a−
∞ (ξ − x)f(ξ)dξ = 0 due to (3) ,

we have T (x) = E[(ξ − x)I(a ≤ ξ)] + E[(ξ − x)I(ξ < a)] = E[ξ − x] = µ − x, hence the former half is true. Then, since

T (a) = µ− a or equivalently T (a) + a = µ, if a < x, from (e) we have T (x) + x > T (a) + a = µ, hence T (x) > µ− x, thus the

latter half is true.

(g) Let b ≤ x. If b < ξ, then since f(ξ) = 0 due to (2.1.4 (3) (p.8) ), we have E[max{ξ − x, 0}I(b < ξ)] =
∫∞
b+

max{ξ −
x, 0}f(ξ)dξ = 0 and if ξ ≤ b, then since ξ ≤ x, we have max{ξ − x, 0}I(ξ ≤ b) = 0. Accordingly, from (2) we have

T (x) = 0 · · · ((4)), so that the latter half is true. Let x < b. Then, since T (x) > T (b) from (c) and since T (b) = 0 from (4) , we

have T (x) > 0, hence the former half is true.

(h) On (−∞,∞) we have T (x) ≥ µ − x from (f) and T (x) ≥ 0 from (g), hence it follows that T (x) ≥ max{0, µ − x} on

(−∞,∞).

(i) From (5.1.1(p.17) ) and (2.1.4 (1,3) (p.8) ) we have T (0) = E[max{ξ, 0}] = E[max{ξ, 0}I(a ≤ ξ ≤ b)]. Hence, if a > 0, then

T (0) = E[ξI(a ≤ ξ ≤ b)] = E[ξ] = µ and if b < 0, then T (0) = E[0I(a ≤ ξ ≤ b)] = 0.

(j) If β = 1, then βT (x) + x = T (x) + x, hence the assertion is true from (d).

(k) Since βT (x) + x = β(T (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true

from (d).

(l) Let x < y and a < y. If x ≤ a, then T (x) + x ≤ T (a) + a < T (y) + y due to (d,e), and if a < x, then a ≤ x < y, hence

K(x) + x < K(y) + y due to (e). Thus, whether x ≤ a or a < x, we have T (x) + x < T (y) + y

(m) From (5.1.1(p.17) ) we have λβT (λβµ− s)− s = λβE[max{ξ− λβµ+ s, 0}]− s = E[max{λβξ− (λβ)2µ+ λβs, 0}]− s =

E[max{λβξ − (λβ)2µ− (1− λβ)s,−s}], which is nonincreasing in s and strictly decreasing in s if λβ < 1.

(n) Evident.

9.2 Derivative Underlying Functions
Let us define

δ = 1− (1− λ)β. (9.2.1)

Then, due to the assumptions 0 < β ≤ 1 and 1 ≥ λ > 0 we have

δ ≥ 1− (1− λ)× 1 = λ > 0 · · · (1), δ ≤ 1− (1− λ)× 0 = 1 · · · (2). (9.2.2)

Now, from (5.1.3(p.17) ) and (5.1.4) and from Lemma 9.1.1(f) we obtain

L (x)

{
= λβµ− s− λβx on (−∞, a] · · · (1),
> λβµ− s− λβx on (a,∞) · · · (2),

(9.2.3)

K (x)

{
= λβµ− s− δx on (−∞, a] · · · (1),
> λβµ− s− δx on (a,∞) · · · (2).

(9.2.4)

In addition, from (5.1.4(p.17) ) and Lemma 9.1.1(g) we have

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),

= −(1− β)x− s on [b,∞) · · · (2),
(9.2.5)

from which we obtain
K (x) + x ≥ βx− s on (−∞,∞). (9.2.6)
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Then, from (9.2.4 (1)) and (9.2.5 (2)) we get

K (x) + x =

{
λβµ− s+ (1− λ)βx on (−∞, a] · · · (1),
βx− s on [b,∞) · · · (2).

(9.2.7)

Since K (x) = L (x)− (1− β)x and L (x) = K (x) + (1− β)x from (5.1.8), if xL and xK exist, then

K ( xL ) = −(1− β) xL · · · (1), L (xK ) = (1− β)xK · · · (2). (9.2.8)

Lemma 9.2.1 (A {LR })

(a) L (x) is continuous.

(b) L (x) is nonincreasing on (−∞,∞).

(c) L (x) is strictly decreasing on (−∞, b].

(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.

2. (λβµ− s)/λβ ≤ (>) a ⇔ xL = (>) (λβµ− s)/λβ.

Proof (a-c) Immediate from (5.1.3) and Lemma 9.1.1(a-c).

(d) Let s = 0. Then, since L (x) = λβT (x), from Lemma 9.1.1(g) we have L (x) > 0 for b > x and L (x) = 0 for b ≤ x,

hence xL = b by the definition of xL (see Section 5.2(p.19) (a)), thus xL > (≤) x ⇒ L (x) > (=) 0. The inverse is true by

contraposition. In addition, since L (x) = 0 ⇒ L (x) ≤ 0, we have L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

(e1) From (9.2.3 (1)) and the assumptions λ > 0 and β > 0 we have L (x) > 0 for a sufficiently small x < 0 such that x ≤ a.

In addition, we have L (b) = λβT (b)− s = −s < 0 due to Lemma 9.1.1(g). Hence, from (a,c) it follows that xL uniquely exists.

The inequality xL < b is immediate from L (b) < 0. The latter half is evident.

(e2) If (λβµ − s)/λβ ≤ (>) a, from (9.2.3) we have L ((λβµ − s)/λβ) = (>) λβµ − s − λβ(λβµ − s)/λβ = 0, hence

xL = (>) (λβµ− s)/λβ from (e1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

The corollary below is used when it is not specified whether s > 0 or s = 0.

Corollary 9.2.1 (A {LR})

(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Proof (a) Immediate from Lemma 9.2.1(d,e1).

(b) Since xL > (≤) x ⇒ L (x) > (≤) 0 due to (a) and since L (x) > (≤) 0 ⇒ L (x) ≥ (≤) 0, we have xL > (≤) x ⇒
L (x) ≥ (≤) 0. In addition, if xL = x, then L (x) = L ( xL ) = 0 or equivalently xL = x ⇒ L (x) = 0. Hence it eventu-

ally follows that xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Lemma 9.2.2 (A {KR })

(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on [a,∞).

(h) If x < y and a < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x⇔ K (x) > (= (<)) 0.

2. (λβµ− s)/δ ≤ (>) a ⇔ xK = (>) (λβµ− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

Proof (a-c) Immediate from (5.1.4(p.17) ) and Lemma 9.1.1(a-c).

(d) Immediate from Lemma 9.1.1(b) and (5.1.4).

(e) From (5.1.4) we have K (x) + x = λβT (x) + βx − s = λβ(T (x) + x) + (1 − λ)βx − s · · · ((1)), hence the assertion holds

from Lemma 9.1.1(d).

(f) Obvious from (1) and Lemma 9.1.1(d).

(g) Clearly from (1) and Lemma 9.1.1(e).
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(h) Let x < y and a < y. If x ≤ a, then K(x) + x ≤ K(a) + a < K(y) + y due to (e,g), and if a < x, then a < x < y, hence

K(x) + x < K(y) + y due to (g). Thus, whether x ≤ a or a < x, we have K(x) + x < K(y) + y

(i) Let β = 1 and s = 0. Then, since K (x) = λT (x) due to (5.1.4), from Lemma 9.1.1(g) we have K (x) > 0 for x < b and

K (x) = 0 for b ≤ x, hence xK = b by the definition of xK (see Section 5.2(p.19) (a)). Thus xK > (≤) x ⇒ K (x) > (=) 0. The

inverse holds by contraposition. In addition, since K (x) = 0 ⇒ K (x) ≤ 0, we have K (x) > (=) 0 ⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

(j1) First note (9.2.5 (2)). If β = 1, then s > 0 due to the assumption β < 1 or s > 0, hence K (x) = −s < 0 for any x ≥ b

and if β < 1, then K (x) < 0 for any sufficiently large x > 0 such that x ≥ b. Hence, for any 0 < β ≤ 1 we have K (x) < 0 for

any sufficiently large x. Next note (9.2.4 (1)). Then, since δ > 0 from (9.2.2 (1)), for any sufficiently small x < 0 such that x ≤ a

we have K (x) > 0 for any 0 < β ≤ 1. Hence, it follows that there exists the solution xK for any 0 < β ≤ 1. Let β < 1. Then,

the solution is unique from (d). Let β = 1. Then since s > 0 due to the assumption β < 1 or s > 0, we have K (b) = −s < 0

from (9.2.5 (2)), hence xK < b due to (b), so K (x) is strictly decreasing on the neighbourhood of x = xK due to (c), thus the

solution xK is unique. Therefore, it follows that the solution xK is unique for any 0 < β ≤ 1. From the above we see that the

latter half holds.

(j2) Let (λβµ− s)/δ ≤ (>) a. Then, from (9.2.4 (1(2))) we have K ((λβµ− s)/δ) = (>) λβµ− s− δ(λβµ− s)/δ = 0, hence

xK = (>) (λβµ− s)/δ due to (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

(j3) If κ > (= (<)) 0, then K (0) > (= (<)) 0 from (5.1.7(p.17) ), hence xK > (= (<)) 0 from (j1).

The corollary below is used when it is not specified whether s > 0 or s = 0.

Corollary 9.2.2 (A {KR})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Proof (a) Immediate from Lemma 9.2.2(i,j1).

(b) Since xK > (≤) x ⇒ K (x) > (≤) 0 due to (a) and since K (x) > (≤) 0 ⇒ K (x) ≥ (≤) 0, we have xK > (≤) x ⇒
K (x) ≥ (≤) 0. In addition, if xK = x, then K (x) = K (xK ) = 0 or equivalently xK = x ⇒ K (x) = 0. Hence it eventually

follows that xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Lemma 9.2.3 (A {LR /KR })
(a) Let β = 1 and s = 0. Then xL = xK = b.
(b) Let β = 1 and s > 0. Then xL = xK .
(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (=)) 0.
(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (<)) 0.

Proof (a) If β = 1 and s = 0, then xL = b from Lemma 9.2.1(d) and xK = b from

Lemma 9.2.2(i), hence xL = xK = b.

(b) Let β = 1 and s > 0. Then K ( xL ) = 0 from (9.2.8 (1)), hence xK = xL from

Lemma 9.2.2(j1).

(c) Let β < 1 and s = 0. Then xL = b · · · ((1)) from Lemma 9.2.1(d).

1. Suppose b > 0. Then, since xL > 0, we have K ( xL ) < 0 from (9.2.8 (1)), hence xL > xK from Lemma 9.2.2(j1).

Furthermore, from (5.1.7) we have K (0) = λβT (0) > 0 due to Lemma 9.1.1(g), hence xK > 0 · · · ((2)) from Lemma 9.2.2(j1).

2. Suppose b = (<) 0. Then, since xL = (<) 0 from (1) , we have K ( xL ) = (>) 0 from (9.2.8 (1)), thus xL = (<) xK from

Lemma 9.2.2(j1). Thus “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. Furthermore, from (5.1.7) we have

K (0) = λβT (0) = 0 if b = (<) 0 due to Lemma 9.1.1(g), hence xK = 0 from Lemma 9.2.2(j1) or equivalently xK = (=) 0.

(d) Let β < 1 and s > 0. Now, since κ = K (0) from (5.1.7), if κ > (= (<)) 0, thenK (0) > (= (<)) 0, thus xK > (= (<)) 0 · · · ((3))
from Lemma 9.2.2(j1). Accordingly L (xK ) > (= (<)) 0 from (9.2.8 (2)), hence xL > (= (<)) xK from Lemma 9.2.1(e1). Thus

“⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. The last “⇒” is the same as (3) .

Lemma 9.2.4 (LR )

(a) L (s) is nonincreasing in s and strictly decreasing in s if λβ < 1.
(b) Let λβµ ≥ b.

1. xL ≤ λβµ− s.
2. Let s > 0 and λβ < 1. Then xL < λβµ− s.

(c) Let λβµ < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβµ− s.

Proof (a) From (5.1.5(p.17) ) and (5.1.3) we have L (s) = L (λβµ − s) = λβT (λβµ − s) − s · · · ((1)), hence the assertion holds

from Lemma 9.1.1(m).

(b) Let λβµ ≥ b. Then, from (1) we have L (0) = λβT (λβµ) = 0 · · · ((2)) due to Lemma 9.1.1(g).
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(b1) Since s ≥ 0, from (a) we have L (s) ≤ L (0) = 0 due to (2) or equivalently L (λβµ− s) ≤ 0, hence xL ≤ λβµ− s from

Corollary 9.2.1(a).

(b2) Let s > 0 and λβ < 1. Then, from (a) we have L (s) < L (0) = 0 · · · ((3)) due to (2) or equivalently L (λβµ − s) < 0,

hence xL < λβµ− s from Lemma 9.2.1(e1).

(c) Let λβµ < b. From (1) we have L (0) = λβT (λβµ) > 0 · · · ((4)) due to Lemma 9.1.1(g). Noting (9.2.3 (1)), for any

sufficiently large s > 0 such that λβµ − s ≤ a and λβµ − s < 0 we have L (s) = L (λβµ − s) = λβµ − s − λβ(λβµ − s) =

(1− λβ)(λβµ − s) ≤ 0. Accordingly, due to (a) it follows that there exists the solution sL of L (s) = 0 where sL > 0 due to
(4) . Then, since L (s) > 0 for s < sL and L (s) ≤ 0 for s ≥ sL or equivalently L (λβµ− s) > 0 for s < sL and L (λβµ− s) ≤ 0

for s ≥ sL , from Corollary 9.2.1(a) we get xL > λβµ− s for s < sL and xL ≤ λβµ− s for s ≥ sL .

9.3 κR-value
Lemma 9.3.1 (A {κR}) We have:

(a) κ = λβµ− s if a > 0 and κ = −s if b < 0.

(b) Let β < 1 or s > 0, Then κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

Proof (a) Immediate from (5.1.6(p.17) ) and Lemma 9.1.1(i).

(b) Let β < 1 or s > 0. Then, if κ > (= (<)) 0, we have K (0) > (= (<)) 0 from (5.1.7(p.17) ), hence xK > (= (<)) 0 from

Lemma 9.2.2(j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.
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Chapter 10

Proof of A {M:1[R][A]}

10.1 Preliminary
From (6.2.8(p.22) ) and (6.2.11) we have

Vt − βVt−1 = max{St, 0} (10.1.1)

= max{L (Vt−1), 0}, t > 1. (10.1.2)
Accordingly:

1. If L (Vt−1) ≥ 0, then Vt − βVt−1 = L (Vt−1), hence from (5.1.9(p.17) ) we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1, t > 1. (10.1.3)

2. If L (Vt−1) ≤ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (10.1.4)

Now, from (6.2.5(p.21) ) with t = 2 we have

V2 − V1 = max{K (V1),−(1− β)V1}. (10.1.5)

Finally, from (6.2.11) and (6.2.9) we have

St = L (Vt−1) > (<) 0⇒ ConducttN (SkiptN), t > 1.. (10.1.6)

10.2 Proof of A {M:1[R][A]}
Definition 10.2.1 By A{M:1[R][A]} let us represent an assertion included in each of Tom 10.2.1 and Tom 10.2.2 that follows
and by A {M:1[R][A]} the assertion system consisting of all assertions included in the Tom.

Below note that λ = 1 is assume in the model.

� Tom 10.2.1 (A {M:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

Proof Let β = 1 and s = 0. Then, from (5.1.4(p.17) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to Lemma 9.1.1(p.41) (g),

hence from (6.5.2(p.31) ) and (1) we have Vt = max{T (Vt−1) + Vt−1, Vt−1} = max{T (Vt−1), 0}+ Vt−1 = T (Vt−1) + Vt−1 · · · ((2)) for
t > 1.

(a) Since V2 = T (V1) + V1, we have V2 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from Lemma 9.1.1(d) we have

Vt ≤ T (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0.

(b) Since V1 = µ from (6.5.1(p.31) ), we have V1 < b. Suppose Vt−1 < b. Then, from (2) we have Vt < T (b) + b = b due

to Lemma 9.1.1(l,g). Accordingly, by induction Vt−1 < b for t > 1, hence L (Vt−1) > 0 for t > 1 due to Lemma 9.2.1(d);

accordingly, L (Vt−1) > 0 · · · ((3)) for τ ≥ t > 1. Thus, from (10.1.2) we obtain Vt − βVt−1 > 0 for τ ≥ t > 1, i.e., Vt > βVt−1

for τ ≥ t > 1. Accordingly, since Vτ > βVτ−1 > · · · > βτ−1V1, we have t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N, hence we have

ConducttN for τ ≥ t > 1 due to (3) and (10.1.6)..

Let us define

S1 ⃝
s N ⃝∗ ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where CONDUCTτ≥t>1N,

(2) ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where CONDUCTτ≥t>1N.

}
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� Tom 10.2.2 (A {M:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.
(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βµ < b.

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)) .
i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let b = 0 ((κ = 0)) .

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let b < 0 ((κ < 0)) .

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a and s < sL . Then S1(p.47) ⃝s N ⃝∗ ∥ is true.

Proof Let β < 1 or s > 0. In this model, note that the search must be necessarily conducted at time t = 1 (see Re-
mark 4.1.3(p.14) (b)) and that δ = 1 · · · ((1)) (see (9.2.1(p.42) )) due to the assumption λ = 1 · · · ((2)).

(a) Since xK ≥ βµ − s = V1 due to Lemma 9.2.2(p.43) (j2) and (6.5.1(p.31) ), we have K (V1) ≥ 0 due to Lemma 9.2.2(j1),
hence V2 − V1 ≥ 0 from (10.1.5), i.e., V1 ≤ V2. Suppose Vt−1 ≤ Vt. Then, from (6.5.2(p.31) ) and Lemma 9.2.2(e) we have
Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0. Consider
a sufficiently large M > 0 with βµ − s ≤ M and b ≤ M , hence V1 ≤ M . Suppose Vt−1 ≤ M . Then, from (6.5.2(p.31) ),
Lemma 9.2.2(e), and (9.2.7 (2) (p.43) ) we have Vt ≤ max{K (M) + M,βM} = max{βM − s, βM} ≤ max{M,M} = M due to
β ≤ 1 and s ≥ 0. Hence, by induction Vt ≤M for t > 0, i.e., Vt is upper bounded in t. Accordingly Vt converges to a finite V as
t→∞. Then, from (6.5.2(p.31) ) we have V = max{K (V ) + V, βV }, hence 0 = max{K (V ),−(1− β)βV }. Thus, since K (V ) ≤ 0,
we have V ≥ xK from Lemma 9.2.2(j1).

(b) Let βµ ≥ b · · · ((3)). Then xL ≤ βµ − s = V1 from Lemma 9.2.4(b1) with λ = 1, hence xL ≤ Vt−1 for t > 1 from (a).

Accordingly, since L (Vt−1) ≤ 0 for t > 1 due to Corollary 9.2.1(a), we have L (Vt−1) ≤ 0 for τ ≥ t > 1. Hence, from (10.1.4) we

have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ , hence t∗τ = 1 for τ > 1, i.e.,

• dOITdτ>1⟨1⟩ ∥ (see Preference Rule 7.2.1(p.35) ).

(c) Let βµ < b.

(c1) Let β = 1 · · · ((4)), hence s > 0 due to the assumptions β < 1 or s > 0 in the lemma. Then, from (4) , (1) , (2) we have

(λβµ− s)/δ = µ− s · · · ((5)). In addition, since xL = xK · · · ((6)) from Lemma 9.2.3(b), we have K (xL) = K (xK) = 0 · · · ((7)).

(c1i) Let µ − s ≤ a. Then xL = xK = µ − s = V1 from (6) , Lemma 9.2.2(j2), (5) , and (6.5.1(p.31) ). Accordingly, since
xL ≤ Vt−1 for t > 1 from (a), we have L (Vt−1) ≤ 0 for t > 1 due to Lemma 9.2.1(e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ>1⟨1⟩ ∥.

(c1ii) Let µ − s > a. Then xL = xK > µ − s = V1 > a from (6) and Lemma 9.2.2(j2), hence a < Vt−1 for t > 1 from
(a). Suppose Vt−1 < xL , hence L (Vt−1) > 0 from Lemma 9.2.1(e1). Then, from (10.1.3), Lemma 9.2.2(g), and (6) we have
Vt < K (xL) + xL = K (xK) + xL = xL . Accordingly, by induction Vt−1 < xL for t > 1, hence L (Vt−1) > 0 for t > 1 due to
Corollary 9.2.1(p.43) (a). Thus, for the same reason as in the proof of Tom 10.2.1(b) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((8)) from Lemma 9.2.3(c ((d))). Now, since xK ≥ βµ − s due to

Lemma 9.2.2(j2), (1) , and (2) , we have xK ≥ V1 from (6.5.1(p.31) ). Suppose xK ≥ Vt−1. Then, from (6.5.2(p.31) ) and
Lemma 9.2.2(e) we have Vt ≤ max{K (xK) + xK , β xK } = max{xK , β xK } = xK due to (8) . Accordingly, by induction
Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (8) , thus L (Vt−1) > 0 for t > 1 due to Corollary 9.2.1(a). Hence, for the
same reason as in the proof of Tom 10.2.1(b) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N.

(c2ii) Let b = 0 ((κ = 0)) . Then xL = xK · · · ((9)) from Lemma 9.2.3(c ((d))).

(c2ii1) Let βµ− s ≤ a. Then, xK = βµ− s = V1 from Lemma 9.2.2(j2). Suppose Vt−1 = xK , hence Vt−1 = xL from (9) ,
so that L (Vt−1) = L (xL) = 0. Then, from (10.1.3) we have Vt = K (xK) + xK = xK . Accordingly, by induction Vt−1 = xK for
t > 1, hence Vt−1 = xL for t > 1 due to (9) . Then, since L (Vt−1) = L (xL) = 0 for t > 1, we have Vt = βVt−1 for t > 1 from
(10.1.4), hence, for the same reason as in the proof of (b) we obtain • dOITdτ>1⟨1⟩ ∥.

(c2ii2) Let βµ − s > a. Then, since V1 > a from (6.5.1), we have Vt−1 > a for t > 1 due to (a). In addition, we have
xK > βµ − s = V1 from Lemma 9.2.2(j2). Suppose xK > Vt−1, hence xL > Vt−1 from (9) . Then, since L (Vt−1) > 0 due to
Corollary 9.2.1(a), from (10.1.3) and Lemma 9.2.2(g) we have Vt < K (xK ) + xK = xK . Hence, by induction xK > Vt−1 for
t > 1, so that xL > Vt−1 for t > 1 due to (9) . Accordingly, since L (Vt−1) > 0 for t > 1 due to Corollary 9.2.1(a), for the same
reason as in the proof of (c1ii) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N.

(c2iii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((10 )) from Lemma 9.2.3(c ((d))).

(c2iii1) Let βµ − s ≤ a or sL ≤ s. First let βµ − s ≤ a. Then, since xK = βµ − s = V1 from Lemma 9.2.2(j2), we have
xL < V1 from (10) , hence xL ≤ V1. Next, let sL ≤ s. Then, since xL ≤ βµ − s due to Lemma 9.2.4(c), we have xL ≤ V1.
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Accordingly, whether βµ− s ≤ a or sL ≤ s, we have xL ≤ V1, thus xL ≤ Vt−1 for t > 1 due to (a). Hence, since L (Vt−1) ≤ 0
for t > 1 from Corollary 9.2.1(a), for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βµ−s > a · · · ((11 )) and s < sL . Then, from (10) and Lemma 9.2.4(c) we have xK > xL > βµ−s = V1 · · · ((12 )),
hence K (V1) > 0 · · · ((13 )) from Lemma 9.2.2(j1). In addition, since V1 > a due to (11) , we have Vt−1 > a for t > 0 from (a).

Now, from (10.1.5) and (13) we have V2 − V1 > 0, i.e., V2 > V1. Suppose Vt−1 < Vt. Then, from Lemma 9.2.2(g) we have
Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 < Vt for t > 1, i.e., Vt is strictly increasing in t > 0. Note
that V1 < xL due to (12) . Assume that Vt−1 < xL for all t > 1, hence V ≤ xL due to (a). Then, from (10) and the fact
of V ≥ xK due to (a) we have the contradiction of V ≥ xK > xL ≥ V . Hence, it is impossible that Vt−1 < xL for all t > 1,
implying that there exists t•τ > 1 such that

V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · , (10.2.1)

from which
Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt−1, t > t•τ . (10.2.2)

Therefore, from Corollary 9.2.1(a) we have

L (Vt−1) > 0 · · · ((14 )), t•τ ≥ t > 1, L (Vt−1) ≤ 0 · · · ((15 )), t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 · · · ((16 )) for τ ≥ t > 1 from (14) , for the same reason as in the proof of (c1ii) we

have ⃝s dOITst•τ≥τ>1⟨τ⟩ N and CONDUCTτ≥t>1N. Hence S1(1) is true.

2. Let τ > t•τ . First let τ ≥ t > t•τ . Then, since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (15) , we have Vt = βVt−1 for τ ≥ t > t•τ from
(10.1.4), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τVt•τ · · · ((17 )).

Next let t•τ ≥ t > 1. Then, from (14) and (10.1.2) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1, i.e., Vt > βVt−1 for t•τ ≥ t > 1,
hence

Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1 · · · ((18 )).

From (17) and (18) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1,

hence we obtain t∗τ = t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ due to Preference Rule 7.2.1(p.35) . In addition, we have ConducttN for

t•τ ≥ t > 1 due to (14) and (10.1.6). Hence S1(2) is true.

10.3 Structure of Assertion System A {M:1[R][A]}A
In this section let us clarify the structure of the assertion system A {M:1[R][A]}.

10.3.1 Breakdown and Aggregation

Consider a given set X and given k ≥ 0 subsets X1, X2, · · · , Xk ⊆ X where Xi ∩Xj = ∅ for any i ̸= j (pairwise disjoint).
Here let X = ∪k=1,2,··· ,kXi, and then let us consider the following two operations (see Figure 10.3.1 below (k = 3 for example)):

(I) X is broken down into X1, X2, · · · , Xk (breakdown).

(II) X1, X2, · · · , Xk are aggregated into X (aggregation).
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Figure 10.3.1: Breakedown and aggregation

It will be known later on that the fine differences between the above two operations will play an essential role in discussions of
Section 10.3.4(p.51) and Step 11.5 (p.63) .
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10.3.2 Structure of Assertion A

Let us note here that any assertion A{M:1[R][A]} consists of a statement S and a condition-expression CE, schematized as

A{M:1[R][A]}={S holds if CE is satisfied}. (10.3.1)

Example 10.3.1 The assertion of Tom 10.2.2(p.48) (b) can be rewritten as

A{M:1[R][A]}={ • dOITdτ>1⟨1⟩ ∥ holds if βµ ≥ b is satisfied}

where S = { • dOITdτ>1⟨1⟩ ∥} and CE = {βµ ≥ b}.

In addition, the condition-expression CE can be regarded as a conditional prescribed as to a parameter vector p and a distribution
function F where

p ∈PA ⊆P, (10.3.2)

F ∈ FA|p ⊆ F (10.3.3)

for a given parameter space PA and a given distribution function space FA|p related to a given p ∈ PA. Then we can rewrite
(10.3.1) as

A{M:1[R][A]} = {S holds for p ∈PA ⊆P and F ∈ FA|p ⊆ F}. (10.3.4)

Example 10.3.2

• For the assertion A in Tom 10.2.2(p.48) (c1i) we have

PA = {λ = 1 ∩ β = 1 ∩ s > 0},
FA|p = {βµ < b ∩ µ− s ≤ a}.

• For the assertion A in Tom 10.2.2(p.48) (c2iii2) we have

PA = {λ = 1 ∩ β < 1 ∩ s = 0 ((s > 0))},
FA|p = {βµ < b ∩ b < 0 ((κ < 0)) ∩ βµ− s > a ∩ s < sL }.

Definition 10.3.1 (condition-space C ⟨A⟩ ) Let us define

C ⟨A⟩ def
= {(p, F )

∣∣ p ∈PA ⊆P, F ∈ FA|p ⊆ F}, (10.3.5)

called the condition-space of the assertion A = A{M:1[R][A]}.

Then, (10.3.4) can be rewritten as

A{M:1[R][A]} = {S holds on C ⟨A⟩ }. (10.3.6)

Throughout the rest of the paper, for explanatory convenience, let us alternatively express the whole of (10.3.6) as

A{M:1[R][A]} holds on C ⟨A⟩. (10.3.7)

10.3.3 Structure of Tom

In addition to the definition in Section 6.4(p.30) and Def. 10.2.1(p.47) , let us here provide the following definition;

Definition 10.3.2 (assertion ATom) When a given assertion A{M:1[R][A]} is what is included in a given Tom, let us represent
it as ATom{M:1[R][A]} and an assertion system consisting of all ATom{M:1[R][A]} included in Tom as ATom {M:1[R][A]}.

Then (10.3.4)-(10.3.7) can be rewritten as respectively

ATom{M:1[R][A]} = {S holds for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F}, (10.3.8)

C ⟨ATom⟩
def
= {(p, F )

∣∣ p ∈PATom ⊆P, F ∈ FATom|p ⊆ F}, (10.3.9)

ATom{M:1[R][A]} = {S holds on C ⟨ATom⟩ }, (10.3.10)

ATom{M:1[R][A]} holds on C ⟨ATom⟩. (10.3.11)

Closely looking into the structure of Tom’s 10.2.1(p.47) and 10.2.2, we see that in general a given Tom consists of a basic-premise
BP and some assertions ATom1 , ATom2 , · · · , i.e.,

Tom= {Let BP be true. Then assertions ATom1 , ATom2 , · · · hold} (10.3.12)

where the basic-premise BP is given as a conditional prescribed as to a parameter vector p and a distribution function F where

p ∈PTom ⊆P, (10.3.13)

F ∈ FTom|p ⊆ F (10.3.14)

for given subsets PTom and FTom|p (see (10.3.2) and (10.3.3)). Then the basic-premise BP can be written as

BP = {a condition on p ∈PTom ⊆P and F ∈ FTom|p ⊆ F}. (10.3.15)
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Example 10.3.3 For M:1[R][A] we have

(1) = PTom = {p
∣∣ λ = 1 ∩ β = 1 ∩ s = 0} for Tom 10.2.1(p.47)

(2) = PTom = {p
∣∣ λ = 1 ∩ (β < 1 ∪ s > 0)} for Tom 10.2.2(p.48)

(1)′ = FTom|p = F for Tom 10.2.1(p.47)

(2)′ = FTom|p = F for Tom 10.2.2(p.48)

As the above is too simple, in order to promote a better understanding, below let us provide the example for M:2[R][A].

(3) = PTom = {p
∣∣ λ ≤ 1 ∩ β = 1 ∩ s = 0 ∩ −∞ < ρ <∞} for Tom 19.1.1(p.140)

(4) = PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 19.1.2(p.141)

(5) = PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 19.1.3(p.143)

(6) = PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 19.1.4(p.144)

(3)′ = FTom|p = {F
∣∣ −∞ < a < µ < b <∞} = F for Tom 19.1.1(p.140)

(4)′ = FTom|p = {F
∣∣ F ∈ F ∩ ρ < xK } for Tom 19.1.2(p.141)

(5)′ = FTom|p = {F
∣∣ F ∈ F ∩ ρ = xK } for Tom 19.1.3(p.143)

(6)′ = FTom|p = {F
∣∣ F ∈ F ∩ ρ > xK } for Tom 19.1.4(p.144)

Definition 10.3.3 (condition-space C ⟨Tom⟩ ) Let us define

C ⟨Tom⟩ def
= {(p, F )

∣∣ p ∈PTom ⊆P, F ∈ FTom|p ⊆ F}, (10.3.16)

called the condition-space of Tom.

Then (10.3.15) can be rewritten as

BP = {a condition on C ⟨Tom⟩ }, (10.3.17)

so (10.3.12) can be rewritten as

Tom = {The assertions ATom1 , ATom2 . · · · hold on BP} (10.3.18)

or equivalently
Tom = {The assertions ATom1 , ATom2 , · · · hold on C ⟨Tom⟩.} (10.3.19)

10.3.4 Completeness of C ⟨Tom⟩

Breakdown scenario begins from here

As seen in Tom 10.2.2(p.48) , in the present paper any given Tom is constructed so that the whole condition-space C ⟨Tom⟩ is
hierarchically, encyclopedically, and exhaustively broken down step-by-step from top to bottom; as a result, we obtain a sequence
of assertions ATom1 , ATom2 , · · · with condition-spaces C ⟨ATom1⟩, C ⟨ATom2⟩, · · · . The above procedure implies that C ⟨Tom⟩ is broken
down into C ⟨ATom1⟩, C ⟨ATom2⟩, · · · so that the equality

C ⟨Tom⟩ = ∪ATom∈TomC ⟨ATom⟩. (10.3.20)

is satisfied. Let us refer to the above equality as the completeness of C ⟨Tom⟩ (see Figures 10.3.1(I) and 10.3.2 below).

C ⟨Tom⟩

⇓breakedown�� ��C [ATom1 ], C [ATom2 ] C [ATom3 ]

Figure 10.3.2: Exhaustive breakedown of C ⟨Tom⟩ to C ⟨ATom1⟩, C ⟨ATom2⟩, C ⟨ATom3⟩

Remark 10.3.1 It should be noted here that the equality (10.3.20) is not what should be proven but what should be
satisfied.

Here, consider the list of (10.3.11) over assertions ATom1 , ATom2 , · · · ∈ Tom, i.e.,

“ATom1{M:1[R][A]} holds on C ⟨ATom1⟩ ”,

“ATom2{M:1[R][A]} holds on C ⟨ATom2⟩ ”.
...

Then, noting (10.3.20), we see that the whole of the above list can be rewritten as

ATom {M:1[R][A]} holds on C ⟨Tom⟩. (10.3.21)
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10.3.5 Structure of Tom

Let us define
Tom def

= {Tom} = {Tom1, Tom2, , · · · }. (10.3.22)
Example 10.3.4 For example, we have

Tom = {Tom1 = Tom 10.2.1(p.47) , Tom2 = Tom 10.2.2},
Tom = {Tom1 = Tom 19.1.1(p.140) , Tom2 = Tom 19.1.2, Tom3 = Tom 19.1.3, Tom4 = Tom 19.1.4}.

Definition 10.3.4 (condition-space C ⟨Tom⟩) Let us define

C ⟨Tom⟩ def
= ∪Tom∈TomC ⟨Tom⟩, (10.3.23)

called the condition-space of Tom.

Using (10.3.20), we can express (10.3.23) as below

C ⟨Tom⟩ def
= ∪Tom∈TomC ⟨Tom⟩ = ∪Tom∈Tom ∪ATom∈Tom C ⟨ATom⟩, (10.3.24)

schematized as in Figure 10.3.3 below
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Figure 10.3.3: Definition of Tom

Here, consider the list of (10.3.21) over Tom1, Tom2, , · · · ∈ Tom, i.e.,

“ATom1 {M:1[R][A]} holds on C ⟨Tom1⟩ ”.

“ATom2 {M:1[R][A]} holds on C ⟨Tom2⟩ ”.
...

Then, noting (10.3.23), we see that the whole of the above list can be rewritten as

A {M:1[R][A]} holds on C ⟨Tom⟩. (10.3.25)

Example 10.3.5 Let us consider an example Tom = {Tom1, Tom2, Tom3} where Tom1 = {A1
Tom1 , A

2
Tom1 , A

3
Tom1}, Tom2 = {A1

Tom2 , A
2
Tom2 , A

3
Tom2},

and Tom3 = {A1
Tom3 , A

2
Tom3 , A

3
Tom3}. Then the structure shown by (10.3.24) can be schematized as in Figure 10.3.4 below.
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Figure 10.3.4: Breakedown of C ⟨Tom⟩ into C ⟨Aj
Tomi
⟩, i = 1, 2, 3 and j = 1, 2, 3

What is depicted in Figure 10.3.4 above implies that the whole of the statements “ATom{M:1[R][A]} holds on C ⟨ATom⟩” (see
(10.3.11)) prescribed on the whole Tom are aggregated into one statement “A {M:1[R][A]} over C ⟨Tom⟩”, schematized as

“ATom{M:1[R][A]} holds on C ⟨ATom⟩” on Tom ⇒ A {M:1[R][A]} holds over C ⟨Tom⟩. (10.3.26)
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10.3.6 Completeness of C ⟨Tom⟩
Throughout the paper let the condition-space C ⟨Tom⟩ be constructed so as to become equal to the total-space P × F (see
Def. 4.4.1(p.16) ), i.e.,

C ⟨Tom⟩ = P ×F . (10.3.27)

Here note that (10.3.27) is not what should be proven but what should be satisfied. Then the equality is called the completeness
of Tom. Due to (10.3.27) we can rewrite Figure 10.3.4 as below.
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Figure 10.3.5: The completeness of the breakedown of C ⟨Tom⟩ into C ⟨Aj
Tomi
⟩, i = 1, 2, 3 and j = 1, 2, 3

Under the completeness of Tom we can rewrite (10.3.26) as follows:

“ATom{M:1[R][A]} holds on C ⟨ATom⟩” on Tom ⇒ A {M:1[R][A]} holds over P ×F . (10.3.28)

Let us refer to the relation as the completeness of Tom.

Alice 6 (unknown-box) Completely attaining the completeness of a condition-branching may become hard in the sense that
it may not be always possible to explicitly specify and describe an assertion in all terminal points of the break-down-process of its
condition-branching. Then, Alice faced the question “If so, what should be done ?” and hesitated for a while. Then, Dr. Rabbit
appeared again and told to her “Put there the unknown-box ?? representing that it is left, as a subject of future study, to clarify
and examine what phenomenon or event is hidden there.”.

Breakdown scenario ends here
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Chapter 11

Symmetry Theorem (R↔ R̃)
In this chapter we construct the methodology which derives A {M̃:1[R][A]} (selling model) from A {M:1[R][A]} (buying model).

11.1 Two Kinds of Equality

11.1.1 Correspondence Equality

For ξ, a, µ, b, T (x), etc., which are all dependent on a given distribution function F ∈ F , let us define ξ̂ = −ξ, â = −a, µ̂ = −µ,
b̂ = −b, T̂ (x) = −T (x) respectively, called the reflection operation R. For any given distribution function F ∈ F , i.e.,

F (ξ) = Pr{ξ ≤ ξ} ⊆ F , (11.1.1)

let us define the distribution function of ξ̂ by F̌ , i.e.,

F̌ (ξ)
def
= Pr{ξ̂ ≤ ξ}, (11.1.2)

where its probability density function is represented by f̌ and the set of all possible F̌ ’s is denoted by F̌ , i.e.,

F̌
def
= {F̌

∣∣ F ∈ F}. (11.1.3)

Now, since ˇ̌F (ξ) = Pr{ˆ̂ξ ≤ ξ} for any ξ due to the definition (11.1.2) and since

ˆ̂
ξ = −̂ξ = −(−ξ) = ξ, (11.1.4)

we have ˇ̌F (ξ) = Pr{ξ ≤ ξ} = F (ξ) for any ξ due to (11.1.1), i.e.,

ˇ̌F ≡ F. (11.1.5)

For any subset F ′ ⊆ F let us define

F̌ ′ def
= {F̌

∣∣ F ∈ F ′}. (11.1.6)

Then, since F̌ ′ ⊆ F , by definition we have
ˇ̌F ′ = { ˇ̌F

∣∣ F̌ ∈ F̌ ′}. (11.1.7)

Here, due to (11.1.5) we get
ˇ̌F ′ = {F

∣∣ F̌ ∈ F̌ ′}. (11.1.8)

If F ∈ F ′, then F̌ ∈ F̌ ′ from (11.1.6), hence ˇ̌F ∈ ˇ̌F ′ from (11.1.7), so that F ∈ ˇ̌F ′ due to (11.1.5); accordingly, we have

F ′ ⊆ ˇ̌F ′ · · · (∗). If F ∈ ˇ̌F ′, then F̌ ∈ F̌ ′ from (11.1.8), hence F ∈ F ′ from (11.1.6), therefore, we have ˇ̌F ′ ⊆ F ′. From this
and (∗) it follows that

ˇ̌F ′ = F ′. (11.1.9)

By ǎ, µ̌, and b̌ let us denote respectively the lower bound, the expectation, and the upper bound of F̌ ∈ F̌ corresponding
to any given F ∈ F with the lower bound a, the expectation µ, and the upper bound b. Then, for any ξ we clearly have
(see Figure 11.1.1 below)

f(ξ) = f̌(ξ̂) (11.1.10)

where
â = b̌, µ̂ = µ̌, b̂ = ǎ. (11.1.11)
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Figure 11.1.1: Relationship between probability density functions f and f̌

11.1.2 Identity Equality

Lemma 11.1.1

(a) F and F̌ are one-to-one correspondent where F = F̌ .
(b) For any F̌ ∈ F̌ there exists a F ∈ F which is identical to the F̌ , i.e., F ≡ F̌ .†

(c) For any F ∈ F there exists a F̌ ∈ F̌ which is identical to the F , i.e., F̌ ≡ F .

Proof If F ∈ F , then F̌ ∈ F̌ by definition, i.e., F ∈ F ⇒ F̌ ∈ F̌ · · · ((1)). Conversely, if F̌ ∈ F̌ , then F from which F̌ ∈ F̌ is

defined is clearly an element of F due to (11.1.3), i.e., F ∈ F , i.e., F̌ ∈ F̌ ⇒ F ∈ F · · · ((2)).

(a) First, for any F ∈ F and for the F̌ ∈ F̌ corresponding to the F we have

F̌ (ξ) = Pr{ξ̂ ≤ ξ} = Pr{−ˆ̂ξ ≤ −ξ̂} = Pr{ˆ̂ξ ≥ ξ̂} = Pr{ξ ≥ ξ̂} (due to (11.1.4))

= 1− Pr{ξ < ξ̂} = 1− Pr{ξ ≤ ξ̂}‡ = 1− F (ξ̂) · · · ((3)).

Suppose any F ∈ F yields the two different F̌1 ∈ F̌ and F̌2 ∈ F̌ , hence there exists at least one ξ′ such that F̌1(ξ
′) ̸= F̌2(ξ

′).
Then, since F̌1(ξ

′) = 1 − F (ξ̂′) and F̌2(ξ
′) = 1 − F (ξ̂′) due to (3) , we have the contradiction of F̌1(ξ

′) = F̌2(ξ
′), hence the

F ∈ F must correspond to a unique F̌ ∈ F̌ . Next, for any F̌ ∈ F̌ and for F ∈ F from which F̌ ∈ F̌ is defined we have

F (ξ) = Pr{ξ ≤ ξ} = Pr{−ξ̂ ≤ −ξ̂} = Pr{ξ̂ ≥ ξ̂} = 1− Pr{ξ̂ < ξ̂}‡ = 1− Pr{ξ̂ ≤ ξ̂} = 1− F̌ (ξ̂) · · · ((4)).

Suppose any F̌ ∈ F̌ is yielded by the two different F1 ∈ F and F2 ∈ F , hence there exists at least one ξ′ such that
F1(ξ

′) ̸= F2(ξ
′). Then, since F1(ξ

′) = 1− F̌ (ξ̂′) and F2(ξ
′) = 1− F̌ (ξ̂′) due to (4) , we have the contradiction of F1(ξ

′) = F2(ξ
′),

hence the F̌ ∈ F̌ must correspond to a unique F ∈ F . Thus, the former half of the assertion is true. The latter half can be
proven as follows. First, consider any F ∈ F̌ . Then, since F ∈ F by definition, we have F̌ ⊆ F · · · ((5)). Next, consider any

F ∈ F . Then, since F̌ ∈ F̌ due to (1) , we have F̌ ∈ F due to (5) . Hence ˇ̌F ∈ F̌ due to (1), so that F ∈ F̌ due to (11.1.5),
thus we have F ⊆ F̌ . From this and (5) we have F̌ = F · · · ((6)).

(b) Consider any F̌ ∈ F̌ · · · ((7)), hence F̌ ∈ F · · · ((8)) due to (6) . Suppose every F ∈ F is not identical to the F̌ , i.e.,

F ̸≡ F̌ , implying that the F̌ cannot become an element of F , i.e., F̌ ̸∈ F , which contradicts (8) . Hence, it must be that
F ≡ F̌ , thus it follows that the assertion holds.

(c) Consider any F ∈ F · · · ((9)), hence F ∈ F̌ · · · ((10 )) due to (6) . Suppose every F̌ ∈ F̌ is not identical to the F , i.e.,

F̌ ̸≡ F , implying that the F cannot become an element of F̌ , i.e., F ̸∈ F̌ , which contradicts (10) . Hence, it must be that
F̌ ≡ F , thus it follows that the assertion holds.

From the identity F ≡ F̌ in Lemma 11.1.1(b,c) we have

f(ξ) ≡ f̌(ξ), (11.1.12)
called the identity equality.

11.2 Definitions of Underlying Functions

11.2.1 Ť , Ľ , Ǩ , Ľ , and κ̌ of Type R
Let us define the underlying functions of Type R (see Section 5.1.1(p.17) ) for F̌ ∈ F̌ corresponding to any F ∈ F as follows.

Ť (x) = Ě[max{ξ − x, 0}] =
∫∞
−∞ max{ξ − x, 0}f̌(ξ)dξ, (11.2.1)

Ľ (x) = λβŤ (x)− s, (11.2.2)

Ǩ (x) = λβŤ (x)− (1− β)x− s, (11.2.3)

Ľ (s) = Ľ (λβµ̌− s). (11.2.4)

Let the solutions of Ľ (x) = 0, Ǩ (x) = 0, and Ľ (s) = 0 be denoted by xĽ , xǨ , and sĽ respectively if they exist. If multiple

solutions exist for each of xĽ , xǨ , and sĽ , let us employ the smallest as its solution (see (a) of Section 5.2(p.19) ). Let us defineκ̌ = λβŤ (0)− s. (11.2.5)

†This means F (x) = F̌ (x) for all x ∈ (−∞,∞).
‡Due to the assumption of F being continuous (see A8)
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By M̌:1[R][A] let us define M:1[R][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for M:1[R][A] we can
express SOE{M̌:1[R][A]} as (see Table 6.5.1(p.31) (I))

SOE{M̌:1[R][A]} = {V1 = βµ̌− s, Vt = max{Ǩ (Vt−1) + Vt−1, βVt−1}, t > 1}. (11.2.6)

11.2.2 ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , and ˇ̃κ of T̃ype R
Let us define the underlying functions of T̃ype R for F̌ ∈ F̌ corresponding to any F ∈ F as follows.

ˇ̃T (x) = Ě[min{ξ − x, 0}] =
∫∞
−∞ min{ξ − x, 0}f̌(ξ)dξ, (11.2.7)

ˇ̃L (x) = λβ ˇ̃T (x) + s, (11.2.8)
ˇ̃K (x) = λβ ˇ̃T (x)− (1− β)x+ s, (11.2.9)
ˇ̃L (s) = ˇ̃L (λβµ̌+ s). (11.2.10)

Let the solutions of ˇ̃L (x) = 0, ˇ̃K (x) = 0, and ˇ̃L (s) = 0 be denoted by xˇ̃L , xˇ̃K , and sˇ̃L respectively if they exist. If multiple
solutions exist for each of xˇ̃L , xˇ̃K , and sˇ̃L , let us employ the largest as its solution (see (b) of Section 5.2(p.19) ). Let us define

ˇ̃κ = λβ ˇ̃T (0) + s. (11.2.11)

By
ˇ̃M:1[R][A] let us define M̃:1[R][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for M̃:1[R][A] we can

express SOE{ ˇ̃M:1[R][A]} as (see Table 6.5.1(p.31) (II))

SOE{ ˇ̃M:1[R][A]} = {V1 = βµ̌+ s, Vt = min{ ˇ̃K (Vt−1) + Vt−1, βVt−1}, t > 1}. (11.2.12)

11.2.3 List of the Underline Functions of Type R and T̃ype R
So far we have defined the four kinds of underlying functions, which may cause confusions to readers. To give a clearer picture
of these functions, we shall rearrange them as in Table 11.2.1.

Table 11.2.1: List of the underlying functions of Type R and T̃ype R

Type R T̃ype R

For any F ∈ F For F̌ ∈ F̌ corresponding
to any F ∈ F

T (x) =
∫ b
a
max{ξ − x, 0}f(ξ)dξ

L (x) = βT (x)− s

K (x) = βT (x)− (1− β)x− s

L (x) = L (βµ− s)

See Section 5.1.1(p.17)

Ť (x) =
∫ b
a
max{ξ − x, 0}f̌(ξ)dξ

Ľ (x) = βŤ (x)− s

Ǩ (x) = βŤ (x)− (1− β)x− s

Ľ (x) = Ľ (βµ̌− s)

See Section 11.2.1(p.56)

T̃ (x) =
∫ b
a
min{ξ − x, 0}f(ξ)dξ

L̃ (x) = βT̃ (x) + s

K̃ (x) = βT̃ (x)− (1− β)x + s

L̃ (x) = L̃ (βµ + s)

See Section 5.1.2(p.17)

ˇ̃T (x) =
∫ b
a
min{ξ − x, 0}f̌(ξ)dξ

ˇ̃L (x) = β ˇ̃T (x) + s

ˇ̃K (x) = β ˇ̃T (x)− (1− β)x + s

ˇ̃L (x) = ˇ̃L (βµ̌ + s)

See Section 11.2.2(p.57)

11.3 Two Kinds of Replacements
11.3.1 Correspondence Replacement

The lemma below is used in Step 3 of Scenario[R] (p.60 ).

Lemma 11.3.1 (CR) The left-hand side of each equality below is for any F ∈ F and its right-hand side is for F̌ ∈ F̌
corresponding to the F .

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, µ̂ = µ̌, b̂ = ǎ.

(c) T̂ (x) = ˇ̃T (x̂).

(d) L̂ (x) = ˇ̃L (x̂).

(e) K̂ (x) = ˇ̃K (x̂).

(f) L̂ (s) = ˇ̃L (s).
(g) x̂L = xˇ̃L .

(h) x̂K = xˇ̃K .

(i) sL = sˇ̃L .

(j) κ̂ = ˇ̃κ.
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Proof (a) The same as (11.1.10).

(b) The same as (11.1.11(p.55) ).

(c) The function T (x) for any F (see (5.1.2(p.17) )) can be rewritten as

T (x) =
∫∞
−∞ max{−ξ̂ + x̂, 0}f(ξ)dξ

= −
∫∞
−∞ min{ξ̂ − x̂, 0}f(ξ)dξ

= −
∫∞
−∞ min{ξ̂ − x̂, 0}f̌(ξ̂)dξ due to (a).

Let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then, we have

T (x) =
∫ −∞
∞ min{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ min{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ min{ξ − x̂, 0}f̌(ξ)dξ (without loss of generality†)

= − ˇ̃T (x̂) (see (11.2.7)),

hence T̂ (x) = ˇ̃T (x̂).

(d) From (5.1.3(p.17) ) and (c) we have L (x) = −λβT̂ (x)− s = −λβ ˇ̃T (x̂)− s = − ˇ̃L (x̂) from (11.2.8(p.57) ), hence L̂ (x) = ˇ̃L (x̂).

(e) From (5.1.4(p.17) ) and (c) we have K (x) = −λβT̂ (x)+ (1−β)x̂− s = −λβ ˇ̃T (x̂)+ (1−β)x̂− s = − ˇ̃K (x̂) from (11.2.9(p.57) ),

hence K̂ (x) = ˇ̃K (x̂).

(f) From (5.1.5(p.17) ) we have L (s) = −L̂ (λβµ − s), hence from (d) we obtain L (s) = − ˇ̃L ( ̂λβµ− s) = − ˇ̃L (−λβµ + s) =

− ˇ̃L (λβµ̂+ s) = − ˇ̃L (λβµ̌+ s) due to (b). Accordingly, from (11.2.10(p.57) ) we obtain L (s) = − ˇ̃L (s), hence L̂ (s) = ˇ̃L (s).

(g) Since L ( xL ) = 0 by definition, we have L̂ ( xL ) = 0, which can be rewritten as ˇ̃L ( x̂L ) = 0 from (d), implying that
ˇ̃L (x) = 0 has the solution xˇ̃L = x̂L by definition.

(h) Since K (xK ) = 0 by definition, we have K̂ (xK ) = 0, which can be rewritten as ˇ̃K ( x̂K ) = 0 from (e), implying that
ˇ̃K (x) = 0 has the solution xˇ̃K = x̂K by definition.

(i) Since L (sL) = 0 by definition, we have L̂ (sL) = 0, which can be rewritten as ˇ̃L (sL) = 0 from (f), implying that ˇ̃L (s) = 0
has the solution sˇ̃L = sL by definition.

(j) From (5.1.6(p.17) ) we have κ = −λβT̂ (0)−s, which can be rewritten as κ = −λβ ˇ̃T (0̂)−s from (c), hence κ = −λβ ˇ̃T (0)−s =
−ˇ̃κ from (11.2.11(p.57) ), thus κ̂ = ˇ̃κ.

Definition 11.3.1 (correspondence replacement operation CR) Let us call the operation of replacing the left-hand of each
equality in Lemma 11.3.1 by its right-hand the correspondence replacement operation CR.

The lemma below is used in S̃tep 3 of S̃cenario[R] (p.69 ).

Lemma 11.3.2 (C̃R) The left-hand side of each equality below is for any F ∈ F and its right-hand side is for F̌ ∈ F̌
corresponding to the F .

(a) f(ξ) = f̌(ξ̂).
(b) b̂ = ǎ, µ̂ = µ̌, â = b̌.
(c) ˆ̃T (x) = Ť (x̂).
(d) ˆ̃L (x) = Ľ (x̂).
(e) ˆ̃K (x) = Ǩ (x̂).
(f) ˆ̃L (s) = Ľ (s).
(g) x̂

L̃ = xĽ .
(h) x̂

K̃ = xǨ .
(i) sL̃ = sĽ .
(j) ˆ̃κ = κ̌.

Proof (a) The same as (11.1.10).

(b) The same as (11.1.11(p.55) ).

(c) The function T̃ (x) for any F (see (5.1.12(p.17) )) can be rewritten as

T̃ (x) =
∫∞
−∞ min{−ξ̂ + x̂, 0}f(ξ)dξ

= −
∫∞
−∞ max{ξ̂ − x̂, 0}f(ξ)dξ

= −
∫∞
−∞ max{ξ̂ − x̂, 0}f̌(ξ̂)dξ (due to (a)).

Let η = ξ̂ = −ξ. Then, since dη = −dξ, we have

†The mere replacement of the symbol η by ξ.

58



T̃ (x) =
∫ −∞
∞ max{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ max{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ max{ξ − x̂, 0}f̌(ξ)dξ (without loss of generality†)

= −Ť (x̂) (see (11.2.1)),

hence ˆ̃T (x) = Ť (x̂).

(d) From (5.1.13(p.17) ) and (c) we have L̃ (x) = −λβ ˆ̃T (x)+ s = −λβŤ (x̂)+ s = −Ľ (x̂) from (11.2.2(p.56) ), hence ˆ̃L (x) = Ľ (x̂).

(e) From (5.1.14(p.17) ) and (c) we have K̃ (x) = −λβ ˆ̃T (x)+(1−β)x̂+s = −λβŤ (x̂)+(1−β)x̂+s = −Ǩ (x̂) from (11.2.3(p.56) ),

hence ˆ̃K (x) = Ǩ (x̂).

(f) From (5.1.15(p.17) ) we have L̃ (s) = − ˆ̃L (λβµ + s), hence from (d) we obtain L̃ (s) = −Ľ ( ̂λβµ+ s) = −Ľ (−λβµ − s) =

−Ľ (λβµ̂− s) = −Ľ (λβµ̌− s) due to (b). Accordingly, from (11.2.4(p.56) ) we obtain L̃ (s) = −Ľ (s), hence ˆ̃L (s) = Ľ (s).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have ˆ̃L ( xL̃ ) = 0, which can be rewritten as Ľ ( x̂L̃ ) = 0 from (d), implying that
Ľ (x) = 0 has the solution xĽ = x̂

L̃ by definition.

(h) Since K̃ ( xK̃ ) = 0 by definition, we have ˆ̃K ( xK̃ ) = 0, which can be rewritten as Ǩ ( x̂K̃ ) = 0 from (e), implying that
Ǩ (x) = 0 has the solution xǨ = x̂

K̃ by definition.

(i) Since L̃ (sL̃) = 0 by definition, we have ˆ̃L (sL̃) = 0, which can be rewritten as Ľ (sL̃) = 0 from (f), implying that Ľ (s) = 0

has the solution sĽ = sL̃ by definition.

(j) From (5.1.16(p.17) ) we have κ̃ = −λβ ˆ̃T (0) + s, which can be rewritten as κ̃ = −λβŤ (0̂) + s from (c), hence κ̃ =
−λβŤ (0) + s = −κ̌ from (11.2.5(p.56) ), thus ˆ̃κ = κ̌.

Definition 11.3.2 (correspondence replacement operation C̃R) Let us call the operation of replacing the left-hand of each
equality in Lemma 11.3.2 by its right-hand the correspondence replacement operation C̃R.

Definition 11.3.3 (reflective element and non-reflective element) It should be noted that the left-hand of each of the equalities
in Lemmas 11.3.1(i) and 11.3.2(i) have not the hat symbol “ ˆ”. In other words, sL and sL̃ are not subjected to the reflection.
For the reason, let us refer to each of sL and sL̃ as the non-reflective element and to each of all the other elements as the
reflective element.

11.3.2 Identity Replacement

The two lemmas are used in Step 4 of Scenario[R] (p.60 ).
Lemma 11.3.3 (IR) The left-hand side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right-hand
side is for F ∈ F such that F ≡ F̌ · · · [1∗].†

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ.
(b) ǎ = a, µ̌ = µ, b̌ = b.
(c) ˇ̃T (x) = T̃ (x).
(d) ˇ̃L (x) = L̃ (x).
(e) ˇ̃K (x) = K̃ (x).
(f) ˇ̃L (s) = L̃ (s).
(g) xˇ̃L = x

L̃ .
(h) xˇ̃K = x

K̃ .
(i) sˇ̃L = sL̃ .
(j) ˇ̃κ = κ̃.

Proof (a) Clear from [1∗].

(b) Immediate from (a).

(c) Evident from (11.2.7(p.57) ), (5.1.12(p.17) ), and [3∗].

(d) Immediate from (11.2.8(p.57) ), (5.1.13(p.17) ), and (c).

(e) Immediate from (11.2.9(p.57) ), (5.1.14(p.17) ), and (c).

(f) Immediate from (11.2.10(p.57) ), (5.1.15(p.17) ), (d), and µ̌ = µ due to (b).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have ˇ̃L ( xL̃ ) = 0 from (d), hence xˇ̃L = x
L̃ by definition.

(h) Since K̃ ( xK̃ ) = 0 by definition, we have ˇ̃K ( xK̃ ) = 0 from (e), hence xˇ̃K = x
K̃ by definition.

(i) Since L̃ ( sL̃ ) = 0 by definition, we have ˇ̃L ( sL̃ ) = 0 from (f), hence sˇ̃L = sL̃ by definition.

(j) Immediate from (11.2.11(p.57) ), (5.1.16(p.17) ), and (c) with x = 0.

†The mere replacement of the symbol η by ξ.
†See Lemma 11.1.1(b).
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Definition 11.3.4 (identity replacement operation IR) Let us call the operation of replacing the left-hand side of each equality
in Lemma 11.3.3 by its right-hand side the identity replacement operation IR.

The lemma below is used in S̃tep 4 of S̃cenario[R] (p.69 ).
Lemma 11.3.4 (ĨR) The left-hand side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right-hand
side is for F ∈ F such that F ≡ F̌ · · · [1∗].†

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ.
(b) ǎ = a, µ̌ = µ, b̌ = b.
(c) Ť (x) = T (x).
(d) Ľ (x) = L (x).
(e) Ǩ (x) = K (x).
(f) Ľ (s) = L (s).
(g) xĽ = xL .
(h) xǨ = xK .
(i) sĽ = sL .
(j) κ̌ = κ.

Proof (a) Clear from [1∗].

(b) Immediate from (a).

(c) Evident from (11.2.1(p.56) ), (5.1.2(p.17) ), and [3∗].

(d) Immediate from (11.2.2(p.56) ), (5.1.3(p.17) ), and (c).

(e) Immediate from (11.2.3(p.56) ), (5.1.4(p.17) ), and (c).

(f) Immediate from (11.2.4(p.56) ), (5.1.5(p.17) ), (d), and µ̌ = µ due to (b).

(g) Since L ( xL ) = 0 by definition, we have Ľ ( xL ) = 0 from (d), hence xĽ = xL by definition.

(h) Since K (xK ) = 0 by definition, we have Ǩ (xK ) = 0 from (d), hence xǨ = xK by definition.

(i) Since L ( sL ) = 0 by definition, we have Ľ ( sL ) = 0 from (f), hence sĽ = sL by definition.

(j) Immediate from (11.2.5(p.56) ), (5.1.6(p.17) ), and (c) with x = 0.

Definition 11.3.5 (identity replacement operation ĨR) Let us call the operation of replacing the left-hand of each equality in
Lemma 11.3.4 by its right-hand the identity replacement operation ĨR.

11.4 Attribute Vector
Closely looking into the contents of all assertions A{M:1[R][A]} ∈ A {M:1[R][A]}, we can immediately see that each assertion is
stated by using a part of the following twelve kinds of elements;

a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt

where Vt represents the sequence {Vt, t = 1, 2, · · · } generated from SOE{M:1[R][A]}. Let us call each element the attribute
element and the vector of them the attribute vector, denoted by

θ(A{M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (11.4.1)

In addition, also for the assertion system A {M:1[R][A]} we can employ the similar definition, denoted by

θ(A {M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (11.4.2)

11.5 Scenario[R]
In this section we write up a scenario of constructing a methodology which derives an assertion on M̃:1[R][A] (buying model)
from a given assertion on M:1[R][A] (selling model). Let us refer to this as the scenario of Type R, denoted by Scenario[R].

� Step 1 (opening)

◦ The system of optimality equations of M:1[R][A] is given by Table 6.5.1(p.31) (I), i.e.,

SOE{M:1[R][A]} = {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1}. (11.5.1)

◦ Let us consider an assertion ATom{M:1[R][A]}† in Tom’s 10.2.1(p.47) or 10.2.2, which can be written as

ATom{M:1[R][A]} = {S is true for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F} (see (10.3.8(p.50) )) (11.5.2)

= {S is true on C ⟨ATom⟩} (see (10.3.10(p.50) )). (11.5.3)

†See Def. 10.3.2(p.50) for the symbol “Tom” in ATom{M:1[R][A]}.
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To facilitate the understanding of the discussion that follows, let us use the following example.‡

S = ⟨Vt − sL + xL + κ + a+ µ+ b ≥ 0, t > 0 ⟩. (11.5.4)

◦ The attribute vector of the assertion ATom{M:1[R][A]} is given by (11.4.1), i.e.,

θ(ATom{M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (11.5.5)

� Step 2 (reflection operation R)
◦ Applying the reflection operation R (see Section 11.1.1(p.55) ) to (11.5.1) produces

R[SOE{M:1[R][A]}] = {−V̂1 = −βµ̂− s, −V̂t = max{−K̂ (Vt−1)− V̂t−1,−βV̂t−1}, t > 1}
= {−V̂1 = −βµ̂− s, −V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1}
= {V̂1 = βµ̂+ s, V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1}. (11.5.6)

◦ Applying R to (11.5.3) yields to

R[ATom{M:1[R][A]}] = {R[S] is true on C ⟨ATom⟩}. (11.5.7)

For our example we have:

R[S] = ⟨−V̂t − sL − x̂L − κ̂ − â− µ̂− b̂ ≥ 0, t > 0 ⟩§

= ⟨ V̂t + sL + x̂L + κ̂ + â+ µ̂+ b̂ ≤ 0, t > 0 ⟩. (11.5.8)

◦ The attribute vector of the assertion R[ATom{M:1[R][A]}] is given by applying R to (11.5.5), i.e.,

θ(R[ATom{M:1[R][A]}]) def
= R[θ(ATom{M:1[R][A]})] (11.5.9)

= (â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t). (11.5.10)

� Step 3 (correspondence replacement operation CR).
◦ Herein let us consider the application of the correspondence replacement operation CR. By definition, this means the replace-

ment of the left-hand side of each equality in Lemma 11.3.1(p.57) ,

f(ξ), â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ (x), L̂ (x), K̂ (x), L̂ (s) · · · (1∗),
by its right-hand,

f̌(ξ̂), b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T (x̂), ˇ̃L (x̂), ˇ̃K (x̂), ˇ̃L (s) · · · (2∗),

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ corresponding to the F ∈ F .

◦ Applying CR to (11.5.6) leads to

CRR[SOE{M:1[R][A]}] = {V̂1 = βµ̌+ s, V̂t = min{ ˇ̃K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (11.5.11)

◦ Applying CR to R[S] in (11.5.8) means the replacement of each attribute element within R[S] with its correspondent one in
(2∗). For our example we have

CRR[S] = ⟨ V̂t + sˇ̃L + xˇ̃L + ˇ̃κ + b̌+ µ̌+ ǎ ≤ 0, t > 0 ⟩. (11.5.12)

Let us note that the replacement performed by the application of CR inevitably changes

the condition “F ∈ FATom|p ⊆ F ”

included in R[ATom{M:1[R][A]}] (see (11.5.7)) into

the condition “ F̌ ∈ F̌ATom|p ⊆ F̌ corresponding to F ∈ FATom|p ⊆ F ”.
Hence we have

CRR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom and

F̌ ∈ F̌ATom|p ⊆ F̌ corresponding to F ∈ FATom|p ⊆ F}
where

F̌ATom|p = {F̌
∣∣ F ∈ FATom|p} ⊆ {F̌

∣∣ F ∈ F} = F̌ (see (11.1.3(p.55) )). (11.5.13)

Now, since the phrase “ F̌ ∈ F̌ATom|p ⊆ F̌ ” is implicitly accompanied with the phrase “ corresponding to F ∈ FATom|p ⊆ F ”,
the latter phrase becomes redundant. Accordingly, CRR[ATom{M:1[R][A]}] can be rewritten as

CRR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom ⊆P and F̌ ∈ F̌ATom|p ⊆ F̌} (11.5.14)

= {CRR[S] is true on Č ⟨ATom⟩ } (11.5.15)

where
Č ⟨ATom⟩

def
= {p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F̌} (see Def. 10.3.1(p.50) ). (11.5.16)

‡The example is a hypothetical assertion which is not contained in ATom {M:1[R][A]}; It is used merely for explanatory convenience.
§Note Def. 11.3.3(p.59) .
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Here note that Č ⟨ATom⟩ (see (11.5.16)) is derived from C ⟨ATom⟩ (see (10.3.9(p.50) )); in other words, if (p, F ) is included in
C ⟨ATom⟩, then (p, F̌ ) is included in Č ⟨ATom⟩, schematized as

(p, F ) ∈ C ⟨ATom⟩ ⇒ (p, F̌ ) ∈ Č ⟨ATom⟩. (11.5.17)

◦ The attribute vector of CRR[ATom{M:1[R][A]}] is given by applying CR to (11.5.9), i.e.,

θ(CRR[ATom{M:1[R][A]}]) = CRR[θ(ATom{M:1[R][A]})] (11.5.18)

= (b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , Vt). (11.5.19)

� Step 4 (identity replacement operation IR).
◦ Herein let us consider the application of the identity replacement operation IR. By definition, this means the replacement of

the left-hand side of each equality in Lemma 11.3.3(p.59) ,

f̌(ξ), ǎ, µ̌, b̌, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T (x), ˇ̃L (x), ˇ̃K (x), ˇ̃L (s) · · · (1∗),
by its right-hand side,

f(ξ), a, µ, b, x
L̃ , x

K̃ , sL̃ , κ̃ T̃ (x), L̃ (x), K̃ (x), L̃ (s) · · · (2∗),

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ which is identical to the F ∈ F , i.e., F̌ ≡ F · · · ((1)).

◦ Applying IR to (11.5.11) yields

IRCRR[SOE{M:1[R][A]}] = {V̂1 = βµ+ s, V̂t = min{K̃ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (11.5.20)

Now, we have V̂1 = βµ+ s = V1 from (6.5.3(p.31) ). Suppose V̂t−1 = Vt−1. Then, since V̂t = min{K̃ (Vt−1) + Vt−1, βVt−1} = Vt

from (6.5.4(p.31) ), by induction V̂t = Vt for t > 0. Thus (11.5.20) can be rewritten as

IRCRR[SOE{M:1[R][A]}] = {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1}, (11.5.21)

which is the same as SOE{M̃:1[R][A]} (see Table 6.5.1(p.31) (II)). Thus we have

SOE{M̃:1[R][A]} = IRCRR[SOE{M:1[R][A] }] (11.5.22)

= {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1}. (11.5.23)

◦ Applying IR to (11.5.15) yields (note the identity F̌ ≡ F in (1) )

IRCRR[ATom{M:1[R][A]}] = {IRCRR[S] is true on Č ⟨ATom⟩ }. (11.5.24)

Applying IR to (11.5.12) yields

IRCRR[S] = ⟨Vt + sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0⟩. (11.5.25)

Now Vt within IRCRR[S] is generated from SOE{M̃:1[R][A]}, hence (11.5.24) can be regarded as the assertion on M̃:1[R][A] (see
Remark 6.1.1(p.21) ). Thus, we have

ATom{M̃:1[R][A]} = IRCRR[ATom{M:1[R][A]}] (11.5.26)

= {IRCRR[S] is true on Č ⟨ATom⟩}, (11.5.27)

◦ The attribute vector of ATom{M̃:1[R][A]} is given by applying IR to (11.5.19), i.e.,

θ(ATom{M̃:1[R][A]}) = IRCRR[θ(ATom{M:1[R][A]})] (11.5.28)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt), (11.5.29)

� Step 5 (symmetry transformation operation SR→R̃)

Below let us line up the attribute vectors given by the four steps that have been discussed so far:

Step 11.5: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (← (11.5.5))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 11.5: θ( â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t ) (← (11.5.10))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (11.5.30)

Step 11.5: θ( b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t ) (← (11.5.19))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 11.5: θ( b, µ, a, x
L̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (← (11.5.29))

The above flow transforming θ(ATom{M:1[R][A]}) in Step 11.5 into θ(ATom{M̃:1[R][A]}) in Step 11.5 can be eventually reduced to
the operation
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SR→R̃
def
= {a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

} , (11.5.31)

called the symmetry transformation operation, which can be regarded as the successive application “IR← CR← R” of the three
operations, so we have

SR→R̃ = IRCRR. (11.5.32)

Then (11.5.26) can be rewritten as

ATom{M̃:1[R][A]} = SR→R̃[ATom{M:1[R][A]}] (11.5.33)

= {S̃ holds for p ∈PATom ⊆P and F ∈ F̌ATom|p ⊆ F̌} (see (10.3.8(p.50) )) (11.5.34)

= {S̃ holds on Č ⟨ATom⟩ } (see (10.3.10(p.50) )) (11.5.35)

where
S̃

def
= SR→R̃[S]. (11.5.36)

For our example we have

S̃ = ⟨Vt + sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0⟩. (11.5.37)

Then (11.5.22) can be rewritten as

SOE{M̃:1[R][A]} = SR→R̃[SOE{M:1[R][A] }]. (11.5.38)

In addition, (11.5.29) can be rewritten as

θ(ATom{M̃:1[R][A]}) = SR→R̃[θ(ATom{M:1[R][A]})] (11.5.39)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (11.5.40)

From all the above we see that Scenario[R] starts with (11.5.3) and ends up with (11.5.35), which can be rewritten as respectively

ATom{M:1[R][A]} holds on C ⟨ATom⟩, (11.5.41)

ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩. (11.5.42)

Accordingly, it follows that Scenario[R] starting with (11.5.41) and ending up with (11.5.42) can be eventually stated as
Lemma 11.5.1 below.

Lemma 11.5.1 Let ATom{M:1[R][A]} holds on C ⟨ATom⟩. Then ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩ where

ATom{M̃:1[R][A]} = SR→R̃[ATom{M:1[R][A]}]. (11.5.43)

� Step 6 (Completeness of Č ⟨T̃om⟩ )

Aggregation scenario begins from here

� Applying Lemma 11.5.1 to each assertion A{M:1[R][A]} (selling model) included in Tom’s 10.2.1(p.47) and 10.2.2 produces
A{M̃:1[R][A]} (buying model), which will be given by Tom 11.7.1(p.69) and Tom 11.7.2.

Definition 11.5.1 In order to avoid the confusion that follows we sometimes rewrite Tom 11.7.1 and Tom 11.7.2 as T̃om1 and
T̃om2 respectively; here let T̃om = T̃om1, T̃om2; in general, T̃om = T̃om1, T̃om2, · · · .

Definition 11.5.2 (condition-space of AT̃om) Let us define

Č ⟨AT̃om⟩
def
= {(p, F )

∣∣ p ∈PAT̃om
⊆P, F ∈ F̌AT̃om|p ⊆ F̌} (see (11.5.16(p.61) )). (11.5.44)

called the condition-space of AT̃om.

Let us define
Č ⟨T̃om⟩ def

= ∪A∈T̃omČ ⟨AT̃om⟩. (11.5.45)
Here let us define

T̃om def
= {T̃om} = {T̃om1, T̃om2, · · · } (see (10.3.22(p.52) )). (11.5.46)

Then let us consider the following example, corresponding to Example 10.3.5(p.52) .

Example 11.5.1 Let T̃om = {T̃om1, T̃om2, T̃om3} where T̃om1 = {A1
T̃om1

, A2
T̃om1

, A3
T̃om1
}, T̃om2 = {A1

T̃om2
, A2

T̃om2
, A3

T̃om2
}, and T̃om3 =

{A1
T̃om3

, A2
T̃om3

, A3
T̃om3
}, so T̃om = {A1

T̃om
, A2

T̃om
, A3

T̃om
} as a general form.

63



Now, the structure of the aggregation given by the equality (11.5.45) can be schematized as in Figure 11.5.1 below:
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Č ⟨T̃om⟩

⇑aggregation

Č ⟨A1
T̃om
⟩ →

Č ⟨A2
T̃om
⟩ → ← Č ⟨A3

T̃om
⟩

⟨∗⟩

Č ⟨T̃om⟩

⇑aggregation�� ��Č ⟨A1
T̃om
⟩, Č ⟨A2

T̃om
⟩, Č ⟨A3

T̃om
⟩

Figure 11.5.1: Aggregation of Č ⟨A1
T̃om
⟩, Č ⟨A2

T̃om
⟩,Č ⟨A3

T̃om
⟩ into Č ⟨T̃om⟩

Noting that the symbol Tom is replaced by T̃om by definition, we see that the symbol ATom in Lemma 11.5.1 is also replaced by
AT̃om, hence the lemma can be rewritten as Corollary 11.5.1 below.

Corollary 11.5.1 Let AT̃om{M:1[R][A]} holds on C ⟨AT̃om⟩. Then AT̃om{M̃:1[R][A]} holds on Č ⟨AT̃om⟩ where

AT̃om{M̃:1[R][A]} = SR→R̃[AT̃om{M:1[R][A]}]. (11.5.47)
� Let us define

Č ⟨T̃om⟩ def
= ∪T̃om∈T̃omČ ⟨T̃om⟩ (11.5.48)

= ∪T̃om∈T̃om ∪A∈T̃om Č ⟨AT̃om⟩ (see (10.3.24(p.52) )). (11.5.49)

The structure of the definition given by (11.5.49) can be schematized as in Figure 11.5.2 below (see Figure 10.3.3(p.52) ) where
the small deformed circle ⟨∗⟩ in Figure 11.5.1 is what is given by the deformed circle ⟨∗⟩ in Figure 11.5.2 below. Here the big
deformed circle of the left-hand side consist of the three small deformed circles including ⟨∗⟩.
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Č ⟨T̃om⟩

∥definition

Č ⟨T̃om2⟩

Č ⟨T̃om1⟩

Č ⟨T̃om3⟩

⟨∗⟩

Č ⟨T̃om⟩

∥definition�� ��Č ⟨T̃om1⟩, Č ⟨T̃om2⟩ Č ⟨T̃om3⟩

Figure 11.5.2: Definition of Č ⟨T̃om⟩ which consists of Č ⟨T̃om1⟩, Č ⟨T̃om2⟩, and Č ⟨T̃om3⟩

� Consider here again Example 11.5.1 where T̃om1 = {A1
T̃om1

, A2
T̃om1

, A3
T̃om1
}, T̃om2 = {A1

T̃om2
, A2

T̃om2
, A3

T̃om2
}, and T̃om3 = {A1

T̃om3
, A2

T̃om3
, A3

T̃om3
}.

Then, mingling Č ⟨T̃om1⟩, Č ⟨T̃om2⟩, and Č ⟨T̃om3⟩ together (see Figure 11.5.1 and the definition (11.5.49)) yields Figure 11.5.3
below.
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], Č [A3
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T̃om3

], Č [A2
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aggregation aggregation aggregation

Figure 11.5.3: Aggregation of Č ⟨Aj

T̃omi
⟩ for i, j = 1, 2, 3 into Č ⟨T̃om⟩

Since Figure 11.5.3 above means the aggregation of the nine condition-spaces Č ⟨A1
T̃omi
⟩, Č ⟨A2

T̃omi
⟩, and Č ⟨A3

T̃omi
⟩ for i = 1, 2, 3

into Č ⟨T̃om⟩; in other words, aggregating all statements “AT̃om{M̃:1[R][A]} holds on T̃om” produces the statement “A {M̃:1[R][A]}
holds over Č ⟨T̃om⟩”, i.e.,

“AT̃om{M̃:1[R][A]} holds on Č ⟨AT̃om⟩ ” on T̃om ⇒ A {M̃:1[R][A]} holds over Č ⟨T̃om⟩. (11.5.50)

From (10.3.26(p.52) ) and (11.5.50) it eventually follows that Corollary 11.5.1(p.64) can be aggregated into Corollary 11.5.2 below.

Corollary 11.5.2 (symmetry theorem (R→ R̃)) Let A {M:1[R][A]} holds on C ⟨Tom⟩. Then A {M̃:1[R][A]} holds on Č ⟨T̃om⟩
where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}]. (11.5.51)
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� Quasi-completeness of Č ⟨T̃om⟩ We have the lemma below:

Lemma 11.5.2 We have
Č ⟨T̃om⟩ = P × F̌ . (11.5.52)

Proof For any given F̌ ∈ F̌ there exists a F ∈ F such that F ≡ F̌ · · · ((1)) (see Lemma 11.1.1(p.56) (b)). Similarly, for any

given F ∈ F there exists a F̌ ∈ F̌ such that F̌ ≡ F · · · ((2)) (see Lemma 11.1.1(p.56) (c)). First, from (11.5.44(p.63) ) we have

Č ⟨AT̃om⟩ ⊆ {p ∈ P, F̌ ∈ F̌}, hence due to (2) we get Č ⟨AT̃om⟩ ⊆ {p ∈ P, F ∈ F̌} = P × F̌ . Accordingly, from (11.5.49)
we obtain Č ⟨T̃om⟩ ⊆ ∪T̃om∈T̃om ∪A∈T̃om P × F̌ = P × F̌ · · · ((3)). Next, consider any given (p, F ) ∈ P × F̌ · · · ((4)). Now, since

P × F̌ ⊆ P ×F , we have (p, F ) ∈ P ×F from (4) . Then, due to the completeness of C ⟨Tom⟩ (see Section 10.3.6(p.53) ) we
see that (p, F ) ∈ C ⟨ATom⟩ for at least one C ⟨ATom⟩, hence (p, F̌ ) ∈ Č ⟨ATom⟩ due to (11.5.17(p.62) ), so (p, F ) ∈ Č ⟨ATom⟩ due to
(1) or equivalently (p, F ) ∈ Č ⟨AT̃om⟩ (see Def. 11.5.1(p.63) ), hence (p, F ) ∈ Č ⟨T̃om⟩ from (11.5.45(p.63) ), hence (p, F ) ∈ Č ⟨T̃om⟩
due to (11.5.49(p.64) ). Accordingly, it follows from (4) that P × F̌ ⊆ Č ⟨T̃om⟩ · · · ((5)). Finally, from (3) and (5) we obtain

Č ⟨T̃om⟩ = P × F̌ .

Let us refer to the equality (11.5.52) as the quasi-completeness of Č ⟨T̃om⟩. Noting (11.5.52), we can finally rewrite Figure 11.5.3
as Figure 11.5.4 below.

Č ⟨T̃om⟩ = P × F̌
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T̃om2

], Č [A2
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Figure 11.5.4: Aggregation of Č ⟨Aj

T̃omi
⟩ for i, j = 1, 2, 3 into Č ⟨T̃om⟩ = P × F̌

From (10.3.27(p.53) ) and (11.5.52) it follows that Corollary 11.5.2(p.64) can be rewritten as Corollary 11.5.1 below.

Corollary 11.5.3 Let A {M:1[R][A]} holds on P ×F . Then A {M̃:1[R][A]} holds on P × F̌ where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}]. (11.5.53)

Aggregation scenario ends here

� Completeness of Č ⟨T̃om⟩ : Moreover, since F̌ = F in Lemma 11.1.1(p.56) (a), we can rewrite (11.5.52(p.65) ) as follows.
Č ⟨T̃om⟩ = P ×F . (11.5.54)

Let us refer to the equality (11.5.54) as the completeness of Č ⟨T̃om⟩. Then, we can rewrite Figure 11.5.4 as Figure 11.5.5 below.

Č ⟨T̃om⟩ = P ×F
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Č ⟨T̃om⟩

⇑aggregation
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Figure 11.5.5: Aggregation of Č ⟨Aj

T̃omi
⟩ for i, j = 1, 2, 3 into Č ⟨T̃om⟩ = P ×F
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� Step 7 (symmetry theorem (R→ R̃))

Finally, due to (11.5.54) we can rewrite Corollary 11.5.3 as Theorem 11.5.1 below.

Theorem 11.5.1 (symmetry theorem (R→ R̃)) Let A {M:1[R][A]} holds on P×F . Then A {M̃:1[R][A]} holds on P×F
where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}]. (11.5.55)

Then, clearly the attribute vector of A {M̃:1[R][A]} becomes as follows (see (11.5.39))

θ(A {M̃:1[R][A]}) = SR→R̃[θ(A {M:1[R][A]})] (11.5.56)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (11.5.57)

� Step 8 (summary of Scenario[R])
The symmetry transformation operation SR→R̃ is not the operation of merely replacing each symbol in the upper row of
(11.5.31(p.63) ) by its corresponding symbol in the lower row. Since the operation is related to the operation R, each of the plus
sign, the minus sign, and the direction of inequality appearing within the description of the original assertion ATom{M:1[R][A]}
is reversed in the assertion ATom{M̃:1[R][A]} derived from applying SR→R̃. Now, at a glance, the operation seems to be rather
complicated; however, it can be simply prescribed as follows.

◦ Firstly, reflect all the reflective elements (see Defs 11.3.3(p.59) ) appearing within the description of A {M:1[R][A]} (see
Tom’s 10.2.1(p.47) and 10.2.2 ).

◦ Next, replace each of all the reflected elements, whether reflective or non-reflective, with the right side of its corresponding
equality in Lemma 11.3.1(p.57) .

◦ Then, remove the check sign “ˇ” from all the replaced symbols.

11.6 Derivation of T̃R , L̃R , K̃R , L̃R , and κ̃R

To begin with, let us note here the fact that Scenario[R] is a story for an assertion A{M:1[R][A]} which is related to the attribute
vector θ, and it can be immediately seen that the scenario can be applied also to any other assertions only if it is related to
the attribute vector θ. Accordingly, it can be applied also to TR , LR , KR ,LR , and κR; in other words, L̃R , K̃R , L̃R and κ̃R can be
derived by applying the operation SR→R̃ to TR , LR , KR ,LR , and κR, i.e.,

(L̃R , K̃R , L̃R , κ̃R) = SR→R̃[(LR , KR ,LR , κR)]. (11.6.1)

Accordingly, we have the following:

Lemma 11.6.1 (A {T̃R }) For any F ∈ F :

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,∞).

(d) T̃ (x) + x is nondecreasing on (−∞,∞).

(e) T̃ (x) + x strictly increasing on (−∞, b].

(f) T̃ (x) = µ− x on [b,∞) and T̃ (x) < µ− x on (−∞, b).

(g) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].

(h) T̃ (x) ≤ min{0, µ− x} on x ∈ (−∞,∞).

(i) T̃ (0) = 0 if a > 0 and T̃ (0) = µ if b < 0.

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x > y and b > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβµ+ s) + s is nondecreasing in s and strictly increasing in s if λβ < 1.

(n) b > µ.

Proof by symmetry The lemma, excluding (a,n), can be easily obtained by applying SR→R̃ to
Lemmas 9.1.1(p.41) as shown below.

(a) Evident from the fact that min{ξ − x, 0} in (5.1.11(p.17) ) is continuous on (−∞,∞).

(b) Lemma 9.1.1(p.41) (b) can be rewritten as A ={T (x) ≥ T̃ (x′) for x < x′}. Applying R to this yields R[A]={−T̂ (x) ≥
−T̂ (x′) for −x̂ < −x̂′}={T̂ (x̂) ≤ T̂ (x̂′) for x̂ > x̂′}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) ≤ ˇ̃T (x̂′) for x̂ > x̂′}.
Finally, applying IR to this leads to IRCRR[A] ={T̃ (x̂) ≤ T̃ (x̂′) for x̂ > x̂′}. Without loss of generality, this can be rewritten as
IRCRR[A ={T̃ (x) ≤ T̃ (x′) for x > x′}, meaning that T̃ (x) is nonincreasing on (−∞,∞).

(c-e) Almost the same as the proof of (b)

(f) Let the former half of Lemma 9.1.1(f) can by rewritten as A ={T (x) = µ − x for x ≤ a}. Applying R to this yields

R[A]={−T̂ (x) = −µ̂+x̂ for −x̂ ≤ −â}={T̂ (x) = µ̂−x̂ for x̂ ≥ â}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) = µ̌−x̂
for x̂ ≥ b̌}. Finally, applying IR to this lead to IRCRR[A] ={T̃ (x̂) = µ − x̂ for x̂ ≥ b}. Without loss of generality, this can be
rewritten as IRCRR[A] ={T̃ (x) = µ − x for x ≥ b}={T̃ (x) = µ − x on [b,∞)}. The proof of the latter half is almost the same
as the above.
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(g) The former half of Lemma 9.1.1(g) can be rewritten by A ={T (x) > 0 for x < b}. Applying R to this yields

R[A] ={−T̂ (x) > 0 for −x̂ < −b̂}={T̂ (x) < 0 for x̂ > b̂}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) < 0 for
x̂ > ǎ}. Finally, applying IR to this leads to IRCRR[A] ={T̃ (x̂) < 0 for x̂ > a}. Without loss of generality, this can be rewritten
as IRCRR[A] ={T̃ (x) < 0 for x > a}={T̃ (x) < 0 on (a,∞)}. The proof of the latter half is almost the same as the above.

(h) Applying R to Lemma 9.1.1(h) yields R[A] ={−T̂ (x) ≥ max{0,−µ̂+ x̂} for −∞ < −x̂ <∞}={T̂ (x) ≤ min{0, µ̂− x̂} for
∞ > x̂ > −∞}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) ≤ min{0, µ̌− x̂} for ∞ > x̂ > −∞}. Finally, applying
IR to this leads to IRCRR[A] ={T̃ (x̂) ≤ min{0, µ − x̂} for ∞ > x̂ > −∞}. Without loss of generality, this can be rewritten as
IRCRR[A] ={T̃ (x) ≤ min{0, µ− x} for ∞ > x > −∞}={T̃ (x) ≤ min{0, µ− x} on (−∞,∞)}.

(i) Immediate from T̃ (0) = E[min{ξ, 0}] = E[min{ξ, 0}I(a ≤ ξ ≤ b)] from (5.1.11(p.17) ) and
(2.1.4(p.8) )).

(j,k) Almost the same as the proof of (b and c)

(l) Lemma 9.1.1(l) can be rewritten as A ={If x < y and a < y, then T (x) + x < T (y) + y}. Applying R to this yields
R[A]={If −x̂ < −ŷ and −â < −ŷ, then −T̂ (x) − x̂ < −T̂ (y) − ŷ}={If x̂ > ŷ and â > ŷ, then T̂ (x)x̂ > T (y) + ŷ}, and

then applying CR to this produces CRR[A] ={If x̂ > ŷ and b̌ > ŷ, then ˇ̃T (x̂) + x̂ > ˇ̃T (ŷ) + ŷ}={If x > y and b̌ > y, then
ˇ̃T (x) + x > ˇ̃T (y) + y}. Finally, applying IR to this leads to IRCRR[A] ={If x > y and b > y, then T̃ (x) + x > T̃ (y) + y}.
(m) The former half of Lemma 9.1.1(m) can be rewritten as Let A ={λβT (λβµ−s)−s is nonincreasing in s}, which can be

rewritten as A ={λβT (λβµ− s)− s ≥ λβT (λβµ− s′)− s′ for s < s′}. Applying R to this yields R[A] ={−λβT̂ (−λβµ̂− s)− s ≥
−λβT̂ (−λβµ̂−s′)−s′ for s < s′}={λβT̂ (−λβµ̂−s)+s ≤ λβT̂ (−λβµ̂−s′)+s′ for s < s′},† and then applying CR to this produces

CRR[A] ={λβ ˇ̃T (−̂λβµ̌− s)+s ≤ λβ ˇ̃T (−̂λβµ̌− s′)+s′ for s < s′}={λβ ˇ̃T (λβµ̌+s)+s ≤ λβ ˇ̃T (λβµ̌+s′)+s′ for s < s′}. Finally,
applying IR to this leads to IRCRR[A] ={λβT̃ (λβµ+ s) + s ≤ λβT̃ (λβµ+ s′) + s′ for s < s′}, meaning that λβT̃ (λβµ+ s) + s
is nondecreasing in s. Similarly, the latter half of Lemma 9.1.1(m) can be rewritten as IRCRR[A] ={λβT̃ (λβµ + s) + s <
λβT̃ (λβµ+ s′) + s′ for s < s′}, meaning that λβT̃ (λβµ+ s) + s is nonincrecreasing in s.

(n) Clear from (2.1.3(p.8) ).

Direct proof See Section A1.1(p.271) .

We have:

L̃ (x)

{
= λβµ+ s− λβx on [b,−∞) · · · (1),
< λβµ+ s− λβx on (−∞, b) · · · (2),

(11.6.2)

K̃ (x)

{
= λβµ+ s− δx on [b,∞) · · · (1),
< λβµ+ s− δx on (−∞, b) · · · (2).

(11.6.3)

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(11.6.4)

K̃ (x) + x ≤ βx+ s on (−∞,∞). (11.6.5)

K̃ (x) + x =

{
λβµ+ s+ (1− λ)βx on [b,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(11.6.6)

K̃ ( xL̃ ) = −(1− β) xL̃ · · · (1), L̃ ( xK̃ ) = (1− β) xK̃ · · · (2). (11.6.7)

Proof by symmetry Obtained by applying SR→R̃ to (9.2.3(p.42) )-(9.2.8).

Direct proof See (A 1.1(p.272) )-(A 1.6) .

Lemma 11.6.2 (A {L̃R })
(a) L̃ (x) is continuous on (−∞,∞).
(b) L̃ (x) is nonincreasing on (−∞,∞).
(c) L̃ (x) is strictly decreasing on [a,∞).
(d) Let s = 0. Then x

L̃ = a where x
L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.

(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβµ+ s)/λβ ≥ (<) b ⇔ x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b.

Proof by symmetry Obtained by applying SR→R̃ to Lemmas 9.2.1(p.43)

Direct proof See Lemma A1.2(p.272) .

Corollary 11.6.1 (A {L̃R})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

†Note Def. 11.3.3(p.59) ).
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Proof by symmetry Obtained by applying SR→R̃ to Corollaries 9.2.1(p.43)

Direct proof See Corollary A 1.1(p.273) .

Lemma 11.6.3 (A {K̃R })

(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on (−∞, b].

(g) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(h) If x > y and b > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

2. (λβµ+ s)/δ ≥ (<) b ⇔ x
K̃ = (<) (λβµ+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

Proof by symmetry Obtained by applying SR→R̃ to Lemmas 9.2.2(p.43) .

Direct proof See Lemma A1.3(p.273) .

Corollary 11.6.2 (A {K̃R})

(a) x
K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.

(b) x
K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Proof by symmetry Obtained by applying SR→R̃ to Corollaries 9.2.2(p.44) .

Direct proof See Corollary A 1.2(p.274) .

Lemma 11.6.4 (A {L̃R /K̃R })

(a) Let β = 1 and s = 0. Then x
L̃ = x

K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (>)) 0.

Proof by symmetry Obtained by applying SR→R̃ to Lemmas 9.2.3(p.44) .

Direct proof See Lemma A1.4(p.274) .

Lemma 11.6.5 (A {L̃R })

(a) L̃ (s) is nondecreasing in s and is strictly increasing in s if λβ < 1.

(b) Let λβµ ≤ a.

1. x
L̃ ≥ λβµ+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβµ+ s.

(c) Let λβµ > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβµ+ s.

Proof by symmetry Obtained by applying SR→R̃ to Lemmas 9.2.4(p.44) .

Direct proof See Lemma A1.5(p.274) .

Lemma 11.6.6 (κ̃R) We have:

(a) κ̃ = λβµ+ s if b < 0 and κ̃ = s if a > 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

Proof Obtained by applying SR→R̃ to Lemmas 9.3.1(p.45) .

Direct proof See Lemma A1.6(p.274) .

As the whole of assertions in the above lemmas and corollaries we have the assertion system below.

A {{L̃R , K̃R , L̃R , κ̃R}} = SR→R̃[A {{LR , KR ,LR , κR}}]. (11.6.8)
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11.7 Derivation of A {M̃:1[R][A]}
Lemma 11.7.1 (M̃:1[R][A]) The optimal initiating time t∗τ (OIT) is not subject to the influence of the symmetry transformation
operation SR→R̃.

Proof First, let us represent (7.2.10(p.35) ) by D
def
= {It

∗
τ

τ ≥ Itτ for τ ≥ t ≥ tqd}· · · ((1)), which can be rewritten as {βτ−t∗τVt∗τ ≥
βτ−tVt for τ ≥ t ≥ tqd}. Next, applying R to this yields R[D]={−βτ−t∗τ V̂t∗τ ≥ −β

τ−tV̂t for τ ≥ t ≥ tqd}={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t

for τ ≥ t ≥ tqd}. Then, even if applying CR to this, no change occurs, i.e., CRR[D] ={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t for τ ≥ t ≥ tqd}.
Finally, applying IR to this, we have IRCRR[A] ={βτ−t∗τVt∗τ ≤ βτ−tVt for τ ≥ t ≥ tqd}· · · ((2)) where V̂t changes into Vt for the

reason stated below (11.5.20(p.62) ). The above result means that even if SR→R̃ (= IRCRR) is applied, the optimal initiating time
t∗τ in (1) is entirely inherited to t∗τ in (2) without any change.

� Tom 11.7.1 (ATom {M̃:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

Proof by symmetry Immediately obtained by applying SR→R̃ to Tom 10.2.1(p.47) .

Direct proof See Tom A4.1(p.284) .

� Tom 11.7.2 (A {M̃:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βµ > a.

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).
i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S1(p.47) ⃝s N ⃝∗ ∥ is true.

Proof by symmetry Immediately obtained by applying SR→R̃ to Tom 10.2.2(p.48) .

Direct proof See Tom A4.2(p.285) .

11.8 S̃cenario[R]
In this section we write up the inverse of Scenario[R] (p.60 ) which derives A {M:1[R][A]} (see Tom’s 10.2.1(p.47) and 10.2.2) from
A {M̃:1[R][A]} (see Tom’s 11.7.1(p.69) and 11.7.2). Let this scenario be represented as S̃cenario[R]. For an explanatory simplicity,
symbols “F” and “F̌” that were used in Scenario[R] are all removed from discussions that will be made below.

� S̃tep 1 (opening)

◦ The system of optimality equation of M̃:1[R][A] is given by Table 6.5.1(p.31) (II), i.e.,

SOE{M̃:1[R][A]} = {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1}. (11.8.1)

◦ Let us consider an assertion ATom{M̃:1[R][A]} in Tom’s 11.7.1 or 11.7.2, which can be rewritten as

ATom{M̃:1[R][A]} = {S̃ is true for p ∈PATom and F ∈ FATom|p with p ∈PATom} (11.8.2)

= {S̃ is true on C ⟨ATom⟩} (see (10.3.10(p.50) )) (11.8.3)

where

Č ⟨ATom⟩
def
= {(p, F )

∣∣ p ∈PATom , F ∈ FATom|p ⊆ F}. (11.8.4)

To facilitate the understanding of the discussion that follows let us use the following example.

S̃ = ⟨Vt + sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0 ⟩. (11.8.5)

◦ The attribute vector of the assertion ATom{M̃:1[R][A]} is given by (11.5.40(p.63) )), i.e.,

θ(ATom{M̃:1[R][A]}) = (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (11.8.6)
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� S̃tep 2 (reflection operation R)
◦ Applying the reflection operation R to (11.8.1) produces

R[SOE{M̃:1[R][A]}] = {−V̂1 = −βµ̂+ s, −V̂t = min{− ˆ̃K (Vt−1)− V̂t−1,−βV̂t−1}, t > 1}

= {−V̂1 = −βµ̂+ s, −V̂t = −max{ ˆ̃K (Vt−1) + V̂t−1, βV̂t−1}}

= {V̂1 = βµ̂− s, V̂t = max{ ˆ̃K (Vt−1) + V̂t−1, βV̂t−1}, t > 1}. (11.8.7)

◦ Applying R to (11.8.3) yields to

R[ATom{M̃:1[R][A]}] = {R[S̃] is true on Č ⟨ATom⟩ }. (11.8.8)

For our example we have:

R[S̃] = ⟨−V̂t + sL̃ − x̂
L̃ − ˆ̃κ − b̂− µ̂− â ≤ 0, t > 0 ⟩

= ⟨ V̂t − sL̃ + x̂
L̃ + ˆ̃κ + b̂+ µ̂+ â ≥ 0, t > 0 ⟩. (11.8.9)

◦ The attribute vector of the assertion R[ATom{M̃:1[R][A]}] is given by applying R to (11.8.6), i.e.,

θ(R[ATom{M̃:1[R][A]}]) def
= R[θ(ATom{M̃:1[R][A]})] (11.8.10)

= (b̂, µ̂, â, x̂L̃ , x̂K̃ , sL̃ , κ̂, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t). (11.8.11)

� S̃tep 3 (correspondence replacement operation C̃R).

◦ Herein let us consider the application of the correspondence replacement operation C̃R. By definition, this means the replace-
ment of the left-hand side of each equality in Lemma 11.3.2(p.58) .

b̂, µ̂, â, x̂
L̃ , x̂

K̃ , sL̃ , ˆ̃κ, ˆ̃T (x), ˆ̃L (x), ˆ̃K (x), ˆ̃L (s) · · · (1∗)
by its right-hand side

ǎ, µ̌, b̌, x̌L , x̌K , sĽ , κ̌, Ť (x̂), Ľ (x̂), Ǩ (x̂), Ľ (s) · · · (2∗)

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ corresponding to the F ∈ F .

◦ Applying C̃R to (11.8.7) leads to

C̃RR[SOE{M̃:1[R][A]}] = SOE{M:1[R][A]} = {V̂1 = βµ̌− s, V̂t = max{Ǩ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (11.8.12)

◦ Applying C̃R to R[S̃] in (11.8.9) means the replacement of each attribute element within R[S̃] with its correspondent one. For
our example we have

C̃RR[S̃] = ⟨ V̂t + sĽ + x̌L + κ̌ + ǎ+ µ̌+ b̌ ≤ 0, t > 0 ⟩. (11.8.13)

Let us note that the replacement performed by the application of C̃R inevitably changes

the condition “ for F ∈ FATom|p ”

included in R[ATom{M̃:1[R][A]}] (see (11.8.8)) into

the condition “ for F̌ ∈ F̌ATom|p corresponding to any F ∈ FATom|p with p ∈PA ”.

Hence we have

C̃RR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom and (11.8.14)

F̌ ∈ F̌ATom|p corresponding to F ∈ FATom|p with p ∈PATom} (11.8.15)

where
F̌ATom|p = {F̌

∣∣ F ∈ FATom|p} (see (11.1.3(p.55) )). (11.8.16)

Now, since the phrase “ corresponding to F ∈ FATom|p ” in (11.8.15) is what implicitly and inevitably accompanies the phrase

“ F̌ ∈ F̌ATom|p ”, the former phrase becomes redundant. Accordingly C̃RR[ATom{M̃:1[R][A]}] can be rewritten as

C̃RR[ATom{M̃:1[R][A]}] = {C̃RR[S̃] is true for p ∈PATom and F̌ ∈ F̌ATom|p}, (11.8.17)

= {CRR[S] is true on Č ⟨ATom⟩ } (11.8.18)

where
Č ⟨ATom⟩

def
= {(p, F )

∣∣ p ∈PATom , F̌ ∈ F̌ATom|p ⊆ F}. (11.8.19)

◦ The attribute vector of C̃RR[ATom{M̃:1[R][A]}] is given by applying C̃R to (11.8.11), i.e.,

θ(C̃RR[ATom{M̃:1[R][A]}]) = C̃RR[θ(ATom{M̃:1[R][A]})] (11.8.20)

= (ǎ, µ̌, b̌, x̌L , x̌K , sĽ .κ̌, Ť , Ľ , Ǩ , Ľ , V̂t). (11.8.21)
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� S̃tep 4 (identity replacement operation ĨR).

◦ Herein let us consider the application of the identity replacement operation ĨR. By definition, this means the replacement of
the left-hand of each equality in Lemma 11.3.4(p.60)

F̌ , ǎ, µ̌, b̌, x̌L , x̌K , sĽ , κ̌, Ť (x), Ľ (x), Ǩ (x), Ľ (s) · · · (1∗)
by its right-hand side

F , a, µ, b, xL , xK , sL , κ, T (x), L (x), K (x), L (s) · · · (2∗)

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ which is identical to the F ∈ F , i.e., F̌ ≡ F · · · ((1)).

◦ Applying ĨR to (11.8.12) yields

ĨRC̃RR[SOE{M̃:1[R][A]}] = {V̂1 = βµ− s, V̂t = max{K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (11.8.22)

Now, we have V̂1 = βµ− s = V1 from (6.5.5(p.31) ). Suppose V̂t−1 = Vt−1. Then, since V̂t = max{K̃ (Vt−1) + Vt−1, βVt−1} = Vt

from (6.5.6(p.31) ), by induction V̂t = Vt for t > 0. Thus we have

ĨRC̃RR[SOE{M̃:1[R][A]}] = {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1}, (11.8.23)

which is the same as SOE{M:1[R][A]} (see Table 6.5.1(p.31) (I)). Thus we have

SOE{M̃:1[R][A]} = ĨRC̃RR[SOE{M̌:1[R][A]}] (11.8.24)

= {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1}. (11.8.25)

◦ Applying ĨR to (11.8.17) yields

ĨRC̃RR[ATom{M̃:1[R][A]}] = {ĨRC̃RR[S̃] is true on Č ⟨ATom⟩ }. (11.8.26)

Applying ĨR to (11.8.13) yields

ĨRC̃RR[S̃] = ⟨Vt + sL + xL + κ + a+ µ+ b ≤ 0, t > 0⟩. (11.8.27)

Now Vt within ĨRC̃RR[S̃] is generated from SOE{M:1[R][A]}, hence (11.8.26) can be regarded as an assertion as to M:1[R][A].
Thus, we have

ATom{M:1[R][A]} = ĨRC̃RR[ATom{M̃:1[R][A]}] (11.8.28)

= {ĨRC̃RR[S̃] is true on Č ⟨ATom⟩ }. (11.8.29)

◦ The attribute vector of ATom{M:1[R][A]} is given by applying ĨR to (11.8.21), i.e.,

θ(ATom{M:1[R][A]}) = ĨRC̃RR[θ(ATom{M̃:1[R][A]})] (11.8.30)

= (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt), (11.8.31)

� S̃tep 5 (symmetry transformation operation S R̃→R)

Below let us line up the attribute vectors given in the four steps that have been discussed so far:

S̃tep 1: θ( b, µ, a, x
L̃ , x

K̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (← (11.8.6))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

S̃tep 2: θ( b̂, µ̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˜̂κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t ) (← (11.8.11))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (11.8.32)

S̃tep 3: θ( ǎ, µ̌, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t ) (← (11.8.21))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

S̃tep 4: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (← (11.8.31))

The above flow transforming θ(ATom{M̃:1[R][A]}) in S̃tep 1 into θ(ATom{M:1[R][A]}) in S̃tep 4 can be eventually reduced to the
operation S R̃→R depicted below.

S R̃→R
def
= { b, µ, a, x

L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt
} , (11.8.33)

called the symmetry transformation operation. Let us define

S R̃→R
def
= ĨRC̃RR. (11.8.34)

Then (11.8.28) can be rewritten as

ATom{M:1[R][A]} = S R̃→R[ATom{M̃:1[R][A]}] (11.8.35)

= {S is true for p ∈PATom and F ∈ F̌ATom|p} (11.8.36)

= {S is true on Č ⟨ATom⟩ } (11.8.37)
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where

S = S R̃→R[S̃]. (11.8.38)

For our example we have
S = ⟨Vt + sL + xL + κ + a+ µ+ b ≤ 0, t > 0⟩. (11.8.39)

Then, (11.8.24) can be rewritten as

SOE{M:1[R][A]} = S R̃→R[SOE{M̃:1[R][A] }]. (11.8.40)

In addition, (11.5.29) can be rewritten as

θ(ATom{M:1[R][A]}) = S R̃→R[θ(ATom{M̃:1[R][A]})] (11.8.41)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (11.8.42)

From all the above we see that S̃cenario[R] starts with (11.8.3) and ends up with (11.8.37), which can be rewritten as respectively

ATom{M̃:1[R][A]} holds on C ⟨ATom⟩, (11.8.43)

ATom{M:1[R][A]} holds on Č ⟨ATom⟩. (11.8.44)

Accordingly, it follows that S̃cenario[R] starting with (11.8.43) and ending up with (11.8.44) can be rewritten as Lemma 11.8.1
below.

Lemma 11.8.1 Let ATom{M̃:1[R][A]} holds on C ⟨ATom⟩. Then ATom{M:1[R][A]} holds on Č ⟨ATom⟩ where
ATom{M:1[R][A]} = S R̃→R[ATom{M̃:1[R][A]}]. (11.8.45)

� S̃tep 6 (aggregation)

We can construct the same procedure as in Step 11.5 (p.63) .

� S̃tep 7 (symmetry theorem R← R̃)

Through the procedure in S̃tep 11.5 (p.63) we have the following theorem

Theorem 11.8.1 Let A {M̃:1[R][A]} holds on P ×F . Then A {M:1[R][A]} holds on P ×F where

A {M:1[R][A]} = S R̃→R[A {M̃:1[R][A]}]. (11.8.46)

Proof Immediate for the same reason as in Theorem 11.5.1(p.66) .

The attribute vector of A {M:1[R][A]} is given by

θ(A {M:1[R][A]}) = S R̃→R[θ(A {M̃:1[R][A]})] (11.8.47)

= (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt) (11.8.48)

11.9 Definition of Symmetry
Thus far, the term of symmetry has been used in the rather intuitive nuance. In order to make our discussions that follows
more clear, below let us provide its strict definition.

Definition 11.9.1

(a) Let A{M1} and A{M2} be assertions on models M1 and M2 respectively. Then, if A{M2} = SR→R̃[A{M1}] and A{M1} =
S R̃→R[A{M2}, let A{M1} and A{M2} be said to be symmetrical, denoted by A{M1} ∼ A{M2}. Then let us employ the
expression of “M1 and M2 are symmetrical with respect to A ”.

(b) For given two assertion systems A {M1} and A {M2} which are one-to-one correspondent, if A{M1} ∼ A{M2} for any pair
(A{M1},A{M2}) where A{M1} ∈ A {M1} and A{M2} ∈ A {M2}, then A {M1} and A {M2} are said to be symmetrical,
denoted by A {M1} ∼ A {M2}. Then, let us employ the expression of “M1 and M2 are symmetrical with respect to A ”.

(c) Without confusion, let us remove the phrases “with respect to A” and “with respect to A ”.

Lemma 11.9.1 A {M:1[R][A]} and A {M̃:1[R][A]} are symmetrical, i.e.,

A {M:1[R][A]} ∼ A {M̃:1[R][A]}. (11.9.1)

Proof Immediate from (11.5.55(p.66) ) and (11.8.46(p.72) ).

11.10 Symmetry-Operation-Free
When no change occurs even if the symmetry operation is applied to a given assertion A, the assertion is said to be free from
the symmetry operation, called the symmetry-operation-free assertion.

Lemma 11.10.1 Even if the symmetry operation is applied to the symmetry-operation-free assertion, no change occurs.

Proof Evident.

72



Chapter 12

Analogy Theorem (R↔ P)

12.1 Preliminary

Lemma 12.1.1 ([46,You][0054])

(a) Let x ≥ b. Then z(x) = b.
(b) Let x < b. Then x < z(x) < b.
(c) z(x) ≥ a for any x.

Proof (a) Let x ≥ b. If z < b (I), then z < x, hence p(z)(z − x) < 0 due to (5.1.29 (1) (p.18) ), and if b ≤ z (III), then
p(z)(z − x) = 0 due to (5.1.29 (2)). Hence z(x) can be given by any z ≥ b, thus z(x) = b due to Def. 5.1.1(p.18) .

-
b
◦• x

-z < b

(I)

� b ≤ z

(III)

Figure 12.1.1: Case x ≥ b

(b) Let x < b. If z ≤ x (I), then p(z)(z − x) ≤ 0, if x < z < b (II), then p(z)(z − x) > 0 due to (5.1.29 (1) (p.18) ), and if b ≤ z
(III), then p(z)(z − x) = 0 from (5.1.29 (2)). Hence, z(x) is given by z such that x < z < b or equivalently x < z(x) < b.

-
x
•◦

b
◦• x

-z ≤ x

(I)
-� x < z < b

(II)
� b ≤ z

(III)

Figure 12.1.2: Case x < b

(c) Assume that z(x) < a for a certain x. Then, since p(z(x)) = 1 = p(a) due to (5.1.28 (1)), from (5.1.25(p.18) ) we have
T (x) = p(z(x))(z(x)− x) = z(x)− x < a− x = p(a)(a− x) ≤ T (x), which is a contradiction. Hence, it must be that z(x) ≥ a
for any x.

Corollary 12.1.1 ([46,You][0054]) a ≤ z(x) ≤ b for any x.

Proof Immediate from Lemma 12.1.1.

Lemma 12.1.2 ([46,You][0054]) p(z) is nonincreasing on (−∞,∞) and strictly decreasing in z ∈ [a, b].

Proof The former half is immediate from (5.1.18(p.18) ). Let a ≤ z′ < z ≤ b. Then p(z′) − p(z) = Pr{z′ ≤ ξ} − Pr{z ≤ ξ} =
Pr{z′ ≤ ξ < z} =

∫ z

z′ f(ξ)dξ > 0 (See (2.1.4 (2) (p.8) )), hence p(z′) > p(z), i.e., p(z) is strictly decreasing on [a, b].

Lemma 12.1.3 ([46,You][0054]) z(x) is nondecreasing on (−∞,∞).

Proof From (5.1.25(p.18) ), for any x and y we have

T (x) = p(z(x))(z(x)− x)

= p(z(x))(z(x)− y)− (x− y)p(z(x))

≤ T (y)− (x− y)p(z(x))

= p(z(y))(z(y)− y)− (x− y)p(z(x))

= p(z(y))
(
z(y)− x+ (x− y)

)
− (x− y)p(z(x))

= p(z(y))(z(y)− x) + (x− y)(p(z(y))− p(z(x)))

≤ T (x) + (x− y)(p(z(y))− p(z(x))).

‡This is the most important property of the function T , which was proven in [?, 0298].
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Hence 0 ≤ (x− y)(p(z(y))− p(z(x))). Let x > y. Then 0 ≤ p(z(y))− p(z(x)), so p(z(x)) ≤ p(z(y)) · · · ((1)). Since a ≤ z(x) ≤ b

and a ≤ z(y) ≤ b from Corollary 12.1.1, if z(x) < z(y), then p(z(x)) > p(z(y)) from Lemma 12.1.2, which contradicts (1) .
Hence, it must be that z(x) ≥ z(y), i.e., z(x) is nondecreasing in x ∈ (−∞,∞).

Lemma 12.1.4

(a) T (x) is continuous on (−∞,∞).

(b) T (x) is nonincreasing on (−∞,∞).

(c) T (x) is strictly decreasing on (−∞, b].

(d) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(e) T (x) ≥ a− x on (−∞,∞).

(f) T (x) + x is nondecreasing on (−∞,∞).

(g) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.

(h) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.

(i) T (x) ≥ max{0, a− x} on (−∞,∞).

(j) λβT (λβa− s)− s is nonincreasing in s and is strictly decreasing in s if λβ < 1.

Proof (a,b) Immediate from the fact that p(z)(z−x) in (5.1.19(p.18) ) is continuous and nonincreasing in x ∈ (−∞,∞) for any
z.

(c) Let x′ < x < b. Then z(x) < b from Lemma 12.1.1(b). Accordingly, since p(z(x)) > 0 due to (5.1.29 (1)) and since
z(x)−x < z(x)−x′, from (5.1.25) we have T (x) = p(z(x))(z(x)−x) < p(z(x))(z(x)−x′) ≤ T (x′), implying that T (x) is strictly
decreasing on (−∞, b) · · · · · · ((1)). Assume T (b) = T (x) for a given x < b or equivalently b − x > 0. Then, for any sufficiently

small ε > 0 such that b − x > 2ε > 0 we have b > b − ε > x + ε > x, hence T (b) = T (x) > T (b − ε) ≥ T (b) due to the strict
decreasingness shown above and the nonincreasingness in (b), which is a contradiction. Thus, since T (x) ̸= T (b) for any x < b,
we have T (x) > T (b) or T (x) < T (b) for any x < b. However, the latter is impossible due to (b), hence only the former is
possible. From this it must be that the former holds, hence it eventually follows that T (x) is strictly decreasing on (−∞, b]
instead of (−∞, b).

(d) Let x ≥ b. Then, since z(x) = b from Lemma 12.1.1(a), we have p(z(x)) = 0 due to (5.1.29 (2)), hence T (x) =
p(z(x))(z(x)− x) = 0 on [b,∞). Let x < b. Then, from (c) we have T (x) > T (b) = 0, i.e., T (x) > 0 on (−∞, b).

(e) Since p(a) = 1 from (5.1.28 (1)), we have T (x) ≥ p(a)(a− x) = a− x for any x on (−∞,∞).

(f) Let x < x′. Then, we have

T (x) + x = p(z(x))(z(x)− x) + x

= p(z(x))z(x) + (1− p(z(x)))x

≤ p(z(x))z(x) + (1− p(z(x)))x′

= p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

implying that T (x) + x is nondecreasing on (−∞,∞).

(g) If β = 1, then βT (x) + x = T (x) + x, hence the assertion is true from (f).

(h) Since βT (x) + x = β(T (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (f).

(i) Immediate from the fact that T (x) ≥ a− x on (−∞,∞) from (e) and T (x) ≥ 0 on (−∞,∞) from (d).

(j) From (5.1.19(p.18) ) we have

λβT (λβa− s)− s = λβmaxz p(z)(z − λβa+ s)− s = maxz p(z)(λβz − (λβ)2a+ λβs)− s.

Let s > s′. Then, we have

λβT (λβa− s)− s− λβT (λβa− s′) + s′

= maxz p(z)(λβz − (λβ)2a+ λβs)−maxz p(z)(λβz − (λβ)2a+ λβs′)− (s− s′)

≤ maxz p(z)(s− s′)λβ − (s− s′)

≤ maxz(s− s′)λβ − (s− s′) (due to p(z) ≤ 1 and s− s′ > 0)

= (s− s′)λβ − (s− s′)

= −(s− s′)(1− λβ) ≤ (<) 0 if λβ ≤ (<) 1.

Hence, since λβT (λβa− s)− s ≤ (<) λβT (λβa− s′)− s′ if λβ ≤ (<) 1, it follows that T (λβa− s)− s is nonincreasing (strictly
decreasing) in s if λβ ≤ (<) 1.

Let us define

h(z) = p(z)(z − a)/(1− p(z)), z > a,

h⋆ = supa<z h(z),

¯
f = mina≤w≤b f(w) > 0 due to (2.1.4 (2) (p.8) ).
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Below, for a given x let us define the following successive four assertions:

A1(x) = ⟨⟨ z(x) > a ⟩⟩,
A2(x) = ⟨⟨ T (a, x) < T (z′, x, ) for at least one z′ > a ⟩⟩,
A3(x) = ⟨⟨ a− h(z′) < x for at least one z′ > a ⟩⟩,
A4(x) = ⟨⟨ infz>a{a− h(z)} < x ⟩⟩.

Proposition 12.1.1 For any given x we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Proof Letting T (z, x)
def
= p(z)(z − x), we can rewritten (5.1.19(p.18) ) as T (x) = maxz T (z, x) = T (z(x), x).

1. Let A1(x) be true for any given x. Suppose T (a, x) ≥ T (z′, x) for all z′ > a, hence the maximum of T (z, x) for all z ≥ a is
attained only at z = a, i.e., z(x) = a (see Def. 5.1.1(p.18) ), which contradicts A1(x). Hence it must be that T (a, x) < T (z′, x)
for at least one z′ > a, thus A2(x) becomes true. Accordingly, we have A1(x)⇒ A2(x). Suppose A2(x) is true for any given x.
Then, if z(x) = a, we have T (a, x) < T (z′, x) ≤ T (x) = T (z(x), x) = T (a, x), which is a contradiction, hence it must be that
z(x) > a due to Lemma 12.1.1(c). Accordingly, we have A2(x)⇒ A1(x). Thus, it follows that A1(x)⇔ A2(x) for any given x.

2. Since p(a) = 1 from (5.1.28 (1)), for z′ > a (hence 1 > p(z′) from (5.1.28 (2))) we have

T (a, x)− T (z′, x)

= p(a)(a− x)− p(z′)(z′ − x)

= a− x− p(z′)(z′ − x)

= a− x− p(z′)(a− x+ z′ − a)

= a− x− p(z′)(a− x)− p(z′)(z′ − a)

= (1− p(z′))(a− x)− p(z′)(z′ − a)

= (1− p(z′))
(
a− x− p(z′)(z′ − a)/(1− p(z′))

)
= (1− p(z′))(a− x− h(z′))

= (1− p(z′))(a− h(z′)− x).

Accordingly, it immediate that A2(x)⇔ A3(x) for any given x.

3. Let A3(x) be true for any given x. Then clearly A4(x) is also true, i.e., A3(x)⇒ A4(x). Let A4(x) be true for any given x.
Then evidently a− h̃(z′ < x for at least one z′ > a, hence A3(x) is true, so we have A4(x)⇒ A3(x). Accordingly, it follows
that A3(x)⇔ A4(x) for any given x.

From all the above we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Lemma 12.1.5

(a) 0 < h⋆ <∞.

(b) x⋆ = a− h⋆ < a.

(c) x⋆ < (≥) x⇔ z(x) > (=) a.

(d) a⋆ < a.

Proof (a) For any infinitesimal ε > 0 such that a < b−ε < b ((II)) we have 0 < p(b−ε) < 1 from (5.1.29 (1)) and (5.1.28 (2)).
Hence, h(b− ε) = p(b− ε)(b− ε− a)/(1− p(b− ε)) > 0 · · · ((1)). If b ≤ z ((III)), then p(z) = 0 due to (5.1.29 (2)), hence h(z) = 0

for z ≥ b. From the above we see that h⋆ > 0 · · · ((2)) on a < z.

-a
•◦ b◦• x

-z ≤ a

(I)

-� a < z < b

(II)

� b ≤ z

(III)

6

h(b− ε) < 0

Figure 12.1.3: h(z) = 0 for z ≤ a and h(b− ε) > 0

Assume that h⋆ =∞ ≥ 0. Then, there exists at least one z′ on a < z′ < b such that h(z′) ≥ N for any given N > 0. Hence, if
the N is given by M/

¯
f with any M > 1, we have h(z′) ≥M/

¯
f or equivalently p(z′)(z′ − a)/(1− p(z′)) ≥M/

¯
f . Hence

p(z′)(z′ − a) ≥ (1− p(z′))M/
¯
f = (1− Pr{z′ ≤ ξ})M/

¯
f = Pr{ξ < z′}M/

¯
f · · · (∗)

where Pr{ξ < z′} =
∫ z′

a
f(w)dw ≥

∫ z′

a
dw ×

¯
f = (z′ − a)

¯
f . Accordingly, since p(z′)(z′ − a) ≤ (z′ − a)

¯
fM/

¯
f = (z′ − a)M , we

have p(z′) ≥M > 1 due to z′ − a > 0, which is a contradiction. Hence, it must follow that h⋆ <∞.
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(b) Noting A1(x)⇒ A4(x) in Proposition 12.1.1, we can rewritten (5.1.27(p.18) ) as

x⋆ = inf{x
∣∣ infz>a{a− h(z)} < x}

= infz>a{a− h(z)} · · · ((3))

= a− supa<z h(z) = a− h⋆ < a (due to (2) ),

hence (b) holds.

(c) Let x⋆ < x, hence infz>a{a − h(z)} < x from (3) , so z(x) > a due to A4(x) ⇒ A1(x). Let x⋆ ≥ x, hence infa<z{a −
h(z)} ≥ x from (3) , so we have infa<z{a − h(z)} ≥ x ⇒ z(x) ≤ a as a contraposition of A1(x) ⇒ A3(x), hence we obtain
z(x) = a due to Lemma 12.1.1(c).

(d) First note T (x) ≥ p(z′)(z′−x) for any x and z′. Accordingly, for any sufficiently small ε > 0 such that a+ε < b we have
T (a) ≥ p(a+ ε)(a+ ε− a) > 0, hence, adding a to the inequality yields T (a) + a > a. Thus, we have T (x) + x ≥ T (a) + a > a
for x ≥ a due to Lemma 12.1.4(f). Suppose a⋆ ≥ a. Then, since T (a⋆) + a⋆ ≥ T (a) + a > a, from Lemma 12.1.4(a) we have
T (a⋆ − ε) + a⋆ − ε > a for any sufficiently small ε > 0 or equivalently T (a⋆ − ε) > a− (a⋆ − ε), which contradicts the definition
of a⋆ (see (5.1.26(p.18) )). Therefore, it must follow that a⋆ > a.

Lemma 12.1.6

(a) T (x) + x is strictly increasing on [a⋆,∞).

(b) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞).

(c) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0.

(d) If x < y and a⋆ < y, then T (x) + x < T (y) + y.

Proof (a) Note here that we have

T (x) + x = p(z(x))(z(x)− x) + x = p(z(x))z(x) + (1− p(z(x)))x. · · · ((1))

◦ Let x⋆ < x. Then z(x) > a from Lemma 12.1.5(c4), hence p(z(x)) < 1 due to (5.1.28 (2)) or equivalently 1− p(z(x)) > 0.
If x < x′, from (1) we have

T (x) + x = p(z(x))z(x) + (1− p(z(x)))x < p(z(x))z(x) + (1− p(z(x)))x′ = p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

i.e., T (x) + x is strictly increasing on (−∞,∞), hence understandably so also on [a⋆,∞).

◦ Let x⋆ ≥ x. Then z(x) = a from Lemma 12.1.5(c), hence p(z(x)) = 1 from (5.1.28 (1)), so T (x) = p(z(x))(z(x) − x) =
a−x · · · ((2)). Suppose a⋆ < x⋆. Then, since a⋆ < a⋆ +2ε < x⋆ for an infinitesimal ε > 0, we have a⋆ < a⋆ + ε < x⋆− ε < x⋆

or equivalently x⋆ > a⋆ + ε; accordingly, due to (2) we obtain T (a⋆ + ε) = a − (a⋆ + ε) · · · ((3)). Now, by definition

(see (5.1.26(p.18) )) we have T (a⋆ + ε) > a − (a⋆ + ε), which contradicts (3) . Accordingly, it must be that x⋆ ≤ a⋆. Let
x′ > x > a⋆. Then, since x⋆ < x, we have z(x) > a Lemma 12.1.5(c4), hence p(z(x)) < 1 due to (5.1.28 (2)) or equivalently
1− p(z(x)) > 0. Thus, from (1) we have

T (x) + x = p(z(x))z(x) + (1− p(z(x)))x < p(z(x))z(x) + (1− p(z(x)))x′ = p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

implying that T̃ (x)+x is strictly increasing on (a⋆,∞), hence so also on [a⋆,∞) for almost the same reason as in the proof
of Lemma 9.1.1(p.41) (c).

Accordingly, whether x⋆ < x or x⋆ ≥ x, it follows that T (x) + x is strictly increasing on [a⋆,∞).

(b) By definition (see (5.1.26(p.18) )) we have T (x) > a−x for x > a⋆, i.e., T (x) > a−x on (a⋆,∞). Here note that T (x) ≥ a−x
on (−∞,∞) due to Lemma 12.1.4(e), i.e., T (x)+x ≥ a · · · ((4)) on (−∞,∞). Suppose T (a⋆)+a⋆ > a. Then, for an infinitesimal

ε > 0 we have T (a⋆ − ε) + a⋆ − ε > a due to Lemma 12.1.4(a), i.e., T (a⋆ − ε) > a − (a⋆ − ε), which contradicts the definition
of a⋆ (see (5.1.26(p.18) )). Consequently, we have T (a⋆) + a⋆ = a · · · ((5)) or equivalently T (a⋆) = a− a⋆. Let x < a⋆. Then, from

Lemma 12.1.4(f) we have T (x) + x ≤ T (a⋆) + a⋆ = a. From the result and (4) we have T (x) + x = a, hence T (x) = a − x on
(−∞, a⋆). Thus, from (5) it follows that T (x) = a− x on (−∞, a⋆].

(c) Let a⋆ > 0. Then, since 0 ∈ (−∞, a⋆]), we have T (0) = a from the former half of (b). We have T (0) = maxz p(z)z
from (5.1.19(p.18) ). Let b < 0. Then, if z ≥ b, we have p(z)z = 0 from (5.1.29 (2) (p.18) ) and if z < b (< 0), then p(z)z < 0 from
(5.1.29 (1)), hence T (0) = 0 due to Def. 5.1.1(p.18) .

(d) Let x < y and a⋆ < y. If x ≤ a⋆, then T (x)+ x ≤ T (a⋆)+ a⋆ < T (y)+ y due to Lemma 12.1.4(f) and (a), and if a⋆ < x,
then a⋆ ≤ x < y, hence T (x) + x < T (y) + y due to (a). Thus, whether x ≤ a⋆ or a⋆ < x, we have T (x) + x < T̃ (y) + y.
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12.2 Analogy Replacement Operation AR→P

12.2.1 Three Facts

To start with, let us focus on the three results below.

⋆ Fact 1 First, the following lemma can be obtained.

Lemma 12.2.1 (A {TP }) For any F ∈ F we have:

(a) T (x) is continuous on (−∞,∞) ← ← Lemma 12.1.4(a)

(b) T (x) is nonincreasing on (−∞,∞) ← ← Lemma 12.1.4(b)

(c) T (x) is strictly decreasing on (−∞, b] ← ← Lemma 12.1.4(c)

(d) T (x) + x is nondecreasing on (−∞,∞) ← ← Lemma 12.1.4(f)

(e) T (x) + x is strictly increasing on [a⋆,∞) ← ← Lemma 12.1.6(a)

(f) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞) ← ← Lemma 12.1.6(b)

(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞) ← ← Lemma 12.1.4(d)

(h) T (x) ≥ max{0, a− x} on (−∞,∞) ← ← Lemma 12.1.4(i)

(i) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0 ← ← Lemma 12.1.6(c)

(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1 ← ← Lemma 12.1.4(g)

(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1 ← ← Lemma 12.1.4(h)

(l) If x < y and a⋆ < y, then T (x) + x < T (y) + y ← ← Lemma 12.1.6(d)

(m) λβT (λβa− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1 ← ← Lemma 12.1.4(j)

(n) a⋆ < a ← ← Lemma 12.1.5(d)

Herein we shall pay attention to the fact that replacing a and µ in Lemma 9.1.1(A {TR })(p.41 ) by a⋆ and a
respectively yields Lemma 12.2.1(A {TP }) . Let us represent this replacement by

AR→P = {a→ a⋆, µ→ a}, (12.2.1)

called the analogy replacement operation. In other words, applying AR→P to the former lemma leads to the latter lemma, i.e.,

Lemma 12.2.1(A {TP}) = AR→P[ Lemma 9.1.1(A {TR})]. (12.2.2)

Remark 12.2.1 The whole description proving Lemma 9.1.1(p.41) is quite different from that proving Lemma 12.2.1(p.77) , hence
evidently no analogous relation exists at all between both descriptions. Nevertheless, what is amazing here is the fact that the
whole description of Lemma 9.1.1(p.41) itself is completely analogous to that of Lemma 12.2.1(p.77) itself.

⋆ Fact 2 Next, note that replacing µ in L (s) = L (λβµ− s) (see (5.1.5(p.17) )) by a yields L (s) = L (λβa− s) (see
(5.1.22(p.18) )). This means that applying AR→P to the characteristic vector (LR , KR ,LR , κR) (see (5.1.3(p.17) )-(5.1.6)) produces
(LP , KP ,LP , κP) (see (5.1.20(p.18) )-(5.1.23)), i.e.,

(LP , KP ,LP , κP) = AR→P[(LR , KR ,LR , κR)]. (12.2.3)

⋆ Fact 3 Finally, note that replacing µ in V1 = βµ− s (see (6.5.1(p.31) )) by a yields V1 = βa− s (see (6.5.5)). This means
that applying AR→P to the system of optimality equations SOE{M:1[R][A]} (see Table 6.5.1(p.31) (I)) leads to SOE{M:1[P][A]} (see
Table 6.5.1(p.31) (III)), i.e.,

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}]. (12.2.4)
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12.2.2 Prefiguration

By F (a,µ,b) let us denote the distribution function with the lower bound a, the expectation µ, and the upper bound b (a < µ < b).
For convenience of reference, below let us copy (12.2.2)-(12.2.4):

Lemma 12.2.1(A {TP}) = AR→P[ Lemma 9.1.1(A {TR}) ],

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ],

SOE{A {M:1[P][A]}} = AR→P[ SOE{A {M:1[R][A]}}, ].(1⋆)l (1⋆)r

For F (a,µ,b) For F (a,µ,b)

Closely looking at the flow of discussions in Chapter 10(p.47) , we see that A {M:1[R][A]} is what was derived only from the
three items within the right box (1⋆)r above; let us denote this procedure by Procedure[R], and through almost quite the same
reasoning it is easily seen that A {M:1[P][A]} is what will be derived from the three items within the left box (1⋆)l above; let us
denote this procedure by Procedure[P]. The flow of the above two discussions can be schematized as below.

Lemma 12.2.1(A {TP}) = AR→P[ Lemma 9.1.1(A {TR}) ],

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ],

SOE{A {M:1[P][A]}} = AR→P[ SOE{A {M:1[R][A]}}, ]

↓ ↓
Procedure[P] Procedure[R]

↓ ↓
A {M:1[P][A]} A {M:1[R][A]}.

(1⋆)l (1⋆)r

For F (a,µ,b) For F (a,µ,b)

(2⋆)l (2⋆)r

Now, since we have the analogous relation (1⋆)l = AR→P[(1
⋆)r] due to the three Facts, it can be prefigured that this analogous

relation will be inherited also between Procedure[P] and Procedure[R], i.e. Procedure[P] = AR→P[Procedure[R]], and hence also
between A {M:1[P][A]} and A {M:1[R][A]}, i.e.

A {M:1[P][A]} = AR→P[A {M:1[R][A]}]. (12.2.5)

In other words, A {M:1[P][A]} can be obtained by applying AR→P to A {M:1[R][A]}. Thus, the above figure can be rewritten as
below.

Lemma 12.2.1(A {TP}) = AR→P[ Lemma 9.1.1(A {TR}) ],

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ],

SOE{A {M:1[P][A]}} = AR→P[ SOE{A {M:1[R][A]}}, ]

↓ ↓
Procedure[P] = AR→P[ Procedure[R] ]

↓ ↓
A {M:1[P][A]} = AR→P[ A {M:1[R][A]}. ]

(1⋆)l (1⋆)r

For F (a,µ,b) For F (a,µ,b)

(2⋆)l (2⋆)r

Remark 12.2.2 (another prefiguration) By Procedure[R](a,µ,b) let us represent Procedure[R] for the distribution function
F (a,µ,b). Now, since a⋆ < a < b due to Lemma 12.2.1(n), we can define the distribution function F with the lower bound a⋆,
the expectation a, and the upper bound b, i.e., F (a⋆,a,b), hence by definition we can properly define also Procedure[R](a⋆,a,b),
which is just what results from replacing a and µ in Procedure[R](a,µ,b) by a⋆ and a respectively, i.e.,

Procedure[R](a⋆,a,b) = AR→P[Procedure[R](a,µ,b)],

Note herein that, in the sense of the symbolic logic†, Procedure[P](a,µ,b) is quite the same as Procedure[R](a⋆,a,b), i.e.,

Procedure[P](a,µ,b)
s·logic
= Procedure[R](a⋆,a,b),

implying that A {M:1[P][E]}(a,µ,b) derived from Procedure[P](a,µ,b) becomes also identical to A {M:1[R][E]}(a⋆,a,b) derived from
Procedure[R](a⋆,a,b), i.e.,

A {M:1[P][E]}(a,µ,b)
s·logic
= A {M:1[R][E]}(a⋆,a,b).

†A logic is regarded as reducing deduction to the process which transforms the expressions by representing propositions, the concept of
logic, and so on with symbols such as +, −, >, <, ∨, ∧, ⇒, and so on (Wikipedia)
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12.2.3 Strict Proof

In this section, dividing the intuitive prefiguration in Section 12.2.2 into several stages, we strictly prove that (12.2.5) is also
theoretically true.

� More precisely, we can restate Procedure[R], the procedure deriving A {M:1[R][E]} (see Section 10.2(p.47) ), as follows. First,
by applying A {TR} (see Lemma 9.1.1(p.41) ) to the characteristic vector (LR , KR ,LR , κR) consisting of (5.1.3(p.17) )-(5.1.6), we
obtain (9.2.3(p.42) )-(9.2.8); let us denote these equalities and inequalities by {LR , KR ,LR , κR}. Next, by applying A {TR} to
this {LR , KR ,LR , κR} we get the assertion system A {LR , KR ,LR , κR} (see Lemmas 9.2.1(p.43) -9.3.1(p.45) ). Finally, by applying
the system of optimality equations SOE{M:1[R][E]} (see (I) of Table 6.5.1(p.31) ) to A {LR , KR ,LR , κR}, we get the assertion
system A {M:1[R][E]} (see Tom’s 10.2.1(p.47) and 10.2.2). The above flow of procedure can be schematized as below.

Procedure[R] = ⟨⟨A {TR } ⇒ (LR , KR ,LR , κR)→ {LR , KR ,LR , κR},

A {TR } ⇒ {LR , KR ,LR , κR} → A {LR , KR ,LR , κR},

SOE{M:1[R][E]} ⇒ A {LR , KR ,LR , κR} → A {M:1[R][E]} ⟩⟩

� Applying AR→P to the above flow leads to

AR→P[Procedure[R]] = ⟨⟨AR→P[A {TR }]⇒ AR→P[(LR , KR ,LR , κR)]→ AR→P[{LR , KR ,LR , κR}] ,

AR→P[A {TR }]⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

AR→P[SOE{M:1[R][E]}]⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩

� Due to (12.2.2(p.77) )-(12.2.4) we can replace AR→P[A {TR}], AR→P[(LR , KR ,LR , κR)], and AR→P[SOE{M:1[R][E]}] in the above
flow by A {TP}, (LP , KP ,LP , κP), and SOE{M:1[P][E]} respectively, hence we have

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ AR→P[{LR , KR ,LR , κR}],

A {TP } ⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (12.2.6)

� Let us here focus our attentions on the terms without underline in the above flow, i.e.,

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ AR→P[{LR , KR ,LR , κR}],

A {TP } ⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (12.2.7)

� Then, applying AR→P to the relations {LR , KR ,LR , κR} (see (9.2.3(p.42) )-(9.2.8)) yields the relations {LP , KP ,LP , κP}, i.e.,

AR→P[{LR , KR ,LR , κR}] = {LP , KP ,LP , κP}. (12.2.8)

In fact, it can be easily shown that the following relation hold:

L (x)

{
= λβa− s− λβx on (−∞, a⋆] · · · (1),
> λβa− s− λβx on (a⋆,∞) · · · (2),

(12.2.9)

K (x)

{
= λβa− s− δx on (−∞, a⋆] · · · (1),
> λβa− s− δx on (a⋆,∞) · · · (2),

(12.2.10)

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),

= −(1− β)x− s on [b,∞) · · · (2),
(12.2.11)

K (x) + x ≥ βx− s on (−∞,∞), (12.2.12)

K (x) + x =

{
λβa− s+ (1− λ)βx on (−∞, a⋆] · · · (1),
βx− s on [b,∞) · · · (2),

(12.2.13)

K ( xL ) = −(1− β) xL · · · (1), L (xK ) = (1− β)xK · · · (2), (12.2.14)

Direct proof See (A 2.1(p.275) )-(A 2.6) .
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� Noting (12.2.8), we can rewrite (12.2.7) as below.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (12.2.15)

� Now, since AR→P[A {LR , KR ,LR , κR}] is what is derived by using SOE{M:1[P][E]} (see the relation within the framebox
above ), due to Remark 6.1.1(p.21) it follows thatAR→P[A {LR , KR ,LR , κR}] can be regarded as the assertion system forM:1[P][E],
i.e., A {LP , KP ,LP , κP}, so we have

AR→P[A {LR , KR ,LR , κR}] = A {LP , KP ,LP , κP}. (12.2.16)

Thus, it follows from (12.2.16) that we have the following lemmas and corollaries:

Lemma 12.2.2 (A {LP })
(a) L (x) is continuous on (−∞,∞).
(b) L (x) is nonincreasing on (−∞,∞).
(c) L (x) is strictly decreasing on (−∞, b].
(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.
2. (λβa− s)/λβ ≤ (>) a⋆ ⇔ xL = (>) (λβa− s)/λβ.

Proof by analogy Obtained from applying AR→P to Lemma 9.2.1(p.43) .

Direct proof See Lemma A2.2(p.275) .

Corollary 12.2.1 (A {LP})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Proof by analogy Obtained from applying AR→P to Corollary 9.2.1(p.43) .

Direct proof See Corollary A 2.1(p.276) .

Lemma 12.2.3 (A {KP })
(a) K (x) is continuous on (−∞,∞).
(b) K (x) is nonincreasing on (−∞,∞).
(c) K (x) is strictly decreasing on (−∞, b].
(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.
(e) K (x) + x is nondecreasing on (−∞,∞).
(f) K (x) + x is strictly increasing on [a⋆,∞).
(g) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.
(h) If x < y and a⋆ < y, then K(x) + x < K(y) + y.
(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0 ⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x ⇔ K (x) > (= (<)) 0.
2. (λβa− s)/δ ≤ (>) a⋆ ⇔ xK = (>) (λβa− s)/δ.
3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

Proof by analogy Obtained from applying AR→P to Lemma 9.2.2(p.43) .

Direct proof See Lemma A2.3(p.276) .

Corollary 12.2.2 (A {KP})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Proof by analogy Obtained from applying AR→P to Corollary 9.2.2(p.44) .

Direct proof See Lemma A2.2(p.276) .

Lemma 12.2.4 (A {LP /KP })
(a) Let β = 1 and s = 0. Then xL = xK = b.
(b) Let β = 1 and s > 0. Then xL = xK .
(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (=)) 0.
(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (<)) 0.

Proof by analogy Obtained from applying AR→P to Lemma 9.2.3(p.44) .

Direct proof See Lemma A2.4(p.277) .
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Lemma 12.2.5 (A {LP })
(a) L (s) is nonincreasing in s and strictly decreasing in s if λβ < 1.
(b) Let λβa ≥ b.

1. xL ≤ λβa− s.
2. Let s > 0 and λβ < 1. Then xL < λβa− s.

(c) Let λβa < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβa− s.

Proof by analogy Obtained from applying AR→P to Lemma 9.2.4(p.44) .

Direct proof See Lemma A2.5(p.277) .

Lemma 12.2.6 (κP) We have:

(a) κ = λβa− s if a⋆ > 0 and κ = −s if b < 0.
(b) Let κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

Proof by analogy Obtained from applying AR→P to Lemma 9.3.1(p.45) .

Direct proof See Lemma A2.6(p.277) .

� Due to (12.2.16) we can rewrite (12.2.15)ten as below.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},
SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → AR→P[A {M:1[R][E]}] ⟩⟩. (12.2.17)

� Since the assertion system AR→P[A {M:1[R][E]} in (12.2.17) is what is derived from SOE{M:1[P][E]}, it can be regarded as an
assertion system related to the model M:1[P][E] (see Remark 6.1.1(p.21) ), i.e., A {M:1[P][E]}, hence we have

A {M:1[P][A]} = AR→P[A {M:1[R][A]}] (the same as (12.2.5(p.78) )). (12.2.18)

Thus (12.2.17) can be rewritten as follows.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → A {M:1[P][E]} ⟩⟩ (12.2.19)

� The whole of the r.h.s. of (12.2.19) can be regarded as the procedure which derives A {M:1[P][E]}, so let us denote it by
Procedure⟨P⟩, i.e.,

AR→P[Procedure[R]] = Procedure[P]. (12.2.20)

Accordingly, finally it follows that we have

Procedure[P] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → A {M:1[P][E]} ⟩⟩

12.3 Analogy Theorem (R↔ P)
Noting the equality (12.2.5(p.78) ), we eventually obtain the following theorem.

Theorem 12.3.1 (analogy (R→ P)) Let A {M:1[R][A]} holds on P ×F . Then A {M:1[P][A]} holds on P ×F where

A {M:1[P][A]} = AR→P[A {M:1[R][A]}]. (12.3.1)

Then, from the comparison of (I) and (III) of Tables 6.5.1 we also get

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}]. (12.3.2)

Moreover, from (11.4.2(p.60) ) we obtain the following:

θ(A {M:1[P][A]}) = AR→P[θ(A {M:1[R][A]})] (12.3.3)

= ( a⋆, a, b, xL , xK , sL , κ, TR , LR , KR ,LR , Vt). (12.3.4)

Since the analogy replacement operation AR→P is a mere replacement of the two symbols, a→ a⋆ and µ→ a, defining its inverse

AP→R = {a⋆ → a, a → µ}, (12.3.5)

we can immediately known that the inverse of the above theorem becomes true, i.e.,
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Theorem 12.3.2 (analogy (P← R)) Let A {M:1[P][A]} holds on P ×F . Then A {M:1[R][A]} holds on P ×F where

A {M:1[R][A]} = AP→R[A {M:1[P][A]}]. (12.3.6)

In addition, as an inverses of (12.3.2) and (12.3.3) we immediately obtain

SOE{M:1[R][A]} = AP→R[SOE{M:1[P][A]}]. (12.3.7)

θ(A {M:1[R][A]}) = AP→R[θ(A {M:1[P][A]})] (12.3.8)

= ( a, µ, b, xL , xK , sL , κ, TR , LR , KR ,LR , Vt). (12.3.9)

12.4 Derivation of A {M:1[P][A]}
The following two Tom’s can be immediately obtained by applying AR→P to Tom’s 10.2.1(p.47) and 10.2.2.

� Tom 12.4.1 (A {M:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

Proof by analogy Immediate from applying AR→P to Tom 10.2.1(p.47) .

Direct proof See Tom A4.3(p.286) .

� Tom 12.4.2 (A {M:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let b = 0 ((κ = 0)).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let b < 0 ((κ < 0)).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S1(p.47) ⃝s N ⃝∗ ∥ is true.

Proof by analogy Immediate from applying AR→P to Tom 10.2.2(p.48) .

Direct proof See Tom A4.4(p.287) .

12.5 Strict Definition of Analogy

Definition 12.5.1 (analogy)

(a) By AR→P[X] (AP→R[X]) let us denote the assertion defined by applying AR→P (AP→R) to a given X.

(b) If A{X2} = AR→P[A{X1}] and A{X1} = AP→R[A{X2}], then A{X1} and A{X2} is said to be analogous, denoted by
A{X1} ◃▹ A{X2}.

(c) For given two assertion systems A {X1} and A {X2} which are one-to-one correspondent, if A{X1} ◃▹ A{X2} for any pair
(A{X1},A{X2}) where A{X1} ∈ A {X1} and A{X2} ∈ A {X2} are correspondent each other, then A {X1} and A {X2} are
said to be analogous, denoted by A {X1} ◃▹ A {X2}.

12.6 Analogy-Operation-Free
When no change occurs even if the analogy operation is applied to a given assertion A, the assertion is said to be free from the
analogy operation, called the analogy-operation-free assertion.

Lemma 12.6.1 Even if the analogy operation is applied to the analogy-operation-free assertion, no change occurs.

Proof Evident.

12.7 Optimal Price to Propose

Lemma 12.7.1 (A {M:1[P][A]}) The optimal price zt to propose is nondecreasing in t > 0.

Proof Obvious from (6.2.28(p.23) ), Tom’s 12.4.1(a) and 12.4.2(a), and
Lemma 12.1.3(p.73) .
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Chapter 13

Symmetry Theorem (P↔ P̃)
This chapter provides the methodology of deriving A {M̃:1[P][A]} (buying model) from A {M:1[P][A]} (selling model, see
Tom’s 12.4.1(p.82) and 12.4.2).

13.1 Functions Ť , Ľ , Ǩ , and Ľ of Type P
Let us define the T -function of Type P for F̌ ∈ F̌ corresponding to any F ∈ F (see (5.1.19(p.18) ) and (5.1.18(p.18) )) by

Ť (x) = max
z

p̌(z)(z − x) · · · (1), p̌(z) = Pr{z ≤ ξ̂} · · · (2). (13.1.1)

By ž(x) let us define z maximizing p̌(z)(z − x) if it exists, i.e.,

Ť (x) = p̌(ž(x))(ž(x)− x). (13.1.2)

Furthermore, let us define

Ľ (x) = λβŤ (x)− s, (13.1.3)

Ǩ (x) = λβŤ (x)− (1− β)x− s, (13.1.4)

Ľ (s) = Ľ (λβǎ− s), (13.1.5)

κ̌ = λβŤ (0)− s. (13.1.6)

Then, let the solutions of Ľ (x) = 0, Ǩ (x) = 0, and Ľ (s) = 0 be denoted by respectively xĽ , xǨ , and sĽ if they exist; If multiple

solutions exist for each of xĽ , xǨ , and sĽ , let us employ the smallest as its solution (see Sections 5.2(p.19) (a) and 11.2.1(p.56) ).

Furthermore, let us define (see Figure 11.1.1(p.56) for ǎ, µ̌, and b̌)

ǎ⋆ = inf{x
∣∣ Ť (x) > ǎ− x} (see (5.1.26(p.18) )), (13.1.7)

x̌⋆ = inf{x
∣∣ ž(x) > ǎ} (see (5.1.27(p.18) )). (13.1.8)

By M̌:1[P][A] let us define M:1[P][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for SOE{M:1[P][A]}
(see Table 6.5.1(p.31) (III)) we can obtain

SOE{M̌:1[P][A]} = {V1 = βǎ− s, Vt = max{Ǩ (Vt−1) + Vt−1, βVt−1}, t > 1}. (13.1.9)

13.2 Functions ˇ̃T , ˇ̃L , ˇ̃K , and ˇ̃L of Type P
Let us define the T̃ -function of T̃ype P for F̌ ∈ F̌ corresponding to any F ∈ F as follows (see (5.1.32(p.18) )).

ˇ̃T (x) = min
z

ˇ̃p(z)(z − x) · · · (1), ˇ̃p(z) = Pr{ξ̂ ≤ z} · · · (2) (13.2.1)

where by ˇ̃z(x) let us define z minimizing ˇ̃p(z)(z − x) if it exists, i.e.,

ˇ̃T (x) = ˇ̃p(ˇ̃z(x))(ˇ̃z(x)− x). (13.2.2)
Let us define

ˇ̃L (x) = λβ ˇ̃T (x) + s, (13.2.3)

ˇ̃K (x) = λβ ˇ̃T (x)− (1− β)x+ s, (13.2.4)

ˇ̃L (s) = ˇ̃L (λβb̌+ s), (13.2.5)

ˇ̃κ = λβ ˇ̃T (0) + s (13.2.6)

where let us define the solutions of ˇ̃L (x) = 0, ˇ̃K (x) = 0, and ˇ̃L (x) = 0 by respectively xˇ̃L , xˇ̃K , and sˇ̃L ; If multiple solutions
exist for each of x

L̃ , x
K̃ , and sL̃ , we shall employ the largest as a solution (see Sections 5.2(p.19) (b) and 11.2.2(p.57) ). Furthermore

let us define (see Figure 11.1.1(p.56) for ǎ, µ̌, and b̌)
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b̌⋆ = sup{x
∣∣ ˇ̃T (x) < b̌− x} (see (5.1.39(p.19) )), (13.2.7)

ˇ̃x⋆ = sup{x | ˇ̃z(x) < b̌} (see (5.1.40(p.19) )). (13.2.8)

By
ˇ̃M:1[P][A] let us define M̃:1[P][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for SOE{M̃:1[P][A]}

(see Table 6.5.1(p.31) (IV)) we can obtain

SOE{ ˇ̃M:1[P][A]} = {V1 = βb̌+ s, Vt = min{ ˇ̃K (Vt−1) + Vt−1, βVt−1}, t > 1}. (13.2.9)

13.3 List of Underline Functions of Type P and T̃ype P
The table below is the list of the four kinds of underline functions of Type P and T̃ype P (see Table 11.2.1(p.57) ).

Table 13.3.1: List of the underlying functions of Type P and T̃ype P

Type P T̃ype P

For any F ∈ F
For F̌ ∈ F̌

corresponding to any F ∈ F

T (x) = max
z

p(z)(z − x)

L (x) = βT (x)− s

K (x) = βT (x)− (1− β)x− s

L (x) = L (βa− s)

See Section 5.1.3(p.18)

Ť (x) = max
z

p̌(z)(z − x)

Ľ (x) = βŤ (x)− s

Ǩ (x) = βŤ (x)− (1− β)x− s

Ľ (x) = Ľ (βǎ− s)

See Section 13.1

T̃ (x) = min
z

p̃(z)(z − x)

L̃ (x) = βT̃ (x) + s

K̃ (x) = βT̃ (x)− (1− β)x+ s

L̃ (x) = L̃ (βb+ s)

See Section 5.1.4(p.18)

ˇ̃T (x) = min
z

ˇ̃p(z)(z − x)

ˇ̃L (x) = β ˇ̃T (x) + s

ˇ̃K (x) = β ˇ̃T (x)− (1− β)x+ s

ˇ̃L (x) = ˇ̃L (βb̌+ s)

See Section 13.2

13.4 Two Kinds of Replacements
13.4.1 Correspondence Replacement

Lemma 13.4.1 (CP) The left side of each equality below is for any F ∈ F and its right side is for F̌ ∈ F̌ corresponding to
the F . Then:

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, â⋆ = b̌⋆, b̂ = ǎ.

(c) T̂ (x) = ˇ̃T (x̂).

(d) L̂ (x) = ˇ̃L (x̂).

(e) K̂ (x) = ˇ̃K (x̂).

(f) L̂ (s) = ˇ̃L (s).
(g) x̂L = xˇ̃L .

(h) x̂K = xˇ̃K .

(i) sL = sˇ̃L .

(j) κ̂ = ˇ̃κ.

Proof (a) The same as (11.1.10(p.55) ).

(The first and third equalities of (b)) The same as the first and third equalities of (11.1.11(p.55) ). The second equality will
be proven after the proof of (c).

(c) From (5.1.18(p.18) ) we obtain

p(z) = Pr{−ẑ ≤ −ξ̂} = Pr{ξ̂ ≤ ẑ} = ˇ̃p(ẑ) (13.4.1)

due to (13.2.1 (2)), hence from (5.1.19) we have T (x) = maxz
ˇ̃p(ẑ)(−ẑ + x̂) = −minz

ˇ̃p(ẑ)(ẑ − x̂). Then, since “minz =
min−∞<z<∞ = min−∞<−ẑ<∞ = min∞>ẑ>−∞ = min−∞<ẑ<∞ = minẑ”, the above expression can be rewrite as T (x) =
−minẑ

ˇ̃p(z)(ẑ − x̂). Then, without loss of generality, this can be rewritten as T (x) = −minz
ˇ̃p(z)(z − x̂). Accordingly, since

T (x) = − ˇ̃T (x̂) from (13.2.1 (1)), we obtain T̂ (x) = ˇ̃T (x̂).

(The second equality of (b)) From (5.1.26(p.18) ) we have a⋆ = inf{−x̂
∣∣ −T̂ (x) > −â + x̂} = − sup{x̂

∣∣ T̂ (x) < â − x̂} =

− sup{x̂
∣∣ ˇ̃T (x̂) < b̌− x̂} due to (c) and (b). Without loss of generality, this can be rewritten as a⋆ = − sup{x

∣∣ ˇ̃T (x) < b̌− x},
hence a⋆ = −b̌⋆ due to (13.2.7), so that â⋆ = b̌⋆.
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(d) From (5.1.20) and (c) we have L (x) = −λβT̂ (x)− s = −λβ ˇ̃T (x̂)− s = − ˇ̃L (x̂) from (13.2.3), hence L̂ (x) = ˇ̃L (x̂).

(e) From (5.1.21) we have K (x) = −λβT̂ (x) + (1 − β)x̂ − s = −λβ ˇ̃T (x̂) + (1 − β)x̂ − s = − ˇ̃K (x̂) from (13.2.4), hence

K̂ (x) = ˇ̃K (x̂).

(f) From (5.1.22(p.18) ) we have L (s) = −L̂ (λβa − s) = − ˇ̃L ( ̂λβa− s) due to (d). Then, since L (s) = − ˇ̃L (−λβa + s) =

− ˇ̃L (λβâ+ s) = − ˇ̃L (λβb̌+ s) due to (b), we have L (s) = − ˇ̃L (s) from (13.2.5), hence L̂ (s) = ˇ̃L (s).

(g) Since L ( xL ) = 0 by definition, we have −L̂ ( xL ) = 0, i.e., L̂ ( xL ) = 0, leading to ˇ̃L ( x̂L ) = 0 from (d), implying that
ˇ̃L (x) = 0 has the solution xˇ̃L = x̂L by definition.

(h) Since K (xK ) = 0 by definition, we have −K̂ (xK ) = 0, i.e., K̂ (xK ) = 0, leading to ˇ̃K ( x̂K ) = 0 from (e), implying that
ˇ̃K (x) = 0 has the solution xˇ̃K = x̂K by definition.

(i) Since L (sL) = 0 by definition, we have −L̂ (sL) = 0, i.e., L̂ (sL) = 0, leading to ˇ̃L (sL) = 0 from (f), implying that
ˇ̃L (s) = 0 has the solution sˇ̃L = sL by definition.

(j) From (5.1.23) we have κ = −λβT̂ (0) − s = −λβ ˇ̃T (0̂) − s from (c), hence κ = −λβ ˇ̃T (0) − s = −ˇ̃κ from (13.2.6), thus
κ̂ = ˇ̃κ.

Definition 13.4.1 (correspondent replacement operation CP) Let us call the operation of replacing the left-hand side of each
equality in the above lemma with its right-hand side the correspondence replacement operation CP.

Lemma 13.4.2 (C̃P) The left side of each equality below is for any F ∈ F and its right side is for F̌ ∈ F̌ corresponding to
the F . Then:

(a) f(ξ) = f̌(ξ̂).
(b) â = b̌, b̂⋆ = ǎ⋆, b̂ = ǎ.
(c) ˆ̃T (x) = Ť (x̂).
(d) ˆ̃L (x) = Ľ (x̂).
(e) ˆ̃K (x) = Ǩ (x̂).
(f) ˆ̃L (s) = Ľ (s).
(g) x̂

L̃ = x̌L .
(h) x̂

K̃ = x̌K .
(i) sL̃ = sĽ .
(j) ˆ̃κ = κ̌.

Proof (a) The same as (11.1.10(p.55) ).

(The first and third equalities of (b)) The same as the first and first equation of (11.1.11(p.55) ). The second equality will be
proven after the proof of (c).

(c) From (5.1.31(p.18) ) we obtain

p̃(z) = Pr{−ξ̂ ≤ −ẑ} = Pr{ξ̂ ≥ ẑ} = Pr{ẑ ≤ ξ̂} = p̌(ẑ) (13.4.2)

due to (13.1.1 (2)), hence from (5.1.32) we have T̃ (x) = minz p̌(ẑ)(−ẑ + x̂) = −maxz p̌(ẑ)(ẑ − x̂). Then, since “maxz =
max−∞<z<∞ = max−∞<−ẑ<∞ = max∞>ẑ>−∞ = max−∞<ẑ<∞ = maxẑ”, the above expression can be rewritten as T̃ (x) =
−maxẑ p̌(z)(ẑ − x̂). Then, without loss of generality, this can be rewritten as T̃ (x) = −maxz p̌(z)(z − x̂). Accordingly, since

T̃ (x) = −Ť (x̂) from (13.1.1 (1)), we obtain ˆ̃T (x) = Ť (x̂).

(The second equality of (b)) From (5.1.39(p.19) ) we have b⋆ = sup{−x̂
∣∣ − ˆ̃T (x) < −b̂+ x̂} = inf{x̂

∣∣ ˆ̃T (x) > b̂− x̂}. From (c)
and (b) we have b⋆ = inf{x̂

∣∣ Ť (x̂) > ǎ− x̂}. Then, since b⋆ = inf{x
∣∣ Ť (x) > ǎ− x} without loss of generality, we have b⋆ = ǎ⋆

due to (13.1.7).

(d) From (5.1.33) and (c) we have L̃ (x) = −λβ ˆ̃T (x) + s = −λβŤ (x̂) + s = −Ľ (x̂) from (13.1.3), hence ˆ̃L (x) = Ľ (x̂).

(e) From (5.1.34) and (c) we have K̃ (x) = −λβ ˆ̃T (x)+ (1−β)x̂+ s = −λβŤ (x̂)+ (1−β)x̂+ s = −Ǩ (x̂) from (13.1.4), hence
ˆ̃K (x) = Ǩ (x̂).

(f) From (5.1.35) we have L̃ (s) = − ˆ̃L (λβb + s), hence from (d) we obtain L̃ (s) = −Ľ ( ̂λβb+ s) = −Ľ (−λβb − s) =

−Ľ (λβb̂− s) = −Ľ (λβǎ− s) due to (b). Accordingly, from (13.1.5) we obtain L̃ (s) = −Ľ (s), hence ˆ̃L (s) = Ľ (s).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have − ˆ̃L ( xL̃ ) = 0, i.e., ˆ̃L ( xL̃ ) = 0, leading to Ľ ( x̂L̃ ) = 0 from (d), implying that
Ľ (x) = 0 has the solution xĽ = x̂

L̃ by definition.

(h) Since K̃ ( xK̃ ) = 0 by definition, we have − ˆ̃K ( xK̃ ) = 0, i.e., ˆ̃K ( xK̃ ) = 0, leading to Ǩ ( x̂K̃ ) = 0 from (e), implying that
Ǩ (x) = 0 has the solution xǨ = x̂

K̃ by definition.

(i) Since L̃ (sL̃) = 0 by definition, we have − ˆ̃L (sL̃) = 0, i.e., ˆ̃L (sL̃) = 0, leading to Ľ (sL̃) = 0 from (f), implying that

Ľ (s) = 0 has the solution sĽ = sL̃ by definition.

(j) From (5.1.36) we have κ̃ = −λβ ˆ̃T (0) + s, leading to κ̃ = −λβŤ (0̂) + s from (c), hence κ̃ = −λβŤ (0) + s = −κ̌ from
(13.1.6), thus ˆ̃κ = κ̌.
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Remark 13.4.1 The equality µ̂ = µ̌ in Lemmas 11.3.1(p.57) (b) changes into respectively â⋆ = b̌⋆ in Lemma 13.4.1(b) and the
equality µ̂ = µ̌ in (11.1.11(p.55) ) changes into b̂⋆ = ǎ⋆ in
Lemma 13.4.2(b).

The definition below is the same as Def. 11.3.3(p.59) .

Definition 13.4.2 (reflective element and non-reflective element) It should be noted that the left side of each of the equalities
in Lemmas 13.4.1(i) and 13.4.2(i) is respectively sL and sL̃ without the hat symbol “ ˆ”; in other words, sL and sL̃ are not
subjected to the reflection. For the reason, let us refer to each of sL and sL̃ as the non-reflective element and to each of all
the other elements as the reflective element.

Definition 13.4.3 (correspondent replacement operation C̃P) Let us call the operation of replacing the left-hand side of each
equality in the above lemma with its right-hand side the correspondence replacement operation C̃P.

13.4.2 Identity Replacement

Lemma 13.4.3 (IP) The left side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right side is for
F ∈ F where F̌ ≡ F · · · [1∗].† Then:

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ,

(b) ǎ = a, b̌⋆ = b⋆, b̌ = b,

(c) ˇ̃T (x) = T̃ (x),

(d) ˇ̃L (x) = L̃ (x),

(e) ˇ̃K (x) = K̃ (x),

(f) ˇ̃L (s) = L̃ (s),
(g) xˇ̃L = x

L̃ ,

(h) xˇ̃K = x
K̃ ,

(i) sˇ̃L = sL̃ ,

(j) ˇ̃κ = κ̃.

Proof (a) Clear from [1∗].

(the first and last equalities of (b)) Immediate from (a). The second equality will be proven after the proof of (c).

(c) From (13.2.1 (2)) we have ˇ̃p(z) = Pr{ξ̂ ≤ z} =
∫ z

−∞ f̌(ξ)dξ. Then, due to [3∗] we have ˇ̃p(z) =
∫ z

−∞ f(ξ)dξ = Pr{ξ ≤
z} = p̃(z) from (5.1.31). Hence, we have that ˇ̃T (x) given by (13.2.1 (1)) becomes ˇ̃T (x) = minz p̃(z)(z− x), which is identical to

T̃ (x) given by (5.1.32), i.e., ˇ̃T (x) = T̃ (x) for any x.

(the second equality of (b)) From (13.2.7) and (c) we have b̌⋆ = sup{x
∣∣ T̃ (x) < b̌− x}, hence from (b) we get b̌⋆ = sup{x

∣∣
T̃ (x) < b− x} = b⋆ due to (5.1.39).

(d,e) Noting (c), from (13.2.3) and (5.1.33) we immediately see that the first equality is true. Similarly, from (13.2.4) and
(5.1.34) we immediately see that the second equality is true.

(f) (13.2.5) becomes ˇ̃L (s) = ˇ̃L (λβb + s) due to (b). This can be rewritten as ˇ̃L (s) = L̃ (λβb + s) due to (d), which is the
same as L̃ (s) given by (5.1.35).

(g-i) Evident from (d-f).

(j) (13.2.6) becomes ˇ̃κ = λβT̃ (0) + s due to (c), which is the same as κ̃ given by (5.1.36).

Definition 13.4.4 (identity replacement operation IP) Let us call the operation of replacing the left-hand of each equality in
the above lemma with its right-hand the identity replacement operation IP.

Lemma 13.4.4 (ĨP) The left side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right side is for
F ∈ F where F ≡ F̌ · · · [1∗]. Then :

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ,

(b) ǎ = a, ǎ⋆ = a⋆, b̌ = b,

(c) Ť (x) = T (x),

(d) Ľ (x) = L (x),

(e) Ǩ (x) = K (x),

(f) Ľ (s) = L (s),
(g) xĽ = xL ,

(h) xǨ = xK ,

(i) sĽ = sL ,

(j) κ̌ = κ.

†See Lemma 11.1.1(p.56) (b)
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Proof (a) Clear from [1∗].

(The first and last equalities of b)) Immediate form (a). The second equality will be proven after the proof of (c).

(c) From (13.1.1 (2)) we have p̌(z) = Pr{z ≤ ξ̂} =
∫∞
z

f̌(ξ)dξ. Then, due to [3∗] we have p̌(z) =
∫∞
z

f(ξ)dξ = Pr{z ≤ ξ} =
p(z) from (5.1.18). Hence, we have that Ť (x) given by (13.1.1 (1)) becomes Ť (x) = maxz p(z)(z − x), which is identical to T (x)
given by (5.1.19), i.e., Ť (x) = T (x) for any x.

(the second equality of (b)) From (13.1.7 (1)) and (c) we have ǎ⋆ = inf{x
∣∣ T (x) > ǎ − x}, hence from (b) we get

ǎ⋆ = inf{x
∣∣ T (x) > a− x} = a⋆ due to (5.1.26). Thus, the second equality of (b) is true.

(d) Noting (c), from (13.1.3) and (5.1.20) we immediately see that the first equality becomes true. Similarly, from (13.1.4)
and (5.1.21) we immediately see that the second equality becomes true.

(f) Firstly, (13.1.5) becomes Ľ (s) = Ľ (λβa− s) due to (b). This can be rewritten as Ľ (s) = L (λβa− s) due to (d), which
is the same as L (s) given by (5.1.22).

(g-i) Evident from (d-f).

(j) (13.1.6) becomes κ̌ = λβT (0)− s due to (c), which is the same as κ given by (5.1.23).

Definition 13.4.5 (Identity replacement operation ĨP) Let us call the operation of replacing the left-hand of each equality in
the above lemma with its right-hand the identity replacement operation ĨP.

13.5 Scenario of Type P
13.5.1 Scenario[P]
This section provides the scenario that derives A {M̃:1[P][A]} (buying model) from A {M:1[P][A]} (selling model), denoted by
Scenario[P].

◦ Before proceeding with the discussion, let us review the process of the transformation of attribute vectors in Scenario[R],
summarized as below (the same as (11.5.30(p.62) )).

Step 1[R]: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (θ(A {M:1[R][A]}))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[R]: → θ( â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (13.5.1)

Step 3[R]: Lemma 11.3.1(p.57) → θ( b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[R]: Lemma 11.3.3(p.59) → θ( b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (θ(A {M̃:1[R][A]}))

◦ Prior to entering into Step 1[P] of Scenario[P], first a and µ in Step 1[R] are replace by a⋆ and a respectively (application of
AR→P), and then Step 2[P] follows. Next, in Step 3[P], Lemma 13.4.1(p.84) is used instead of Lemma 11.3.1(p.57) and in Step 4[P],
Lemma 13.4.3 is used instead of Lemma 11.3.3(p.59) . This flow can be rewritten as follows.

Step 1[R]: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 1[P]: θ( a⋆, a, b, xL , xK , sL , κ, T , L , K , L , Vt ) (θ(A {M:1[P][A]})
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[P]: → θ( â⋆, â, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (13.5.2)

Step 3[P]: Lemma 13.4.1(p.84) → θ( b̌⋆, b̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[P]: Lemma 13.4.3(p.86) → θ( b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (θ(A {M̃:1[P][A]})

↓
Scenario[P]

From the above flow of Scenario[P] we see that the operation transforming θ(A {M:1[P][A]}) into θ(A {M̃:1[P][A]}) is eventually
reduced to the operation transforming the first row into the last row, schematized as

S P→P̃
def
= { a⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt
}.† (13.5.3)

From (III) and (IV) of Table 6.5.1(p.31) it can be immediately seen that

SOE{M̃:1[P][A]} = S P→P̃[SOE{M:1[P][A]}]. (13.5.4)

From the above discussion it can be seen that Lemma 11.5.1(p.63) is changed into Lemma 13.5.1 below.

Lemma 13.5.1 Let ATom{M:1[P][A]} holds on C ⟨ATom⟩. Then ATom{M̃:1[P][A]} holds on C ⟨ATom⟩ where

ATom{M̃:1[P][A]} = S P→P̃[ATom{M:1[P][A]}]. (13.5.5)

†Compare the dash box with that in (11.5.31(p.63) ).
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Finally, for almost the same reason as that for which Theorem 11.5.1(p.66) is derived from Lemma 11.5.1(p.63) we have Theo-
rem 13.5.1 below.

Theorem 13.5.1 Let A {M:1[P][A]} holds on P ×F . Then A {M̃:1[P][A]} holds on P ×F where

A {M̃:1[P][A]} = S P→P̃[A {M:1[P][A]}]. (13.5.6)

In addition, we have (see (12.3.4(p.81) ))

θ(A {M̃:1[P][A]}) def
= S P→P̃[θ(A {M:1[P][A]})] (13.5.7)

= (b⋆, b, a, xL̃ , sL̃ , xK̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (13.5.8)

13.5.2 S̃cenario[P]
This section provides the scenario that derives A {M:1[P][A]} (selling model) from A {M̃:1[P][A]} (buying model), denoted by
S̃cenario[P].
◦ Before proceeding with the discussion, let us review the process of the transformation of attribute vectors in S̃cenario[R],

summarized as below (see (11.8.32(p.71) )).

Step 1[R̃]: θ( b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (θ(A {M̃:1[R][A]}))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[R̃]: → θ( b̂, µ̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˆ̃κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (13.5.9)

Step 3[R̃]: Lemma 13.4.1(p.84) → θ( ǎ, µ̌, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[R̃]: Lemma 13.4.3(p.86) → θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (θ(A {M:1[R][A]}))

◦ Prior to entering into Step 1[P̃] of S̃cenario[P], first b and µ in Step 1[R̃] are replace by b⋆ and b respectively (application of
AR̃→P̃) and then Step 2[P̃] follows. In Step 3[P̃], Lemma 13.4.1(p.84) is used instead of Lemma 11.3.1(p.57) , and finally in Step 4[P̃],
Lemma 13.4.3 is used instead of Lemma 11.3.3(p.59) . This flow can be rewritten as follows.

Step 1[R̃]: θ( b, µ, b, xL , xK , sL , κ, T , L , K , L , Vt )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 1[P̃] θ( b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (θ(A {M̃:1[P][A]})
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[P̃] → θ( b̂⋆, b̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˆ̃κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (13.5.10)

Step 3[P̃] Lemma 13.4.2(p.85) → θ( ǎ⋆, ǎ, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[P̃] Lemma 13.4.4(p.86) → θ( a⋆, a, b, xL , xK , sL , κ, T , L , K , L , Vt ) (θ(A {M:1[P][A]})

↓
S̃cenario[P]

From the above flow of Scenario[P̃] we see that the operation transforming θ(A {M̃:1[P][A]}) into θ(A {M:1[P][A]}) is eventually
reduced to the operation transforming the first row into the last row, schematized as

S P̃→P = { b⋆, b, a, xL̃ ,κ̃, xK̃ , sL̃ ,T , L ,K ,L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a⋆, a, b, xL ,κ, xK ,sL ,T̃ , L̃ ,K̃ ,L̃ , Vt
}. (13.5.11)

From (III) and (IV) of Table 6.5.1(p.31) it can be immediately confirmed that

SOE{M:1[P][A]} = S P̃→P[SOE{M̃:1[P][A]}]. (13.5.12)

From the above discussion it can be seen that Lemma 11.8.1(p.72) is changed into the lemma below.

Lemma 13.5.2 Let ATom{M̃:1[P][A]} holds on C ⟨ATom⟩. Then ATom{M:1[P][A]} holds on C ⟨ATom⟩ where
ATom{M:1[P][A]} = S P̃→P[ATom{M̃:1[P][A]}]. (13.5.13)

Finally, for the same reason as the one for which Theorem 11.8.1(p.72) is derived from Lemma 11.8.1(p.72) we have Theorem 13.5.2
below.

Theorem 13.5.2 Let A {M̃:1[P][A]} holds on P ×F . Then A {M:1[P][A]} holds on P ×F where

A {M:1[P][A]} = S P̃→P[A {M̃:1[P][A]}]. (13.5.14)

From (11.8.47(p.72) ) we have

θ(A {M:1[P][A]}) def
= S P̃→P[θ(A {M̃:1[P][A]})] (13.5.15)

= (a⋆, a, b, xL , sL , xK , κ, T , L ,K ,L , Vt). (13.5.16)
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13.6 Derivation of A {T̃P , L̃P , K̃P , L̃P , κ̃P}
For the same reason as in Section 24.1.2(p.249) we see that applying S P→P̃ to A {TP , LP , KP ,LP , κP} given by Lemmas 12.2.1(p.77) –
12.2.6 yields A {T̃P , L̃P , K̃P , L̃P , κ̃P}.

Lemma 13.6.1 (A {T̃P }) For any F ∈ F we have:

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,−∞).

(d) T̃ (x) + x is nondecreasing on (−∞,∞).

(e) T̃ (x) + x is strictly increasing on (−∞, b⋆].

(f) T̃ (x) = b− x on [b⋆,∞) and T̃ (x) < b− x on (−∞, b⋆).

(g) T̃ (x) < 0 on (a,∞) and T (x) = 0 on (−∞, a].

(h) T̃ (x) ≤ min{0, b− x} on (−∞,∞).

(i) T̃ (0) = b if b⋆ ≤ 0 and T̃ (0) = 0 if a > 0.

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x > y and b⋆ > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβb+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.

(n) b⋆ > b.

Proof by analogy Immediate from applying S P→P̃ to Lemma 12.2.1(p.77) .

Direct proof See Lemma A3.7(p.281) .

Applying S P→P̃ to (12.2.9(p.79) )-(12.2.14), we obtain the relations below:

L̃ (x)

{
= λβb+ s− λβx on [b⋆,−∞) · · · (1),
< λβb+ s− λβx on (−∞, b⋆) · · · (2),

(13.6.1)

K̃ (x)

{
= λβb+ s− δx on [b⋆,∞) · · · (1),
< λβb+ s− δx on (−∞, b⋆) · · · (2).

(13.6.2)

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(13.6.3)

K̃ (x) + x ≤ βx+ s on (−∞,∞). (13.6.4)

K̃ (x) + x =

{
λβb+ s+ (1− λ)βx on [b⋆,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(13.6.5)

K̃ ( xL̃ ) = −(1− β) xL̃ · · · (1), L̃ ( xK̃ ) = (1− β) xK̃ · · · (2). (13.6.6)

Proof by analogy Immediate from applying S P→P̃ to (12.2.9(p.79) )-(12.2.14).

Direct proof See (A 3.1(p.281) )-(A 3.6).

Lemma 13.6.2 (A {L̃P })
(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβb+ s)/λβ ≥ (<) b⋆ ⇔ x
L̃ = (<) (λβb+ s)/λβ < (≥) b⋆.

Proof by analogy Immediate from applying S P→P̃ to Lemma 12.2.2(p.80) .

Direct proof See Lemma A3.8(p.282) .

Corollary 13.6.1 (A {L̃P})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Proof by analogy Immediate from applying S P→P̃ to Corollary 12.2.1(p.80) .

Direct proof See Corollary A 3.2(p.282) .

89



Lemma 13.6.3 (A {K̃P })
(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K̃ (x) + x is strictly increasing on (−∞, b⋆].

(g) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(h) If x > y and b⋆ > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (=>)) 0.

2. (λβb+ s)/δ ≥ (<) b⋆ ⇔ x
K̃ = (<) (λβb+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

Proof by analogy Immediate from applying S P→P̃ to Lemma 12.2.3(p.80) .

Direct proof See Lemma A3.9(p.282) .

Corollary 13.6.2 (A {K̃P})
(a) x

K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.
(b) x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Proof by analogy Immediate from applying S P→P̃ to Corollary 12.2.2(p.80) .

Direct proof See Corollary A 3.3(p.283) .

Lemma 13.6.4 (A {L̃P /K̃P })
(a) Let β = 1 and s = 0. Then x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (>)) 0.

Proof by analogy Immediate from applying S P→P̃ to Lemma 12.2.4(p.80) .

Direct proof See Lemma A3.10(p.283) .

Lemma 13.6.5 (A {L̃P })
(a) L̃ (s) is nondecreasing in s and strictly increasing in s if λβ < 1.

(b) Let λβb ≤ a.

1. x
L̃ ≥ λβb+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβb+ s.

(c) Let λβb > a. Then there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβb+ s.

Proof by analogy Immediate from applying S P→P̃ to Lemma 12.2.5(p.81) .

Direct proof See Lemma A3.11(p.283) .

Lemma 13.6.6 (κ̃P) We have:

(a) κ̃ = λβb+ s if b⋆ < 0 and κ̃ = s if a > 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

Proof by analogy Immediate from applying S P→P̃ to Lemma 12.2.6(p.81) .

Direct proof See Lemma A3.12(p.284) .

13.7 Derivation of A {M̃:1[P][A]}
� Tom 13.7.1 (A {M̃:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

Proof by analogy Immediate from applying SP→P̃ to Tom 12.4.1(p.82) .

Direct proof See Tom A4.5(p.289) .
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� Tom 13.7.2 (A {M̃:1[P][A]}) Let β < 0 or s > 0. Then, for a given starting time τ > 1:

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ ⟨1⟩ ∥.

(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.47) ⃝s N ⃝∗ ∥ is true.

Proof by analogy Immediate from applying SP→P̃ to Tom 12.4.2(p.82) .

Direct proof See Tom A4.6(p.289) .

13.8 Optimal Price to Propose

Lemma 13.8.1 (ATom {M̃:1[P][A]}) The optimal price to propose zt is nonincreasing in t > 0.

Proof Obvious from Tom’s 13.7.1(a) and 13.7.2(a) and from (6.2.41(p.23) ) and
Lemma A3.3(p.278) .
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Chapter 14

Analogy Theorem (R̃↔ P̃)

14.1 Relationship between M̃:1[P][A] and M̃:1[R][A]
14.1.1 Assertion system A

First note the three relations below:

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}] (← (11.5.55(p.66) )), (14.1.1)

A {M:1[P][A]} = AR→P[A {M:1[R][A]}] (← (12.3.1(p.81) )), (14.1.2)

A {M̃:1[P][A]} = SP→P̃[A {M:1[P][A]}] (← (13.5.6(p.88) )). (14.1.3)

Then the inverses of the above relations were:

A {M:1[R][A]} = S R̃→R[A {M̃:1[R][A]}] (← (11.8.46(p.72) )), (14.1.4)

A {M:1[R][A]} = AP→R[A {M:1[P][A]}] (← (12.3.6(p.82) )), (14.1.5)

A {M:1[P][A]} = S P̃→P[A {M̃:1[P][A]}] (← (13.5.14(p.88) )). (14.1.6)

From (14.1.3), (14.1.2), and (14.1.4) we obtain the relation below:

A {M̃:1[P][A]} = SP→P̃AR→P S R̃→R[A {M̃:1[R][A]}]. (14.1.7)

As an inverse of this, from (14.1.1), (14.1.5), and (14.1.6) we obtain the relation below:

A {M̃:1[R][A]} = SR→R̃AP→R S P̃→P[A {M̃:1[P][A]}]. (14.1.8)

14.1.2 System of Optimality Equations SOE

First note the three relations below:

SOE{M̃:1[R][A]} = SR→R̃[SOE{M:1[R][A]}] (← (11.5.38(p.63) )), (14.1.9)

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}] (← (12.3.2(p.81) )), (14.1.10)

SOE{M̃:1[P][A]} = SP→P̃[SOE{M:1[P][A]}] (← (13.5.4(p.87) )), (14.1.11)

The inverses of the above relations were:

SOE{M:1[R][A]} = S R̃→R[SOE{M̃:1[R][A]}] (← (11.8.40(p.72) )), (14.1.12)

SOE{M:1[R][A]} = AP→R[SOE{M:1[P][A]}] (← (12.3.7(p.82) )), (14.1.13)

SOE{M:1[P][A]} = S P̃→P[SOE{M̃:1[P][A]}] (← (13.5.12(p.88) )), (14.1.14)

From (14.1.11), (14.1.10), and (14.1.12) we obtain the relation below:

SOE{M̃:1[P][A]} = SP→P̃AR→P S R̃→R[SOE{M̃:1[R][A]}], (14.1.15)

As an inverse of this, from (14.1.9), (14.1.13), and (14.1.14) we obtain the relation below:

SOE{M̃:1[R][A]} = SR→R̃AP→R S P̃→P[SOE{M̃:1[P][A]}]. (14.1.16)
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14.1.3 Attribute Vector θ

First note the three relations below:

θ(A {M̃:1[R][A]}) = SR→R̃[θ(A {M:1[R][A]})] (← (11.5.56(p.66) )), (14.1.17)

θ(A {M:1[P][A]}) = AR→P[θ(A {M:1[R][A]})] (← (12.3.3(p.81) )), (14.1.18)

θ(A {M̃:1[P][A]}) = SP→P̃[θ(A {M:1[P][A]})] (← (13.5.7(p.88) )), (14.1.19)

Then the inverses of the above relations were:

θ(A {M:1[R][A]}) = S R̃→R[θ(A {M̃:1[R][A]})] (← (11.8.47(p.72) )), (14.1.20)

θ(A {M:1[R][A]}) = AP→R[θ(A {M:1[P][A]})] (← (12.3.8(p.82) )), (14.1.21)

θ(A {M:1[P][A]}) = S P̃→P[θ(A {M̃:1[P][A]})] (← (13.5.15(p.88) )), (14.1.22)

From (14.1.19), (14.1.18), and (14.1.20) we obtain the relation below:

θ(A {M̃:1[P][A]}) = SP→P̃AR→P S R̃→R[θ(A {M̃:1[R][A]})], (14.1.23)

As an inverse of this, from (14.1.17), (14.1.21), and (14.1.22) we obtain the relation below:

θ(A {M̃:1[R][A]}) = SR→R̃AP→R S P̃→P[θ(A {M̃:1[P][A]})]. (14.1.24)

14.2 Analogy Theorem

Let us note

θ(A {M̃:1[R][A]}) = (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (← (11.5.57(p.66) )), (14.2.1)

θ(A {M̃:1[P][A]}) = (b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (← (13.5.8(p.88) )). (14.2.2)

Herein let us define

A R̃→P̃
def
= SP→P̃AR→P S R̃→R · · · (1), A P̃→R̃

def
= SR→R̃AP→R S P̃→P · · · (2). (14.2.3)

Then, from (14.1.7) and (14.1.8), from (14.1.15) and (14.1.16), and from (14.1.23) and (14.1.24) we have respectively

A {M̃:1[P][A]} = A R̃→P̃ [A {M̃:1[R][A]}] · · · (1) A {M̃:1[R][A]} = A P̃→R̃ [A {M̃:1[P][A]}] · · · (2), (14.2.4)

SOE{M̃:1[P][A]} = A R̃→P̃ [SOE{M̃:1[R][A]}]· · · (1) SOE{M̃:1[R][A]} = A P̃→R̃ [SOE{M̃:1[P][A]}]· · · (2) (14.2.5)

θ(M̃:1[P][A]) = A R̃→P̃ [θ(M̃:1[R][A])] · · · (1) θ(M̃:1[R][A]) = A P̃→R̃ [θ(M̃:1[P][A])] · · · (2). (14.2.6)

From (14.2.4 (1)) we immediately obtain the following theorem.

Theorem 14.2.1 (analogy [R̃→ P̃]) Let A {M̃:1[R][A]} holds on P ×F . Then A {M̃:1[P][A]} holds on P ×F where

A {M̃:1[P][A]} def
= A R̃→P̃[A {M̃:1[R][A]}]. (14.2.7)

From (14.2.4 (2)) we immediately obtain the following theorem.

Theorem 14.2.2 (analogy [P̃→ R̃]) Let A {M̃:1[P][A]} holds on P ×F . Then A {M̃:1[R][A]} holds on P ×F where

A {M̃:1[R][A]} = A P̃→R̃[A {M̃:1[P][A]}]. (14.2.8)

14.3 Analogy Replacement Operation [R̃↔ R̃]
Here note that SP→P̃AR→P S R̃→R in the right hand of (14.1.7) means that the three operations are applied in the order of
S R̃→R → AR→P → SP→P̃. Then, putting the flow in vertically, we have

S R̃→R
def
= { b, µ, a, x

L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(1)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (11.8.33(p.71) ))

a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt · · ·(2)}
AR→P

def
= { a, µ · · ·(3)

↓ ↓ (← (12.2.1(p.77) ))

a⋆, a · · ·(4)}
SP→P̃

def
= { a

⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt · · ·(5)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (13.5.3(p.87) ))

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(6)}
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The above flow means the following:

◦ First, let us focus attention on elements outside the dashbox . Then, we see that first (1)-row changes into (2)-row, next
(2)-row is identical to (5)-row, and finally (5)-row changes into (6)-row, which is identical to the original (1)-row. In other
words, it follows that (1)-row remains unchanged outside the dashbox even if these operations are applied.

◦ Next, let us focus attention on elements inside the dashbox . Then, we see that first (1)-row changes into (2)-row, next
(2)-row changes into (4)-row via (3)-row, and finally (4)-row changes into (6)-row via (5)-row. In other words, b and µ in
(1)-row change into respectively b⋆ and b in (6)-row through the application of these operations.

From the above we see that the triple operations SP→P̃AR→P S R̃→R can be eventually reduced to the single operation

A R̃→P̃
def
= { b, µ, a, xL̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt
}

Removing the unchanged elements from the above A R̃→P̃, we can rewrite this as

A R̃→P̃ = {b→ b⋆, µ→ b}. (14.3.1)

Similarly, SR→R̃AP→R S P̃→P in the right hand of (14.1.8) means that the operations are applied in the order of S P̃→P → AP→R →
SR→R̃. Then, putting the flow in vertically, we have

S P̃→P
def
= { b

⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(1)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (13.5.11(p.88) ))

a⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt · · ·(2)}
AP→R

def
= { a⋆, a · · ·(3)

↓ ↓ (← (12.3.5(p.81) ))

a, µ · · ·(4)}
SR→R̃

def
= { a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt · · ·(5)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (11.5.31(p.63) ))

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(5)}

Accordingly, it follows that the above flow can be eventually reduced to as follows.

A P̃→R̃ = {b⋆ → b, b→ µ}. (14.3.2)
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Chapter 15

Integration Theory

15.1 Flow of the Whole Discussion
The complete picture of the integration theory can be summarized as follows:

⟨1⟩ A {TR} is proven (Lemma 9.1.1(p.41) ).

⟨2⟩ A {LR , KR ,LR , κR} is proven (Lemmas 9.2.1(p.43) – 9.3.1(p.45) ).

⟨3⟩ A {M:1[R][A]} is proven (Tom’s 10.2.1(p.47) and 10.2.2).

⟨4⟩ A {M̃:1[R][A]} is derived (Tom’s 11.7.1(p.69) and 11.7.2).

⟨5⟩ A {TP} is proven (Lemma 12.2.1(p.77) ).

⟨6⟩ A {M:1[P][A]} is derived (Tom’s 12.4.1(p.82) and 12.4.2).

⟨7⟩ A {M̃:1[P][A]} is derived (Tom’s 13.7.1(p.90) and 13.7.2).

⟨8⟩ The analogous relation between A {M̃:1[P][A]} and A {M̃:1[R][A]} is shown (Theorems 14.2.1(p.94) and 14.2.2).

⟨9⟩ The diagonal symmetry is proven (Theorems 17.1.1(p.113) -17.1.6).

The above flow over ⟨1⟩ – ⟨9⟩ can be schematized as in Figure 15.1.1 below where the inside of the three shadow-boxes
are directly proven and the inside of the remaining frame-boxes excluding ⟨9⟩ are derived by applying SP→P̃, AR→P, and
SR→R̃.

⟨1⟩ ⟨2⟩ ⟨3⟩ ⟨4⟩

A {TR } - A {LR , KR ,LR , κR} - A {M:1[R][A]} -� A {M̃:1[R][A]}

?

6

?

6

?

6

A {TP }
A {M:1[P][A]} -� A {M̃:1[P][A]}

⟨5⟩ ⟨6⟩ ⟨7⟩

⟨8⟩

Lemma 9.1.1(p.41) Lemma 9.2.1(p.43) - 9.2.4 Tom 10.2.1(p.47) Tom 11.7.1(p.69)

Lemma 12.2.1(p.77) Tom 12.4.1(p.82) Tom 13.7.1(p.90)

AR→P AP→R AR→P AP→R A R̃→P̃ A P̃→R̃

SR→R̃

S R̃→R

SP→P̃

S P̃→P

⟨9⟩

diagonal symmetry

Figure 15.1.1: The flow of the whole discussion of the integration theory

All operations SX→Y and AX→Y within the flow depicted by Figure 15.1.1 are ones used in the eight theorems below:

· Theorems 11.5.1(p.66) and 11.8.1(p.72) (symmetry).

· Theorems 12.3.1(p.81) and 12.3.2(p.82) (analogy).

· Theorems 13.5.1(p.88) and 13.5.2(p.88) (symmetry).

· Theorems 14.2.1(p.94) and 14.2.2(p.94) (analogy).
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15.2 Overview of Integration Theory

The interrelationship among the quadruple assertion systems within the dashbox of Figure 15.1.1 implies the following.
First, an assertion system of the model M:1[R][A] selected as a seed within the quadruple-asset-trading-models Q⟨M :1[A]⟩ is
defined and proven. Next, the assertion system for each of the remaining three models is derived by sequentially applying the
symmetry transformation operation and the analogy replacement operation, SR→R̃, AR→P, SP→P̃, and AP→R, to results obtained
for the seed assertion system. Since it is proven that any of these operations are reversible, even if any other assertion system
within Q⟨M :1[A]⟩ is selected as a seed, the same flow as the above can holds. Let us refer to the methodology which integrates
the quadruple assertion systems in such a fashion as stated above as the integration theory. In the conventional methodology
all within the quadruple assertion systems must be separately defined and one by one proven. On the other hand, in our
methodology based on the integration theory, the number of assertion systems which are defined and proven is only one as a
seed. In Part 3 that follows we try to apply the integration theory to all of the remaining five quadruple-asset-trading-models
in Table 3.3.1(p.11) except for Q⟨M :1[A]⟩ the analysis of which was already ended. After having finished reading Part 3, it will
be realized that the integration theory provides a strong tool for the treatment of asset trading problems.

15.3 Summary of Operations
For convenience of reference, below let us copy (11.5.31(p.63) ), (13.5.3(p.87) ), (12.2.1(p.77) ), and (14.3.1(p.95) ), which are used as the
symmetry transformation operation and the analogy replacement operation in the correlation diagram of Figure 15.1.1 above.

SR→R̃ = {a, µ, b, xL ,xK , sL ,κ, T , L , K , L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt

}. (15.3.1)

SP→P̃ = { a⋆, a, b, xL ,xK ,κ, sL ,T , L , K , L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, x
L̃ ,xK̃ , κ̃, sL̃ , T̃ , L̃ , K̃ , L̃ , Vt

}. (15.3.2)

AR→P = {a→ a⋆, µ→ a}. (15.3.3)

A R̃→P̃ = {b→ b⋆, µ→ b}. (15.3.4)
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Chapter 16

Inheritance and Collapse

16.1 Another Aspect of Trading Problems
First, let us note the following:

1. In a selling problem, a seller (leading trader) delivers the asset to a buyer (opponent trader); in other words, the buyer
receives it from the seller.

2. In a buying problem, a buyer (leading trader) receives the asset from a buyer (opponent trader); in other words, the seller
delivers it to the buyer.

The above can be schematized as below.

leading trader opponent trader

↓ ↓
selling problem: seller (delivering-side) → (recieving-side) buyer (16.1.1)

buying problem: buyer (recieving-side) ← (delivering-side) seller (16.1.2)

16.2 Trading Problem with Negative Price
Next, let us note that a price w may become negative on the total market F (see A7(p.8) ); however, the price is usually positive
in the real world; in other words, it cannot become zero or negative. Now, let us consider the case that an asset traded there
is, for example, such industrial wastes as surplus soil, concrete blocks, etc. which are disposed of when a building is broken up.
Then, in whether a selling problem or a buying problem, the buyer as a receiving-side rightly requires an amount of money as
disposal cost instead of paying an amount of money. This implies that the problem of dealing such an item can be regarded as
a trading problem with a negative price.

16.3 Three Kinds of Markets
Let us call F = {F

∣∣ −∞ < a < µ < b <∞} (see (2.1.5(p.8) )), called the total market, and let us define the following three kinds
of markets:

F+ def
= {F

∣∣ 0 < a < b} (positive market), (16.3.1)

F± def
= {F

∣∣ a ≤ 0 ≤ b} (mixed market), (16.3.2)

F− def
= {F

∣∣ a < b < 0} (negative market). (16.3.3)

Each of the above three markets implies the following:

(a) Positive market F+ In an asset trading problem in the real world, the price is usually positive, i.e., the problem is defined
on this market.

(b) Negative market F− The trading problem in Section 16.2 is defined on this market; this is also called junk market.

(c) Mixed market F± For example, suppose you must waste a piece of well-worn furniture, say a book cabinet, sofa bed,
etc. For such a good, normally there exist the two kinds of receiving-sides: One who pays some money on the ulterior
motive that some profit might be obtained by reselling it, the other who requires some money for the reason that some cost
may be incurred for its disposal. This market can be regarded as a market in which the positive market and the negative
market are mixed; this is also called secondhand market.

For the above reason, in order to discuss an asset trading problem more generally and comprehensively it is better to extend
the region of price to the total market F = (−∞,∞).
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Remark 16.3.1 (life of durable goods) A new durable good (automobile, house furnishings, TV, etc.) is first placed on
the positive market F+, gradually deteriorates year after year, then is drove to the mixed market F± before long, and finally is
junked in the negative market F−. This deterioration flow implies that in order to complete a theory of trading it will become
necessary to make discussions over all of the three markets F+, F±, and F−.

16.4 Market Restriction
Let us refer to the restriction of the total market F to a given subset F ′ ⊂ F as the market restriction of F to F ′, called the
restricted-total-market. In the present paper, we consider the three kinds of market restrictions defined in Section 16.3. Let us
denote the operations of restricting F to the above three restricted markets by the same symbols F+, F±, and F−, called the
positive market restriction, the mixed market restriction, and the negative market restriction respectively. Throughout the rest
of this paper, by Model+, Model±, and Model− let us denote the models defined on the restricted markets F+, F±, and F−

respectively, called the market restricted models. For explanatory convenience, for x = 1, 2, 3 and X = A, E let us define:

Q⟨M :x[X]+⟩ = {M:x[R][X]+, M̃:x[R][X]+,M:x[P][X]+, M̃:x[P][X]+}, (16.4.1)

Q⟨M :x[X]±⟩ = {M:x[R][X]±, M̃:x[R][X]±,M:x[P][X]±, M̃:x[P][X]±}, (16.4.2)

Q⟨M :x[X]−⟩ = {M:x[R][X]−, M̃:x[R][X]−,M:x[P][X]−, M̃:x[P][X]−}. (16.4.3)

Remark 16.4.1 (inheritance and collapse) Herein recall that the integration theory consisting of the symmetry theorem
and the analogy theorem is what can be constructed under the basic premise that the price, whether reservation price or posted
price, is defined on the total market F = (−∞,∞) (see Chapter 16(p.99) ). Accordingly, if the total market F is restricted to
a subset F ′ ⊂ F , then it must be examined whether the symmetrical relation and the analogous relation given by the two
theorems are inherited or collapses.

When no change occurs even if a market restriction is applied to a given assertion A, the assertion is said to be free from the
market restriction, called the market-restriction-free assertion.

Lemma 16.4.1 (market-restriction-free) Even if a market restriction is applied to a market-restriction-free assertion, no
change occurs.

Proof Evident.

16.5 Market Restriction for Quitting Penalty ρ
• Selling Problem to dispose of it by delivering it to a junk dealer on payment of some cost ρ′ > 0. Since “paying some cost

ρ′ > 0 to the junk dealer who is a buyer” implies “receiving the negative selling price ρ = −ρ′ < 0 from the buyer”. This
implies that the selling problem can be regarded as a selling problem with the negative selling price ρ < 0. Not only for the
above reason but also to discuss the problem more generally, in this paper we dare to define the ρ on (−∞,∞). If there exists
no junk dealer who wants to receive it even if proposing however large the cost ρ′ > 0, the seller must dump it by himself. If
it is not illegal, the seller will dump it at his own expense ρ′ > 0; however, if it is illegal, the seller will be someday punished
with a fine ρ′ > 0. Finally, if the seller is not willing to illegally dump it, then such an ASP does not take shape as a real
problem to attack; Such problem must be said to be unworthy to discuss.

• Buying Problem Now, since the action of buying an asset from a seller can be regarded as that of receiving it from the seller,
if it is a good such as an industrial waste, the buyer as a receiving-side (leading trader) naturally requires some money ρ′ > 0
to the seller as a delivering-side (opponent trader); this problem can be said to be an asset buying problem with the negative
buying price ρ = −ρ′ < 0. Now, herein let us consider a question “Whether or not there can exist an asset buying problem
(ABP) with a negative buying price ρ′ < 0 ?” Temporarily, suppose that such an asset buying problem exists. Then, it is an
asset buying problem where the buyer pays the negative price ρ′ < 0. Since “payment of the negative buying price ρ′ < 0”
implies “acquisition of the positive buying price ρ = −ρ′ > 0 nevertheless it is a buying problem”; needless to say, such an
absurd story is not possible at all from a real viewpoint. For this reason, in order to discuss the problem more generally the
buying price ρ′ < 0 must be defined on (−∞,∞) similarly to in ABP. If there exists no seller who wants to sell it however large
the price may be, then such an ABP does not take shape as a real problem to tackle, hence it must be said to be unworthy to
discuss.
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16.6 Constrains of Inequality Conditions by Market Restriction
The lemma below will be used later on when performing the operation of market restrictions.

Lemma 16.6.1 (positive market F+) Suppose 0 < a.

[1]
[ref.8078]

0 < a < µ < b. Proof: Evident from (2.1.3(p.8) ).

[2]
[ref.9343]

βb ≤ b for 0 < β ≤ 1. Proof: Immediate from 0 < 1× b ≤ b.

[3]
[ref.7865]

βµ < b for 0 < β ≤ 1. Proof: Immediate from 0 < 1× µ < b.

[4]
[ref.8369]

βa < b for 0 < β ≤ 1. Proof: Immediate from 0 < 1× a < b.

[5]
[ref.9483]

a < βµ and βµ ≤ a are both possible. Proof: Since 0 < a < 1× µ, the former is possible for 0 < β ≤ 1 sufficiently close to 1 and

the latter is possible for any sufficiently small β > 0.

[6]
[ref.6867]

a < βb and βb ≤ a are both possible. Proof: Since 0 < a < 1 × b, the former is possible for 0 < β ≤ 1 sufficiently close to 1 and

the latter is possible for any sufficiently small β > 0.

[7]
[ref.6296]

βb < b⋆ for 0 < β ≤ 1. Proof: Immediate from 0 < 1× b < b⋆ due to Lemma 13.6.1(p.89) (n).

Lemma 16.6.2 (mixed market F±) Suppose a ≤ 0 ≤ b.

[8]
[ref.8062]

a < βµ < b for 0 < β ≤ 1. Proof: Let µ = 0. Then a < µ = βµ = 0 < b for 0 < β ≤ 1. Let µ ̸= 0. If a < µ < 0, then

a < 1×µ < 0 ≤ b, hence a < βµ < 0 ≤ b for 0 < β ≤ 1 and if 0 < µ < b, then a ≤ 0 < 1×µ < b, hence a ≤ 0 < βµ < b for 0 < β ≤ 1.

Accordingly, whether a < µ < 0 or 0 < µ < b, we have a < βµ < b for any β. Thus, whether µ = 0 or µ ̸= 0, it follows that a < βµ < b for

0 < β ≤ 1.

[9]
[ref.6907]

βa < b for 0 < β ≤ 1. Proof: Since 1× a ≤ 0 ≤ b, we have βa ≤ 0 ≤ b for 0 < β ≤ 1.

[10 ]
[ref.6892]

a < βb for 0 < β ≤ 1. Proof: If b > 0, then a ≤ 0 < b = 1× b, hence a ≤ 0 < βb for any β. If b = 0, then a < b = 0 = β × 0 = βb

for 0 < β ≤ 1. Therefore, whether b > 0 or b = 0, we have a < βb for 0 < β ≤ 1.

[11 ]
[ref.6896]

a⋆ < βa for 0 < β ≤ 1. Proof: Immediate from a⋆ < 1× a ≤ 0 due to Lemma 12.2.1(p.77) (n).

[12 ]
[ref.6298]

βb < b⋆ for 0 < β ≤ 1. Proof: Immediate from 0 ≤ 1× b < b⋆ due to Lemma 13.6.1(p.89) (n).

Lemma 16.6.3 (negative market F−) Suppose b < 0.

[13 ]
[ref.7486]

a < µ < b < 0. Proof: Evident from (2.1.3(p.8) ).

[14 ]
[ref.6118]

a ≤ βa 0 < β ≤ 1. Proof: Immediate from a ≤ 1× a < 0.

[15 ]
[ref.8068]

a < βµ for 0 < β ≤ 1. Proof: Immediate from a < 1× µ < 0.

[16 ]
[ref.7482]

a < βb for 0 < β ≤ 1. Proof: Immediate from a < 1× b < 0.

[17 ]
[ref.7478]

βµ < b and b ≤ βµ are both possible. Proof: Since 1× µ < b < 0, the former is true for 0 < β ≤ 1 sufficiently close to 1 and the

latter is true for any sufficiently small β > 0.

[18 ]
[ref.8296]

βa < b and b ≤ βa are both possible. Proof: Since 1× a < b < 0, the former is possible for 0 < β ≤ 1 sufficiently close to 1 and

the latter is possible for any sufficiently small β > 0.

[19 ]
[ref.6919]

a⋆ < βa for 0 < β ≤ 1. Proof: Immediate from a⋆ < 1× a < 0 due to Lemma 12.2.1(p.77) (n).

16.7 Market Restriction of Assertion Systems

16.7.1 A {M:1[R][A]+,±,−}
16.7.1.1 Positive Restriction

� Pom 16.7.1 (A {M:1[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N. → → ⃝⃝s
Proof The same as Tom 10.2.1 due to Lemma 16.4.1(p.100) .

� Pom 16.7.2 (A {M:1[R][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.
(b) Let βµ ≥ b (impossible).
(c) Let βµ < b (always holds).

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥. → →•dd
ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
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3. Let β < 1 and s > 0.

i. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N (see Numerical Example 16.8.1(p.108) )
→ → ⃝⃝s

ii. Let s ≥ βµ. Then • dOITdτ>1⟨1⟩ ∥ (see Numerical Example 16.8.2(p.109) ) → →•dd
Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Let β < 1 or s > 0. Then κ = βµ − s · · · ((2)) from Lemma 9.3.1(p.45) (a) with

λ = 1.

(a) The same as Tom 10.2.2(p.48) (a).

(b,c) Always βµ < b due to [3(p.101)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 10.2.2(c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 10.2.2.

(c3) Let β < 1 and s > 0.

(c3i) Let βµ > s. Then, since κ > 0 due to (2) , it suffices to consider only (c2i) of Tom 10.2.2.

(c3ii) Let βµ ≤ s. Then, since κ ≤ 0 due to (2) and since βµ − s ≤ 0 < a, it suffices to consider only (c2ii1,c2iii1) of
Tom 10.2.2.

16.7.1.2 Mixed Restriction

� Mim 16.7.1 (A {M:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N. → → ⃝⃝s

Proof The same as Tom 10.2.1 due to Lemma 16.4.1(p.100) .

� Mim 16.7.2 (A {M:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b (impossible).

(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
ii. Let s = βT (0).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

iii. Let s > βT (0).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βµ− s > a and sL > s. Then S1(p.47) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 10.2.2(a).

(b,c) Always βµ < b due to [8(p.101)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 10.2.2(c1i,c1ii).

(c2) Let β < 1 and s = 0. If b > 0, then it suffices to consider only (c2i) of Tom 10.2.2 and if b = 0, then since always
βµ − s = βµ > a due to [8] , it suffices to consider only (c2ii2) of Tom 10.2.2. Therefore, whether b > 0 or b = 0, we have the
same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions are immediate from Tom 10.2.2(c2i-c2iii2) with κ = βT (0) − s from
(5.1.7(p.17) ) with λ = 1.

16.7.1.3 Negative Restriction

� Nem 16.7.1 (A {M:1[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

Proof The same as Tom 10.2.1 due to Lemma 16.4.1(p.100) .
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� Nem 16.7.2 (A {M:1[R][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
(c) Let βµ < b.

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S1(p.47) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗
3. Let β < 1 and s > 0.

i. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let βµ− s > a and sL > s. Then S1(p.47) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)). Let β < 1 or s > 0. Then, we have κ = −s · · · ((2)) from Lemma 9.3.1(p.45) (a). Moreover, in this

case, both βµ ≥ b and βµ < b are possible due to [17(p.101)] .

(a,b) The same as Tom 10.2.2(a,b).

(c) Let βµ < b. Then sL > 0 · · · ((3)) from Lemma 9.2.4(p.44) (c).

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 10.2.2(c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii1,c2iii2) of Tom 10.2.2. Since βµ− s = βµ > a
due to [15(p.101)] and since s = 0 < sL due to (3) , we have Tom 10.2.2(c2iii2).

(c3-c3ii) Let β < 1 and s > 0. Then, since κ < 0 due to (2) , it suffices to consider only (c2iii1,c2iii2) of Tom 10.2.2.

16.7.2 A {M̃:1[R][A]
+,±,−

}

16.7.2.1 Positive Restriction

� Pom 16.7.3 (A {M̃:1[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N. → ⃝⃝s

Proof The same as Tom 11.7.1(p.69) due to Lemma 16.4.1(p.100) .

� Pom 16.7.4 (A {M̃:1[R][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S1(p.47) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗
3. Let β < 1 and s > 0.†

i. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥ → →•dd
ii. Let βµ+ s < b and sL̃ > s. Then S1(p.47) ⃝s N ⃝∗ ∥ is true (see

Numerical Example 16.8.3(p.110) ) → → ⃝⃝s /⃝⃝∗

Proof Suppose a > 0 · · · ((1)), hence κ̃ = s · · · ((2)) from Lemma 11.6.6(p.68) (a). Here note that µβ ≤ a and µβ > a are both

possible due to [5(p.101)] .

(a,b) The same as Tom 11.7.2(a,b).

(c) Let βµ > a. Then sL̃ > 0 · · · ((3)) due to Lemma 11.6.5(c) with λ = 1.

(c1-c1ii) Let β = 1, hence s > 0 due to the assumptions β < 1 and s > 0. Thus, we have
Tom 11.7.2(c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, since βµ + s = βµ < b due to [3(p.101)] and since sL̃ > 0 = s from (3) , due to (1) it
suffices to consider only (c2iii2) of Tom 11.7.2.

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only (c2iii1,c2iii2) of Tom 11.7.2.
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16.7.2.2 Mixed Restriction

� Mim 16.7.3 (A {M̃:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

Proof The same as Tom 11.7.1(p.69) due to Lemma 16.4.1.

� Mim 16.7.4 (A {M̃:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).

(c) Let βµ > a (always holds).

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥. →•dd
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
ii. Let s = −βT̃ (0).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

iii. Let s > −βT̃ (0).
1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βµ+ s < b and sL̃ > s. Then S1(p.47) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 11.7.2(a).

(b,c) Always βµ > a due to [8(p.101)] , hence βµ ≤ a is impossible. Hence sL̃ > 0 · · · ((1)) due to Lemma 11.6.5(p.68) (c).

(c1-c1ii) The same as Tom 11.7.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Let a < 0. Then it suffices to consider only (c2i) of Tom 11.7.2. Let a = 0. Now, in this case,
since βµ+ s = βµ < b due to [8(p.101)] , it suffices to consider only (c2ii2) of Tom 11.7.2. Accordingly, whether a < 0 or a = 0,
we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions become true from Tom 11.7.2(c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(5.1.16(p.17) ).

16.7.2.3 Negative Restriction

� Nem 16.7.3 (ATom {M̃:1[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

Proof The same as Tom 11.7.1(p.69) due to Lemma 16.4.1.

� Nem 16.7.4 (ATom {M̃:1[R][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).

(c) Let βµ > a (always holds).

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let βµ < −s. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
ii. Let βµ ≥ −s. Then • dOITdτ>1⟨1⟩ ∥ →•dd

Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)). Then κ̃ = βµ+ s · · · ((3)) due to Lemma 11.6.6(a).

(a) The same as Tom 11.7.2(p.69) (a).

(b,c) Always a < βµ due to [15(p.101)] , hence βµ ≤ a is impossible.

(c1-c1ii) The same as the proof of Tom 11.7.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c2i) of Tom 11.7.2.
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(c3) Let β < 1 and s > 0.

(c3i) Let βµ < −s, hence βµ+ s < 0. Hence, since κ̃ < 0 due to (3) , it suffices to consider only (c2i) of Tom 11.7.2.

(c3ii) Let βµ ≥ −s, hence βµ+ s ≥ 0. Let βµ+ s = 0. Then, since κ̃ = 0 due to (3) and βµ+ s > b due to (2) , it suffices
to consider only (c2iii1) of Tom 11.7.2. Let βµ + s > 0. Then, since κ̃ > 0 due to (3) , it suffices to consider only (c2iii) of
Tom 11.7.2. Then, since βµ + s > 0 > b due to (1) , it suffices to consider only (c2ii1) and (c2iii1) of Tom 11.7.2. Accordingly,
whether βµ+ s = 0 or βµ+ s > 0, we have the same result.

16.7.3 A {M:1[P][A]+,±,−}

16.7.3.1 Positive Restriction

� Pom 16.7.5 (A {M:1[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
Proof The same as Tom 12.4.1 due to Lemma 16.4.1(p.100) .

� Pom 16.7.6 (A {M:1[P][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.
(b) Let βa ≥ b (impossible).
(c) Let βa < b (always holds).

1. Let β = 1.
i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βa− s > a⋆ and sL > s. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗

Proof Suppose a > 0, hence b > a > 0 · · · ((1)).

(a) The same as Tom 12.4.2(a).

(b,c) Always βa < b due to [4(p.101)] , hence βa ≥ b is impossible.

(c1-c1ii) The same as Tom 12.4.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 12.4.2.

(c3-c3iii2) Immediate from Tom 12.4.2(c2-c2iii2) with κ = βT (0)− s from
(5.1.23(p.18) ) with λ = 1.

16.7.3.2 Mixed Restriction

� Mim 16.7.5 (A {M:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
Proof The same as Tom 12.4.1 due to Lemma 16.4.1(p.100) .

� Mim 16.7.6 (A {M:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.
(b) Let βa ≥ b (impossible).
(c) Let βa < b (always holds).

1. Let β = 1.
i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0.Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
iii. Let s > βT (0).
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1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βa− s > a⋆ and sL > s. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗

Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 12.4.2(a).

(b,c) Always βa < b due to [9(p.101)] , hence βa ≥ b is impossible. .

(c1-c1ii) The same as Tom 12.4.2(c1-c1ii).

(c2) Let β < 1 and s = 0. If b > 0, the assertion is true from Tom 12.4.2(c2i) and if b = 0, then βa − s = βa > a⋆ from
[11(p.101)] , hence the assertion become true from Tom 12.4.2(c2ii2). Accordingly, whether b > 0 or b = 0, we have the same
result.

(c3-c3iii2) The same as Tom 12.4.2(c2i-c2iii2) with κ = βT (0)− s from
(5.1.23(p.18) )) with λ = 1.

16.7.3.3 Negative Restriction

� Nem 16.7.5 (A {M:1[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
Proof Immediate from Tom 12.4.1 due to Lemma 16.4.1(p.100) .

� Nem 16.7.6 (A {M:1[P][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite ≥ xK as t→∞.
(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
(c) Let βa < b.

1. Let β = 1.
i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗
3. Let β < 1 and s > 0.

i. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let βa− s > a⋆ and sL > s. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)), hence κ = κP = −s · · · ((2)) from Lemma 12.2.6(a). Then, both βa ≥ b and βa < b are possible

due to [18(p.101)] . If βa < b, then sL > 0 · · · ((3)) due to Lemma 12.2.5(p.81) (c) with λ = 1.

(a) The same as Tom 12.4.2(a).

(b) Let βa ≥ b. Then, the assertion is true Tom 12.4.2(b).

(c) Let βa < b.

(c1-c1ii) The same as Tom 12.4.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii) of Tom 12.4.2. In addition, since βa−s = βa > a⋆

due to [19(p.101)] and since sL > 0 = s due to (3) , it suffices to consider only (c2iii2) of Tom 12.4.2.

(c3-c3ii) Let β < 1 and s > 0. Then, since κ < 0 from (2) , it suffices to consider only (c2iii) of Tom 12.4.2.

16.7.4 A {M̃:1[P][A]
+,±,−

}

16.7.4.1 Positive Restriction

� Pom 16.7.7 (A {M̃:1[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
Proof The same as Tom 13.7.1 due to Lemma 16.4.1(p.100) .

� Pom 16.7.8 (A {M̃:1[P][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ ⟨1⟩ ∥ → →•dd
(c) Let βb > a.

1. Let β = 1.
i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥ →
ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗
3. Let β < 1 and s > 0.

i. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥. →•dd
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ii. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗
Proof Suppose a > 0 · · · ((1)). Then, κ̃ = s · · · ((2)) from Lemma 13.6.6(a). In this case, βb ≤ a and βb > a are both possible

due to [6(p.101)] , and if βb > a, then sL̃ > 0 · · · ((3)) due to Lemma 13.6.5(p.90) (c) with λ = 1. In addition, we have

(a,b) The same as Tom 13.7.2(a,b).

(c) Let βb > a.

(c1-c1ii)

The same as Tom 13.7.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii) of Tom 13.7.2. In this case, since βb+s = βb < b⋆

due to [7(p.101)] and since sL > 0 = s due to (3) , it suffices to consider only (c2iii2) of Tom 13.7.2.

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only (c2iii-c2iii2) of Tom 13.7.2.

16.7.4.2 Mixed Restriction

� Mim 16.7.7 (A {M̃:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

Proof The same as Tom 13.7.1 due to Lemma 13.7.1.

� Mim 16.7.8 (A {M̃:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).
(c) Let βb > a (always holds).

1. Let β = 1.
i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥. →•dd
ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
ii. Let s = −βT̃ (0).

1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥ → →•dd
2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

iii. Let s > −βT̃ (0).
1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥ → →•dd
2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗

Proof Let b ≥ 0 ≥ a · · · ((1)).

(a) The same as Tom 13.7.2(p.91) (a).

(b,c) Always βb > a due to [10(p.101)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 13.7.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2i-c2ii2) of Tom 13.7.2. Let a < 0. Then, the assertion is
true from Tom 13.7.2(c2i). Let a = 0. Then, since βb + s = βb < b⋆ due to [12(p.101)] , it suffices to consider only (c2ii2) of
Tom 13.7.2. Accordingly, whether a < 0 or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 13.7.2(c2i-c2iii2) with κ̃ = βT̃ (0) + s from (5.1.36(p.19) )
with λ = 1.

16.7.4.3 Negative Restriction

� Nem 16.7.7 (A {M̃:1[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

Proof The same as Tom 13.7.1 due to Lemma 16.4.1(p.100) .

� Nem 16.7.8 (A {M̃:1[P][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).
(c) Let βb > a (always holds).

1. Let β = 1.
i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥ → →•dd
ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
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2. Let β < 1 and s = 0. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s
ii. Let s = −βT̃ (0).

1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥ → →•dd
2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N → → ⃝⃝s

iii. Let −βT̃ (0) < s.

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥ → →•dd
2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.47) ⃝s N ⃝∗ ∥ → → ⃝⃝s /⃝⃝∗

Proof Let b < 0, hence a < b < 0 · · · ((1)).

(a) The same as Tom 13.7.2(p.91) (a).

(b,c) Always βb > a due to [16(p.101)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 13.7.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 13.7.2.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 13.7.2(c2-c2iii2) with κ̃ = βT̃ (0) + s from (5.1.36(p.19) )
with λ = 1.

16.8 Numerical Example

Numerical Example 16.8.1 (A {M:1[R][A]}+)
This is the example for ⃝s dOITsτ>1⟨τ⟩ N in Pom 16.7.2(p.101) (c3i) with parameters a = 0.01, b = 1.00, β = 0.98, and s = 0.05.∗

Then, we have xK = 0.6436. Figure 16.8.1 below is the graphs of Itτ = βτ−tVt for τ = 2, 3, · · · , 15 and t = 1, 2, · · · , τ (see
(7.2.9(p.34) )). For example, the two points on the line of τ = 2 are given by V2 = 0.538513 ( • ) and βV1 = 0.98 × 0.444900 =
0.436002 ( � ) , hence V2 > βV1. Similarly, the three points on the polygonal curve of τ = 3 are given by V3 = 0.583152 ( • ),
βV2 = 0.98×0.538513 = 0.52774274 ( � ), and β2V1 = 0.982×0.4449 = 0.42728196 ( � ), hence V3 > βV2 > β2V1. Then, the value
of t on the horizontal line corresponding to the bullet • provides the optimal initiating time t∗τ for each of τ = 2, 3, · · · , 15, i.e.,
OITτ ⟨t∗τ ⟩, so we have t∗2 = 2, t∗3 = 3, · · · , t∗15 = 15 (see t∗τ - column of the table below). This result means ⃝s dOITsτ>1⟨τ⟩ N for
τ = 2, 3, · · · , 15. Since Vt−βVt > 0 for t = 2, 3, · · · , 15 (see values of Vt−βVt - column in the table below), we have L(Vt−1) > 0
from (10.1.2(p.47) ), meaning Conduct15≥t>1N from (10.1.6(p.47) ), i.e., it is strictly optimal to conduct the search on 15 ≥ t > 1.
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?

t∗12 = 12

Vt − βVt−1, t∗τ (OIT)[006(1)Data.DAT]

t Vτ Vt − βVt−1 t∗τ decision

0
1 0.444900
2 0.538513 +0.102511 2 ConductN
3 0.583152 +0.055409 3 ConductN
4 0.607492 +0.036003 4 ConductN
5 0.621595 +0.026252 5 ConductN
6 0.630035 +0.020871 6 ConductN
7 0.635180 +0.017745 7 ConductN
8 0.638351 +0.015874 8 ConductN
9 0.640318 +0.014734 9 ConductN
10 0.641544 +0.014032 10 ConductN
11 0.642309 +0.013596 11 ConductN
12 0.642788 +0.013325 12 ConductN
13 0.643088 +0.013155 13 ConductN
14 0.643276 +0.013049 14 ConductN
15 0.643393 +0.012983 15 ConductN

[TAB7473x]

Figure 16.8.1: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1) where • represents OIT

∗Note that a = 0.01 > 0, β = 0.98 < 1, and s = 0.05 > 0. Then, since µ = (0.01 + 1.00)/2 = 0.505, we have βµ = 0.98 × 0.505 = 0.4949 >
0.05 = s. Thus, the condition of this assertion is satisfied.
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Numerical Example 16.8.2 (A {M:1[R][A]}+)
This is the example for • dOITdτ>1⟨1⟩ ∥ in Pom 16.7.2(p.101) (c3ii) with a = 0.01, b = 1.00, β = 0.98, and s = 0.50.† The bullet • in
each of the 14 straight lines in Figure 16.8.2 below shows that the optimal initiating time t∗τ degenerates to time 1 (i.e., t∗τ = 1
for τ = 2, 3, · · · , 15) under Preference Rule 7.2.1(p.35) , i.e., • dOITdτ=2,3,··· ,15⟨1⟩ ∥. The result comes from the fact of Vt−βVt = 0

for t = 2, 3, · · · , 15 with t = 2, 3, · · · , 15 (see Vt − βVt−1 - column in the table below), leading to Vτ = βVτ−1 = · · · = βτ−1V1 for

τ = 2, 3, · · · , 15, i.e., Iττ = Iτ−1
τ = · · · = I1τ for τ = 2, 3, · · · , 15.
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Vt − βVt−1 [006(2)Data.DAT]

t Vt Vt − βVt−1 t∗τ St
0
1 −0.005100
2 −0.004998 0.000000 1 −0.00010200
3 −0.004898 0.000000 1 −0.00021960
4 −0.004800 0.000000 1 −0.00029996
5 −0.004704 0.000000 1 −0.00039600
6 −0.004610 0.000000 1 −0.00049008
7 −0.004517 0.000000 1 −0.00058220
8 −0.004427 0.000000 1 −0.00067334
9 −0.004338 0.000000 1 −0.00076154
10 −0.004252 0.000000 1 −0.00084876
11 −0.004167 0.000000 1 −0.00093304
12 −0.004083 0.000000 1 −0.00101634
13 −0.004002 0.000000 1 −0.00109866
14 −0.003922 0.000000 1 −0.00117804
15 −0.003843 0.000000 1 −0.00125644
[TAB7407x]

Figure 16.8.2: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1) where • represents OIT

Note here that numbers in Vt-column are all negative, i.e., red ink, meaning that attacking the asset selling problem makes
no profits. Accordingly, if this is of a-E-case (see Concept 2ai(p.9) ), you must resign to the red ink and if it is of a-A-case (see
Concept 2aii(p.9) ), it suffices to pass over the problem without attacking the selling problem itself.

Since 0.5 × (a + b) = 0.505 and since Vt < 0 < 0.01 = a for t = 1, 2, · · · , 15 (see Vt-column of the above table), from
(A7.6 (1) (p.296) ) we have T (Vt) = 0.505− Vt for t = 1, 2, · · · , 15, hence we have:

T (V1) = 0.505 − (−0.005100) = 0.510100, T (V6) = 0.505 − (−0.004610) = 0.509610, T (V11) = 0.505 − (−0.004167) = 0.509167,

T (V2) = 0.505 − (−0.004998) = 0.509998, T (V7) = 0.505 − (−0.004517) = 0.509517, T (V12) = 0.505 − (−0.004083) = 0.509083,

T (V3) = 0.505 − (−0.004898) = 0.509898, T (V8) = 0.505 − (−0.004427) = 0.509427, T (V13) = 0.505 − (−0.004002) = 0.509002,

T (V4) = 0.505 − (−0.004800) = 0.509800, T (V9) = 0.505 − (−0.004338) = 0.509338, T (V14) = 0.505 − (−0.003922) = 0.508922,

T (V5) = 0.505 − (−0.004704) = 0.509704, T (V10) = 0.505 − (−0.004252) = 0.509252, T (V15) = 0.505 − (−0.003843) = 0.508843.

Since St = 0.98× T (Vt−1)− 0.5 from (6.2.10(p.22) ), we get

S2 = 0.98 × 0.510100 − 0.5 = −0.00010200, S7 = 0.98 × 0.509610 − 0.5 = −0.00058220, S12 = 0.98 × 0.509167 − 0.5 = −0.00101634,

S3 = 0.98 × 0.509998 − 0.5 = −0.00021960, S8 = 0.98 × 0.509517 − 0.5 = −0.00067334, S13 = 0.98 × 0.509083 − 0.5 = −0.00109866,

S4 = 0.98 × 0.509898 − 0.5 = −0.00029996, S9 = 0.98 × 0.509427 − 0.5 = −0.00076154, S14 = 0.98 × 0.509002 − 0.5 = −0.00117804,

S5 = 0.98 × 0.509800 − 0.5 = −0.00039600, S10 = 0.98 × 0.509338 − 0.5 = −0.00084876, S15 = 0.98 × 0.508922 − 0.5 = −0.00125644,

S6 = 0.98 × 0.509704 − 0.5 = −0.00049008, S11 = 0.98 × 0.509252 − 0.5 = −0.00093304.

From the results of the above numerical calculation we have St < 0 for 15 ≥ t > 1, hence it is strictly optimal to skip the
search over 15 ≥ t > 1 due to (6.2.9(p.22) ), i.e., SkipN. However, since Vt − βVt−1 = 0 for 15 ≥ t > 1 (see (Vt − βVt−1)-column
in the above table), we have V15 = βV14 = · · · = β14V1, i.e., the profit attained are indifferent over 15 ≥ t > 0. This is not a
contradiction, which is a false feeling caused by confusion from the jumble of intuition and theory (see Alice 3(p.36) ).

†Note that a = 0.01 > 0, β = 0.98 < 1, and s = 0.50 > 0. In addition, since µ = (0.01+ 1.00)/2 = 0.505, we have βµ = 0.98× 0.505 = 0.4949 <
0.50 = s. Thus, the condition of the assertion is satisfied.
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Numerical Example 16.8.3 (A {M̃:1[R][A]+} (buying model)

This is the numerical example for ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ in S1(p.47) ⃝s N ⃝∗ ∥ of Pom 16.7.4(p.103) (c3ii) with a = 0.01, b = 1.00, β = 0.98,

and s = 0.05.† Then, we have sL̃ = 0.323274. Hence, the optimal initiating time t∗τ is given by t attaining minτ≥t>0 I
t
τ (see

(7.2.10(p.35) )).‡ The bullet • in Figure 16.8.3 below shows the optimal initiating time for each of τ = 2, 3, · · · , 15 (see t∗τ - column
in the table below). From the figure and table we see that t∗τ = τ for τ = 2, 3, · · · , 7, i.e., ⃝s dOITs7≥τ>1⟨τ⟩ ∥ (see (1) of S1(p.47) )

and that t∗τ = 7 for τ = 8, 9, · · · , 15, i.e., ⃝⃝∗ ndOITτ>7⟨7⟩ ∥ (see (2) of S1(p.47) ). In the numerical example note the fact that

S̃ = L̃ (Vτ−1) are all negative (< 0 (−), i.e., SkipN) for t = 2, 3, · · · , 7 and positive (> 0 (+), i.e., ConductN) for t = 8, 9, · · · , 15.
Moreover, note that we have Vt − βVt−1 = 0 or equivalently Vt = βVt−1 for t = 8, 9, · · · , 15 and Vt − βVt−1 < 0 or equivalently
Vt < βVt−1 for t = 2, 3, · · · , 7 (see Vt − βVt−1-column), hence V15 = βV14 = β2V13 = · · · = β8V7 < β9V6 < β10V5 < · · · <
β14V1 (see β15−tVt-column), so we have ⃝⃝∗ ndOITτ>7⟨7⟩ ∥.

[018(1)LatexEdit]
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[FIG7482x]

t β15−t Vt Vt − βVt−1 β15−tVt t∗τ S̃t = L̃ (Vt−1) decision

0
1 0.753641 0.544900 0.410658
2 0.769022 0.442388 −0.091614 0.340206 2 −0.091614 ConductN
3 0.784716 0.391004 −0.042535 0.306827 3 −0.042535 ConductN
4 0.800731 0.361335 −0.021849 0.289332 4 −0.021849 ConductN
5 0.817072 0.343013 −0.011094 0.280266 5 −0.011094 ConductN
6 0.833747 0.331264 −0.004889 0.276190 6 −0.004889 ConductN
7 0.850763 0.323555 −0.001084 0.275268 7 −0.001084 ConductN
8 0.868125 0.317084 0.000000 0.275268 7 +0.001338 SkipN
9 0.885842 0.310742 0.000000 0.275268 7 +0.003326 SkipN
10 0.903920 0.304527 0.000000 0.275268 7 +0.005233 SkipN
11 0.922368 0.298437 0.000000 0.275268 7 +0.007064 SkipN
12 0.941192 0.292468 0.000000 0.275268 7 +0.008822 SkipN
13 0.960400 0.286618 0.000000 0.275267 7 +0.010508 SkipN
14 0.980000 0.280886 0.000000 0.275268 7 +0.012127 SkipN
15 1.000000 0.275268 0.000000 0.275268 7 +0.013680 SkipN

[TAB7474x]

Figure 16.8.3: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1)

†Note that a = 0.01 > 0, b = 1.00, β = 0.98 < 1, and s = 0.05 > 0. Then, since µ = (0.01+1.00)/2 = 0.505, we have βµ = 0.98×0.505 = 0.4949,
hence βµ + s = 0.4949 + 0.05 = 0.5449 < 1.00 = b. In addition, sL̃ = 0.323274 > 0.05 = s. Thus, the conditions for the assertions are satisfied.

‡Note that this is a selling model with cost minimization.
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Chapter 17

Diagonal Symmetry

17.1 Model with R-mechanism

17.1.1 Identicalness of Condition-Spaces C ⟨Tom⟩ and Č ⟨T̃om⟩
First, note that C ⟨Tom⟩ = P ×F ...........
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... (see (10.3.27(p.53) )) and Č ⟨T̃om⟩ = P × F̌ (see (11.5.52(p.65) )). Then, since F = F̌ (see

Lemma 11.1.1(p.56) (a)), we have Č ⟨T̃om⟩ = P ×F ...........
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In other words, the shapes of the two condition-spaces C ⟨Tom⟩ and Č ⟨T̃om⟩ are given by the identical deformed circle ...........
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Figure 17.1.1 below).
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Č ⟨T̃om⟩ = P ×F

Figure 17.1.1: Identicalness of Condition-Spaces C ⟨Tom⟩ and Č ⟨T̃om⟩

17.1.2 Non-identicalness of Restricted Condition-Spaces C ′⟨Tom⟩ and Č ′⟨T̃om⟩
17.1.2.1 Restriction of Total-Market

Herein let us again consider the market restriction of F to F ′ (see Section 16.3(p.99) )) where

F ′ ⊂ F . (17.1.2)
Then, let us define

C ′⟨Tom⟩ def
= {(p, F )

∣∣ p ∈PTom, F ∈ FTom|p ⊆ F ′} (see (10.3.16(p.51) )), (17.1.3)

C ′⟨ATom⟩ def
= {(p, F )

∣∣ p ∈PATom , F ∈ FATom|p ⊆ F ′} (see (10.3.9(p.50) )), (17.1.4)

C ′⟨Tom⟩ def
= ∪Tom∈TomC

′⟨Tom⟩ = ∪Tom∈Tom ∪ATom∈Tom C ′⟨ATom⟩ (see (10.3.24(p.52) )). (17.1.5)

In addition, let us define

F̌ ′ def
= {F̌

∣∣ F ∈ F ′} (see (11.1.3(p.55) )) (17.1.6)

where clearly
F̌ ′ ⊆ F̌ .† (17.1.7)

Then, let us define

Č ′⟨T̃om⟩ def
= {(p, F )

∣∣ p ∈PT̃om, F ∈ FT̃om|p ⊆ F̌ ′} (see (10.3.16(p.51) )), (17.1.8)

Č ′⟨AT̃om⟩
def
= {(p, F )

∣∣ p ∈PAT̃om
, F ∈ FAT̃om|p ⊆ F̌ ′} (see (11.5.44(p.63) )), (17.1.9)

Č ′⟨T̃om⟩ def
= ∪T̃om∈T̃omČ

′⟨T̃om⟩ = ∪T̃om∈T̃om ∪A
T̃om

∈Tomtil Č ′⟨AT̃om⟩ (see (11.5.49(p.64) )). (17.1.10)

†Due to (17.1.2) we have F̌ ′ = {F̌
∣∣ F ∈ F ′} ⊆ {F̌

∣∣ F ∈ F} = F̌ .
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Hereupon, let us replace F and C ⟨Tom⟩ by F ′ and C ′⟨Tom⟩ respectively. Then, through quite the same reasoning as in
Section 10.3(p.49) , it can be easily seen that we have

C ′⟨Tom⟩ = P ×F ′
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Similarly, let us replace F̌ and Č ⟨T̃om⟩ by F̌ ′ and Č ′⟨T̃om⟩ respectively. Then, through quite the same reasoning as in
Step 11.5 (p.63) , it can be easily seen that we have

Č ′⟨T̃om⟩ = P × F̌ ′
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Here, note that it cannot be always guaranteed that F ′ and F̌ ′ becomes equal (i.e., F ′
/= F̌ ′),‡ hence, since ...........
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Figure 17.1.2: Non-identicalness of C ′⟨Tom⟩ = P ×F ′ and Č ′⟨T̃om⟩ = P × F̌ ′

Now, due to (17.1.2) and (17.1.7) we have

P ×F ′ ⊆P ×F and P × F̌ ′ ⊆P × F̌ = P ×F (see Lemma 11.1.1(p.56) (a)), (17.1.14)

hence, noting (17.1.1(p.111) ), we have

C ′⟨Tom⟩ = P ×F ′ ⊆P ×F = C ⟨Tom⟩ and Č ′⟨T̃om⟩ = P × F̌ ′ ⊆P × F̌ ⊆P ×F = Č ⟨T̃om⟩. (17.1.15)

Accordingly, superimposing Figures 17.1.1 onto 17.1.2 yields Figure 17.1.3 below.
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Figure 17.1.3: Superposition of Figures 17.1.1 onto 17.1.2

The inclusion relations depicted in Figure 17.1.3 implies that what holds on C ⟨Tom⟩ · · · (I) holds also on C ′⟨Tom⟩ · · · (I′) and
that what holds on Č ⟨T̃om⟩ · · · (II) holds also on Č ′⟨T̃om⟩ · · · (II′). Accordingly it follows that the validity of Corollary 11.5.3(p.65) ,
which holds on C ⟨Tom⟩ = F ×F and Č ⟨T̃om⟩ = F ×F , is in its entirety inherited to C ′⟨Tom⟩ = F ×F ′ and Č ′⟨T̃om⟩ = F ×F̌ ′.
This fact implies that the corollary can be rewritten as Corollary 17.1.16 below:

Corollary 17.1.1 Let A {M:1[R][A]} holds on P ×F ′. Then, A {M̃:1[R][A]} holds on P × F̌ ′ where

A{M̃:1[R][A]} = SR→R̃[A{M:1[R][A]}]. (17.1.16)

17.1.3 Diagonal Symmetry

As the generalized-restricted-total-market F ′ let us consider the following three cases:

F ′ = F+ · · · (1), F ′ = F± · · · (2), F ′ = F− · · · (3). (17.1.17)

In addition, as one corresponding to each case above we can consider (see (11.1.3(p.55) ))

F̌ ′ = F̌+ = {F̌
∣∣ F ∈ F+} · · · (1), F̌ ′ = F̌± = {F̌

∣∣ F ∈ F±} · · · (2), F̌ ′ = F̌− = {F̌
∣∣ F ∈ F−} · · · (3).(17.1.18)

Then, we have the following lemma:

‡“ /=” represents “not always equal” (“̸=” is “equal”)

112



Lemma 17.1.1 We have:

F̌+ = F− · · · (1), F̌± = F± · · · (2), F̌− = F+ · · · (1). (17.1.19)

Proof of (1) Consider any F̌ ∈ F̌+ = {F̌
∣∣ F ∈ F+}. Then, since F ∈ F+, we have F (ξ) = Pr{ξ ≤ ξ} with 0 < a < ξ < b.

Then, since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with 0 > â > ξ̂ > b̂, we have F̌ ∈ F−, so F̌+ ⊆ F− · · · (1∗). Consider any F̌ ∈ F−. Then, since

F̌ (ξ) = Pr{ξ̌ ≤ ξ} with a < ξ̂ < b < 0, we have F (ξ) = Pr{ξ ≤ ξ} with â > ξ =
ˆ̂
ξ > b̂ > 0, so that F ∈ F+, hence F̌ ∈ F̌+.

Thus F− ⊆ F̌+. From this and (1∗) we have F̌+ = F−.

Proof of (2) Consider any F̌ ∈ F̌± = {F̌
∣∣ F ∈ F±}. Then, since F ∈ F±, we have F (ξ) = Pr{ξ ≤ ξ} with a ≤ 0 ≤ b.

Then, since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with â ≥ 0 ≥ b̂, we have F̌ ∈ F±, so F̌± ⊆ F± · · · (2∗). Consider any F̌ ∈ F±. Then, since
F̌ (ξ) = Pr{ξ̌ ≤ ξ} with a ≤ 0 ≤ b, we have F (ξ) = Pr{ξ ≤ ξ} with â ≥ 0 ≥ b̂, so that F ∈ F±, hence F̌ ∈ F̌±. Thus
F± ⊆ F̌±. From this and (2∗) we have F̌± = F±.

Proof of (3) Consider any F̌ ∈ F̌− = {F̌
∣∣ F ∈ F−}. Then, since F ∈ F−, we have F (ξ) = Pr{ξ ≤ ξ} with a < ξ < b < 0.

Then, since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with â > ξ̂ > b̂ > 0, we have F̌ ∈ F+, so F̌− ⊆ F+ · · · (3∗). Consider any F̌ ∈ F+. Then, since

F̌ (ξ) = Pr{ξ̌ ≤ ξ} with 0 < a < ξ̂ < b, we have F (ξ) = Pr{ξ ≤ ξ} with 0 > â > ξ =
ˆ̂
ξ > b̂, so that F ∈ F−, hence F̌ ∈ F̌−.

Thus F+ ⊆ F̌−. From this and (3∗) we have F̌− = F+.

Theorem 17.1.1 Let A {M:1[R][A]+} holds on P ×F+. Then, A {M̃:1[R][A]−} holds on P ×F− where

A {M̃:1[R][A]−} = SR→R̃[A {M:1[R][A]+}]. (17.1.20)

Proof Let F ′ = F+, hence M:1[R][A] in Corollary 17.1.1 can be rewritten as M:1[R][A]+ (see (16.4.1(p.100) )). Then, since
F̌ ′ = F̌+ from (17.1.18 (1)) and F̌+ = F− from (17.1.19 (1)), we have F̌ ′ = F−, hence M̃:1[R][A] in Corollary 17.1.1 can be

rewritten as M̃:1[R][A]−. Accordingly, Corollary 17.1.1 can be rewritten like the theorem.

Theorem 17.1.2 Let A {M:1[R][A]±} holds on P ×F±. Then, A {M̃:1[R][A]±} holds on P ×F± where

A {M̃:1[R][A]±} = SR→R̃[A {M:1[R][A]±}]. (17.1.21)

Proof Let F ′ = F±, hence M:1[R][A] in Corollary 17.1.1 can be rewritten as M:1[R][A]± (see (16.4.2(p.100) )). Then, since
F̌ ′ = F̌± from (17.1.18 (2)) and F̌+ = F± from (17.1.19 (2)), we have F̌ ′ = F±, hence M̃:1[R][A] in Corollary 17.1.1 can be

rewritten as M̃:1[R][A]±. Accordingly, Corollary 17.1.1 can be rewritten like the theorem.

Theorem 17.1.3 Let A {M:1[R][A]−} holds on P ×F−. Then, A {M̃:1[R][A]+} holds on P ×F+ where

A {M̃:1[R][A]+} = SR→R̃[A {M:1[R][A]−}]. (17.1.22)

Proof Let F ′ = F−, hence M:1[R][A] in Corollary 17.1.1 can be rewritten as M:1[R][A]− (see (16.4.3(p.100) )). Then, since
F̌ ′ = F̌− from (17.1.18 (3)) and F̌− = F+ from (17.1.19 (3)), we have F̌ ′ = F+, hence M̃:1[R][A] in Corollary 17.1.1 can be

rewritten as M̃:1[R][A]+. Accordingly, Corollary 17.1.1 can be rewritten like the theorem.

It can be easily seen that the inverses of the above three theorems can be given as below:

Theorem 17.1.4 Let A {M̃:1[R][A]−} holds on P ×F− . Then, A {M:1[R][A]+} holds on P ×F+ where

A {M:1[R][A]+} = S R̃→R[A {M̃:1[R][A]−}]. (17.1.23)

Theorem 17.1.5 Let A {M̃:1[R][A]±} holds on P ×F± . Then, A {M:1[R][A]±} holds on P ×F± where

A {M:1[R][A]±} = S R̃→R[A {M̃:1[R][A]±}]. (17.1.24)

Theorem 17.1.6 Let A {M̃:1[R][A]+} holds on P ×F+ . Then, A {M:1[R][A]−} holds on P ×F− where

A {M:1[R][A]−} = S R̃→R[A {M̃:1[R][A]+}]. (17.1.25)
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The relationships showed by (17.1.20)-(17.1.22) and (17.1.23)-(17.1.25) can be schematized as in Figure 17.1.4 below.

A {M:1[R][A]−}

A {M:1[R][A]±}

A {M:1[R][A]+}

A {M̃:1[R][A]−}

A {M̃:1[R][A]±}

A {M̃:1[R][A]+}
*

�

Y

j

-� ∼
⟨a⟩

⟨a⟩

⟨b⟩ ⟨b⟩

⟨c⟩

⟨c⟩

Figure 17.1.4: Symmetrical Relations

Definition 17.1.1 (diagonal-symmetry) Let us refer to the relationships depicted by Figure 17.1.4 above as the diagonal-
symmetry, denoted by D-∼ . Here let us represent the diagonal-symmetry as below:

⟨a⟩ A {M̃:1[R][A]+} D-∼ A {M:1[R][A]−}, (17.1.26)

⟨b⟩ A {M̃:1[R][A]±} D-∼ A {M:1[R][A]±}, (17.1.27)

⟨c⟩ A {M̃:1[R][A]−} D-∼ A {M:1[R][A]+}. (17.1.28)

Exercise 17.1.1 (diagonal symmetry)

⟨a⟩ Confirm by yourself that (17.1.26) holds in fact by comparing Nem 16.7.2(p.103) and Pom 16.7.4(p.103) .

⟨b⟩ Confirm by yourself that (17.1.27) holds in fact by comparing Mim 16.7.2(p.102) and Mim 16.7.4(p.104) .

⟨c⟩ Confirm by yourself that (17.1.28) holds in fact by comparing Pom 16.7.2(p.103) and Nem 16.7.4(p.104) .

Here let us represent ∼ in Figure 17.1.4 by D-∼ . Then the figure can be rewritten as below.

A {M:1[R][A]−}

A {M:1[R][A]±}

A {M:1[R][A]+}

A {M̃:1[R][A]−}

A {M̃:1[R][A]±}

A {M̃:1[R][A]+}
*

�

Y

j

-� D-∼
⟨a⟩

⟨a⟩

⟨b⟩ ⟨b⟩

⟨c⟩

⟨c⟩

Figure 17.1.5: Diagonal Symmetry
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17.2 Simplification of Discussions
17.2.1 Conventional Operations

In the conventional methodology, analyses are separately and one-by-one performed for each of 12 shadow-boxes in Fig-
ure 17.2.1 below.

(I) (II)

Pom+

Mim±

Nem−

~Pom
+

~Mim
±

~Nem
−

M:1[R][A] M̃:1[R][A]

�

�

�

�

�

�

�

�

Selling Model
↓

↑
Selling Model

Buying Model
↓

↑
Buying Model

←R-mechanismR-mechanism →

(III) (IV)

Pom+

Mim±

Nem−

~Pom
+

~Mim
±

~NemM:1[P][A] M̃:1[P][A]

�

�

�

�

�

�

�

�
←P-mechanismR-mechanism →

Figure 17.2.1: Conventional method

17.2.2 Operations Based on the Integration Theory

The figure below shows the flow of analyses based on the integration theory where S in (5∗), (1∗), (2∗), and (6∗) is the symmetry
transformation operation (see (11.5.32(p.63) ) and (13.5.3(p.87) )) and A in (3∗) and (4∗) is the analogy replacement operation (see
(12.2.1(p.77) ) and (14.2.3 (1) (p.94) )). In the figure, analyses are actually performed only for the 4 shadow-boxes , and the
remaining 12 frame-boxes are all derived from applying the market restriction operations F+, F±, and F− to the above
4 shadow-boxes .
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� ]
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6
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�

�

�
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�

�
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�

�

-
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↓
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(III) (IV)
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AR→P(3∗)

�

AR̃→P̃ (4∗)

←P-mechanismR-mechanism →

Figure 17.2.2: Correlation diagram
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17.2.3 Elimination of Redundant Relations

Here let us recall that what we truly wish to know in the present paper is the existence or non-existence of symmetrical
relations between only the two boxes Pom+ and ~Pom

+ (see Motive1(p.4) ). Now, note that the two boxes can be derived by
use of the relations Pom+ = F+[ Tom ] by the market restriction (see Chapter 16(p.99) ) and ~Pom

+ = SR→R̃[ Nm− ] by the
diagonal symmetry (see (17.1.22(p.113) )). Carefully and in detail looking at the structure of the diagrams in Figure 17.2.2 with
noting the above two facts, we immediately see, as shown in Figure 17.2.3 below, that there exist the two methods, Method A
and Method B, which obtain Pom+ and ~Pom

+ . Accordingly, removing redundant relations within Figure 17.2.2 produces
Figure 17.2.3 below; needless to say, Method A should be recommended in the sense that it is simpler than Method B.
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Figure 17.2.3: Correlation diagram

17.3 Model with P-mechanism
Closely looking at the reasoning in discussions for R-mechanism that was made in Section 17.1, one immediately see that it
is not directly related to the price mechanism employed there. This fact implies that it holds also for P-mechanism, hence it
follows that all of Theorems 17.1.1-17.1.6 hold also for P-mechanism. In other words, the diagonal symmetry holds also between
A {M̃:1[P][A]} and A {M:1[P][A]}. Thus, we see that (17.1.20(p.113) )-(17.1.22(p.113) ) and (17.1.23(p.113) )-(17.1.25(p.113) ) hold also for
P-mechanism, hence we have

A {M̃:1[P][A]}− = SR→R̃[A {M:1[P][A]+}], (17.3.1)

A {M̃:1[P][A]}± = SR→R̃[A {M:1[P][A]±}], (17.3.2)

A {M̃:1[P][A]}+ = SR→R̃[A {M:1[P][A]−}]. (17.3.3)

A {M:1[P][A]}+ = S R̃→R[A {M̃:1[P][A]−}], (17.3.4)

A {M:1[P][A]}± = S R̃→R[A {M̃:1[P][A]±}], (17.3.5)

A {M:1[P][A]}− = S R̃→R[A {M̃:1[P][A]+}]. (17.3.6)

Therefore, it follows that (17.1.26(p.114) )-(17.1.28(p.114) ) can be written as follows:

A {M̃:1[P][A]}+ D-∼ A {M:1[P][A]−}, (17.3.7)

A {M̃:1[P][A]}± D-∼ A {M:1[P][A]±}, (17.3.8)

A {M̃:1[P][A]}− D-∼ A {M:1[P][A]+}, (17.3.9)
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Exercise 17.3.1 (diagonal symmetry)

⟨a⟩ Confirm by yourself that (17.3.7) holds in fact by comparing Nem 16.7.6(p.106) and Pom 16.7.8(p.106) .

⟨b⟩ Confirm by yourself that (17.3.8) holds in fact by comparing Mim 16.7.6(p.105) and Mim 16.7.8(p.107) .

⟨c⟩ Confirm by yourself that (17.3.9) holds in fact by comparing Pom 16.7.6(p.105) and Nem 16.7.8(p.107) .

Then, as one corresponding to Figure 17.1.5(p.114) we have Figure 17.3.1 below.

A {M:1[P][A]−}

A {M:1[P][A]±}

A {M:1[P][A]+}

A {M̃:1[P][A]−}

A {M̃:1[P][A]±}

A {M̃:1[P][A]+}
*

�

Y

j

-� D-∼
⟨a⟩

⟨a⟩

⟨b⟩ ⟨b⟩

⟨c⟩

⟨c⟩

Figure 17.3.1: Diagonal Symmetry
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Part 3

No-Recall-Model

Part 3 attempts to analyze all of the basic models with no-recall listed in Table 3.3.1(p.11) by use of the
integration theory, excluding Q{M:1[A]} the analysis of which has already completed in Part 2.

Chapter 18 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 19 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Chapter 20 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Chapter 21 The Whole Conclusion of No-Recall-Model . . . . . . . . . . . . . . . . . . . . . . . . . . 217
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Chapter 18

Model 1

18.1 Search-Allowed-Model 1: Q{M:1[A]} = {M:1[R][A], M̃:1[R][A],M:1[P][A], M̃:1[P][A]}
All analyses for the search-Allowed-model 1 have already completed in Part 2(p.38) . Below let us summarize all conclusions
obtained there:

Conclusion 1

C1 Monotonicity

a. The optimal reservation price Vt in M:1[R][A] is nondecreasing in t (see Tom’s 10.2.1(p.47) (a) and 10.2.2(a)).

b. The optimal reservation price Vt in M̃:1[R][A] is nonincreasing in t (see Tom’s 11.7.1(p.69) (a) and 11.7.2(a)).

c. The optimal price zt to propose in M:1[P][A] is nondecreasing in t (see Lemmas 12.7.1(p.82) ).

d. The optimal price zt to propose in M̃:1[P][A] is nonincreasing in t (see Lemmas 13.8.1(p.91) ).

C2 Inheritance and Collapse

a. On the positive-market F+:

1. Symmetry

a. Let β = 1 and s = 0. Then we have:

A {M̃:1[R][A]+} ∼ A {M:1[R][A]+} (see Pom’s 16.7.3(p.103) and 16.7.1(p.101) ), (18.1.1)

A {M̃:1[P][A]+} ∼ A {M:1[P][A]+} (see Pom’s 16.7.7(p.106) and 16.7.5(p.105) ), (18.1.2)

b. Let β < 1 or s > 0. Then we have:

A {M̃:1[R][A]+} |∼ A {M:1[R][A]+} (see Pom’s 16.7.4(p.103) and 16.7.2(p.101) ), (18.1.3)

A {M̃:1[P][A]+} |∼ A {M:1[P][A]+} (see Pom’s 16.7.8(p.106) and 16.7.6(p.105) ), (18.1.4)

2. Analogy

a. Let β = 1 and s = 0. Then we have:

A {M:1[R][A]+} ◃▹ A {M:1[P][A]+} (see Pom’s 16.7.1(p.101) and 16.7.5(p.105) ), (18.1.5)

A {M̃:1[R][A]}+ ◃▹ A {M̃:1[P][A]+} (see Pom’s 16.7.3(p.103) and 16.7.7(p.106) ). (18.1.6)

b. Let β < 1 or s > 0. Then we have:

A {M:1[R][A]+} ◃▹| A {M:1[P][A]+} (see Pom’s 16.7.2(p.101) and 16.7.6(p.105) ), (18.1.7)

A {M̃:1[R][A]}+ ◃▹ A {M̃:1[P][A]+} (see Pom’s 16.7.4(p.103) and 16.7.8(p.106) ). (18.1.8)

b. On the mixed-market F±:

1. Symmetry

a. Let β = 1 and s = 0. Then we have:

A {M̃:1[R][A]±} ∼ A {M:1[R][A]±} (see Mim’s 16.7.3(p.104) and 16.7.1(p.102) ), (18.1.9)

A {M̃:1[P][A]±} ∼ A {M:1[P][A]±} (see Mim’s 16.7.7(p.107) and 16.7.5(p.105) ), (18.1.10)

b. Let β < 1 or s > 0. Then we have:

A {M̃:1[R][A]±} ∼ A {M:1[R][A]±} (see Mim’s 16.7.4(p.104) and 16.7.2(p.102) ), (18.1.11)

A {M̃:1[P][A]±} ∼ A {M:1[P][A]±} (see Mim’s 16.7.8(p.107) and 16.7.6(p.105) ), (18.1.12)
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2. Analogy

a. Let β = 1 and s = 0. Then we have:

A {M:1[R][A]±} ◃▹ A {M:1[P][A]±} (see Mim’s 16.7.1(p.102) and 16.7.5(p.105) ), (18.1.13)

A {M̃:1[R][A]}± ◃▹ A {M̃:1[P][A]±} (see Mim’s 16.7.3(p.104) and 16.7.8(p.107) ). (18.1.14)

b. Let β < 1 or s > 0. Then we have:

A {M:1[R][A]±} ◃▹ A {M:1[P][A]±} (see Mim’s 16.7.2(p.102) and 16.7.6(p.105) ), (18.1.15)

A {M̃:1[R][A]}± ◃▹ A {M̃:1[P][A]±} (see Mim’s 16.7.4(p.104) and 16.7.8(p.107) ). (18.1.16)

c. On the negative-market F−:

1. Symmetry

a. Let β = 1 and s = 0. Then we have:

A {M̃:1[R][A]−} ∼ A {M:1[R][A]−} (see Nem’s 16.7.3(p.104) and 16.7.1(p.102) ), (18.1.17)

A {M̃:1[P][A]−} ∼ A {M:1[P][A]−} (see Nem’s 16.7.7(p.107) and 16.7.5(p.106) ), (18.1.18)

b. Let β < 1 or s > 0. Then we have:

A {M̃:1[R][A]−} |∼ A {M:1[R][A]−} (see Nem’s 16.7.4(p.104) and 16.7.2(p.103) ), (18.1.19)

A {M̃:1[P][A]−} |∼ A {M:1[P][A]−} (see Nem’s 16.7.8(p.107) and 16.7.6(p.106) ), (18.1.20)

2. Analogy

1. Let β = 1 and s = 0. Then we have:

A {M:1[R][A]−} ◃▹ A {M:1[P][A]−} (see Nem’s 16.7.1(p.102) and 16.7.5(p.106) ), (18.1.21)

A {M̃:1[R][A]}− ◃▹ A {M̃:1[P][A]−} (see Nem’s 16.7.3(p.104) and 16.7.7(p.107) ). (18.1.22)

2. Let β < 1 or s > 0. Then we have:

A {M:1[R][A]−} ◃▹ A {M:1[P][A]−} (see Nem’s 16.7.2(p.103) and 16.7.6(p.106) ), (18.1.23)

A {M̃:1[R][A]}− ◃▹| A {M̃:1[P][A]−} (see Nem’s 16.7.4(p.104) and 16.7.8(p.107) ). (18.1.24)

C3 Occurrence of ⃝⃝s , ⃝⃝∗ , and•dd
The symbol “◦” in the table below represents “possible”.

1. Let β = 1 and s = 0. Then, from

Pom 16.7.1(p.101) , Mim 16.7.1(p.102) , Nem 16.7.1(p.102) ,
Pom 16.7.3(p.103) , Mim 16.7.3(p.104) , Nem 16.7.3(p.104) ,
Pom 16.7.5(p.105) , Mim 16.7.5(p.105) , Nem 16.7.5(p.106) ,
Pom 16.7.7(p.106) , Mim 16.7.7(p.107) , Nem 16.7.7(p.107)

we obtain the following table:

Table 18.1.1: ⃝⃝s , ⃝⃝∗ , and•dd on F+, F±, and F− (β = 1 and s = 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △

⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥

⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△

⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N

• dOITdτ ⟨0⟩ ∥ •dd ∥

• dOITdτ ⟨0⟩ △ •dd△

• dOITdτ ⟨0⟩ N •ddN
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2. Let β < 1 or s > 0. Then, from

Pom 16.7.2(p.101) , Mim 16.7.2(p.102) , Nem 16.7.2(p.103) ,
Pom 16.7.4(p.103) , Mim 16.7.4(p.104) , Nem 16.7.4(p.104) ,
Pom 16.7.6(p.105) , Mim 16.7.6(p.105) , Nem 16.7.6(p.106) ,
Pom 16.7.8(p.106) , Mim 16.7.8(p.107) , Nem 16.7.8(p.107)

we obtain the following table:

Table 18.1.2: ⃝⃝s , ⃝⃝∗ , and•dd on F+, F±, and F− (β < 1 or s > 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △

⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△

⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N

• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△

• dOITdτ ⟨0⟩ N •ddN

3. The table below is the list of the percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and•dd appearing in Section 16.7(p.101) .

Table 18.1.3: Percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and•dd
% (total) ⃝⃝s ⃝⃝∗ •dd

100% (102) 55% (56) 14% (14) 31% (32)

C4 Diagonal symmetry

See Figures 17.1.5(p.114) and 17.3.1(p.117) .

18.2 Search-Enforced-Model 1: Q{M:1[E]} = {M:1[R][E], M̃:1[R][E],M:1[P][E], M̃:1[P][E]}

18.2.1 Preliminary

First, let us again note the following three theorems

Theorem 11.5.1(p.66) (symmetry theorem with SR→R̃),

Theorem 12.3.1(p.81) (analogy theorem with AR→P),

Theorem 13.5.1(p.88) (symmetry theorem with SP→P̃ ).

Then, let us recall the fact that in the process of proving the above three theorems it was imperative for the following three
relations to hold:

SOE{M̃:1[R][A]} = SR→R̃[SOE{M:1[R][A]}] (← (11.5.38(p.63) )), (18.2.1)

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}] (← (12.2.4(p.77) )), (18.2.2)

SOE{M̃:1[P][A]} = SP→P̃[SOE{M:1[P][A]}] (← (13.5.4(p.87) )). (18.2.3)

In fact, we can immediately reconfirm from Table 6.5.1(p.31) (I,II,III) that the above three relations hold. After the above were
clarified, we proved that

Theorem 14.2.1(p.94) (analogy theorem (AR̃→P̃))

holds. In addition, from Table 6.5.1(II,III) it can be seen that the following relation holds.

SOE{M̃:1[P][A]} = A R̃→P̃[SOE{M̃:1[R][A]}]. (18.2.4)

The above discussions are all for the search-Allowed-model. Also for the search-Enforced-model which we will discuss in this
section we can immediately confirm from Table 6.5.2(p.31) (I-IV) that the following four relations hold:

SOE{M̃:1[R][E]} = SR→R̃[SOE{M:1[R][E]}], (18.2.5)

SOE{M:1[P][E]} = AR→P[SOE{M:1[R][E]}], (18.2.6)

SOE{M̃:1[P][E]} = SP→P̃[SOE{M:1[P][E]}], (18.2.7)

SOE{M̃:1[P][E]} = A R̃→P̃[SOE{M̃:1[R][A]}]. (18.2.8)

Accordingly, it can be easily seen that the whole discussions in Part 2(p.38) can be literally applied to Q{M:1[E]}; as a results,
we have the following four theorems:
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Theorem 18.2.1 (symmetry[R→ R]) Let A {M:1[R][E]} holds on P ×F . Then the equality below holds on P ×F .

A {M̃:1[R][E]} = SR→R̃[A {M:1[R][E]}]. (18.2.9)

Theorem 18.2.2 (analogy[R→ P)]) Let A {M:1[R][E]} holds on P ×F . Then the equality below holds on P ×F .

A {M:1[P][E]} = AR→P[A {M:1[R][E]}]. (18.2.10)

Theorem 18.2.3 (symmetry[P→ P]) Let A {M:1[P][E]} holds on P ×F . Then the equality below holds on P ×F .

A {M̃:1[P][E]} = SP→P̃[A {M:1[P][E]}]. (18.2.11)

Theorem 18.2.4 (analogy[R→ P]) Let A {M̃:1[R][E]} holds on P ×F . Then the equality below holds on P ×F .

A {M̃:1[P][E]} = A R̃→P̃[A {M̃:1[R][E]}].

18.2.2 M:1[R][E]
18.2.2.1 Analysis

To begin with, let us note that
λ = 1 (18.2.12)

is assumed in the model (see A2(p.13) ), hence from (9.2.1(p.42) ) we have

δ = 1 (18.2.13)

� Tom 18.2.1 (A {M:1[R][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0 .
(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

Proof Let β = 1 and s = 0. Then, from (5.1.4) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to

Lemma 9.1.1(p.41) (g).

(a) From (6.5.10(p.31) ) with t = 2 we have V2 = K (V1) + V1 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from

Lemma 9.2.2(p.43) (e) we have Vt ≤ K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing

in t > 0.

(b) From (6.5.9) we have V1 = µ < b · · · ((2)). Suppose Vt−1 < b. Then, from (6.5.10) and Lemma 9.2.2(h) we have

Vt < K (b) + b = T (b) + b = b due to (1) and Lemma 9.1.1(g). Accordingly, by induction Vt−1 < b for t > 1, hence

L (Vt−1) > 0 for t > 1 due to Lemma 9.2.1(d), thus L (Vt−1) > 0 for τ ≥ t > 1. Then, from (6.5.10) and from (5.1.8) we have

Vt − βVt−1 = K (Vt−1) + (1 − β)Vt−1 = L (Vt−1) > 0 for τ ≥ t > 1 or equivalently Vt > βVt−1 for τ ≥ t > 1. Hence, since

Vτ > βVτ−1, Vτ−1 > βVτ−2, · · · , V2 > βV1, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1, thus t∗τ = τ for τ > 1, i.e.,
⃝s dOITsτ>1⟨τ⟩ N.

For explanatory simplicity, let us define the statement below:

S2 ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N,

(2) ⃝⃝∗ ndOITt•τ+1⟨t•τ ⟩ △,

(3) ⃝⃝∗ ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (( ⃝⃝∗ ndOITτ>t•τ+1⟨t•τ ⟩ N )).†
}

� Tom 18.2.2 (A {M:1[R][E]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.
(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ < b.

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let β < 1 and s = 0 ((s > 0)).
i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let b = 0 ((κ = 0)).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.

†The outer side of (( )) is for s = 0 and the inner side is for s > 0.
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iii. Let b < 0 ((κ < 0)).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βµ− s > a and sL > s. Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof Let β < 1 or s > 0. From (6.5.10(p.31) ) and (5.1.8), we have Vt − βVt−1 = K (Vt−1) + (1 − β)Vt−1 = L (Vt−1) · · · ((1)) for

t > 1. From (6.5.10) with t = 2 we have V2 − V1 = K (V1) · · · ((2)).

(a) Note that V1 = βµ − s from (6.5.9). Then, from Lemma 9.2.2(j2) we have xK ≥ βµ − s due to (18.2.12) and

(18.2.13), hence xK ≥ V1 · · · ((3)). Accordingly, K (V1) ≥ 0 due to Lemma 9.2.2(j1), so that V1 ≤ V2 from (2) . Suppose

Vt−1 ≤ Vt. Then, from (6.5.10) and Lemma 9.2.2(e) we have Vt ≤ K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for

t > 1, i.e., Vt is nondecreasing in t > 0. Note (3) . Suppose Vt−1 ≤ xK . Then, from (6.5.10) and Lemma 9.2.2(e) we have

Vt ≤ K (xK ) + xK = xK . Hence, by induction Vt ≤ xK for t > 0, i.e., Vt is upper bounded in t, thus Vt converges to a finite

V as t→∞. Accordingly, from (6.5.10) we have V = K (V ) + V , hence K (V ) = 0, thus V = xK due to Lemma 9.2.2(j1).

(b) Let βµ ≥ b · · · ((4)). Then xL ≤ βµ− s from Lemma 9.2.4(p.44) (b1), hence xL ≤ V1, thus xL ≤ Vt−1 for t > 1 from (a).

Accordingly, L (Vt−1) ≤ 0 for t > 1 from Corollary 9.2.1(a), hence L (Vt−1) ≤ 0 · · · ((5)) for τ ≥ t > 1. Then, since Vt−βVt−1 ≤ 0

for τ ≥ t > 1 from (1) or equivalently Vt ≤ βVt−1 for τ ≥ t > 1, we have Vτ ≤ βVτ−1, Vτ−1 ≤ βVτ−2, · · · , V2 ≤ βV1, leading to

Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 , hence it follows that t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ △.

(c) Let βµ < b.

(c1) Let β = 1 · · · ((6)), hence s > 0 due to the assumption of β < 1 and s > 0 in the lemma. Then xL = xK · · · ((7)) due to

Lemma 9.2.3(b), hence K ( xL ) = K (xK ) = 0 · · · ((8)).

(c1i) Let µ − s ≤ a. Then, noting (6) , (18.2.12), and (18.2.13), we have xK = µ − s · · · ((9)) from Lemma 9.2.2(j2), hence

xK = V1 from (6.5.9). Let Vt−1 = xK . Then, from (6.5.10) we have Vt = K(xK ) + xK = xK . Accordingly, by induction

Vt−1 = xK for t > 1, hence Vt−1 = xL for t > 1 from (7) . Then L (Vt−1) = L ( xL ) = 0 for t > 1, thus L (Vt−1) = 0 for

τ ≥ t > 1. Then, since Vt − βVt−1 = 0 for τ ≥ t > 1 from (1) or equivalently Vt = βVt−1 for τ ≥ t > 1, we have Vτ = βVτ−1,

Vτ−1 = βVτ−2, · · · , V2 = βV1, leading to Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 , hence t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ ∥

(see Preference-Rule 7.2.1(p.35) ).

(c1ii) Let µ − s > a. Then, since V1 > a, we have Vt−1 > a for t > 1 from (a). From (7) and Lemma 9.2.2(j2) we have

xL = xK > µ − s = V1. Let Vt−1 < xL . Then, from (6.5.10) and Lemma 9.2.2(g) we have Vt < K ( xL ) + xL = xL due to
(8) , hence by induction Vt−1 < xL for t > 1. Thus, since L (Vt−1) > 0 for t > 1 due to Lemma 9.2.1(e1), for the same reason

as in the proof of Tom 18.2.1(b) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c2) Let β < 1 and s = 0 ((s > 0)).

(c2i) Let b > 0 ((κ > 0)). Then xL > xK · · · ((10 )) from Lemma 9.2.3(c ((d))). Now, since xK ≥ βµ−s due to Lemma 9.2.2(j2),

we have xK ≥ V1. Suppose xK ≥ Vt−1. Then, from (6.5.10) and Lemma 9.2.2(e) we have Vt ≤ K (xK ) + xK = xK . Thus,

by induction Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (10) . Accordingly, since L (Vt−1) > 0 for t > 1 due to

Corollary 9.2.1(a), for the same reason as in the proof of Tom 18.2.1(b) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c2ii) Let b = 0 ((κ = 0)). Then xL = xK · · · ((11 )) from Lemma 9.2.3(c ((d))), hence K ( xL ) = K (xK ) = 0 · · · ((12 )).

(c2ii1) Let βµ− s ≤ a. Then, since xK = βµ− s · · · ((13 )) from Lemma 9.2.2(j2), we have xK = V1. Let Vt−1 = xK . Then,

from (6.5.10) we have Vt = K(xK ) + xK = xK . Accordingly, by induction Vt−1 = xK for t > 1, hence Vt−1 = xL for t > 1

due to (11) . Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, for the same reason as in the proof of (c1i) we have • dOITdτ>1⟨1⟩ ∥.

(c2ii2) Let βµ− s > a. Then, since V1 > a, we have Vt−1 > a for t > 1 from (a). From (11) and Lemma 9.2.2(j2) we have

xL = xK > βµ− s = V1. Let Vt−1 < xL . Then, from (6.5.10) and Lemma 9.2.2(g) we have Vt < K ( xL ) + xL = xL due to
(12) , hence, by induction Vt−1 < xL for t > 1. Consequently, since L (Vt−1) > 0 for t > 1 due to Corollary 9.2.1(a), for the

same reason as in the proof of Tom 18.2.1(b) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c2iii) Let b < 0 ((κ < 0)). Then xL < xK · · · ((14 )) from Lemma 9.2.3(c ((d))).

(c2iii1) If βµ − s ≤ a, then xL < xK = βµ − s = V1 from Lemma 9.2.2(j2) and (6.5.9) . If sL ≤ s, then xL ≤ βµ − s

due to Lemma 9.2.4(c), hence xL ≤ V1. Therefore, whether βµ − s ≤ a or sL ≤ s, we have xL ≤ V1, hence xL ≤ Vt−1 for

t > 1 due to (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 from Corollary 9.2.1(a), for the same reason as in the proof of (b) we

obtain • dOITdτ>1⟨1⟩ △.

(c2iii2) Suppose βµ − s > a and sL > s. Hence, since V1 > a, we have Vt−1 > a for t > 0 from (a). Then, since

xK > xL > βµ − s = V1 · · · ((15 )) from Lemma 9.2.4(c) and (6.5.9) , we have K (V1) > 0 from Lemma 9.2.2(j1), hence V2 > V1

from (2) . Suppose Vt−1 < Vt. Then, from (6.5.10) and Lemma 9.2.2(g) we have Vt < K (Vt) + Vt = Vt+1. Accordingly, by

induction we have Vt−1 < Vt for t > 1, i.e., Vt is strictly increasing in t > 0. Note that V1 < xL due to (15) . Assume that

Vt−1 < xL for all t > 1, hence V ≤ xL · · · ((16 )) from (a). Then, since V = xK due to (a), we have the contradiction of

V = xK > xL ≥ V due to (14) and (16) . Hence, it is impossible that Vt−1 < xL for all t > 1, implying that there exists

t•τ > 1 such that

123



V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · · · · ((17 )),
from which we have

Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt•τ , xL < Vt−1, t > t•τ + 1. (18.2.14)

Hence, we have

L (Vt−1) > 0, · · · ((18 )) t•τ ≥ t > 1 (← Corollary 9.2.1(a))

L (Vt•τ ) ≤ 0, · · · ((19 )) (← Corollary 9.2.1(a))

L (Vt−1) = ((< 0)),† · · · ((20 )) t > t•τ + 1 (← Lemma 9.2.1(d((e1))))

◦ Let t•τ ≥ τ > 1. Then L (Vt−1) > 0 · · · ((21 )) for τ ≥ t > 1 from (18) . Since Vt − βVt−1 > 0 for τ ≥ t > 1 from

(1) and (21) , we have Vt > βVt−1 for τ ≥ t > 1, hence Vτ > βVτ−1, Vτ−1 > βVτ−2, · · · , V2 > βV1. Therefore, since

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1, we obtain t∗τ = τ for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N, thus S2(1) is true. Let us

note here that when τ = t•τ , we have Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((22 )).

◦ Let τ = t•τ + 1. From (1) with t = t•τ + 1 and (19) we have Vt•τ+1 − βVt•τ ≤ 0, hence Vt•τ+1 ≤ βVt•τ . Accordingly, from (22)

we have

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τV1 · · · ((23 )),

thus t∗t•τ+1 = t•τ , i.e., ⃝⃝∗ ndOITt∗
t•τ+1
⟨t•τ ⟩ △, thus S2(2) is true.

◦ Let τ > t•τ + 1. Since L (Vt•τ+1) = ((<)) 0 from (20) with t = t•τ + 2, we have Vt•τ+2 = ((<)) βVt•τ+1 from (1) , hence from (23)

we have

Vt•τ+2 = ((<)) βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+1V1

Similarly we have

Vt•τ+3 = ((<)) βVt•τ+2 = ((<)) β2Vt•τ+1 ≤ β3Vt•τ > β4Vt•τ−1 > · · · > βt•τ+2V1.

By repeating the same procedure, for τ = t•τ + 2, t•τ + 3, · · · we obtain

Vτ = ((<)) βVτ−1 = ((<)) · · · = ((<)) βτ−t•τ−2Vt•τ+2 = ((<)) βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τ Vt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1. · · · ((24 ))

◦ Let s = 0. Then (24) can be written as

Vτ = βVτ−1 = · · · = βτ−t•τ−2Vt•τ+2 = βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1,

hence we have t∗τ = t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (see Preference Rule 7.2.1(p.35) ), hence S2(3) is true.

◦ Let s > 0. Then (24) can be written as

Vτ < βVτ−1 < · · · < βτ−t•τ−2Vt•τ+2 < βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1, (18.2.15)

hence we have t∗τ = t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ+1⟨t•τ ⟩ N, hence S2(3) is true.

18.2.2.2 Market Restriction

18.2.2.2.1 Positive Restriction

� Pom 18.2.1 (A {M:1[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N. → ⃝⃝s
Proof The same as Tom 18.2.1 due to Lemma 16.4.1(p.100) .

� Pom 18.2.2 (A {M:1[R][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.
(b) Let βµ ≥ b (impossible).
(c) Let βµ < b (always holds).

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd

†If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let βµ ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = βµ− s · · · ((2)) from Lemma 9.3.1(p.45) (a) with λ = 1.

(a) The same as Tom 18.2.2(a).

(b,c) Always βµ < b from [3(p.101) ], hence βµ ≥ b is impossible.

(c1-c1ii) The same as Tom 18.2.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 18.2.2.

(c3) Let β < 1 and s > 0.

(c3i) Let βµ > s, hence κ > 0 due to (2) . Hence it suffices to consider only (c2i) of Tom 18.2.2.

(c3ii) Let βµ ≤ s, hence κ ≤ 0 due to (2) . Then, since βµ− s ≤ 0 < a, it suffices to consider only (c2iii1) of Tom 18.2.2.

18.2.2.2.2 Mixed Restriction

� Mim 18.2.1 (A {M:1[R][E]±}) Suppose a ≤ 0 ≤ 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N. → ⃝⃝s
Proof The same as Tom 18.2.1 due to Lemma 16.4.1(p.100) .

� Mim 18.2.2 (A {M:1[R][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b (impossible).
(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let s = βT (0).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

iii. Let s > βT (0).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
2. Let βµ− s > a and sL > s. Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 18.2.2(a).

(b,c) Always βµ < b due to [8(p.101)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 18.2.2(c1i,c1ii).

(c2) Let β < 1 and s = 0. If b > 0, then it suffices to consider only (c2i) of Tom 18.2.2 and if b = 0, then since always

βµ − s = βµ > a due to [8] , it suffices to consider only (c2ii2) of Tom 18.2.2. Therefore, whether b > 0 or b = 0, we have the

same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions are immediate from Tom 18.2.2(c2i-c2iii2) with κ = βT (0) − s from

(5.1.7(p.17) ) with λ = 1.

18.2.2.2.3 Negative Restriction

� Nem 18.2.1 (A {M:1[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0 .

(b) We have ⃝s dOITsτ>1⟨τ⟩ N. → ⃝⃝s

Proof The same as Tom 18.2.1 due to Lemma 16.4.1(p.100) .
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� Nem 18.2.2 (A {M:1[R][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.
(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ △ → →•dd
(c) Let βµ < b.

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

3. Let β < 1 and s > 0.
i. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
ii. Let βµ− s > a and sL > s. Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0, hence a < µ < b < 0 · · · ((1)). Hence κ = −s · · · ((2)) from Lemma 9.3.1(p.45) (a) with λ = 1. In addition, in

this case, βµ ≥ b and βµ < b are both possible due to [17(p.101) ].

(a,b) The same as Tom 18.2.2(a,b).

(c) Let βµ < b.

(c1-c1ii) The same as Tom 18.2.2(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, since b < 0 due to (1) , it suffices to consider only (c2iii) of Tom 18.2.2. In this case, since

βµ − s = βµ > βa > a due to (1) and since sL > 0 = s due to Lemma 9.2.4(p.44) (c), it suffices to consider only (c2iii2) of

Tom 18.2.2.

(c3-c3ii) Let β < 1 and s > 0, hence κ < 0 due to (2) . Thus, it suffices to consider only (c2iii1-c2iii2) of Tom 18.2.2.

18.2.3 M̃:1[R][E]
18.2.3.1 Analysis

� Tom 18.2.3 (A {M̃:1[R][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

Proof The same as Tom 18.2.1(p.122) due to Lemma 16.4.1(p.100) .

� Tom 18.2.4 (A {M̃:1[R][E]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ > a.

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let β < 1 and s = 0 ((s > 0)) .
i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a = 0 ((κ̃ = 0)) .†

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.

iii. Let a > 0 ((κ̃ > 0)) .

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βµ+ s < b and s < sL̃ . Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof by symmetry Immediate from applying SR→R̃ to Tom 18.2.2.

18.2.3.2 Market Restriction

18.2.3.2.1 Positive Restriction

� Pom 18.2.3 (A {M̃:1[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 18.2.3 due to Lemma 16.4.1(p.100) .

� Pom 18.2.4 (A {M̃:1[R][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ △ → →•dd
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(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

3. Let β < 1 and s > 0.

i. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
ii. Let βµ+ s < b and s < sL̃ . Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true (see Numerical Example 18.2.1(p.132) ) → → ⃝⃝s /⃝⃝∗

Proof Suppose a > 0 · · · ((1)), hence κ̃ = s · · · ((2)) from Lemma 11.6.6(p.68) (a). Here note that µβ ≤ a and µβ > a are both

possible due to [5(p.101)] .

(a,b) The same as Tom 18.2.4(a,b).

(c) Let βµ > a. Then sL̃ > 0 · · · ((3)) due to Lemma 11.6.5(c) with λ = 1.

(c1-c1ii) Let β = 1, hence s > 0 due to the assumptions β < 1 and s > 0. Thus, we have

Tom 18.2.4(c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, since βµ + s = βµ < b due to [3(p.101)] and since sL̃ > 0 = s from (3) , due to (1) it

suffices to consider only (c2iii2) of Tom 18.2.4.

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only (c2iii1,c2iii2) of Tom 18.2.4.

18.2.3.2.2 Mixed Restriction

� Mim 18.2.3 (A {M̃:1[R][E]}±) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N. → → ⃝⃝s

Proof The same as Tom 18.2.3(p.126) due to Lemma 16.4.1(p.100) .

� Mim 18.2.4 (A {M̃:1[R][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).

(c) Let βµ > a (always holds).

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥. →•dd
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let s = −βT̃ (0).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

iii. Let s > −βT̃ (0).
1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
2. Let βµ+ s < b and sL̃ > s. Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 18.2.4(a).

(b,c) Always βµ > a due to [8(p.101)] , hence βµ ≤ a is impossible. Then sL̃ > 0 · · · ((1)) due to Lemma 11.6.5(p.68) (c).

(c1-c1ii) The same as Tom 18.2.4(c-c1ii).

(c2) Let β < 1 and s = 0. Let a < 0. Then it suffices to consider only (c2i) of Tom 18.2.4. Let a = 0. Now, in this case,

since βµ+ s = βµ < b due to [8(p.101)] , it suffices to consider only (c2ii2) of Tom 18.2.4. Accordingly, whether a < 0 or a = 0,

we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions become true from Tom 18.2.4(c2i-c2iii2) with κ̃ = βT̃ (0) + s from

(5.1.16(p.17) ).
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18.2.3.2.3 Negative Restriction

� Nem 18.2.3 (A {M̃:1[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 18.2.4 due to Lemma 16.4.1(p.100) .

� Nem 18.2.4 (ATom {M̃:1[R][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).
(c) Let βµ > a (always holds).

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let βµ < −s. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let βµ ≥ −s. Then • dOITdτ>1⟨1⟩ △ →•dd

Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)). Then κ̃ = βµ+ s · · · ((3)) due to Lemma 11.6.6(a).

(a) The same as Tom 18.2.4(p.126) (a).

(b,c) Always a < βµ due to [15(p.101)] , hence βµ ≤ a is impossible.

(c1-c1ii) The same as the proof of Tom 18.2.4(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c2i) of Tom 18.2.4.

(c3) Let β < 1 and s > 0.

(c3i) Let βµ < −s, hence βµ+ s < 0. Hence, since κ̃ < 0 due to (3) , it suffices to consider only (c2i) of Tom 18.2.4.

(c3ii) Let βµ ≥ −s, hence βµ+ s ≥ 0. Let βµ+ s = 0. Then, since κ̃ = 0 due to (3) and βµ+ s > b due to (2) , it suffices to

consider only (c2ii1) of Tom 18.2.4. Let βµ+s > 0. Then, since κ̃ > 0 due to (3) , it suffices to consider only (c2iii) of Tom 18.2.4.

Then, since βµ + s > 0 > b due to (1) , it suffices to consider only (c2iii1) of Tom 18.2.4. Accordingly, whether βµ + s = 0 or

βµ+ s > 0, we have the same result.

18.2.4 M:1[P][E]
18.2.4.1 Analysis

� Tom 18.2.5 (A {M:1[P][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

Proof The same as Tom 18.2.1.

� Tom 18.2.6 (A {M:1[P][E]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.
(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βa < b.

1. Let β = 1.
i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let β < 1 and s = 0 ((s > 0)) .
i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let b = 0 ((κ = 0)) .

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

iii. Let b < 0 ((κ < 0)) .

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βa− s > a⋆ and s < sL . Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.Tend

Proof by analogy Immediate from applying AR→P (see (15.3.3(p.98) )) to Tom 18.2.2.

Lemma 18.2.1 (optimal price to propose) The optimal price to propose zt is nondecreasing in t > 0.

Proof Immediate from Tom’s 18.2.5(a) and 18.2.6(a) and

from (6.2.28(p.23) ) and Lemma 12.1.3(p.73) .
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18.2.4.2 Market Restriction

18.2.4.2.1 Positive Restriction

� Pom 18.2.5 (A {M:1[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 18.2.5 due to Lemma 16.4.1(p.100) .

� Pom 18.2.6 (A {M:1[P][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
2. Let βa− s > a⋆ and s < sL . Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose a > 0, hence b > a > 0 · · · ((1)).

(a) The same as Tom 18.2.6(a).

(b,c) Always βa < b from [4(p.101) ], hence βa ≥ b is impossible.

(c1-c1ii) The same as Tom 18.2.6(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 18.2.6.

(c3) Let β < 1 and s > 0.

(c3i-c3iii2) Immediate from Tom 18.2.6(c2i-c2iii2) due to (2) with κ = βT (0)− s · · · ((2)) from (5.1.23(p.18) ).

18.2.4.2.2 Mixed Restriction

� Mim 18.2.5 (A {M:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 18.2.5 due to Lemma 16.4.1(p.100) .

� Mim 18.2.6 (A {M:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0.Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
2. Let βa− s > a⋆ and sL > s. Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true
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Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 18.2.6(a).

(b,c) Always βa < b due to [9(p.101)] , hence βa ≥ b is impossible. .

(c1-c1ii) The same as Tom 18.2.6(c1-c1ii).

(c2) Let β < 1 and s = 0. If b > 0, the assertion is true from Tom 18.2.6(c2i) and if b = 0, then βa − s = βa > a⋆ from
[11(p.101)] , hence the assertion become true from Tom 18.2.6(c2ii2). Accordingly, whether b > 0 or b = 0, we have the same

result.

(c3-c3iii2) The same as Tom 18.2.6(c2i-c2iii2) with κ = βT (0)− s from

(5.1.23(p.18) )) with λ = 1.

18.2.4.2.3 Negative Restriction

� Nem 18.2.5 (A {M:1[P][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 18.2.5.

� Nem 18.2.6 (A {M:1[P][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.
(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ △ → →•dd
(c) Let βa < b.

1. Let β = 1.
i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

3. Let β < 1 and s > 0.
i. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △ → → ⃝⃝s
ii. Let βa− s > a⋆ and s < sL . Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0. Then, κ = −s · · · ((1)) from Lemma 12.2.6(p.81) (a). In addition, βa ≥ b and βa < b are both possible due

to [18(p.101) ].

(a,b) The same as Tom 18.2.6(a,b).

(c) Let βa < b.

(c1-c1ii) The same as Tom 18.2.6(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2iii-c2iii2) of Tom 18.2.6. In this case, since βa− s = βa > a⋆

due to [19(p.101) ] and since sL > 0 = s due to Lemma 12.2.5(p.81) (c), it suffices to consider only (c2iii2) of Tom 18.2.6.

(c3-c3ii) Let β < 1 and s > 0, hence κ < 0 due to (1) . Hence, it suffices to consider only (c2iii1,c2iii2) of Tom 18.2.6.

18.2.5 A {M̃:1[P][E]}
18.2.5.1 Analysis

� Tom 18.2.7 (A {M̃:1[P][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

Proof by symmetry Nothing changes even if applying SP→P̃ (see (15.3.2(p.98) )) to Tom 18.2.5.

� Tom 18.2.8 (A {M̃:1[P][E]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βb > a.

1. Let β = 1.
i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let β < 1 and s = 0 ((s > 0)) .
i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a = 0 ((κ̃ = 0)) .

1. Let βb+ s ≥ b⋆.† Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
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iii. Let a > 0 ((κ̃ > 0)) .

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βb+ s < b⋆ and s < sL̃ . Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof by symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Tom 18.2.6.

Lemma 18.2.2 (optimal price to propose) The optimal price to propose zt is nonincreasing in t > 0.

Proof Immediate from Tom’s 18.2.7(a) and 18.2.8(a) and

from (6.2.41(p.23) ) and Lemma A3.3(p.278) ).

18.2.5.2 Market Restriction

18.2.5.2.1 Positive Restriction

� Pom 18.2.7 (A {M̃:1[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 18.2.7 due to Lemma 16.4.1(p.100) .

� Pom 18.2.8 (A {M̃:1[P][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ △ → →•dd
(c) Let βb > a.

1. Let β = 1.
i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then S2
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

3. Let β < 1 and s > 0.
i. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
ii. Let βb+ s < b⋆ and s < sL̃ . Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof by diagonal-symmetry Immediate from applying SP→P̃ ((15.3.2(p.98) )) to Nem 18.2.6(p.130) .

Direct proof Suppose a > 0 · · · ((1)). Then, κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a). In addition, βb ≤ a and βb > a are both

possible due to [6(p.101) ].

(a,b) The same as Tom 18.2.8(a,b).

(c) Let βb > a.

(c1-c1ii) The same as Tom 18.2.8(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii-c2iii2) of Tom 18.2.8. In this case, since

βb+ s = βb < b⋆ due to [7(p.101) ] and since sL̃ > 0 = s from

Lemma 13.6.5(p.90) (c) with λ = 1, it suffices to consider only (c2iii2) of Tom 18.2.8.

(c3-c3ii) Let β < 1 and s > 0, hence κ̃ > 0 due to (2) . Hence, it suffices to consider only (c2iii1,c2iii2) of Tom 18.2.8.

18.2.5.2.2 Mixed Restriction

� Mim 18.2.7 (A {M̃:1[P][E]}±) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N. → → ⃝⃝s

Proof The same as Tom 18.2.7 due to Lemma 16.4.1(p.100) .

� Mim 18.2.8 (A {M̃:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).
(c) Let βb > a (always holds).

1. Let β = 1.
i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥. →•dd
ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let s = −βT̃ (0).
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1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

iii. Let s > −βT̃ (0).
1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
2. Let βb+ s < b⋆ and sL̃ > s. Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true. → ⃝⃝s /⃝⃝∗

Proof Let b ≥ 0 ≥ a · · · ((1)).

(a) The same as Tom 18.2.8(p.130) (a).

(b,c) Always βb > a due to [10(p.101)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 18.2.8(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2i-c2ii2) of Tom 18.2.8. Let a < 0. Then, the assertion is

true from Tom 18.2.8(c2i). Let a = 0. Then, since βb + s = βb < b⋆ due to [12(p.101)] , it suffices to consider only (c2ii2) of

Tom 18.2.8. Accordingly, whether a < 0 or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 18.2.8(c2i-c2iii2) with κ̃ = βT̃ (0) + s from (5.1.36(p.19) )

with λ = 1.

18.2.5.2.3 Negative Restriction

� Nem 18.2.7 (A {M̃:1[P][E]−}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) We have ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
Proof The same as Tom 18.2.7 due to Lemma 16.4.1(p.100) .

� Nem 18.2.8 (A {M̃:1[P][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).
(c) Let βb > a (always holds).

1. Let β = 1.
i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
ii. Let s = −βT̃ (0).

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥ → →•dd
2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s

iii. Let −βT̃ (0) < s.

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △ → →•dd
2. Let βb+ s < b⋆ and sL̃ > s. Then S2

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true. → ⃝⃝s /⃝⃝∗
Proof Let b < 0, hence a < b < 0 · · · ((1)).

(a) The same as Tom 18.2.8(p.130) (a).

(b,c) Always βb > a due to [16(p.101)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 18.2.8(c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 18.2.8.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 18.2.8(c2-c2iii2) with κ̃ = βT̃ (0) + s from (5.1.36(p.19) )

with λ = 1.

18.2.6 Numerical Calculation

Numerical Example 18.2.1 (A {M̃:1[R][E]+} [015(1)])

This is the example for ⃝s N and ⃝∗ N of S2(p.122) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N in Pom 18.2.4(p.126) (c3ii) with a = 0.01, b = 1.00, β = 0.98,

and s = 0.05 where x
K̃ = 0.3076395 and sL̃ = 0.3232736.† Note that the example is for the model of a buying problem

with the cost minimization. The figure below is the graph of Itτ = βτ−tVt where the symbol � shows the optimal-initiating-

time OIT for each τ = 2, 3, · · · , 15 (see t∗ - column in the table below). In addition, note that each of polygonal curves for

τ = 2, 3, · · · , 7 is strictly decreasing in t = 1, 2, · · · , 7 and that each of polygonal curves for τ = 8, 9, · · · , 15 is strictly decreasing

in t = 1, 2, · · · , 7 and strictly increasing in t = 7, 8, · · · , 15. The fact implies that the optimal-initiating-time t∗τ degenerates to

†Note that a = 0.01 > 0, b = 1.00, β = 0.98 < 1, and s = 0.05 > 0. In addition, since µ = (0.01 + 1.00)/2 = 0.505, we have βµ + s =
0.98× 0.505 + 0.05 = 0.5449 < 1.00 = b. In addition, s = 0.05 < 0.3232736 = sL̃ . Thus, the condition of the assertion is satisfied.
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the starting τ = 2, 3, · · · , 7, i.e., ⃝s dOITsτ ⟨τ⟩ N and that it is given by t∗τ = 7 (non-degenerate) for each of τ = 8, 9, · · · , 15, i.e.,
⃝⃝∗ ndOITτ ⟨7⟩ N (see t∗ – column in the table below). Finally, note here that the leftmost point Vt in each curves converges to

xK = 0.3076395 as τ →∞.

[015(1)LatexEdit.TEX]
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t Vt ∆βVt t∗τ

0
1 0.544900
2 0.442388 −0.091614 2
3 0.391004 −0.042535 3
4 0.361335 −0.021849 4
5 0.343013 −0.011094 5
6 0.331264 −0.004889 6
7 0.323555 −0.001084 7

8 0.318422 +0.001338 7
9 0.314972 +0.002918 7
10 0.312638 +0.003965 7
11 0.311053 +0.004667 7
12 0.309973 +0.005141 7
13 0.309236 +0.005462 7
14 0.308732 +0.005681 7
15 0.308388 +0.005830 7

∆βVt=Vt−βVt−1 [015(1)Data.DAT]

Figure 18.2.1: Graphs of Itτ = βτ−tVt with τ = 2, 3, · · · , 15 and t = 1, 2, · · · , τ

18.2.7 Conclusion 2 (Search-Enforced-Model 1)

C1 Monotonicity

(a) The optimal reservation price Vt in M:1[R][E] is nondecreasing in t.

(see Tom’s 18.2.1(p.122) (a) and 18.2.2(p.122) (a).

(b) The optimal reservation price Vt in M̃:1[R][E] is nonincreasing in t.

(see Tom’s 18.2.3(p.126) (a) and 18.2.4(p.126) (a).

(c) The optimal price zt to propose in M:1[P][E] is nondecreasing in t.

(see Lemma 18.2.1(p.128) ).

(d) The optimal price z̃t to propose in M̃:1[P][E] is nonincreasing in t.

(see Lemma 18.2.2(p.131) ).

C2 Inheritance and Collapse

a. On the positive market F+:

1. Symmetry

a. Let β = 1 and s = 0. Then we have:

A {M̃:1[R][E]+} ∼ A {M:1[R][E]+} (see Pom’s 18.2.3(p.126) and 18.2.1(p.124) ), (18.2.16)

A {M̃:1[P][E]+} ∼ A {M:1[P][E]+} (see Pom’s 18.2.7(p.131) and 18.2.5(p.129) ). (18.2.17)

b. Let β < 1 or s > 0. Then we have:

A {M̃:1[R][E]+} |∼ A {M:1[R][E]+} (see Pom’s 18.2.4(p.126) and 18.2.2(p.124) ), (18.2.18)

A {M̃:1[P][E]+} |∼ A {M:1[P][E]+} (see Pom’s 18.2.8(p.131) and 18.2.6(p.129) ). (18.2.19)

2. Analogy

a. Let β = 1 and s = 0. Then we have:

A {M:1[P][E]+} ◃▹ A {M:1[R][E]+} (see Pom’s 18.2.5(p.129) and 18.2.1(p.124) ), (18.2.20)

A {M̃:1[P][E]+} ◃▹ A {M̃:1[R][E]+} (see Pom’s 18.2.7(p.131) and 18.2.3(p.126) ). (18.2.21)

b. Let β < 1 or s > 0. Then we have:

A {M:1[P][E]+} ◃▹| A {M:1[R][E]+} (see Pom’s 18.2.6(p.129) and 18.2.2(p.124) ), (18.2.22)

A {M̃:1[P][E]+} ◃▹ A {M̃:1[R][E]+} (see Pom’s 18.2.8(p.131) and 18.2.4(p.126) ). (18.2.23)

b. On the mixed market F±:

1. Symmetry

a. Let β = 1 and s = 0. Then we have:

A {M̃:1[R][E]±} ∼ A {M:1[R][E]±} (see Mim’s 18.2.3(p.127) and 18.2.1(p.125) ), (18.2.24)

A {M̃:1[P][E]±} ∼ A {M:1[P][E]±} (see Mim’s 18.2.7(p.131) and 18.2.5(p.129) ), (18.2.25)

b. Let β < 1 or s > 0. Then we have:

A {M̃:1[R][E]±} ∼ A {M:1[R][E]±} (see Mim’s 18.2.4(p.127) and 18.2.2(p.125) ), (18.2.26)

A {M̃:1[P][E]±} ∼ A {M:1[P][E]±} (see Mim’s 18.2.8(p.131) and 18.2.6(p.129) ). (18.2.27)
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2. Analogy

a. Let β = 1 and s = 0. Then we have:

A {M:1[P][E]±} ◃▹ A {M:1[R][E]±} (see Mim’s 18.2.5(p.129) and 18.2.1(p.125) ), (18.2.28)

A {M̃:1[P][E]±} ◃▹ A {M̃:1[R][E]±} (see Mim’s 18.2.7(p.131) and 18.2.3(p.127) ). (18.2.29)

b. Let β < 1 or s > 0. Then we have:

A {M:1[R][E]±} ◃▹ A {M:1[P][E]±} (see Mim’s 18.2.6(p.129) and 18.2.2(p.125) ), (18.2.30)

A {M̃:1[R][E]±} ◃▹ A {M̃:1[P][E]±} (see Mim’s 18.2.8(p.131) and 18.2.4(p.127) ). (18.2.31)

c. On the negative market F−:

1. Symmetry

a. Let β = 1 and s = 0. Then we have:

A {M̃:1[R][E]−} ∼ A {M:1[R][E]−} (see Nem’s 18.2.3(p.128) and 18.2.1(p.125) ), (18.2.32)

A {M̃:1[P][E]−} ∼ A {M:1[P][E]−} (see Nem’s 18.2.7(p.132) and 18.2.5(p.130) ). (18.2.33)

b. Let β < 1 or s > 0. Then we have:

A {M̃:1[P][E]−} |∼ A {M:1[R][E]−} (see Nem’s 18.2.3(p.128) and 18.2.1(p.125) ), (18.2.34)

A {M̃:1[P][E]−} |∼ A {M:1[P][E]−} (see Nem’s 18.2.8(p.132) and 18.2.6(p.130) ). (18.2.35)

2. Analogy

a. Let β = 1 and s = 0. Then we have:

A {M:1[P][E]−} ◃▹ A {M:1[R][E]−} (see Nem’s 18.2.5(p.130) and 18.2.1(p.125) ), (18.2.36)

A {M̃:1[P][E]−} ◃▹ A {M̃:1[R][E]−} (see Nem’s 18.2.7(p.132) and 18.2.3(p.128) ). (18.2.37)

b. Let β < 1 or s > 0. Then we have:

A {M:1[P][E]−} ◃▹ A {M:1[R][E]−} (see Nem’s 18.2.6(p.130) and 18.2.2(p.126) ), (18.2.38)

A {M̃:1[P][E]−} ◃▹| A {M̃:1[R][E]−} (see Nem’s 18.2.8(p.132) and 18.2.4(p.128) ). (18.2.39)

C3 Occurrence of ⃝⃝s , ⃝⃝∗ , and•dd
a. Let β = 1 and s = 0. Then, from

Pom 18.2.1(p.124) , Mim 18.2.1(p.125) , Nem 18.2.1(p.125) ,

Pom 18.2.3(p.126) , Mim 18.2.3(p.127) , Nem 18.2.3(p.128) ,

Pom 18.2.5(p.129) , Mim 18.2.5(p.129) , Nem 18.2.5(p.130) ,

Pom 18.2.7(p.131) , Mim 18.2.7(p.131) , Nem 18.2.7(p.132)

we obtain the following table:

Table 18.2.1: ⃝⃝s , ⃝⃝∗ , and•dd on F+, F±, and F− (β = 1 and s = 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △

⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥

⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△

⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N

• dOITdτ ⟨0⟩ ∥ •dd ∥

• dOITdτ ⟨0⟩ △ •dd△

• dOITdτ ⟨0⟩ N •ddN
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b. Let β < 1 or s > 0. Then, from

Pom 18.2.2(p.124) , Mim 18.2.2(p.125) , Nem 18.2.2(p.126) ,

Pom 18.2.4(p.126) , Mim 18.2.4(p.127) , Nem 18.2.4(p.128) ,

Pom 18.2.6(p.129) , Mim 18.2.6(p.129) , Nem 18.2.6(p.130) ,

Pom 18.2.8(p.131) , Mim 18.2.8(p.131) , Nem 18.2.8(p.132)

we obtain the following table:

Table 18.2.2: ⃝⃝s , ⃝⃝∗ , and•dd on F+, F±, and F− (β < 1 or s > 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △

⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N ◦ ◦ ◦
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△ ◦ ◦ ◦
• dOITdτ ⟨0⟩ N •ddN

c. The table below is the list of the percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and •dd appearing in Sections 18.2.2.2(p.124) and

18.2.3.2(p.126) .

Table 18.2.3: Percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and•dd on F+

percent (total) ⃝⃝s ⃝⃝∗ •dd
100% (31) 48% (15) 16% (5) 36% (11)

C4 Diagonal symmetry

Exercise 18.2.1 (diagonal symmetry) Confirm by yourself that the relations below hold in fact:

Pom 18.2.3(p.126) D-∼ Nem 18.2.1(p.125) ,

Pom 18.2.4(p.126) D-∼ Nem 18.2.2(p.126) ,

Pom 18.2.7(p.131) D-∼ Nem 18.2.5(p.129) ,

Pom 18.2.8(p.131) D-∼ Nem 18.2.6(p.129) ,

Pom 18.2.5(p.130) D-∼ Nem 18.2.7(p.131) ,

Pom 18.2.6(p.130) D-∼ Nem 18.2.8(p.131) .

18.3 Conclusion 3 (The Whole Model 1)

Conclusions 18.1(p.119) and 18.2.7(p.133) are summed up as below.

C1 Monotonicity

From C1(p.119) and C1(p.133) we have, for whether s-A-model or s-E-model,

(a) The optimal reservation price Vt of M:1[R][X] is nondecreasing in t.

(b) The optimal reservation price Vt of M̃:1[R][X] is nonincreasing in t.

(c) The optimal price zt to propose of M:1[P][X] is nondecreasing in t.

(d) The optimal price z̃t to propose of M̃:1[P][X] is nonincreasing in t.

C2 Inheritance and Collapse

a. (18.1.1(p.119) )-(1) and (18.2.16(p.133) )-(18.2.39) have the same structure of “inheritance and collapse” between s-A-model

and s-E-model.

b. From (18.1.9(p.119) )-(18.1.16) and (18.2.24(p.133) )-(18.2.31) we see that each of symmetry and analogy is inherited on the

mixed market F± in whether s-A-model or s-E-model.
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c. Let β = 1 and s = 0. Then:

1. For Model 1:

a. Symmetry From C2a1a(p.119) , C2b1a(p.119) , and C2c1a(p.120) (C2a1a(p.133) , C2b1a(p.133) , and C2c1a(p.134) ) we see that the

symmetry is inherited (∼ ) on all of F+, F±, and F− in s-A-model (s-E-model).

b. Analogy From C2a2a(p.119) , C2b2a(p.120) , and C3(p.182) (C2a2a(p.133) , C2b2a(p.134) , and C2c2a(p.134) ) we see that the analogy

is inherited (∼ ) on all of F+, F±, and F− in s-A-model (s-E-model).

2. For Model 2:

a. Symmetry From C2a1(p.175) (C2a1(p.207) ) we see that the symmetry is inherited (∼ ) on F+ in s-A-model (s-E-model).

b. Analogy From C2b(p.175) (C2b(p.207) ) we see that the analogy collapses ( ◃▹| ) on F+ in s-A-model (s-E-model).

C3 Occurrence of ⃝⃝s , ⃝⃝∗ , and•dd
Joining Tables 18.1.3(p.121) and 18.2.3(p.135) produces Table 18.3.1 below.

Table 18.3.1: Ratios of ⃝⃝s , ⃝⃝∗ , and•dd on F+

ratio (total) ⃝⃝s ⃝⃝∗ •dd
100% (122) 50% (68) 14% (17) 30% (37)

In other words, ⃝⃝s , ⃝⃝∗ , and•dd occur at 50%, 14%, and 30% respectively.

C4 Diagonal symmetry

The diagonal symmetry holds in both s-A-model and s-E-model (see C4(p.121) and C4(p.135) ).
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Chapter 19

Model 2

19.1 Search-Allowed-Model 2: Q{M:2[A]} = {M:2[R][A], M̃:2[R][A],M:2[P][A], M̃:2[P][A]}

19.1.1 Theorems

As ones corresponding to Theorems 11.5.1(p.66) , 12.3.1(p.81) , 13.5.1(p.88) , and 14.2.1(p.94) , let us consider the following four theorems:

Theorem 19.1.1 (symmetry[R→ R̃]) Let A {M:2[R][A]} holds on P ×F . Then A {M̃:2[R][A]} holds on P ×F where

A {M̃:2[R][A]} = SR→R̃[A {M:2[R][A]}]. (19.1.1)

Theorem 19.1.2 (analogy[R→ P]) Let A {M:2[R][A]} holds on P ×F . Then A {M:2[P][A]} holds on P ×F where

A {M:2[P][A]} = AR→P[A {M:2[R][A]}]. (19.1.2)

Theorem 19.1.3 (symmetry[P→ P̃]) Let A {M:2[P][A]} holds on P ×F . Then A {M̃:2[P][A]} holds on P ×F where

A {M̃:2[P][A]} = SP→P̃[A {M:2[P][A]}]. (19.1.3)

Theorem 19.1.4 (analogy[R̃→ P̃]) Let A {M̃:2[R][A]} holds on P ×F . Then A {M̃:2[P][A]} holds on P ×F where

A {M̃:2[P][A]} = A R̃→P̃[A {M̃:2[R][A]}].

In order for the above four theorems to hold, the following four relations must be satisfied for the same reason as in the

search-Allowed-model 1 (see Chapter 10(p.47) -Chapter 14(p.93) ):

SOE{M̃:2[R][A]} = SR→R̃[SOE{M:2[R][A]}], (19.1.4)

SOE{M:2[P][A]} = AR→P[SOE{M:2[R][A]}], (19.1.5)

SOE{M̃:2[P][A]} = SP→P̃[SOE{M:2[P][A]}], (19.1.6)

SOE{M̃:2[P][A]} = A R̃→P̃[SOE{M̃:2[R][A]}]. (19.1.7)

19.1.2 Conditions

Lemma 19.1.1 (M:2[R][A])

(a) Theorem 19.1.1 holds.

(b) Theorem 19.1.3 holds.

(c) If ρ ≤ a⋆ or b ≤ ρ, then Theorem 19.1.2 holds.

(d) If a⋆ < ρ < b, then Theorem 19.1.2 does not always hold.

Proof (a) From Table 6.5.3(p.31) (I) we have, for any ρ ∈ (−∞,∞),

SOE{M:2[R][A]} = {V0 = ρ, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 0} (19.1.8)

First, applying the operation R (see Step 2 of Scenario[R](p.60 )) to this leads to

R[SOE{M:2[R][A]}] = {−V̂0 = ρ, −V̂t = max{−K̂(Vt−1)− V̂t−1,−βV̂t−1}, t > 0}
= {−V̂0 = ρ, −V̂t = −min{K̂(Vt−1) + V̂t−1, βV̂t−1}, t > 0}
= {V̂0 = ρ̂, V̂0 = min{K̂(Vt−1) + V̂t−1, βV̂t−1}. t > 0} (19.1.9)
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Then, applying CR to this (see Step 11.5 (p.61) ), we have

CRR[SOE{M:2[R][A]}] = {V̂0 = ρ̂, V̂t = min{ ˇ̃K(V̂t−1) + V̂t−1, βV̂t−1} t > 0}. (19.1.10)

Finally, applying IR to this (see Step 11.5 (p.62) ), we obtain

IRCRR[SOE{M:2[R][A]}] = {V̂0 = ρ̂, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1} t > 0}. (19.1.11)

Since (19.1.11) holds for any ρ ∈ (−∞,∞), it holds also for ρ̂ due to ρ̂ ∈ (−∞,∞). Accordingly, (19.1.11) holds for the ˆ̂ρ, so

we have

IRCRR[SOE{M:2[R][A]}] = {V̂0 = ˆ̂ρ, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1} t > 0}
= {V̂0 = ρ, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1} t > 0} (19.1.12)

due to ρ = ˆ̂ρ. Now, we have V̂0 = ρ = V0 from (6.5.17(p.31) ). Suppose V̂t−1 = Vt−1. Then, the second term in the r.h.s. of

(19.1.12(p.138) ) can be rewritten as V̂t = min{K̃ (Vt−1) + Vt−1, βVt−1} = Vt. Thus, by induction V̂t = Vt for t ≥ 0. Accordingly

(19.1.12) can be rewritten as

IRCRR[SOE{M:2[R][A]}] = {V0 = ρ, Vt = min{K̃(Vt−1) + Vt−1, βVt−1} t > 0, (19.1.13)

which is identical to SOE{M̃:2[R][A]} given by Table 6.5.3(p.31) (II), i.e.,

SOE{M̃:2[R][A]} = IRCRR[SOE{M:2[R][A]}]
= SR→R̃[SOE{M:2[R][A]}] (see (11.5.32(p.63) )). (19.1.14)

Hence, since (19.1.4) holds, it follows that Theorem 19.1.1 holds.

(b) From Table 6.5.3(p.31) (III) we have, for any ρ ∈ (−∞,∞),

SOE{M:2[P][A]} =


V0 = ρ,

V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ},
Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1


Applying the operation R to this leads to

R[SOE{M:2[P][A]}] =


−V̂0 = ρ,

−V̂1 = max{λβmax{0,−â− ρ}+ βρ− s, βρ},
−V̂t = max{−K̂ (Vt−1)− V̂t−1,−βV̂t−1}, t > 1


=


−V̂0 = ρ,

−V̂1 = max{−λβmin{0, â+ ρ}+ βρ− s, βρ},
−V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


−V̂0 = ρ,

−V̂1 = −min{λβmin{0, â+ ρ} − βρ+ s,−βρ},
−V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


V̂0 = −ρ,
V̂1 = min{λβmin{0, â+ ρ} − βρ+ s,−βρ},
V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


V̂0 = ρ̂,

V̂1 = min{λβmin{0, â− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1

 .

Furthermore, applying CP to the above produces

CPR[SOE{M:2[P][A]}] =


V̂0 = ρ̂,

V̂1 = min{λβmin{0, b̌− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{ ˇ̃K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1

 .

Finally, applying IP to the above produces

IPCPR[SOE{M:2[P][A]}] =


V̂0 = ρ̂,

V̂1 = min{λβmin{0, b− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{K̃ (V̂t−1) + V̂t−1, βV̂t−1} t > 1

 .
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Moreover, for the same reason as in the proof of (a), we obtain.

IPCPR[SOE{M:2[P][A]}] =


V0 = ρ,

V1 = min{λβmin{0, b− ρ}+ βρ+ s, βρ},
Vt = min{K̃ (Vt−1) + Vt−1, βVt−1} t > 1


The final result is the same as SOE{M̃:2[P][A]} given by Table 6.5.3(p.31) (IV), hence we have

SOE{M̃:2[P][A]} = IPCPR[SOE{M:2[R][A]}] = SP→P̃[SOE{M:2[P][A]}]. (19.1.15)

Thus, it follows that Theorem 19.1.3 holds.

(c) Let ρ ≤ a⋆ or b ≤ ρ.

1. Let ρ ≤ a⋆. Then, since ρ ≤ a⋆ < a due to Lemma 12.2.1(p.77) (n), we have max{0, a−ρ} = a− ρ · · · ((1)). In addition, since

TR (ρ) = µ− ρ from Lemma 9.1.1(p.41) (f) and TP (ρ) = a− ρ from Lemma 12.2.1(f), we have AR→P[TR (ρ)] = AR→P[µ− ρ] =

a− ρ = TP (ρ) = max{0, a− ρ} · · · ((2)) due to (1) .

2. Let b ≤ ρ. Then, since a < b < ρ, we have max{0, a− ρ} = 0 · · · ((3)). In addition, since TR (ρ) = 0 from

Lemma 9.1.1(g) and TP (ρ) = 0 from Lemma 12.2.1(g), we have AR→P[TR (ρ)] = 0 = TP (ρ) = max{0, a− ρ} · · · ((4)) due to

(3) .

From the above (2) and (4) , whether ρ ≤ a⋆ or b ≤ ρ, we have

AR→P[TR (ρ)] = TP (ρ) = max{0, a− ρ}, (19.1.16)

hence from (5.1.4(p.17) ) we have

AR→P[KR (ρ)] = AR→P[λβTR (ρ)− (1− β)ρ− s]

= λβAR→P[TR (ρ)]− (1− β)ρ− s

= λβmax{0, a− ρ} − (1− β)ρ− s. (19.1.17)

Thus, we have

AR→P[(6.5.18(p.31) ) with t = 1]

= AR→P[
{
V1 = max{KR (V0) + V0, βV0}

}
]

= AR→P[
{
V1 = max{KR (ρ) + ρ, βρ}

}
]

=
{
V1 = max{AR→P[KR (ρ)] + ρ, βρ}

}
=

{
V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}

}
(see (19.1.17))

=
{
(6.5.22)

}
.

The above result means that AR→P[(6.5.18(p.31) ) with t > 0] is separated into the two cases, (6.5.22) and (6.5.23). This fact

implies that SOE{M:2[P][A]} and SOE{M:2[R][A]} is analogous, i.e.,

SOE{M:2[P][A]} = AR→P[SOE{M:2[R][A]}]. (19.1.18)

Accordingly, since (19.1.5) holds, it follows that Theorem 19.1.2 holds.

(d) Let a⋆ < ρ < b. Then, the same reasoning as in the proof of (c) does not always hold, hence it follows that Theorem 19.1.2

does not always hold.

Remark 19.1.1 (pseudo-reflective element ρ) Let us recall here that R is an operation applied only to attribute elements
which depend on the distribution function F . Accordingly, the definition of the operation cannot be applied to the constant
ρ which is not related to F ; the ρ̂ in the proofs of (a,b) is one resulting from merely rearranging the expression −V̂1 = ρ as
V̂1 = −ρ → V̂1 = ρ̂. However, superficially this transformation ρ → ρ̂ seems to be due to the application of the reflective
operation R defined in Section 11.1.1(p.55) . For this reason, regarding the ρ, which is originally a non-reflective element, as a
reflective element of a sort (see Def. 11.3.3(p.59) ), let us call it the pseudo-reflective element.
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19.1.3 Diagonal Symmetry

For the same reason as in Section 17.3(p.116) , which provides the six equalities and one corollary for M:1[P][A] and M̃:1[P][A], we
see that the following equalities and corollary hold for M:2[P][A] and M̃:2[P][A]:

A {M̃:2[P][A]}− = SR→R̃[A {M:2[P][A]+}], (19.1.19)

A {M̃:2[P][A]}± = SR→R̃[A {M:2[P][A]±}], (19.1.20)

A {M̃:2[P][A]}+ = SR→R̃[A {M:2[P][A]−}]. (19.1.21)

A {M:2[P][A]}+ = S R̃→R[A {M̃:2[P][A]−}], (19.1.22)

A {M:2[P][A]}± = S R̃→R[A {M̃:2[P][A]±}], (19.1.23)

A {M:2[P][A]}− = S R̃→R[A {M̃:2[P][A]+}]. (19.1.24)

Corollary 19.1.1 We have :

A {M̃:2[P][A]}+ D-∼ A {M:2[P][A]−}, (19.1.25)

A {M̃:2[P][A]}± D-∼ A {M:2[P][A]±}, (19.1.26)

A {M̃:2[P][A]}− D-∼ A {M:2[P][A]+}. (19.1.27)

19.1.4 M:2[R][A]
19.1.4.1 Preliminary

From (6.5.18(p.31) ) and (5.1.8(p.17) ) we have

Vt = max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0, (19.1.28)

hence
Vt − βVt−1 = max{L (Vt−1), 0}, t > 0. (19.1.29)

Then, for t > 0 we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1 if L (Vt−1) ≥ 0 (see (5.1.9(p.17) )), (19.1.30)

Vt = βVt−1 if L (Vt−1) ≤ 0. (19.1.31)

Finally, from (6.2.58(p.24) ), (6.2.60(p.24) ), and (6.2.58)we have

St = L (Vt−1) ≥ (≤) 0⇒ Conductt△ (Skipt△), t > 0, (19.1.32)

St = L (Vt−1) > (<) 0⇒ ConducttN (SkiptN), t > 0. (19.1.33)

19.1.4.2 Analysis

19.1.4.2.1 Case of β = 1 and s = 0

� Tom 19.1.1 (A {M:2[R][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof Let β = 1 and s = 0, hence xL = xK = b from Lemmas 9.2.1(p.43) (d) and 9.2.2(i). Then, since K (x) = λT (x) · · · ((1)) for
any x from (5.1.4(p.17) ), due to Lemma 9.1.1(p.41) (g) we have K (x) ≥ 0 · · · ((2)) for any x and K (b) = 0 · · · ((3)).

(a) From (6.5.18(p.31) ) we have Vt ≥ K (Vt−1)+Vt−1 for t > 0, hence Vt ≥ Vt−1 for t > 0 due to (2) . Thus Vt is nondecreasing

in t ≥ 0.

(b) Let ρ ≥ b. Then, since V0 ≥ b from (6.5.17(p.31) ), we have Vt−1 ≥ b for t > 0 from (a). Hence, since L (Vt−1) = 0

for t > 0 from Lemma 9.2.1(d), we have Vt − βVt−1 = 0 for t > 0 from (19.1.29), thus Vt − βVt−1 = 0 for τ ≥ t > 0, i.e.,

Vt = βVt−1 for τ ≥ t > 0. Hence, since Vτ = βVτ−1 = · · · = βτV0 , we have t∗τ = 0 for τ > 0 due to Preference Rule 7.2.1(p.35) ,

i.e., • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then V0 < b. Suppose Vt−1 < b. Then, from Lemma 9.2.2(h) and (6.5.18(p.31) ) with β = 1 we have

Vt < max{K (b) + b, b} = max{b, b} due to (3) , hence Vt < b. Accordingly, by induction Vt−1 < b · · · ((4)) for t > 0, hence

L (Vt−1) > 0 · · · ((5)) for t > 0 from Lemma 9.2.1(d), so that L (Vt−1) > 0 · · · ((6)) for τ ≥ t > 0. Accordingly, from (19.1.29) we

have Vt−βVt−1 > 0 for τ ≥ t > 0, i.e., Vt > βVt−1 for τ ≥ t > 0, hence Vτ > βVτ−1 > · · · > βτV0. Accordingly, we have t∗τ = τ

for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N. Then ConducttN for τ ≥ t > 0 due to (6) and (19.1.33).
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19.1.4.2.2 Case of β < or s > 0

For explanatory simplicity, let us define

S3 ⃝
s N ⃝∗ ∥ =


For any τ > 1 there exists t•τ > 0 such that

(1) ⃝s dOITst•τ≥τ>0⟨τ⟩ N where Conductτ≥t>0N,

(2) ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductt•τ≥t>0N.

 .

� Tom 19.1.2 (A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let a < ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≤ a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < ρ.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

2. Let (λβµ− s)/δ > a.

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

Proof Let β < 1 or s > 0 and let ρ < xK · · · ((1)). Then V0 < xK · · · ((2)) from (6.5.17(p.31) ) and K (ρ) > 0 · · · ((3)) due to

Lemma 9.2.2(j1). Accordingly, from (6.5.18) with t = 1 we have V1−V0 = V1− ρ = max{K (ρ), βρ− ρ} ≥ K (ρ) > 0 due to (3) ,

hence V1 > V0 · · · ((4)).

(a) Note (4) , hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, from (6.5.18(p.31) ) and

Lemma 9.2.2(p.43) (e) we have Vt ≤ max{K (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing

in t ≥ 0. Again note (4) . Suppose Vt−1 < Vt. If λ < 1, from Lemma 9.2.2(f) we have Vt < max{K(Vt) + Vt, βVt} = Vt+1,

and if a < ρ, then a < V0 from (6.5.17(p.31) ), hence a < Vt for t ≥ 0 due to (a), thus from Lemma 9.2.2(g) we have Vt <

max{K(Vt) + Vt, βVt} = Vt+1. Therefore, whether λ < 1 or a < ρ, by induction Vt−1 < Vt for t > 0, i.e., Vt is strictly

increasing in t ≥ 0. Consider a sufficiently large M > 0 with ρ ≤ M and b ≤ M , hence V0 ≤ M from (6.5.17(p.31) ). Suppose

Vt−1 ≤M . Then, from Lemma 9.2.2(e) we have Vt ≤ max{K(M)+M,βM} = max{βM − s, βM} due to (9.2.7 (2) (p.43) ), hence

Vt ≤ max{M,M} = M due to β ≤ 1 and s ≥ 0. Thus, by induction Vt ≤M for t ≥ 0, i.e., Vt is upper bounded in t. Accordingly

Vt converges to a finite V as t→∞. Then, since V = max{K(V )+V, βV } from (6.5.18), we have 0 = max{K(V ),−(1−β)V },
hence K(V ) ≤ 0, so that V ≥ xK due to Lemma 9.2.2(j1).

(b) Let xL ≤ ρ. Then, since xL ≤ V0 from (6.5.17(p.31) ), we have xL ≤ Vt−1 for t > 0 due to (a), hence L (Vt−1) ≤ 0 for

t > 0 due to Corollary 9.2.1(p.43) (a). Accordingly, since Vt − βVt−1 = 0 for t > 0 from (19.1.29), we have Vt − βVt−1 = 0 for

τ ≥ t > 0 or equivalently Vt = βVt−1 for τ ≥ t > 0, leading to Vτ = βVτ−1 = · · · = βτV0 , implying that t∗τ = 0 for τ > 0, i.e.,

• dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL · · · ((5)), hence V0 < xL · · · ((6)) from (6.5.17(p.31) ).

(c1) Since L (V0) = L (ρ) > 0 · · · ((7)), from (5) and Corollary 9.2.1(a), we have V1 = K (ρ) + ρ · · · ((8)) due to (19.1.30) with

t = 1 and V1−βV0 > 0 from (19.1.29) with t = 1, i.e., V1 > βV0 · · · ((9)). Accordingly, we have t∗1 = 1, i.e., • dOITd1⟨1⟩ N · · · ((10 ))
and Conduct1N · · · ((11 )) due to (7) and (19.1.33) with t = 1. Below let τ > 1.
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(c2) Let β = 1, hence s > 0 · · · ((12 )) due to the assumption of β < 1 or s > 0 in the lemma. Then δ = λ · · · ((13 )) from

(9.2.1(p.42) ) and xL = xK · · · ((14 )) from Lemma 9.2.3(b), hence K ( xL ) = K (xK ) = 0 · · · ((15 )). Then, from (5) and (14) we

have ρ < xK · · · ((16 )).

(c2i) Let a < ρ. Then a < V0 from (6.5.17(p.31) ), hence a < Vt−1 for t > 0 due to (a). Note (2) . Suppose Vt−1 < xK .

Then, from (6.5.18) with β = 1 and Lemma 9.2.2(g) we have Vt < max{K (xK ) + xK , xK } = max{xK , xK } = xK . Hence, by

induction Vt−1 < xK · · · ((17 )) for t > 0, thus Vt−1 < xL for t > 0 due to (14) . Accordingly, since L (Vt−1) > 0 for t > 0 from

Lemma 9.2.1(e1), for almost the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>0N.

(c2ii) Let ρ ≤ a · · · ((18 )). Then V0 ≤ a · · · ((19 )) from (6.5.17(p.31) ). In addition, from (8) , (18) , and (9.2.7 (1) (p.43) ) with β = 1

we have V1 = λµ− s+ (1− λ)ρ · · · ((20 ))

(c2ii1) Let (λµ− s)/λ ≤ a. Then xK = (λµ− s)/λ ≤ a · · · ((21 )) from Lemma 9.2.2(j2) and (13) . Hence K (a) ≤ 0 · · · ((22 ))
from Lemma 9.2.2(j1). Note (19) . Suppose Vt−1 ≤ a. Then, from Lemma 9.2.2(e) and (6.5.18) with β = 1 we have Vt ≤
max{K (a)+ a, a} = a due to (22) , hence by induction Vt−1 ≤ a for t > 0. Accordingly, from (6.5.18) with β = 1 and (9.2.7 (1))

we have Vt = max{λµ− s+ (1− λ)Vt−1, Vt−1} · · · ((23 )) for t > 0.

(c2ii1i) Let λ = 1. Then, since xK = µ− s from (21) , we have V1 = µ− s = xK · · · ((24 )) from (20) . In addition, from (23)

we have Vt = max{µ− s, Vt−1} = max{xK , Vt−1} for t > 0. Note (24) . Suppose Vt−1 = xK . Then Vt = max{xK , xK } = xK .

Accordingly, by induction Vt−1 = xK for t > 1, thus Vt−1 = xL for t > 1 due to (14) . Hence L (Vt−1) = L ( xL ) = 0 for t > 1,

so that L (Vt−1) = 0 · · · ((25 )) for τ ≥ t > 1. Then, from (19.1.29) we have Vt − βVt−1 = 0 for τ ≥ t > 1, i.e., Vt = βVt−1 for

τ ≥ t > 1, leading to Vτ = βVτ−1 = · · · = βτ−1V1. From this and (9) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence

t∗τ = 1 for τ > 1, i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ ∥. Then, from (7) and (19.1.33) we have Conduct1N.

(c2ii1ii) Let λ < 1. Note (6) . Suppose Vt−1 < xL . Then, since L (Vt−1) > 0 due to

Lemma 9.2.1(e1), from (19.1.30) and Lemma 9.2.2(f) we have Vt = K(Vt−1) + Vt−1 < K ( xL ) + xL = xL due to (15) . Ac-

cordingly, by induction Vt−1 < xL for t > 0, so that L (Vt−1) > 0 for t > 0 from

Lemma 9.2.1(e1). Hence, for almost the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c2ii2) Let (λµ − s)/λ > a. Then xK > (λµ − s)/λ > a · · · ((26 )) from Lemma 9.2.2(j2). Note (6) . Suppose Vt−1 < xL .

Then L (Vt−1) > 0 from Lemma 9.2.1(e1), hence Vt = K (Vt−1) + Vt−1 from (19.1.30). Now, since a < xK = xL due to (26)

and (14) , from Lemma 9.2.2(h) we have Vt < K ( xL ) + xL = xL due to (15) . Accordingly, by induction Vt−1 < xL · · · ((27 ))
for t > 0, thus L (Vt−1) > 0 for t > 0 from Lemma 9.2.1(e1). Hence, for almost the same reason as in the proof of Tom 19.1.1(c)

we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3) Let β < 1 and s = 0 ((s > 0)) .

(c3i) Let a < ρ · · · ((28 )) from (6.5.17(p.31) ). Then a < V0, hence a < Vt−1 · · · ((29 )) for t > 0 from (a). Note (4) . Suppose

Vt−1 < Vt. Then, from Lemma 9.2.2(g) and (6.5.18) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1, hence by induction Vt−1 < Vt

for t > 0. Accordingly, it follows that Vt−1 is strictly increasing in t > 0 · · · ((30 )).

(c3i1) Let b ≥ 0 ((κ ≥ 0)) . Then, xL ≥ xK ≥ 0 · · · ((31 )) from Lemma 9.2.3(c ((d))). Note (2) . Suppose Vt−1 < xK . Then,

from (29) and Lemma 9.2.2(g) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK ≥ 0. Accordingly,

by induction Vt−1 < xK for t > 0. Then, since Vt−1 < xL for t > 0 due to (31) , we have L (Vt−1) > 0 for t > 0 from

Corollary 9.2.1(a). Consequently, for almost the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N
† and

Conductτ≥t>0N.

(c3i2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((32 )) from Lemma 9.2.3(c ((d))). Note (6) , hence V0 ≤ xL . Assume

that Vt−1 ≤ xL for all t > 0, hence V ≤ xL . Then, since xK ≤ V · · · ((33 )) due to (a), we have the contradiction of

V ≤ xL < xK ≤ V from (32) . Accordingly, it is impossible that Vt−1 ≤ xL for all t > 0. Therefore, from (6) and (30) we

see that there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · .

Hence, for almost the same reason as in the proof of Tom 10.2.2(p.48) (c2iii2) we immediately see that S3 is true.‡

(c3ii) Let ρ ≤ a · · · ((34 )), hence V0 ≤ a · · · ((35 )) from (6.5.17(p.31) ). Then, from (8) and (9.2.7 (1) (p.43) ) we have V1 =

λβµ− s+ (1− λ)βρ · · · ((36 )).

(c3ii1) Let (λβµ− s)/δ ≤ a. Then, since xK = (λβµ− s)/δ ≤ a · · · ((37 )) from Lemma 9.2.2(j2), we have V1 = δ xK + (1−
λ)βρ · · · ((38 )).

(c3ii1i) Let λ = 1. Then, since δ = 1 from (9.2.1(p.42) ), we have xK = βµ− s ≤ a from (37) and V1 = xK ≤ a · · · ((39 )) from
(38) .

†Note that we have ⃝s dOITsτ>1⟨τ⟩ N instead of ⃝s dOITsτ>0⟨τ⟩ N due to (c1).
‡Note the fine difference between S3 and S1(p.47) .
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(c3ii1i1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((40 )) due to Lemma 9.2.3(c ((d))). Note (39) . Suppose Vt−1 = xK .

Then Vt = max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK > 0. Hence, by induction Vt−1 = xK for t > 1, thus

Vt−1 < xL for t > 1 due to (40) . Accordingly L (Vt−1) > 0 for t > 1 from Corollary 9.2.1(a), hence L (Vt−1) > 0 for t > 0 due

to (7) . Therefore, for almost the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3ii1i2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK due to Lemma 9.2.3(c ((d))), from (39) we have V1 ≥ xL , hence

Vt−1 ≥ xL for t > 1 from (a), so Vt−1 ≥ xL for τ ≥ t > 1. Accordingly, since L (Vt−1) ≤ 0 for τ ≥ t > 1 from Corollary 9.2.1(a),

we obtain Vt − βVt−1 = 0 for τ ≥ t > 1 from (19.1.29) or equivalently Vt = βVt−1 for τ ≥ t > 1, leading to Vτ = βVτ−1 = · · · =
βτ−1V1. From the result and (9) we obtain Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1, i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ ∥.

Then, we have Conduct1N from (7) and (19.1.33) with t = 1.

(c3ii1ii) Let λ < 1. Note (4) . Suppose Vt−1 < Vt. Then, from Lemma 9.2.2(f) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1,

hence by induction Vt−1 < Vt for t > 0. Accordingly, it follows that Vt is strictly increasing in t ≥ 0 · · · ((41 )).

(c3ii1ii1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK ≥ 0 · · · ((42 )) from Lemma 9.2.3(c ((d))). Note (2) . Suppose Vt−1 < xK . Then,

from Lemma 9.2.2(f) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK ≥ 0. Hence, by induction

Vt−1 < xK for t > 0, thus Vt−1 < xL for t > 0 due to (42) . Accordingly, since L (Vt−1) > 0 for t > 0 from Corollary 9.2.1(a),

for almost the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3ii1ii2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((43 )) from Lemma 9.2.3(c ((d))). Note (6) , hence V0 ≤ xL . Assume that

Vt−1 ≤ xL for all t > 0, hence V ≤ xL . Then, since xK ≤ V from (a), we have the contradiction of V ≤ xL < xK ≤ V .

Accordingly, it is impossible that Vt−1 ≤ xL for all t > 0. Therefore, from (6) and (41) we see that there exists t•τ > 0 such

that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · ,

hence for almost the same reason as in the proof of Tom 10.2.2(p.48) (c2iii2) we have S3
‡ is true.

(c3ii2) Let (λβµ− s)/λ > a · · · ((44 )). Then xK > (λβµ− s)/δ > a · · · ((45 )) from Lemma 9.2.2(j2). Let us note here that:

1. Let λ < 1. Then Vt is strictly increasing in t ≥ 0 for the same reason as in the proof of (c3ii1ii).

2. Let λ = 1. Then βµ − s > a · · · ((46 )) from (44) . Now, since K (ρ) + ρ = βµ − s from (34) and (9.2.7 (1) (p.43) ), we have

V1 = βµ− s from (8) , hence V1 > a from (46) , so that Vt−1 > a for t > 1 from (a). Note (4) . Suppose Vt−1 < Vt. Then,

from Lemma 9.2.2(g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly by induction Vt−1 < Vt for t > 0, i.e., Vt is

strictly increasing in t > 0.

Consequently, whether λ < 1 or λ = 1, it follows that Vt is strictly increasing in t > 0 · · · ((47 )).

(c3ii2i) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK ≥ 0 · · · ((48 )) from Lemma 9.2.3(c ((d))). Note (2) . Suppose Vt−1 < xK . Then

from (45) and Lemma 9.2.2(h) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK ≥ 0. Accordingly,

by induction Vt−1 < xK for t > 0, hence Vt−1 < xL for t > 0 from (48) , so that L (Vt−1) > 0 for t > 0 from Corollary 9.2.1(a).

Hence, for almost the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3ii2ii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((49 )) from Lemma 9.2.3(c ((d))). Note (6) . Assume that Vt−1 < xL for all

t > 0, hence V ≤ xL · · · ((50 )). Now, since xK ≤ V from (a), we have the contradiction of V ≤ xL < xK ≤ V . Accordingly, it

is impossible that Vt−1 < xL for all t > 0. Therefore, from (47) and (6) we see that there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · ,

hence for almost the same reason as in the proof of Tom 10.2.2(p.48) (c2iii2) we have S3 is true.

� Tom 19.1.3 (A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

Proof Let β < 1 or s > 0 and let ρ = xK . Then V0 = xK · · · ((1)) from (6.5.17(p.31) ), hence K (V0) = K (xK ) = 0 · · · ((2)).

(a) We obtain V1 ≥ K (V0) + V0 = V0 · · · ((3)) from (6.5.18(p.31) ) with t = 1 and (2) . Suppose Vt−1 ≤ Vt. Then, from

Lemma 9.2.2(e) we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing
in t ≥ 0.

(b) Let β = 1, hence s > 0 due to the assumption of β < 1 or s > 0 in the lemma. Then xL = xK from Lemma 9.2.3(b).
Note (1) . Suppose Vt−1 = xK . Then Vt = max{K (xK ) + xK , xK } = max{xK , xK } = xK . Accordingly, by induction
Vt−1 = xK for t > 0, hence Vt−1 = xL for t > 0, so that L (Vt−1) = L ( xL ) = 0 for t > 0. Accordingly, for the same reason as
in the proof of Tom 19.1.1(b) we obtain • dOITdτ>0⟨0⟩ ∥.
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(c) Let β < 1 and s = 0 ((s > 0)) .

(c1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((4)) from Lemma 9.2.3(c ((d))). Note (1) . Suppose Vt−1 = xK . Then

Vt = max{K (xK )+ xK , β xK } = max{xK , β xK } = xK due to xK > 0. Accordingly, by induction Vt−1 = xK for t > 0, hence
Vt−1 < xL for t > 0 due to (4) , so that L (Vt−1) > 0 for t > 0 due to Corollary 9.2.1(a). Therefore, for the same reason as in
the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 9.2.3(c ((d))), we have xL ≤ V0 from (1) , hence xL ≤ Vt−1

for t > 0 from (a), so that L (Vt−1) ≤ 0 for t > 0 due to Corollary 9.2.1(a). Then, since Vt − βVt−1 = 0 for t > 0 from(19.1.29),
for the same reason as in the proof of Tom 19.1.1(b) we obtain • dOITdτ>0⟨0⟩ ∥.

S4
sN •∥ pS△ pSN = { There exist t•τ and t◦τ (t•τ > t◦τ ≥ 0) such that

(1) • dOITdt•τ≥τ>0⟨0⟩ ∥,

(2) ⃝s dOITsτ>t•τ ⟨τ⟩ N where Conductτ≥t>t•τ N and
where pSkipt•τ≥t>t◦τ △, and pSkipt◦τ≥t>0△ ((pSkipt◦τ≥t>0N )).

}
� Tom 19.1.4 (A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.†

1. Vt = ρ for t ≥ 0.
2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.
2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.
3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ pS△ pSN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0.
2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof Let β < 1 or s > 0 and let ρ > xK · · · ((1)). Hence V0 > xK · · · ((2)) from (6.5.17(p.31) ) and K (ρ) < 0 · · · ((3)) due to

Lemma 9.2.2(j1). Suppose Vt−1 ≥ xK . Then, from (6.5.18) and Lemma 9.2.2(e) we have Vt ≥ K (Vt−1) + Vt−1 ≥ K (xK ) +
xK = xK . Hence, by induction Vt−1 ≥ xK · · · ((4)) for t > 0. From (6.5.18) with t = 1 we have V1 − V0 = V1 − ρ =

max{K(V0) + V0, βV0} − ρ = max{K(ρ) + ρ, βρ} − ρ = max{K (ρ),−(1− β)ρ} · · · ((5)).

(a) Let β = 1 or ρ = 0.

(a1) Then, since −(1 − β)ρ = 0, we have V1 − V0 = 0 from (5) and (3) , i.e., V0 = V1. Suppose Vt−1 = Vt. Then
Vt = max{K (Vt) + Vt, βVt} = Vt+1. Thus, by induction Vt−1 = Vt for t > 0, i.e., V0 = V1 = V2 = · · · , hence Vt = V0 = ρ for
t ≥ 0.

(a2) Let xL ≤ ρ. Then, since xL ≤ Vt−1 for t > 0 from (a1), we have L (Vt−1) ≤ 0 for t > 0 due to Corollary 9.2.1(a),
hence Vt − βVt−1 = 0 for t > 0 from (19.1.29). Accordingly, for the same reason as in the proof of Tom 19.1.1(b) we obtain

• dOITdτ>0⟨0⟩ ∥.

(a3) Let xL > ρ. Then, since xL > Vt−1 for t > 0 from (a1), we have L (Vt−1) > 0 for t > 0 due to Corollary 9.2.1(a),
hence for the same reason as in the proof of Tom 19.1.1(c) we obtain ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

(b) Let β < 1 · · · ((6)) and ρ > 0 · · · ((7)) and let s = 0 ((s > 0)) . Then, since −(1− β)ρ < 0 · · · ((8)), from (5) and (3) we have

V1 − V0 < 0, hence ρ = V0 > V1 · · · ((9)) from (6.5.17(p.31) ).

(b1) We have V0 ≥ V1 from (9) . Suppose Vt−1 ≥ Vt. Then, from (6.5.18) and Lemma 9.2.2(e) we have Vt ≥ max{K (Vt) +
Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 0, i.e., Vt is nonincreasing in t ≥ 0. In addition, since Vt is lower bounded
in t due to (4) , it follows that Vt converges to a finite V as t→∞. Accordingly, from (6.5.18) we have V = max{K (V )+V, βV },
from which 0 = max{K (V ),−(1− β)V }, so that K(V ) ≤ 0, hence V ≤ xK due to Lemma 9.2.2(j1).

(b2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK due to Lemma 9.2.3(c ((d))), from (4) we have Vt−1 ≥ xL for t > 0.
Accordingly, since L (Vt−1) ≤ 0 for t > 0 from Corollary 9.2.1(a), we have Vt−βVt−1 = 0 for t > 0 from (19.1.29), hence for the
same reason as in the proof of Tom 19.1.1(b) we obtain • dOITdτ>0⟨0⟩ ∥.

(b3) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((10 )) from Lemma 9.2.3(c ((d))).

†The inverse of the condition “β = 1 or ρ = 0” is “β < 1 and ρ ̸= 0”, which is classified into the two cases of “β < 1 and ρ > 0 ” and “β < 1
and ρ < 0 ”, leading to the conditions in (b) and (c) that follows.
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(b3i) Let ρ < xL . Then, since V0 < xL from (6.5.17(p.31) ), we have Vt−1 < xL for t > 0 due to (b1). Therefore, since
L (Vt−1) > 0 for t > 0 from Corollary 9.2.1(a), for the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>0⟨τ⟩ N
and CONDUCTτ≥t>0N.

(b3ii) Let ρ = xL · · · ((11 )). Then, since V0 = xL from (6.5.17(p.31) ), we have L (V0) = L ( xL ) = 0 · · · ((12 )), hence from

(19.1.31) with t = 1 we have V1 = βV0 · · · ((13 )), so that t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. From (9) and (11) we have

V1 < V0 = xL . Accordingly, since Vt−1 < xL for t > 1 from (b1), we have L (Vt−1) > 0 · · · ((14 )) for t > 1 from Corollary 9.2.1(a),

hence L (Vt−1) > 0 · · · ((15 )) for τ ≥ t > 1. Therefore, Vt−βVt−1 > 0 for τ ≥ t > 1 from (19.1.29), hence Vt > βVt−1 for τ ≥ t > 1,

so that Vτ > βVτ−1 > · · · > βτ−1V1. From the result and (13) we obtain Vτ > βVτ−1 > · · · > βτ−1V1 = βτV0 for τ > 1, hence
t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Then ConducttN for τ ≥ t > 1 due to (15) and (19.1.33).

(b3iii) Let xL < ρ, hence xL < V0 · · · ((16 )) from (6.5.17(p.31) ), so that xL ≤ V0. Suppose xL ≤ Vt−1 · · · ((17 )) for all

t > 0. Then, since L (Vt−1) ≤ 0 for t > 0 from Corollary 9.2.1(a), we have Vt = βVt−1 for t > 0 from (19.1.31), hence
Vt = βtV0 = βtρ > 0 for t ≥ 0 due to (7) . Then, since limt→∞ Vt = 0 due to (6) , from (10) we have xL > xK > Vt > 0 for
a sufficiently large t, which contradicts (17) . Hence, it is impossible that xL ≤ Vt−1 for all t > 0. Accordingly, from (16) and
(b1) we see that there exist t◦τ and t•τ (t◦τ < t•τ ) such that

V0 ≥ V1 ≥ · · · ≥ Vt◦τ−1 > Vt◦τ = Vt◦τ+1 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · · · · ((18 ))
Hence, we have xL > Vt•τ , xL > Vt•τ+1, · · · ,

Vt◦τ = xL , Vt◦τ+1 = xL , · · · , Vt•τ−1 = xL ,

V0 > xL , V1 > xL , · · · , Vt◦τ−1 > xL ,

or equivalently xL > Vt−1 · · · ((19 )), t > t•τ ,

Vt−1 = xL · · · ((20 )), t•τ ≥ t > t◦τ ,

Vt−1 > xL · · · ((21 )), t◦τ ≥ t > 0.

Accordingly, we have:

1. Let t•τ ≥ τ > 0. Then, since Vt−1 ≥ xL for τ ≥ t > 0 from (20) and (21) , we have L (Vt−1) ≤ 0 · · · ((22 )) for τ ≥ t > 0

from Corollary 9.2.1(a), hence Vt − βVt−1 = 0 for τ ≥ t > 0 from (19.1.29), i.e., Vt = βVt−1 for τ ≥ t > 0, leading to
Vτ = βVτ−1 = · · · = βτV0 · · · ((23 )), hence t∗τ = 0 for t•τ ≥ τ > 0, i.e., • dOITdt•τ≥τ>0⟨0⟩ ∥. Accordingly, S4(1) is true. Then,

from (23) with τ = t•τ we have Vt•τ = βVt•τ−1 = · · · = βt•τV0 · · · ((24 )),
2. Let τ > t•τ . Then, since xL > Vt−1 for τ ≥ t > t•τ from (19) , we have L (Vt−1) > 0 · · · ((25 )) for τ ≥ t > t•τ from

Corollary 9.2.1(a), hence Vt − βVt−1 > 0 for τ ≥ t > t•τ from (19.1.29), i.e., Vt > βVt−1 for τ ≥ t > t•τ , leading to

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((26 )). From this and (24) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτV0,

hence t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t◦⟨τ⟩ N.

(i) We have ConducttN for τ ≥ t > t•τ · · · ((27 )) form (25) and (19.1.33). Hence, the former half of S4(2) is true.

The latter half is shown as follows. First, note here (27) . Then we have:

(ii) If t•τ ≥ t > t◦τ , then L (Vt−1) = L ( xL ) = 0 from (20) , hence we have Skipt△ from (19.1.32), implying pSkipt△ (see
Figure 7.2.1(p.34) (II)) or equivalently pSkipt•τ≥t>t◦τ

△.

(iii) If t◦τ ≥ t > 0, then L (Vt−1) = ((<)) 0 ‡ from (21) and Lemma 9.2.1(p.43) (d ((e1))), hence we have Skipt△ ((SkiptN)) from
(19.1.32) (((19.1.33))) , implying pSkipt△ ((pSkiptN)) or equivalently pSkipt◦τ≥t>0△ ((pSkipt◦τ≥t>0N)) .

Accordingly, the later half of S4(2) is true.

(c) Let β < 1 and ρ < 0 · · · ((28 )) and let s = 0 ((s > 0)) .

(c1) Then, since −(1 − β)ρ > 0, from (5) we have V1 − V0 > 0, i.e., V0 < V1 · · · ((29 )), hence V0 ≤ V1. Suppose Vt−1 ≤ Vt.

Then, from (6.5.18) and Lemma 9.2.2(e) we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 0,
i.e., Vt is nondecreasing in t ≥ 0.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK due to Lemma 9.2.3(c ((d))), hence from (4) we have Vt−1 ≥ xL for t > 0.
Accordingly, since L (Vt−1) ≤ 0 for t > 0 from Corollary 9.2.1(a), we have Vt−βVt−1 = 0 for t > 0 from (19.1.29), hence for the
same reason as in the proof of Tom 19.1.1(b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c3) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((30 )) from Lemma 9.2.3(c ((d))). Then, we have ρ < 0 < xK from (28) and

(30) , hence V0 < xK from (6.5.17(p.31) ), so that V0 ≤ xK . Suppose Vt−1 ≤ xK , hence Vt−1 < xL form (30) , thus L (Vt−1) > 0
from Corollary 9.2.1(a). Accordingly, from (19.1.30) and Lemma 9.2.2(e) we have Vt = K (Vt−1) + Vt−1 ≤ K (xK ) + xK = xK .
Hence, by induction Vt−1 ≤ xK for t > 0, so that Vt−1 < xL for t > 0 from (30) . Therefore, since L (Vt−1) > 0 · · · ((31 )) for t > 0

from Corollary 9.2.1(a), for the same reason as in the proof of Tom 19.1.1(c) we have ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

‡If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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19.1.4.3 Market Restriction

19.1.4.3.1 Positive Restriction

� Pom 19.1.1 (A {M:2[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥. →•dd
(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

Proof The same as Tom 19.1.1(p.140) due to Lemma 16.4.1(p.100) .

� Pom 19.1.2 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N → → ⃝⃝s
2. Let β = 1, hence s > 0.

i. Let a ≤ ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.
i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → →⃝⃝s

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
4. Let β < 1 and s > 0.

i. Let a < ρ.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
2. Let λβµ < s. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → →⃝⃝s
2. Let βµ ≤ s. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗

ii. Let λ < 1.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → →⃝⃝s
2. Let λβµ < s. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → →⃝⃝s /⃝⃝∗

2. Let (λβµ− s)/δ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → ⃝⃝s

Proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)). Then, we have κ = λβµ− s · · · ((3)) from Lemma 9.3.1(p.45) (a).

(a-c2ii2) The same as Tom 19.1.2(p.141) (a-c2ii2).

(c3) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c3i1,c3ii1i1,c3ii1ii1,c3ii2i) of Tom 19.1.2.

(c4) Let β < 1 and s > 0.

(c4i-c4ii1ii2) Immediate from (3) and Tom 19.1.2(c3i-c3ii1ii2) with κ.

(c4ii2) Let (λβµ − s)/δ > a. Then, since(λβµ − s)/δ > a > 0 due to (1) , we have λβµ − s > 0, so that κ > 0 due to (3) .
Hence, it suffices to consider only (c3ii2i) of Tom 19.1.2.

� Pom 19.1.3 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
(d) Let β < 1 and s > 0.

1. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥ → →•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then, we have κ = λβµ− s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a,b) The same as Tom 19.1.3(p.143) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 19.1.3.

(d) Let β < 1 and s > 0.

(d1,d2) Immediate from (2) and Tom 19.1.3(c1,c2) with κ.
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� Pom 19.1.4 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.
2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.
2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let ρ = xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N → →•dd /⃝⃝s

4. Let xL < ρ. Then S4
sN •∥ pS△ pSN is true → → ⃝⃝s /•dd /

�� ��pS

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.
2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let λβµ > s.

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let ρ = xL . Then ⃝s dOITsτ>1⟨τ⟩ N △ where Conductτ≥t>1N → →•dd /⃝⃝s

iii. Let xL < ρ. Then S4
sN •∥ pS△ pSN is true (see Numerical Example 19.1.1(p.174) ) → → ⃝⃝s /•dd /

�� ��pS

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0.
2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t ≥ 0.
2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

Proof Suppose a > 0, hence b > µ > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a-a3) The same as Tom 19.1.4(p.144) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. First, (b1) is the same as Tom 19.1.4(b1). Next, due to (1) it suffices to consider
only (b3i-b3iii) of Tom 19.1.4.

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. First, (c1) is the same as Tom 19.1.4(b1). Next, due to (1) it suffices to consider
only (b3i-b3iii) of Tom 19.1.4.

(d-d2) Let β < 1 and ρ < 0 and let s = 0. First, (d1) is the same as Tom 19.1.4(c1). Next, since κ = λβµ > 0 due to (2)

and (1) , it suffices to consider only (c3) of Tom 19.1.4.

(e-e3) Let β < 1 and ρ < 0 and let s > 0. First, (e1) is the same as Tom 19.1.4(c1). Next, (e2,e3) are the same as
Tom 19.1.4(c2,c3) with κ.

19.1.4.3.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.1.4.3.3 Negative Restriction

� Nem 19.1.1 (A {M:2[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.
(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

Proof The same as Tom 19.1.1(p.140) due to Lemma 16.4.1(p.100) .

� Nem 19.1.2 (A {M:2[R][A]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V ≥ xK as t→∞.
(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N → → ⃝⃝s
2. Let β = 1.

i. Let a ≤ ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.
i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → →⃝⃝∗
ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → →⃝⃝s
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2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1 and s = 0. Then we have S3(p.141) ⃝s N ⃝∗ ∥ .

4. Let β < 1 and s > 0.

i. Let a < ρ. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗
ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
ii. Let λ < 1. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → →⃝⃝s /⃝⃝∗

2. Let (λβµ− s)/δ > a. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → →⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)) and κ = −s · · · ((3)) from Lemma 9.3.1(p.45) (a).

(a-c2ii2) The same as Tom 19.1.2(p.141) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ− s)/δ ≤ a. Then, since λβµ/δ ≤ a, we have λβµ ≤ δa, hence λβµ ≤ δa ≤ λa due
to (2) and (9.2.2 (1) (p.42) ), so that βµ ≤ a, which contradicts [15(p.101) ]. Thus it must be that (λβµ − s)/δ > a. From this and
(1) it suffices to consider only (c3i2,c3ii2ii) of Tom 19.1.2(p.141) .

(c4-c4ii2) Let β < 1 and s > 0. Then κ < 0 due to (3) . Hence, it suffices to consider only (c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) of
Tom 19.1.2(p.141) with κ.

� Nem 19.1.3 (A {M:2[R][A]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥. →•dd
Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a) The same as Tom 19.1.3(p.143) (a).

(b) Let β = 1. Then, it suffices to consider only (b) of Tom 19.1.3(p.143) , we have • dOITdτ>0⟨0⟩ ∥. Let β < 1. If s = 0, then

due to (1) it suffices to consider only (c2) of Tom 19.1.3 and if s > 0, then κ < 0 due to (2) , hence it suffices to consider only
(c2) of Tom 19.1.3. Thus, whether s = 0 or s > 0, we have • dOITdτ>0⟨0⟩ ∥. Accordingly, whether β = 1 or β < 1, it eventually

follows that we have • dOITdτ>0⟨0⟩ ∥.

� Nem 19.1.4 (A {M:2[R][A]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have • dOITdτ>0⟨0⟩ ∥ → →•dd
Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a-a3) The same as Tom 19.1.4(p.144) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Tom 19.1.4(b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 19.1.4 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (b2) of Tom 19.1.4. Thus, whether s = 0 or s > 0, it eventually follows that we have the same result.

(c) Let β < 1 and ρ < 0.

(c1) The same as Tom 19.1.4(c1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 19.1.4 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (c2) of Tom 19.1.4. Thus, whether s = 0 or s > 0, it eventually follows that we have the same result.
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19.1.5 M̃:2[R][A]
19.1.5.1 Preliminary

Due to Lemma 19.1.1(p.137) (a) we can use Theorem 19.1.1(p.137) in the proof of Tom’s 19.1.5 – 19.1.8 that follows.

19.1.5.2 Analysis

19.1.5.2.1 Case of β = 1 and s = 0

� Tom 19.1.5 (A {M̃:2[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.
(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.
(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof by symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Tom 19.1.1(p.140) .

19.1.5.2.2 Case of β < 1 or s > 0

� Tom 19.1.6 (A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b > ρ, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.
2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)).
i. Let b > ρ.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.
i. Let λ = 1.

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

2. Let (λβµ+ s)/δ < b.

i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)). Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

Proof by symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Tom 19.1.2(p.141) .

� Tom 19.1.7 (A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.
(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.
(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.
2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

Proof by symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Tom 19.1.3(p.143) .

� Tom 19.1.8 (A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.
2. Let x

L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.
3. Let x

L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.
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2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.
3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let x
L̃ > ρ. Then S4

sN •∥ pS△ pSN is true.

(c) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.
3. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof by symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Tom 19.1.4(p.144) .

19.1.5.3 Market Restriction

19.1.5.3.1 Positive Restriction

� Pom 19.1.5 (A {M̃:2[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.
(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Nem 19.1.1(p.147) (see (17.1.22(p.113) )).

Direct proof The same as Tom 19.1.5(p.149) due to Lemma 16.4.1(p.100) .

� Pom 19.1.6 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b ≥ ρ, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.
i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝∗

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1 and s = 0. Then we have S3(p.141) ⃝s N ⃝∗ ∥ .
4. Let β < 1 and s > 0.

i. Let b > ρ. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗
ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.
i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
ii. Let λ < 1. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → →⃝⃝s /⃝⃝∗

2. Let (λβµ+ s)/δ < b. Then S3(p.141) ⃝s N ⃝∗ ∥ is true. → → ⃝⃝s /⃝⃝∗

Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Nem 19.1.2(p.147) (see (17.1.22(p.113) )).

Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)) and κ̃ = s · · · ((3)) from Lemma 11.6.6(p.68) (a).

(a-c2ii2) The same as Tom 19.1.6(p.149) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ+ s)/δ ≥ b. Then, since λβµ/δ ≥ b, we have λβµ ≥ δb, hence λβµ ≥ δb ≥ λb due
to (2) and (9.2.2 (1) (p.42) ), so that βµ ≥ b, which contradicts [3(p.101) ]. Thus, it must be that (λβµ+ s)/δ < b. From this and (1)

it suffices to consider only (c3ii2ii) of Tom 19.1.6(p.149) .

(c4-c4ii2) If β < 1 and s > 0, then κ > 0 due to (3) , hence it suffices to consider
only (c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) with κ.

� Pom 19.1.7 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.
(b) We have • dOITdτ>0⟨0⟩ ∥. → →•dd
Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Nem 19.1.3(p.148) (see (17.1.22(p.113) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 11.6.6(p.68) (a).

(a) The same as Tom 19.1.7(p.149) (a).

(b) Let β = 1. Then it suffices to consider only (b) of Tom 19.1.7. Let β < 1. If s = 0, due to (1) it suffices to consider only
(c2) of Tom 19.1.7 and if s > 0, then κ̃ > 0 due to (2) , hence it suffices to consider only (c2) of Tom 19.1.7, thus, whether s = 0
or s > 0 we have the same result. Accordingly, whether β = 1 or β < 1, it follows that we have the same result.
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� Pom 19.1.8 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd

3. Let x
L̃ < ρ. Then ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥ → →•dd
Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to Nem 19.1.4(p.148) (see (a(p.89) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 11.6.6(p.68) (a).

(a-a3) The same as Tom 19.1.8(p.149) (a-a3).

(b) Let β < 1 and ρ < 0.

(b1) The same as Tom 19.1.8(b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 19.1.8 and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (b2) of Tom 19.1.8. Accordingly, whether s = 0 or s > 0, we have the same result.

(c) Let β < 1 and ρ > 0.

(c1) The same as Tom 19.1.8 (c1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 19.1.8 and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (c2) of Tom 19.1.8. Accordingly, whether s = 0 or s > 0, we have the same result.

19.1.5.3.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.1.5.3.3 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).

19.1.6 M:2[P][A]
19.1.6.1 Preliminary

From (6.5.23(p.31) ) and from (5.1.21(p.18) ) and (5.1.20) we have

Vt = max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1, (19.1.34)

hence
Vt − βVt−1 = max{L (Vt−1), 0}, t > 1. (19.1.35)

Then, for t > 1 we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1 if L (Vt−1) ≥ 0 (19.1.36)

Vt = βVt−1 if L (Vt−1) ≤ 0. (19.1.37)

Now, from (6.2.86(p.26) ) and (6.2.84) we have

St = L (Vt−1) ≥ (≤) 0⇒ Conductt△(Skipt△), (19.1.38)

St = L (Vt−1) > (<) 0⇒ ConducttN(SkiptN). (19.1.39)

From (6.5.22(p.31) ) we have

V1 = max{λβmax{0, a− ρ} − s, 0}+ βρ, (19.1.40)
hence

V1 − βV0 = V1 − βρ = max{λβmax{0, a− ρ} − s, 0} ≥ 0. (19.1.41)

From the comparison of the two terms within { } in the right side of (19.1.40) it can be seen that

S1
def
= λβmax{0, a− ρ} ≥ (≤) s⇒ Conduct1△(Skip1△), (19.1.42)

S1
def
= λβmax{0, a− ρ} > (<) s⇒ Conduct1N(Skip1N). (19.1.43)
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19.1.6.2 Analysis

19.1.6.2.1 Case of β = 1 and s = 0

19.1.6.2.1.1 Preliminary

Let β = 1 and s = 0. Then, from (5.1.21(p.18) ), (5.1.20), and Lemma 12.2.1(p.77) (g) we have

K (x) = L (x) = λT (x) ≥ 0 for any x. (19.1.44)

In addition, from (19.1.35) we have

Vt − βVt−1 = max{λT (Vt−1), 0} = λT (Vt−1) ≥ 0, t > 1. (19.1.45)

Finally, from (19.1.40) we have

V1 = max{λmax{0, a− ρ}, 0}+ ρ (19.1.46)

= λmax{0, a− ρ}+ ρ (due to λmax{0, a− ρ} ≥ 0) (19.1.47)

= max{ρ, λa+ (1− λ)ρ}. (19.1.48)

19.1.6.2.1.2 Case of ρ ≤ a⋆

In this case, due to Lemma 19.1.1(p.137) (c) we can apply AR→P (see (15.3.3(p.98) )) in
Theorem 19.1.2(p.137) to Tom 19.1.1(p.140) .

Lemma 19.1.2 (A {M:2[P][A]}) Assume ρ ≤ a⋆ and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof Assume ρ ≤ a⋆ and let β = 1 and s = 0.

(a) The same as Tom 19.1.1(a).

(b) Due to the assumption ρ ≤ a⋆ we have ρ ≤ a⋆ < a < b from Lemma 12.2.1(p.77) (n). Hence it suffices to consider only (c)
of Tom 19.1.1.

19.1.6.2.1.3 Case of b ≤ ρ

In this case, due to Lemma 19.1.1(p.137) (c) we can apply AR→P in
Theorem 19.1.2(p.137) to Tom 19.1.1(p.140) .

Lemma 19.1.3 (A {M:2[P][A]}) Assume b ≤ ρ and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) • dOITdτ>0⟨0⟩ ∥.

Proof Assume b ≤ ρ · · · ((1)) and let β = 1 and s = 0.

(a) The same as Tom 19.1.1(a).

(b) Due to (1) it suffices to consider only (b) of Tom 19.1.1.

19.1.6.2.1.4 Case of a⋆ < ρ < b

In this case, due to Lemma 19.1.1(p.137) (d) we cannot apply AR→P in Theorem 19.1.2(p.137) to
Tom 19.1.1.

Lemma 19.1.4 (A {M:2[P][A]}) Assume a⋆ < ρ < b and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and pSKIP1△.

(c) Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof Assume a⋆ < ρ < b · · · ((1)) and let β = 1 and s = 0. Then L (x) = K (x) = λT (x) ≥ 0 · · · ((2)) for any x from (5.1.20(p.18) )

and (5.1.21) and from Lemma 12.2.1(g). Then, since ρ < b and a < b, from (19.1.48) we obtain V1 < max{b, λb + (1− λ)b} =
max{b, b} = b. Suppose Vt−1 < b. Then, since a⋆ < b due to (1) , we have Vt < max{K (b) + b, b} from (6.5.23) with β = 1 and
Lemma 12.2.3(p.80) (h), hence Vt < max{βb − s, b} from (12.2.13 (2) (p.79) ), so that Vt−1 < max{b, b} = b due to the assumption
of β = 1 and s = 0. Accordingly, by induction we have Vt−1 < b · · · ((3)) for t > 1, hence T (Vt−1) > 0 · · · ((4)) for t > 1 from

Lemma 12.2.1(g). Accordingly, Vt − βVt−1 > 0 for t > 1 from (19.1.45), i.e., Vt > βVt−1 for t > 1. Then, since Vt > βVt−1 for
τ ≥ t > 1, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 · · · ((5)) for τ > 1. In addition, since L (Vt−1) = λT (Vt−1) > 0 · · · ((6))
for τ ≥ t > 1 due to (4) , we have Conductτ≥t>1N · · · ((7)) from (19.1.39).

(a) From (19.2.24) and (6.5.21(p.31) ) we have V1 − V0 = V1 − ρ = λmax{0, a − ρ} ≥ 0, hence V1 ≥ V0 · · · ((8)). Since

V2 ≥ K (V1)+V1 from (6.5.23(p.31) ) with t = 2, we have V2−V1 ≥ K (V1) ≥ 0 due to (2) , hence V2 ≥ V1 · · · ((9)). Suppose Vt ≥ Vt−1.

Then from (6.5.23) and Lemma 12.2.3(e) we have Vt+1 = max{K (Vt) + Vt, βVt} ≥ max{K (Vt−1) + Vt−1, βVt−1} = Vt. Hence,
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by induction Vt ≥ Vt−1 for t > 1. From this and (8) we have Vt ≥ Vt−1 for t > 0, hence it follows that Vt is nondecreasing in
t ≥ 0.

(b) Let a ≤ ρ · · · ((10 )), hence V1 = ρ from (19.1.47), so that V1 < b due to (1) . Then V1 − βV0 = V1 − V0 = ρ − ρ = 0 from

(6.5.21(p.31) ), hence V1 = βV0 · · · ((11 )), so that t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. Then, from (5) and (11) we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 = βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Here note ConducttN

for τ ≥ t > 1 from (7) . In addition, since λmax{0, a − ρ} = 0 due to (10) , we have λmax{0, a − ρ} = 0 ≤ s for any s ≥ 0,
hence Skip1△ due to (19.1.42). Hence it follows that we have pSkip1△ (see Remark 7.2.1(p.34) ).

(c) Let ρ < a · · · ((12 )), hence V1 = λ(a − ρ) + ρ due to (19.1.47). Then, from (6.5.21(p.31) ) we have V1 − βV0 = V1 − V0 =

V1 − ρ = λ(a− ρ) > 0, i.e., V1 > βV0 · · · ((13 )), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((14 )). Below let τ > 1. Then, from (5) and

(13) we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 > βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. From

the result and (14) we have ⃝s dOITsτ>0⟨τ⟩ N. Since a−ρ > 0 due to (12) , we have λmax{0, a−ρ} > 0, implying that we have

Conduct1N due to (19.1.43(p.151) ). From this and (7) it follows that Conductτ≥t>0N.

19.1.6.2.1.5 Summary of Lemmas 19.1.2 – 19.1.4

� Tom 19.1.9 (A {M:2[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and pSKIP1△.

2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof (a) The same as Lemmas 19.1.2(a), 19.1.3(a), and 19.1.4(a).

(b) The same as Lemma 19.1.2(b).

(c) The same as Lemma 19.1.3(b).

(d-d2) The same as Lemma 19.1.4(b,c).

Corollary 19.1.2 Let β = 1 and s = 0. Then, the optimal price to propose zt is nondecreasing in t.

Proof Immediate from Tom 19.1.9(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

19.1.6.2.2 Case of β < 1 or s > 0

19.1.6.2.2.1 Case of ρ ≤ a⋆

In this case, due to Lemma 19.1.1(p.137) (c) we can apply AR→P in Theorem 19.1.2(p.137) to
Tom’s 19.1.2(p.141) –19.1.4(p.144) .

� Tom 19.1.10 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.

i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b ≤ 0 ((κ ≤ 0)) . Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1.
i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

ii. Let (λβa− s)/δ > a⋆.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.141) ⃝s N ⃝∗ ∥ is true.
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Proof When AR→P is applied to Tom 19.1.2(p.141) , “a < ρ” in (c2i,c3i) of Tom 19.1.2(p.141) changes into “a⋆ < ρ”, which contradicts
the assumption ρ ≤ a⋆. Accordingly, removing all the assertions related to “a < ρ” from Tom 19.1.2 leads to this Tom.

Corollary 19.1.3 Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ < xK . Then, the optimal price to propose zt is nondecreasing
in t ≥ 0.

Proof Immediate from Tom 19.1.10(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.1.11 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

Proof Since both a and µ are not included in Tom 19.1.3(p.143) , even if applying AR→P to it, no change occurs.

Corollary 19.1.4 Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ = xK . Then, the optimal price to propose zt is nondecreasing
in t ≥ 0.

Proof Immediate from Tom 19.1.11(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.1.12 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let ρ > xL . Then S4
sN •∥ pS△ pSN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof Since both a and µ are not included in Tom 19.1.4(p.144) , even if applying AR→P to it, no change occurs.

Corollary 19.1.5 Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0, i.e., constant in t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)). Then zt is nonincreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)). Then zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.1.12(a1,b1,c1) and from (6.2.76(p.25) ) and
Lemma 12.1.3(p.73) .

19.1.6.2.2.2 Case of b ≤ ρ

In this case, due to Lemma 19.1.1(p.137) (c) we can apply AR→P in Theorem 19.1.2(p.137) to
Tom’s 19.1.2(p.141) -19.1.4(p.144) .

� Tom 19.1.13 (A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.141) ⃝s N ⃝∗ ∥ is true.
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Proof When AR→P is applied to Tom 19.1.2(p.141) , ρ ≤ a in (c2ii,c3ii) of Tom 19.1.2(p.141) changes into ρ ≤ a⋆. Then, since
ρ ≤ a⋆ < a due to Lemma 12.2.1(p.77) (n), we have ρ < a < b, which contradicts b ≤ ρ. Thus, it follows that all the assertions
related to ρ ≤ a must be removed from Tom 19.1.2.

Corollary 19.1.6 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ < xK . Then zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.1.13(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.1.14 (A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

Proof Since both a and µ are not included in Tom 19.1.3(p.143) , even if applying AR→P to it, no change occurs.

Corollary 19.1.7 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ = xK . Then zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.1.14(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.1.15 (A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and • dOITdτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ pS△ pSN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof Since both a and µ are not included in Tom 19.1.4(p.144) , even if applying AR→P to it, no change occurs.

Corollary 19.1.8 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) . Then zt is nonincreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) . Then zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.1.15(a1,b1,c1) and from (6.2.76(p.25) ) and
Lemma 12.1.3(p.73) .

19.1.6.2.2.3 Case of a⋆ < ρ < b

In this case, due to Lemma 19.1.1(p.137) (d) we cannot apply AR→P of Theorem 19.1.2(p.137) to
Tom’s 19.1.1(p.140) – 19.1.4(p.144) . Below, let us note

V1 = max{λβmax{0, a− ρ} − s, 0}+ βρ (the same as (19.1.40(p.151) )). (19.1.49)

Lemma 19.1.5

(a) Let V1 ≤ xK . Then Vt is nondecreasing in t > 0.

(b) Let V1 > xK .

1. Let β = 1 or V1 = 0. Then Vt = V1 for t > 0.

2. Let β < 1 and V1 > 0. Then Vt is nonincreasing in t > 0.

3. Let β < 1 and V1 < 0. Then Vt is nondecreasing in t > 0.
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Proof (a) Let V1 ≤ xK . Then, K (V1) ≥ 0 due to Corollary 12.2.2(p.80) (b), hence from
(6.5.23(p.31) ) with t = 2 we have V2 ≥ K (V1) + V1 ≥ V1. Suppose Vt−1 ≤ Vt. Then, from (6.5.23(p.31) ) and Lemma 12.2.3(e) we
have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0.

(b) Let V1 > xK . Then K (V1) ≤ 0 · · · ((1)) due to Corollary 12.2.2(a). Hence, from (6.5.23) with t = 2, hence V2 − V1 =

max{K (V1) + V1, βV1} − V1 = max{K (V1),−(1− β)V1} · · · ((2)).

(b1) Let β = 1 or V1 = 0. Then, since −(1− β)V1 = 0, we have V2 − V1 = max{K (V1), 0} = 0 due to (1) , hence V2 = V1.
Suppose Vt−1 = V1. Then from (6.5.23) we have Vt = max{K (V1) + V1, βV1} = V2 = V1. Hence, by induction we have Vt = V1

for t > 0. Below note that β = 1 or V1 = 0, the negation of β = 1 or V1 = 0, is “β < 1 and V1 ̸= 0”, which can be classified into
the two cases “β < 1 and V1 > 0” and “β < 1 and V1 > 0”.

(b2) Let β < 1 and V1 > 0. Then, since −(1 − β)V1 < 0, from (2) and (1) we have V2 − V1 ≤ 0, hence V2 ≤ V1. Suppose
Vt−1 ≤ Vt−2. Then, from (6.5.23) and Lemma 12.2.3(p.80) (e) we have Vt ≤ max{K (Vt−2) + Vt−2, βVt−2} = Vt−1. Hence, by
induction we have Vt ≤ Vt−1 for t > 1, thus Vt nonincreasing in t > 0.

(b3) Let β < 1 and V1 < 0. Then, since −(1 − β)V1 > 0, from (2) we have V2 − V1 > 0 or equivalently V2 > V1, so that
V2 ≥ V1. Suppose Vt−1 ≥ Vt−2. Then from (6.5.23)and Lemma 12.2.3(p.80) (e) we have Vt ≥ max{K (Vt−2)+Vt−2, βVt−2} = Vt−1.
Hence, by induction we have Vt ≥ Vt−1 for t > 1, thus Vt nondecreasing in t > 0.
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Let us define:

S5 ⃝
s N ⃝∗ ∥ = { There exists t•τ > 1 such that:

(1) t•τ ≥ τ > 1⇒ ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N

(2) τ > t•τ ⇒ ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductt•τ≥t>1N.

}
S6 ⃝

s N ⃝∗ ∥ •∥ pS△ pSN= { There exists t•τ
† and t◦τ (t•τ > t◦τ > 1) such that:

(1) t•τ ≥ τ > 1 ⇒ If λβmax{0, a− ρ} ≤ s, then • dOITdt•τ≥τ>1⟨0⟩ ∥.

If λβmax{0, a− ρ} > s, then ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N.
(2) τ > t•τ ⇒ ⃝s dOITsτ>t•τ

⟨τ⟩ N where Conductτ≥t>t•τ N and
where pSKIPt•τ≥τ>t◦τ △ and pSKIPt◦τ≥t>1△ ((pSKIPt◦τ≥t>1N )).

}
S7 ⃝

s N ⃝∗ ∥ •∥ pS△ = { There exists t•τ > 1 such that:

(1) t•τ ≥ τ > 1 ⇒ If λβmax{0, a− ρ} ≤ s, then • dOITdt•τ≥τ>1⟨0⟩ ∥.

If λβmax{0, a− ρ} > s, then ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N.

(2) τ > t•τ ⇒ ⃝s dOITsτ>t•τ ⟨τ⟩ N where Conductτ≥t>t•τ N and where pSKIPt•τ≥τ>1△.
}

Remark 19.1.2 “β = 1 or V1 = 0” can be rewritten as {β = 1∪V1 = 0}. Then the negation of {β = 1∪V1 = 0} (i.e., {β = 1 ∪ V1 = 0})
can be written as

{β = 1 ∪ V1 = 0} = {β < 1 ∩ V1 ̸= 0} = {β < 1 ∩ V1 > 0} ∪ {β < 1 ∩ V1 < 0},

which can be expressed, without loss of generality, as

{β = 1 ∪ V1 = 0} = {β < 1 ∩ s ≥ 0 ∩ V1 > 0} ∪ {β < 1 ∩ s ≥ 0 ∩ V1 < 0}.

For explanatory convenience, let us denote {s ≥ 0} by {s = 0 ((s > 0))}. Then the above expression can be rewritten as

{β = 1 ∪ V1 = 0} =
{
β < 1 ∩ {s = 0 ((s > 0))} ∩ {V1 > 0}

}
∪

{
β < 1 ∩ {s = 0 ((s > 0))} ∩ {V1 < 0}

}
.

� Tom 19.1.16 (A {M:2[P][A]}) Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 .

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then S5
⃝s N ⃝∗ ∥ is true.

(c) Let V1 > xK .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) (see Remark 19.1.2 above)

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to V ≥ xK as t→∞.

2. Let b > 0 ((κ > 0)) . Then

i. Let V1 > xL . Then S6
⃝s N ⃝∗ ∥ •∥ pS△ pSN is true.

ii. Let V1 = xL . Then S7
⃝s N ⃝∗ ∥ •∥ pS△ is true.

iii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b > 0 ((κ > 0)) .
i. Let V1 ≥ xL . If λβmax{0, a−ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a−ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.
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Proof Assume a⋆ < ρ < b · · · ((1)) and let β < 1 or s > 0.

(a) i. Let λβmax{0, a − ρ} ≤ s. Then, since λβmax{0, a − ρ} − s ≤ 0, we have V1 − βV0 = 0 from (19.1.41(p.151) ), i.e.,
V1 = βV0 · · · ((2)), hence t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥.

ii. Let λβmax{0, a − ρ} > s. Then, since λβmax{0, a − ρ} − s > 0, we have V1 − βV0 > 0 from (19.1.41), i.e.,
V1 > βV0 · · · ((3)), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N. Then, since λβmax{0, a − ρ} − s > 0, from the comparison of

the two terms within { } in the r.h.s. of (19.1.40) we see that conducting the search is strictly optimal at time t = 1,
i.e., Conduct1N · · · ((4)).

Below let τ > 1.

(b) Let V1 ≤ xK · · · ((5)).

(b1) Vt is nondecreasing in t > 0 due to Lemma 19.1.5(p.155) (a). Consider a sufficiently large M > 0 with b ≤M and V1 ≤M .
Suppose Vt−1 ≤M . Then, from (6.5.23) and Lemma 12.2.3(e) we have Vt ≤ max{K(M) +M,βM} = max{βM − s, βM} due
to (12.2.13 (2) (p.79) ), hence Vt ≤ max{M,M} = M due to β ≤ 1 and s ≥ 0. Accordingly, by induction Vt ≤ M for t > 0, i.e.,
Vt is upper bounded in t. Hence Vt converges to a finite V as t → ∞. Then, since V = max{K(V ) + V, βM} · · · ((6)) from

(6.5.23(p.31) ), we have 0 = max{K(V ),−(1− β)V } · · · ((7)), hence K(V ) ≤ 0, so that V ≥ xK due to Lemma 12.2.3(p.80) (j1).

(b2) Let V1 ≥ xL . Then, since Vt−1 ≥ xL for t > 1 due to (b1), we have L (Vt−1) ≤ 0 for t > 1 from Corollary 12.2.1(a),
hence Vt − βVt−1 = 0 for t > 1 from (19.1.35(p.151) ), i.e., Vt = βVt−1 for t > 1. Then, since Vt = βVt−1 for τ ≥ t > 1, we have
Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((8)).

i. Let λβmax{0, a− ρ} ≤ s. Then, from (8) and (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1,
i.e., • dOITdτ>1⟨0⟩ ∥.

ii. Let λβmax{0, a− ρ} > s. Then, from (8) and (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1,

i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ ∥. In addition, we have Conduct1N from (4) .

(b3) Let V1 < xL · · · ((9)).

(b3i) Let β = 1, hence s > 0 due to the assumption of β < 1 or s > 0, thus xL = xK · · · ((10 )) from
Lemma 12.2.4(p.80) (b). Now, since V1 ≥ βρ from (6.5.22(p.31) ), we have V1 ≥ ρ due to the assumption β = 1, hence a⋆ < V1 due
to (1) . Accordingly, it follows that a⋆ ≤ Vt−1 for t > 1 due to (b1). Note V1 < xK from (9) and (10) . Suppose Vt−1 < xK .
Then, from Lemma 12.2.3(p.80) (f) and (6.5.23) with β = 1 we have Vt < max{K (xK ) + xK , xK } = max{xK , xK } = xK .
Accordingly, by induction Vt−1 < xK for t > 1, hence Vt−1 < xL for t > 1 due to (10) , so that L (Vt−1) > 0 for t > 1 from
Lemma 12.2.2(e1). Then, since L (Vt−1) > 0 · · · ((11 )) for τ ≥ t > 1, we have Vt − βVt−1 > 0 for τ ≥ t > 1 from (19.1.35(p.151) ),

i.e., Vt > βVt−1 for τ ≥ t > 1, hence Vτ > βVτ−1 > · · · > βτ−1V1. In addition, since V1 ≥ βV0 from (19.1.41(p.151) ), we have
Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Then, we have ConducttN for τ ≥ t > 1

from (11) and (19.1.39).

(b3ii) Let β < 1 and s = 0 ((s > 0)) .

(b3ii1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((12 )) from Lemma 12.2.4(p.80) (c ((d))). Here note (9) and (b1). Then

suppose there exists a t′ such that Vt−1 ≥ xL for t ≥ t′. Then L (Vt−1) ≤ 0 for t ≥ t′ from Corollary 12.2.1(p.80) (a), hence

Vt = βVt−1 for t ≥ t′ due to (19.1.37(p.151) ). Hence, we have Vt = βt−t′+1Vt′−1 for t ≥ t′, leading to V = limt→∞ Vt = 0 < xK

due to (12) , which contradicts V ≥ xK in (b1). Accordingly, it follows that Vt−1 < xL for all t > 1, hence L (Vt−1) > 0 for
t > 1 from Corollary 12.2.1(a). Thus, for the same reason as in the proof of (b3i) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>1N.

(b3ii2) Let b ≤ 0 ((κ ≤ 0)) .

• Let b = 0 ((κ = 0)) . Then xL = xK = 0 · · · ((13 )) from Lemma 12.2.4(p.80) (c ((d))), hence V ≥ xK = xL = 0 from (b1).

Here assume V > xK = 0. Then, since −(1− β)V < 0, we have K (V ) = 0 from (7) , leading to the contradiction V = xK

due to Lemma 12.2.3(j1). Thus we have V = xK = 0. Accordingly, due to (b1) and due to V1 < xL = xK = V from (9)

and (13) it follows that there exists a t•τ > 1 such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xK = xL = Vt•τ = Vt•τ+1 = · · · ,

where t•τ might be infinity (i.e., t•τ = ∞). Hence Vt−1 < xL for t•τ ≥ t > 1 and Vt−1 = xL for t > t•τ . Thus, from
Corollary 12.2.1(a) we have

L (Vt−1) > 0 for t•τ ≥ t > 1 and L (Vt−1) = 0 for t > t•τ · · · ((14 )).

• Let b < 0 ((κ < 0)) . Then xL < xK from Lemma 12.2.4(c ((d))). Since V1 < xL from (9) and since xL < xK ≤ V from
(b1), there exists t•τ such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL ≤ Vt•τ ≤ Vt•τ+1 ≤ · · · ,

hence Vt−1 < xL for t•τ ≥ t > 1 and xL ≤ Vt−1 for t > t•τ . Accordingly, from Corollary 12.2.1(a) we have

L (Vt−1) > 0 for t•τ ≥ t > 1 and L (Vt−1) ≤ 0 for t > t•τ · · · ((15 )).
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From (14) and (15) we have, whether b = 0 ((κ = 0)) or b < 0 ((κ < 0)) ,

L (Vt−1) > 0 · · · ((16 )) for t•τ ≥ t > 1,

L (Vt−1) ≤ 0 · · · ((17 )) for t > t•τ .

Accordingly, from (19.1.35(p.151) ) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1 due to (16) and Vt − βVt−1 = 0 for t > t•τ due to (17)

or equivalently

Vt > βVt−1 · · · ((18 )), t•τ ≥ t > 1, Vt = βVt−1 · · · ((19 )), t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since Vt > βVt−1 · · · ((20 )) for τ ≥ t > 1 due to (18) , for the same reason as in the proof of (b3i)

we have ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N. Hence (1) of S5 holds. From Vt > βVt−1 for t•τ ≥ t > 1 due to (20) with

τ = t•τ we have Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((21 )).

2. Let τ > t•τ . Then Vt = βVt−1 for τ ≥ t > t•τ due to (19) , hence Vτ = βVτ−1 = · · · = βτ−t•τVt•τ · · · ((22 )). Hence, due to (21)

and the fact that V1 ≥ βV0 from (2) and (3) we obtain

Vτ = βVτ−1 = · · · = βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1 ≥ βτV0,

so that we have t∗τ = t•τ for τ > t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥. Then ConducttN for t•τ ≥ t > 1 due to (16) and (19.1.39(p.151) ).

From the above we see that (2) of S5 holds.

(c) Let V1 > xK · · · ((23 ))..

(c1) Let β = 1 or V1 = 0.

(c1i) The same as Lemma 19.1.5(p.155) (b1).

(c1ii) Since Vτ = Vτ−1 = · · · = V1 for τ > 0 from (c1i), we have Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((24 )).

i. Let λmax{0, a− ρ} ≤ s. Then, from (24) and (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1,
i.e., • dOITdτ>1⟨0⟩ ∥.

ii. Let λmax{0, a− ρ} > s. Then, from (24) and (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1,

i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N from (4) .

(c2) Let β < 1 · · · ((25 )) and s = 0 ((s > 0)) .

(c2i) Let V1 > 0.

(c2i1) The former half is the same as Lemma 19.1.5(p.155) (b2). The latter half can be proven as follows. Note (23) , hence
V1 ≥ xK . Suppose Vt−1 ≥ xK . Then from (6.5.23(p.31) ) we have Vt ≥ K(Vt−1) + Vt−1 ≥ K(xK ) + xK due to Lemma 12.2.3(e),
hence Vt ≥ xK since K(xK ) = 0. Accordingly, by induction Vt ≥ xK for t > 0, i.e., Vt is lower bounded in t. Hence Vt

converges to a finite V as t→∞. Then, since V = max{K(V )+V, βV } from (6.5.23(p.31) ), we have 0 = max{K(V ),−(1−β)V },
hence K(V ) ≤ 0, so that V ≥ xK due to Lemma 12.2.3(p.80) (j1).

(c2i2) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((26 )) from Lemma 12.2.4(c ((d))).

(c2i2i) Let V1 > xL · · · ((27 )), hence V1 ≥ xL . Suppose Vt−1 ≥ xL for all t > 1. Then, since L (Vt−1) ≤ 0 for t > 1 from

Corollary 12.2.1(p.80) (a), we have Vt−βVt−1 = 0 for t > 1 from (19.1.35), i.e., Vt = βVt−1 for all t > 1, hence Vt = βt−1V1, hence
V = limt→∞ Vt = 0 < xK due to (25) and (26) , which contradicts V ≥ xK in (c2i1). Hence, it is impossible that xL ≤ Vt−1

for all t > 0. Accordingly, due to (27) and (c2i1) it follows that there exist t•τ and t◦τ (t•τ > t◦τ > 0) such that

V1 ≥ V2 ≥ · · · ≥ Vt◦τ−1 > xL = Vt◦τ = Vt◦τ+1 = · · · = Vt•τ−1 > Vt•τ ≥ Vt•τ+1 ≥ · · · .

Hence, we have
xL > Vt•τ , xL > Vt•τ+1, · · · ,
Vt◦τ = xL , Vt◦τ+1 = xL , · · · , Vt•τ−1 = xL ,

V1 > xL , V2 > xL , · · · , Vt◦τ−1 > xL ,

or equivalently
xL > Vt−1 · · · ((28 )), t > t•τ ,

Vt−1 = xL · · · ((29 )), t•τ ≥ t > t◦τ ,

Vt−1 > xL · · · ((30 )), t◦τ ≥ t > 1.

Accordingly, we have:

1. Let t•τ ≥ τ > 1. Then, since Vt−1 ≥ xL for τ ≥ t > 1 from (29) and (30) , we have L (Vt−1) ≤ 0 · · · ((31 )) for τ ≥ t > 1

from Corollary 12.2.1(a), hence Vt − βVt−1 = 0 for τ ≥ t > 1 from (19.1.35), i.e., Vt = βVt−1 for τ ≥ t > 1, leading to
Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((32 )).

i. Let λmax{0, a − ρ} ≤ s. Then, from (32) and (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for
t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ ∥.
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ii. Let λmax{0, a − ρ} > s. Then, from (32) and (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for

t•τ ≥ τ > 1, i.e., ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N from (4) .

Accordingly S6(1) holds. From (32) with τ = t•τ we have Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((33 )).
2. Let τ > t•τ . Then, since xL > Vt−1 for τ ≥ t > t•τ from (28) , due to Corollary 12.2.1(a) we have L (Vt−1) > 0 · · · ((34 )) for

τ ≥ t > t•τ . Accordingly, from (19.1.35) we have Vt − βVt−1 > 0 for τ ≥ t > t•τ or equivalently Vt > βVt−1 for τ ≥ t > t•τ ,

leading to Vτ > βVτ−1 > · · · > βτ−t•τVt•τ . From this and (33) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1. · · · ((35 )).

Since V1 ≥ βV0 due to (2) and (3) , from (35) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0.

Hence, we have t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, thus the former half of S6(2) holds.

(i) If τ ≥ t > t•τ , then ConducttN from (34) and (19.1.39).

The latter half is shown as follows. First, note here (27) . Then we have:

(ii) If t•τ ≥ t > t◦τ , then Vt−1 = xL from (29) , hence L (Vt−1) = L ( xL ) = 0, hence Skipt△ from (19.1.38), implying that
we have pSKIPt•τ≥t>t◦τ △ (see Figure 7.2.1(p.34) (II).

(iii) If t◦τ ≥ t > 1, then Vt−1 > xL from (30) , hence L (Vt−1) = ((<)) 0‡ from
Lemma 12.2.2(p.80) (d ((e1))); i.e., Skipt△ ((SkiptN )) due to (19.1.38) (((19.1.39))), implying that we have pSKIPt◦τ≥t>1△
((pSKIPt◦τ≥t>1N )).

From the above results we see that the latter half of S6(2) holds.

(c2i2ii) Let V1 = xL . Suppose Vt−1 = xL for all t > 1. Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, we have Vt−βVt−1 = 0
for all t > 1 from (19.1.35(p.151) ), i.e., Vt = βVt−1 for all t > 1, hence Vt = βt−1V1. Then V = limt→∞ Vt = 0 < xK due to (25)

and (26) , which contradicts V ≥ xK in (c2i1). Hence, since Vt−1 is not equal to xL for all t > 1, due to (c2i1) it follows that
there exists t•τ > 1 such that

V1 = V2 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · ,

or equivalently Vt−1 = xL for t•τ ≥ t > 1 and xL > Vt−1 for t > t•τ . Thus, due to Corollary 12.2.1(p.80) (a) we have

L (Vt−1) = L ( xL ) = 0 · · · ((36 )), t•τ ≥ t > 1, L (Vt−1) > 0 · · · ((37 )), t > t•τ .

Accordingly, we have:

1. Let t•τ ≥ τ > 1. Then, from (36) and (19.1.35) we have Vt − βVt−1 = 0 for τ ≥ t > 1 or equivalently Vt = βVt−1 for
τ ≥ t > 1, from which we have Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a− ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for t•τ ≥ τ > 1,
i.e., • dOITdt•τ≥τ>1⟨0⟩ ∥.

ii. Let λβmax{0, a− ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for t•τ ≥ τ > 1,

i.e., ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ ∥. In addition, we have Conduct1N from (4) .

Accordingly, it follows that S7(1) holds.

2. Let τ > t•τ . Then L (Vt−1) > 0 · · · ((38 )) for τ ≥ t > t•τ from (37) , hence due to (19.1.35) we have Vt−βVt−1 > 0 for τ ≥ t > t•τ

or equivalently Vt > βVt−1 for τ ≥ t > t•τ , leading to Vτ > βVτ−1 > · · · > βτ−t•τVt◦ · · · ((39 )). In addition, since Vt−βVt−1 = 0

for t•τ ≥ t > 1 from (36) and (19.1.35), we have Vt = βVt−1 for t•τ ≥ t > 1, leading to Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((40 )).
From (39) and (40) we have Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1. In addition, since V1 ≥ βτV0

from (2) and (3) , we eventually obtain Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0 · · · ((41 )).
Thus t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, hence the former half of S7(2) holds. Then, we have that ConducttN for

τ ≥ t > t•τ due to (38) and (19.1.39(p.151) ). Moreover, we have Skipt△ for t•τ ≥ t > 1 due to (36) and (19.1.38), so that it
follows that we have pSKIPt△ for t•τ ≥ t > 1 (see Figure 7.2.1(p.34) )(II) or equivalently pSKIPt•τ≥t>1△. Hence the latter half of
S7(2) holds.

(c2i2iii) Let V1 < xL . Then Vt−1 < xL for t > 1 due to (c2i1), hence L (Vt−1) > 0 · · · ((42 )) for t > 1 from Corol-

lary 12.2.1(p.80) (a). Accordingly, since L (Vt−1) > 0 · · · ((43 )) for τ ≥ t > 1, we have Vt − βVt−1 > 0 for τ ≥ t > 1 from (19.1.35)

or equivalently Vt > βVt−1 for τ ≥ t > 1, hence Vτ > βVτ−1 > · · · > βτ−1V1. Since V1 ≥ βV0 from (2) and (3) , we have
Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0, hence we have t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. In addition, we have ConducttN

for τ ≥ t > 1 due to (43) and (19.1.39).

(c2i3) Let b ≤ 0 ((κ ≤ 0)) , hence xL ≤ xK · · · ((44 )) from Lemma 12.2.4(p.80) (c ((d))). Then, from (23) and (c2i1) we have

Vt−1 ≥ xK for all t > 1, hence Vt−1 ≥ xL for all t > 1 due to (44) , thus L (Vt−1) ≤ 0 for all t > 1 from
Corollary 12.2.1(p.80) (a). Then, since L (Vt−1) ≤ 0 for τ ≥ t > 1, we have Vt − βVt−1 = 0 for τ ≥ t > 1 from (19.1.35) or
equivalently Vt = βVt−1 for τ ≥ t > 1, hence Vτ = βVτ−1 = · · · = βτ−1V1.

‡If s = 0, then “= 0” , or else “< 0”.
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i. Let λβmax{0, a − ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1, i.e.,

• dOITdτ>1⟨0⟩ ∥.

ii. Let λβmax{0, a − ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1, i.e.,

⃝⃝∗ ndOITτ>1⟨1⟩ ∥. Then Conduct1N from (4) .

(c2ii) Let V1 < 0.

(c2ii1) The same as the proof of (c2i1).

(c2ii2) Let b > 0 ((κ > 0)) , hence xL > xK > 0 · · · ((45 )) from Lemma 12.2.4(p.80) (c ((d))).

(c2ii2i) Let V1 ≥ xL . Then, since Vt−1 ≥ xL for t > 1 due to (c2ii1), we have L (Vt−1) ≤ 0 for t > 1 from Corol-
lary 12.2.1(p.80) (a), hence L (Vt−1) ≤ 0 for τ ≥ t > 1. Thus Vt − βVt−1 = 0 for τ ≥ t > 1 from (19.1.35), i.e., Vt = βVt−1 for
τ ≥ t > 1, so Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a − ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1, i.e.,
dOITτ>1⟨0⟩∥.

ii. Let λβmax{0, a − ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1, i.e.,

⃝⃝∗ ndOITτ>1⟨1⟩ ∥. Then Conduct1N from (4) .

(c2ii2ii) Let V1 < xL . Suppose that there exists t′ > 1 such that xL ≤ Vt−1 for t > t′. Then, since L (Vt−1) ≤ 0
for t > t′ from Corollary 12.2.1(p.80) (a), we have Vt − βVt−1 = 0 for t > t′ due to (19.1.35), hence Vt = βVt−1 for t > t′, so

Vt = βVt−1 = β2Vt−2 = · · · = βt−t′Vt′ . Accordingly V = limt→∞ Vt = 0 < xK due to (25) and (45) , which contradicts V ≥ xK

in (c2ii1), hence it must be that Vt−1 < xL for t > 1. Then, since Vt−1 < xL for τ ≥ t > 1, we have L (Vt−1) > 0 · · · ((46 ))
for τ ≥ t > 1 from Corollary 12.2.1(p.80) (a), hence Vt − βVt−1 > 0 for τ ≥ t > 1 from (19.1.35) or equivalently Vt > βVt−1 for
τ ≥ t > 1, thus Vτ > βVτ−1 > · · · > βτ−1V1. Since V1 ≥ βV0 from (2) and (3) , we have Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0,
hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. From (46) and (19.1.39) we have ConducttN for τ ≥ t > 1.

(c2ii3) Let b ≤ 0 ((κ ≤ 0)) , hence xL ≤ xK · · · ((47 )) from Lemma 12.2.4(p.80) (c ((d))). Then, due to (23) and (c2ii1) we have

Vt−1 > xK for t > 1, hence Vt−1 > xL for t > 1 from (47) , thus L (Vt−1) ≤ 0 for t > 1 from Corollary 12.2.1(p.80) (a).
Accordingly, the assertion is true for the same reason as in the proof of (c2ii2i).

Corollary 19.1.9 Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) Let V1 ≤ xK . Then zt is nondecreasing in t > 0.
(b) Let V1 > xK .

1. Let β = 1 or V1 = 0. Then zt = z(V1) for t > 0.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let V1 > 0. Then zt is nonincreasing in t > 0.

ii. Let V1 < 0. Then zt is nondecreasing in t > 0.

Proof Immediate from Tom 19.1.16(b1,c1i,c2i1,c2ii1) and from (6.2.76(p.25) )
and Lemma 12.1.3(p.73) .

19.1.6.3 Market Restriction

19.1.6.3.1 Positive Restriction

19.1.6.3.1.1 Case of β = 1 and s = 0

� Pom 19.1.9 (A {M:2[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.
(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and pSKIP1 → →•dd /⃝⃝s
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

Proof The same as Tom 19.1.9(p.153) due to Lemma 16.4.1(p.100) .

19.1.6.3.1.2 Case of β < 1 or s > 0

19.1.6.3.1.2.1 Case of ρ ≤ a⋆

� Pom 19.1.10 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0.
(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.
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1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.
i. Let s < λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → →⃝⃝s
ii. Let s ≥ λβT (0). Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗

2. Let λ < 1.
i. Let s ≤ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → →⃝⃝s
ii. Let s > λβT (0). Then S3(p.141) ⃝s N ⃝∗ ∥ is true → →⃝⃝s /⃝⃝∗

ii. Let (λβa− s)/δ > a⋆.

1. Let s ≥ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
2. Let s < λβT (0). Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.18) ).

(a-c2ii) The same as Tom 19.1.10(p.153) (a-c2ii).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c3i1i,c3i2i,c3ii1) of Tom 19.1.10.

(c4-c4ii2) The same as Tom 19.1.10(c3-c3ii2) with κ.

� Pom 19.1.11 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.
(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
(d) Let β < 1 and s > 0.

1. Let s < βµT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
2. Let s ≥ βµT (0). Then • dOITdτ ⟨0⟩ ∥ → →•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.18) ).

(a,b) The same as Tom 19.1.11(p.154) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 19.1.11.

(d-d2) The same as Tom 19.1.11(c1,c2) with κ.

� Pom 19.1.12 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.
2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V as t→∞.
2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ △ where Conductτ≥t>0N → →•dd /⃝⃝s
4. Let xL < ρ. Then S4

sN •∥ pS△ pSN is true → → ⃝⃝s /•dd /
�� ��pS

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V as t→∞.
2. Let s ≥ βµT (0). Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let s < βµT (0).

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ △ where Conductτ≥t>0N → →•dd /⃝⃝s

iii. Let xL < ρ. Then S4
sN •∥ pS△ pSN is true → ⃝⃝s /•dd /

�� ��pS

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V as t→∞.
2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t (τ ≥ t ≥ 0) and converges to a finite V as t→∞.
2. Let s ≥ βµT (0). Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let s < βµT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
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Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.18) ).

(a-a3) The same as Tom 19.1.12(p.154) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. Then, due to (1) it suffices to consider only (b1,b3i-b3iii) of Tom 19.1.12.

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. Then, we have the same as Tom 19.1.12(b1-b3iii) with κ.

(d-d2) Let β < 1 and ρ < 0 and let s = 0. Then, due to (1) it suffices to consider only (c1,c3) of Tom 19.1.12.

(e-e3) Let β < 1 and ρ < 0 and let s > 0. Then, we have the same as Tom 19.1.12(c1-c3) with κ.

19.1.6.3.1.2.2 Case of b ≤ ρ

� Pom 19.1.13 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
4. Let β < 1 and s > 0.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let s > λβT (0). Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.18) ).

(a-c2) The same as Tom 19.1.13(p.154) (a-c2).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c3i) of Tom 19.1.13.

(c4-c4ii) Let β < 1 and s > 0. Then, we have the same as Tom 19.1.13(c3i,c3ii) with κ.

� Pom 19.1.14 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥ → →•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.18) ).

(a,b) The same as Tom 19.1.14(p.155) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 19.1.14.

(d-d2) Let β < 1 and s > 0. Then, we have the same as Tom 19.1.14(c1,c2) with κ.

� Pom 19.1.15 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → →•dd /⃝⃝s
4. Let xL < ρ. Then S4

sN •∥ pS△ pSN is true → → ⃝⃝s /•dd /
�� ��pS

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let s < λβT (0).

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → •dd /⃝⃝s
iii. Let xL < ρ. Then S4

sN •∥ pS△ pSN is true → ⃝⃝s /•dd /
�� ��pS

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
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(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t (τ ≥ t ≥ 0).

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.18) ).

(a-a3) The same as Tom 19.1.15(p.155) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. Then, due to (1) it suffices to consider only (b1,b3i-b3iii) of Tom 19.1.15.

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. Then, we have the same as Tom 19.1.15(b1-b3iii) with κ.

(d,d2) Let β < 1 and ρ < 0 and let s = 0. Then, due to (1) it suffices to consider only (c1,c3) of Tom 19.1.15.

(e-e3) Let β < 1 and ρ < 0 and let s > 0. Then, we have the same as Tom 19.1.15(c1-c3) with κ.

19.1.6.3.1.2.3 Case of a⋆ < ρ < b

� Pom 19.1.16 (A {M:2[P][A]+}) Suppose a > 0. Assume a⋆ ≤ ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1. → •dd /⃝⃝s
(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N → → ⃝⃝s
ii. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N → → ⃝⃝s
iii. Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N → → ⃝⃝s
2. Let s ≥ λβT (0). Then S5

⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

(c) Let V1 > xK .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → →•dd /⃝⃝∗
2. Let β < 1 and s = 0.

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 > xL . Then S6
⃝s N ⃝∗ ∥ •∥ pS△ pSN is true → → ⃝⃝s /•dd /⃝⃝∗ /

�� ��pS

3. Let V1 = xL . Then S7
⃝s N ⃝∗ ∥ •∥ pS△ is true → → ⃝⃝s /•dd /⃝⃝∗ /

�� ��pS

4. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
ii. Let V1 < 0.

1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.
→•dd /⃝⃝∗

3. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N → → ⃝⃝s
3. Let β < 1 and s > 0.

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s < λβT (0).

i. Let V1 > xL . Then S6
⃝s N ⃝∗ ∥ •∥ pS△ pSN is true → →⃝⃝s /•dd /⃝⃝∗ /

�� ��pS

ii. Let V1 = xL . Then S7
⃝s N ⃝∗ ∥ •∥ pS△ is true → →⃝⃝s /•dd /⃝⃝∗ /

�� ��pS

iii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → →⃝⃝s
3. Let s ≥ λβT (0). If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N

→•dd /⃝⃝∗
ii. Let V1 < 0.

1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s < λβT (0).

i. Let V1 ≥ xL . If λβmax{0, a−ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

→•dd /⃝⃝∗
ii. Let V1 < xL . Then ⃝s dOITsτ>⟨τ⟩ N where Conductτ≥t>1N → →⃝⃝s

3. Let s ≥ λβT (0). If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N
→•dd /⃝⃝∗
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Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.18) ).

(a-b3i) The same as Tom 19.1.16(p.157) (a-b3i).

(b3ii) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (b3ii1) of Tom 19.1.16.

(b3iii-b3iii2) Let β < 1 and s > 0. Then, the two assertions are immediate from
Tom 19.1.16(b3ii1,b3ii2) with κ.

(c-c1ii) The same as Tom 19.1.16(c-c1ii).

(c2-c2i4) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i-c2i1,c2i2i-c2i2iii) of Tom 19.1.16.

(c2ii-c2ii3) Due to (1) it suffices to consider only (c2ii,c2ii1,c2ii2i,c2ii2ii) of Tom 19.1.16.

(c3-c3i3) Let β < 1 and s > 0. Then, we have the same as Tom 19.1.16(c2-c2i1,c2i2i-c2i2iii) with κ.

(c3ii-c3ii3) We have the same as Tom 19.1.16(c2ii-c2ii2ii) with κ.

19.1.6.3.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.1.6.3.3 Negative Restriction

19.1.6.3.3.1 Case of β = 1 and s = 0

� Nem 19.1.5 (A {M:2[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and pSKIP1 → →•dd /⃝⃝s
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

Proof The same as Tom 19.1.9(p.153) due to Lemma 16.4.1(p.100) .

19.1.6.3.3.2 Case of β < 1 or s > 0

19.1.6.3.3.2.1 Case of ρ ≤ a⋆

� Nem 19.1.6 (A {M:2[P][A]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1 and s = 0. Then we have S3(p.141) ⃝s N ⃝∗ ∥ .

4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
2. Let λ < 1. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

ii. Let (λβa− s)/δ > a⋆. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)) and κ = −s · · · ((3)) from Lemma 12.2.6(p.81) (a). Then a⋆ < 0 · · · ((4)) due to

Lemma 12.2.1(p.77) (n) and (2) .

(a,c2ii) The same as Tom 19.1.10(p.153) (a,c2ii) due to Lemma 16.4.1(p.100) .

(c3) Let β < 1 and s = 0. Assume (λβa − s)/δ ≤ a⋆. Then, since λβa/δ ≤ a⋆, we have λβa ≤ δa⋆ due to (9.2.2 (1) (p.42) ),
hence λβa ≤ δa⋆ ≤ λa⋆ due to (9.2.2 (1) (p.42) ) and (4) , so that βa ≤ a⋆, which contradicts [19(p.101) ]. Thus, it must be that
(λβa− s)/δ > a⋆. From this it suffices to consider only (c3ii2) of Tom 19.1.10(p.153) .

(c4-c4ii) Let β < 1 and s > 0. Then κ < 0 due to (3) , hence it suffices to consider only (c3i1ii,c3i2ii,c3ii2) of Tom 19.1.10
with κ.
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� Nem 19.1.7 (A {M:2[P][A]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥ → →•dd
Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a) The same as Tom 19.1.11(p.154) (a).

(b) Let β = 1. Then, the assertion is the same as Tom 19.1.11(b). Let β < 1. If s = 0, then due to (1) it suffices to consider
only (c2) of Tom 19.1.11 and if s > 0, then κ < 0 due to (2) , hence it suffices to consider only (c2) of Tom 19.1.11; accordingly,
whether s = 0 or s > 0, we have the same result. Thus, whether β = 1 or β < 1, it eventually follows that we have the same
result.

� Nem 19.1.8 (A {M:2[P][A]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have • dOITd1⟨0⟩ ∥ → →•dd
(c) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have • dOITdτ>0⟨0⟩ ∥ → →•dd
Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a-a3) The same as Tom 19.1.12(p.154) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Tom 19.1.12(b1).

(b2) If s = 0, it suffices to consider only (b2) of Tom 19.1.12 and if s > 0, then κ < 0 due to (2) , hence it suffices to consider
only (b2) of Tom 19.1.12. Accordingly, whether s = 0 or s > 0, it eventually follows that we have the same results.

(c) Let β < 1 and ρ < 0.

(c1) The same as Tom 19.1.12(c1).

(c2) If s = 0, it suffices to consider only (c2) of Tom 19.1.12 and if s > 0, then κ < 0 due to (2) , hence it suffices to consider
only (c2) of Tom 19.1.12. Accordingly, whether s = 0 or s > 0, it eventually follows that we have the same results.

19.1.6.3.3.2.2 Case of b ≤ ρ

� Nem 19.1.9 (A {M:2[P][A]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1. → ⃝⃝s
2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a-c2) The same as Tom 19.1.13(p.154) (a-c2).

(c3) Let β < 1. If s = 0, it suffices to consider only (c3ii) of Tom 19.1.13 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (c3ii) of Tom 19.1.13. Accordingly, whether s = 0 or s > 0, it eventually follows that we have the same
results.

� Nem 19.1.10 (A {M:2[P][A]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥ → →•dd
Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a) The same as Tom 19.1.14(p.155) (a).

(b) First, let β = 1. Then, the assertion is the same as Tom 19.1.14(b). Next, let β < 1. If s = 0, then it suffices to consider
only (c2) of Tom 19.1.14 and if s > 0, then κ < 0 due to (2) , hence it suffices to consider only (c2) of Tom 19.1.14. Thus, whether
s = 0 or s > 0, we have the same results. Accordingly, whether β = 1 or β < 1, it eventually follows that we have the same
result.
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� Nem 19.1.11 (A {M:2[P][A]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.
2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.
2. We have • dOITd1⟨0⟩ ∥ → →•dd

(c) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.
2. We have Then • dOITdτ>0⟨0⟩ ∥ → →•dd

Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a-a3) The same as Tom 19.1.15(p.155) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Tom 19.1.15(b1).

(b2) If s = 0, then it suffices to consider only (b2) of Tom 19.1.15 and if s > 0, then κ < 0 due to (2) , hence it suffices to
consider only (b2) of Tom 19.1.15. Thus, whether s = 0 or s > 0, it eventually follows that we have the same result.

(c) Let β < 1 and ρ < 0.

(c1) The same as Tom 19.1.15(c1).

(c2) If s = 0, then it suffices to consider only (c2) of Tom 19.1.15 and if s > 0, then κ < 0 due to (2) , hence it suffices to
consider only (c2) of Tom 19.1.15. Thus, whether s = 0 or s > 0, it eventually follows that we have the same result.

19.1.6.3.3.2.3 Case of a⋆ < ρ < b

� Nem 19.1.12 (A {M:2[P][A]−}) Suppose b < 0. Assume a⋆ ≤ ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1. →•dd /⃝⃝s
(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.
2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N

→•dd /⃝⃝∗
3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N → → ⃝⃝s
ii. Let β < 1. Then S5

⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗
(c) Let V1 > xK .

1. Let β = 1 or V1 = 0. Then:
i. Vt = V1 for t > 0.
ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N →•dd /⃝⃝∗

2. Let β < 1.
i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.
2. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N →•dd /⃝⃝∗

ii. Let V1 < 0.
1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.
2. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N →•dd /⃝⃝∗

Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a-b3i) The same as Tom 19.1.16(p.157) (a-b3i).

(b3ii) Let β < 1. If s = 0, then due to (1) it suffices to consider only (b3ii2) of Tom 19.1.16(p.157) and if s > 0, then κ < 0
due to (2) , hence it suffices to consider only (b3ii2) of Tom 19.1.16(p.157) with κ. Accordingly, whether s = 0 or s > 0, we have
the same result.

(c) Let V1 > xK .

(c1-c1ii) The same as Tom 19.1.16(p.157) (c1-c1ii).

(c2) Let β < 1.

(c2i) Let V1 > 0.

(c2i1) The same as Tom 19.1.16(p.157) (c2i1).

(c2i2) If s = 0, then it suffices to consider only (c2i3) of Tom 19.1.16 and if s > 0, then κ < 0 due to (2) , hence it suffices
to consider only (c2i3) of Tom 19.1.16. Consequently, whether s = 0 or s > 0, we have the same result.

(c2ii) Let V1 < 0.

(c2ii1) The same as Tom 19.1.16(p.157) (c2ii1).

(c2ii2) If s = 0, then it suffices to consider only (c2ii3) of Tom 19.1.16 and if s > 0, then κ < 0 due to (2) , hence it suffices
to consider only (c2ii3) of Tom 19.1.16. Consequently, whether s = 0 or s > 0, we have the same result.
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19.1.7 M̃:2[P][A]
19.1.7.1 Preliminary

Due to (19.1.15(p.139) ) we see that Theorem 19.1.3(p.137) holds, hence A {M̃:2[P][A]} can be obtained by applying SP→P̃ (see
(15.3.2(p.98) )) to A {M:2[P][A]}.

19.1.7.2 Analysis

19.1.7.2.1 Case of β = 1 and s = 0

� Tom 19.1.17 (A {M̃:2[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.
(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.
(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and pSKIP1△.

2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.1.9(p.153) .

Corollary 19.1.10 Let β = 1 and s = 0. Then zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.1.17(a), (6.2.90(p.26) ), and Lemma A3.3(p.278) .

19.1.7.2.2 Case of β < 1 or s > 0

19.1.7.2.2.1 Case of ρ ≥ b⋆†

� Tom 19.1.18 (A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.
2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)).
i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1.
i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a ≥ 0 ((κ̃ ≥ 0)). Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1.

i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)). Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

ii. Let (λβb+ s)/δ < b⋆.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.1.10(p.153) .

Corollary 19.1.11 Assume ρ ≥ b⋆, let β < 1 or s > 0, and let ρ > x
K̃ . Then zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.1.18(a), (6.2.90(p.26) ), and Lemma A3.3(p.278) .

� Tom 19.1.19 (A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, for a given starting time τ > 0:

(a) Vt is nonincreasing in t ≥ 0.
(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.
(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

Proof by symmetry Clear from applying SP→P̃ to Tom 19.1.11(p.154) .

†The condition of ρ ≥ b⋆ is what results from applying SP→P̃ to the condition of ρ ≤ a⋆in Section 19.1.6.2.2.1(p.153) .
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Corollary 19.1.12 Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.1.19(a), (6.2.90(p.26) ), and Lemma A3.3(p.278) .

� Tom 19.1.20 (A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ where ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let ρ < x
L̃ . Then S4

sN •∥ pS△ pSN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.1.12(p.154) .

Corollary 19.1.13 Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0. Then zt is constant in t (zt = z̃(ρ) for t ≥ 0).

(b) Let β < 1 and ρ > 0. Then zt is nondecreasing in t ≥ 0 for any s ≥ 0.

(c) Let β < 1 and ρ < 0. Then zt is nonincreasing in t ≥ 0 for any s ≥ 0.

Proof by symmetry Evident from Tom 19.1.20(a1,b1,c1), (6.2.90(p.26) ), and
Lemma A3.3(p.278) .

19.1.7.2.2.2 Case of a ≥ ρ†

� Tom 19.1.21 (A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)) . Then S3(p.141) ⃝s N ⃝∗ ∥ is true.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.1.13(p.154) .

Corollary 19.1.14 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ . Then zt is nonincreasing in t ≥ 0.

Proof Evident from Tom 19.1.21(a), (6.2.90(p.26) ), and Lemma A3.3(p.278) .

� Tom 19.1.22 (A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.1.14(p.155) .

Corollary 19.1.15 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ . Then zt is nonincreasing in t ≥ 0.

Proof Evident from Tom 19.1.22(a), (6.2.90(p.26) ), and Lemma A3.3(p.278) .

†The condition of a ≥ ρ is what results from applying SP→P̃ to the condition of b ≤ ρ in Section 19.1.6.2.2.2(p.154) .
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� Tom 19.1.23 (A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ where ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let x
L̃ > ρ. Then S4

sN •∥ pS△ pSN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.1.15(p.155) .

Corollary 19.1.16 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0. Then zt = z̃(ρ) for t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)). Then zt is nondecreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)). Then zt is nonincreasing in t ≥ 0.

Proof Evident from Tom 19.1.23(a1,b1,c1), (6.2.90(p.26) ), and
Lemma A3.3(p.278) .

19.1.7.2.2.3 Case of b⋆ > ρ > a†

Let us here note that (19.1.49(p.155) ) changes as follows.

V1 = min{λβmin{0, b− ρ}+ s, 0}+ βρ.† (19.1.50)

� Tom 19.1.24 (A {M̃:2[P][A]}) Assume b⋆ > ρ > a. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . Then, if λβmin{0, ρ− b} ≥ −s, we have • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 > x
L̃ .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then S5
⃝s N ⃝∗ ∥ is true.

(c) Let V1 < x
K̃ .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) .†

i. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as τ →∞.

†The condition of b⋆ > ρ > a is what results from applying SP→P̃ to the condition of a⋆ < ρ < b in Section 19.1.6.2.2.3(p.155) .
†

−V̂1 = max{λβmax{0,−â + ρ̂} − s, 0} − βρ̂ (apply the reflection to (19.1.49(p.155) ))

V̂1 = −max{λβmax{0,−â + ρ̂} − s, 0}+ βρ̂ (multiply the above by −1)

= min{−λβmax{0,−â + ρ̂}+ s, 0}+ βρ̂ (arrangement the above)

= min{λβmin{0, â− ρ̂}+ s, 0}+ βρ̂ (arrangement the above)

V̂1 = min{λβmin{0, b̌− ρ̂}+ s, 0}+ βρ̂ (apply IR to the above)

V̂1 = min{λβmin{0, b− ρ̂}+ s, 0}+ βρ̂ (apply CR to the above)

V1 = min{λβmin{0, b− ρ}+ s, 0}+ βρ (remove the hat symbol ˆ)
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2. Let a < 0 ((κ̃ < 0)) . Then

i. Let V1 < x
L̃ . Then S6

⃝s N •∥ ⃝∗ ∥ pS△ pSN is true.

ii. Let V1 = x
L̃ . Then S7

⃝s N •∥ ⃝∗ ∥ pS△ is true.

iii. Let V1 > x
L̃ . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ−b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 > 0.

1. Then Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as τ →∞.

2. Let a < 0 ((κ̃ < 0)) . Then

i. Let V1 ≤ x
L̃ . If λβmin{0, ρ − b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where

Conduct1N.

ii. Let V1 > x
L̃ . Then ⃝s dOITsτ>⟨τ⟩ N where Conductτ≥t>1N.

3. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ−b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.1.16(p.157) .

Corollary 19.1.17 Assume b⋆ > ρ > a. Let β < 1 or s > 0:

(a) Let V1 ≥ x
K̃ . Then zt is nonincreasing in t > 0.

(b) Let V1 < x
K̃ . Then

1. Let β = 1 or V1 = 0. Then zt is constant in t > 0 (zt = z̃(V1) for t > 0).
2. Let β < 1.

i. Let V1 < 0. Then zt is nondecreasing in t > 0 for any s ≥ 0.

ii. Let V1 > 0. Then zt is nonincreasing in t > 0 for any s ≥ 0.

Proof Immediate from Tom 19.1.24(b1,c1i,c2i1,c2ii1), (6.2.90(p.26) ), and
Lemma A3.3(p.278) .

19.1.7.3 Market Restriction

19.1.7.3.1 Positive Restriction

19.1.7.3.1.1 Case of β = 1 and s = 0

� Pom 19.1.17 (A {M̃:2[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.
(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and pSKIP1△ → →•dd /⃝⃝s /
�� ��pS

2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N. → → ⃝⃝s

Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.5(p.165) (see (17.3.7(p.116) )).

Direct proof The same as Tom 19.1.17(p.168) due to Lemma 16.4.1(p.100) .

19.1.7.3.1.2 Case of β < 1 or s > 0

19.1.7.3.1.2.1 Case of ρ ≥ b⋆

� Pom 19.1.18 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N and Conduct1N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1 and s > 0. Then we have S3(p.141) ⃝s N ⃝∗ ∥ .
4. Let β < 1 and s > 0.

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N → → ⃝⃝∗
2. Let λ < 1. Then S3(p.141) ⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗

†See Remark 19.1.2(p.157) .
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ii. Let (λβb+ s)/δ < b⋆. Then S3(p.141) ⃝s N ⃝∗ ∥ is true. → → ⃝⃝s /⃝⃝∗

Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.6(p.165) (see (17.3.7(p.116) )).

Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)) and b⋆ > 0 · · · ((3)) from Lemma 13.6.1(p.89) (n) and (2) . Then we

have κ̃ = s · · · ((4)) from Lemma 13.6.6(p.90) (a).

(a-c2ii) The same as Tom 19.1.18(p.168) (a-c2ii).

(c3) Let β < 1 and s = 0. Assume (λβb+ s)/δ ≥ b⋆. Then since λβb/δ ≥ b⋆, we have λβb ≥ δb⋆ from (9.2.2 (1) (p.42) ), hence
λβb ≥ δb⋆ ≥ λb⋆ due to (3) , so that βb ≥ b⋆, which contradicts [7(p.101) ]. Thus it must be that (λβb + s)/δ < b⋆. From this it
suffices to consider only (c3ii2) of Tom 19.1.18(p.168) .

(c4-c4ii) Let β < 1 and s > 0. Then κ > 0 due (2) , hence it suffices to consider only (c3i1ii,c3i2ii,c3ii2) of Tom 19.1.18(p.168) ;
accordingly, whether s = 0 or s > 0, we have the same result.

� Pom 19.1.19 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.
(b) We have • dOITdτ>0⟨0⟩ ∥. → →•dd
Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.7(p.166) (see
(17.3.7(p.116) )).

Direct proof Suppose a > 0. Then κ̃ = s · · · ((1)) from Lemma 13.6.6(p.90) (a).

(a) The same as Tom 19.1.19(p.168) (a).

(b) Let β = 1. Then, we have • dOITdτ>0⟨0⟩ ∥ from Tom 19.1.19(p.168) (b). Let β < 1. Then, if s = 0, it suffices to consider

only (c2) of Tom 19.1.19 and if s > 0, then κ̃ > 0 due to (1) , hence it suffices to consider only (c2) of Tom 19.1.19; accordingly,
whether s = 0 or s > 0, we have the same results. Therefore, whether β = 1 or β < 1, we have the same result.

� Pom 19.1.20 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.
2. Let x

L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
3. Let x

L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
(b) Let β < 1 and ρ > 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and ρ < 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥. → →•dd
Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.8(p.166) (see
(17.3.7(p.116) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a).

(a-a3) The same as Tom 19.1.20(p.169) (a-a3).

(b-b2) Let β < 1 and ρ > 0. First, we have the same as Pom 19.1.20(b1). Next, if s = 0, then due to (1) it suffices to
consider only (b2) of Tom 19.1.20 and if s > 0, then since κ̃ > 0 from (2) , it suffices to consider only (b2) of Tom 19.1.20. Thus,
whether s = 0 or s > 0, we have the same result.

(c-c2) Let β < 1 and ρ < 0. First, we have the same as Pom 19.1.20(c1). Next, if s = 0, then due to (1) it suffices to consider
only (c2) of Tom 19.1.20 and if s > 0, then since κ̃ > 0 from (2) , it suffices to consider only (c2) of Tom 19.1.20. Thus, whether
s = 0 or s > 0, we have the same result.

19.1.7.3.1.2.2 Case of a ≥ ρ

� Pom 19.1.21 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s
3. Let β < 1. Then S3(p.141) ⃝s N ⃝∗ ∥ is true. → → ⃝⃝s /⃝⃝∗

Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.9(p.166) (see
(17.3.7(p.116) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a).

(a-c2) The same as Tom 19.1.21(p.169) (a-c2).

(c3) Let β < 1. Then, if s = 0, then due to (1) it suffices to consider only (c3ii) of Tom 19.1.21 and if s > 0, then κ̃ > 0 due
to (2) , hence it suffices to consider only (c3ii) of Tom 19.1.21. Thus, whether s = 0 or s > 0, we have the same result.
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� Pom 19.1.22 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a > ρ. Let β < 1 or s > 0, and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥. → →•dd
Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.10(p.166) (see
(19.1.21(p.140) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a).

(a) The same as Tom 19.1.22(p.169) (a).

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ from Tom 19.1.22(p.169) (b). Let β < 1. Then, if s = 0, then due to (1) it suffices to

consider only (c2) of Tom 19.1.22, and if s > 0, then κ̃ ≥ 0 due to (2) , hence it suffices to consider only (c2) of Tom 19.1.22 with
κ̃; accordingly, whether s = 0 or s > 0, we have • dOITdτ>0⟨0⟩ ∥. Thus, whether β = 1 or β < 1, we have • dOITdτ>0⟨0⟩ ∥.

� Pom 19.1.23 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a > ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N → → ⃝⃝s

(b) Let β < 1 and ρ > 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and ρ < 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥. → →•dd
Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.11(p.167) (see
(17.3.7(p.116) )).

Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)). Then κ̃ = s · · · ((3)) from Lemma 13.6.6(p.90) (a).

(a-a3) The same as Tom 19.1.23(p.170) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Pom 19.1.23(b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 19.1.23 and if s > 0, then κ̃ > 0 from (3) , hence it
suffices to consider only (b2) of Tom 19.1.23. Thus, whether s = 0 or s > 0, we have the same result.

(c1) The same as Pom c1(b1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 19.1.23 and if s > 0, then κ̃ > 0 from (3) , hence it
suffices to consider only (c2) of Tom 19.1.23. Thus, whether s = 0 or s > 0, we have the same result.

19.1.7.3.1.2.3 Case of b⋆ > ρ > b

� Pom 19.1.24 (A {M̃:2[P][A]+}) Suppose a > 0. Assume b⋆ > ρ > b. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 → →•dd /⃝⃝s
(b) Let V1 ≥ x

K̃ .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . Then, if λβmax{0, ρ− b} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N.

→•dd /⃝⃝∗
3. Let V1 > x

L̃ .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N → → ⃝⃝s
ii. Let β < 1. Then S5

⃝s N ⃝∗ ∥ is true → → ⃝⃝s /⃝⃝∗
(c) Let V1 < x

K̃ .

1. Let β = 1 or V1 = 0. Then:

i. Vt = V1 for t > 0.

ii. If λmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N. →•dd /⃝⃝∗
2. Let β < 1 and s = 0 ((s > 0)) .†

i. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N. →•dd /⃝⃝∗
ii. Let V1 > 0.

1. Then Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞ where V = x

K̃ if the immediate
initiation is strictly optimal for any τ ≫ 0.

2. If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ where Conduct1N →•dd /⃝⃝∗
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Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.1.12(p.167) (see
(17.3.7(p.116) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a).

(a-b3i) The same as Tom 19.1.24(p.170) (a-b3i).

(b3ii) Let β < 1. If s = 0, due to (1) it suffices to consider only (b3ii2) of Tom 19.1.24 and if s > 0, then κ̃ > 0 due to (2) ,
hence it suffices to consider only (b3ii2) of Tom 19.1.24. Accordingly, whether s = 0 or s > 0, we have the same result.

(c) Let V1 < x
K̃ .

(c1-c1ii) The same as Tom 19.1.24(c1-c1ii).

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i,c2i1) The same as Tom 19.1.24(c2i,c2i1).

(c2i2) The same as Tom 19.1.24(p.170) (20.2.3).

(c2ii,c2ii1) The same as Tom 19.1.24(p.170) (c2ii,c2ii1).

(c2ii2) If s = 0, then due to (1) it suffices to consider only (c2ii3) of Tom 19.1.24 and if s > 0, then κ̃ > 0 due to (2) , hence
t suffices to consider only (c2ii3) of Tom 19.1.24. Thus, whether s = 0 or s > 0, we have the same result.

19.1.7.3.1.2.4 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.1.7.3.1.2.5 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).

19.1.8 Numerical Calculation

Numerical Example 19.1.1 (A {M:2[R][A]+} [019(1)])

This is the example for pSN (pSKIPN) of S4
sN •∥ pS△ pSN in Pom 19.1.4(p.147) (c3iii) in which a > 0, ρ > xK , β < 1, ρ > 0,

s > 0, and xL < ρ. As an example let a = 0.01, b = 1.00, λ = 0.7, β = 0.98, s = 0.1, and ρ = 0.5†where xL = 0.462767
and xK = 0.439640. The graph below is for Itτ = βτ−tVt, τ = 1, 2, · · · , 15 and t = 0, 1, · · · , τ , where • represents the optimal-
initiating-time OIT for each τ = 1, 2, · · · , 15 (see t∗τ - column in the table below).

1. Since ∆βV1 = ∆βV2 = ∆βV3 = ∆βV4 = 0 (see ∆βVt-column in the table below), we have V4 = βV3, V3 = βV2, V2 = βV1, and
V1 = βV0, implying that it becomes indifferent to skip the search up to the deadline td = 0 on t = 4, 3, 2, 1 (see Preference
Rule 7.2.1(p.35) ), i.e., • dOITdτ=4,3,2,1⟨0⟩ N. On the other hand, since L (Vt−1) < 0 for 1 ≤ t ≤ 4 (see L (Vt−1)-column in the

table below), it follows that it is strictly optimal to skip the search for 1 ≤ t ≤ τ = 4, i.e., • dOITdτ=4,3,2,1⟨0⟩ N. Although
the above two results “indifferent” and “strictly optimal” seem to contradict each other at a glance, it is what is caused by
the jumble of intuition and theory (see Alice 3(p.36) ).

2. Each of the graphs for τ = 5, 6, · · · , 15 shows that the optimal-initiating-time is strictly, i.e., ⃝s dOITs5≤τ≤15⟨τ⟩ N, meaning
that the immediate initiation is strictly optimal and that conducting the search is strictly optimal at time t = 5, 6, · · · , 15
(ConductN) and skipping the search becomes strictly optimal at time t = 4, 3, 2, 1 after that (see L (Vt−1)-column in the table
below), implying that the strictly-posterior-skip-of search (pSKIPN (see Remark 7.2.1(p.34) )) occurs.
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∆βVt = Vt − βVt−1 [019(1)Data.DAT]

t Vt ∆βVt t∗τ L (Vτ−1)

0 0.5000000
1 0.4900000 0.0000000 0 −0.0133838 (pSKIPN )
2 0.4802000 0.0000000 0 −0.0098846 (pSKIPN )
3 0.4705960 0.0000000 0 −0.0063880 (pSKIPN )
4 0.4611841 0.0000000 0 −0.0028969 (pSKIPN )

5 0.4525469 +0.0005865 5 +0.0005865 (ConductN)
6 0.4473331 +0.0038371 6 +0.0038371 (ConductN)
7 0.4442109 +0.0058244 7 +0.0058244 (ConductN)
8 0.4423501 +0.0070235 8 +0.0070235 (ConductN)
9 0.4412444 +0.0077413 9 +0.0077413 (ConductN)
10 0.4405885 +0.0081690 10 +0.0081690 (ConductN)
11 0.4401998 +0.0084231 11 +0.0084231 (ConductN)
12 0.4399696 +0.0085738 12 +0.0085738 (ConductN)
13 0.4398333 +0.0086631 13 +0.0086631 (ConductN)
14 0.4397527 +0.0087160 14 +0.0087160 (ConductN)
15 0.4397049 +0.0087473 15 +0.0087473 (ConductN)

Figure 19.1.1: Graphs of Itτ = βτ−tVt (15 ≥ τ > 1, τ ≥ t > 0)

†See Remark 19.1.2(p.157) .
†Note that a = 0.01 > 0, ρ = 0.5 > 0, β = 0.98 < 1, and s = 0.1 > 0. In addition, since µ = (1.00 + 0.01)/2 = 0.505, we have

λβµ = 0.34643 > 0.1 = s. Furthermore, we have xL = 0.4627674 < 0.5 = ρ. Thus the condition of the assertion is satisfied.
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19.1.9 Conclusion 4 (Search-Allowed-Model 2)

C1 Monotonicity
On the total market F we have:

a. The optimal reservation price Vt in M:2[R][A] is nondecreasing Na , constant ∥a , or nonincreasing Ha .
b. The optimal reservation price Vt in M̃:2[R][A] is nondecreasing Nb , constant ∥b , or nonincreasing Hb .
c. The optimal price zt in M:2[P][A] is nondecreasing Nc , constant ∥c , or nonincreasing Hc .
d. The optimal price zt in M̃:2[P][A] is nondecreasing Nd , constant ∥d , or nonincreasing Hd .

· Na ← Tom’s 19.1.1(p.140) (a), 19.1.2(p.141) (a), 19.1.3(p.143) (a), 19.1.4(p.144) (c1).
∥a ← Tom 19.1.4(p.144) (a1)).
Ha ← Tom’s 19.1.4(p.144) (b1).

· Nb ← Tom 19.1.8(p.149) (b1).
∥b ← Tom 19.1.8(p.149) (a1).

Hb ← Tom’s 19.1.5(p.149) (a), 19.1.6(p.149) (a), 19.1.7(p.149) (a), 19.1.8(p.149) (c1).

· Nc ← Corollaries 19.1.2(p.153) , 19.1.3(p.154) , 19.1.4(p.154) ,19.1.5(p.154) (c), 19.1.6(p.155) , 19.1.7(p.155) , 19.1.8(p.155) (c), 19.1.9(p.161) (a,b2ii).
∥c ← Corollary 19.1.5(p.154) (a), 19.1.8(p.155) (a), 19.1.9(p.161) (b1).
Hc ← Corollaries 19.1.5(p.154) (b), 19.1.8(p.155) (b), 19.1.9(p.161) (b2i).

· Nd ← Corollaries 19.1.13(p.169) (b), 19.1.16(p.170) (b),19.1.17(p.171) (b2i).
∥d ← Corollaries 19.1.16(p.170) (a), 19.1.17(p.171) (b1).

Hd ← Corollaries 19.1.10(p.168) , 19.1.11(p.168) , 19.1.12(p.169) , 19.1.13(p.169) (c), 19.1.14(p.169) , 19.1.15(p.169) , 19.1.16(p.170) (c), 19.1.17(p.171) (a),b2ii).

C2 Inheritance and Collapse
On the positive market F+ we have:

a. Symmetry

1. Let β = 1 and s = 0. Then, the symmetry is inherited (∼ ) in whether R-model or P-model where

Pom 19.1.1(p.146) ∼ Pom 19.1.5(p.150) (R-model),
Pom 19.1.9(p.161) ∼ Pom 19.1.17(p.171) (P-model).

2. Let β < 1 or s > 0. Then, the symmetry collapses ( |∼ ) in whether R-model or P-model where

Pom 19.1.2(p.146) |∼ Pom 19.1.6(p.150) (R-model),
Pom 19.1.3(p.146) |∼ Pom 19.1.7(p.150) (R-model),
Pom 19.1.4(p.147) |∼ Pom 19.1.8(p.151) (R-model),

Pom 19.1.10(p.161) |∼ Pom 19.1.18(p.171) (P-model),
Pom 19.1.11(p.162) |∼ Pom 19.1.19(p.172) (P-model),
Pom 19.1.12(p.162) |∼ Pom 19.1.20(p.172) (P-model),
Pom 19.1.13(p.163) |∼ Pom 19.1.21(p.172) (P-model),
Pom 19.1.14(p.163) |∼ Pom 19.1.22(p.173) (P-model),
Pom 19.1.15(p.163) |∼ Pom 19.1.23(p.173) (P-model),
Pom 19.1.16(p.164) |∼ Pom 19.1.24(p.173) (P-model).

b. Analogy

For whether “β = 1 and s = 0” or “β < 1 or s > 0”, the analogy collapses ( ◃▹| ) in whether S-model or B-model where

Pom 19.1.1(p.146) ◃▹| Pom 19.1.9(p.161) (S-model),
Pom 19.1.5(p.150) ◃▹| Pom 19.1.17(p.171) (B-model),
Pom 19.1.2(p.146) ◃▹| Pom 19.1.10(p.161) (S-model),
Pom 19.1.6(p.150) ◃▹| Pom 19.1.18(p.171) (B-model), .

C3 Occurrence of ⃝⃝s , ⃝⃝∗ , and•dd
On the positive market F+ we have:

a. Let β = 1 and s = 0. Then, from

Pom 19.1.1(p.146) , Pom 19.1.5(p.150) , Pom 19.1.9(p.161) , Pom 19.1.17(p.171) ,

we have the following table:

Table 19.1.1: ⃝⃝s , ⃝⃝∗ , and•dd on F+ (β = 1 and s = 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △

⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥

⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△

⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N

• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△

• dOITdτ ⟨0⟩ N •ddN
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1. What is amazing is here that, even in the most simple case “β = 1 and s = 0”, the deadline-falling•dd occurs
in all of quadruple-asset-trading models.

b. Let β < 1 or s > 0. Then, from

Pom 19.1.2(p.146) , Pom 19.1.3(p.146) , Pom 19.1.4(p.147) , Pom 19.1.5(p.150) , Pom 19.1.6(p.150) , Pom 19.1.7(p.150) , Pom 19.1.8(p.151) ,

Pom 19.1.10(p.161) , Pom 19.1.11(p.162) , Pom 19.1.12(p.162) , Pom 19.1.13(p.163) , Pom 19.1.14(p.163) , Pom 19.1.15(p.163) , Pom 19.1.16(p.164) ,

Pom 19.1.19(p.172) , Pom 19.1.20(p.172) , Pom 19.1.21(p.172) , Pom 19.1.22(p.173) , Pom 19.1.23(p.173) , Pom 19.1.24(p.173) ,

we have the following table:

Table 19.1.2: ⃝⃝s , ⃝⃝∗ , and•dd on F+ (β < or s > 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △

⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥ ◦ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△

⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N

• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△

• dOITdτ ⟨0⟩ N •ddN

1. In addition to ⃝⃝s and•dd , the non-degenerate OIT ⃝⃝∗ occurs in all of quadruple-asset-trading models.

c. The table below is the list of percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and•dd that appear in
Sections 19.1.6.3(p.161) and 19.1.7.3(p.171) .

Table 19.1.3: Percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and•dd on F+

ratio (total) ⃝⃝s ⃝⃝∗ •dd
100% (249) 47% (117) 19% (47) 34% (85)

C4 Posterior-skip-of-search
On the positive market F+ we have:

From Pom’s 19.1.4(p.147) , 19.1.12(p.162) , 19.1.15(p.163) , and 19.1.16(p.164) , if β < 1 or s > 0, we have the following table:

Table 19.1.4: Posterior-skip-of-search (β < 1 or s > 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

pSKIPt△
�� ��pS ◦ ◦

pSKIPtN
�� ��pS ◦ ◦

a. The posterior-skip-of-search pSKIPt occurs only in M:2[R][A]+ and M:2[P][A]+ which are both selling models. What is
amazing is here is that pSKIPtN can occurs.

C5 Diagonal symmetry

Exercise 19.1.1 Confirm by yourself that the following relations hold in fact.

Pom 19.1.5(p.150) ∼ Nem 19.1.1(p.147) (R-model),

Pom 19.1.6(p.150) ∼ Nem 19.1.2(p.147) (R-model),

Pom 19.1.7(p.150) ∼ Nem 19.1.3(p.148) (R-model),

Pom 19.1.8(p.151) ∼ Nem 19.1.4(p.148) (R-model).

Pom 19.1.17(p.171) ∼ Nem 19.1.5(p.165) (P-model),

Pom 19.1.18(p.171) ∼ Nem 19.1.6(p.165) (P-model),

Pom 19.1.19(p.172) ∼ Nem 19.1.7(p.166) (P-model),

Pom 19.1.20(p.172) ∼ Nem 19.1.8(p.166) (P-model),

Pom 19.1.21(p.172) ∼ Nem 19.1.9(p.166) (P-model),

Pom 19.1.22(p.173) ∼ Nem 19.1.10(p.166) (P-model),

Pom 19.1.23(p.173) ∼ Nem 19.1.11(p.167) (P-model),

Pom 19.1.24(p.173) ∼ Nem 19.1.12(p.167) (P-model).

a. The diagonal symmetry holds in whether R-model or P-model.
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19.2 Search-Enforced-Model 2: Q{M:2[E]} = {M:2[R][E], M̃:2[R][E],M:2[P][E], M̃:2[P][E]}

19.2.1 Theorems

As ones corresponding to Theorems 18.2.1(p.122) , 18.2.2, 18.2.3, and 18.2.4, let us herein consider the following four theorems:

Theorem 19.2.1 (symmetry[R→ R])) Let A {M:2[R][E]} holds on P ×F . Then A {M̃:2[R][E]} holds on P ×F where

A {M̃:2[R][E]} = SR→R̃[A {M:2[R][E]}]. (19.2.1)

Theorem 19.2.2 (analogy[R→ P]) Let A {M:2[R][E]} holds on P ×F . Then A {M:2[P][E]} holds on P ×F where

A {M:2[P][E]} = AR→P[A {M:2[R][E]}]. (19.2.2)

Theorem 19.2.3 (symmetry[P→ P]) Let A {M:2[P][E]} holds on P ×F . Then A {M̃:2[P][E]} holds on P ×F where

A {M̃:2[P][E]} = SP→P̃[A {M:2[P][E]}]. (19.2.3)

Theorem 19.2.4 (analogy[R→ P]) Let A {M̃:2[R][E]} holds on P ×F . Then A {M̃:2[P][E]} holds on P ×F where

A {M̃:2[P][E]} = A R̃→P̃[A {M̃:2[R][E]}].

In order for the four theorems above to hold, the following four relations must hold for the same reason as in the search-Allowed-
model 1 (see Part 2 (see p.38 ):

SOE{M̃:2[R][E]} = SR→R̃[SOE{M:2[R][E]}], (19.2.4)

SOE{M:2[P][E]} = AR→P[SOE{M:2[R][E]}], (19.2.5)

SOE{M̃:2[P][E]} = SP→P̃[SOE{M:2[P][E]}], (19.2.6)

SOE{M̃:2[P][E]} = A R̃→P̃[SOE{M̃:2[P][E]}], (19.2.7)

From the comparisons between (I) and (II) in Table 6.5.4(p.31) and between (III) and (IV) we see that respectively (19.2.4) and
(19.2.6) hold, hence Theorems 19.2.1 and 19.2.3 hold. But, from the comparison of (I) and (III) we see that (19.2.5) does not
always hold, hence it follows that Theorem 19.2.2 does not always hold.

19.2.2 Conditions

Lemma 19.2.1

(a) Theorem 19.2.1 always hold.

(b) Theorem 19.2.3 always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 19.2.2 holds.

(d) Let a⋆ < ρ < b. Then Theorem 19.2.2 does not always hold.

Proof Almost the same as the proof of Lemma 19.1.1(p.137) .

19.2.3 Diagonal Symmetry

For the same reason as in Section 19.1.3(p.140) , which provides the six equalities and one corollary for M:2[P][A] and M̃:2[P][A], we
see that the following equalities and corollary hold for M:2[P][E] and M̃:2[P][E]:

A {M̃:2[P][E]}− = SR→R̃[A {M:2[P][E]+}], (19.2.8)

A {M̃:2[P][E]}± = SR→R̃[A {M:2[P][E]±}], (19.2.9)

A {M̃:2[P][E]}+ = SR→R̃[A {M:2[P][E]−}]. (19.2.10)

A {M:2[P][E]}+ = S R̃→R[A {M̃:2[P][E]−}], (19.2.11)

A {M:2[P][E]}± = S R̃→R[A {M̃:2[P][E]±}], (19.2.12)

A {M:2[P][E]}− = S R̃→R[A {M̃:2[P][E]+}]. (19.2.13)

Corollary 19.2.1 We have :

A {M̃:2[P][E]}+ D-∼ A {M:2[P][E]−}, (19.2.14)

A {M̃:2[P][E]}± D-∼ A {M:2[P][E]±}, (19.2.15)

A {M̃:2[P][E]}− D-∼ A {M:2[P][E]+}. (19.2.16)

177



19.2.4 M:2[R][E]
19.2.4.1 Preliminary

From (6.5.28(p.31) ) and (5.1.8) we have

Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1), t > 0. (19.2.17)

19.2.4.2 Analysis

19.2.4.2.1 Case of β = 1 and s = 0

� Tom 19.2.1 (A {M:2[R][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

Proof Let β = 1 and s = 0. Then, since K (x) = λT (x) · · · ((1)) from (5.1.4), we have K (x) ≥ 0 · · · ((2)) for any x due to

Lemma 9.1.1(p.41) (g).

(a) From (6.5.28) and (2) we obtain Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then, since b ≤ V0 from (6.5.27), we have b ≤ Vt−1 for t > 0 from (a), hence L (Vt−1) = 0 for t > 0 from
Lemma 9.2.1(d), thus Vt = βVt−1 for t > 0 from (19.2.17). Then, since Vt = βVt−1 for τ ≥ t > 0, we have Vτ = βVτ−1 =
β2Vτ−2 = · · · = βτV0 , hence t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ ∥ (see Preference Rule 7.2.1(p.35) ).

(c) Let ρ < b. Then V0 < b · · · ((3)). Let Vt−1 < b. Then, since Vt < K (b) + b from (6.5.28) and

Lemma 9.2.2(h), we have Vt < βb − s = b from (9.2.7 (2) (p.43) ) and the assumptions of β = 1 and s = 0. Hence, by induction
Vt−1 < b for t > 0, so L (Vt−1) > 0 for t > 0 from Lemma 9.2.1(d). Accordingly, Vt − βVt−1 > 0 for t > 0 from (19.2.17) or
equivalently Vt > βVt−1 for t > 0. Then, since Vt > βVt−1 for τ ≥ t > 0, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0, hence
t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N.

19.2.4.2.2 Case of β < 1 or s > 0

For explanatory simplicity, let us define

S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N = { For any τ > 0 there exists t•τ > 0 such that

(1) ⃝s dOITst•τ≥τ>0⟨τ⟩ N,

(2) ⃝⃝∗ ndOITt•τ+1⟨t•τ ⟩ △,

(3) ⃝⃝∗ ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (( ⃝⃝∗ ndOITτ>t•τ+1⟨t•τ ⟩ N )).
}.

Remark 19.2.1 S8 is the same as S2(p.122) except that the inequalities of τ > 1, t•τ > 1, and t•τ ≥ τ > 1 in S2 changes into
respectively τ > 0, t > 0, and t•τ ≥ τ > 0 in S8.

� Tom 19.2.2 (A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let a < ρ. Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let ρ ≤ a.

1. Let (λµ− s)/λ ≤ a.
i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < ρ.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then ⃝⃝∗ ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.
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2. Let (λβµ− s)/δ > a.
i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N

ii. Let b < 0 ((κ < 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof Let β < 1 or s > 0 and let ρ < xK · · · ((1)). Then V0 < xK · · · ((2)) from (6.5.27(p.31) ) and K (ρ) > 0 due to

Lemma 9.2.2(p.43) (j1). Since V1 = K (ρ) + ρ · · · ((3)) from (6.5.28) with t = 1, we have V1 − V0 = V1 − ρ = K (ρ) > 0, hence

V1 > V0 · · · ((4)).

(a) Note (4) , hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, from Lemma 9.2.2(p.43) (e) we have Vt ≤ K (Vt) + Vt = Vt+1. Hence,
by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing in t ≥ 0. Note again (4) . Suppose Vt−1 < Vt. If λ < 1, from
Lemma 9.2.2(f) we have Vt < K(Vt) + Vt = Vt+1. If a < ρ, then a < V0, hence a < Vt−1 for t > 0 due to the nondecreasingness
of Vt, so that from Lemma 9.2.2(g) we have Vt < K(Vt)+Vt = Vt+1. Therefore, whether λ < 1 or a < ρ, by induction Vt−1 < Vt

for t > 0, i.e., Vt is strictly increasing in t ≥ 0. Consider a sufficiently large M > 0 with ρ ≤ M and b ≤ M , hence V0 ≤ M .
Suppose Vt−1 ≤M . Then, from Lemma 9.2.2(e) we have Vt ≤ K(M) +M = βM − s due to (9.2.7 (2) (p.43) ), hence Vt ≤M due
to the assumptions of β ≤ 1 and s ≥ 0. Accordingly, by induction Vt ≤ M for t ≥ 0, i.e., Vt is upper bounded in t. Hence Vt

converges to a finite V as t→∞. Thus V = K(V )+V from (6.5.28), hence K(V ) = 0, so that V = xK due to Lemma 9.2.2(j1).

(b) Let xL ≤ ρ. Then, since xL ≤ V0, we have xL ≤ Vt−1 for t > 0 due to (a), hence L (Vt−1) ≤ 0 for t > 0 due to
Corollary 9.2.1(a(p.43) ), thus Vt − βVt−1 ≤ 0 for t > 0 from (19.2.17) or equivalently Vt ≤ βVt−1 for t > 0. Accordingly, since
Vt ≤ βVt−1 for τ ≥ t > 0, we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτV0 , hence t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ △.

(c) Let ρ < xL · · · ((5)). Then V0 < xL · · · ((6)) from (6.5.27(p.31) ), hence L (V0) > 0 · · · ((7)) due to Corollary 9.2.1(a).

(c1) Since V1 − βV0 = L (V0) > 0 from (19.2.17) with t = 1 and (7) , we have V1 > βV0 · · · ((8)), hence t∗1 = 1, i.e.,

⃝s dOITs1⟨1⟩ N · · · ((9 )). Below let τ > 1 · · · ((10 )).

(c2) Let β = 1, hence s > 0 due to the assumption of β < 1 or s > 0. Then δ = λ from (9.2.1(p.42) ) and xL = xK · · · ((11 ))
from Lemma 9.2.3(p.44) (b), hence K ( xL ) = K (xK ) = 0 · · · ((12 )).

(c2i) Let a < ρ. Then a < V0 from (6.5.27(p.31) ), hence a < Vt−1 for t > 0 due to (a). Note (2) . Suppose Vt−1 < xK .
Then, from Lemma 9.2.2(g) we have Vt < K (xK ) + xK = xK . Hence, by induction Vt−1 < xK · · · ((13 )) for t > 0. Then, since

Vt−1 < xL for t > 0 due to (11) , we have L (Vt−1) > 0 for t > 0 from Lemma 9.2.1(e1), hence for the same reason as in the
proof of Tom 19.2.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N.

(c2ii) Let ρ ≤ a · · · ((14 )), hence V0 ≤ a · · · ((15 )) from (6.5.27(p.31) ). Then from (3) and (9.2.7 (1) (p.43) ) we have V1 = λµ− s+

(1− λ)ρ · · · ((16 ))

(c2ii1) Let (λµ − s)/λ ≤ a. Then xK = (λµ − s)/λ ≤ a · · · ((17 )) from Lemma 9.2.2(j2). Hence K (a) ≤ 0 from

Lemma 9.2.2(j1). Note (15) . Suppose Vt−1 ≤ a. Then, from (6.5.28(p.31) ) and Lemma 9.2.2(e) we have Vt ≤ K (a)+a ≤ a, hence
by induction Vt−1 ≤ a for t > 0. Accordingly, from (6.5.28) and (9.2.7 (1)) we have Vt = λµ− s+ (1− λ)Vt−1 · · · ((18 )) for t > 0.

(c2ii1i) Let λ = 1. Then, we have xK = µ − s from (17) and Vt = µ − s for t > 0 from (18) , hence Vt = xK for t > 0,
so that Vt−1 = xK for t > 1. Accordingly, Vt−1 = xL for t > 1 due to (11) . Then L (Vt−1) = L ( xL ) = 0 for t > 1, hence
Vt − βVt−1 = 0 for t > 1 from (19.2.17) or equivalently Vt = βVt−1 for t > 1. Then, since Vt = βVt−1 for τ ≥ t > 1, we have
Vτ = βVτ−1 · · · = βτ−1V1 for τ > 1. From the result and (4) we have Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 > βτV0, hence
t∗τ = 1 for τ > 1, i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ ∥.

(c2ii1ii) Let λ < 1. Note (6) . Suppose Vt−1 < xL . Then, we have Vt < K ( xL ) + xL = xL from Lemma 9.2.2(f) and
(12) . Accordingly, by induction Vt−1 < xL for t > 0, hence L (Vt−1) > 0 for t > 0 from Lemma 9.2.1(e1). Thus, for the same
reason as in the proof of Tom 19.2.1(c) we have ⃝s dOITsτ>1⟨τ⟩ N.

(c2ii2) Let (λµ − s)/λ > a. Then xK > (λµ − s)/λ > a · · · ((19 )) from Lemma 9.2.2(j2), hence xL > a from (11) . Note

(6) . Suppose Vt−1 < xL . Then, we have Vt < K ( xL ) + xL = xL from Lemma 9.2.2(h) and (12) . Accordingly, by induction
Vt−1 < xL · · · ((20 )) for t > 0, hence L (Vt−1) > 0 for t > 0 due to Lemma 9.2.1(e1). Consequently, for the same reason as in the

proof of Tom 19.2.1(c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3) Let β < 1 and s = 0 ((s > 0)) .

(c3i) Let a < ρ · · · ((21 )). Then, since a < V0 from (6.5.27(p.31) ), we have a < Vt−1 for t > 0 due to (a).

(c3i1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((22 )) from Lemma 9.2.3(c ((d))). Note (2) . Suppose Vt−1 < xK . Then,

from (6.5.28) and Lemma 9.2.2(g) we have Vt < K (xK ) + xK = xK . Accordingly, by induction Vt−1 < xK for t > 0, hence
Vt−1 < xL for t > 0 due to (22) . Therefore, since L (Vt−1) > 0 for t > 0 from Corollary 9.2.1(a), for the same reason as in the
proof of Tom 19.2.1(c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3i2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((23 )) from Lemma 9.2.3(c ((d))). Note (6) . Suppose Vt−1 < xL for all t > 0,

hence V ≤ xL · · · ((24 )). Now, since V = xK due to (a), we have xL < V due to (23) , which is a contradiction. Hence, it is

impossible that Vt−1 < xL for all t > 0. In addition, from (6) and the strict increasingness of Vt due to (a), it follows that
there exists t•τ > 0 such that
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V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · .
from which we have

Vt−1 < xL , t•τ ≥ t > 0, xL ≤ Vt•τ , xL < Vt−1, t > t•τ + 1. (19.2.18)
Hence, we have

L (Vt−1) > 0, · · · ((25 )) t•τ ≥ t > 0 (due to Corollary 9.2.1(a))

L (Vt•τ ) ≤ 0, · · · ((26 )) (due to Corollary 9.2.1(a))

L (Vt−1) = ((< 0)),† · · · ((27 )) t > t•τ + 1 (due to Lemma 9.2.1(d((e1))))

• Let t•τ ≥ τ > 0. Then L (Vt−1) > 0 · · · ((28 )) for τ ≥ t > 0 from (25) . Hence, for the same reason as in Tom 19.2.1(c) we

obtain ⃝s dOITsτ ⟨τ⟩ N for t•τ ≥ τ > 0. Accordingly, S8(1) is true. Now, since Vt − βVt−1 > 0 for τ ≥ t > 0 from (19.2.17)

and (28) , we have Vt > βVt−1 for τ ≥ t > 0, hence Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0. Accordingly, when τ = t•τ , we have
Vt•τ > βVt•τ−1 > · · · > βt•τV0 · · · ((29 )).

• Let τ = t•τ +1. From (19.2.17) with t = t•τ +1 and (26) we have Vt•τ+1−βVt•τ = L (t•τ ) ≤ 0, hence Vt•τ+1 ≤ βVt•τ . Accordingly,

from (29) we have

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τ+1V0 · · · ((30 )),

thus t∗t•τ+1 = t•τ , i.e., ⃝⃝∗ ndOITt•τ+1⟨t•τ ⟩ △, so that S8(2) is true.

• Let τ > t•τ + 1. Since L (Vt•τ+1) = ((<)) 0 from (27) with t = t•τ + 2, we have Vt•τ+2 = ((<)) βVt•τ+1 from (19.2.17), hence from
(30) we have

Vt•τ+2 = ((<)) βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+2V0

Similarly we have

Vt•τ+3 = ((<)) βVt•τ+2 = ((<)) β2Vt•τ+1 ≤ β3Vt•τ
> β4Vt•τ−1 > · · · > βt•τ+3V0.

By repeating the same procedure, for τ = t•τ + 2, t•τ + 3, · · · we obtain

Vτ = ((<)) βVτ−1 = ((<)) · · · = ((<)) βτ−t•τ−2Vt•τ+2 = ((<))

βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0. · · · ((31 ))

◦ Let s = 0. Then (31) can be written as

Vτ = βVτ−1 = · · · = βτ−t•τ−2Vt•τ+2 = βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0,

hence t∗τ = t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (see Preference Rule 7.2.1(p.35) ), hence S8(3) is true.

◦ Let s > 0. Then (31) can be written as

Vτ < βVτ−1 < · · · < βτ−t•τ−2Vt•τ+2 < βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0, (19.2.19)

hence t∗τ = t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ+1⟨t◦⟩ N, hence S8(3) is true.

(c3ii) Let ρ ≤ a · · · ((32 )), hence V0 ≤ a · · · ((33 )) from (6.5.27(p.31) ). Then, from (3) and (9.2.7 (1) (p.43) ) we have V1 =

λβµ− s+ (1− λ)βρ · · · ((34 )).

(c3ii1) Let (λβµ − s)/δ ≤ a. Then xK = (λβµ − s)/δ ≤ a · · · ((35 )) from Lemma 9.2.2(j2(p.43) ). Hence V1 = δ xK + (1 −
λ)βρ · · · ((36 )).

(c3ii1i) Let λ = 1, hence δ = 1 from (9.2.1(p.42) ). Thus, from (35) and (36) we have xK = βµ − s ≤ a and V1 = xK ≤
a · · · ((37 )).

(c3ii1i1) Let b > 0 ((κ > 0)) . Then xL > xK · · · ((38 )) due to Lemma 9.2.3(c ((d))). Note (37) . Suppose Vt−1 = xK . Then,

from (6.5.28(p.31) ) we have Vt = K (xK )+ xK = xK . Accordingly, by induction Vt−1 = xK for t > 1, hence Vt−1 < xL for t > 1
due to (38) , thus L (Vt−1) > 0 for t > 1 from Corollary 9.2.1(a). Hence, from (7) we obtain L (Vt−1) > 0 for t > 0. Accordingly,
for almost the same reason as in the proof of Tom 19.2.1(c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii1i2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 9.2.3(c ((d))), we have V1 ≥ xL from (37) , hence Vt−1 ≥ xL

for t > 1 from (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 from Corollary 9.2.1(a), we have L (Vt−1) ≤ 0 for τ ≥ t > 1, thus
Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (19.2.17), i.e., Vt ≤ βVt−1 for τ ≥ t > 1. Hence Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1. Now, from
(6.5.27(p.31) ), (4) , (37) , and (38) we have ρ = V0 < V1 = xK < xL , hence L(ρ) > 0 from Corollary 9.2.1(p.43) (a). In addition,
from (3) and (6.5.27(p.31) ) we have V1 − βV0 = V1 − βρ = K(ρ) + ρ− βρ = K(ρ) + (1− β)ρ = L(ρ) > 0 from (5.1.8(p.17) ), hence
V1 > βV0. Accordingly, we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 > βτV0 for τ > 1, hence t∗τ = 1 for τ > 1, i.e.,
⃝⃝∗ ndOITτ>1⟨1⟩ △.

†If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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(c3ii1ii) Let λ < 1.

(c3ii1ii1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((39 )) from Lemma 9.2.3(c ((d))). Note (2) . Suppose Vt−1 < xK . Then,

from Lemma 9.2.2(f) we have Vt < K (xK )+ xK = xK . Hence, by induction Vt−1 < xK for t > 0, thus Vt−1 < xL for t > 0 due
to (39) . Accordingly, since L (Vt−1) > 0 for t > 0 from Corollary 9.2.1(a), for the same reason as in the proof of Tom 19.2.1(c)
we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii1ii2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((40 )) from Lemma 9.2.3(c ((d))). Note (6) . Assume that Vt−1 < xL for

all t > 0, hence V ≤ xL · · · ((41 )). Now, since V = xK from (a), we have the contradiction xL < V from (40) . Hence, it is

impossible that Vt−1 < xL for all t > 0. From the result and the strict increasingness of Vt due to (a), it follows that there
exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · → xK .

Accordingly, for the same reason as in the proof of (c3i2) we have S8 ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N .

(c3ii2) Let (λβµ− s)/λ > a · · · ((42 )). Then xK > (λβµ− s)/δ > a from Lemma 9.2.2(j2).

1. Let λ < 1. Then Vt is strictly increasing in t ≥ 0 due to (a).

2. Let λ = 1, hence δ = 1 from (9.2.1(p.42) ), so βµ− s > a from (42) . Now, since K (x) ≥ βµ− s− x for any x from (9.2.4(p.42) )
or equivalently K (x)+x ≥ βµ−s for any x, we have V1 ≥ βµ−s > a from (3) . Accordingly Vt−1 > a for t > 1 due to (a).
Note (4) . Suppose Vt−1 < Vt. Then, from Lemma 9.2.2(g) we have Vt < K (Vt) + Vt = Vt+1. Accordingly, by induction
we have Vt−1 < Vt for t > 0, i.e., Vt is strictly increasing in t ≥ 0.

From the above, whether λ < 1 or λ = 1, we see that Vt is strictly increasing in t > 0.

(c3ii2i) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((43 )) from Lemma 9.2.2(c ((d))). From (2) and the above strict increasingness

of Vt in t ≥ 0 we have Vt−1 < V = xK for t > 0, hence Vt−1 < xL for t > 0 from (43) . Thus, since L (Vt−1) > 0 for t > 0 from
Corollary 9.2.1(a), for the same reason as in the proof of Tom 19.2.1(c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii2ii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((44 )) from Lemma 9.2.3(c ((d))). Note (6) . Suppose Vt−1 < xL for all t > 0,

hence V ≤ xL · · · ((45 )). Now, since V = xK from (a), we have xL < V from (44) , which is a contradiction. Accordingly, it is

impossible that Vt−1 < xL for all t > 0. From the result, (6) , and the above strict increasingness of Vt in t ≥ 0 it follows that
there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · → xK .

Accordingly, for the same reason as in the proof of (c3i2) we can immediately see that the assertion holds true.

� Tom 19.2.3 (A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ △.

Proof Let β < 1 or s > 0 and let ρ = xK . Hence V0 = ρ = xK · · · ((1)) from (6.5.27(p.31) ).

(a) Note (1) . Suppose Vt−1 = xK . Then, from (6.5.28) we have Vt = K (xK )+ xK = xK . Hence, by induction Vt = xK = ρ
for t ≥ 0.

(b) Let β = 1, hence s > 0 due to the assumption of β < 1 or s > 0 in the lemma. Then xL = xK from Lemma 9.2.3(p.44) (b).
Accordingly, since Vt−1 = xL for t > 0 from (a), we have L (Vt−1) = L ( xL ) = 0 for t > 0, hence for the same reason as in the
proof of Tom 19.2.1(p.178) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

(c1) Let b > 0 ((κ > 0)) . Then, since xL > xK from Lemma 9.2.3(c ((d)), we have xL > xK = Vt−1 for t > 0 from (a),
hence L (Vt−1) > 0 for t > 0 due to Corollary 9.2.1(a), thus for the same reason as in the proof of Tom 19.2.1(c) we obtain
⃝s dOITsτ>0⟨τ⟩ N.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK from Lemma 9.2.3(c ((d)). Hence, since xL ≤ xK = Vt−1 for t > 0 from (a),
we have L (Vt−1) ≤ 0 for t > 0 due to Corollary 9.2.1(a), hence Vt − βVt−1 ≤ 0 for t > 0 from (19.2.17(p.178) ) or equivalently
Vt ≤ βVt−1 for t > 0. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 0, we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτV0 , thus t∗τ = 0
for τ > 0, i.e., dOITτ>0⟨0⟩△.

S9
⃝s △ •△ •N = { For any τ > 0 there exists t• > 0 such that

(1) • dOITdt•≥τ>0⟨0⟩ △ (( • dOITdt•≥τ>0⟨0⟩ N)),

(2) ⃝s dOITsτ>t• ⟨τ⟩ △ or • dOITdτ>t• ⟨0⟩ △.
}

181



� Tom 19.2.4 (A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ > xK . Then, for a given starting time τ > 0:

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to a finite V = xK as to→∞.
(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.

2. Let β < 1 and s = 0 ((s > 0)) .
i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let b > 0 ((κ > 0)). Then S9
⃝s △ •△ •N is true.

Proof Let β < 1 or s > 0 and let ρ > xK · · · ((1)). Then V0 > xK · · · ((2)) from (6.5.27(p.31) ) and K (ρ) < 0 · · · ((3)) from

Lemma 9.2.2(j1). From (6.5.28(p.31) ) with t = 1 we have V1 − V0 = K (V0) = K (ρ) < 0 · · · ((4)), hence V1 < V0 · · · ((5)). In addition,

from (19.2.17) with t = 1 we have V1 − βV0 = L (V0) = L (ρ) · · · ((6)).

(a) Note (5) , hence V0 ≥ V1. Suppose Vt−1 ≥ Vt. Then, from Lemma 9.2.2(e) we have Vt ≥ K (Vt) + Vt = Vt+1. Hence, by
induction Vt−1 ≥ Vt for t > 0, i.e., Vt is nonincreasing in t ≥ 0. Let λ < 1. Note again (5) . Suppose Vt−1 > Vt. Then, from
Lemma 9.2.2(f) we have Vt > K (Vt)+Vt = Vt+1. Hence, by induction Vt−1 > Vt for t > 0, i.e., Vt is strictly decreasing in t ≥ 0.
Note (2) , hence V0 ≥ xK . Suppose Vt−1 ≥ xK . Then, from Lemma 9.2.2(e) we have Vt ≥ K (xK ) + xK = xK . Hence, by
induction Vt−1 ≥ xK · · · ((7)) for t > 0, i.e., Vt is lower bounded in t. Thus, it follows that Vt converges to a finite V as t→∞.

Hence, since V = K(V ) + V , we have K(V ) = 0, thus V = xK due to Lemma 9.2.2(j1).

(b) Let ρ < xL . Then, since V0 < xL from (6.5.27(p.31) ), we have Vt−1 < xL for t > 0 due to (a). Therefore, since
L (Vt−1) > 0 for t > 0 from Corollary 9.2.1(a), for the same reason as in the proof of Tom 19.2.1(c) we obtain ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = xL · · · ((8)). Then, since L (ρ) = L ( xL ) = 0, we have V1 = βV0 · · · ((9)) from (6) , hence • dOITd1⟨0⟩ ∥. Below,

let τ > 1. Now, since V1 = K (ρ) + ρ < ρ from (6.5.28(p.31) ) with t = 1 and (3) , we have Vt−1 < ρ for t > 1 from (a), hence
Vt−1 < xL for t > 1 due to (8) , so that L (Vt−1) > 0 for t > 1 from Corollary 9.2.1(p.43) (a). Accordingly, since L (Vt−1) > 0 for
τ ≥ t > 1, we have Vt − βVt > 0 for τ ≥ t > 1 due to (19.2.17) or equivalently Vt > βVt for τ ≥ t > 1, from which we have
Vτ > βVτ−1 > · · · > βτ−1V1. Hence, from (9) we have Vτ > βVτ−1 > · · · > βτ−1V1 = βτV0. Accordingly, we obtain t∗τ = τ for
τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let xL < ρ · · · ((10 )), hence xL < V0 · · · ((11 )) from (6.5.27(p.31) ). Thus, if s = ((>)) 0, then L (V0) = ((<)) 0 · · · ((12 )) from

Lemma 9.2.1(d((e1))), hence V1 = ((<)) βV0 · · · ((13 )) from (6) .

(d1) Let β = 1, hence s > 0 due to the assumption of β < 1 or s > 0. Then L (V0) < 0 from (12) , hence V1 < βV0 · · · ((14 ))
from (19.2.17(p.178) ). Now, since xL = xK due to Lemma 9.2.3(b), from (7) we have Vt−1 ≥ xL for t > 0, hence L (Vt−1) ≤ 0
for t > 0 due to Lemma 9.2.1(e1), thus Vt − βVt−1 ≤ 0 for t > 0 from (19.2.17). Then, since Vt − βVt−1 ≤ 0 for τ ≥ t > 0,
we have Vt ≤ βVt−1 for τ ≥ t > 0, leading to Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 . Hence we have t∗τ = 0 for τ > 0, i.e.,

• dOITdτ>0⟨0⟩ △.

(d2) Let β < 1 and s = 0 ((s > 0)) .

(d2i) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK · · · ((15 )) due to Lemma 9.2.3(c ((d))). Hence, from (7) we have Vt−1 ≥ xL

for t > 0, hence L (Vt−1) ≤ 0 for t > 0 due to Corollary 9.2.1(a), so that Vt − βVt−1 ≤ 0 for t > 0 from (19.2.17). Then,
since Vt − βVt−1 ≤ 0 for τ ≥ t > 0, we have Vt ≤ βVt−1 for τ ≥ t > 0, leading to Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 .

Due to (13) the inequality can be rewritten as Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0 , hence t∗τ = 0 for τ > 0, i.e.,

• dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .

(d2ii) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((16 )) from Lemma 9.2.3(c ((d))). Hence, from (5) and (11) and from the

nonincreasingness of Vt, and the convergency of Vt to V = xK due to (a) we see that there exists t• > 0 such that

V0 > V1 ≥ V2 ≥ · · · ≥ Vt•−1 ≥ xL > Vt• ≥ Vt•+1 ≥ · · · → xK · · · ((17 ))

or equivalently V0 > xL , Vt−1 ≥ xL for t• ≥ t > 1, and xL > Vt−1 for t > t•. Hence, we have

L (Vt−1) > 0, t > t•, due to Corollary 9.2.1(a),

L (Vt−1) ≤ 0, t• ≥ t > 1, due to Corollary 9.2.1(a),

L (V0) = ((<)) 0 due to Lemma 9.2.1(p.43) (d((e1))).

Hence, from (19.2.17) we have

Vt > βVt−1 · · · ((18 )), t > t•, Vt ≤ βVt−1 · · · ((19 )), t• ≥ t > 1, V1 = ((<)) βV0 · · · ((20 )).

⟨A⟩ Let t• ≥ τ > 0. Then, since Vt ≤ βVt−1 for τ ≥ t > 1 from (19) , we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1, hence
Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0 · · · ((21 )) from (20) or equivalently

Iττ ≤ Iτ−1
τ ≤ · · · ≤ I1τ = ((<)) I0τ · · · ((22 )), t• ≥ τ > 0.

Thus t∗τ = 0 for t• ≥ τ > 0, i.e., • dOITdt•τ≥τ>0⟨0⟩ △ (( • dOITdt•τ≥τ>0⟨0⟩ N)), hence (1) of S9 holds. Now, from (21) with
τ = t• we have

Vt• ≤ βVt•−1 ≤ · · · ≤ βt•−1V1 = ((<)) βt•V0 · · · ((23 )).
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⟨B⟩ Let τ > t• (> 0), hence τ > 1. From (18) with τ ≥ t > t• we have

Vτ > βVτ−1 > · · · > βτ−t•−1Vt•+1 > βτ−t•Vt•τ · · · ((24 )), τ > t•.

Combining (24) and (23) leads to

Vτ > βVτ−1 > · · · > βτ−t•−1Vt•+1 > βτ−t•Vt• ≤ βτ−t•+1Vt•−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0, τ > t•,

or equivalently

Iττ > Iτ−1
τ > Iτ−2

τ > · · · > It
•+1

τ > It
•

τ ≤ It
•−1

τ ≤ · · · ≤ I1τ = ((<)) I0τ · · · ((25 )), τ > t•.

Hence we have ⃝s dOITsτ ⟨τ⟩ or • dOITdτ ⟨0⟩ , so that hence (2) of S9 holds.

19.2.4.3 Market Restriction

19.2.4.3.1 Positive Restriction

19.2.4.3.1.1 Case of β = 1 and s = 0

� Pom 19.2.1 (A {M:2[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 19.2.1(p.178) due to Lemma 16.4.1(p.100) .

19.2.4.3.1.2 Case of β < 1 or s > 0

� Pom 19.2.2 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let a ≤ ρ. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.
i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ → → ⃝⃝∗
ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N → →⃝⃝s

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
4. Let β < 1 and s > 0.

i. Let a ≤ ρ.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
2. Let λβµ < s. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

ii. Let ρ < a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let βµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N → →⃝⃝s
2. Let βµ ≤ s. Then ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗

ii. Let λ < 1.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let λβµ < s. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → →⃝⃝s /⃝⃝∗
2. Let (λβµ− s)/δ > a.

i. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N → →⃝⃝s
ii. Let λβµ < s. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → →⃝⃝s /⃝⃝∗

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a-c2ii2) The same as Tom 19.2.2(p.178) (a-c2ii2).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c3i1,c3ii1i1,c3ii1ii1,c3ii2i) of Tom 19.2.2.

(c4-c4ii2ii) Let β < 1 and s < 0. Then, due to (2) it suffices to consider only (c3-c3ii2ii) of Tom 19.2.2 with κ.
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� Pom 19.2.3 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t > 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(d) Let β < 1 and s > 0.

1. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ △ → →•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a,b) The same as Tom 19.2.3(p.181) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 19.2.3.

(d,d2) Let β < 1 and s > 0. Then, due to (2) it suffices to consider only (c1,c2) of Tom 19.2.3.

� Pom 19.2.4 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N for τ > 1 → → ⃝⃝s /•dd
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
2. Let β < 1 and s = 0. Then S9(p.181) ⃝s △ •△ •N is true → → ⃝⃝s /•dd
3. Let β < 1 and s > 0.

i. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ N → →•dd
ii. Let λβµ > s. Then S9(p.181) ⃝s △ •△ •N is true (see Numerical Example 19.2.1(p.206) ) → → ⃝⃝s /•dd

Proof Suppose a > 0. Then b > a > 0 · · · ((1)). We have κ = λβµ− s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a-d1) The same as Tom 19.2.4(a-d1).

(d2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (d2ii) of Tom 19.2.4.

(d3,d3ii) Let β < 1 and s > 0. Then, due to (2) it suffices to consider only (d2i,d2ii) of Tom 19.2.4 with κ.

19.2.4.3.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.2.4.3.3 Negative Restriction

19.2.4.3.3.1 Case of β = 1 and s = 0

� Nem 19.2.1 (A {M:2[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 19.2.1(p.178) due to Lemma 16.4.1(p.100) .

19.2.4.3.3.2 Case of β < 1 or s > 0

� Nem 19.2.2 (A {M:2[R][E]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let a ≤ ρ. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ → → ⃝⃝∗
ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N → →⃝⃝s

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s = 0. S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗
4. Let β < 1.

i. Let a ≤ ρ. S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗
ii. Let ρ < a.
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1. Let (λβµ− s)/δ ≤ a.

i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗
ii. Let λ < 1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true →

2. Let (λβµ− s)/δ > a. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)). Then κ = −s · · · ((3)) from Lemma 9.3.1(p.45) (a).

(a-c2ii2) The same as Tom 19.2.2(p.178) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ− s)/δ ≤ a. Then, since λβµ/δ ≤ a, we have λβµ ≤ δa due to (9.2.2 (1) (p.42) ), hence
λβµ ≤ δa ≤ λa due to (9.2.2 (1) (p.42) ) and (2) , so βµ ≤ a, which contradicts [15(p.101) ]. Thus, it must be that (λβµ − s)/δ > a.
From this it suffices to consider only (c3i2,c3ii2ii) of Tom 19.2.2(p.178) .

(c4-c4ii2) Let β < 1 and s > 0. Then κ < 0 due to (3) , hence it suffices to consider only (c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) of
Tom 19.2.2.

� Nem 19.2.3 (A {M:2[R][E]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t > 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a,b) The same as Tom 19.2.3(p.181) (a,b).

(c) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 19.2.3 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (c2) of Tom 19.2.3. Thus, whether s = 0 or s > 0, we have the same result.

� Nem 19.2.4 (A {M:2[R][E]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N for τ > 1 → →•dd/⃝⃝s
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) → →•dd

Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a-d1) The same as Tom 19.2.4(p.182) (a-d1).

(d2) If s = 0, then due to (1) it suffices to consider only (d2i) of Tom 19.2.4 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (d2i) of Tom 19.2.4. Thus, whether s = 0 or s > 0, we have the same result.

19.2.5 M̃:2[R][E]
Due to Lemma 19.2.1(p.177) (a) we can apply SR→R̃ in Theorem 19.2.1(p.177) to
Tom’s 19.2.1(p.178) – 19.2.4.

19.2.5.1 Analysis

19.2.5.1.1 Case of β = 1 and s = 0

� Tom 19.2.5 (A {M̃:2[R][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

Proof by symmetry Immediate from applying SR→R̃ to Tom 19.2.1(p.178) .

19.2.5.1.2 Case of β < 1 or s > 0

� Tom 19.2.6 (A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b > ρ, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let ρ ≥ b.
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1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ → →⃝⃝s
ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N → →⃝⃝s

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)).

i. Let b > ρ.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.
i. Let λ = 1.

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then ⃝⃝∗ ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

2. Let (λβµ+ s)/δ < b.
i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof by symmetry Immediate from applying SR→R̃ to Tom 19.2.2(p.178) .

� Tom 19.2.7 (A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △.

Proof by symmetry Immediate from applying SR→R̃ to Tom 19.2.3(p.181) .

� Tom 19.2.8 (A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .

ii. Let a < 0 ((κ̃ < 0)). Then S9
⃝s △ •△ •N is true.

Proof by symmetry Immediate from applying SR→R̃ to Tom 19.2.4(p.182) .

19.2.5.2 Market Restriction

19.2.5.2.1 Positive Restriction

19.2.5.2.1.1 Case of β = 1 and s = 0

� Pom 19.2.5 (A {M̃:2[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥. → →•dd
(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N. → → ⃝⃝s

Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to
Nem 19.2.1(p.184) (see (17.1.22(p.113) )).

Direct proof The same as Tom 19.2.5(p.185) due to Lemma 16.4.1(p.100) .
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19.2.5.2.1.2 Case of β < 1 or s > 0

� Pom 19.2.6 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b ≥ ρ, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ ⟨0⟩ △. → →•dd

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1. → → ⃝⃝s
2. Let β = 1.

i. Let b ≥ ρ. Then ⃝s dOITsτ ⟨τ⟩ N. → → ⃝⃝s
ii. Let ρ > b.

1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥.→ → ⃝⃝∗
ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.→ → ⃝⃝s

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>0⟨τ⟩ N. → ⃝⃝s
3. Let β < 1 and s = 0. Then we have S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N → →⃝⃝s /⃝⃝∗
4. Let β < 1 and s > 0.

i. Let b ≥ ρ. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true. → →⃝⃝s /⃝⃝∗
ii. Let ρ > b.

1. Let (λβµ+ s)/δ ≥ b.

i. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ △.→ → ⃝⃝∗
ii. Let λ < 1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true. → →⃝⃝s /⃝⃝∗

2. Let (λβµ+ s)/δ < b. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true. → →⃝⃝s /⃝⃝∗

Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to
Nem 19.2.2(p.184) (see (17.1.22(p.113) )).

Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)). Then κ̃ = s · · · ((3)) from Lemma 11.6.6(p.68) (a).

(a-c2ii2) The same as Tom 19.2.6(p.185) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ+ s)/δ ≥ b. Then, since λβµ/δ ≥ b, we have λβµ ≥ δb from (9.2.2 (1) (p.42) ), hence
λβµ ≥ δb ≥ λb due to (2) , so βµ ≥ b, which contradicts [3(p.101) ]. Thus, it must be that (λβµ + s)/δ < b. From this it suffices
to consider only (c3i2,c3ii2ii) of Tom 19.2.6(p.185) .

(c4-c4ii2) Let β < 1 and s > 0. Then κ < 0 due to (3) , hence it suffices to consider only (c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) of
Tom 19.2.2 with κ.

� Pom 19.2.7 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to
Nem 19.2.3(p.185) (see (17.1.22(p.113) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 11.6.6(p.68) (a).

(a,b) The same as Tom 19.2.7(p.186) (a,b).

(c) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 19.2.7 and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (c2) of Tom 19.2.7 with κ̃. Accordingly, whether s = 0 or s > 0, we have the same result.

� Pom 19.2.8 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N → →•dd/⃝⃝s

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) → →•dd

Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (15.3.1(p.98) )) to
Nem 19.2.4(p.185) (see (17.1.22(p.113) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 11.6.6(p.68) (a).

(a-d1) The same as Tom 19.2.8(p.186) (a-d1).

(d2) If s = 0, due to (1) it suffices to consider only (d2i) of Tom 19.2.8 and if s > 0, then κ̃ > 0 due to (2) , hence it suffices
to consider only (d2i) of Tom 19.2.8(d2i) with κ̃. Accordingly, whether s = 0 or s > 0, we have the same result.
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Remark 19.2.2 (diagonal symmetry) The diagonal symmetry holds between A {M̃:1[R][E]+} and A {M:1[R][E]−}, i.e.,

A {M̃:1[R][E]+} D-∼ A {M:1[R][E]−}. (19.2.20)

In fact it can be confirmed that the following relations hold:

A {Pom 19.2.5(p.186) } = SR→R̃[A {Nem 19.2.1(p.184) }] · · · (1),
A {Pom 19.2.6(p.187) } = SR→R̃[A {Nem 19.2.2(p.184) }] · · · (2),
A {Pom 19.2.7(p.187) } = SR→R̃[A {Nem 19.2.3(p.185) }] · · · (3),
A {Pom 19.2.8(p.187) } = SR→R̃[A {Nem 19.2.4(p.185) }] · · · (4).

19.2.5.2.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.2.5.2.3 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).

19.2.6 M:2[P][E]
19.2.6.1 Preliminary

From (6.5.33(p.31) ) and from (5.1.21(p.18) ) and (5.1.20) we have

Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1), t > 1. (19.2.21)

From (6.5.32) we have

V1 − βV0 = V1 − βρ = λβmax{0, a− ρ} − s. (19.2.22)

19.2.6.2 Analysis

19.2.6.2.1 Case of β = 1 and s = 0

Let β = 1 and s = 0. Then, from (19.2.21) and (5.1.20(p.18) ) we have

Vt − βVt−1 = λT (Vt−1) ≥ 0, t > 1, (19.2.23)

due to Lemma 12.2.1(p.77) (g). From (6.5.32) we have

V1 = λmax{0, a− ρ}+ ρ (19.2.24)

= max{ρ, λa+ (1− λ)ρ}. (19.2.25)

19.2.6.2.1.1 Case of ρ ≤ a⋆

In this case, due to Lemma 19.2.1(p.177) (c) we can apply AR→P in Theorem 19.2.2(p.177) to
Tom 19.2.1(p.178) with ρ ≤ a⋆.

� Tom 19.2.9 (A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) ⃝s dOITsτ>0⟨τ⟩ N.

Proof Assume ρ ≤ a⋆. Let β = 1 and s = 0.

(a) The same as Tom 19.2.1(p.178) (a).

(b) Since (b,c) of Tom 19.2.1 have none of a and µ, even if AR→P is applied the two assertions, no change occurs. In addition,
from the assumption ρ ≤ a⋆ we have ρ ≤ a⋆ < a < b due to Lemma 12.2.1(p.77) (n), hence only (c) of Tom 19.2.1 holds.

19.2.6.2.1.2 Case of b ≤ ρ

In this case, due to Lemma 19.2.1(p.177) (c) we can apply AR→P in Theorem 19.2.2(p.177) to
Tom 19.2.1(p.178) with b ≤ ρ.

� Tom 19.2.10 (A {M:2[P][E]}) Assume b ≤ ρ. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) • dOITdτ>0⟨0⟩ ∥.

Proof Assume b ≤ ρ. Let β = 1 and s = 0.

(a) The same as Tom 19.2.1(a).

(b) Due to the assumption b ≤ ρ it follows that only (b) of Tom 19.2.1 holds.
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19.2.6.2.1.3 Case of a⋆ < ρ < b

In this case, due to Lemma 19.2.1(p.177) (d) we cannot use Theorem 19.2.2.

� Tom 19.2.11 (A {M:2[P][E]}) Assume a⋆ < ρ < b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.
(b) Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

Proof Assume a⋆ < ρ < b · · · ((1)). Let β = 1 and s = 0. Then L (x) = K (x) = λT (x) ≥ 0 · · · ((2)) for any x from (5.1.20(p.18) ) and

(5.1.21) and from Lemma 12.2.1(g). Since V0 < b from (1) and (6.5.31(p.31) ), we have L (V0) = λT (V0) = λT (ρ) > 0 · · · ((3)) from
(1) and Lemma 12.2.1(p.77) (g). Then, since ρ < b and a < b, from (19.2.25) we obtain V1 < max{b, λb+(1−λ)b} = max{b, b} = b.
Suppose Vt−1 < b. Then, since a⋆ < b from (1) , we have Vt < K (b) + b from (6.5.33) and Lemma 12.2.3(h), hence Vt < βb− s
from (12.2.13 (2) (p.79) ), so that Vt−1 < b due to the assumption of β = 1 and s = 0. Accordingly, by induction Vt−1 < b for
t > 1, hence T (Vt−1) > 0 · · · ((4)) for t > 1 from Lemma 12.2.1(g). Thus Vt − βVt−1 > 0 for t > 1 from (19.2.23) or equivalently

Vt > βVt−1 for t > 1. Then, since Vt > βVt−1 for τ ≥ t > 1, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 · · · ((5)) for τ > 1.

In addition, from (2) we have L (Vt−1) = K (Vt−1) = λT (Vt−1) > 0 · · · ((6)) for t > 1 due to (4) , so L(Vt−1) > 0 for t > 0 due to

(3) .

(a) From (19.2.24) and (6.5.31(p.31) ) we have V1−V0 = V1−ρ = λmax{0, a−ρ} ≥ 0, hence V1 ≥ V0 · · · ((7)). From (6.5.33(p.31) )

with t = 2 we have V2 − V1 = K (V1) ≥ 0 due to (6) with t = 2 and (2) , hence V2 ≥ V1 · · · ((8)). Suppose Vt ≥ Vt−1. Then from

(6.5.33) and Lemma 12.2.3(p.80) (e) we have Vt+1 = K (Vt) + Vt ≥ K (Vt−1) + Vt−1 = Vt. Hence, by induction Vt ≥ Vt−1 for t > 1.
From this and (7) we have Vt ≥ Vt−1 for t > 0, hence it follows that Vt is nondecreasing in t ≥ 0.

(b) Let a ≤ ρ. Then V1 = ρ from (19.2.24), hence V1 < b due to (1) . Then, since V1 − βV0 = V1 − V0 = ρ− ρ = 0, we have
V1 = βV0 · · · ((9)), hence t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Let τ > 1. Then, from (5) and (9) we have Vτ > βVτ−1 > β2Vτ−2 > · · · >
βτ−1V1 = βτV0, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ < a. Then, since V1 = λ(a − ρ) + ρ due to (19.2.24), we have V1 − βV0 = V1 − V0 = V1 − ρ = λ(a − ρ) > 0, i.e.,
V1 > βV0, hence t∗1 = 1 · · · ((10 )). Let τ > 1. Then, from (5) we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 > βτV0 for τ > 1,

hence t∗τ = τ for τ > 1. From this and (10) we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N.

19.2.6.2.1.4 Summary of Tom’s 19.2.9-19.2.11

� Tom 19.2.12 (A {M:2[P][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.
(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.
(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

Proof (a) The same as Tom’s 19.2.9(a), 19.2.10(a), and 19.2.11(a).

(b) The same as Tom 19.2.9(b).

(c) The same as Tom 19.2.10(b).

(d-d2) The same as Tom 19.2.11(b,c).

Corollary 19.2.2 (M:2[P][E] ) Let β = 1 and s = 0. Then, zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.2.12(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

19.2.6.2.2 Case of β < 1 or s > 0

19.2.6.2.2.1 Case of ρ ≤ a⋆

In this case, due to Lemma 19.2.1(p.177) (c) we can apply AR→P in Theorem 19.2.2(p.177) to
Tom’s 19.2.2(p.178) -19.2.4(p.182) .

� Tom 19.2.13 (A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.
(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.
i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
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ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.
i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let b ≤ 0 ((κ ≤ 0)) . Then ⃝⃝∗ ndOITτ>1⟨1⟩ △.

2. Let λ < 1.

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let b < 0 ((κ < 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

ii. Let (λβa− s)/δ > a⋆.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof When AR→P is applied to Tom 19.2.2(p.178) , the condition of a < ρ in Tom 19.2.2(c2i,c3i) changes into a⋆ < ρ, which
contradicts the assumption ρ ≤ a⋆. Hence, it follows that the Tom can be obtained by removing assertions related to a⋆ < ρ
resulting from applying AR→P to the inequality a < ρ in Tom 19.2.2.

Corollary 19.2.3 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK . Then, zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.2.13(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.2.14 (A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ △.

Proof Since a and µ are not included in Tom 19.2.3(p.181) , even if applying AR→P to it Tom, any change does not occurs.

Corollary 19.2.4 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK . Then, zt = z(ρ) for t ≥ 0.

Proof Immediate from Tom 19.2.14(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.2.15 (A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let b > 0 ((κ > 0)). Then S9
⃝s △ •△ •N is true.

Proof Since a and µ are not included in Tom 19.2.4(p.182) , even if applying AR→P to it, no change occurs.

Corollary 19.2.5 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK . Then, zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.2.15(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

19.2.6.2.2.2 Case of b ≤ ρ

In this case, due to Lemma 19.2.1(p.177) (c) we can apply AR→P in Theorem 19.2.2(p.177) to
Tom’s 19.2.2(p.178) -19.2.4(p.182) with b ≤ ρ.

� Tom 19.2.16 (A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let b < 0 ((κ < 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.
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Proof When AR→P is applied to Tom 19.2.2(p.178) , the condition ρ ≤ a in Tom 19.2.2(p.178) (c2ii,c3ii) changes into ρ < a⋆, hence
ρ < a⋆ < a < b due to Lemma 12.2.1(p.77) (n), which contradicts the assumption b ≤ ρ. Hence, only to the case with the condition
a < ρ can be applied AR→P, so that it follows that the Tom can be obtained by removing assertions related to ρ < a resulting
from applying AR→P to the inequality ρ ≤ a in Tom 19.2.2.

Corollary 19.2.6 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK . Then, zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.2.16(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.2.17 (A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then • dOITdτ>0⟨0⟩ △.

Proof The same as Tom 19.2.3(p.181) since it has not both a and µ, even if applying AR→P to this, no change occurs.

Corollary 19.2.7 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK . Then, zt = z(ρ) for t ≥ 0.

Proof Immediate from Tom 19.2.17(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

� Tom 19.2.18 (A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let b > 0 ((κ > 0)). Then S9
⃝s △ •△ •N is true.

Proof Assume ρ < xL . Then, since b ≤ ρ < xL · · · ((1)) due to the assumption b ≤ ρ, we have that 0 = L ( xL ) = λβT ( xL )−s

and that T ( xL ) = 0 from Lemma 12.2.1(p.77) (g). Hence, since 0 = −s or equivalently s = 0, we have xL = b due to
Lemma 12.2.2(d), which is a contradicts (1) . Thus, the inequality ρ < xL becomes impossible, i.e., it must be that ρ ≥ xL ,
so that the assertion (b) of Tom 19.2.4(p.182) must be omitted; accordingly, it follows that we have the lemma.

Corollary 19.2.8 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK . Then, zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.2.18(a) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

19.2.6.2.2.3 Case of a⋆ < ρ < b

In this case we cannot use Theorem 19.2.2 due to Lemma 19.2.1(p.177) (d). For explanatory convenience let us define:

S10
⃝s △ •△ = { We have:

(1) Let λmax{0, a−ρ} < s. Then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △.

(2) Let λmax{0, a− ρ} ≥. Then ⃝s dOITsτ>1⟨τ⟩ △. }

S11
⃝s △ ⃝s N ⃝∗ △ •△ = { There exists t•τ > 1 such that:

(1) If λβmax{0, a− ρ} < s, then

i. ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △,

ii. ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. ⃝s dOITst•τ≥τ>1⟨τ⟩ N,

ii. ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ △.

}
S12

⃝s △ ⃝s N ⃝∗ △ •△ •N= { There exists t•τ > 1 such that:
(1) If λβmax{0, a− ρ} < s, then

i. • dOITdt•τ≥τ>0⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ ∥,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ N.

}
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S13
⃝s △ ⃝∗ △ •△ •N = { There exists t•τ > 1 and t⋆τ > 1 such that:

(1) If λβmax{0, a− ρ} < s, then
i. • dOITdt•τ≥τ>1⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ △,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

}
For convenience of reference, below let us copy (6.5.32(p.31) )

V1 = λβmax{0, a− ρ}+ βρ− s. (19.2.26)

� Tom 19.2.19 (A {M:2[P][E]}) Assume a⋆ < ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

2. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △.

3. Let V1 < xL .

i. Let β = 1. Then S10
⃝s △ •△ is true.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then S10
⃝s △ •△ is true.

2. Let b = 0 ((κ = 0)) . If λβmax{0, a−ρ} < s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △, or else ⃝s dOITsτ>1⟨τ⟩ △.

3. Let b < 0 ((κ < 0)) . Then S11
⃝s △ ⃝s N ⃝∗ △ •△ is true.

(c) Let V1 > xK .

1. Vt is nonincreasing in t > 0 and converges to a finite V = xK as t→∞.

2. Let β = 1. If λmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b > 0 ((κ > 0)) .

1. Let V1 < xL . Then S10
⃝s △ •△ is true.

2. Let V1 = xL . Then S12
⃝s △ ⃝s N ⃝∗ △ •△ •N is true.

3. Let V1 > xL . Then S13
⃝s △ ⃝∗ △ •△ •N is true.

ii. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △.

Proof Assume a⋆ < ρ < b · · · ((1)) and let β < 1 or s > 0.

(a) If λβmax{0, a − ρ} ≤ s, then V1 ≤ βV0 · · · ((2)) from (19.2.22(p.188) ), hence t∗1 = 0, i.e., • dOITd1⟨0⟩ △ · · · ((3)), or else

V1 > βV0 · · · ((4)), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((5)). Below let τ > 1.

(b) Let V1 ≤ xK · · · ((6)), hence K (V1) ≥ 0 · · · ((7)) from Lemma 12.2.3(p.80) (j1).

(b1) From (6.5.33) with t = 2 we have V2 = K (V1)+V1 ≥ V1 due to (7) . Suppose Vt ≥ Vt−1. Then Vt+1 ≥ K (Vt−1)+Vt−1 =
Vt from Lemma 12.2.3(e), hence by induction Vt ≥ Vt−1 for t > 1, so Vt is nondecreasing in t > 0. Note (6) . Suppose Vt−1 ≤ xK .
Then, from (6.5.33) and Lemma 12.2.3(e) we have Vt ≤ K (xK ) + xK = xK . Hence, by induction Vt ≤ xK · · · ((8)) for t > 0,

i.e., Vt is upper bounded in t, hence Vt converges to a finite V as t→∞. Then, since V = K(V ) + V as τ →∞ from (6.5.33),
we have V = K(V ) + V , hence K(V ) = 0 thus V = xK from Lemma 12.2.3(p.80) (j1).

(b2) Let V1 ≥ xL . Then, since xL ≤ Vt−1 for t > 1 due to (b1), we have L (Vt−1) ≤ 0 for t > 1 from Corollary 12.2.1(a),
thus L (Vt−1) ≤ 0 for τ ≥ t > 1. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 1 from (19.2.21(p.188) ), we have Vτ ≤ βVτ−1 ≤ · · · ≤
βτ−1V1 · · · ((9)) for τ > 1.

(1) Let λβmax{0, a− ρ} ≤ s. Then, from (9) and (2) we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 ≤ βτV0 , hence t∗τ = 0
for τ > 1, i.e., • dOITdτ>1⟨0⟩ △..

(2) Let λβmax{0, a− ρ} > s. Then, from (9) and (4) we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 > βτV0, hence t∗τ = 1
for τ > 1, i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ △.

(b3) Let V1 < xL · · · ((10 )).

(b3i) Let β = 1 · · · ((11 )), hence s > 0 due to the assumption of β < 1 or s > 0 in the Tom. Then xL = xK · · · ((12 )) from

Lemma 12.2.4(b), hence Vt−1 ≤ xL for t > 1 due to (8) . Accordingly, since Vt−1 ≤ xL for τ ≥ t > 1, we have L (Vt−1) ≥ 0 for
τ ≥ t > 1 from Lemma 12.2.2(e1), hence Vt ≥ βVt−1 for τ ≥ t > 1 from (19.2.21(p.188) ), so

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 · · · ((13 )), τ > 1.
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(1) Let λmax{0, a − ρ} < s, hence λβmax{0, a − ρ} < s due to (11) . Then V1 − βV0 < 0 · · · ((14 )) from (19.2.22(p.188) ) or

equivalently V1 < βV0 · · · ((15 )). Then, from (13) we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 < βτV0 · · · ((16 )), τ > 1.

Thus, we have ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △, hence (1) of S10 is true.

(2) Let λmax{0, a− ρ} ≥ s, hence λβmax{0, a− ρ} ≥ s due to (11) . Then V1 − βV0 ≥ 0 from (19.2.22(p.188) ) or equivalently
V1 ≥ βV0 from (19.2.22). Then, from (13) we have Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 ≥ βτV0, hence t∗τ = τ for
τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ △, thus (2) of S10 holds.

(b3ii) Let β < 1 · · · ((17 )) and s = 0 ((s > 0)) .

(b3ii1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((18 )) from Lemma 12.2.4(p.80) (c ((d))). Accordingly, from (8) we have

Vt−1 ≤ xK < xL for t > 1, hence L (Vt−1) > 0 for t > 1 from Corollary 12.2.1(a), thus L (Vt−1) > 0 for τ ≥ t > 1. Accordingly,
since Vt > βVt−1 for τ ≥ t > 1 from (19.2.21(p.188) ), we have Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((19 )) for τ > 1.

(1) Let λβmax{0, a−ρ} < s. Then V1−βV0 < 0 · · · ((20 )) from (19.2.22(p.188) ) or equivalently V1 < βV0 · · · ((21 )). Hence, from

(19) and (21) we have

Vτ > βVτ−1 > · · · > βτ−1V1 < βτV0 · · · ((22 )), τ > 1.

Hence, we have ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △, so that (1) of S10 holds.

(2) Let λβmax{0, a − ρ} ≥ s. Then V1 − βV0 ≥ 0 from (19.2.22) or equivalently V1 ≥ βV0. Hence, from (19) we have
Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 ≥ βτV0, hence t∗ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Hence (2) of S10 holds.

(b3ii2) Let b = 0 ((κ = 0)) . Then xL = xK = 0 from Lemma 12.2.4(p.80) (c ((d))). Accordingly, due to (10) we have V1 < xK ,
so V1 ≤ xK . From this and (b1) we have Vt−1 ≤ xK for t > 1, hence Vt−1 ≤ xK = xL for τ ≥ t > 1. Therefore, from
Corollary 12.2.1(b) we have L (Vt−1) ≥ 0 · · · ((23 )) for τ ≥ t > 1, hence Vt − βVt−1 ≥ 0 for τ ≥ t > 1 from (19.2.21(p.188) ) or

equivalently Vt ≥ βVt−1 for τ ≥ t > 1, leading to Vt ≥ βVt−1 ≥ · · · ≥ βt−1V1.

(1) Let λβmax{0, a− ρ} ≤ s. Then, since V1 ≤ βV0 from (19.2.22), we have Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 ≤ βτV0 ,
hence ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △..

(2) Let λβmax{0, a− ρ} > s. Then, since V1 > βV0 from (19.2.22), we have Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 > βτV0,
hence ⃝s dOITsτ>1⟨τ⟩ △.

(b3ii3) Let b < 0 ((κ < 0)) , hence xL < xK ≤ 0 · · · ((24 )) from Lemma 12.2.4(p.80) (c ((d))). Then, from (10) we have V1 <

xL < xK = V due to (b1). Accordingly, due to the nondecreasingness of Vt it follows that there exists t•τ > 1 such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL ≤ Vt•τ ≤ Vt•τ+1 ≤ · · · .

Hence Vt−1 < xL for t•τ ≥ t > 1 and xL ≤ Vt−1 for t > t•τ . Therefore, from Corollary 12.2.1(a) we have

L (Vt−1) > 0 · · · ((25 )), t•τ ≥ t > 1, L (Vt−1) ≤ 0 · · · ((26 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 for τ ≥ t > 1 from (25) , we have Vt − βVt−1 > for τ ≥ t > 1 from (19.2.21) or
equivalently Vt > βVt−1 for τ ≥ t > 1, so that Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((27 )).

(1) Let λβmax{0, a − ρ}ρ < s. Then, since V1 < βV0 from (19.2.22), we have Vτ > βVτ−1 > · · · > βτ−1V1 < βτV0 from
(27) , hence t∗τ = τ or t∗τ = 0 for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △. Accordingly (1i) of S11
holds.

(2) Let λβmax{0, a − ρ}ρ ≥ s. Then, since V1 ≥ βV0 from (19.2.22), we have Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0 from
(27) , hence t∗τ = τ , i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N. Accordingly (2i) of S11 holds.

◦ Let τ > t•τ . Since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (26) , we have Vt ≤ βVt−1 for τ ≥ t > t•τ from (19.2.21), hence

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ · · · ((28 )) for τ > t•τ . From (25) and (19.2.21) we have Vt > βVt−1 for t•τ ≥ t > 1, hence

Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((29 )). From (28) and (29) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1. · · · ((30 ))

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (19.2.22), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1 < βτV0 ,

Hence, we have t∗τ = t•τ or t∗τ = 0 for τ > t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △. Accordingly (1ii) of S11 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (19.2.22), from (30) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1 ≥ βτV0 ,

hence t∗τ = t•τ for τ > t•τ , i.e., ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ △. Accordingly (2ii) of S11 holds.

193



(c) Let V1 > xK · · · ((31 )), hence K (V1) < 0 · · · ((32 )) due to Lemma 12.2.3(p.80) (j1).

(c1) From (6.5.33(p.31) ) with t = 2 we have V2 = K (V1) + V1 < V1 · · · ((33 )) due to (32) , hence V2 ≤ V1. Suppose Vt ≤ Vt−1.

Then, from Lemma 12.2.3(e) we have Vt+1 = K (Vt) + Vt ≤ K (Vt−1) + Vt−1 = Vt. Hence, by induction Vt ≤ Vt−1 for t > 1, i.e.,
Vt is nonincreasing in t > 0. Note (31) , hence V1 ≥ xK . Suppose Vt−1 ≥ xK . Then, since Vt ≥ K (xK ) + xK = xK from
Lemma 12.2.3(e), by induction we have Vt ≥ xK · · · ((34 )) for t > 0, i.e., Vt is lower bounded in t, hence Vt converges to a finite

V . Then, we have V = xK for the same reason as in the proof of (b1).

(c2) Let β = 1, hence s > 0 due to the assumption of β < 1 or s > 0 in the Tom. Then, since xL = xK · · · ((35 )) from

Lemma 12.2.4(b), we have Vt−1 ≥ xL for t > 1 from (34) . Accordingly L (Vt−1) ≤ 0 for t > 1 from Lemma 12.2.2(e1), hence
L (Vt−1) ≤ 0 for τ ≥ t > 1, so Vt ≤ βVt−1 for τ ≥ t > 1 from (19.2.21), leading to Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1.

(1) Let λβmax{0, a − ρ} < s. Then, since V1 < βV0 from (19.2.22), we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 < βτV0 , hence
t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ N.

(2) Let λβmax{0, a − ρ} ≥ s. Then, since V1 ≥ βV0 from (19.2.22) we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≥ βτV0, hence
t∗τ = 1 for τ > 1, i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ △.

(c3) Let β < 1 · · · ((36 )) and s = 0 ((s > 0)) .

(c3i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((37 )) from Lemma 12.2.4(c ((d))).

(c3i1) Let V1 < xL , hence xL > Vt−1 for t > 1 from (c1). Accordingly, since L (Vt−1) > 0 for t > 1 from Corollary 12.2.1(a),
we have Vt − βVt−1 > 0 for t > 1 due to (19.2.21) or equivalently Vt > βVt−1 for t > 1, hence Vt > βVt−1 for τ ≥ t > 1, leading
to Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((38 )).

(1) Let λβmax{0, a− ρ} < s. Then for the same reason as in (1(p.193) ) we see that (1) of S10 is true.

(2) Let λβmax{0, a− ρ} ≥ s. Then for the same reason as in (2(p.193) ) we see that (2) of S10 is true.

(c3i2) Let V1 = xL . Then, since V1 = xL > xK = V from (37) and (c1), there exists t•τ > 1 such that
V1 = V2 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · ,

from which Vt−1 = xL for t•τ ≥ t > 1 and xL > Vt−1 for t > t•τ . Hence, from Corollary 12.2.1(a) we have

L (Vt−1) = 0 · · · ((39 )), t•τ ≥ t > 1, L (Vt−1) > 0 · · · ((40 )), t > t•τ .

Accordingly, from (19.2.21(p.188) ) we have Vt − βVt−1 = 0 for t•τ ≥ t > 1 and Vt − βVt−1 > 0 for t > t•τ or equivalently
Vt = βVt−1 · · · ((41 )) for t•τ ≥ t > 1 and Vt > βVt−1 · · · ((42 )) for t > t•τ .

◦ Let t•τ ≥ τ > 1. Then, we have Vt = βVt−1 for τ ≥ t > 1 from (41) , leading to Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((43 )).

(1) Let λβmax{0, a − ρ} < s. Then, since V1 < βV0 from (19.2.22), we have Vτ = βVτ−1 = · · · = βτ−1V1 < βτV0 , hence
t∗τ = 0 for t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ N, hence (1i) of S12 holds.

(2) Let λβmax{0, a − ρ} ≥ s. Then, since V1 ≥ βV0 from (19.2.22), we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0 for
t•τ ≥ τ > 1, hence t∗τ = 1 for t•τ ≥ τ > 1, i.e., ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ ∥, hence (2i) of S12 holds.

From (43) with τ = t•τ we have Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((44 )).

◦ Let τ > t•τ . Then, we have Vt > βVt−1 for τ ≥ t > t•τ from (42) , leading to Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((45 )). From this

and (44) we have Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1.

(1) Let λβmax{0, a−ρ} < s. Then, since V1 < βV0 from (19.2.22), we have Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 =
· · · = βτ−1V1 < βτV0 , hence t∗τ = τ or t∗τ = 0 for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △, thus (1ii) of S12
holds.

(2) Let λβmax{0, a−ρ} ≥ s. Then, since V1 ≥ βV0 from (19.2.22), we have Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 =
· · · = βτ−1V1 ≥ βτV0 for τ > t•τ , hence t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, hence (2ii) of S12 holds.

(c3i3) Let V1 > xL · · · ((46 )). Then, since V1 > xL > xK = V from (37) and (c1), due to the nonincreasingness of Vt it

follows that there exists t•τ > 1 such that

V1 ≥ V2 ≥ · · · ≥ Vt•τ−1 > xL ≥ Vt•τ ≥ Vt•τ+1 ≥ · · · ,

from which Vt−1 > xL for t•τ ≥ t > 1 and xL ≥ Vt−1 for t > t•τ . Hence, from Corollary 12.2.1(a) we have

L (Vt−1) ≤ 0 · · · ((47 )), t•τ ≥ t > 1, L (Vt−1) ≥ 0 · · · ((48 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then L (Vt−1) ≤ 0 for τ ≥ t > 1 from (47) , hence Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (19.2.21), we have
Vt ≤ βVt−1 for τ ≥ t > 1. Hence Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 · · · ((49 )).

(1) Let λβmax{0, a − ρ} < s. Then, since V1 < βV0 from (19.2.22), we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 < βτV0 , hence
t∗τ = 0 for t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ N, so (1i) of S13 holds.
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(2) Let λβmax{0, a − ρ} ≥ s. Then, since V1 ≥ βV0 from (19.2.22), we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≥ βτV0 for
t•τ ≥ τ > 1, hence t∗τ = 1 for t•τ ≥ τ > 1, i.e., ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ △, hence (2i) of S13 holds.

From (49) with τ = t•τ we have Vt•τ ≤ βVt•τ−1 ≤ · · · ≤ βt•τ−1V1 · · · ((50 )).

◦ Let τ > t•τ . Then L (Vt−1) ≥ 0 for τ ≥ t > t•τ from (48) , hence Vt − βVt−1 ≥ 0 for τ ≥ t > t•τ from (19.2.21) or equivalently

Vt ≥ βVt−1 for τ ≥ t > t•τ , leading to Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ . Hence, from (50) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−1V1 · · · ((51 )).

(1) Let λβmax{0, a− ρ} < s. Since V1 − βV0 < 0 · · · ((52 )) from (19.2.22) or equivalently V1 < βV0 · · · ((53 )). Then, from (51)

and (53) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−1V1 < βτV0 .

Thus, we obtain ⃝s dOITsτ ⟨τ⟩ △ or • dOITdτ ⟨0⟩ △, hence (1ii) of S13 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then V1 − βV0 ≥ 0 from (19.2.22), hence V1 ≥ βV0. Then, from (51) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−2V2 ≤ βτ−1V1 ≥ βτV0.

Thus, we have ⃝s dOITsτ ⟨τ⟩ △ or • dOITdτ ⟨0⟩ △, hence (2ii) of S13 holds.

(c3ii) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 12.2.4(c ((d))), we have V1 > xK ≥ xL from (31) , hence
Vt−1 ≥ xK ≥ xL for t > 1 due to (c1). Accordingly L (Vt−1) ≤ 0 for t > 1 from Corollary 12.2.1(p.80) (a), hence Vt − βVt−1 ≤ 0
for t > 1 from (19.2.21) or equivalently Vt ≤ βVt−1 for t > 1. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 1, we have
Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 · · · ((54 )).

(1) Let λβmax{0, a− ρ} ≤ s. Then, since V1 ≤ βV0 from (19.2.22), we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 from (54) ,
hence t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ △.

(2) Let λβmax{0, a− ρ} > s. Then, since V1 > βV0 from (19.2.22), we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 > βτV0 from (54) ,
hence t∗τ = 1 for τ > 1, i.e., ⃝⃝∗ ndOITτ>1⟨1⟩ △.

Corollary 19.2.9 (M:2[P][E] ) Assume a⋆ < ρ < b. Let β < 1 or s > 0. :

(a) Let xK ≥ V1. Then zt is nondecreasing in t > 0.
(b) Let xK < V1. Then zt is nonincreasing in t > 0.

Proof Immediate from Tom 19.2.19(b1,c1) and from (6.2.76(p.25) ) and Lemma 12.1.3(p.73) .

19.2.6.3 Market Restriction

19.2.6.3.1 Positive Restriction

19.2.6.3.1.1 Case of β = 1 and s = 0

� Pom 19.2.9 (A {M:2[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.
(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s /•dd
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 19.2.12(p.189) due to Lemma 16.4.1(p.100) .

19.2.6.3.1.2 Case of β < 1 or s > 0

19.2.6.3.1.2.1 Case of ρ ≤ a⋆

� Pom 19.2.10 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a⋆ < ρ, and converges to a finite V = xK as t→∞.
(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ → ⃝⃝∗
2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
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4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.
i. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N → →⃝⃝s
ii. Let s ≥ λβT (0). Then ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗

2. Let λ < 1.
i. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N → →⃝⃝s
ii. Let s > λβT (0). Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → →⃝⃝s /⃝⃝∗

ii. Let (λβa− s)/δ > a⋆.

1. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N → ⃝⃝s
2. Let s > λβT (0). Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → →⃝⃝s /⃝⃝∗

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.18) ).

(a-c2ii) The same as Tom 19.2.13(p.189) (a-c2ii).

(c3) Due to (1) it suffices to consider only (c3i1i,c3i2i,c3ii1) of Tom 19.2.13.

(c4-c4ii2) Immediate from (2) and Tom 19.2.13(c3-c3ii2) with κ due to (2) .

� Pom 19.2.11 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ → →•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.18) ).

(a,b) The same as Tom 19.2.14(p.190) (a,b).

(c) Due to (1) it suffices to consider only (c1) of Tom 19.2.14.

(d-d2) Immediate from (2) and Tom 19.2.14(c1,c2) with κ.

� Pom 19.2.12 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N → →•dd/⃝⃝s
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
2. Let β < 1 and s = 0. Then S9(p.181) ⃝s △ •△ •N is true → → ⃝⃝s /•dd
3. Let β < 1 and s > 0.

i. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) → →•dd
ii. Let s < λβT (0). Then S9(p.181) ⃝s △ •△ •N is true → → ⃝⃝s /•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.18) ).

(a-d1) The same as Tom 19.2.15(a-d1).

(d2) Due to (1) it suffices to consider only (d2ii) of Tom 19.2.15.

(d3,d3ii) Immediate from (2) and Tom 19.2.15(d2i,d2ii) with κ.

19.2.6.3.1.2.2 Case of b ≤ ρ

� Pom 19.2.13 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
4. Let β < 1 and s > 0.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
ii. Let s > λβT (0). Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗
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Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.18) ).

(a-c2) The same as Tom 19.2.16(p.190) (a-c2).

(c3) Due to (1) it suffices to consider only (c3i) of Tom 19.2.16.

(c4-c4ii) Immediate from (2) and Tom 19.2.16(c3i,c3ii) with κ.

� Pom 19.2.14 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.
(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ → →•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.18) ).

(a,b) The same as Tom 19.2.17(p.191) (a,b).

(c) Due to (1) it suffices to consider only (c1) of Tom 19.2.17.

(d-d2) Immediate from (2) and Tom 19.2.17(c1,c2) with κ.

� Pom 19.2.15 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.
(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s /•dd
(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
2. Let β < 1 and s = 0. Then S9(p.181) ⃝s △ •△ •N is true → → ⃝⃝s /•dd
3. Let β < 1 and s > 0.

i. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) → →•dd
ii. Let s < λβT (0). Then S9(p.181) ⃝s △ •△ •N is true → → ⃝⃝s /•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.18) ).

(a-c1) The same as Tom 19.2.18(p.191) (a-c1).

(c2) Due to (1) it suffices to consider only (c2ii) of Tom 19.2.18.

(c3-c3ii) Immediate from (2) and Tom 19.2.18(c2i,c2ii) with κ.

19.2.6.3.1.2.3 Case of a⋆ < ρ < b

� Pom 19.2.16 (A {M:2[P][E]+}) Suppose a > 0. Assume a⋆ ≤ ρ < a. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} < s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s /•dd
(b) Let xK ≥ V1.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = xK as t→∞
2. Let xL ≤ V1. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △ → →•dd /⃝⃝∗
3. Let xL > V1.

i. Let β = 1. Then S10(p.191) ⃝s △ •△ is true → → ⃝⃝s /•dd
ii. Let β < 1 and s = 0. Then S10(p.191) ⃝s △ •△ is true → → ⃝⃝s /•dd
iii. Let β < 1 and s > 0.

1. Let s < λβT (0). Then S10(p.191) ⃝s △ •△ is true → → ⃝⃝s /•dd
2. Let s = λβT (0). If λβmax{0, a− ρ} < s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △,

or else ⃝s dOITsτ>1⟨τ⟩ △ →⃝⃝s /•dd
3. Let s > λβT (0). Then S11(p.191) ⃝s △ ⃝s N ⃝∗ △ •△ is true → → ⃝⃝s /⃝⃝∗ /•dd

(c) Let xK < V1.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let β = 1. If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗ /•dd
3. Let β < 1 and s = 0.

i. Let xL > V1. Then S10(p.191) ⃝s △ •△ is true → → ⃝⃝s /•dd
ii. Let xL = V1. Then S12(p.191) ⃝s △ ⃝s N ⃝∗ △ •△ •N is true → → ⃝⃝s /⃝⃝∗ /•dd
iii. Let xL < V1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

4. Let β < 1 and s > 0.
i. Let s < λβT (0).

1. Let xL > V1. Then S10(p.191) ⃝s △ •△ is true → → ⃝⃝s /•dd
2. Let xL = V1. Then S12(p.191) ⃝s △ ⃝s N ⃝∗ △ •△ •N is true → → ⃝⃝s /⃝⃝∗ /•dd
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3. Let xL < V1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗
ii. Let s ≥ λβT (0). If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗ /•dd

Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then, we have κ = λβT (0)− s · · · ((2)) from (5.1.23(p.18) ).

(a-b3i) The same as Tom 19.2.19(p.192) (a-b3i).

(b3ii) Due to (1) it suffices to consider only (b3ii1) of Tom 19.2.19.

(b3iii-b3iii3) The same as Tom 19.2.19(b3ii1-b3ii3).

(c-c2) Immediate from (2) and Tom 19.2.19(c-c2).

(c3-c3iii) Due to (1) it suffices to consider only (c3i1-c3i3) of Tom 19.2.19.

(c4-c4ii) Immediate from (2) and Tom 19.2.19(c3i-c3ii).

19.2.6.3.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.2.6.3.3 Negative Restriction

19.2.6.3.3.1 Case of β = 1 and s = 0

� Nem 19.2.5 (A {M:2[P][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s /•dd
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

Proof The same as Tom 19.2.12(p.189) due to Lemma 16.4.1(p.100) .

19.2.6.3.3.2 Case of β < 1 or s > 0

19.2.6.3.3.2.1 Case of ρ ≤ a⋆

� Nem 19.2.6 (A {M:2[P][E]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a⋆ < ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △ → •dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ → ⃝⃝∗
2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

3. Let β < 1 and s = 0. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N → → ⃝⃝s /⃝⃝∗
4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ △. ⃝⃝∗
2. Let λ < 1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

ii. Let (λβa− s)/δ > a⋆. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)), hence a⋆ < a < b < 0 · · · ((2)) from Lemma 12.2.1(p.77) (n). Then κ = −s · · · ((3)) from Lemma 12.2.6(p.81) (a).

(a-c2ii) The same as Tom 19.2.13(p.189) (a-c2ii).

(c3) Let β < 1 and s = 0. Assume (λβa − s)/δ ≤ a⋆. Then, since λβa/δ ≤ a⋆, we have λβa ≤ δa⋆ from (9.2.2 (1) (p.42) ),
hence λβa ≤ δa⋆ ≤ λa⋆ due to (2) , so βa ≤ a⋆, which contradicts [19(p.101) ]. Thus it must be that (λβµ− s)/δ > a⋆. From this
it suffices to consider only (c3ii2) of Tom 19.2.13(p.189) .

(c4-c4ii) Let β < 1 and s > 0. Then κ < 0 due to (3) , hence it suffices to consider only (c3i1ii,c3i2ii,c3ii2) of Tom 19.2.13
with κ.

� Nem 19.2.7 (A {M:2[P][E]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥ → •dd
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Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a) The same as Tom 19.2.14(p.190) (a,b).

(b) Let β = 1. Then we have • dOITdτ>0⟨0⟩ ∥ from Tom 19.2.14(b). Let β < 1. Then, if s = 0, due to (1) it suffices to

consider only (c2) of Tom 19.2.14 and if s > 0, then κ < 0 due to (2) , hence it suffices to consider only (c2) of Tom 19.2.14 with
κ. Thus, whether s = 0 or s > 0, we have the same result. Accordingly, whether β = 1 or β < 1, we have the same result.

� Nem 19.2.8 (A {M:2[P][E]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.
(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N → →•dd/⃝⃝s
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) → →•dd

Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a-d1) The same as Tom 19.2.15(p.190) (a-d1).

(d2) If s = 0, then due to (1) it suffices to consider only (d2i) of Tom 19.2.15 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (d2i) of Tom 19.2.15. Thus, whether s = 0 or s > 0, we have the same result.

19.2.6.3.3.2.2 Case of b ≤ ρ

� Nem 19.2.9 (A {M:2[P][E]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △ → →•dd
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
3. Let β < 1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N ∗N is true → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0 · · · ((1)). Then κ = κP = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a,c2) The same as Tom 19.2.16(p.190) (a,c2).

(c3) If s = 0, then due to (1) it suffices to consider only (c3ii) of Tom 19.2.16 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (c3ii) of Tom 19.2.16. Thus, whether s = 0 or s > 0, we have the same result.

� Nem 19.2.10 (A {M:2[P][E]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.
(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a) The same as Tom 19.2.17(p.191) (a).

(b) Let β = 1. Then we have • dOITdτ>0⟨0⟩ ∥ from Tom 23.1.17(p.236) (b).

(c) Let β < 1. Then, if s = 0, then due to (1) it suffices to consider only (c2) of Tom 19.2.17and if s > 0, then κ < 0 due to
(2) , hence it suffices to consider only (c2) of Tom 19.2.17. Accordingly, whether s = 0 or s > 0, we have the same result.

� Nem 19.2.11 (A {M:2[P][E]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s /•dd
(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.. →•dd
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) → →•dd

Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a-c1) The same as Tom 19.2.18(p.191) (a-c1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2i) of Tom 19.2.18 and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (c2i) of Tom 19.2.18. Thus, whether s = 0 or s > 0, we have the same result.

19.2.6.3.3.2.3 Case of a⋆ < ρ < b

� Nem 19.2.12 (A {M:2[P][E]−}) Suppose b < 0. Assume a⋆ ≤ ρ < a. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} < s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s /•dd
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(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let V1 ≥ xL V1. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗ /•dd
3. Let V1 < xL .

i. Let β = 1. Then S10(p.191) ⃝s △ •△ is true → → ⃝⃝s /•dd
ii. Let β < 1. Then S11(p.191) ⃝s △ ⃝s N ⃝∗ △ •△ is true → → ⃝⃝s /⃝⃝∗ /•dd

(c) Let V1 > xK .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞
2. If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗ /•dd

Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 12.2.6(p.81) (a).

(a-b3i) The same as Tom 19.2.19(p.192) (a-b3i).

(b3ii) Let β < 1. If s = 0, then due to (1) it suffices to consider only (b3ii3) of Tom 19.2.19 and if s > 0, then κ < 0 due to
(2) , hence it suffices to consider only (b3ii3) of Tom 19.2.19. Thus, whether s = 0 or s > 0, we have the same result.

(c) Let V1 > xK .

(c1) The same as Tom 19.2.19(c1)

(c2) Let β = 1. Then, we have the same as Tom 19.2.19(c2). Let β < 1. Then, if s = 0, then due to (1) it suffices to
consider only (c3ii) of Tom 19.2.19 and if s > 0, then κ < 0 from (2) , hence it suffices to consider only (c3ii) of Tom 19.2.19.
Thus, whether s = 0 or s > 0, we have the same result. Accordingly, whether β = 1 or β < 1, it eventually follows that we have
the same result.

19.2.7 M̃:2[P][E]
19.2.7.1 Preliminary

Since (19.2.6(p.177) ) can be known to hold through the comparison of (III) and (IV) of Table 6.5.4(p.31) , we see that Theo-
rem 19.2.3(p.177) holds, hence A {M̃:2[P][E]} can be derived by applying SP→P̃ (see (15.3.2(p.98) )) to A {M:2[P][E]}.

19.2.7.2 Analysis

19.2.7.2.1 Case of β = 1 and s = 0

� Tom 19.2.20 (A {M̃:2[P][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.
(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.
(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.2.12(p.189) .

Corollary 19.2.10 (M̃:2[P][E] ) Let β = 1 and s = 0. Then, zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.2.20(a) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

19.2.7.2.2 Case of β < 1 or s > 0

19.2.7.2.2.1 Case of ρ ≥ b⋆

� Tom 19.2.21 (A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.
2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .
i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1.
i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a ≥ 0 ((κ̃ ≥ 0)) . Then ⃝⃝∗ ndOITτ>1⟨1⟩ △.
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2. Let λ < 1.
i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a > 0 ((κ̃ > 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

ii. Let (λβb+ s)/δ < b⋆.

1. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.2.13(p.189) .

Corollary 19.2.11 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ . Then, zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.2.21(a) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

� Tom 19.2.22 (A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then • dOITdτ>0⟨0⟩ △.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.2.14(p.190) .

Corollary 19.2.12 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, zt = z̃(ρ) for t ≥ 0.

Proof Immediate from Tom 19.2.22(a) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

� Tom 19.2.23 (A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.

2. Let β < 1 and s = 0 ((s > 0)) .
i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let a < 0 ((κ̃ < 0)). Then S9
⃝s △ •△ •N is true.

Proof by symmetry Immediate from applying SP→P̃ to Tom 19.2.15(p.190) .

Corollary 19.2.13 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ . Then, zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.2.23(a) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

19.2.7.2.2.2 Case of a ≥ ρ

� Tom 19.2.24 (A {M̃:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a > 0 ((κ̃ > 0)) . Then S8
⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true.

Proof by symmetry Immediate from SP→P̃ to Tom 19.2.16(p.190) .†

Corollary 19.2.14 (M̃:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ . Then, zt is nonincreasing in t ≥ 0.

Proof Immediate from Tom 19.2.24(a) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

� Tom 19.2.25 (A {M̃:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

†S8 does not change by the application of the operation.

201



1. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)) . Then • dOITdτ>0⟨0⟩ △.

Proof by symmetry Immediate from SP→P̃ to Tom 19.2.17(p.191) .

Corollary 19.2.15 (M̃:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, zt = z̃(ρ) for t ≥ 0.

Proof Immediate from Tom 19.2.25(a) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

� Tom 19.2.26 (A {M:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let a < 0 ((κ̃ < 0)). Then S9
⃝s △ •△ •N is true.

Proof by symmetry Immediate from SP→P̃ to Tom 19.2.18(p.191) .‡

Corollary 19.2.16 (M:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ . Then, zt is nondecreasing in t ≥ 0.

Proof Immediate from Tom 19.2.26(a) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

19.2.7.2.2.3 Case of b⋆ > ρ > a

By applying SP→P̃ in Theorem 19.2.3, we see that S10(p.191) – S13 change as follows respectively:

S14
⃝s △ •△ = { We have:

(1) Let λmin{0, ρ− b} > −s. Then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △.

(2) Let λmin{0, ρ− b} ≤ −s. Then ⃝s dOITsτ>1⟨τ⟩ △. }
S15

⃝s △ ⃝s N⃝∗ △ •△ = { There exists t•τ > 1 such that:
(1) If λβmin{0, ρ− b} > −s, then

i. ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △,

ii. ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. ⃝s dOITst•τ≥τ>1⟨τ⟩ N,

ii. ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ △.

}
S16

⃝s △ ⃝s N⃝∗ △ •△ •N= { There exists t•τ > 1 such that:
(1) If λβmin{0, ρ− b} > −s, then

i. • dOITdt•τ≥τ>0⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ ∥,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ N.

}
S17

⃝s △ ⃝∗ △ •△ •N = { There exists t•τ > 1 and t⋆τ > 1 such that:
(1) If λβmin{0, ρ− b} > −s, then

i. • dOITdt•τ≥τ>1⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. ⃝⃝∗ ndOITt•τ≥τ>1⟨1⟩ △,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

}
Moreover, note that (19.2.26(p.192) ) can be changed into

V1 = λβmin{0, ρ− b}+ βρ+ s. (19.2.27)

� Tom 19.2.27 (A {M̃:2[P][E]}) Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.
(b) Let V1 ≥ x

K̃ .†

‡S9 does not change by the application of the operation.
†V1 = λβmin{0, b− ρ}+ βρ + s (see (6.5.25(p.31) )).
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1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △.

3. Let V1 > x
L̃ .

i. Let β = 1. Then S14
⃝s △ •△ is true.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then S14
⃝s △ •△ is true.

2. Let a = 0 ((κ̃ = 0)) . If λβmin{0, ρ−b} > −s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △, or else ⃝s dOITsτ>1⟨τ⟩ △.

3. Let a > 0 ((κ̃ > 0)) . Then S15
⃝s △ ⃝s N ⃝∗ △ •△ is true.

(c) Let V1 < x
K̃ .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let β = 1. If λβmin{0, ρ− b} > −s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) .

1. Let V1 ≥ x
L̃ . Then S14

⃝s △ •△ is true.

2. Let V1 = x
L̃ . Then S16

⃝s △ ⃝s N ⃝∗ △ •△ •N is true.

3. Let V1 < x
L̃ . Then S17

⃝s △ ⃝∗ △ •△ •N is true.

ii. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ− b} > −s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △.

Proof by symmetry Immediate from SP→P̃ to Tom 19.2.19(p.192) .

Corollary 19.2.17 (M̃:2[P][E] ) Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) Let V1 ≥ x
K̃ . Then zt is nonincreasing in t > 0.

(b) Let V1 < x
K̃ . Then zt is nondecreasing in t > 0.

Proof Immediate from Tom 19.2.27(b1,c1) and from (6.2.90(p.26) ) and Lemma A3.3(p.278) .

19.2.7.3 Market Restriction

19.2.7.3.1 Positive Restriction

19.2.7.3.1.1 A {M̃:2[P][E]+}

19.2.7.3.1.1.1 Case of β = 1 and s = 0

� Pom 19.2.17 (A {M̃:2[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.
(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥ → →•dd
(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N → →•dd/⃝⃝s
2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to Nem 19.2.5(p.198) .

Direct proof The same as Tom 19.2.20(p.200) due to Lemma 16.4.1(p.100) .

19.2.7.3.1.1.2 Case of β < 1 or s > 0

19.2.7.3.1.1.2.1 Case of ρ ≥ b⋆

� Pom 19.2.18 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △ → →•dd

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N and Conduct1N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ>1⟨1⟩ ∥ → ⃝⃝∗
2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
3. Let β < 1 and s = 0. Then S8

⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗
4. Let β < 1 and s > 0.

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1. Then ⃝⃝∗ ndOITτ ⟨1⟩ △ → ⃝⃝∗
2. Let λ < 1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

ii. Let (λβb+ s)/δ < b⋆. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗
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Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to
Nem 19.2.6(p.198) (see (19.2.10(p.177) )).

Direct proof Suppose a > 0 · · · ((1)), hence b⋆ > b > a > 0 · · · ((2)) from Lemma 13.6.1(p.89) (n). Then we have κ̃ = s · · · ((3)) from

Lemma 13.6.6(p.90) (a).

(a-c2ii) The same as Tom 19.2.21(p.200) (a-c2ii).

(c3) Let β < 1 and s = 0, hence κ̃ = 0 due to (3) . Assume (λβb+s)/δ ≥ b⋆. Then since λβb/δ ≥ b⋆, we have λβb ≥ δb⋆ from
(9.2.2 (1) (p.42) ), hence λβb ≥ δb⋆ ≥ λb⋆ due to (2) , so βb ≥ b⋆, which contradicts [7(p.101) ]. Thus it must be that (λβb+ s)/δ < b⋆.
From this it suffices to consider only (c3ii2) of Tom 19.2.21(p.200) .

(c4-c4ii) Let β < 1 and s > 0. Then κ̃ > 0 from (3) , hence it suffices to consider only (c3i1ii,c3i2ii,c3ii2) of Tom 19.2.21(p.200)

with κ.

� Pom 19.2.19 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥ → →•dd
Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to
Nem 19.2.7(p.198) (see (19.2.10(p.177) )).

Direct proof Let a > 0 · · · ((1)), then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a).

(a) The same as Tom 19.2.22(p.201) (a).

(b) Let β = 1. Then we have Tom 19.2.22(a). Let β < 1. Then, if s = 0, due to (1) it suffices to consider only (c2) of
Tom 19.2.22 and if s > 0, then κ̃ > 0 from (2) , hence it suffices to consider only (c2 of Tom 19.2.22. Thus, whether s = 0 or
s > 0, we have the same result.

� Pom 19.2.20 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s /•dd

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △. →•dd
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ ( • dOITdτ>0⟨0⟩ N) → →•dd

Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to
Nem 19.2.8(p.199) (see (19.2.10(p.177) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) due to Lemma 13.6.6(p.90) (a).

(a-d1) The same as Tom 19.2.23(p.201) (a-d1).

(d2) If s = 0, due to (1) it suffices to consider only (d2i) of Tom 19.2.23 and if s > 0, then κ̃ > 0 due to (2) , hence it suffices
to consider only (d2i) of Tom 19.2.23. Thus, whether s = 0 or s > 0, we have the same result.

19.2.7.3.1.1.2.2 Case of a ≥ ρ

� Pom 19.2.21 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △ → →•dd

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s
2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s
3. Let β < 1. Then S8(p.178) ⃝s N ⃝∗ ∥ ⃝∗ △ ⃝∗ N is true → → ⃝⃝s /⃝⃝∗

Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to
Nem 19.2.9(p.199) (see (19.2.10(p.177) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a).

(a-c2) The same as Tom 19.2.24(p.201) (a-c2).

(c3) If s = 0, due to (1) it suffices to consider only (c3ii) of Tom 19.2.24 and if s > 0, then κ̃ > 0 due to (2) , hence it suffices
to consider only (c3ii) of Tom 19.2.24. Thus, whether s = 0 or s > 0, we have the same result.

� Pom 19.2.22 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then we have • dOITdτ>0⟨0⟩ ∥ → →•dd
(c) Let β < 1. Then we have • dOITdτ>0⟨0⟩ △ → →•dd
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Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to
Nem 19.2.10(p.199) (see (19.2.10(p.177) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.90) (a).

(a) The same as Tom 19.2.25(a).

(b) The same as Tom 19.2.25(p.201) (b).

(c) Let β < 1. If s = 0, due to (1) it suffices to consider only (c2) of Tom 19.2.25. If s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (c2) of Tom 19.2.25. Thus, whether s = 0 or s > 0, we have the same result.

� Pom 19.2.23 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N → → ⃝⃝s /•dd

(c) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △ → →•dd
2. Let β < 1 and let s = 0(s > 0). Then • dOITdτ>0⟨0⟩ △ ( • dOITdτ>0⟨0⟩ N) → →•dd

Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to
Nem 19.2.11(p.199) (see (19.2.10(p.177) )).

Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) due to Lemma 13.6.6(p.90) (a).

(a,b) The same as Tom 19.2.26(a,b).

(c) Let ρ < x
L̃ .

(c1) Let β = 1. Then we have • dOITdτ>0⟨0⟩ △ from Tom 19.2.26(c1).

(c2) Let β < 1. If s = 0, then due to (2) it suffices to consider only (c2i) of Tom 19.2.26 and if s > 0, then κ̃ > 0 due to (2) ,
hence it suffices to consider only (c2i) of Tom 19.2.26. Thus, whether s = 0 or s > 0, we have the same result.

19.2.7.3.1.1.2.3 Case of b⋆ > ρ > a

� Pom 19.2.24 (A {M̃:2[P][E]+}) Suppose a > 0. Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) If λβmax{0, ρ− b} ≤ s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1 → → ⃝⃝s /•dd
(b) Let V1 ≥ x

K̃ .†

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let V1 ≥ x
L̃ . If λβmax{0, ρ− b} ≤ s, then • dOITdτ>1⟨0⟩ △, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗ /•dd

3. Let V1 > x
L̃ .

i. Let β = 1. Then S14(p.202) ⃝s △ •△ is true → → ⃝⃝s /•dd
ii. Let β < 1. Then S15(p.202) ⃝s △ ⃝s N ⃝∗ △ •△ is true → → ⃝⃝s /⃝⃝∗ /•dd

(c) Let V1 < x
K̃ .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. If λβmax{0, ρ− b} < s, then • dOITdτ>1⟨0⟩ N, or else ⃝⃝∗ ndOITτ>1⟨1⟩ △ → → ⃝⃝∗ /•dd
Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (15.3.2(p.98) )) to
Nem 19.2.12(p.199) (see (19.2.10(p.177) )).

Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0. Then κ̃ = s · · · ((2)) due to Lemma 13.6.6(p.90) (a).

(a-b3i) The same as Tom 19.2.27(p.202) (a-b3i).

(b3ii) Let β < 1. If s = 0, then due to (1) it suffices to consider only (b3ii3) of Tom 19.2.27 and if s > 0, then κ̃ > 0 due to
(2) , hence it suffices to consider only (b3ii3) of Tom 19.2.27. Thus, whether s = 0 or s > 0, we have the same result.

(c1) The same as Tom 19.2.27(p.202) (c1).

(c2,1) If β = 1, then it suffices to consider only (c2) of Tom 19.2.27 and if β < 1, whether s = 0 or s > 0, it suffices to
consider only (c3ii) of Tom 19.2.27(p.202) . Accordingly, whether β = 1 or β < 1, we have the same result.

19.2.7.3.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

19.2.7.3.3 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).

†V1 = λβmin{0, b− ρ}+ βρ + s (see (6.5.25(p.31) )).
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19.2.7.4 Numerical Example

Numerical Example 19.2.1 (A {M:2[R][E]+} [019(1)]) This example is for the assertion in Pom 19.2.4(p.184) (d3ii) in
which a > 0, ρ > xK , ρ > xL , β < 1, s > 0, and λβµ > s. As an example let a = 0.01, b = 1.00, λ = 0.7, β = 0.98, s = 0.1,
and ρ = 0.5.† where xL = 0.462767 and xK = 0.439640. The symbols • in the figure below shows the optimal-initiating-times
t∗15 ≥ τ ≥ 1 (see the t∗τ -column in the table of Figure 19.2.2 below).
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Graphs of Itτ = βτ−tVt with 15 ≥ τ > 0 and τ ≥ t ≥ 0[FIG7498x]

t Vt ∆βVt t∗τ

0 0.5000000
1 0.4766162 −0.0133838 1
2 0.4619911 −0.0050927 1
3 0.4530367 +0.0002854 1
4 0.4476274 +0.0036514 1
5 0.4443866 +0.0057117 1
6 0.4424547 +0.0069558 1
7 0.4413065 +0.0077009 7
8 0.4406253 +0.0081449 8
9 0.4402216 +0.0084088 9
10 0.4399825 +0.0085653 10
11 0.4398410 +0.0086581 11
12 0.4397572 +0.0087130 12
13 0.4397076 +0.0087456 13
14 0.4396783 +0.0087648 14
15 0.4396609 +0.0087762 15

∆βVt = Vt − βVt−1 [017(1)Data.DAT]

Figure 19.2.2: Graphs of Itτ = βτ−tVt for 15 ≥ τ ≥ 2 and τ ≥ t ≥ 1

Scaling up the graphs for τ = 6 and τ = 7 in the above figure, we have the figure below. This figure shows that the optimal
initiating time shifts from 0 to 7 when the starting time changes from τ = 6 to τ = 7.
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Graphs of Itτ = βτ−tVt with τ = 6, 7 [FIG7498y]

τ = 6

t β6−tVt

0 0.4429212
1 0.4308233
2 0.4261259
3 0.4263946
4 0.4299014
5 0.4354989
6 0.4424547

τ = 7

t β7−tVt

0 0.4340628
1 0.4222069
2 0.4176034
3 0.4178667
4 0.4213034
5 0.4267889
6 0.4336056
7 0.4413065

Figure 19.2.3: Graphs of Itτ = βτ−tVt for τ = 6 and τ = 7

19.2.7.5 Conclusion 5 (Search-Enforced-Model 2)

C1 Monotonicity
On the total market F we have:

a. The optimal reservation price in M:2[R][E] is nondecreasing in t N
a

, constant ∥
a

, or nonincreasing in t H
a

.

b. The optimal reservation price in M̃:2[R][E] is nondecreasing in t N
b

, constant ∥
b

, or nonincreasing in t H
b

.

c. The optimal price in M:2[P][E] is nondecreasing in t N
c

, constant ∥
c

, or nonincreasing in t H
c

.

d. The optimal price in M̃:2[P][E] is nondecreasing in t N
d

, constant ∥
d

, or nonincreasing in t H
d

.

· Na ← Tom 19.2.1(p.178) (a), 19.2.2(p.178) (a).
∥a ← Tom 19.2.3(p.181) (a)).
Ha ← Tom 19.2.4(p.182) (a).

· Nb ← Tom 19.2.8(p.186) (a).
∥b ← Tom 19.2.7(p.186) (a).
Hb ← Tom 19.2.5(p.185) (a), 19.2.6(p.185) (a).

· Nc ← Corollary 19.2.2(p.189) , 19.2.3(p.190) , 19.2.6(p.191) ,19.2.9(p.195) (a).
∥c ← Corollary 19.2.4(p.190) , 19.2.7(p.191) .
Hc ← Corollary 19.2.5(p.190) , 19.2.8(p.191) , 19.2.9(p.195) (b).

· Nd ← Corollary 19.2.13(p.201) , 19.2.16(p.202) , 19.2.17(p.203) (b).
∥c ← Corollary 19.2.12(p.201) , 19.2.15(p.202) .
Hd ← Corollary 19.2.10(p.200) , 19.2.11(p.201) , 19.2.14(p.201) , 19.2.17(p.203) (a).

†We have ρ = 0.5 > 0.462767 = xL , β = 0.98 < 1, and s = 0.1 > 0. Since µ = (0.01 + 1.00)/2 = 0.505, we have λβµ = 0.7 × 0.98 × 0.505 =
0.34634 > 0.1 = s. Thus the condition of this assertion is confirmed.
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C2 Inheritance and Collapse
On the positive market F+ we have:

a. Symmetry

1. Let β = 1 and s = 0. Then, the symmetry is inherited (∼ ) in whether R-model or P-model where

Pom 19.2.1(p.183) ∼ Pom 19.2.5(p.186) (R-model),
Pom 19.2.9(p.195) ∼ Pom 19.2.17(p.203) (P-model),

2. Let β < 1 or s > 0. Then, the symmetry collapses ( |∼ ) in whether R-model or P-model where

Pom 19.2.2(p.183) |∼ Pom 19.2.6(p.187) (R-model),
Pom 19.2.3(p.184) |∼ Pom 19.2.7(p.187) (R-model),
Pom 19.2.4(p.184) |∼ Pom 19.2.8(p.187) (R-model),
Pom 19.2.10(p.195) |∼ Pom 19.2.18(p.203) (R-model),
Pom 19.2.11(p.196) |∼ Pom 19.2.19(p.204) (R-model),
Pom 19.2.12(p.196) |∼ Pom 19.2.20(p.204) (P-model),
Pom 19.2.13(p.196) |∼ Pom 19.2.21(p.204) (P-model),
Pom 19.2.14(p.197) |∼ Pom 19.2.22(p.204) (P-model),
Pom 19.2.15(p.197) |∼ Pom 19.2.23(p.205) (P-model),
Pom 19.2.16(p.197) |∼ Pom 19.2.24(p.205) (P-model),

b. Analogy

Whether “β = 1 and s = 0” or “β < 1 or s > 0”, the analogy collapses ( ◃▹| ) in whether S-model or B-model where

Pom 19.2.1(p.183) ◃▹| Pom 19.2.9(p.195) (S-model),
Pom 19.2.5(p.186) ◃▹| Pom 19.2.17(p.203) (B-model),
Pom 19.2.2(p.183) ◃▹| Pom 19.2.10(p.195) (S-model),
Pom 19.2.3(p.184) ◃▹| Pom 19.2.11(p.196) (S-model),
Pom 19.2.4(p.184) ◃▹| Pom 19.2.12(p.196) (S-model),

“all Pom’s in Section 19.2.5.2.1.2(p.187) ” ◃▹| “all Pom’s in Section 19.2.7.3.1.1(p.203) ”(B-model),

C3 Occurrence of ⃝⃝s , ⃝⃝∗ , and•dd
On the positive market F+ we have:

a. Let β = 1 and s = 0. Then, from

Pom 19.2.1(p.183) , Pom 19.2.5(p.186) , Pom 19.2.9(p.195) , Pom 19.2.17(p.203) ,

Table 19.2.3: OIT (β = 1 and s = 0)

A {M:2[R][E]+} A {M̃:2[R][E]+} A {M:1[P][E]+} A {M̃:2[P][E]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △

⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥

⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△

⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N

• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△

• dOITdτ ⟨0⟩ N •ddN

1. What is amazing is here that, even in the most simple case “β = 1 and s = 0”, the deadline-falling•dd occurs
in all of quadruple-asset-trading models.

b. Let β < 1 or s > 0. Then, from

Pom 19.2.4(p.184) , Pom 19.2.12(p.196) , Pom 19.2.15(p.197) , Pom 19.2.16(p.197) , Pom 19.2.24(p.205) , Pom 19.2.2(p.183) , Pom 19.2.3(p.184) ,

Pom 19.2.4(p.184) , Pom 19.2.6(p.187) , Pom 19.2.8(p.187) , Pom 19.2.10(p.195) , Pom 19.2.11(p.196) , Pom 19.2.13(p.196) , Pom 19.2.14(p.197) ,

Pom 19.2.16(p.197) , Pom 19.2.18(p.203) , Pom 19.2.20(p.204) , Pom 19.2.23(p.205) , Pom 19.2.16(p.197) , Pom 19.2.21(p.204) , Pom 19.2.7(p.187) ,

Pom 19.2.19(p.204) , Pom 19.2.22(p.204) , Pom 19.2.22(p.204) ,

we obtain the following table:

Table 19.2.4: OIT (β < 1 or s > 0)207



A {M:2[R][E]+} A {M̃:2[R][E]+} A {M:1[P][E]+} A {M̃:2[P][E]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △ ◦ ◦ ◦ ◦
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ ∥ ⃝⃝∗ ∥ ◦ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ △ ⃝⃝∗△ ◦ ◦ ◦ ◦
⃝⃝∗ ndOITτ ⟨t•τ ⟩ N ⃝⃝∗N ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ N •ddN ◦ ◦ ◦ ◦

1. In addition to ⃝⃝s and•dd , all kinds of OIT excluding the two occurs in all of quadruple-asset-trading models.

c. Table 19.2.5 below is the list of the percents (frequencies) of⃝⃝s , ⃝⃝∗ , and•dd that appear in Sections 19.2.4.3(p.183) ,
19.2.5.2(p.186) , 19.2.6.3(p.195) , and 19.2.7.3(p.203) .

Table 19.2.5: Percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and•dd on F+

ratio (total) ⃝⃝s ⃝⃝∗ •dd
100% (218) 43% (93) 17% (38) 4%0 (87)

C4 Diagonal symmetry

Exercise 19.2.1 Confirm by yourself that the following relations hold in fact.

Pom 19.2.5(p.186) ∼ Nem 19.2.1(p.184) ,

Pom 19.2.6(p.187) ∼ Nem 19.2.2(p.184) ,

Pom 19.2.7(p.187) ∼ Nem 19.2.3(p.185) ,

Pom 19.2.8(p.187) ∼ Nem 19.2.4(p.185) ,

Pom 19.2.17(p.203) ∼ Nem 19.2.5(p.198) ,

Pom 19.2.18(p.203) ∼ Nem 19.2.6(p.198) ,

Pom 19.2.19(p.204) ∼ Nem 19.2.7(p.198) ,

Pom 19.2.20(p.204) ∼ Nem 19.2.8(p.199) ,

Pom 19.2.21(p.204) ∼ Nem 19.2.9(p.199) ,

Pom 19.2.22(p.204) ∼ Nem 19.2.10(p.199) ,

Pom 19.2.23(p.205) ∼ Nem 19.2.11(p.199) ,

Pom 19.2.24(p.205) ∼ Nem 19.2.12(p.199) .

a. The diagonal symmetry always holds in whether R-model or P-model.

19.3 Conclusion 6 (The whole Model 2)

Conclusions 19.1.9(p.175) and 19.2.7.5(p.206) can be summed up as below.

C1 Monotonicity

On the total market F , from C1(p.175) and C1(p.206) we have:

a. The optimal reservation price Vt in M:2[R][X] is nondecreasing in t N , constant ∥ , or nonincreasing in t H .
b. The optimal reservation price Vt in M̃:2[R][X] is nondecreasing in t N , constant ∥ , or nonincreasing in t H .
c. The optimal price to propose zt in M:2[P][X] is nondecreasing in t N , constant ∥ , or nonincreasing in t H .
d. The optimal price to propose z̃t in M̃:2[P][X] is nondecreasing in t N , constant ∥ , or nonincreasing in t H .

C2 Inheritance and Collapse

On the positive market F+, in whether s-A-model or s-E-model we have:

a. Symmetry

If β = 1 and s = 0, the symmetry is inherited (∼ ) (see C2a1(p.175) and C2a1(p.207) ), or else (β < 1 or s > 0) collapses
( |∼ ) (see C2a2(p.175) and C2a2(p.207) ).
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b. Analogy

For whether “β = 1 and s = 0” or “β < 1 or s > 0”, the analogy collapses ( ◃▹| ) (see C2b(p.175) and C2b(p.207) ).

C3 Occurrence of ⃝⃝s , ⃝⃝∗ , and•dd
On the positive market F+, in both s-A-model and s-E-model we have:

a. Let β = 1 and s = 0. Then only ⃝⃝s N and•dd ∥ are possible for both s-A-model and s-E-model (see Tables 19.1.1(p.175) and
19.2.3(p.207) ). It is especially noteworthy that •dd ∥ is possible even in the simplest case of β = 1 and s = 0; it should be
noted that such event was impossible in Model 1.

b. Let β < 1 or s > 0. Then ⃝⃝∗ and •dd are possible only for s-E-model (see Table 19.2.4(p.207) ). Here it should be noted
that the two are both strictly optimal, i.e., ⃝⃝∗ N and•dd N (see Section 7.3(p.37) ).

C4 On F+, joining Tables 19.1.3(p.176) and 19.2.5 produces the table below.

Table 19.3.1: Percents (frequencies) of ⃝⃝s , ⃝⃝∗ , and•dd on F+

ratio (total) ⃝⃝s ⃝⃝∗ •dd
100% (467) 45% (210) 18% (85) 37% (172)

In other words, ⃝⃝s , ⃝⃝∗ , and•dd occur at 45%, 18%, and 37% respectively.

C5 Diagonal symmetry

See C5(p.176) and C4(p.208) .
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Chapter 20

Model 3

20.1 Search-Allowed-Model 3: Q{M:3[A]} = {M:3[R][A], M̃:3[R][A],M:3[P][A], M̃:3[P][A]}
20.1.1 Preliminary I
As ones corresponding to Theorems 11.5.1(p.66) , 12.3.1(p.81) , and 13.5.1(p.88) , and 14.2.1(p.94) let us consider the following four
theorems:

Theorem 20.1.1 (symmetry[R→ R̃]) Let A {M:3[R][A]} holds on P ×F . Then A {M̃:3[R][A]} holds on P ×F where

A {M̃:3[R][A]} = SR→R̃[A {M:3[R][A]}]. (20.1.1)

Theorem 20.1.2 (analogy[R→ P]) Let A {M:3[R][A]} holds on P ×F . Then A {M:3[P][A]} holds on P ×F where

A {M:3[P][A]} = AR→P[A {M:3[R][A]}]. (20.1.2)

Theorem 20.1.3 (symmetry(P→ P̃]) Let A {M:3[P][A]} holds on P ×F . Then A {M̃:3[P][A]} holds on P ×F where

A {M̃:3[P][A]} = SP→P̃[A {M:3[P][A]}]. (20.1.3)

Theorem 20.1.4 (analogy[R̃→ P̃]) Let A {M̃:3[R][A]} holds on P ×F . Then A {M̃:3[P][A]} holds on P ×F where

A {M̃:3[P][A]} = A R̃→P̃[A {M̃:3[R][A]}].

In addition, as ones corresponding to (11.5.38(p.63) ), (12.2.4(p.77) ), (13.5.4(p.87) ), and
(14.2.5 (2) (p.94) ), let us consider the following four relations:

SOE{M̃:3[R][A]} = SR→R̃[SOE{M:3[R][A]}], (20.1.4)

SOE{M:3[P][A]} = AR→P[SOE{M:3[R][A]}], (20.1.5)

SOE{M̃:3[P][A]} = SP→P̃[SOE{M:3[R][A]}]. (20.1.6)

SOE{M̃:3[P][A]} = A R̃→P̃[SOE{M̃:3[R][A]}]. (20.1.7)

If (20.1.4) - (20.1.7) are all satisfied, then Theorems 20.1.1 - 20.1.4 can be derived for the same reason as in Parts 1 and 2. Now,
from the comparison of (I) and (II) of Table 6.5.5(p.31) and from the comparison of (III) and (IV) it can be easily seen that
(20.1.4) and (20.1.6) hold; accordingly, it follows that Theorems 20.1.1 and 20.1.3 hold. However, from the comparison of (I)
and (III) we see that (20.1.5) does not always hold, hence it follows that Theorem 20.1.2 cannot be used. Similarly, from the
comparison of (II) and (IV) we see that (20.1.7) does not always hold, hence it follows that Theorem 20.1.4 cannot be used.

The following lemma provides conditions on whether or not each of the four theorems holds.

Lemma 20.1.1

(a) Theorem 20.1.1 always hold.

(b) Theorem 20.1.3 always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 20.1.2 holds.

(d) Let a⋆ < ρ < b. Then Theorem 20.1.4 does not always hold.

Proof Almost the same as the proof of Lemma 19.1.1(p.137) .
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20.1.2 M:3[R][A]

Definition 20.1.1 (reduction)

(a) model reduction

Model 1 can be regarded as Model 2 if it is possible that the terminal quitting penalty ρ in Model 2 can be rejected; moreover
Model 2 can be regarded as Model 3 if it is possible that the intervening quitting penalty ρ in Model 3 can be rejected.
The above two interpretations imply the inclusion relation Model 1 ⊆ Model 2 ⊆ Model 3; in other words, it follows that
Model 3 can be reduced to Model 2 and Model 2 can be reduced to Model 1, schematized as

Model 3 � Model 2 and Model 2 � Model 1. (20.1.8)

Let us refer to the above model reduction as the model-running-back, implying that a model in “upstream” runs back to
a model in “downstream”.

(b) optdr reduction

Tom 20.1.1(b) implies that the optimal decision is reduced to

Acceptt(ρ)/Stop
def
= {Accept the intervening quitting penalty ρ at time t and stop the process}. (20.1.9)

Let us represent the reduction as the optdr-Accept/Stop.

Let us schematize the above two reductions as below.

Reduction

{
model reduction : → model-running-back (M:3[R][A] � M:2[R][A] )

optdr reduction : → optdr-Accept/Stop ( odr 7→ Acceptt(ρ)/Stop )
(20.1.10)

� Tom 20.1.1 (A {M:3[R][A]})

(a) Let ρ ≤ xK or ρ ≤ 0. Then M:3[R][A] � M:2[R][A].†

(b) Let ρ ≥ xK and ρ ≥ 0. Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop
‡ → ⃝⃝s

Proof From (6.5.39(p.31) ) with t = 1 we have U1 = max{K (ρ) + ρ, βρ} · · · ((1)), hence U1 − ρ = max{K (ρ),−(1 − β)ρ} · · · ((2)).
From (6.5.38) with t = 1 we have V1 ≥ ρ = V0. Then, from (6.5.39) with t = 2 and
Lemma 9.2.2(e) we have U2 = max{K (V1) + V1, βV1} ≥ max{K (V0) + V0, βV0} = U1. Suppose Ut−1 ≥ Ut−2, hence from
(6.5.38(p.31) ) we have Vt−1 = max{ρ, Ut−1} ≥ max{ρ, Ut−2} = Vt−2. Then, from (6.5.39(p.31) ) we have Ut ≥ max{K (Vt−2) +
Vt−2, βVt−2} = Ut−1 due to Lemma 9.2.2(e). Thus, by induction we have Ut ≥ Ut−1 for t > 1, i.e., we have that Ut is
nondecreasing in t > 0 · · · ((3)).

(a) Let ρ ≤ xK , hence K (ρ) ≥ 0 · · · ((4)) from Corollary 9.2.2(b). Then, from (1) we have U1 ≥ K (ρ)+ ρ ≥ ρ. Hence Ut ≥ ρ

for t > 0 due to (3) . Let ρ ≤ 0, hence −(1 − β)ρ ≥ 0. Then, noting (4) , from (2) we have U1 − ρ ≥ 0, i.e., U1 ≥ ρ, so that
Ut ≥ ρ for t > 0 due to (3) . Accordingly, whether ρ ≤ xK or ρ ≤ 0, we have Ut ≥ ρ for t > 0, meaning that it is optimal to
reject the intervening quitting penalty ρ for any t > 0. This fact is the same as the event “The intervening quitting penalty ρ
does not exist on any time t > 0 ”; in other words, it follows that M:3[R][A] is substantially reduced to M:2[R][A], which has not
an intervening quitting penalty ρ (see Section 6.2.2.1(p.24) ).

(b) Let ρ ≥ xK and ρ ≥ 0 · · · ((5)), hence K (ρ) ≤ 0 · · · ((6)) from Corollary 9.2.2(a) and −(1 − β)ρ ≤ 0 · · · ((7)). Then, since

U1 − ρ = max{K (ρ),−(1− β)ρ} ≤ 0 from (1) , we have U1 − ρ ≤ 0 i.e., U1 ≤ ρ · · · ((8)). Suppose Ut−1 ≤ ρ. Then Vt−1 = ρ from

(6.5.38), hence from (6.5.39(p.31) ) we have Ut = max{K (ρ) + ρ, βρ} = U1 ≤ ρ due to (1) and (8) . Accordingly, by induction
Ut ≤ ρ for t > 0, hence Vt = ρ · · · ((9)) for t > 0 from (6.5.44(p.31) ), so Itτ = βτ−tρ from (7.2.9(p.34) ). Therefore, due to (5) we

see that the largest of Itτ on τ ≥ t ≥ 0 is given by t = τ , i.e., t∗τ = τ or equivalently ⃝s dOITsτ≥0⟨τ⟩ . Thus, we have odr 7→
Acceptτ (ρ)/Stop.

Lemma 20.1.2 Suppose we have Acceptt(ρ)/Stop for any t (τ ≥ t ≥ 0). Then

(a) Let ρ ≥ 0. Then we have ⃝s dOITsτ≥0⟨τ⟩ , i.e., ⃝⃝s -falling.
(b) Let ρ ≤ 0. Then we have • dOITdτ≥0⟨0⟩ , i.e.,•dd -falling.

Proof Since Vt = ρ for τ ≥ t ≥ 0 under the condition of the lemma (see (9) ) and since β0 ≥ β1 ≥ · · · ≥ βτ−t ≥ · · · ≥ βτ for
any τ ≥ t ≥ 0. Then, we have β0ρ ≥ β1ρ ≥ · · · ≥ βτ−tρ ≥ · · · ≥ βτρ if ρ ≥ 0 and β0ρ ≤ β1ρ ≤ · · · ≤ βτ−tρ ≤ · · · ≤ βτρ if ρ ≤ 0.
Therefore, β0Vτ ≥ β1Vτ−1 ≥ · · · ≥ βτ−tVt ≥ · · · ≥ βτV0 if ρ ≥ 0 and β0Vτ ≤ β1Vτ−1 ≤ · · · ≤ βτ−tVt ≤ · · · ≤ βτV0 if ρ ≤ 0,
which can be rewritten as respectively Iττ ≥ Iτ−1

τ ≥ · · · ≥ Iτ−t
τ ≥ · · · ≥ I0τ if ρ ≥ 0 and Iττ ≤ Iτ−1

τ ≤ · · · ≤ Iτ−t
τ ≤ · · · ≤ I0τ if

ρ ≤ 0. Accordingly, it follows that t∗τ = τ if ρ ≥ 0, i.e., ⃝s dOITsτ ⟨τ⟩ (⃝⃝s ) and t∗τ = 0 if ρ ≤ 0, i.e., • dOITdτ ⟨0⟩ (•dd ).

20.1.3 M̃:3[R][A]

� Tom 20.1.2 (A {M̃:3[R][A]})
(a) Let ρ ≥ x

K̃ or ρ ≥ 0. Then M̃:3[R][A] � M̃:2[R][A].
(b) Let ρ ≤ x

K̃ and ρ ≤ 0. Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop → → ⃝⃝s
Proof Due to Lemma 20.1.1(a) and Lemma 16.4.1(p.100) , immediately obtained by applying SR→R̃ in Theorem 20.1.1 to Tom 20.1.1.

†See (a) of Def. 20.1.1 just below.
‡See (b) of Def. 20.1.1 just below.
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20.1.4 M:3[P][A]
20.1.4.1 Case of ρ ≤ a⋆ or b ≤ ρ

� Tom 20.1.3 (A {M:3[P][A]}) Assume ρ ≤ a⋆ or b ≤ ρ. Then:

(a) Let ρ ≤ xK or ρ ≤ 0. Then M:3[P][A] � M:2[P][A].

(b) Let ρ ≥ xK and ρ ≥ 0. Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop → → ⃝⃝s

Proof Due to Lemma 20.1.1(c) and Lemma 16.4.1(p.100) , immediately obtained by applying AR→P in Theorem 20.1.2 to
Tom 20.1.1.

20.1.4.2 Case of a⋆ < ρ < b

� Tom 20.1.4 (A {M:3[P][A]}) Assume a⋆ < ρ < b. Let β = 1 and s = 0. Then M:3[P][A] 7→ M:2[P][A].

Proof Assume a⋆ < ρ < b and let β = 1 and s = 0. Then, from (5.1.21(p.18) ) we have K (x) = λT (x) ≥ 0 · · · ((1)) for any

x due to Lemma 12.2.1(p.77) (g). From (6.5.45(p.31) ) we have U1 ≥ βρ = ρ. Suppose Ut−1 ≥ ρ. Then, from (6.5.44) we have
Vt−1 = Ut−1 ≥ ρ, hence from (6.5.46) we obtain Ut ≥ βVt−1 = Vt−1 ≥ ρ. Thus, by induction Ut ≥ ρ for t > 0. Accordingly, for
the same reason as in the proof of Lemma 20.1.1(a) it follows that M:3[P][A] is reduced to M:2[P][A]

� Tom 20.1.5 (A {M:3[P][A]}) Assume a⋆ < ρ < b. Let β < 1 or s > 0.

(a) Let λβmax{0, a− ρ} − (1− β)ρ ≥ s or −(1− β)ρ ≥ 0. Then M:3[P][A] � M:2[P][A].

(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s and −(1− β)ρ ≤ 0.

1. Let τ = 1. Then ⃝s dOITs1⟨τ⟩ and odr 7→ Accept1(ρ)/Stop if ρ ≥ 0 and • dOITd0⟨0⟩ if ρ ≤ 0 → → ⃝⃝s /•dd
2. Let τ > 1. Then:

i. Let ρ ≤ xK . Then M:3[P][A] � M:2[P][A]
ii. Let ρ ≥ xK . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ 5921Acceptτ (ρ)/Stop if ρ ≥ 0 and • dOITdτ≥0⟨0⟩ if ρ ≤ 0 → → ⃝⃝s

/•dd
Proof Assume a⋆ < ρ < b. Let β < 1 or s > 0. From (6.5.45(p.31) ) we have

U1 − ρ = max{λβmax{0, a− ρ} − (1− β)ρ− s,−(1− β)ρ} · · · ((1)).

(a) Let λβmax{0, a − ρ} − (1 − β)ρ ≥ s or −(1 − β)ρ ≥ 0, hence U1 − ρ ≥ 0 from (1) or equivalently U1 ≥ ρ · · · ((2)).
Then, since V1 = U1 · · · ((3)) from (6.5.44) with t = 1, from (6.5.46(p.31) ) with t = 2 we have U2 = max{K (U1) + U1, βU1} · · · ((4)).
Hence, from Lemma 12.2.3(p.80) (e) and (5.1.21(p.18) ) we have U2 ≥ max{K (ρ) + ρ, βρ} = max{λβT (ρ)− (1− β)ρ − s+ ρ, βρ} =
max{λβT (ρ) + βρ − s, βρ}. Then, from Lemma 12.2.1(p.77) (h) we have U2 ≥ max{λβmax{0, a − ρ} + βρ − s, βρ} = U1

due to (6.5.45). Suppose Ut−1 ≥ Ut−2, hence Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from (6.5.44). Hence, from (6.5.46(p.31) ) and
Lemma 12.2.3(p.80) (e) we have Ut ≥ max{K (Vt−2) + Vt−2, βVt−2} = Ut−1. Accordingly, by induction Ut ≥ Ut−1 for t > 1, i.e.,
Ut is nondecreasing in t > 0. Hence, from (2) we have Ut ≥ ρ for t > 0. Therefore, for almost the same reason as in the proof
of Lemma 20.1.1(a) it follows that M:3[P][A] is reduced to M:2[P][A].

(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s and −(1− β)ρ ≤ 0 · · · ((5)). Then U1 − ρ ≤ 0 from (1) , i.e., U1 ≤ ρ · · · ((6)).

(b1) Let τ = 1. Then (6) implies that “Accept the intervening quitting penalty ρ at t = 1 and stop the process ” is optimal,
i.e., [Accept1(ρ)� Stop].

(b2) Let τ > 1. Due to (6) we have V1 = ρ from (6.5.44) with t = 1, hence U2 = max{K (ρ) + ρ, βρ} · · · ((7)) from (6.5.46)

with t = 2.

(b2i) Let ρ ≤ xK . Then K (ρ) > 0 from Lemma 12.2.3(j1), hence from (7) we have U2 ≥ K (ρ) + ρ ≥ ρ. Suppose Ut−1 ≥ ρ,
hence Vt−1 = Ut−1 from (6.5.44). Then, from Lemma 12.2.3(e) we have Ut ≥ max{K (ρ) + ρ, βρ} ≥ K (ρ) + ρ ≥ ρ. Accordingly,
by induction we have Ut ≥ ρ for t > 1. Thus the assertion holds for the same reason as in the proof of Lemma 20.1.1(a).

(b2ii) Let ρ ≥ xK , hence K (ρ) ≤ 0 from Lemma 12.2.3(p.80) (j1). Then, from (7) we have U2 ≤ max{ρ, βρ} · · · ((8)). If

β < 1, then ρ ≥ 0 from (5) , hence U2 ≤ max{ρ, ρ} = ρ and if β = 1, then U2 ≤ max{ρ, ρ} = ρ. Accordingly, whether
β < 1 or β = 1, we have U2 ≤ ρ for t > 0. Suppose Ut−1 ≤ ρ, hence Vt−1 = ρ from (6.5.44). Then, from (6.5.46) we have
Ut = max{K (ρ) + ρ, βρ} = U2 ≤ ρ. Accordingly, by induction we have Ut ≤ ρ for t > 1. Hence, from (6) we have Ut ≤ ρ for
t > 0. Thus, for the same reason as in the proof of Tom 20.1.1(b) it follows that the assertion holds.

20.1.5 M̃:3[P][A]
20.1.5.1 Case of ρ ≥ b⋆ or a ≥ ρ

� Tom 20.1.6 (A {M̃:3[P][A]}) Assume ρ ≥ b⋆ or a ≥ ρ. Let ρ ≥ b⋆ or a ≥ ρ.

(a) Let ρ ≥ x
K̃ or ρ ≥ 0. Then M̃:3[P][A] � M̃:2[P][A].

(b) Let ρ ≤ x
K̃ and ρ ≤ 0. Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop → → ⃝⃝s

Proof Immediate from applying SP→P̃ in Theorem 20.1.3 to Tom 20.1.3.
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20.1.5.2 Case of b⋆ > ρ > a

� Tom 20.1.7 (A {M̃:3[P][A]}) Assume b⋆ > ρ > b. Let β = 1 and s = 0. Then M̃:3[P][A] 7→ M̃:2[P][A].

Proof Immediate from applying SP→P̃ in Theorem 20.1.3 to Tom 20.1.4.

� Tom 20.1.8 (A {M̃:3[P][A]}) Assume b⋆ > ρ > a. Let β < 1 or s > 0.

(a) Let −λβmin{0, ρ− b}+ (1− β)ρ ≥ 0 or (1− β)ρ ≥ 0. Then M̃:3[P][A] � M̃:2[P][A].

(b) Let −λβmin{0, ρ− b}+ (1− β)ρ ≤ s and (1− β)ρ ≤ 0.

1. Let τ = 1. Then ⃝s dOITs1⟨τ⟩ and odr 7→ Accept1(ρ)/Stop if ρ ≥ 0 and • dOITd0⟨τ⟩ if ρ ≤ 0 → ⃝⃝s /•dd
2. Let τ > 1.

i. Let ρ > x
K̃ . Then M̃:3[P][A] � M̃:2[P][A].

ii. Let ρ ≤ x
K̃ . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop if ρ ≤ 0 and • dOITdτ≥0⟨τ⟩ if ρ ≥ 0 → ⃝⃝s /•dd

Proof Immediate from applying SP→P̃ in Theorem 20.1.3 to Tom 20.1.5.

20.2 Search-Enforced-Model 3: Q{M:3[E]} = {M:3[R][E], M̃:3[R][E],M:3[P][E], M̃:3[P][E]}

20.2.1 Preliminary

As the ones corresponding to Theorems 18.2.1(p.122) , 18.2.2, 18.2.3, and 18.2.4, the following four theorems can be considered:

Theorem 20.2.1 (symmetry[R→ R]) Let A {M:3[R][E]} holds on P ×F . Then A {M̃:3[R][E]} holds on P ×F where

A {M̃:3[R][E]} = SR→R̃[A {M:3[R][E]}]. (20.2.1)

Theorem 20.2.2 (analogy[R→ P]) Let A {M:3[R][E]} holds on P ×F . Then A {M:3[P][E]} holds on P ×F where

A {M:3[P][E]} = AR→P[A {M:3[R][E]}]. (20.2.2)

Theorem 20.2.3 (symmetry[P→ P])) Let A {M:3[P][E]} holds on P ×F . Then A {M̃:3[P][E]} holds on P ×F where

A {M̃:3[P][E]} = SP→P̃[A {M:3[P][E]}]. (20.2.3)

Theorem 20.2.4 (analogy(R→ P])) Let A {M̃:3[P][E]} holds on P ×F . Then A {M̃:3[P][E]} holds on P ×F where

A {M̃:3[P][E]} = A R̃→P̃[A {M̃:3[R][E]}].

In addition, as ones corresponding to (20.1.4)-(20.1.7), let us consider the following four relations:

SOE{M̃:3[R][E]} = SR→R̃[SOE{M:3[R][E]}], (20.2.4)

SOE{M:3[P][E]} = AR→P[SOE{M:3[R][E]}], (20.2.5)

SOE{M̃:3[P][E]} = SP→P̃[SOE{M:3[P][E]}]. (20.2.6)

SOE{M̃:3[P][E]} = A R̃→P̃[SOE{M̃:3[R][E]}]. (20.2.7)

If (20.2.4) - (20.2.7) are satisfied, then Theorems 20.2.1 - 20.2.4 can be easily derived for the same reason as in Parts 1 and 2.
Now, from the comparison of (I) and (II) of Table 6.5.6(p.31) and from the comparison of (III) and (IV) it can be easily seen that
(20.2.4) and (20.2.6) hold; accordingly, it follows that Theorem 20.1.1 and Theorem 20.1.3 hold. However, from the comparison
of (I) and (III) we see that (20.2.5) does not always hold, hence it follows that Theorem 20.2.2 cannot be used. The following
lemma provides conditions on whether or not each of the three theorems holds.

Lemma 20.2.1

(a) Theorem 20.2.1 always hold.

(b) Theorem 20.2.3 always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 20.2.2 holds.

(d) Let a⋆ < ρ < b. Then Theorem 20.2.2 does not always hold.

Proof Almost the same as the proof of Lemma 19.1.1(p.137) .
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20.2.2 M:3[R][E]

� Tom 20.2.1 (A {M:3[R][E]})

(a) Let ρ ≤ xK . Then M:3[R][E] � M:2[R][E].
(b) Let ρ ≥ xK . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop if ρ ≥ 0 and • dOITdτ≥0⟨τ⟩ and Accept0(ρ)/Terminate if

ρ ≤ 0 → → ⃝⃝s /•dd
Proof From (6.5.53(p.31) ) with t = 1 and (6.5.57) we have U1 = K (ρ) + ρ · · · ((1)) and from (6.5.52) with t = 1 we have

V1 ≥ ρ = V0. Then, from (6.5.53) with t = 2 and Lemma 9.2.2(e) we have U2 = K (V1) + V1 ≥ K (ρ) + ρ = U1. Suppose
Ut−1 ≥ Ut−2, hence Vt−1 ≥ max{ρ, Ut−2} = Vt−2. Then Ut = K (Vt−1) + Vt−1 ≥ K (Vt−2) + Vt−2 = Ut−1. Thus, by induction
we have Ut ≥ Ut−1 for t > 1, i.e., Ut is nondecreasing in t > 0 · · · ((2)).

(a) Let ρ ≤ xK , hence K (ρ) ≥ 0 from Corollary 9.2.2(b). Then, from (1) we have U1 ≥ ρ. Hence Ut ≥ ρ for t > 0 due to
(2) . Accordingly, for almost the same reason as in the proof of Tom 20.1.1(a) it follows that M̃:3[R][E] 7→ M̃:2[R][E].

(b) Let ρ ≥ xK , hence K (ρ) ≤ 0 · · · ((3)) from Corollary 9.2.2(a). Then, from (1) we have U1 ≤ ρ. Suppose Ut−1 ≤ ρ. Then

Vt−1 = ρ from (6.5.52), hence Ut = K (ρ) + ρ ≤ ρ due to (3) . Accordingly, by induction Ut ≤ ρ for t > 0. Hence, since Vt = ρ
for t > 0 from (6.5.52(p.31) ), we have Itτ = βτ−tρ for t ≥ 0. Therefore, if ρ ≥ 0, the largest of Itτ on τ ≥ t ≥ 0 is given by t = τ
(i.e., t∗τ = τ) or equivalently ⃝s dOITsτ≥0⟨τ⟩ , hence we have Acceptτ (ρ)/Stop and if ρ ≤ 0, then the largest of Itτ on τ ≥ t ≥ 0

is given by t = 0 (i.e., t∗τ = 0) or equivalently • dOITdτ≥0⟨0⟩ , hence we have Accept0(ρ)/Terminate.

20.2.3 M̃:3[R][E]

� Tom 20.2.2 (A {M̃:3[R][E]}) For any β ≤ 1 and s ≥ 0 we have :

(a) Let ρ ≤ x
K̃ . Then M̃:3[R][E] � M̃:2[R][E].

(b) Let ρ ≤ x
K̃ . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop if ρ ≥ 0 and • dOITdτ≥0⟨τ⟩ if ρ ≤ 0 → → ⃝⃝s /•dd

Proof Immediate from applying SR→R̃ in Theorem 20.2.1 to Tom 20.2.1.

20.2.4 M:3[P][E]
20.2.4.1 Case of ρ ≤ a⋆ or b ≤ ρ

� Tom 20.2.3 (A {M:3[P][E]}) Assume ρ ≤ a⋆ or b ≤ ρ.

(a) Let ρ ≤ xK . Then M:3[P][E] � M:2[P][E].
(b) Let ρ ≥ xK . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop if ρ ≥ 0 and • dOITdτ≥0⟨0⟩ if ρ ≤ 0 → ⃝⃝s /•dd
Proof Due to Lemma 20.1.1(a) and Lemma c(p.211) , immediately obtained by applying AR→P in Theorem 20.2.2 to Tom 20.2.1.

20.2.4.2 Case of a⋆ < ρ < b

� Tom 20.2.4 (A {M:3[P][E]}) Assume a⋆ < ρ < b and let β = 1 and s = 0. Then M:3[P][E] 7→ M:2[P][E].

Proof Suppose a⋆ < ρ < b and let β = 1 and s = 0. Then we can not use Theorem 20.2.2 due to
Lemma 20.2.1(d). From (5.1.21(p.18) ) we have K (x) = λT (x) ≥ 0 · · · ((1)) for any x due to

Lemma 12.2.1(p.77) (g). Now, from (6.5.59(p.31) ) we have U1 = λmax{0, a−ρ}+ρ ≥ ρ due to max{0, a−ρ} ≥ 0. Suppose Ut−1 ≥ ρ.
Then, since Vt−1 = Ut−1 from (6.5.58(p.31) ), we have Ut = K (Ut−1) + Ut−1 ≥ Ut−1 due to (1) , hence Ut ≥ ρ. Accordingly, by
induction Ut ≥ ρ for t > 0. Thus, for almost the same as in the proof of Tom 20.1.1(a) it follows that M:3[P][E] is reduced to
M:2[P][E].

� Tom 20.2.5 (A {M:3[P][E]}) Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) Let λβmax{0, a− ρ} − (1− β)ρ ≥ s. Then M:3[P][E] � M:2[P][E].
(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s.

1. Let τ = 1. Then ⃝s dOITs1⟨τ⟩ and odr 7→ Accept1(ρ)/Stop if ρ ≥ 0 and • dOITd1⟨τ⟩ if ρ ≤ 0 → ⃝⃝s /•dd
2. Let τ > 1. Then

i. Let ρ ≤ xK . Then M:3[P][E] � M:2[P][E].
ii. Let ρ ≥ xK . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop if ρ ≥ 0 and • dOITdτ≥0⟨τ⟩ if ρ ≤ 0 → ⃝⃝s /•dd

Proof Suppose a⋆ < ρ < b. Let β < 1 or s > 0. From (6.5.59(p.31) ) we have

U1 − ρ = λβmax{0, a− ρ} − (1− β)ρ− s · · · ((1)).

(a) Let λβmax{0, a − ρ} − (1 − β)ρ ≥ s, hence U1 ≥ ρ · · · ((2)) from (1) . Then, since V1 = U1 · · · ((3)) from (6.5.58)

with t = 1, we have U2 = K (U1) + U1 · · · ((4)) from (6.5.60(p.31) ) with t = 2. Hence, from (2) , Lemma 12.2.3(p.80) (e), and

(5.1.21(p.18) ) we have U2 ≥ K (ρ) + ρ = λβT (ρ) − (1 − β)ρ − s + ρ = λβT (ρ) + βρ − s. Then, from Lemma 12.2.1(p.77) (h) we
have U2 ≥ λβmax{0, a − ρ} + βρ − s = U1 due to (6.5.59). Suppose Ut−1 ≥ Ut−2, hence Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from
(6.5.58(p.31) ). Then, from Lemma 12.2.3(p.80) (e) we have Ut ≥ K (Vt−2) + Vt−2 = Ut−1. Accordingly, by induction Ut ≥ Ut−1 for
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t > 1, i.e., Ut is nondecreasing in t > 0. Hence, from (2) we have Ut > ρ for t > 0. Therefore, for the same as in the proof of
Tom 20.1.1(a) it follows that M:3[P][E] is reduced to M:2[P][E].

(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s · · · ((5)). Then U1 − ρ ≤ 0 from (1) , i.e., U1 ≤ ρ · · · ((6)).

(b1) Let τ = 1. (6) implies that “Accept the intervening quitting penalty ρ at the starting time t = 1 and the process
stops ” is optimal, i.e., Accept1(ρ)/Stop.

(b2) Let τ > 1. Now, due to (6) we have V1 = ρ from (6.5.58) with t = 1, thus U2 = K (ρ) + ρ · · · ((7)) from (6.5.60) with

t = 2.

(b2i) Let ρ ≤ xK , hence K (ρ) ≥ 0 from Lemma 12.2.3(p.80) (j1). Then, from (7) we have U2 ≥ ρ. Suppose Ut−1 ≥ ρ, hence
Vt−1 = Ut−1 from (6.5.58). Then, from Lemma 12.2.3(e) we have Ut = K (Ut−1) + Ut−1 ≥ K (ρ) + ρ ≥ ρ. Hence, by induction
Ut ≥ ρ for t > 1. Therefore, we have that “Reject the intervening quitting penalty ρ for any t > 1 ” is optimal. Thus, for
almost the same as in the proof of Lemma 20.1.1(a) we have M:3[P][E] is reduced to M:2[P][E].

(b2ii) Let ρ ≥ xK . Then K (ρ) ≤ 0 · · · ((8)) from Lemma 12.2.3(p.80) (j1). Hence U2 ≤ ρ from (7) . Suppose Ut−1 ≤ ρ, hence

Vt−1 = ρ from (6.5.58). Then, from (6.5.60) we have Ut = K (ρ)+ ρ ≤ ρ · · · ((9)) due to (8) . Thus, by induction Ut ≤ ρ for t > 1.

From this and (6) we have Ut ≤ ρ for t > 0. Accordingly, for the same reason as in the proof of Tom 20.1.1(b) we have that the
assertion holds.

20.2.5 M̃:3[P][E]
20.2.5.1 Case of ρ ≥ b⋆ or a ≥ ρ

� Tom 20.2.6 (A {M̃:3[P][E]}) Assume ρ ≥ b⋆ or a ≥ ρ and let β ≤ 1 and s ≥ 0.

(a) Let ρ ≥ x
K̃ . Then M̃:3[P][E] � M̃:2[P][E].

(b) Let ρ ≤ x
K̃ . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop if ρ ≥ 0 and • dOITdτ≥0⟨0⟩ if ρ ≤ 0 → ⃝⃝s /•dd

Proof Immediate from applying SP→P̃ in Theorem 20.2.3 to Tom 20.2.3.

20.2.5.2 Case of b⋆ > ρ > a

� Tom 20.2.7 (A {M̃:3[P][E]}) Assume b⋆ > ρ ≥ b and let β = 1 and s = 0. Then M̃:3[P][E] 7→ M̃:2[P][E].
Proof Immediate from applying SP→P̃ in Theorem 20.2.3 to Tom 20.2.4.

� Tom 20.2.8 (A {M̃:3[P][E]}) Assume b⋆ > ρ > a and let β < 1 or s > 0.

(a) Let −λβmin{0, ρ− b}+ (1− β)ρ ≥ s. Then M̃:3[P][E] � M̃:2[P][E].
(b) Let −λβmin{0, ρ− b}+ (1− β)ρ ≤ s.

1. Let τ = 1. Then ⃝s dOITs1⟨τ⟩ and odr 7→ Accept1(ρ)/Stop if ρ ≥ 0 and • dOITd1⟨0⟩ if ρ ≤ 0 → ⃝⃝s /•dd
2. Let τ > 1. Then

i. Let ρ > x
K̃ . Then M̃:3[P][E] � M̃:2[P][E]

ii. Let ρ ≤ x
K̃ . Then ⃝s dOITsτ≥0⟨τ⟩ and odr 7→ Acceptτ (ρ)/Stop if ρ ≥ 0 and • dOITdτ≥0⟨0⟩ if ρ ≤ 0 → ⃝⃝s /•dd

Proof Immediate from applying SP→P̃ in Theorem 20.2.3 to Tom 20.2.5.

20.3 Conclusion 7 (The whole Model 3)

For S-model and B-model, for R-model and P-model, and for s-A-model and s-E-model:

C1 we have Model 3 � Model 2 where

a. A {M:3[R][A]} � A {rM:2[R][A]} (see Tom 20.1.1(p.212) (a)),

b. A {M̃:3[R][A]} � A {rM̃:2[R][A]} (see Tom 20.1.2(p.212) (a)),

c. A {M:3[P][A]} � A {rM:2[R][A]} (see Tom 20.1.3(p.213) (a)), 20.1.4, 20.1.5(a,b2i),

d. A {M̃:3[P][A]} � A {rM̃:2[R][A]} (see Tom 20.1.6(p.213) (a)), 20.1.7, 20.1.8(a,b2i),

e. A {M:3[R][E]} � A {rM:2[R][E]} (see Tom 20.2.1(p.215) (a)),

f. A {M̃:3[R][E]} � A {rM̃:2[R][E]} (see Tom 20.2.2(p.215) (a)),

g. A {M:3[P][E]} � A {rM:2[R][E]} (see Tom 20.2.3(p.215) (a)), 20.2.4, 20.2.5(a,b2i),

h. A {M̃:3[P][E]} � A {rM̃:2[R][E]} (see Tom 20.2.6(p.216) (a)), 20.2.7, 20.2.8(a,b2i).

i. The above results implies that all discussions of Model 3 is reduced to those of Model 2 in Chapter 19(p.137) , in other words, becomes
unnecessary as well redundant.

C2 We have optdr 7→ Acceptτ (ρ)/Stop where

a. A {M:3[R][A]} (see Tom 20.1.1(p.212) (b)),

b. A {M̃:3[R][A]} (see Tom 20.1.2(p.212) (b)),

c. A {M:3[P][A]} (see Tom 20.1.3(p.213) (b),20.1.5(b1,b2ii),

d. A {M̃:3[P][A]} (see Tom 20.1.6(p.213) (b),20.1.8(b1.b2ii),

e. A {M:3[R][E]} (see Tom 20.2.1(p.215) (b)),

f. A {M̃:3[R][E]} (see Tom 20.2.2(p.215) (b)),

g. A {M:3[P][E]} (see Tom 20.2.3(p.215) (b),20.2.5(b1,b2ii),

h. A {M̃:3[P][E]} (see Tom 20.2.6(p.216) (b),20.2.8(b1,b2ii).

i. The above results implies that it is optimal to stop the trading process in Model 3 by accepting the intervening quitting penalty ρ
at the starting time τ .
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Chapter 21

The Whole Conclusion of No-Recall-Model

This chapter summarizes all conclusions for the whole no-recall-model (see Conclusions 18.1(p.119) – 20.3(p.216) ).

21.1 Conclusion 8

C1 Reduction

a. We have Model 3 � Model 2 (see C1 (p.216) ).

b. We have optdr 7→ Acceptτ (ρ)/Stop (see C2 (p.216) ).

C1a implies that discussions for Model 3 become unnecessary as well as redundant; in other words, it does not become necessary
to discuss any more for Model 3; accordingly, below we make discussions only for Model 1 and Model 2.

C2 Integration theory

Here let us recall Motive 2(p.4) of this study “Can the theory integrating quadruple-asset-trading-problems exist ?”, and
the motivation was put an end with successfully constructing it. The whole flow of its construction is summarized as
below (see Figure 15.1.1(p.97) ). First, the assertion system A {M:1[R][A]} (selling-model) selected as a seed is directly proven

(see Chapter 10(p.47) ), next A {M̃:1[R][A]} (buying-model) is derived so as to become symmetrical to A {M:1[R][A]} (see
Chapter 11(p.55) ), then A {M:1[P][A]} (P-mech-model) is derived so as to become analogous to A {M:1[R][A]} (R-mech-model)

(see Chapter 12(p.73) ), and finally A {M̃:1[P][A]} is derived so as to become symmetrical to A {M:1[P][A]} (see Chapter 13(p.83) ).
Herein note the following two epilegomenas concerning symmetry and analogy.

a. Symmetry
The introduction of the concept of symmetry between a selling model and a buying model was first touched off by a vague
inspiration from yin-yang principle, the ancient Chinese philosophy.† Before long, this rather superstitious concept was
mathematically reified by the introduction of the reflection operation R (see Step 11.5 (p.61) ). Through trial-and-errors, this
operation led us to the correspondence replacement operation CR (see Step 11.5 (p.61) ) and the identity replacement operation
IR (see Step 11.5 (p.62) ). Finally, the above three operations were compiled into a single operation SR→R̃ = IRCRR (see
(11.5.32(p.63) )), called the symmetry transformation operation, leading to Theorem 11.5.1(p.66) (symmetry theorem) which
combines the selling problem and the buying problem. The above is only for P-mech-model. The same as the above
discussion holds also for P-mech-model (see Chapter 13(p.83) ), yielding the symmetry transformation operation S P→P̃ (see
(13.5.3(p.87) )).

b. Analogy
In the beginning of this study, we had not any anticipation at all for the existence of the analogous relation between
R-mech-model and P-mech-model. However, in the process of proceeding with analyses of both models, we noticed the
existence of some similarities between the two procedures of treating both models, then were led, as if in the jigsaw
puzzle, to an analogous relationship between Lemmas 9.1.1(p.41) and 12.2.1(p.77) , and lastly obtained Theorem 12.3.1(p.81)

(analogy theorem) which combines the above two models.

C3 Inheritance and Collapse

Let us note here the fact that the integration theory can be constructed under the basic premise that the price, whether
reservation price or posted price, is defined on the total market F = (−∞,∞) (see Section 16.3(p.99) ). Now, we showed
that under this premise the assertion system A {M̃:1[R][A]} (buying model) is derived so as to become symmetrical to
A {M:1[R][A]} (selling model), and then the assertion system A {M:1[P][A]} (P-mechanism) is derived so as to become
analogous to A {M:1[R][A]} (R-mechanism). Accordingly, without this basic premise, it follows that the integration theory
might not be successfully constructed. Now, since the premise allows the negative price, the theory seems to be unrealistic and
imaginary since trading on the normal market in the real world is usually made on the positive market F+ (see (16.3.1(p.99) )).

†The yin-yang principle is a philosophical mindset not a procedural technique; it provides conceptual guidance for harmonizing opposites
as appropriate and useful, but is not a rule that all opposites must be harmonized. Design and evaluation are not intrinsic opposites, but
are typically treated as separate and sequential (bluemarbleeval.org/principles/operating-principles/yin-yang-principle)
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To resolve the unnaturalness, in this paper we employ the methodology of restricting results obtained on the total market
F to the positive market F+. Then, since the market restriction compels a change in the inner structure of the above basic
premise, it can be naturally foreseen that the symmetrical relation and the analogous relation, which are both obtained on
the total market F , might collapse by the application of the market restriction.

a. Symmetry

1. In whether Model 1 or Model 2 and in whether s-A-model or s-E-model, on F+, if β = 1 and s = 0, the symmetry is
inherited (∼ ), or else (β < 1 or s > 0) collapses ( |∼ ) (see C2c1a(p.136) and C2a(p.208) ).

2. It is proven that the assertion systems of M (S-model) and M̃ (B-model) are symmetrical for both R-model and
P-model, i.e., SOE{M} ∼ SOE{M̃}

b. Analogy

1. In whether Model 1 or Model 2 and in whether s-A-model or s-E-model, on F+, if β = 1 and s = 0, the analogy
collapses ( ◃▹| ) (see C2c2(p.136) and C3a(p.244) ).

2. It is proven that the assertion systems of M[R] (R-model) andM[P] (P-model) are not always analogous SOE{M[R]} ◃▹| SOE{M[P]}
and that the SOE’s of M̃[R] (R-model) and M̃[P] (P-model) are not always analogous, i.e., SOE{M̃[R]} ◃▹| SOE{M̃[P]}.

C4 Diagonal Symmetry

In both R-mech-model and P-mech-model the symmetry is inherited between the selling-problem on the negative market
F+ (F−) and the buying problem on the positive market F− (F+) (see Figure 17.1.5(p.114) and Figure 17.3.1(p.117) ).

C5 Null-time-zone and deadline-falling

Suppose that the existence of a decision-making problem has been recognized (see A1(p.9) ) and then that all preparations for
the exertion of the decision-making have been completed. Then, normally a decision-maker will immediately try to initiate
an effort toward the solution of the problem. In this case, it is usual that one has no void space into which the feeling
of postponing its initiation might become better penetrates and that and he unconsciously understand without hesitating
that the immediate initiation is quite a natural behaviour (see A2bi(p.9) ). However, in this rather cursory way of thinking,
the possibility is not taken into account at all that it may become better to postpone the initiation of process. Now, in
Section 7.2.4.6(p.36) we already stated that the introduction of the concept of the OIT inevitably leads us to the existence of
the null-time-zone on which any decision-making activity is made quite meaningless. Now, in the usual theory of a decision-
making in which the concept of OIT has not been being taken into account at all. This fact implies that this meaningless
decision-making activity is unconsciously and understandably taken into consideration. This conventional theory of decision-
making includes a fatal defect. In Section A5(p.291) we will discuss this serious problem from a viewpoint of Markovina decision
process which can be regarded as the most basic and general model of decision processes. Now, we pointed out that there
exist three possibilities of the optimal initiating time t∗τ , symbolized as ⃝⃝s , ⃝⃝∗ , and •dd (see Section 7.2.4.4(p.35) ). Here it
should be noted that the existence of ⃝⃝∗ and•dd inevitably leads us to the existence of the null-time-zone (Section 7.2.4.6(p.36) )
and that it leads us, as its inevitable consequence, to the existence of the deadline-falling (see Figures 7.2.3(p.36) and 7.2.4).
This should be said to be one of the most striking findings in this paper, and this fact prompts us to the overall re-
examination of the whole theory of decision processes that have been investigated so far without knowing the existence of
the deadline-falling (see Section A5(p.291) ).

C6 Occurrence of ⃝⃝s , ⃝⃝∗ , and •dd
a. Let β = 1 and s = 0. Then, from Tables 18.1.1(p.120) and 18.2.1(p.134) we see that only ⃝⃝s N and•dd ∥. What is amazing is

here that•dd ∥ appears even in the simplest case of “β = 1 and s = 0”.

b. Let β < 1 or s > 0. Then, from Tables 19.1.2(p.176) and 19.2.4(p.207) we see that ⃝⃝∗ and•dd are possible for both s-A-model
and s-E-model; however, ⃝⃝∗ N and•dd N (both are strong assertion) are possible only for s-E-model.

c. Summing up Tables 19.1.3(p.176) and 19.2.5(p.208) yields Tables 21.1.1(p.218) below.

Table 21.1.1: Percents (frequencies) of Respective OIT’s

ratio (total) ⃝⃝s ⃝⃝∗ •dd
100% (596) 46% (274) 17% (102) 35% (209)

In other words, we have ⃝⃝s , ⃝⃝∗ , and•dd at 46%, 17%, and 35% respectively.

C7 Posterior-skip-of-search (pSkip)

The posterior-skip-of-search (see Remark 7.2.1(p.34) ) is possible only for A {M:2[R][A]+} and A {M:2[P][A]+} (selling model)
with β < 1 or s > 0 (see C4(p.176) ). It is usual to consider that once conducting the search is optimal, it will become
also optimal to continue conducting the search after that. However, we demonstrated that there exists a case that this
expectation does not always hold; in other words, it is possible, although being very rare, that it can become optimal to
skip the search after having conducted the search for a while.
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Chapter 22

Definitions of Models

22.1 Introduction
In the recall-model with R-mechanism it suffices to memorize only the best of prices which have been rejected so far. Against
this, in the recall-model with P-mechanism it is hard to define the best price itself. For this reason, in this part we exclude the
application of the integration theory to the latter model, which is left as a subject to be tackled in the future. For convenience
of reference, below let us copy Table 3.3.2(p.12) where represents the model excluded.

Table 22.1.1: Twelve recall-models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{rM:1[A]} = { rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A] }
Q{rM:1[E]} = { rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E] }

Q{rM:2[A]} = { rM:2[R][A], rM̃:2[R][A], rM:2[P][A], rM̃:2[P][A] }
Q{rM:2[E]} = { rM:2[R][E], rM̃:2[R][E], rM:2[P][E], rM̃:2[P][E] }

Q{rM:3[A]} = { rM:3[R][A], rM̃:3[R][A], rM:3[P][A], rM̃:3[P][A] }
Q{rM:3[E]} = { rM:3[R][E], rM̃:3[R][E], rM:3[P][E], rM̃:3[P][E] }

22.2 Three Models
Below, we provide the strict definitions of recall-models treated in this part.

22.2.1 Model 1

22.2.1.1 Search-Enforced-Model 1: Q{rM:1[E]} = {rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E]}

22.2.1.1.1 rM:1[R][E]
This is the most basic model of the selling model with recall, which is the same as M:1[R][E] (see Section 4.1.1.1(p.13) ) except
that the price to be accepted is the best of prices rejected so far by buyers.

22.2.1.1.2 rM̃:1[R][E]
This is the most basic model of the buying model with recall, which is the same as M̃:1[R][E] (see Section 4.1.1.2(p.14) ) except
that the price to be accepted is the best of prices rejected so far by sellers.

22.2.1.2 Search-Allowed-Model 1: Q{rM:1[A]} = {rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A]}

This is the same as the model in Section 22.2.1.1 except that the search is allowed.

22.2.2 Model 2

This is the model defined by adding the terminal quitting penalty ρ to Model 1 in Section 22.2.1.

22.2.3 Model 3

This is the model defined by adding the intervening quitting penalty ρ to Model 2 in Section 22.2.2.

221



22.3 Systems of Optimality Equations

22.3.1 Model 1

22.3.1.1 Search-Enforced-Model 1

22.3.1.1.1 rM:1[R][E]
This is the most basic model with recall [43, Sak1961][0005] , which is defined as below. By vt(y) (t ≥ 0) and Vt (t > 0) let
us denote the maximum total expected present discounted profit from initiating the process at time t with the highest buying
price y (best price) and with no highest buying price y respectively, expressed as

v0(y) = y, (22.3.1)

vt(y) = max{y, Vt(y)}, t > 0, (22.3.2)

Vt = βE[vt−1(ξ)]− s, t > 0, (22.3.3)

where Vt(y) is the maximum total expected present discounted profit from rejecting the highest buying price y, expressed as

Vt(y) = βE[vt−1(max{ξ, y})]− s, t > 0. (22.3.4)

The system of optimality equations of this model is given by

SOE{rM:1[R][E]R} = {(22.3.1)− (22.3.4)}. (22.3.5)

For convenience, let us define
V0(y) = y. (22.3.6)

Then (22.3.2) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (22.3.7)

From (22.3.3) and (22.3.4) with t = 1 we have respectively

V1 = βE[ξ]− s = βµ− s, (22.3.8)

V1(y) = βE[max{ξ, y}]− s (22.3.9)

= K (y) + y (from (5.1.10(p.17) ) with λ = 1) (22.3.10)

= L (y) + βy (from (5.1.9(p.17) )). (22.3.11)

From the comparison of the two terms within { } in the right-hand side of (22.3.2) we see that the decision “whether or not to
accept the highest buying price y” can be prescribed as follows:

{ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted.
(22.3.12)

22.3.1.1.2 rM̃:1[R][E]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the lowest selling price y (best price) and with no lowest selling price y respectively, expressed as

v0(y) = y, (22.3.13)

vt(y) = min{y, Vt(y)}, t > 0, (22.3.14)

Vt = βE[vt−1(ξ)] + s, t > 0, (22.3.15)

where Vt(y) is the minimum total expected present discounted cost from rejecting the lowest selling price y, expressed as

Vt(y) = βE[vt−1(min{ξ, y})] + s, t > 0. (22.3.16)

The system of optimality equations of this model is given by

SOE{rM̃:1[R][E]} = {(22.3.13)− (22.3.16)}. (22.3.17)

For convenience, let us define
V0(y) = y. (22.3.18)

Then (22.3.14) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (22.3.19)

From the comparison of the two terms within { } in the right-hand side of (22.3.14) we see that the decision “whether or not
to accept the lowest selling price y” can be prescribed as follows:

{ y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted.
(22.3.20)
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22.3.1.2 Search-Allowed-Model 1

22.3.1.2.1 rM:1[R][A]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the highest buying price y and with no highest buying price y respectively, expressed as

v0(y) = y, (22.3.21)

vt(y) = max{y, Vt(y)}, t > 0, (22.3.22)

Vt = max{βE[vt−1(ξ)]− s, βVt−1} t > 0, (22.3.23)

where Vt(y) is the maximum total expected present discounted profit from rejecting the highest buying price y, expressed as

Vt(y) = max{βE[vt−1(max{ξ, y})]− s, βvt−1(y)}, t > 0. (22.3.24)

The system of optimality equations of this model is given by

SOE{rM:1[R][A]R} = {(22.3.21)− (22.3.24)}. (22.3.25)

For convenience, let us define
V0(y) = y. (22.3.26)

Then (22.3.22) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (22.3.27)

From (22.3.23) and (22.3.24) with t = 1 we have respectively

V1 = βE[ξ]− s = βµ− s, (22.3.28)

V1(y) = max{βE[max{ξ, y}]− s, βy} (22.3.29)

= max{K (y) + y, βy} (from (5.1.10(p.17) ) with λ = 1) (22.3.30)

= max{L (y) + βy, βy} (from (5.1.9(p.17) )). (22.3.31)

= max{L (y), 0}+ βy. (22.3.32)

Let us here define St = β(E[vt−1(ξ)]− Vt−1)− s, t > 0. (22.3.33)

Then, (22.3.23) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 0, (22.3.34)

implying that
St ≥ (≤) 0 ⇒ Conductt (Skipt). (22.3.35)

Furthermore, let us define
St(y) = β(E[vt−1(max{ξ, y})]− vt−1(y))− s, t > 0. (22.3.36)

Then (22.3.24) can be rewritten as

Vt(y) = max{St(y), 0}+ βvt−1(y), t > 0, (22.3.37)

implying that
St(y) ≥ (≤) 0 ⇒ CONDUCTt (SKIPt). (22.3.38)

From the comparison of the two terms within { } in the right-hand side of (22.3.22) we see that the decision “whether or not
to accept the highest buying price y” can be prescribed as follows:

{ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and CONDUCTt/SKIPt.
† (22.3.39)

22.3.1.2.2 rM̃:1[R][A]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the lowest selling price y and with no lowest selling price y respectively, expressed as

v0(y) = y, (22.3.40)

vt(y) = min{y, Vt(y)}, t > 0, (22.3.41)

Vt = min{βE[vt−1(ξ)] + s, βVt−1} t > 0, (22.3.42)

where Vt(y) is the minimum total expected present discounted cost from rejecting the lowest selling price y, expressed as

Vt(y) = min{βE[vt−1(min{ξ, y})] + s, βvt−1(y)}, t > 0. (22.3.43)

†The symbol “ / ” means “or”, i.e., “CONDUCTt or SKIPt”.
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The system of optimality equations of this model is given by

SOE{rM̃:1[R][A]R} = {(22.3.40)− (22.3.43)}. (22.3.44)

For convenience, let us define
V0(y) = y. (22.3.45)

Then (22.3.41) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (22.3.46)
Let us define

S̃t = β(E[vt−1(ξ)]− Vt−1) + s, t > 0. (22.3.47)

Then, (22.3.42) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 0, (22.3.48)
implying that S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (22.3.49)

Let us define S̃t(y) = β(E[vt−1(min{ξ, y})]− vt−1(y)) + s, t > 0. (22.3.50)

Then, (22.3.43) can be rewritten as, for any y,

Vt(y) = min{S̃t(y), 0}+ βvt−1(y), t > 0, (22.3.51)
implying that

S̃t(y) ≤ (≥) 0 ⇒ CONDUCTt (SKIPt). (22.3.52)

From the comparison of the two terms within { } in the right-hand side of (22.3.41) we see that the decision “whether or not
to accept the lowest selling price y” can be prescribed as follows:

{ y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and CONDUCTt/SKIPt.
(22.3.53)

22.3.2 Mode 2

22.3.2.1 Search-Enforced-Model 2

22.3.2.1.1 rM:2[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the highest buying price y and with no highest buying price y respectively, expressed as

v0(y) = max{y, ρ} (22.3.54)

vt(y) = max{y, Vt(y)}, t > 0, (22.3.55)

V0 = ρ, (22.3.56)

Vt = λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, t > 0, (22.3.57)

where Vt(y) (t > 0) is the maximum total expected present discounted profit from rejecting the highest buying price y, expressed
as

Vt(y) = λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, t > 0. (22.3.58)

The system of optimality equations of this model is given by

SOE{rM:2[R][E]R} = {(22.3.54)− (22.3.58)}. (22.3.59)

For convenience, let us define
V0(y) = ρ. (22.3.60)

Then (22.3.55) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (22.3.61)

From (22.3.57) and (22.3.58) with t = 1 we have respectively

V1 = λβE[max{ξ, ρ}] + (1− λ)βρ− s

= K(ρ) + ρ (from (5.1.10(p.17) )) (22.3.62)

= L(ρ) + βρ (from (5.1.9(p.17) )), (22.3.63)

V1(y) = λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s

= λβE[max{ξ,max{y, ρ}}] + (1− λ)βmax{y, ρ} − s

= K (max{y, ρ}}) + max{y, ρ} (from (5.1.10(p.17) )) (22.3.64)

= L (max{y, ρ}}) + βmax{y, ρ} (from (5.1.9(p.17) )). (22.3.65)

From the comparison of the two terms within { } in the right-hand side of (22.3.55) we see that the decision “whether or not
to accept the highest buying price y” can be prescribed as follows:

{ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted.
(22.3.66)
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22.3.2.2 rM̃:2[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the lowest selling price y and with no lowest selling price y respectively, expressed as

v0(y) = min{y, ρ} (22.3.67)

vt(y) = min{y, Vt(y)}, t > 0, (22.3.68)

V0 = ρ, (22.3.69)

Vt = λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, t > 0, (22.3.70)

where Vt(y) is the minimum total expected present discounted cost from rejecting the lowest selling price y, expressed as

Vt(y) = λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, t > 0. (22.3.71)

The system of optimality equations of this model is given by

SOE{rM̃:2[R][E]R} = {(22.3.67)− (22.3.71)}. (22.3.72)

For convenience, let us define
V0(y) = ρ. (22.3.73)

Then (22.3.68) holds also for t ≥ instead of t > 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (22.3.74)

From the comparison of the two terms within { } in the right-hand side of (22.3.68) we see that the decision “whether or not
to accept the lowest selling price y” can be prescribed as follows:

{ y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted.
(22.3.75)

22.3.2.3 Search-Allowed-Model 2

22.3.2.3.1 rM:2[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the highest buying price y and with no highest buying price y respectively, expressed as

v0(y) = max{y, ρ} (22.3.76)

vt(y) = max{y, Vt(y)}, t > 0, (22.3.77)

V0 = ρ, (22.3.78)

Vt = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0, (22.3.79)

where Vt(y) (t > 0) is the maximum total expected present discounted profit from rejecting the highest buying price y, expressed
as

Vt(y) = max{λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, βvt−1(y)}, t > 0. (22.3.80)

The system of optimality equations of this model is given by

SOE{rM:2[R][A]} = {(22.3.76)− (22.3.80)}. (22.3.81)

For convenience, let us define
V0(y) = ρ. (22.3.82)

Then (22.3.77) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0, (22.3.83)

From (22.3.79) and (22.3.80) with t = 1 we have respectively

V1 = max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} (22.3.84)

= max{K(ρ) + ρ, βρ} (see (5.1.10)) (22.3.85)

= max{L(ρ) + βρ, βρ} (see (5.1.9)) (22.3.86)

= max{L(ρ), 0}+ βρ, (22.3.87)

V1(y) = max{λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}} (22.3.88)

= max{λβE[max{ξ,max{y, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}}
= max{K (max{y, ρ}) + max{y, ρ}, βmax{y, ρ}} (see (5.1.10)) (22.3.89)

= max{L (max{y, ρ}) + βmax{y, ρ}, βmax{y, ρ}} (see (5.1.9)) (22.3.90)

= max{L (max{y, ρ}), 0}+ βmax{y, ρ}. (22.3.91)
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Now, let us define St = λβ(E[vt−1(ξ)]− Vt−1)− s, t > 0. (22.3.92)

Then, (22.3.79) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 0, (22.3.93)

implying that
St ≥ (≤) 0 ⇒ Conductt (Skipt). (22.3.94)

In addition, let us define

St(y) = λβ(E[vt−1(max{ξ, y})]− vt−1(y))− s, t > 0. (22.3.95)

Then, (22.3.80) can be rewritten as, for any y,

Vt(y) = max{St(y), 0}+ βvt−1(y), t > 0, (22.3.96)

implying that
St(y) ≥ (≤) 0 ⇒ CONDUCTt (SKIPt). (22.3.97)

From the comparison of the two terms within { } in the right-hand side of (22.3.77) we see that the decision “whether or not
to accept the highest buying price y” can be prescribed as follows:

{ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and CONDUCTt/SKIPt.
(22.3.98)

22.3.2.4 rM̃:2[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the lowest selling price y and with no lowest selling price y respectively, expressed as

v0(y) = min{y, ρ} (22.3.99)

vt(y) = min{y, Vt(y)}, t > 0, (22.3.100)

V0 = ρ, (22.3.101)

Vt = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0, (22.3.102)

where Vt(y) (t > 0) is the minimum total expected present discounted cost from rejecting the lowest selling price y, expressed as

Vt(y) = min{λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, βvt−1(y)}, t > 0. (22.3.103)

The system of optimality equations of this model is given by

SOE{rM̃:2[R][A]R} = {(22.3.99)− (22.3.103)}. (22.3.104)

For convenience, let us define
V0(y) = ρ. (22.3.105)

Then (22.3.100) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (22.3.106)

Let us define
S̃t = λβ(E[vt−1(ξ)]− Vt−1) + s, t > 0. (22.3.107)

Then, (22.3.102) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 0, (22.3.108)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (22.3.109)

In addition, let us define

S̃t(y) = λβ(E[vt−1(min{ξ, y})]− vt−1(y)) + s, t > 0. (22.3.110)

Then, (22.3.103) can be rewritten as, for any y,

Vt(y) = min{S̃t(y), 0}+ βvt−1(y), t > 0, (22.3.111)

implying that
S̃t(y) ≤ (≥) 0 ⇒ CONDUCTt (SKIPt). (22.3.112)

From the comparison of the two terms within { } in the right-hand side of (22.3.100) we see that the decision “whether or not
to accept the lowest selling price y” can be prescribed as follows:

{ y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops .

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and CONDUCTt/SKIPt.
(22.3.113)
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22.3.3 Mode :3

22.3.3.1 Search-Enforced-Model 3

22.3.3.1.1 rM:3[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0)let us denote the maximum total expected present discounted profit from initiating the process
at time t with the highest buying price y and with no highest buying price y respectively, expressed as

v0(y) = max{y, ρ}, (22.3.114)

vt(y) = max{y, ρ, Ut(y)}, t > 0, (22.3.115)

V0 = ρ, (22.3.116)

Vt = max{ρ, Ut}, t > 0. (22.3.117)

where Ut(y) in (22.3.115) is the maximum total expected present discounted profit from rejecting both y and ρ, expressed as
Ut(y) = λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, t > 0. (22.3.118)

and where Ut in (22.3.117) is the maximum total expected present discounted profit from rejecting ρ, expressed as

Ut = λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, t > 0. (22.3.119)

The system of optimality equations of this model is given by

SOE{rM:3[R][E]R} = {(22.3.114)− (22.3.119)}. (22.3.120)

For convenience, let us define
U0(y) = ρ · · · (1), U0 = ρ · · · (2). (22.3.121)

Then (22.3.115) and (22.3.117) hold also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, ρ, Ut(y)} · · · (1), Vt = max{ρ, Ut} · · · (2), t ≥ 0. (22.3.122)

22.3.3.2 rM̃:3[R][E]

By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the lowest selling price y and with no lowest selling price y respectively, expressed as

v0(y) = min{y, ρ} (22.3.123)

vt(y) = min{y, ρ, Ut(y)}, t > 0, (22.3.124)

V0 = ρ, (22.3.125)

Vt = min{ρ, Ut}. (22.3.126)

where Ut(y) in (22.3.124) is the minimum total expected present discounted cost from rejecting both y and ρ, expressed as

Ut(y) = λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, t > 0. (22.3.127)

and where Ut in (22.3.126) is the minimum total expected present discounted cost from rejecting ρ, expressed as

Ut = λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, t > 0, (22.3.128)

The system of optimality equations of this model is given by

SOE{rM̃:3[R][E]R} = {(22.3.123)− (22.3.128)}. (22.3.129)

For convenience, let us define
U0(y) = ρ · · · (1), U0 = ρ · · · (2). (22.3.130)

Then (22.3.124) and (22.3.126) hold also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, ρ, Ut(y)} · · · (1), Vt = min{y, Ut} · · · (2), t ≥ 0. (22.3.131)

22.3.3.3 Search-Allowed-Model 3

22.3.3.3.1 rM:3[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the highest buying price y and with no highest buying price yrespectively, expressed as

v0(y) = max{y, ρ} (22.3.132)

vt(y) = max{y, ρ, Ut(y)}, t > 0, (22.3.133)

V0 = ρ, (22.3.134)

Vt = max{ρ, Ut}, t > 0. (22.3.135)

(22.3.136)
where Ut(y) in (22.3.133) is the maximum total expected present discounted profit from rejecting both y and ρ, expressed as
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Ut(y) = max{λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, βvt−1(y)}, t > 0. (22.3.137)

where Ut in (22.3.135) is the maximum total expected present discounted profit from rejecting ρ, expressed as

Ut = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0, (22.3.138)

(22.3.139)The system of optimality equations of this model is given by

SOE{rM:3[R][A]R} = {(22.3.132)− (22.3.138)}. (22.3.140)

For convenience, let us define
U0(y) = ρ · · · (1), U0 = ρ · · · (2). (22.3.141)

Then (22.3.133) holds also for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, ρ, Ut(y)} · · · (1), Vt = max{ρ, Ut} · · · (2), t ≥ 0. (22.3.142)

22.3.3.4 rM̃:3[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the lowest selling price y and with no lowest selling price y respectively, expressed as

v0(y) = min{y, ρ} (22.3.143)

vt(y) = min{y, ρ, Ut(y)}, t > 0, (22.3.144)

V0 = ρ, (22.3.145)

Vt = min{ρ, Ut}, t > 0, (22.3.146)

where Ut(y) in (22.3.144) is the minimum total expected present discounted cost from rejecting both y and ρ, expressed as

Ut(y) = min{λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, βvt−1(y)}, t > 0. (22.3.147)

and where Ut in (22.3.146) is the minimum total expected present discounted cost from rejecting ρ, expressed as

Ut = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0, (22.3.148)

The system of optimality equations of this model is given by

SOE{rM̃:3[R][A]R} = {(22.3.143)− (22.3.148)}. (22.3.149)

For convenience, let us define
U0(y) = ρ · · · (1), U0 = ρ · · · (2). (22.3.150)

Then (22.3.144) and (22.3.146) hold also for t ≥ 0 instead of t > 0 , i.e.,

vt(y) = min{y, ρ, Ut(y)} · · · (1), Vt = min{y, Ut} · · · (2), t ≥ 0. (22.3.151)

22.3.4 Reservation Value

⟨a⟩ t-reservation-value (no-recall-model).

Consider the selling model with no recall. Then note (7.2.5(p.34) ), i.e.,

∆t(w) ≥ (≤) 0⇔ w ≥ (≤) Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩) (S-model), (22.3.152)

implying that the reservation value of the model is given by Vt which depends on t, so let us refer to this as the t-dependent
reservation-value or t-reservation-value for short.

⟨b⟩ t-reservation-value (recall-model).

Consider the selling model with recall. Here, by At(y) let us represent the profit from accepting the current highest buying
price y (best price) at a given time t and by Rt(y) the profit from rejecting the current highest buying price y (best price)
at a given time t. Then, we have At(y) = y and Rt(y) = Vt(y) from (22.3.2(p.222) ), and then let us define

ARt(y)
def
= At(y)− Bt(y) = y − Vt(y). (22.3.153)

Here, suppose that there exists a y∗
t such that

ARt(y) ≥ (≤) 0⇔ y ≥ (≤) Vt(y)⇔ y ≥ (≤) y∗
t ⇔ Acceptt⟨y⟩ (Rejectt⟨y⟩) (see (22.3.12(p.222) )), (22.3.154)

implying that the reservation value of the model is given by y∗
t which depends on t, so let us also refer to this as

t-reservation-value.

⟨c⟩ c-reservation-value.

If Vt = constant in t and y∗
t = constant in t, then let us refer to each of the two as the constant reservation-value or the

c-reservation-value for short(see C1a(p.206) with ∥a for the former and Pom 23.1.1(p.234) (a) for the latter).
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Chapter 23

Model 1

23.1 Search-Enforced-Model 1
23.1.1 rM:1[R][E]
Below let us define Vt

def
= Vt − βVt−1, t > 1. (23.1.1)

23.1.1.1 Some Lemmas

Lemma 23.1.1 (rM:1[R][E])

(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) vt(y) and Vt(y) are nondecreasing in t ≥ 0 and t > 0 respectively for any y.†

(c) Vt is nondecreasing in t > 0.

Proof (a) v0(y) is nondecreasing in y from (22.3.1(p.222) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreasing
in y from (22.3.4(p.222) ), hence vt(y) is nondecreasing in y from (22.3.2(p.222) ). Thus, by induction vt(y) is nondecreasing in y and
t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0 from (22.3.4). In addition,
V0(y) is nondecreasing in y from (22.3.6(p.222) ), hence it follows that Vt(y) is nondecreasing in y for t ≥ 0.

(b) Clearly v1(y) ≥ y = v0(y) for any y from (22.3.2) with t = 1 and (22.3.1). Suppose vt−1(y) ≥ vt−2(y) for any
y. Then, from (22.3.4) we have Vt(y) ≥ βE[vt−2(max{ξ, y})] − s = Vt−1(y) for any y. Hence, from (22.3.2) we have vt(y) ≥
max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) ≥ vt−1(y) for t > 0 and any y, i.e., vt(y) is nondecreasing in t ≥ 0
for any y. Accordingly, since vt−1(y) ≥ vt−2(y) for t > 1 and any y, from (22.3.4) we have Vt(y) ≥ βE[vt−2(y)]− s = Vt−1(y)
for t > 1 and any y, hence Vt(y) is nondecreasing in t > 0 for any y.

(c) We have vt−1(y) is nondecreasing in t > 0 for any y due to (b), hence Vt is nondecreasing in t > 0 from (22.3.3).

Lemma 23.1.2 (rM:1[R][E])

(a) Let xK ≤ y. Then Vt(y) ≤ y for t ≥ 0.

(b) Let y ≤ xK . Then y ≤ Vt(y) ≤ xK for t ≥ 0.

Proof ‡ (a) Let xK ≤ y. Then K (y) ≤ 0 · · · ((1)) from Corollary 9.2.2(p.44) (a). From (22.3.6(p.222) ) we clearly have V0(y) ≤
y. Suppose Vt−1(y) ≤ y, hence vt−1(y) = y from (22.3.2(p.222) ). Then, since xK ≤ y ≤ max{ξ, y} for any ξ, we have
vt−1(max{ξ, y}) = max{ξ, y}. Accordingly, from (22.3.4(p.222) ) we have Vt(y) = βE[max{ξ, y}] − s = K (y) + y · · · ((2)) due to

(5.1.10(p.17) ) with λ = 1, hence Vt(y) ≤ y due to (1) . This completes the induction.

(b) Let y ≤ xK · · · ((3)). Then K (y) ≥ 0 · · · ((4)) from Corollary 9.2.2(p.44) (b). Now, from (22.3.7) we have vt−1(max{ξ, y}) ≥
max{ξ, y} for any t > 0, ξ, and y, hence from (22.3.4) and (5.1.10) with λ = 1 we have Vt(y) ≥ β[max{ξ, y}]− s = K(y)+ y for
t > 0, so that Vt(y) ≥ y for t > 0 due to (4) . In addition, since V0(y) ≥ y from (22.3.6), it follows that Vt(y) ≥ y for t ≥ 0. Now,
since max{ξ, y} ≤ max{ξ, xK } for any ξ due to (3) , from Lemma 23.1.1(a) we have vt−1(max{ξ, y}) ≤ vt−1(max{ξ, xK }) · · · ((5))
for any ξ and t > 0. Since xK ≤ max{ξ, xK } for any ξ, due to (a) we have Vt−1(max{ξ, xK }) ≤ max{ξ, xK } for any
ξ and t > 0, hence vt−1(max{ξ, xK }) = max{ξ, xK } for any ξ and t > 0 from (22.3.7(p.222) ), so that from (5) we have
vt−1(max{ξ, y}) ≤ max{ξ, xK } for any ξ and t > 0. Thus, from (22.3.4) and (5.1.10(p.17) ) with λ = 1 we have Vt(y) ≤
βE[max{ξ, xK }]− s = K (xK ) + xK = xK for t > 0.

Since Vt(y) is nondecreasing in t > 0 from Lemma 23.1.1(b) and is upper bounded in t from Lemma 23.1.2(a,b), it converges
to a finite V (y) as t→∞, hence so also do vt(y), Vt, and Vt (see (23.1.1(p.229) )). Then, defining these limits by v(y), V , and V,
from (22.3.3(p.222) ), (22.3.2), (22.3.4), and (23.1.1) we have:

†It cannot be always guaranteed that V1(y) ≥ V0(y). For example, let β < 1 or s > 0 and let y > xK . Then, from (22.3.10(p.222) ) and
(22.3.6(p.222) ) we have V1(y)− V0(y) = K(y) < 0 due to Lemma 9.2.2(p.43) (j1), i.e., V1(y) < V0(y).

‡Although (a) and (b) are already proven in [43,Sakaguchi,1961][0005] , we anew prove herein the two by using properties of the underlying
function K (x) (see (5.1.4(p.17) )).
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V (y) = βE[v(max{ξ, y})]− s, (23.1.2)

v(y) = max{y, V (y)}, (23.1.3)

V = βE[v(ξ)]− s, (23.1.4)

V = (1− β)V. (23.1.5)

Lemma 23.1.3 (rM:1[R][E])
(a) Let xK ≤ y. Then V (y) ≤ y.

(b) Let y ≤ xK . Then y ≤ V (y) ≤ xK .

Proof Immediate from Lemma 23.1.2.

Lemma 23.1.4 (rM:1[R][E]) Let β < 1.

(a) Let y ≤ xK . Then V (y) = xK .

(b) v(y) = max{y, xK } for any y.

(c) V = xK .

(d) Let κ > (= (<)) 0. Then V > (= (<)) 0.

Proof Let β < 1 · · · ((1)).

(a) Let y ≤ xK · · · ((2)). Now, (23.1.2) can be rewritten as

V (y) = βE[v(max{ξ, y})I(xK < ξ)] + βE[v(max{ξ, y})I(ξ ≤ xK )]− s · · · ((3)).

If xK < ξ, then y < ξ from (2) , hence xK < ξ = max{ξ, y}. Thus, from Lemma 23.1.3(a) we have V (max{ξ, y}) ≤ max{y, ξ} =
ξ, so that v(max{ξ, y}) = max{y, ξ} = ξ due to (23.1.3). Therefore, (3) can rewritten as

V (y) = βE[ξI(xK < ξ)] + βE[v(max{ξ, y})I(ξ ≤ xK )]− s · · · ((4)).

In addition, since v(max{ξ, y}) = max{max{ξ, y}, V (max{ξ, y})} from (23.1.3) for ξ and y, we can rewrite (4) as

V (y) = βE[ξI(xK < ξ)] + βE[max{max{ξ, y}, V (max{ξ, y})}I(ξ ≤ xK )]− s. · · · ((5))

To prove (a) it suffices to show the following two:

1. The function V (y) = xK · · · ((6)) with y ≤ xK is a solution of the functional equation (5) To prove this it suffices to show

that, substituting the relation V (y) = xK with y ≤ xK for the r.h.s. of (5) yields xK , implying that the r.h.s. rustlingly
becomes equal to the V (y) in its l.h.s., i.e., V (y) = xK . Below, let us show this. Let ξ ≤ xK . Then max{y, ξ} ≤
max{ xK , xK } = xK · · · ((7)) due to (2) , hence V (max{y, ξ}) = xK · · · ((8)) due to (6) , so max{max{y, ξ}, V (max{y, ξ})} =
max{max{y, ξ}, xK } = xK due to (8) and (7) . Consequently, we eventually get

r.h.s of (5) = βE[ξI(xK < ξ)] + βE[xK I(ξ ≤ xK )]− s

= βE[max{ξ, xK }I(xK < ξ)] + βE[max{ξ, xK }I(ξ ≤ xK )]− s

= βE[max{ξ, xK }]− s

= K(xK ) + xK (See (5.1.10(p.17) )) with λ = 1

= xK .

Accordingly, it follows that V (y) = xK with y ≤ xK is a solution of the functional equation (5) .

2. The solution is unique Suppose there exists another solution Z(y) with y ≤ xK where V (y) ̸= Z(y) for at least one

y ≤ xK . Then, let z(y)
def
= max{y, Z(y)} · · · ((9)) with y ≤ xK (see (23.1.3)). Accordingly, we have (see (4) )

Z(y) = βE[ξI(xK < ξ)] + βE[z(max{ξ, y})I(ξ ≤ xK )]− s. · · · ((10))

Hence, from (4) and (10) we have

|V (y)− Z(y)| =
∣∣βE[(v(max{ξ, y})− z(max{ξ, y}))I(ξ ≤ xK )]

∣∣
≤ βE[

∣∣v(max{ξ, y})− z(max{ξ, y})
∣∣I(ξ ≤ xK )]. · · · ((11 )).

Now, in general

|v(y)− z(y)| = |max{y, V (y)} −max{y, Z(y)}| ≤ max{0, |V (y)− Z(y)|} = |V (y)− Z(y)|

for any y, hence we have ∣∣v(max{ξ, y})− z(max{ξ, y})
∣∣ ≤ ∣∣V (max{ξ, y})− Z(max{ξ, y})

∣∣ · · · ((12 )).
for any y and ξ. Thus, from (11) we have

|V (y)− Z(y)| ≤ βE[
∣∣V (max{ξ, y})− Z(max{ξ, y})

∣∣I(ξ ≤ xK )] · · · ((13 )).
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Let ν = maxy≤ xK |V (y) − Z(y)| · · · ((14 )) where 0 < ν · · · ((15 )), hence |V (y) − Z(y)| ≤ ν · · · ((16 )) for y ≤ xK . If ξ ≤ xK ,

then max{ξ, y} ≤ max{xK , xK } = xK · · · ((17 )), hence |V (max{ξ, y})− Z(max{ξ, y})| ≤ ν due to (16) . Accordingly, from

(13) we have

|V (y)− Z(y)| ≤ βE[νI(ξ ≤ xK )] = βνE[I(ξ ≤ xK )] = βν Pr{ξ ≤ xK } = βνF (xK ).

Thus, we have ν ≤ βνF (xK ) · · · ((18 )) due to the definition (14) . In addition, since βνF (xK ) ≤ βν due to F (xK ) ≤ 1, we

have ν ≤ βν from (18) , leading to the contradiction of 1 ≤ β due to (15) . Accordingly, V (y) = xK with y ≤ xK must be
the unique solution of (5) .

(b) If xK ≤ y, from Lemma 23.1.3(a) and (23.1.3) we have v(y) = y = max{y, xK }. If y ≤ xK , from Lemma 23.1.3(b) and
(23.1.3) we have v(y) = V (y) ≤ xK and from (a) we have V (y) = xK , hence it follows that v(y) = V (y) = xK = max{y, xK }.
Thus, whether xK ≤ y or y ≤ xK , we have v(y) = max{y, xK }.

(c) Since v(ξ) = max{ξ, xK } for any ξ due to (b), from (23.1.4) we have V = βE[max{ξ, xK }]− s = K(xK ) + xK = xK

(see (5.1.10(p.17) )).

(d) Let κ > (= (<)) 0. Then, since xK > (= (<)) 0 due to Lemma 9.3.1(p.45) (b), from (c) we have V > (= (<)) 0, hence the
assertion becomes true from (23.1.5).

Here, let us define
ℓt(y)

def
= vt(y)− βvt−1(y), t > 0. (23.1.6)

Then, from (23.1.1) and (22.3.3(p.222) ) we have

Vt = βE[vt−1(ξ)]− s− β(βE[vt−2(ξ)]− s) (23.1.7)

= βE[vt−1(ξ)− βvt−2(ξ)]− (1− β)s (23.1.8)

= βE[ℓt−1(ξ)]− (1− β)s, t > 1. (23.1.9)

Furthermore, for any y let us define
A(y)

def
= ℓ2(y)− ℓ1(y). (23.1.10)

Lemma 23.1.5 (rM:1[R][E])
(a) Let xK ≤ y. Then A(y) = 0.

(b) Let y ≤ xK . Then A(y) is nondecreasing in y.

(c) A(y) ≤ 0 for any y.

Proof (a) Let xK ≤ y. Then V2(y) ≤ y and V1(y) ≤ y from Lemma 23.1.2(a), hence from (22.3.7(p.222) ) we have v2(y) =
v1(y) = y. In addition, v0(y) = y from (22.3.1). Thus, since ℓ2(y) = v2(y) − βv1(y) = (1 − β)y and ℓ1(y) = v1(y) − βv0(y) =
(1− β)y, we have A(y) = 0 · · · ((1)).

(b) Let y ≤ xK · · · ((2)). Now, from Lemma 23.1.2(b) and (22.3.2(p.222) ) we have

v1(y) = V1(y) = βE[max{ξ, y}]− s (← (22.3.9(p.222) )) (23.1.11)

= K (y) + y (← (5.1.10)), (23.1.12)

v2(y) = V2(y) = βE[v1(max{ξ, y})]− s (← (22.3.4(p.222) ) with t = 2). (23.1.13)

Hence, we have
ℓ1(y) = v1(y)− βv0(y) = v1(y)− βy,

ℓ2(y) = v2(y)− βv1(y) = βE[v1(max{ξ, y})]− s− βv1(y),

from which we obtain

A(y) = βE[v1(max{ξ, y})]− s− (1 + β)v1(y) + βy

= βE[v1(max{ξ, y})I(ξ < xK ) + v1(max{ξ, y})I(xK ≤ ξ)]− s− (1 + β)v1(y) + βy.

If ξ < xK , due to (2) we have max{ξ, y} ≤ max{xK , xK } = xK , hence from (23.1.12) we have

v1(max{ξ, y}) = K (max{ξ, y}) + max{ξ, y}.

If xK ≤ ξ, then xK ≤ ξ ≤ max{ξ, y} for any y, hence from Lemma 23.1.2(a) we have V1(max{ξ, y}) ≤ max{ξ, y}, so that
v1(max{ξ, y}) = max{ξ, y}

from (22.3.2(p.222) ) with t = 1. Accordingly, we have

A(y) = βE[
(
K (max{ξ, y}) + max{ξ, y}

)
I(ξ < xK ) + max{ξ, y}I(xK ≤ ξ)]− s− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK ) + max{ξ, y}(I(ξ < xK ) + I(xK ≤ ξ))]− s− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK ) + max{ξ, y}]− s− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK )] + βE[max{ξ, y}]− s − (1 + β)v1(y) + βy.
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Using (23.1.11), we can rewrite the above as

A(y) = βE[K (max{ξ, y})I(ξ < xK )] + v1(y)− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK )]− β(v1(y)− y).

Furthermore, since v1(y)− y = K(y) due to (23.1.12), we can rewrite the above as

A(y) = βE[K (max{ξ, y})I(ξ < xK )]− βK (y)

= βE[K (max{ξ, y})I(ξ < xK )−K (y)]

= βE[B(ξ, y)] (23.1.14)

where

B(ξ, y)
def
= K (max{ξ, y})I(ξ < xK )−K (y).

Now we have:

1 Let xK ≤ ξ. Then I(ξ < xK ) = 0, hence B(ξ, y) = −K(y), which is nondecreasing in y ≤ xK from Lemma 9.2.2(p.43) (b).

2 Let ξ < xK . Then I(ξ < xK ) = 1, hence B(ξ, y) = K (max{ξ, y}) − K (y) for y ≤ xK . Thus, if y ≤ ξ, then B(ξ, y) =
K (ξ)−K (y), which is nondecreasing in y ≤ ξ due to Lemma 9.2.2(p.43) (b) and if ξ < y (≤ xK ), then B(ξ, y) = K (y)−K (y) = 0
for y ≤ xK , which can be regarded as nondecreasing in y > ξ. Therefore, it follows that B(ξ, y) is nondecreasing in y ≤ xK

whether y ≤ ξ or y > ξ.

From the above two results we have that, whether xK ≤ ξ or ξ < xK , B(ξ, y) is nondecreasing in y ≤ xK . Hence, from
(23.1.14) it eventually follows that A(y) is nondecreasing in y ≤ xK .

(c) Immediate from (a,b) and the fact that A(y) is continuous on (−∞,∞).

Lemma 23.1.6 (rM:1[R][E])

(a) ℓt(y) is nonincreasing in t > 0 for any y.

(b) Vt is nonincreasing in t > 1.

Proof (a) From Lemma 23.1.5(c) and (23.1.10) we have ℓ2(y) ≤ ℓ1(y) for any y. Suppose that ℓt−1(y) ≤ ℓt−2(y) for any y.

1. Let xK ≤ y. Then, since Vt(y) ≤ y for t ≥ 0 due to Lemma 23.1.2(a), we have Vt−1(y) ≤ y for t ≥ 1, hence vt(y) = y
for t ≥ 0 and vt−1(y) = y for t ≥ 1 from (22.3.7(p.222) ). Thus, from (23.1.6) we have ℓt(y) = (1 − β)y for t ≥ 1 and
ℓt−1(y) = (1− β)y for t ≥ 2, so that ℓt(y) = ℓt−1(y) for t ≥ 2, hence ℓt(y) ≤ ℓt−1(y) for t ≥ 2. Accordingly, it follows that
ℓt(y) is nonincreasing in t ≥ 1 or equivalently in t > 0 on xK ≤ y.

2. Let y ≤ xK . Then, since y ≤ Vt(y) for t ≥ 0 and y ≤ Vt−1(y) for t > 0 from Lemma 23.1.2(b), we have vt(y) = Vt(y) for
t ≥ 0 and vt−1(y) = Vt−1(y) for t > 0 from (22.3.7), hence from (23.1.6) and (22.3.4(p.222) ) we have

ℓt(y) = Vt(y)− βVt−1(y)

= βE[vt−1(max{ξ, y})]− s− β(vt−2(max{ξ, y})]− s)

= βE[vt−1(max{ξ, y})− βvt−2(max{ξ, y})]− (1− β)s

= βE[ℓt−1(max{ξ, y})]− (1− β)s, t > 0.

Thus, we have
ℓt−1(y) = βE[ℓt−2(max{ξ, y})]− (1− β)s, t > 1.

Here, since ℓt−1(max{ξ, y}) ≤ ℓt−2(max{ξ, y}) due to the induction hypothesis, we have ℓt(y) ≤ βE[ℓt−2(max{ξ, y})]−(1−
β)s = ℓt−1(y) for t > 1. Accordingly, by induction we have ℓt(y) ≤ ℓt−1(y) for t > 1 on y ≤ xK , i.e., ℓt(y) is nonincreasing
in t > 0 on y ≤ xK .

From the above two results it eventually follows, whether xK ≤ y or y ≤ xK , ℓt(y) is nonincreasing in t > 0.

(b) Immediate from (a) and (23.1.9).

23.1.1.2 Analysis

From (22.3.3(p.222) ) with t = 2 we have

V2 = βE[v1(ξ)]− s

= βE[max{ξ, V1(ξ)}]− s (see (22.3.2) with t = 1)

= βE[max{ξ, K (ξ) + ξ}]− s (see (22.3.10) with y = ξ)

= βE[max{0, K (ξ)}+ ξ]− s

= βE[max{0, K (ξ)}] + βE[ξ]− s

= βE[max{0, K (ξ)}] + βµ− s.

Then (23.1.1(p.229) ) with t = 2 can be rewritten as
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V2 = V2 − βV1

= βE[max{0, K (ξ)}] + βµ− s− β(βµ− s) (see (22.3.8))

= βE[max{0, K (ξ)}] + (1− β)(βµ− s)

= βE[max{0, K (ξ)}I(ξ < xK )] + max{0, K (ξ)}I(xK ≤ ξ)] + (1− β)(βµ− s).

Due to Corollary 9.2.2(p.44) (a) we have K (ξ) > 0 for ξ < xK and K (ξ) ≤ 0 for xK ≤ ξ, hence we have

V2 = βE[K (ξ)I(ξ < xK )] + (1− β)(βµ− s). (23.1.15)

Let us define

S18 ⃝
s N ⃝∗ △ ⃝∗ N = { For any τ > 1 there exists t•τ (t◦τ ≥ t•τ > 1) such that

⃝s dOITst•τ≥τ>1⟨τ⟩ N, ⃝⃝∗ ndOITt◦τ≥τ>t•τ ⟨t
•
τ ⟩ △, and ⃝⃝∗ ndOITτ>t•τ ⟨t

•
τ ⟩ N. }

� Tom 23.1.1 (A {rM:1[R][E]}) For any τ > 1 :

(a) We have :

1. ♣Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

2. ♣Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

(b) Let β = 1. Then ⃝s dOITsτ ⟨τ⟩ △.

(c) Let β < 1.

1. Let βµ− s ≥ 0. Then ⃝s dOITsτ ⟨τ⟩ △.

2. Let βµ− s < 0 and βµ− s < a. Then • dOITdτ ⟨1⟩ N.

3. Let βµ− s < 0 and βµ− s ≥ a (hence a < 0).

i. Let V2 ≤ 0. Then • dOITdτ ⟨1⟩ △.

ii. Let V2 > 0.

1. Let κ ≥ 0. Then ⃝s dOITsτ ⟨τ⟩ △.

2. Let κ < 0. Then we have S18(p.233) ⃝s N ⃝∗ △ ⃝∗ N .

Proof Since λ = 1 is assumed in the model, we have δ = 1 (See (9.2.1(p.42) )). Hence (λβµ − s)/δ = βµ − s · · · ((1)) and

K (a) = βµ− s− a · · · ((2)) from (9.2.4 (1) (p.42) ).

(a1,a2) The same as Lemma 23.1.2(a,b).

(b) Let β = 1. Then, from (23.1.1) we have Vt = Vt − βVt−1 = Vt − Vt−1 for t > 1, hence Vt ≥ 0 for t > 1 due
to Lemma 23.1.1(c) or equivalently Vt ≥ βVt−1 for t > 1. Thus, since Vt ≥ βVt−1 for τ ≥ t > 1, we have Vτ ≥ βVτ−1,
Vτ−1 ≥ βVτ−2, · · · , V2 ≥ βV1, hence Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1, so that t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ ⟨τ⟩ △.

(c) Let β < 1.

(c1) Let βµ − s ≥ 0, hence V1 ≥ 0 from (22.3.8(p.222) ). Then Vt ≥ Vt−1 ≥ V1 ≥ 0 for t > 1 from Lemma 23.1.1(c). Hence,
from (23.1.1) we have Vt = Vt − βVt−1 ≥ Vt−1 − βVt−1 = (1− β)Vt−1 ≥ 0 for t > 1. Then, since Vt ≥ βVt−1 for t > 1, for the
same reason as in the proof of (b) we have ⃝s dOITsτ ⟨τ⟩ △.

(c2) Let βµ − s < 0 · · · ((3)) and βµ − s < a from (22.3.8(p.222) ). Then, from (2) we have K (a) < 0, hence xK < a

from Lemma 9.2.2(j1). Below consider only y such that xK < a ≤ y ∈ [a, b]. Then, since Vt(y) ≤ y for t ≥ 0 from
Lemma 23.1.2(a), we have vt(y) = y for t ≥ 0 from (22.3.7(p.222) ), hence vt−1(y) = y for t > 0, so that from (23.1.6) we have
ℓt(y) = vt(y)−βvt−1(y) = y−βy = (1−β)y for t > 0. Accordingly, since ℓt−1(ξ) = (1−β)ξ for t > 1 and ξ ∈ [a, b], from (23.1.9)
we obtain Vt = Vt − βVt−1 = βE[(1− β)ξ]− (1− β)s = β(1− β)E[ξ]− (1− β)s = β(1− β)µ− (1− β)s = (1− β)(βµ− s) < 0
for t > 1 due to (3) . Then, since Vt < βVt−1 for t > 1, we have Vt < βVt−1 for τ ≥ t > 1. Accordingly, since Vτ < βVτ−1,
Vτ−1 < βVτ−2, · · · , V2 < βV1, we have Vτ < βVτ−1 < β2Vτ−2 < · · · < βτ−1V1 , hence t∗τ = τ for τ > 1, i.e., • dOITdτ ⟨1⟩ N.

(c3) Let βµ− s < 0 · · · ((4)) and βµ− s ≥ a, hence a < 0. Then K (a) ≥ 0 from (2) , so a ≤ xK · · · ((5)) from Lemma 9.2.2(j1).

(c3i) Let V2 ≤ 0. Then, since Vt ≤ 0 for t > 1 from Lemma 23.1.6(b), we have Vt ≤ 0 for τ ≥ t > 1. Hence, since
Vτ − βVτ−1 ≤ 0 for τ ≥ t > 1 from (23.1.1), we have Vτ ≤ βVτ−1 for τ ≥ t > 1. Accordingly, since Vτ ≤ βVτ−1, Vτ−1 ≤ βVτ−2,
· · · , V2 ≤ βV1, we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 , so that t∗τ = 1 for τ > 1, i.e., • dOITdτ ⟨1⟩ △.

(c3ii) Let V2 > 0 · · · ((6)).

(c3ii1) Let κ ≥ 0. Then V ≥ 0 due to Lemma 23.1.4(d). Hence, from (6) and
Lemma 23.1.6(b) we have Vt ≥ 0 for t > 1, so we obtain ⃝s dOITsτ ⟨τ⟩ △ for the same reason as in the proof of (c1).

(c3ii2) Let κ < 0. Then V < 0 due to Lemma 23.1.4(d). Hence, from (6) , and
Lemma 23.1.6(b) it follows that there exist t◦τ and t•τ (t◦τ ≥ t•τ > 1) such that

V2 ≥ · · · ≥ Vt•τ−1 ≥ Vt•τ > 0 ≥ Vt•τ+1 ≥ Vt•τ+1 ≥ · · · ≥ Vt◦τ > Vt◦τ+1 ≥ · · ·
or equivalently

Vt > 0 · · · (1∗), t•τ ≥ t > 1, 0 ≥ Vt · · · (2∗), t◦τ ≥ t > t•τ , 0 > Vt · · · (3∗), t > t◦τ .
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1. Let t•τ ≥ τ > 1. Then, since Vt > 0 for τ ≥ t > 1 due to (1∗), for almost the same reason as in the proof of (b) we have
Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((7)), hence t∗τ = τ for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N · · · ((8)). From (7) with τ = t•τ we

have

Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1.

2. Since Vt•τ+1 ≤ 0 due to (2∗), we have Vt•τ+1 ≤ βVt•τ from (23.1.1). Hence

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τV1 · · · ((9)),

so t∗t•τ+1 = t•τ or equivalently ⃝⃝∗ ndOITt•τ+1⟨t•τ ⟩ △ · · · ((10 )). Since Vt•τ+2 ≤ 0 due to (2∗), we have Vt•τ+2 ≤ βVt•τ+1. Hence,

from (9) we have

Vt•τ+2 ≤ βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+1V1 · · · ((11 )),

so t∗t•τ+2 = t•τ or equivalently we have ⃝⃝∗ ndOITt•τ+2⟨t•τ ⟩ △ · · · ((12 )). Similarly we obtain ⃝⃝∗ ndOITt•τ+3⟨t•τ ⟩ △ · · · ((13 )), ⃝⃝∗ ndOITt•τ+4⟨t•τ ⟩ △

· · · ((14 )), · · · . Since Vt◦τ ≤ 0 due to (2∗), we have Vt◦τ ≤ βVt◦τ−1. Hence

Vt◦τ ≤ βVt◦τ−1 ≤ · · · ≤ βt◦τ−t•τVt•τ > βt◦τ−t•τ+1Vt•τ−1 > · · · > βt◦τ−1V1 · · · ((15 )),

so t∗t◦τ = t•τ or equivalently ⃝⃝∗ ndOITt◦τ ⟨t
•
τ ⟩ △ · · · ((16 )). Hence, we have ⃝⃝∗ ndOITt◦τ≥τ>t•τ ⟨t

•
τ ⟩ △ · · · ((17 )) from (10) -(16) .

3. Since Vt◦τ+1 < 0 due to (3), we have Vt◦τ+1 < βVt◦τ , hence from (15) we get

Vt◦τ+1 < βVt◦τ ≤ β2Vt◦τ−1 ≤ · · · ≤ βt◦τ−t•τVt•τ ≤ βt◦τ−t•τ+1Vt•τ > βt◦τ−t•τ+2Vt•τ−1 > · · · > βt◦τV1,

so t∗t• + 1 = t•τ or equivalently ⃝⃝∗ ndOITt◦τ+1⟨t•τ ⟩ N. Similarly, since Vt◦τ+2 < 0, we have ⃝⃝∗ ndOITt◦τ+3⟨t•τ ⟩ N. In general, we have

⃝⃝∗ ndOITτ>t◦τ ⟨t
•
τ ⟩ N · · · ((18 )).

(8) , (17) , and (18) can be summarized as S18(p.233) ⃝s N ⃝∗ △ ⃝∗ N .

23.1.1.3 Flow of Optimal Decision Rules

♣ Flow-ODR 23.1.1 (rM:1[R][E]) (c-reservation-price) From Tom 23.1.1(♣ a1,♣ a2) and
(22.3.12(p.222) ) we have the following decision rule for τ ≥ t > 0 :

{ y ≥ xK ⇒ Acceptt⟨y⟩ and the process stops

y ≤ xK ⇒ Rejectt⟨y⟩ and the search is conducted

This yields the following scenario. First the process is initiated at the optimal initiating time t∗τ and the search is conducted at
that time, and then a buyer appearing at time t∗τ − 1 proposes a price ξ, hence the best price at that time is y = ξ. After that,
the following condition branching follows.

◦ Let y ≥ xK . Then Acceptt∗τ−1⟨y⟩ and the process stops

◦ Let y ≤ xK . Then Rejectt∗τ−1⟨y⟩ and the search is conduct, and a buyer appearing at time t∗τ −2 proposes the price ξ, hence

the best price y is enlarged to y
def
= max{ξ, y}. After that, the following condition branching follows.

◦ Let y ≥ xK . Then Acceptt∗τ−2⟨y⟩ and the process stops

◦ Let y ≤ xK . Then Rejectt∗τ−2⟨y⟩ and the search is conducted.
...

◦ Accept0⟨y⟩ and the process terminates

23.1.1.4 Market Restriction

23.1.1.4.1 Positive Restriction

� Pom 23.1.1 (A {rM:1[R][E]+}) Suppose a > 0.

(a) We have c-reservation-price (♣ Flow-ODR 23.1.1).
(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
(c) Let β < 1.

1. Let βµ− s ≥ 0. Then ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. Let βµ− s < 0. Then • dOITdτ>1⟨1⟩ N → →•dd

Proof Suppose a > 0 · · · ((1)). Then κ = κR = βµ− s · · · ((2)) from Lemma 9.3.1(p.45) (a).

(a) See ♣ Flow-ODR 23.1.1.

(b) The same as Tom 23.1.1(b).

(c) Let β < 1.

(c1) The same as Tom 23.1.1(c1).

(c2) Let βµ− s < 0. Then βµ− s < a due to (1) , hence we have Tom 23.1.1(c2).

234



23.1.1.4.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

23.1.1.4.3 Negative Restriction

� Nem 23.1.1 (A {rM:1[R][E]−}) Suppose b < 0.

(a) We have c-reservation-price (♣ Flow-ODR 23.1.1).

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
(c) Let β < 1.

1. Let βµ− s < a. Then • dOITdτ>1⟨1⟩ N → →•dd
2. Let βµ− s ≥ a.

i. Let V2 ≤ 0. Then • dOITdτ>1⟨1⟩ △ → →•dd
ii. Let V2 > 0.

1. Let s = 0. Then ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. Let s > 0. Then we have S18(p.233) ⃝s N ⃝∗ △ ⃝∗ N → → ⃝⃝s /⃝⃝∗

Proof Suppose b < 0. Then µ < b < 0, hence βµ < 0, so that βµ− s < 0 · · · ((1)) for any s ≥ 0. Then κ = κR = −s · · · ((2)) from
Lemma 9.3.1(p.45) (a).

(a) See ♣ Flow-ODR 23.1.1.

(b) The same as Tom 23.1.1(b).

(c) Let β < 1.

(c1) Let βµ− s < a. Then, due to (1) we have Tom 23.1.1(c2).

(c2) Let βµ− s ≥ a. Then, due to (1) Tom 23.1.1(c3i-c3ii2) hold.

(c2i) Let V2 ≤ 0. Then we have Tom 23.1.1(c3i).

(c2ii) Let V2 > 0.

(c2ii1) Let s = 0. Then κ = 0 due to (2) , hence we have Tom 23.1.1(c3ii1).

(c2ii2) Let s > 0. Then κ < 0 due to (2) , hence we have Tom 23.1.1(c3ii2).

23.1.2 rM̃:1[R][E]
23.1.2.1 Preliminary I

Here let us show that SOE{rM̃:1[R][E]} (see (22.3.17(p.222) )) is symmetrical to SOE{rM:1[R][E]} (see (22.3.5(p.222) )), which is a
necessary condition under which A {rM̃:1[R][E]} can be derived by applying SR→R̃ (see (15.3.1(p.98) )) to A {rM:1[R][E]} (see
Tom 23.1.1(p.233) ).

1. For convenience of reference, below let us copy (22.3.1(p.222) )-(22.3.4):

(1∗): v0(y) = y, (2∗): vt(y) = max{y, Vt(y)}, (3∗): Vt = βE[vt−1(ξ)]− s,

(4∗): Vt(y) = βE[vt−1(max{ξ, y})]− s;

SOE{rM:1[R][E]} = {(1∗), (2∗), (3∗), (4∗)}.

2. Applying the reflection operation R to the above four yields:

(1∗)′ : −v̂0(−ŷ) = −ŷ, (2∗)′ : −v̂t(−ŷ) = max{−ŷ,−V̂t(−ŷ)} = −min{ŷ, V̂t(−ŷ)}, (3∗)′ : −V̂t = βE[−v̂t−1(−ξ̂)]− s,

(4∗)′ : −V̂t(−ŷ) = βE[−v̂t−1(max{−ξ̂,−ŷ})]− s = βE[−v̂t−1(−min{ξ̂, ŷ})]− s,

which can be rearranged as:

(1∗)′: v̂0(−ŷ) = ŷ, (2∗)′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′: V̂t = βE[v̂t−1(−ξ̂)] + s,

(4∗)′: V̂t(−ŷ) = βE[v̂t−1(−min{ξ̂, ŷ})] + s;

R[SOE{rM:1[R][E]}] = {(1∗)′, (2∗)′, (3∗)′, (4∗)′}.

3. We have E[v̂t−1(−ξ̂)] = E[v̂t−1(ξ)] =
∫∞
−∞ v̂t−1(ξ)f(ξ)dξ =

∫∞
−∞ v̂t−1(ξ)f̌(ξ̂)dξ from (11.1.10(p.55) ), i.e., the application of the

correspondence replacement operation CR (see Lemma 11.3.1(p.57) ). Let η = ξ̂ = −ξ, hence dη = −dξ. Then E[v̂t−1(−ξ̂)] =
−
∫ −∞
∞ v̂t−1(−η)f̌(η)dη =

∫∞
−∞ v̂t−1(−η)f̌(η)dη Ě[v̂t−1(−ξ)] · · · (�). Similarly we have E[v̂t−1(−min{ξ̂, ŷ})] =

Ě[v̂t−1(−min{η, ŷ})]. Hence (1∗)′ - (4∗)′ can be rewritten as:

(1∗)′′: v̂0(−ŷ) = ŷ, (2∗)′′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′′: V̂t = β Ě[v̂t−1(−η)] + s,

(4∗)′′: V̂t(−ŷ) = β Ě[v̂t−1(−min{η, ŷ})] + s;

CRR[SOE{rM:1[R][E]}] = {(1∗)′′, (2∗)′′, (3∗)′′, (4∗)′′}.
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4. Let us replace f̌(η) by f(η) in (�) (see (11.1.12(p.56) )), i.e., the application of the identity replacement operation IR (see
Lemma 11.3.3(p.59) ). Then, from (�) we have Ě[v̂t−1(−η)] =

∫∞
−∞ v̂t−1(−η)f(η)dη =

∫∞
−∞ v̂t−1(−ξ)f(ξ)dξ = E[v̂t−1(−ξ)]

without loss of generality. Similarly Ě[v̂t−1(−min{η, ŷ})] + s = E[v̂t−1(−min{ξ, ŷ})] + s. Accordingly (1∗)′′ - (4∗)′′ can be
rewritten as;

(1∗)′′′: v̂0(−ŷ) = ŷ, (2∗)′′′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′′′: V̂t = βE[v̂t−1(−ξ)] + s,

(4∗)′′′: V̂t(−ŷ) = βE[v̂t−1(−min{ξ, ŷ})] + s;

IRCRR[SOE{rM:1[R][E]}] = {(1∗)′′′, (2∗)′′′, (3∗)′′′, (4∗)′′′}.

5. Since (1∗)′′′ - (4∗)′′′ hold for any given y ∈ (−∞,∞), they holds also for ŷ ∈ (−∞,∞), hence (1∗)′′′ - (4∗)′′′ hold for ˆ̂y ∈
(−∞,∞). Accordingly, since ˆ̂y = y, it follows that they hold also for any given y. Thus, we obtain the following:

(1∗)′′′′: v̂0(−y) = y, (2∗)′′′′: v̂t(−y) = min{y, V̂t(−y)}, (3∗)′′′′: V̂t = βE[v̂t−1(−ξ)] + s,

(4∗)′′′′: V̂t(−y) = βE[v̂t−1(−min{ξ, y})] + s;

IRCRR[SOE{rM:1[R][E]}] = {(1∗)′′′′, (2∗)′′′′, (3∗)′′′′, (4∗)′′′′}. (23.1.16)

6. Note here that SOE{rM̃:1[R][E]} can be given by (22.3.13(p.222) )-(22.3.16), i.e.,

(1∗)′′′′′: v0(y) = y, (2∗)′′′′′: vt(y) = min{y, Vt(y)}, (3∗)′′′′′: Vt = βE[vt−1(ξ)] + s,

(4∗)′′′′′: Vt(y) = βE[vt−1(min{ξ, y})] + s;

SOE{rM̃:1[R][E]} = {(1∗)′′′′′, (2∗)′′′′′, (3∗)′′′′′, (4∗)′′′′′}. (23.1.17)

7. From (1∗)′′′′ and (1∗)′′′′′ we have v̂0(−y) = v0(y) = y for any y, i.e., (1∗)′′′′ = (1∗)′′′′′. Suppose v̂t−1(−y) = vt−1(y) for any
y. Then, from (3∗)′′′′ we have V̂t(−y) = βE[vt−1(min{ξ, y})] + s = Vt(y), so (3∗)′′′′ becomes identical to (3∗)′′′′′for any
y. Hence, from (2∗)′′′′, we have v̂t(−y) = min{y, Vt(y)} = vt(y), so (2∗)′′′′ becomes identical to (2∗)′′′′′. Accordingly, by
induction v̂t−1(−y) = vt−1(y) for any t > 0. Therefore, we have (1∗)′′′′ = (1∗)′′′′′. Thus we see that (23.1.16) is identical to
(23.1.17), i.e.,

SOE{rM̃:1[R][E]} = ICR[SOE{rM:1[R][A]}].

23.1.2.2 Preliminary II

First, applying the reflection operation R to (23.1.15(p.233) ) yields

R[V2] = V̂2 = −V2 = β
∫∞
−∞−K (ξ)I(−ξ > −xK )f(ξ)dξ + (1− β)(−βµ+ s)

= β
∫∞
−∞ K̂ (ξ)I(ξ̂ > x̂K )f(ξ)dξ + (1− β)(βµ̂+ s).

Then, applying the replacement η = ξ̂ = −ξ (hence dη = −dξ), µ̂ = µ̌, K̂ (ξ) = ˇ̃K (ξ̂), and x̂K = xˇ̃K (see
Lemma 11.3.1(p.57) (e,h) to this leads to

R[V2] = −β
∫ −∞
∞

ˇ̃K (ξ̂)I(η > xˇ̃K )f̌(η)dη + (1− β)(βµ̌+ s)

= β
∫∞
−∞

ˇ̃K (η)I(η > xˇ̃K )f̌(η)dη + (1− β)(βµ̌+ s)

= β
∫∞
−∞

ˇ̃K (ξ)I(ξ > xˇ̃K )f̌(ξ)dx+ (1− β)(βµ̌+ s) (without loss of generality)

Since the above replacement is the same as the application of CR to R[V2], i.e., CRR[V2] = R[V2]. Thus, we have

CRR[V2] = β
∫∞
−∞

ˇ̃K (ξ)I(ξ > xˇ̃K )f̌(ξ)dξ + (1− β)(βµ̌+ s).

Furthermore, applying the identity replacement operation IR to this yields

IRCRR[V2] = β
∫∞
−∞ K̃ (ξ)I(ξ > xˇ̃K )f(ξ)dξ + (1− β)(βµ+ s))

= βE[K̃ (ξ)I(ξ > x
K̃ )] + (1− β)(βµ+ s).

Noting (11.5.32(p.63) ), we can rewrite the above as

Ṽ2
def
= SR→R̃[V2] = IRCRR[V2] = βE[K̃ (ξ)I(ξ > x

K̃ )] + (1− β)(βµ+ s).

23.1.2.3 Derivation of A {rM̃:1[R][E]}
Taking into consideration the results in Preliminaries I and II, we immediately see that Scenario[R](p.60) can be applied also to
A {rM:1[R][E]}. Accordingly, we can obtain the following Tom.

� Tom 23.1.2 (A {rM̃:1[R][E]})
(a) We have :

1. ♣Let y ≤ x
K̃ . Then y ≤ Vt(y) for t ≥ 0.

2. ♣Let y ≥ x
K̃ . Then y ≥ Vt(y) for t ≥ 0.

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △.
(c) Let β < 1.
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1. Let βµ+ s ≤ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.

2. Let βµ+ s > 0 and βµ+ s > b. Then • dOITdτ>1⟨1⟩ N.

3. Let βµ+ s > 0 and βµ+ s ≤ b (hence b > 0).

i. Let Ṽ2 ≥ 0. Then • dOITdτ>1⟨1⟩ △.

ii. Let Ṽ2 < 0.

1. Let κ̃ ≤ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.

2. Let κ̃ > 0. Then we have S18(p.233) ⃝s N ⃝∗ △ ⃝∗ N .

Proof Immediately obtained from applying SR→R̃ to Tom 23.1.1.

23.1.2.4 Flow of Optimal Decision Rules

♣ Flow-ODR 23.1.2 (rM̃:1[R][E]) (c-reservation-price) From Tom 23.1.2(♣ a1,♣ a2) and (22.3.20(p.222) ) we have the follow-
ing decision rule for τ ≥ t > 0.

{ y ≤ x
K̃ ⇒ Acceptt⟨y⟩ and the process stops

y ≥ x
K̃ ⇒ Rejectt⟨y⟩ and the search is conducted.

The rest is the same as Flow-ODR 23.1.1(p.234) except that “ · · · is enlarged to · · · ” is replaced by “ · · · is reduced to · · · ”.

23.1.2.5 Market Restriction

23.1.2.5.1 Positive Restriction

� Pom 23.1.2 (A {rM̃:1[R][E]+}) Suppose a > 0.

(a) We have c-reservation-price (♣ Flow-ODR 23.1.2).

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
(c) Let β < 1.

1. Let βµ+ s > b. Then • dOITdτ>1⟨1⟩ N → →•dd
2. Let βµ+ s ≤ b.

i. Let Ṽ2 ≥ 0. Then • dOITdτ>1⟨1⟩ △ → →•dd
ii. Let Ṽ2 < 0.

1. Let s = 0. Then ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. Let s > 0. Then we have S18(p.233) ⃝s N ⃝∗ △ ⃝∗ N → → ⃝⃝s /⃝⃝∗

Proof Suppose a > 0. Then µ > a > 0, hence βµ > 0, so that βµ + s > 0 · · · ((1)) for any s ≥ 0. Then κ̃ = s · · · ((2)) from

Lemma 11.6.6(p.68) (a).

(a) See Flow-ODR 23.1.2.

(b) The same as Tom 23.1.2(b).

(c) Let β < 1.

(c1) Let βµ+ s > b. Hence, due to (1) we have Tom 23.1.2(c2).

(c2) Let βµ+ s ≤ b. Hence due to (1) we have Tom 23.1.2(c3i-c3ii2).

(c2i) The same as Tom 23.1.2(c3i).

(c2ii) Let Ṽ2 < 0.

(c2ii1) Let s = 0. Then κ = 0 due to (2) , hence we have Tom 23.1.2(c3ii1).

(c2ii2) Let s > 0. Then κ > 0 due to (2) , hence we have Tom 23.1.2(c3ii2).

Remark 23.1.1 (diagonal symmetry) Since Pom 23.1.2 can be derived by applying SR→R̃ to
Nem 23.1.1(p.235) (see (17.1.22 (1) (p.113) )), we see that the diagonal symmetry holds between both, i.e.,

A {Pom 23.1.2(p.237) } = SR→R̃[A {Nem 23.1.1(p.235) }]
23.1.2.5.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

23.1.2.5.3 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).
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23.1.3 Conclusion 9 (Search-Enforced-Model 1)

C1. We have A {rM̃:1[R][E]}+ |∼ A {rM:1[R][E]}+.
C2.

a. We have ⃝⃝s for rM:1[R][E]+ and rM̃:1[R][E]+.
b. We have ⃝⃝∗ for rM̃:1[R][E]+.
c. We have•dd for rM:1[R][E]+ and rM̃:1[R][E]+.

C3. We have c-reservation-price for rM:1[R][E]+ and rM̃:1[R][E]+.

C1 Compare Pom’s 23.1.2(p.237) with 23.1.1(p.234) .

C2a See Pom’s 23.1.1(p.234) (b,c1) and 23.1.2(p.237) (b,c2ii1,c2ii2).

C2b See Pom’s 23.1.2(p.237) (c2ii2).

C2c See Pom’s 23.1.1(p.234) (c2) and 23.1.2(p.237) (c1,c2i).

C3 See Pom’s 23.1.1(p.234) (a) and 23.1.2(p.237) (a).

23.2 Search-Allowed-Model 1

23.2.1 rM:1[R][A]
23.2.1.1 Some Lemmas

23.2.1.1.1 Preliminary

Lemma 23.2.1 (rM:1[R][A]) We have ⃝s dOITsτ>0⟨τ⟩ △.

Proof Since Vt ≥ βVt−1 for t > 0 from (22.3.23(p.223) ), we have Vt ≥ βVt−1 for τ ≥ t > 0, hence Vτ ≥ βVτ−1, Vτ−1 ≥ βVτ−2, · · · ,
V1 ≥ βV0, leading to Vτ ≥ βVτ−1 ≥ β2Vτ−1 ≥ · · · ≥ βτ−1V1 ≥ βτV0. Thus, we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ △.

Lemma 23.2.2 (rM:1[R][A])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.
(b) vt(y) and Vt(y) are nondecreasing in t ≥ 0 and t > 0 respectively.†

(c) Vt is nondecreasing in t > 0.
Proof (a) v0(y) is nondecreasing in y from (22.3.21(p.223) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreasing
in y from (22.3.24), hence vt(y) is nondecreasing in y from (22.3.27). Accordingly, by induction vt(y) is nondecreasing in y for
t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is nondecreasing in y for t > 0 from (22.3.24). In addition,
V0(y) is nondecreasing in y from (22.3.26), hence it follows that Vt(y) is nondecreasing in y for t ≥ 0

(b) Clearly v1(y) ≥ y = v0(y) for any y from (22.3.22) with t = 1 and (22.3.21). Suppose vt−1(y) ≥ vt−2(y) for any y.
Then, from (22.3.24) we have Vt(y) ≥ max{βE[vt−2(max{ξ, y})]− s, βvt−2(y)} = Vt−1(y) for any y. Hence, from (22.3.27) we
have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) is nondecreasing in t ≥ 0 for any y. Since vt−1(y)
is nondecreasing in t > 0 for any y, it follows that Vt(y) is nondecreasing in t > 0 for any y from (22.3.24).

(c) From (22.3.23) with t = 2 we have V2 ≥ βE[v1(ξ)]− s. In addition, since v1(ξ) ≥ ξ for any ξ from (22.3.22) with t = 1,
we have V2 ≥ βE[ξ]− s = βµ− s = V1 due to (22.3.28). Suppose Vt−1 ≥ Vt−2. Then, since vt−1(ξ) ≥ max{ξ, Vt−2} = vt−2(ξ)
for any ξ due to (22.3.27), from (22.3.23) we have Vt ≥ max{βE[vt−2(ξ)] − s, βVt−2} = Vt−1. Thus, by induction Vt ≥ Vt−1

for t > 0, i.e., Vt is nondecreasing in t > 0.

Since 1 = E[1] = E[I(ξ > y) + I(ξ ≤ y)], we can rewrite (22.3.36(p.223) ) as follows.

St(y) = β(E[vt−1(max{ξ, y})I(ξ > y) + vt−1(max{ξ, y})I(ξ ≤ y)]− vt−1(y)E[I(ξ > y) + I(ξ ≤ y)])− s

= β(E[vt−1(max{ξ, y})I(ξ > y) + vt−1(max{ξ, y})I(ξ ≤ y)]− E[vt−1(y)I(ξ > y) + vt−1(y)I(ξ ≤ y)])− s

= βE[(vt−1(max{ξ, y})− vt−1(y))I(ξ > y) + (vt−1(max{ξ, y})− vt−1(y))I(ξ ≤ y)]− s

= βE[(vt−1(ξ)− vt−1(y))I(ξ > y) + (vt−1(y)− vt−1(y))I(ξ ≤ y)]− s

= βE[(vt−1(ξ)− vt−1(y))I(ξ > y)]− s, t > 0. (23.2.1)

Note here that max{vt−1(ξ)− vt−1(y), 0} = max{vt−1(ξ)− vt−1(y), 0}I(ξ > y) +max{vt−1(ξ)− vt−1(y), 0}I(ξ ≤ y). Now, due
to Lemma 23.2.2(a), if ξ > y, then vt−1(ξ) ≥ vt−1(y) or equivalently vt−1(ξ)− vt−1(y) ≥ 0 and if ξ ≤ y, then vt−1(ξ) ≤ vt−1(y)
or equivalently vt−1(ξ) − vt−1(y) ≤ 0. Hence max{vt−1(ξ) − vt−1(y), 0} = (vt−1(ξ) − vt−1(y))I(ξ > y). Thus (23.2.1) can be
rewritten as

St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}]− s, t > 0. (23.2.2)
Then, we have

S1(y) = βE[max{v0(ξ)− v0(y), 0}]− s

= βE[max{ξ − y, 0}]− s (← (22.3.21(p.223) ))

= βT (y)− s (← (5.1.1(p.17) ))

= L(y) (← (5.1.3) with λ = 1). (23.2.3)

†From (22.3.30) and (22.3.26) we have V1(y) − V0(y) = max{K(y),−(1 − β)y}. Let xK < y and β < 1. Then K(y) < 0 due
to Lemma 9.2.2(p.43) (j1) and −(1 − β)y < 0 for a y > 0, hence V1(y) − V0(y) < 0, i.e., V1(y) < V0(y). Thus Vt(y) does not become
nondecreasing in t ≥ 0 for any y.
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Lemma 23.2.3 (rM:1[R][A])
(a) St(y) is nonincresing in y for t > 0.
(b) St(y) ≤ L(y) for any t > 0 and y.
(c) Let xL ≤ y. Then St(y) ≤ 0 for t > 0.

Proof (a) Immediate from (23.2.2) and Lemma 23.2.2(a).

(b) First, (23.2.2) can be rewritten as

St(y) = βEmax{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ) + max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)]− s

= βE[max{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ)] + βE[max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)]− s · · · ((1)).
Next, we have:

◦ Let y ≤ ξ · · · ((2)).† Now v0(ξ) − v0(y) = ξ − y ≤ ξ − y from (22.3.21). Suppose vt−1(ξ) − vt−1(y) ≤ ξ − y · · · ((3)). From

(22.3.27) we have vt(ξ)− vt(y) ≤ max{ξ − y, Vt(ξ)− Vt(y)} · · · ((4)). Then, from (22.3.24) we have

Vt(ξ)− Vt(y) = max
{
βEξ′ [vt−1(max{ξ′, ξ})]− s, βvt−1(ξ)

}
−max

{
βEξ′ [vt−1(max{ξ′, y})]− s, βvt−1(y)

}‡

≤ max{βEξ′ [vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y})], β(vt−1(ξ)− vt−1(y))}
= βmax{Eξ′ [vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y})], vt−1(ξ)− vt−1(y)}.

Since max{ξ′, y} ≤ max{ξ′, ξ} for any ξ′ due to (2) , from (3) we have vt−1(max{ξ′, ξ})−vt−1(max{ξ′, y}) ≤ max{ξ′, ξ})−
max{ξ′, y}. Hence we obtain

Vt(ξ)− Vt(y) ≤ βmax{Eξ′ [max{ξ′, ξ} −max{ξ′, y}], ξ − y}
≤ βmax{Eξ′ [max{0, ξ − y}], ξ − y}
= βmax{max{0, ξ − y}, ξ − y} = βmax{ξ − y, 0}.

Then, since ξ− y ≥ 0 due to (2) , we have Vt(ξ)−Vt(y) ≤ β(ξ− y) ≤ ξ− y. Thus, from (4) we have vt(ξ)− vt(y) ≤ ξ− y.
Accordingly, by induction it follows that vt(ξ)− vt(y) ≤ ξ− y for t ≥ 0, so that vt−1(ξ)− vt−1(y) ≤ ξ− y · · · ((5)) for t > 1.

Thus βE[max{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ)] ≤ βE[max{ξ − y, 0}I(y ≤ ξ)] · · · ((6)).

◦ Let ξ < y · · · ((7)). Then vt−1(ξ) ≤ vt−1(y) from Lemma 23.2.2(a or equivalently vt−1(ξ)−vt−1(y) ≤ 0, hence βE[max{vt−1(ξ)−
vt−1(y), 0}I(ξ < y)] = βE[0 × I(ξ < y)] = βE[max{ξ − y, 0}I(ξ < y)] ≤ βE[max{ξ − y, 0}I(ξ < y)] · · · ((8)) since

max{ξ − y} = 0 due to ξ − y < 0 from (7) .

◦ From (6) and (8) , whether y ≤ ξ or ξ < y, we have βE[max{vt−1(ξ) − vt−1(y), 0}I(ξ < y)] ≤ βE[max{ξ − y, 0}I(ξ <
y)] · · · ((9))

From (1) and (9) we have St(y) ≤ βE[max{ξ − y, 0}I(y ≤ ξ)] + βE[max{ξ − y, 0}I(ξ < y)] − s = βE[max{ξ − y, 0}(I(y ≤
ξ) + I(ξ < y))]− s = βE[max{ξ − y, 0}]− s = βT (y)− s · · · ((10)) from (5.1.1(p.17) ), hence St(y) ≤ L(y) from (5.1.3) with λ = 1.

(c) If xL ≤ y, then L(y) ≤ 0 from Corollary 9.2.1(p.43) (a), hence St(y) ≤ 0 from (b).

23.2.1.1.2 Case of s = 0

Lemma 23.2.4 (rM:1[R][A]) Let s = 0. Then St(y) ≥ 0 for t > 0.

Proof If s = 0, from (23.2.2) we have St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}] ≥ 0 for t > 0.

23.2.1.1.3 Case of β = 1 and s > 0

Lemma 23.2.5 (rM:1[R][A]) Let β = 1 and s > 0.

(a) Let y ≥ xK . Then y = Vt(y) for t ≥ 0.
(b) Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.
(c) y ≤ Vt(y) for any y and t > 0.

Proof Let β = 1 and s > 0.

(a,b) Evident for t = 0 from (22.3.26). Suppose that y ≥ (≤) xK ⇒ y = (≤) Vt−1(y) (induction hypothesis).

◦ Let y ≥ xK , hence K(y) ≤ 0 · · · ((1)) from Lemma 9.2.2(p.43) (j1). Due to the induction hypothesis we have vt−1(y) = y · · · ((2))
from (22.3.22). Then, from Lemma 23.2.3(b) we have St(y) ≤ L(y) = T (y) − s = K(y) from (5.1.3)) and (5.1.4) due to
the assumptions β = 1 and λ = 1, so that St(y) ≤ 0 due to (1) . Hence, from (22.3.37) and the assumption β = 1 we have
Vt(y) = βvt−1(y) = vt−1(y), thus Vt(y) = y from (2) . This completes the induction.

◦ Let y ≤ xK , hence K(y) ≥ 0 · · · ((3)) from Lemma 9.2.2(j1). From (22.3.24) we have

Vt(y) ≥ E[vt−1(max{ξ, y})] − s. Since vt−1(max{ξ, y}) ≥ max{ξ, y} for any ξ and y from (22.3.27), we get Vt(y) ≥
E[max{ξ, y}] − s = K(y) + y from (5.1.10(p.17) ) with β = 1 and λ = 1. Thus, we obtain Vt(y) ≥ y due to (3) . This
completes the induction.

(c) Immediate from (a,b).

†Consider a group of all pairs (ξ, y) satisfying the inequality y ≤ ξ”. Then, if max{ξ′, y} ≤ max{ξ′, ξ}, the pair (max{ξ′, y},max{ξ′, ξ})
is also an element of the group.

‡ Eξ′ represent the expectation as to ξ′.
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23.2.1.1.4 Case of β < 1 and s > 0

23.2.1.1.4.1 Case of κ > 0

Lemma 23.2.6 (A {rM:1[R][A]}) Let β < 1 and s > 0 and let κ > 0.

(a) Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

(b) Let y ≤ xK . Then xK ≥ Vt(y) ≥ y for t ≥ 0.

Proof Let β < 1 and s > 0 and let κ > 0. Then, from Lemma 9.2.3(p.44) (d) we have xL > xK > 0 · · · ((1)).

(a,b) The two assertions are evident for t = 0 from (22.3.26). Suppose that

y ≥ (≤) xK ⇒ y ≥ Vt−1(y) · · · ((2)) (y ≤ Vt−1(y) ≤ xK · · · ((3))) (induction hypothesis),

hence vt−1(y) = y · · · ((4)) (vt−1(y) = Vt−1(y) · · · ((5))) from (22.3.27).

◦ Let y ≥ xK · · · ((6)), hence 0 < y · · · ((7)) from (1) . Then vt−1(y) = y · · · ((8)) due to (2) and (22.3.22(p.223) ).

1. Let xL ≥ y ≥ xK · · · ((9)). Then L(y) ≥ 0 · · · ((10 )) due to Lemma 9.2.1(p.43) (e1) and K(y) ≤ 0 · · · ((11 )) due to

Lemma 9.2.2(j1). Now St(y) ≤ L(y) · · · ((12 )) for any y from Lemma 23.2.3(p.239) (b), hence, from (22.3.37), (12) , and

(10) we have Vt(y) ≤ max{L(y), 0}+ βy = L(y) + βy = K(y) + y ≤ y due to (5.1.9) and (11) .

2. Let y ≥ xL (> xK ) · · · ((13 )), hence L(y) ≤ 0 · · · ((14 )) due to Lemma 9.2.1(e1). Then St(y) ≤ L(y) ≤ 0 · · · ((15 )) from

Lemma 23.2.3(p.239) (b), hence from (22.3.37) we have Vt(y) = βvt−1(y) = βy ≤ y due to (4) and (7) .

From the above, whether for xL ≥ y ≥ xK or for y ≥ xL (≥ xK ), it follows that y ≥ Vt(y) for t ≥ 0. This completes the
induction, i.e., it follows that (a) holds.

◦ Let y ≤ xK · · · ((16 )), hence K(y) ≥ 0 · · · ((17 )) from Lemma 9.2.2(p.43) (j1). Since Vt(y) ≥ βE[vt−1(max{ξ, y})] − s from

(22.3.24) and since vt−1(max{ξ, y}) ≥ max{ξ, y} from (22.3.27), we have Vt(y) ≥ βE[max{ξ, y})] − s = K(y) + y from
(5.1.10(p.17) )) with λ = 1, hence Vt(y) ≥ y due to (17) . Since max{ξ, y} ≤ max{ξ, xK } for any ξ due to (16) , from
Lemma 23.2.2(a) we have vt−1(max{ξ, y}) ≤ vt−1(max{ξ, xK }) · · · ((18 )). Furthermore, since max{ξ, xK } ≥ xK for any

ξ, due to (2) we have Vt−1(max{ξ, xK }) ≤ max{ξ, xK } for any ξ, hence from (22.3.27) we have vt−1(max{ξ, xK }) =
max{ξ, xK } for any ξ, so that from (18) we have vt−1(max{ξ, y}) ≤ max{ξ, xK } for any ξ. In addition, since vt−1(y) =
Vt−1(y) ≤ xK due to (5) , from (22.3.24) we have Vt(y) ≤ max{βE[max{ξ, xK }] − s, β xK }, hence from (5.1.10(p.17) ) with
λ = 1 we have Vt(y) ≤ max{K(xK ) + xK , β xK } = max{xK , β xK } = xK since xK > 0 due to (1) . This completes the
induction.

23.2.1.1.4.2 Case of κ ≤ 0

Lemma 23.2.7 (A {rM:1[R][A]}) Let β < 1 and s > 0 and let κ ≤ 0.

(a) Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.

(b) Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.

Proof Let β < 1 and s > 0 and let κ ≤ 0. Then, from Lemma 9.2.3(p.44) (d) we have xL ≤ xK ≤ 0 · · · ((1)). Due to (22.3.26)

the two assertions clearly hold for t = 0. Suppose that y ≥ (≤) 0 ⇒ Vt−1(y) ≤ (≥) y (induction hypothesis), hence vt−1(y) = y
(vt−1(y) = Vt−1(y)).

(a) Let y ≥ 0. Then, since xL ≤ y from (1) , we have L(y) ≤ 0 from Lemma 9.2.1(p.43) (e1), hence St(y) ≤ 0 for t > 0 due to
Lemma 23.2.3(c). Therefore, from (22.3.34) we obtain Vt(y) = βvt−1(y) = βy due to the induction hypothesis, hence Vt(y) ≤ y
due to β < 1 and y ≥ 0. This completes the induction.

(b) Let y ≤ 0. Now, since Vt(y) ≥ βvt−1(y) from (22.3.24) and since vt−1(y) ≥ y from (22.3.27), we have Vt(y) ≥ βy ≥ y
due to β < 1 and y ≤ 0. This completes the induction.

23.2.1.2 Analysis

� Tom 23.2.1 (A {rM:1[R][A]})
(a) Let s = 0. Then A {rM:1[R][A]} # A {rM:1[R][E]}.
(b) Let s > 0.

1. We have ⃝s dOITsτ>0⟨τ⟩ △.

2. ♣Let β = 1. Then y ≤ Vt(y) for t ≥ 0 and any y.
3. Let β < 1.

i. Let κ > 0.

1. ♠Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

2. ♠Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

ii. Let κ ≤ 0.

1. Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.

2. ♣Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.
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Proof (a) Let s = 0. Then, from Lemma 23.2.4 we have St(y) ≥ 0 for all y and t > 0, hence it is optimal to CONDUCTt the
search for all y and t > 0 due to (22.3.38(p.223) ). This fact implies that rM:1[R][A] which is originally a search-Allowed-model
migrates ( # ) over to rM:1[R][E] which is a search-Enforced-model (see Def. 23.2.1 below).

(b) Let s > 0.

(b1) The same as Lemma 23.2.1.†

(b2) The same as Lemma 23.2.5(c).

(b3) Let β < 1.

(b3i-b3i2) The same as Lemma 23.2.6(p.240) .

(b3ii-b3ii2) The same as Lemma 23.2.7(p.240) .

23.2.1.3 Flow of Optimal Decision Rules

♠ Flow-ODR 23.2.1 (rM̃:1[R][A]) (c-reservation-price) From Tom 23.2.1(♠ b3i1,♠b3i2) and (22.3.39(p.223) ) we have the fol-
lowing relations for τ ≥ t ≥ 0:

{ y ≥ xK ⇒ Acceptt⟨y⟩ and the process stops

y ≤ xK ⇒ Rejectt⟨y⟩ and CONDUCTt/SKIPt

which yields the following scenario. First the process is initiated at the optimal initiating time t∗τ , and then Conductt∗τ /Skipt∗τ
follows (see (22.3.35(p.223) )).

⋆ Let Skipt∗τ . Then the process goes to time t∗τ − 1 and Conductt∗τ−1/Skipt∗τ−1 follows.

⋆ Let Conductt∗τ , and a seller appearing at time t∗τ − 1 proposes the price ξ; hence the best price at that time is y = ξ.
After that, the following condition branching follows.

i. Let y ≥ xK . Then Acceptt∗τ−1⟨y⟩ and stop the process

ii. Let y ≤ xK . Then Rejectt∗τ−1⟨y⟩, and then CONDUCTt∗τ−1/SKIPt∗τ−1 follows (see (22.3.38(p.223) ))

⋆⋆ Let SKIPt∗τ−1. Then the process goes to time t∗τ − 2. After that, CONDUCTt∗τ−2/SKIPt∗τ−2 follows.

⋆⋆ Let CONDUCTt∗τ−1, and a seller appearing at time t∗τ − 2 proposes the price ξ, hence the best price y at that time is

enlarged to y
def
= max{ξ, y}. After that, the following condition branching follows.

i. Let y ≥ xK . Then Acceptt∗τ−2⟨y⟩ and stop the process

ii. Let y ≤ xK . Then Rejectt∗τ−2⟨y⟩ and CONDUCTt/SKIPt
...

Accept0⟨y⟩ and the process terminates

♣ Flow-ODR 23.2.2 (rM:1[R][A]) (Accept0(y)/Terminate) The inequality y ≤ Vt(y) in
Tom 23.2.1(♣b2,♣b3ii2) yields the following flow of the optimal decision rule. First the process is initiated at the optimal initiating
time t∗τ , and then Conductt∗τ /Skipt∗τ

follows (see (22.3.35(p.223) )).

⋆ Let Skipt∗τ . Then the process goes to time t∗τ − 1 and Conductt∗τ−1/Skipt∗τ−1 follows.

⋆ Let Conductt∗τ , and a buyer appearing at time t∗τ − 1 proposes the price ξ; hence the best price at that time is y = ξ.

• Rejectt∗τ−1⟨y⟩ (y ≤ Vt(y)). After that, CONDUCTt∗τ−1/SKIPt∗τ−1 follows (see (22.3.38(p.223) )).

⋆⋆ Let SKIPt∗τ−1. Then the process goes to time t∗τ − 2 and CONDUCTt∗τ−2/SKIPt∗τ−2 follows.

⋆⋆ Let CONDUCTt∗τ−1, and a buyer appearing at time t∗τ − 2 propose the price ξ, hence the best price y at that time is

enlarged to y
def
= max{ξ, y}.

• Rejectt∗τ−2⟨y⟩ (y ≤ Vt(y)). After that, CONDUCTt∗τ−1/SKIPt∗τ−1 follows.

⋆⋆ Let SKIPt∗τ−2. Then · · ·
⋆⋆ Let CONDUCTt∗τ−2, and · · ·

...
Accept0⟨y⟩ and the process terminates .

Remark 23.2.1 In Flow-ODR 23.2.2, first let us consider following two extreme cases:

Case 1 Suppose that Skipt∗τ
, Skipt∗τ−1, Skipt∗τ−2, · · · continue, and the process finally arrives in Accept0⟨y⟩ and stop.

Case 2 Suppose that Conductt∗τ is made and then, whether SKIPt∗τ−2, SKIPt∗τ−3, · · · continue (Case 2.1) or CONDUCTt∗τ−2,
CONDUCTt∗τ−3, · · · continue (Case 2.2), the process finally arrives in Accept0⟨y⟩ and terminates. In Case 2.1 the best price
y = ρ (terminal quitting penalty ) at t = 0 and in Case 2.2 the best price y continues to be cumulatively enlarged every
time CONDUCT is made and is finally accepted at the deadline t = 0 , i.e., Accept0⟨y⟩ and terminate.

†Note that we have ⃝s dOITsτ>0⟨τ⟩ △ for any s ≥ 0.
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Different intermediate cases with the mixture of Skip, Conduct, SKIP, and CONDUCT can be considered between Case 1 and
Case 2; however, they are all led also to the decision “Accept0⟨y⟩ and terminate”, denoted by Accept0(y)/Terminate (reduction
of optimal decision rule).

Definition 23.2.1 (model-migration ) The reduction of model in Tom 23.2.1(a) implies that
search-Allowed-model (Model[A]) migrates over to Emodel (Model[E]), represented as

rM:1[R][A] # rM:1[R][E]. (23.2.4)

Replacing “model-running-back” and “ optdr-Accept/Stop” in (20.1.10(p.212) ) by
“model-migration” and “Accept/Terminate” respectively leads to

Reduction

{
model reduction : → model-migration (rM:1[R][A] # rM:1[R][E])
optdr reduction : → Accept/Terminate (optdr 7→ Accept0(y)/Terminate)

(23.2.5)

Moreover, combining (20.1.10(p.212) ) and (23.2.5), we have the following classification map:

Reduction


model reduction

{
model-running-back

model-migration

optdr reduction

{
Accept/Stp

Accept/Terminate

(23.2.6)

23.2.1.4 Market Restriction

23.2.1.4.1 Positive Restriction

� Pom 23.2.1 (A {rM:1[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then A {rM:1[R][A]+} # A {rM:1[R][E]+}.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. Let β = 1. Then we have optdr 7→ Accept0(y)/Terminate.

3. Let β < 1.

i. Let βµ > s. Then we have c-reservation-price.

ii. Let βµ ≤ s. Then we have • dOITdτ>0⟨1⟩ → →•dd
Proof Suppose a > 0, hence κ = κR = βµ− s · · · ((1)) from Lemma 9.3.1(p.45) (a) with λ = 1.

(a) The same as Tom 23.2.1(a).

(b) Let s > 0.

(b1) The same as Tom 23.2.1(b1).

(b2) Evident from the fact that Tom 23.2.1(b2) can be rewritten as Flow-ODR 23.2.2.

(b3) Let β < 1.

(b3i) Let βµ > s, hence κ > 0 due to (1) . Thus, it suffices to consider only (♣b3i1,♣b3i2) of Tom 23.2.1, hence we have
♣ Flow-ODR 23.2.2.

(b3ii) Let βµ ≤ s, hence κ ≤ 0 · · · ((2)) due to (1) . Thus, it suffices to consider only Tom 23.2.1(b3ii-b3ii2). Below consider

only y ∈ [a, b], i.e., 0 < a < y < b. Let ξ be such that 0 < a ≤ ξ ≤ b · · · ((3)). Then ξ ≥ Vt−1(ξ) from Tom 23.2.1(p.240) (b3ii1), hence

we have vt−1(ξ) = ξ from (22.3.27(p.223) ). Thus, from (22.3.23(p.223) ) we have Vt = max{βE[ξ]−s, βVt−1} = max{βµ−s, βVt−1} =
max{κ, βVt−1} for t > 1. First V1 = βµ − s = κ ≤ 0 from (22.3.28(p.223) ), (1) , and (2) or equivalently V1 = β0κ ≤ 0. Suppose
Vt−1 = βt−2κ ≤ 0. Then Vt = max{κ, ββt−2κ} = max{κ, βt−1κ} = βt−1κ ≤ 0 due to (2) . Thus by induction we have
Vt = βt−1κ ≤ 0 for t > 1. Accordingly, we have Vt − βVt−1 = βt−1κ − ββt−2κ = βt−1κ − βt−1κ = 0, hence Vt = βVt−1 for
t > 1. Accordingly, we get Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 , i.e., t

∗
τ = 1 for τ > 1 or equivalently • dOITdτ>1⟨1⟩ .

23.2.1.4.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

23.2.1.4.3 Negative Restriction

� Nem 23.2.1 (A {rM:1[R][A]−}) Suppose b < 0.

(a) Let s = 0. Then A {rM:1[R][A]−} # A {rM:1[R][E]−}.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. We have optdr 7→ Accept0(y)/Terminate.
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Proof Suppose b < 0.

(a) The same as Tom 23.2.1(a).

(b) Let s > 0.

(b1) The same as Tom 23.2.1(b1).

(b2) Here consider only 0 < a < y < b. Then, since y ≤ b < 0 · · · ((1)), it suffices to consider only (♣b3ii2) of Tom 23.2.1.

Moreover, since κ = −s from Lemma 9.3.1(p.45) (a), we have κ ≤ 0 · · · ((2)) for any s > 0. If β = 1, then y ≤ Vt(y) for t ≥ 0 from

Tom 23.2.1(b2) and if β < 1, then from Tom 23.2.1(♣b3ii2) we have y ≤ Vt(y) for t ≥ 0. Hence, whether β = 1 or β < 1, we have
y ≤ Vt(y) for t ≥ 0. Accordingly, it follows that we have optdr 7→ Accept0(y)/Terminate (♣ Flow-ODR 23.2.2).

23.2.2 rM̃:1[R][A]
23.2.2.1 Preliminary

For almost the same reason as in Section 23.1.2.1(p.235) it can be confirmed that SOE{rM̃:1[R][A]} (see
(22.3.44(p.224) )) is symmetrical to SOE{rM:1[R][A]} (see (22.3.25(p.223) )). Taking into consideration the results, we immediately see
that Scenario[R](p.60) can be applied also to A {rM:1[R][A]}. Accordingly, we can obtain the following Tom.

23.2.2.2 Derivation of A {rM̃:1[R][A]}
� Tom 23.2.2 (A {rM̃:1[R][A]})
(a) Let s = 0. Then A {rM̃:1[R][A]} # A {rM̃:1[R][E]}.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. ♣Let β = 1. Then y ≥ Vt(y) for t ≥ 0 and any t.
3. Let β < 1.

i. Let κ̃ < 0.
1. ♠Let y ≤ x

K̃ . Then y ≤ Vt(y) for t ≥ 0.
2. ♠Let y ≥ x

K̃ . Then y ≥ Vt(y) for t ≥ 0.
ii. Let κ̃ ≥ 0.

1. Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.
2. ♣Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.

Proof Immediate from applying SR→R̃ (see in (15.3.1(p.98) )) to Tom 23.2.1(p.240) .

23.2.2.3 Flow of Optimal Decision Rules

♠ Flow-ODR 23.2.3 (rM̃:1[R][A]) (c-reservation-price) From Tom 23.2.2(♠ b3i1,♠b3i2) and (22.3.53(p.224) ) we have the fol-
lowing optimal decision rule for τ ≥ t ≥ 0:

{ y ≤ x
K̃ ⇒ Acceptt⟨y⟩ and the process stops.

y ≥ x
K̃ ⇒ Rejectt⟨y⟩ and then CONDUCTt/SKIPt.

The rest is the same as Flow-ODR 23.2.1(p.241) except that “ · · · is enlarged to · · · ” is replaced by “ · · · is reduced to · · · ”.

♠ Flow-ODR 23.2.4 (rM̃:1[R][A]) (Accept0(y)/Terminate) The inequality y ≥ Vt(y) in
Tom 23.2.2(♣b2,♣b3ii2) yields the same decision rule for τ ≥ t ≥ 0 as in Flow-ODR 23.2.2(p.241) . The rest is the same as
Flow-ODR 23.2.2(p.241) except that “ · · · is enlarged to · · · ” is replaced by “ · · · is reduced to · · · ”.

23.2.2.4 Market Restriction

23.2.2.4.1 Positive Restriction

� Pom 23.2.2 (A {rM̃:1[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then A {rM̃:1[R][A]+} # A {rM̃:1[R][E]+}.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. We have Accept0(y)/Terminate.

Proof Suppose a > 0. Below consider only y ∈ [a, b], hence 0 < a ≤ y ≤ b, so y ≥ 0 · · · ((1)). Moreover, since κ̃ = s from

Lemma 11.6.6(p.68) (a), we have κ̃ ≥ 0 · · · ((2)) for any s ≥ 0.

(a) The same as Tom 23.2.2(a).

(b) Let s > 0.

(b1) The same as Tom 23.2.2(b1).

(b2) If β = 1, then y ≥ Vt(y) for t ≥ 0 from Tom 23.2.2(b2). If β < 1, then due to (2) and (1) it suffices to consider only
(♣b3ii2) of Tom 23.2.2, hence we have y ≥ Vt(y) for t ≥ 0. Accordingly, whether β = 1 or β < 1, we have y ≥ Vt(y) for t ≥ 0.
Thus, it follows that we have Accept0(y)/Terminate (♣ Flow-ODR 23.2.3).

Remark 23.2.2 (diagonal symmetry) Pom 23.2.2 can be also derived by applying SR→R̃ to
Nem 23.2.1 (see (17.1.22(p.113) )).
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23.2.2.4.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

23.2.2.4.3 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).

23.2.3 Conclusion 10 (Search-Allowed-Model 1)

C1 We have A {rM̃:1[R][A]+} |∼ A {rM:1[R][A]+}.
C2

a. Let s = 0. Then we have s-A-model 1 # s-E-model 1 for rM:1[R][A]+ and rM̃:1[R][A]+.
b. Let s > 0. Then we have optdr 7→ Accept0(y)/Terminate for rM:1[R][A]+ with β = 1 and rM̃:1[R][A]+ for any β.

C3 Let s > 0.

a. We have ⃝⃝s for rM:1[R][A]+ and rM̃:1[R][A]+.
b. We have•dd for rM:1[R][A]+.
c. We have c-reservation-price is possible for rM:1[R][A]+.

C1 Compare Pom’s 23.2.2(p.243) with 23.2.1(p.242) .

C2a See Pom’s 23.2.1(p.242) (a) and 23.2.2(p.243) (a).

C2b See Pom’s 23.2.1(p.242) (b2) and 23.2.2(p.243) (b2).

C3a See Pom’s 23.2.1(p.242) (b1) and 23.2.2(p.243) (b1).

C3b See Pom’s 23.2.1(p.242) (b3ii).

C3c See Pom’s 23.2.1(p.242) (b3i).
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Chapter 24

Model 2

24.1 Search-Enforced-Model 2

24.1.1 rM:2[R][E]

24.1.1.1 Preliminary

Let us define
v⋄t (y) = vt(y)− y, t ≥ 0, (24.1.1)

V ⋄
t (y) = Vt(y)− y, t ≥ 0. (24.1.2)

Then, from (22.3.61(p.224) ) we have

v⋄t (y) = max{0, V ⋄
t (y)} ≥ 0, t ≥ 0, (24.1.3)

where
v⋄0(y) = v0(y)− y = max{0, ρ− y} (see (22.3.54)), (24.1.4)

V ⋄
0 (y) = V0(y)− y = ρ− y (see (22.3.60)) (24.1.5)

Furthermore, from (22.3.58) we have

V ⋄
t (y) = λβE[v⋄t−1(max{ξ, y}) + max{ξ, y}] + (1− λ)β(v⋄t−1(y) + y)− s− y

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) + λβE[max{ξ, y}] + (1− λ)βy − s− y

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) +K(y) + y − y t > 0 (← (5.1.10(p.17) ))

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) +K(y), t ≥ 0. (24.1.6)

By y⋄
t let us denote the solution of the equation V ⋄

t (y) = 0 if it exists, i.e.,

V ⋄
t (y⋄

t ) = 0, t ≥ 0. (24.1.7)

If multiple solutions exist, it is defined to be the smallest of them.

24.1.1.2 Some Lemmas

Lemma 24.1.1 (rM:2[R][E])

(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) V ⋄
t (y) is nonincreasing in y for t ≥ 0.

Proof (a) Clearly v0(y) is nondecreasing in y from (22.3.54). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nonde-
creasing in y from (22.3.58), hence vt(y) is also nondecreasing in y from (22.3.61). Thus, by induction vt(y) is nondecreasing
in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0 from (22.3.58). In
addition, since V0(y) can be regarded as nondecreasing in y from (22.3.60), it follows that Vt(y) is nondecreasing in y for t ≥ 0.

(b) V ⋄
0 (y) is nonincreasing in y from (24.1.4). Suppose V ⋄

t−1(y) is nonincreasing in y, hence v⋄t−1(y) is also nonincreasing
in y from (24.1.3). Accordingly, from (24.1.6) and Lemma 9.2.2(p.43) (b)) we see that V ⋄

t (y) is also nonincreasing in y. This
completes the induction.

Lemma 24.1.2 (rM:2[R][E]) Let β = 1 and s = 0. Then Vt(y) ≥ y for any y and t > 0.

Proof Let β = 1 and s = 0, hence K(y) = λT (y) from (5.1.4). Then, from (24.1.6) we have V ⋄
t (y) = λE[v⋄t−1(max{ξ, y})] +

(1−λ)v⋄t−1(y)+λT (y) for t ≥ 0. Now, for any ξ and y we have that v⋄t−1(max{ξ, y}) ≥ 0 and v⋄t−1(y) ≥ 0 for t > 0 from (24.1.3)
and that T (y) ≥ 0 due to Lemma 9.1.1(p.41) (g), hence it follows that V ⋄

t (y) ≥ 0 for any y and t > 0 or equivalently Vt(y) ≥ y for
any y and t > 0 from (24.1.2).
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Lemma 24.1.3 (rM:2[R][E]) Let β < 1 or s > 0.

(a) limy→−∞ V ⋄
t (y) =∞ for t ≥ 0.

(b) limy→∞ V ⋄
t (y) < 0 for t > 0.

(c) The sequence y⋄
1 , y

⋄
2 , · · · exists where

y ≤ (≥) y⋄
t ⇒ V ⋄

t (y) ≥ (≤) 0. (24.1.8)

Proof Let β < 1 or s > 0.

(a) Obviously V ⋄
0 (y)→∞ as y → −∞ from (24.1.5). Suppose V ⋄

t−1(y)→∞ as y → −∞. Then v⋄t−1(y)→∞ as y → −∞
from (24.1.3). In addition, since K(y)→∞ as y = −∞ due to (9.2.4 (1) (p.42) ), from (24.1.6) we see that V ⋄

t (y)→∞ as y → −∞.
This completes the induction.

(b) Evidently v⋄0(y) → 0 as y → ∞ from (24.1.4). Suppose v⋄t−1(y) → 0 as y → ∞. Then, the first and second terms
of the right-hand side of (24.1.6) converge to 0 as y → ∞. In addition, due to (9.2.5 (2) (p.42) ), if β = 1, then s > 0 due to
the assumption “β < 1 or s > 0”, hence K(y) = −s < 0 for any y and if β < 1, then K(y) → −∞ < 0 as y → ∞, so that
limy→∞ K(y) < 0 whether β = 1 or β < 1. Hence, it follows that limy→∞ V ⋄

t (y) < 0. Thus, from (24.1.3) we have v⋄t (y) → 0
as y →∞. Hence, by induction we have v⋄t (y)→ 0 as y →∞ for t ≥ 0. Accordingly, since v⋄t−1(y)→ 0 as y →∞ for t > 0, for
quite the same reason as the above we have limy→∞ V ⋄

t−1(y) < 0 for t > 0.

(c) Immediate from (a,b) and Lemma 24.1.1(b).

Lemma 24.1.4 (rM:2[R][E]) Let ρ ≤ xK . Then for any y ∈ [a, b] we have :

(a) vt(y) and Vt(y) are nondecreasing in t ≥ 0.
(b) vt(y) and Vt(y) converges to finite v(y) and V (y) respectively as t→∞.
(c) V ⋄

t (y) is nondecreasing in t ≥ 0.
(d) y⋄

t is nondecreasing in t > 0.
(e) Vt is nondecreasing in t ≥ 0.

Proof Let ρ ≤ xK and consider only y ∈ [a, b] · · · ((1)). Then K(ρ) ≥ 0 · · · ((2)) from Corollary 9.2.2(b).

(a) Since max{y, ρ} ≥ ρ for any y, from (22.3.64(p.224) ) and Lemma 9.2.2(p.43) (e) we have V1(y) ≥ K(ρ) + ρ ≥ ρ · · · ((3)) due to

(2) . Hence, from (22.3.55(p.224) ) with t = 1 we have v1(y) = max{y, V1(y)} ≥ max{y, ρ} = v0(y) for any y from (22.3.54). Suppose
vt−1(y) ≥ vt−2(y) for any y. Then, from (22.3.58) we have Vt(y) ≥ λβE[vt−2(max{ξ, y})] + (1− λ)βvt−2(y)− s = Vt−1(y) for
any y. Hence, from (22.3.61) we have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) is nondecreasing
in t ≥ 0 for any y. Then vt−1(y) is nondecreasing in t > 0 for any y, hence Vt(y) is nondecreasing in t > 0 for any y from
(22.3.58). From (3) and (22.3.60) we have V1(y) ≥ V0(y). Accordingly, it follows that Vt(y) is nondecreasing in t ≥ 0 for any y.

(b) Below let us consider only y and ξ such that y ∈ [a, b] and ξ ∈ [a, b]† and, in addition, consider a sufficiently large M > 0
such that b ≤M and ρ ≤M . Then we have V0(y) ≤M from (22.3.60(p.224) ). Suppose Vt−1(y) ≤M for any y ∈ [a, b], hence from
(22.3.55(p.224) ) we have vt−1(y) ≤ max{M,M} = M . Then, since max{ξ, y} ≤ max{M,M} = M and max{ξ, y} ∈ [a, b], we have
Vt−1(max{ξ, y}) ≤M . Thus, from (22.3.55) we have vt−1(max{ξ, y}) = max{max{ξ, y}, Vt−1(max{ξ, y})} ≤ max{M,M} = M .
Hence, from (22.3.58) we have Vt(y) ≤ λβE[M ] + (1− λ)βM − s = λβM + (1− λ)βM − s = βM − s ≤M , i.e., Vt(y) is upper
bounded in t. Accordingly, due to (a) it follows that Vt(y) converge to a finite V (y) as t→∞.

(c) Immediate from (24.1.2) and (a).

(d) Evident from Lemma 24.1.1(b), (c), and Lemma 24.1.3(c) (see Figure A 7.2(p.295) (I)).

(e) From (22.3.62) and (2) we have V1 ≥ ρ = V0 from (22.3.56(p.224) ). Suppose Vt−1 ≥ Vt−2. Since vt−1(ξ) ≥ vt−2(ξ) for any
ξ due to (a), from (22.3.57) we have Vt ≥ λβE[vt−2(ξ)] + (1− λ)βVt−2 − s = Vt−1. This completes the induction.

Lemma 24.1.5 (rM:2[R][E]) Let β < 1 or s > 0.

(a) Let y ≥ y⋄
t . Then y ≥ Vt(y) for t > 0.

(b) Let y ≤ y⋄
t . Then y ≤ Vt(y) for t > 0.

Proof Let β < 1 or s > 0.

(a,b) From Lemmas 24.1.1(b) and 24.1.3(c) we have that if y ≤ (≥) y⋄
t , then V ⋄

t (y) ≥ (≤) 0 for t > 0, hence from (24.1.2)
we have Vt(y) ≥ (≤) y for t > 0.

24.1.1.3 Analysis

� Tom 24.1.1 (A {rM:2[R][E]})
(a) ♣Let β = 1 and s = 0. Then y ≤ Vt(y) for any y and t ≥ 0.
(b) Let β < 1 or s > 0.

1. ♠Let y ≥ y⋄
t . Then y ≥ Vt(y) for t ≥ 0.

2. ♠Let y ≤ y⋄
t . Then y ≤ Vt(y) for t ≥ 0.

Proof (a) The same as Lemma 24.1.2.

(b-c2ii1) The same as Lemma 24.1.5(a,b).

†a ≤ y ≤ b ≤M and a ≤ ξ ≤ b ≤M .
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24.1.1.4 Flow of Optimal Decision Rules

♠ Flow-ODR 24.1.1 (rM:2[R][E]) (t-reservation-price) From Tom 24.1.1(♠b1,♠b2) and
(22.3.66(p.224) ) we have the following decision rule for τ ≥ t ≥ 0,

{ y ≥ y⋄
t ⇒ y ≥ Vt ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ y ≤ Vt ⇒ Rejectt⟨y⟩ and the search is conducted

which yields the following scenario. First the process is initiated at the optimal initiating time t∗τ , and then the search is
conducted at that time.
∗ Assume that a buyer appears at time t∗τ − 1 with λ and that he proposes the price ξ, hence the best price at that time is y = ξ.

After that, the following condition branching follows.

◦ Let y ≥ y⋄
t∗τ−1. Then Acceptt∗τ−1⟨y⟩ and the process stops

◦ Let y ≤ y⋄
t∗τ−1. Then Rejectt∗τ−1⟨y⟩ and the search is conducted.

∗ Assume that a buyer appears at time t∗τ − 2 with λ and that he proposes the price ξ, hence the best price y at that time
is enlarged to y

def
= max{ξ, y}. After that, the following condition branching follows.

◦ Let y ≥ y⋄
t∗τ−2. Then Acceptt∗τ−2⟨y⟩ and the process stops

◦ Let y ≤ y⋄
t∗τ−2. Then Rejectt∗τ−2⟨y⟩ and the search is conducted.

∗ Assume that no buyer appears at time t∗τ −2 with 1−λ. Then the process goes to time t∗τ −3, and the search is conducted.
...

∗ Assume that no buyer appears at time t∗τ − 1 with 1− λ. Then the process goes to time t∗τ − 2, and the search is conducted
...

◦ Accept0⟨y⟩ and the process terminates

♣ Flow-ODR 24.1.2 (rM:2[R][E]) (Accept0(y)/Terminate) The inequality y ≤ Vt(y) in
Tom 24.1.1(♣ a) yields the following flow of the optimal decision rule. First the process is initiated at the optimal initiating time
t∗τ .
∗ Assume that no buyer appears at time t∗τ − 1 with 1− λ. Then the process goes to time t∗τ − 2 · · ·
• Rejectt∗τ−2⟨y⟩ (y ≤ Vt(y)).

∗ Assume that a buyer appearing at time t∗τ − 3 with λ proposes the price ξ, hence the best price y at that time is enlarged

to y
def
= max{ξ, y}.

• Rejectt∗τ−3⟨y⟩ (y ≤ Vt(y)).

...

∗ Assume that no buyer appears at time t∗τ − 3 with 1− λ. Then the process goes to time t∗τ − 4.
...

• Accept0⟨y⟩ and the process terminates .

∗ Assume that a buyer appearing at time t∗τ − 1 with λ proposes the price ξ, hence the best price at that time is y = ξ.

• Rejectt∗τ−1⟨y⟩ (y ≤ Vt(y)).

...

∗ Assume that a buyer appearing at time t∗τ −2 with λ proposes the price ξ, hence the best price y at that time is enlarged

to y
def
= max{ξ, y}.

• Rejectt∗τ−2⟨y⟩ (y ≤ Vt(y)).

...

∗ Assume that no buyer appears at time t∗τ − 2 with 1− λ. Then the process goes to time t∗τ − 3.
...

• Accept0⟨y⟩ and the process terminates .

Remark 24.1.1 (Accept0(y)/Terminate) In Flow-ODR 24.1.2, first let us consider following two extreme cases:

Case 1 Suppose that no buyer appears at times t∗τ − 1, t∗τ − 2, · · · , 1. Then the process finally arrives in Accept0⟨y⟩ and
terminate .

Case 2 Suppose that, even if buyers appear at all times t∗τ − 1, t∗τ − 2, · · · , 1, they are all rejected (Reject), hence the process
eventually arrive in Accept0⟨y⟩ and terminate . Here note that the best price y is cumulatively enlarged every time
Reject is made and that the best price which continues to be enlarged is lastly accepted at the deadline t = 0 , i.e.,
Accept0⟨y⟩ and the process terminates .

Different intermediate cases can be considered between the two extreme cases. In these cases, however, evidently they are all
eventually led also to Accept0⟨y⟩ and the process terminates . Let us denote each of these decisions by Accept0(y)/Terminate

(reduction of optimal decision rule).
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24.1.1.5 Market Restriction

24.1.1.5.1 Positive Restriction

� Pom 24.1.1 (A {rM:2[R][E]}+) Suppose a > 0.

(a) Let β = 1 and s = 0. Then we have Accept0(y)/Terminate.
(b) Let β < 1 or s > 0. Then we have t-reservation-price.

Proof Suppose a > 0.

(a) Obvious from the fact that Tom 24.1.1(♣ a) can be rewritten as Flow-ODR 24.1.2.

(b) Evident from the fact that Tom 24.1.1(♠ b1,♠ b2) can be rewritten as
Flow-ODR 24.1.1.

24.1.1.5.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

24.1.1.5.3 Negative Restriction

� Nem 24.1.1 (A {rM:2[R][E]}−) Suppose b < 0.

(a) Let β = 1 and s = 0. Then we have Accept0(y)/Terminate.
(b) Let β < 1 or s > 0. Then we have t-reservation-price.

Proof The same as the proof of Pom 24.1.1.

24.1.2 rM̃:2[R][E]
24.1.2.1 Preliminary I

Let us define
ṽ⋄t (y) = vt(y)− y, t ≥ 0, (24.1.9)

Ṽ ⋄
t (y) = Vt(y)− y, t ≥ 0. (24.1.10)

Then, from (22.3.74(p.225) ) we have

ṽ⋄t (y) = min{0, Ṽ ⋄
t (y)}, t ≥ 0. (24.1.11)

By ỹ⋄
t let us denote the solution of the equation Ṽ ⋄

t (y) = 0, t > 0, it exists, i.e.,

Ṽ ⋄
t (ỹ⋄

t ) = 0. (24.1.12)

If multiple solutions exist, it is defined to be the largest of them. Now, we have

ṽ⋄0(y) = min{0, ρ− y} (← (22.3.67)), (24.1.13)

Ṽ ⋄
0 (y) = ρ− y (← (22.3.73)). (24.1.14)

Lemma 24.1.6 (rM̃:2[R][E]) We have ỹ⋄
t = ŷ⋄

t for t > 0.

Proof First, note that (22.3.71(p.225) ) can be rewritten as follows.

Vt(y) = λβ
∫∞
−∞ vt−1(min{ξ, y})f(ξ)dξ + (1− λ)βvt−1(y) + s, t > 0.

Here replacing f(ξ) by f̌(ξ̂) (see (11.1.10(p.55) )) leads to

Vt(y) = λβ
∫∞
−∞ vt−1(min{ξ, y})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(min{−ξ̂,−ŷ})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{ξ̂, ŷ})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s · · · ((1)), t > 0.

Next, let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then, the above expression can be rearranged as

Vt(y) = −λβ
∫ −∞
∞ vt−1(−max{η, ŷ})f̌(η)dη + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{η, ŷ})f̌(η)dη + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{ξ, ŷ})f̌(ξ)dξ + (1− λ)βvt−1(y) + s (without loss of generality).

= λβ
∫∞
−∞ vt−1(−max{ξ, ŷ})f(ξ)dξ + (1− λ)βvt−1(y) + s (see (11.1.12(p.56) )).

Applying the reflection operation R to the above expression yields

−V̂t(−ŷ) = −λβ
∫∞
−∞ v̂t−1(−max{ξ, ŷ})f(ξ)dξ − (1− λ)βv̂t−1(−ŷ) + s

= −λβE[v̂t−1(−max{ξ, ŷ})]− (1− λ)βv̂t−1(−ŷ) + s, t > 0.
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Multiplying the above by −1 yields

V̂t(−ŷ) = λβE[v̂t−1(−max{ξ, ŷ})] + (1− λ)βv̂t−1(−ŷ)− s, t > 0. · · · ((2)).

Now, since (2) holds for any y with −∞ < y <∞, it holds also for ŷ since −∞ < ŷ <∞, hence we have

V̂t(−ˆ̂y) = λβE[v̂t−1(−max{ξ, ˆ̂y})] + (1− λ)βv̂t−1(−ˆ̂y)− s, t > 0. · · · ((3)).

Since ˆ̂y = y, we can rewrite (3) as

V̂t(−y) = λβE[v̂t−1(−max{ξ, y})] + (1− λ)βv̂t−1(−y)− s · · · ((4)).

1. Below let us temporarily represent the symbols “v” and “V ” used in rM:2[R][E] in Section 22.3.2.1.1(p.224) by “z” and “Z”
respectively. Then (22.3.54) and (22.3.55) can be rewritten as respectively

z0(y) = max{y, ρ} · · · ((5)),

zt(y) = max{y, Zt(y)} · · · ((6)), t > 0,

where (22.3.60) and (22.3.58) can be rewritten as respectively

Z0(y) = ρ · · · ((7)),

Zt(y) = λβE[zt−1(max{ξ, y})] + (1− λ)βzt−1(y)− s · · · ((8)), t > 0.

In addition, let Z⋄
t (y)

def
= Zt(y)−y · · · ((9)) and z⋄t (y)

def
= zt(y)−y = max{0, Z⋄

t (y)}. Then we have Z⋄
t (y

⋄
t ) = 0 and zt(y

⋄
t )−y⋄

t = 0

(see (24.1.7(p.245) )).

2. Since V0(y) = ρ · · · ((10 )) from (22.3.73(p.225) ), we have −V̂0(−ŷ) = −ρ̂, hence V̂0(−ŷ) = ρ̂. Since the equality holds for

any y ∈ (−∞,∞) and any ρ ∈ (−∞,∞), so also does for ŷ ∈ (−∞,∞) and ρ̂ ∈ (−∞,∞), hence V̂0(−ˆ̂y) = ˆ̂ρ, thus
V̂0(−y) = ρ · · · ((11 )).

3. From (11) and (7) we have V̂0(−y) = Z0(y) (= ρ). Suppose V̂t−1(−y) = Zt−1(y). Then, from (22.3.74(p.225) ) we have
vt−1(y) = min{y, Vt−1(y)} = min{−ŷ,−V̂t−1(−ŷ)} = −max{ŷ, V̂t−1(−ŷ)} = −max{ŷ, Zt−1(ŷ)} = −zt−1(ŷ). Hence, since
v̂t−1(y) = zt−1(ŷ), we have v̂t−1(−y) = v̂t−1(ŷ) = zt−1(ˆ̂y) = zt−1(y); accordingly, (4) can be rewritten as

V̂t(−y) = λβE[zt−1(max{ξ, y})] + (1− λ)βzt−1(y)− s = Zt(y).

Hence, since −Vt(−y) = Zt(y), we have Vt(−y) = −Zt(y). Since the equality holds for any y ∈ (−∞,∞), so also does for
ŷ ∈ (−∞,∞), so that Vt(−ŷ) = −Zt(ŷ), hence Vt(y) = −Zt(ŷ). Now, from (24.1.12) we have 0 = Ṽt(ỹ

⋄
t ) = Vt(ỹ

⋄
t ) − ỹ⋄

t =
−Zt(ˆ̃y

⋄
t )− ỹ⋄

t = −Zt(ˆ̃y
⋄
t ) + ˆ̃y⋄

t = −(Zt(ˆ̃y
⋄
t )− ˆ̃y⋄

t ) = −Z⋄
t (ˆ̃y

⋄
t ) due to (9) or equivalently 0 = Z⋄

t (ˆ̃y
⋄
t ). Hence, we have y⋄

t = ˆ̃y⋄
t

by definition or equivalently ˆ̃y⋄
t = y⋄

t , so that −ỹ⋄
t = y⋄

t , hence ỹ⋄
t = −y⋄

t = ŷ⋄
t .

24.1.2.2 Derivation of A {rM̃:2[R][E]}
For almost the same reason as in Section 23.1.2.1(p.235) it can be confirmed that SOE{rM̃:1[R][E]} (see
(22.3.17(p.222) )) is symmetrical to SOE{rM:1[R][E]} (see (22.3.5(p.222) )). Taking into consideration the result, we immediately see
that Scenario[R](p.60) can be applied also to A {rM:1[R][E]}. Accordingly, we can obtain the following Tom.

� Tom 24.1.2 (A {rM̃:2[R][E]})

(a) ♣Let β = 1 and s = 0. Then y ≥ Vt(y) for t ≥ 0 and any y.

(b) Let β < 1 or s > 0.

1. ♠Let y ≤ ỹ⋄
t . Then Vt(y) ≥ y for t ≥ 0.

2. ♠Let y ≥ ỹ⋄
t . Then y ≥ Vt(y) for t ≥ 0.

Proof Immediate from applying SR→R̃ (see p.98 ) to Tom 24.1.1(p.246) .

24.1.2.3 Flow of Optimal Decision Rules

♠ Flow-ODR 24.1.3 (rM̃:2[R][E]) From Tom 24.1.2(♠ b1,♠ b2) and (22.3.75(p.225) ) we have the following decision rule for τ ≥
t ≥ 0.

{ y ≤ y⋄
t ⇒ y ≥ Vt ⇒ Acceptt⟨y⟩ and the process stops

y ≥ y⋄
t ⇒ y ≤ Vt ⇒ Rejectt⟨y⟩ and the search is conducted

The rest is the same as Flow-ODR 24.1.1(p.247) except that “ · · · is enlarged to · · · ” is replaced by “ · · · is reduced to · · · ”.

♣ Flow-ODR 24.1.4 (rM̃:2[R][E]) (Accept0(y)/Terminate We have the inequality y ≥ Vt(y) in
Tom 24.1.2(♣ a). The rest is the same as Flow-ODR 24.1.2(p.247) except that “ · · · is enlarged to · · · ” is replaced by “ · · · is reduced
to · · · ”.
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24.1.2.4 Market Restriction

24.1.2.4.1 Positive Restriction

� Pom 24.1.2 (A {rM̃:2[R][E]}+) Assume a > 0.

(a) Let β = 1 and s = 0. Then we have Accept0(y)/Terminate.
(b) Let β < 1 or s > 0. Then we have t-reservation-price.

Proof (a) The same as Tom 24.1.2(♣ a).

(b) See Tom 24.1.2(♠b-b2).

Remark 24.1.2 (diagonal symmetry) Pom 24.1.2 can be also obtained by applying SR→R̃ to Nem 24.1.1 (see (17.1.22 (1) (p.113) )).

24.1.2.4.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

24.1.2.4.3 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).

24.1.3 Conclusion 11 (Search-Enforced-Model 2)

C1 We have A {rM̃:2[R][E]}+ ∼ A {rM:2[R][E]}+.
C2 Let β = 1 and s = 0. Then we have optdr 7→ Accept0(y)/Terminate for rM:2[R][E]+ and rM̃:2[R][E]+.
C3 Let β < 1 or s > 0. Then we have t-reservation-price for rM:2[R][E]+ and rM̃:2[R][E]+.

C1 Compare Pom’s 24.1.2(p.250) with 24.1.1(p.248) .

C2 See Pom’s 24.1.1(p.248) (a) and 24.1.2(p.250) (a).

C3 See Pom’s 24.1.1(p.248) (b) and 24.1.2(p.250) (b).

24.2 Search-Allowed-Model 2

24.2.1 rM:2[R][A]
24.2.1.1 Preliminary

Let us define
V ⋄
t (y)

def
= Vt(y)− y, t ≥ 0, (24.2.1)

v⋄t (y)
def
= vt(y)− y = max{0, V ⋄

t (y)}, t ≥ 0, (see (22.3.83)) (24.2.2)

where
V ⋄
0 (y) = V0(y)− y = ρ− y (see (22.3.82(p.225) )), (24.2.3)

v⋄0(y) = v0(y)− y = max{0, ρ− y} (see (22.3.76)). (24.2.4)

Then, from (22.3.80) we have

V ⋄
t (y) = max{λβE[v⋄t−1(max{ξ, y}) + max{ξ, y}] + (1− λ)β(v⋄t−1(y) + y)− s, β(v⋄t−1(y) + y)} − y

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) + λβE[max{ξ, y}] + (1− λ)βy − s, βv⋄t−1(y) + βy} − y

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) +K(y) + y, βv⋄t−1(y) + βy} − y (see (5.1.10(p.17) ))

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) +K(y), βv⋄t−1(y)− (1− β)y}, t > 0. (24.2.5)

By y⋄
t let us denote the solution of the equation V ⋄

t (y) = 0 for t ≥ 0 if it exists, i.e.,

V ⋄
t (y⋄

t ) = 0, t > 0. (24.2.6)

If multiple solutions exist, it is defined to be the smallest of them. Let us define

Vt
def
= Vt − βVt−1, t > 0. (24.2.7)

Then, from (22.3.87) and (22.3.78) we have

V1 = V1 − βV0 = max{L(ρ), 0}. (24.2.8)

From (22.3.76) and (22.3.78) we have v0(ξ)− V0 = max{ξ, ρ} − ρ = max{ξ − ρ, 0}, hence from (22.3.92(p.226) ) with t = 1 we get

S1 = λβE[v0(ξ)− V0]− s

= λβE[max{ξ − ρ, 0}]− s

= λβT (ρ)− s = L(ρ) (see (5.1.1(p.17) ) and (5.1.3)). (24.2.9)

Now (22.3.95) can be rewritten as
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St(y) = λβE[(vt−1(max{ξ, y})− vt−1(y))I(y < ξ) + (vt−1(max{ξ, y})− vt−1(y))I(ξ ≤ y)]− s

= λβE[(vt−1(ξ)− vt−1(y))I(y < ξ) + (vt−1(y)− vt−1(y))I(ξ ≤ y)]− s

= λβE[(vt−1(ξ)− vt−1(y))I(y < ξ)]− s. (24.2.10)

From (22.3.76) we have v0(ξ) − v0(y) = max{ξ, ρ} − max{y, ρ} ≤ max{ξ − y, 0}, hence from (24.2.10) with t = 1 we have
S1(y) = λβE[(v0(ξ)− v0(y))I(y < ξ)]− s ≤ λβE[max{ξ− y, 0}I(y < ξ)]− s. Then, since max{ξ− y, 0} ≥ 0 and I(y < ξ) ≤ 1,
we get max{ξ − y, 0}I(y < ξ) ≤ max{ξ − y, 0}, hence

S1(y) ≤ λβE[max{ξ − y, 0}]− s (24.2.12)

= λβT (y)− s = L(y) (see (5.1.1(p.17) ) and (5.1.3)). (24.2.13)

24.2.1.2 Some Lemmas

Lemma 24.2.1 (rM:2[R][A])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) V ⋄
t (y) is nonincreasing in y for t ≥ 0.

Proof (a) Clearly v0(y) is nondecreasing in y from (22.3.76(p.225) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is
nondecreasing in y from (22.3.80), hence vt(y) is nondecreasing in y from (22.3.83). Thus by induction vt(y) is nondecreasing
in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0 from (22.3.80). In
addition, since V0(y) can be regarded as nondecreasing in y from (22.3.82), it follows that Vt(y) is nondecreasing in y for t ≥ 0.

(b) V ⋄
0 (y) is nonincreasing in y from (24.2.3). Suppose V ⋄

t−1(y) is nonincreasing in y, hence v⋄t−1(y) is also nonincreasing
in y from (24.2.2). Accordingly, since K (y) and −(1 − β)y are both nonincreasing in y (see Lemma 9.2.2(b), it follows from
(24.2.5) that V ⋄

t (y) is also nonincreasing in y. Thus, by induction V ⋄
t (y) is also nonincreasing in y for t ≥ 0.

If y < (≥) ξ, then vt−1(ξ) ≥ (≤) vt−1(y) due to Lemma 24.2.1(a) or equivalently vt−1(ξ)− vt−1(y) ≥ (≤) 0 for t > 0. Then,
since

max{vt−1(ξ)− vt−1(y), 0}
= max{vt−1(ξ)− vt−1(y), 0}I(y < ξ) + max{vt−1(ξ)− vt−1(y), 0}I(y ≥ ξ)

= (vt−1(ξ)− vt−1(y))I(y < ξ) + 0× I(y ≥ ξ)

= (vt−1(ξ)− vt−1(y))I(y < ξ),

we can rewrite (24.2.10) as

St(y) = λβE[max{vt−1(ξ)− vt−1(y), 0}]− s, t > 0. (24.2.15)

Lemma 24.2.2 (rM:2[R][A]) Let β = 1 or s = 0.

(a) Let s = 0. Then St(y) ≥ 0 for any y and t > 0.
(b) Let β = 1. Then y ≤ Vt(y) for any y and t > 0.

Proof (a) If s = 0, from (24.2.15) we have St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}] ≥ 0 for any y and t > 0.

(b) If β = 1, from (22.3.80) and (22.3.77) we have Vt(y) ≥ βvt−1(y) = vt−1(y) ≥ y for any y and any t > 0.

Lemma 24.2.3 (rM:2[R][A]) Let β < 1 and s > 0.

(a) limy→−∞ V ⋄
t (y) =∞ for t ≥ 0.

(b) limy→∞ V ⋄
t (y) = −∞ for t > 0.

(c) The solution y⋄
t exists for t > 0 such that

1. Let y ≥ y⋄
t . Then Vt(y) ≤ y for t > 0.

2. Let y ≤ y⋄
t . Then Vt(y) ≥ y for t > 0.

Proof Let β < 1 and s > 0.

(a) Obviously V ⋄
0 (y)→∞ as y → −∞ from (24.2.3). Suppose V ⋄

t−1(y)→∞ as y → −∞. Then v⋄t−1(y)→∞ as y → −∞
from (24.2.2). Hence, from (24.2.5) we have V ⋄

t (y) → ∞ as y → −∞ due to the facts that K(y) → ∞ as y = −∞ due to
(9.2.4 (1) (p.42) ) and that −(1 − β)y → ∞ as y → −∞. Thus, by induction V ⋄

t−1(y) → ∞ as y → −∞ for t ≥ 0, so we have
limy→−∞ V ⋄

t (y) =∞ for t ≥ 0.

(b) Evidently v⋄0(y) → 0 as y → ∞ from (24.2.4). Suppose v⋄t−1(y) → 0 as y → ∞. Noting that K(y) → −∞ as y → ∞
from (9.2.5 (2) (p.42) ) and that −(1−β)y → −∞ as y →∞, from (24.2.5) we have V ⋄

t (y)→ −∞ for t ≥ 0 as y →∞. Hence, from
(24.2.2) we have v⋄t (y)→ 0 as y →∞. Thus, by induction v⋄t (y)→ 0 for any t ≥ 0 as y →∞, hence v⋄t−1(y)→ 0 for any t > 0
as y →∞. Then, for the same reason as just above we have V ⋄

t (y)→ −∞ for t > 0 as y →∞, so we have limy→∞ V ⋄
t (y) = −∞

for t > 0.

(c) From (a,b) and Lemma 24.2.1(b) we see that there exist y⋄
t such that y ≥ (≤) y⋄

t ⇒ V ⋄
t (y) ≤ (≥) 0 ⇔ Vt(y) ≤ (≥) y

for t > 0 from (24.2.1).
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Lemma 24.2.4 (rM:2[R][A]) Let β < 1 and s > 0.

(a) Let y ≤ 0. Then Vt(y) ≥ y for t > 0.

(b) Let y > 0.

1. Let y ≥ y⋄
t . Then Vt(y) ≤ y for t > 0,

2. Let y ≤ y⋄
t . Then Vt(y) ≥ y for t > 0

where y⋄
t ≥ 0 for t > 0.

Proof Let β < 1 and s > 0. Since V1(y) ≥ K(max{y, ρ}) + max{y, ρ} for any y from (22.3.89(p.225) ) and since max{y, ρ} ≥ y
for any y, we obtain V1(y) ≥ K(y) + y · · · ((1)) for any y due to Lemma 9.2.2(e).

(a) Let y ≤ 0 · · · ((2)). Since Vt(y) ≥ βvt−1(y) for t > 0 from (22.3.80(p.225) ) and since vt−1(y) ≥ y for t > 0 from (22.3.77(p.225) ),

we have Vt(y) ≥ βvt−1(y) ≥ βy for t > 0. Then, since βy ≥ y due to (2) , we have Vt(y) ≥ y for t > 0.

(b) Let y > 0 · · · ((3)). Here note that the result in (a) implies y⋄
t ≥ 0 for all t > 0 because if y⋄

t′ < 0 for a t′ > 0, then for

y⋄
t′ < y < 0 we have V ⋄

t′ (y) < 0 or equivalently Vt′(y)− y < 0, leading to the contradiction Vt′(y) < y.

(b1,b2) See Lemma 24.2.3(c1,b1).

24.2.1.3 Analysis

� Tom 24.2.1 (A {rM:2[R][A]})
(a) Let s = 0. Then A {rM:2[R][A]} # A {rM:2[R][E]}.
(b) ♣Let β = 1. Then y ≤ Vt(y) for any y and t ≥ 0.

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △.

2. ♣Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.

3. Let y ≥ 0.

i. ♠Let y ≥ y⋄
t . Then Vt(y) ≤ y for t ≥ 0.

ii. ♠Let y ≤ y⋄
t . Then y ≤ Vt(y) for t ≥ 0.

Proof (a) Lets = 0. Then, from Lemma 24.2.2(a) we see that it is always optimal to CONDUCTt the search due to (22.3.97(p.226) ),
implying that rM:2[R][A], which is originally a search-Allowed-model, is substantially reduced to rM:2[R][E], which is a search-
Enforced-model.

(b) The same as Lemma 24.2.2(p.251) (b).

(c) Let β < 1 and s > 0.

(c1) From (22.3.79(p.225) ) we have Vt ≥ βVt−1 for τ ≥ t > 0, hence Vτ ≥ βVτ−1, Vτ−1 ≥ βVt−2, · · · , V1 ≥ βV0, so
Vτ ≥ βVτ−1 ≥ β2Vt−2 ≥ · · · ≥ βτV0. Accordingly, we have t∗τ = τ for τ ≥ 0, i.e., ⃝s dOITsτ≥0⟨τ⟩ △.

(c2) The same as Lemma 24.2.4(a).

(c3-c3ii) The same as Lemma 24.2.4(b-b2).

24.2.1.4 Flow of Optimal Decision Rules

♠ Flow-ODR 24.2.1 (rM:2[R][A]) (t-reservation-price) From Tom 24.2.1(♠ c3i,♠ c3ii) and (22.3.98(p.226) ) we have the fol-
lowing decision rule for τ ≥ t ≥ 0.

{ y ≥ y⋄
t ⇒ y ≥ Vt ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ y ≤ Vt ⇒ Rejectt⟨y⟩ and the search is conducted

which yields the following scenario. First the process is initiated at the optimal initiating time t∗τ , and then the condition
branching below follows.

⋆ Let Skipt∗τ
. Then the process goes to time t∗τ − 1, and then Conductt∗τ−1/Skipt∗τ−1 follows (see (22.3.94(p.226) )):.

⋆ Let Conductt∗τ .

∗ Assume that a buyer appearing at time t∗τ − 1 with λ proposes the price ξ; hence the best price at that time is y = ξ. After
that, the following condition branching follows.

1. Let y ≥ y⋄
t∗τ−1. Then Acceptt∗τ−1⟨y⟩ and the process stops

2. Let y ≤ y⋄
t∗τ−1. Then Rejectt∗τ−1⟨y⟩ and then CONDUCTt∗τ−1/SKIPt∗τ−1 follows (see (22.3.97(p.226) )).

⋆⋆ Let SKIPt∗τ−1. Then the process goes to time t∗τ −2, and then CONDUCTt∗τ−2/SKIPt∗τ−2 follows (see (22.3.97(p.226) )).

⋆⋆ Let CONDUCTt∗τ−1.

∗ Assume that a buyer appearing at time t∗τ − 2 with λ proposes the price ξ, hence the best price y at that time
is enlarged to y

def
= max{ξ, y}. After that, the following condition branching follows.

1. Let y ≥ y⋄
t∗τ−2. Then Acceptt∗τ−2⟨y⟩ and the process stop

2. Let y < y⋄
t∗τ−2. Then Rejectt∗τ−2⟨y⟩ and CONDUCTt∗τ−1/SKIPt∗τ−1 follows (see (22.3.97(p.226) )).

∗ Assume that no buyer appears at time t∗τ − 2 with 1− λ, then the process goes to time t∗τ − 3
.
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∗ Assume that no buyer appears at time t∗τ − 1 with 1− λ, then the process goes to time t∗τ − 2.
...
• Accept0⟨y⟩ and the process terminates

♣ Flow-ODR 24.2.2 (rM:2[R][A]) (Accept0(y)/Terminate) The inequality y ≤ Vt(y) in
Tom 24.2.1(♣b,♣ c2) yields the following flow of the optimal decision rule. First the process is initiated at the optimal initiating
time t∗τ , and then Conductt∗τ /Skipt∗τ follows (see (22.3.94(p.226) )):

⋆ Let Skipt∗τ . Then the process goes to time t∗τ − 1, and then Conductt∗τ−1/Skipt∗τ−1 follows (see (22.3.94(p.226) )):

⋆ Let Conductt∗τ .

∗ Assume that a buyer appearing at time t∗τ − 1 with λ proposes the price ξ; hence the best price at that time is y = ξ.

• Rejectt∗τ−1⟨y⟩ and then CONDUCTt∗τ−1/SKIPt∗τ−1 follows(see (22.3.97(p.226) )).

⋆⋆ Let SKIPt∗τ−1. Then the process goes to time t∗τ − 2 and CONDUCTt∗τ−2/SKIPt∗τ−2 follows (see (22.3.97(p.226) )):
⋆⋆ Let CONDUCTt∗τ−1.

∗ Assume that a buyer appearing at time t∗τ − 2 with λ proposes the price ξ, hence the best price y at that time is
enlarged to y

def
= max{ξ, y}.

• Rejectt∗τ−2⟨y⟩ and then CONDUCTt∗τ−1/SKIPt∗τ−1 follows (see (22.3.97(p.226) )).

⋆⋆ Let SKIPt∗τ−2. · · ·
⋆⋆ Let CONDUCTt∗τ−2.

∗ Assume that no buyer appears at time t∗τ − 2 with 1− λ and the process goes to time t∗τ − 3
...

∗ Assume that no buyer appears at time t∗τ − 1 with 1− λ and the process goes to time t∗τ − 2.
...
• Accept0⟨y⟩ and the process terminates .

Remark 24.2.1 (Accept0(y)/Terminate) In Flow-ODR 24.2.2, first let us consider following two extreme cases:

Case 1 Suppose that the process starts with Skipt∗τ
and then Skipt∗τ−1, Skipt∗τ−2, · · · continue, and the process arrives finally

in Accept0⟨y⟩ and terminates.

Case 2 Suppose that Conductt∗τ is made and then that CONDUCTt∗τ−1y, CONDUCTt∗τ−2, · · · continue. Then the process arrives
finally in Accept0⟨y⟩ and terminates. Here note that the best price y is cumulatively enlarged every time CONDUCT is
made and that the best price which continues to be preserved and enlarged is lastly accepted at the deadline t = 0 , i.e.,
Accept0⟨y⟩.

Different intermediate cases can be considered between the two cases. Then it is evident that they are all led also to Accept0⟨y⟩
and the process terminates.

24.2.1.5 Market Restriction

24.2.1.5.1 Positive Restriction

� Pom 24.2.1 (A {rM:2[R][A]}+) Suppose a > 0.

(a) Let s = 0. Then A {rM:2[R][A]+} # A {M:2[R][E]+}.
(b) Let β = 1. Then we have Accept0(y)/Terminate.

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ → → ⃝⃝s
2. We have t-reservation-price.

Proof Suppose a > 0. Then y > a > 0 for any y ∈ [a, b], hence the case “y ≤ 0” should be removed, so that it suffices to
consider only Tom 24.2.1(c3i,c3ii).

(a) The same as Tom 24.2.1(a).

(b) See Flow-ODR 24.2.2.

(c) Let β < 1 and s > 0.

(c1) The same as Tom 24.2.1(c1).

(c2) See Tom 24.2.1(c3i,c3ii).
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24.2.1.5.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

24.2.1.5.3 Negative Restriction

� Nem 24.2.1 (ATom {rM:2[R][A]−}) Suppose b < 0.

(a) Let s = 0. Then A {rM:2[R][A]−} # A {rM:2[R][E]−}.
(b) Let β = 1. Then we have Accept0(y)/Terminate.
(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ → → ⃝⃝s
2. We have Accept0(y)/Terminate.

Proof Suppose b < 0. Then y < b < 0 for any y ∈ [a, b], hence the case “y ≥ 0 should be removed, so that it suffices to
consider only Tom 24.2.1(c2).

(a) The same as Tom 24.2.1(a).

(b) See Flow-ODR 24.2.2.

(c) Let β < 1 and s > 0.

(c1) The same as Tom 24.2.1(c1).

(c2) See Flow-ODR 24.2.2.

24.2.2 rM̃:2[R][A]

24.2.2.1 Derivation of A {rM̃:2[R][A]}
For almost the same reason as in Section 23.1.2.1(p.235) it can be confirmed that SOE{rM̃:2[R][A]} (see
(22.3.104(p.226) )) is symmetrical to SOE{rM:2[R][A]} (see (22.3.81(p.225) )). Taking into consideration the result, we immediately see
that Scenario[R](p.60) can be applied also to A {rM:2[R][A]}. Accordingly, we can obtain the following Tom.

� Tom 24.2.2 (A {rM̃:2[R][A]})
(a) Let s = 0. Then A {rM̃:2[R][A]} # A {rM̃:2[R][E]}.
(b) ♣ Let β = 1. Then y ≥ Vt(y) for t ≥ 0.
(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △.

2. ♣ Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.
3. Let y ≤ 0.

i. ♠ Let y ≤ ỹ⋄
t . Then y ≤ Vt(y) for t ≥ 0.

ii. ♠ Let y ≥ ỹ⋄
t . Then y ≥ Vt(y) for t ≥ 0.

Proof Obtained by applying SR→R̃ to Tom 24.2.1.

24.2.2.2 Flow of Optimal Decision Rules

♠ Flow-ODR 24.2.3 (rM̃:2[R][A]) (t-reservation-price) From Tom 24.2.2(♠ c3i,♠ c3ii) and (22.3.113(p.226) ) we have the fol-
lowing decision rule for τ ≥ t ≥ 0.

{ y ≤ ỹ⋄
t ⇒ y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ ỹ⋄
t ⇒ y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and then CONDUCTt/SKIPt

The rest is the same as Flow-ODR 24.2.1(p.252) except that “ · · · is enlarged to · · · ” is replaced by “ · · · is reduced to · · · ”.
♣ Flow-ODR 24.2.4 (rM̃:2[R][A]) (Accept0(y)/Terminate) We have the inequality y ≥ Vt(y) in
Tom 24.2.2(♣b,♣ c2). The rest is the same as Flow-ODR 24.2.2(p.253) except that “ · · · is enlarged to · · · ” is replaced by “ · · · is
reduced to · · · ”.

24.2.2.3 Market Restriction

24.2.2.3.1 Positive Restriction

� Pom 24.2.2 (A {rM̃:2[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then A {rM̃:2[R][A]+} # A {rM̃:2[R][E]+}.
(b) Let β = 1. Then we have Accept0(y)/Terminate.
(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ → → ⃝⃝s
2. We have Accept0(y)/Terminate.

Proof Suppose a > 0. Then y > a > 0 for any y ∈ [a, b], hence the case “y ≤ 0” should be removed, so it suffices to consider
only Tom 24.2.2(c2).

(a) The same as Tom 24.2.2(a).

(b) Immediate from Tom 24.2.2(b) and Flow-ODR 24.2.4.

(c) Let β < 1 and s > 0.

(c1) The same as Tom 24.2.2(c1).

(c2) Immediate Tom 24.2.2(c2) and Flow-ODR 24.2.4.

Remark 24.2.2 (diagonal symmetry) Pom 24.2.2 can be also obtained by applying SR→R̃ to Nem 24.2.1.
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24.2.2.3.2 Mixed Restriction

Omitted (see Section 17.2.3(p.116) ).

24.2.2.3.3 Negative Restriction

Omitted (see Section 17.2.3(p.116) ).

24.2.3 Conclusion 12 (Search-Allowed-Model 2)

C1 We have A {rM̃:2[R][A]}+ |∼ A {rM:2[R][A]}+.
C2

a. Let s = 0. Then we have s-A-model 2 # s-E-model 2 for rM:2[R][A]+ and rM̃:2[R][A]+.
b. Let β = 1. Then we have optdr 7→ Accept0(y)/Terminate for both rM:2[R][A]+ and rM̃:2[R][A]+.

C3 Let β < 1 or s > 0. Then we have ⃝⃝s for rM:2[R][A]+ and rM̃:2[R][A]+ → → ⃝⃝s
C4 Let β < 1 or s > 0.

a. We have t-reservation-price for rM:2[R][A]+.
b. We have optdr 7→ Accept0(y)/Terminate for rM:2[R][A]+ and rM̃:2[R][A]+ with β = 1.

C1 Compare Pom’s 24.2.2(p.254) with 24.2.1(p.253) .

C2a See Pom’s 24.2.1(p.253) (a) and 24.2.2(p.254) (a).

C2b See Pom’s 24.2.1(p.253) (b) and 24.2.2(p.254) (b).

C3 See Pom’s 24.2.1(p.253) (c1) and 24.2.2(p.254) (c1).

C4a See Pom’s 24.2.1(p.253) (c2).

C4b See Pom’s 24.2.1(p.253) (b) and 24.2.2(p.254) (b).
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Chapter 25

Model 3

25.1 Search-Enforced-Model 3

25.1.1 rM:3[R][E]
Lemma 25.1.1 Let ρ ≥ xK . Then Ut ≤ ρ and vt(y) ≤ max{y, ρ} for t ≥ 0.

Proof Let ρ ≥ xK , hence max{y, ρ} ≥ ρ ≥ xK for any y. Accordingly, from Corollary 9.2.2(p.44) (a) we haveK(ρ) ≤ 0 · · · ((1)) and
K(max{y, ρ}) ≤ 0 · · · ((2)). Now U0 ≤ ρ from (22.3.121 (2) (p.227) ) and v0(y) ≤ max{y, ρ} for any y from (22.3.114(p.227) ). Suppose

Ut−1 ≤ ρ and vt−1(y) ≤ max{y, ρ} for any y, hence Vt−1 = ρ from (22.3.117(p.227) ) and vt−1(max{ξ, y}) ≤ max{max{ξ, y}, ρ} for
any ξ and y. Then, from (22.3.119(p.227) ) we have Ut ≤ λβE[max{ξ, ρ}] + (1 − λ)βρ − s = K(ρ) + ρ from (5.1.10(p.17) ), hence
Ut ≤ ρ due to (1) . In addition, from (22.3.118(p.227) ) we have Ut(y) ≤ λβE[max{max{ξ, y}, ρ}] + (1 − λ)βmax{y, ρ} − s =
λβE[max{ξ,max{y, ρ}}]+(1−λ)βmax{y, ρ}−s = K(max{y, ρ})+max{y, ρ} from (5.1.10(p.17) ), hence Ut(y) ≤ max{y, ρ} from
(2) . Accordingly, from (22.3.115(p.227) ) we have vt(y) ≤ max{y, ρ,max{y, ρ}} = max{y, ρ}. This complete the inductions.

� Tom 25.1.1 (A {rM:3[R][E]})
(a) Let ρ ≤ xK . Then we have A {rM:3[R][E]} � A {rM:2[R][E]}.
(b) Let ρ ≥ xK .

1. We have optdr 7→ Acceptτ (ρ)/Stop.

2. Let ρ ≥ 0. Then we have ⃝⃝s .

3. Let ρ ≤ 0. Then we have•dd .

Proof (a) Let ρ ≤ xK , hence K(ρ) ≥ 0 · · · ((1)) from Corollary 9.2.2(p.44) (b). Since Vt−1 ≥ ρ for t > 0 from (22.3.117(p.227) )) and

since vt−1(y) ≥ max{y, ρ} for any y, ρ, and t > 0 from (22.3.115(p.227) )), from (22.3.119(p.227) )) we have Ut ≥ λβE[max{ξ, ρ}] +
(1 − λ)βρ − s = K(ρ) + ρ for t > 0 from (5.1.10(p.17) ), hence Ut ≥ ρ for t > 0 from (1) . This fact means that “Reject the
intervening quitting penalty ρ for all t > 0”, implying “Behave as if there does not exist the intervening quitting penalty ρ”; in
other words, it follows that rM:3[R][E] is reduced to rM:2[R][E].

(b) Let ρ ≥ xK .

(b1) Then, we have Ut ≤ ρ for τ ≥ t ≥ 0 from Lemma 25.1.1, meaning that “Accept the intervening quitting penalty ρ and
the process stops” is optimal for τ ≥ t > 0; in other words, we have Acceptτ (ρ)/Stop for τ ≥ τ > 0 (see (20.1.9(p.212) )).

(b2,b3) The same as Lemma 20.1.2(p.212) .

� Pom 25.1.1 (A {rM:3[R][E]}+)
(a) Let ρ ≤ xK . Then we have A {rM:3[R][E]}+ � A {rM:2[R][E]}+.
(b) Let ρ ≥ xK .

1. We have optdr 7→ Acceptτ (ρ)/Stop.

2. Let ρ ≥ 0. Then we have ⃝⃝s .

3. Let ρ ≤ 0. Then we have•dd .

Proof Immediate from Tom 25.1.1(p.257) .

25.1.2 rM̃:3[R][E]
In the same way as in Section 23.1.2.1(p.235) we can easily verify that SOE{rM̃:3[R][E]} = SR→R̃[SOE{rM:3[R][E]}] (see (22.3.129(p.227) )
and (22.3.120(p.227) )), hence, applying SR→R̃ to Tom 25.1.1 yields the following Tom.

� Tom 25.1.2 (A {rM̃:3[R][E]})
(a) Let ρ ≥ x

K̃ . Then we have A {rM̃:3[R][E]} � A {rM̃:2[R][E]}.
(b) Let ρ ≤ x

K̃ .

1. We have optdr 7→ Acceptτ (ρ)/Stop.
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2. Let ρ ≤ 0. Then we have ⃝⃝s .
3. Let ρ ≥ 0. Then we have•dd

� Pom 25.1.2 (A {rM̃:3[R][E]}+)

(a) Let ρ ≥ x
K̃ . Then we have A {rM̃:3[R][E]+} � A {rM̃:2[R][E]+}.

(b) Let ρ ≤ x
K̃ .

1. We have optdr 7→ Acceptτ (ρ)/Stop.
2. Let ρ ≤ 0. Then we have ⃝⃝s .
3. let ρ ≥ 0. Then we have•dd .

Proof Immediate from Tom 25.1.2(p.257) .

25.1.3 Conclusion 13 (Search-Enforced-Model 3)

In a selling model (buying model) we have:

C1. Let ρ ≤ xK (ρ ≥ x
K̃ ). Then we have Model 3 � Model 2.

C2. Let ρ ≥ xK (ρ ≤ x
K̃ ). Then we have optdr 7→ Acceptτ (ρ)/Stop.

C3. Let ρ ≥ 0 (ρ ≤ 0). Then we have ⃝⃝s .
C4. Let ρ ≤ 0 (ρ ≥ 0). Then we have•dd .

C1 See Pom 25.1.1(p.257) (a) (Pom 25.1.2(p.258) (a)).

C2 See Pom 25.1.1(p.257) (b1) (Pom 25.1.2(p.258) (b1)).

C3 See Pom 25.1.1(p.257) (b2) and (Pom 25.1.2(p.258) (b2)).

C4 See Pom 25.1.1(p.257) (b3) and Pom 25.1.2(p.258) (b3)).

25.2 Search-Allowed-Model 3

Lemma 25.2.1 We have

(a) vt(y) is nondecreasing in t ≥ 0 for any y.
(b) Let ρ ≤ 0. Then Ut is nondecreasing in t ≥ 0.
(c) Let ρ ≥ xK and ρ ≥ 0. Then Ut ≤ ρ for t ≥ 0 and vt(y) ≤ max{y, ρ} for t ≥ 0.

Proof (a) From (22.3.133(p.227) ) with t = 1 and (22.3.132(p.227) ) we have v1(y) ≥ max{y, ρ} = v0(y) for any y. Suppose
vt−1(y) ≥ vt−2(y) for any y. Then, from (22.3.137(p.228) ) we have
Ut(y) ≥ max{λβE[vt−2(max{ξ, y})] + (1 − λ)βvt−2(y) − s, βvt−2(y)} = Ut−1(y), so that from (22.3.133(p.227) ) we have vt(y) ≥
max{y, ρ, Ut−1(y)} = vt−1(y). Thus, by induction we have vt(y) ≥ vt−1(y) for t > 0. Accordingly, it follows that vt(y) is
nondecreasing in t ≥ 0.

(b) Let ρ ≤ 0. from (22.3.138(p.228) ) with t = 1 and (22.3.134(p.227) ) we have U1 ≥ βV0 = βρ ≥ ρ = U0 from (22.3.141 (2) (p.228) ).
Suppose Ut ≥ Ut−1. Then, since vt−1(ξ) ≥ vt−2(ξ) for any ξ from (a) and since Vt ≥ max{ρ, Ut−1} = Vt−1 from (22.3.135(p.227) ),
we have Ut ≥ max{λβE[vt−2(ξ)] + (1− λ)βVt−2 − s, βVt−2} = Ut−1 from (22.3.138(p.228) ). This completes the induction.

(c) Let ρ ≥ xK and ρ ≥ 0 · · · ((1)). Then, we have K(ρ) ≤ 0 · · · ((2)) from Corollary 9.2.2(p.44) (a) and we have K(max{y, ρ}) ≤
0 · · · ((3)) for any y due to max{y, ρ} ≥ ρ ≥ xK . Clearly, we have U0 ≤ ρ from (22.3.141 (2) (p.228) ) and v0(y) ≤ max{y, ρ} for

any y from (22.3.132(p.227) ). Suppose Ut−1 ≤ ρ and vt−1(y) ≤ max{y, ρ} for any y, hence Vt−1 = ρ from (22.3.135(p.227) ). Then,
from (22.3.138(p.228) ) we have Ut ≤ max{λβE[max{ξ, ρ}] + (1 − λ)βρ − s, βρ} = max{K(ρ) + ρ, βρ} from (5.1.10(p.17) ), hence
Ut ≤ max{ρ, βρ} = ρ due to (2) and (1) . Moreover, from (22.3.137(p.228) ) we have Ut(y) ≤ max{λβE[max{max{ξ, y}, ρ}]+ (1−
λ)βmax{y, ρ}−s, βmax{y, ρ}} = max{λβE[max{ξ,max{y, ρ}}]+(1−λ)βmax{y, ρ}−s, βmax{y, ρ}} = max{K(max{y, ρ})+
max{y, ρ}, βmax{y, ρ}} from (5.1.10(p.17) ). Hence Ut(y) ≤ max{max{y, ρ}, β{max{y, ρ}} = max{y, ρ} due to (3) and max{y, ρ} ≥
ρ ≥ 0 for any y. Accordingly, from (22.3.133(p.227) ) we have vt(y) ≤ max{y, ρ,max{y, ρ}} = max{y, ρ}. This complete the in-
ductions.

� Tom 25.2.1 (A {rM:3[R][A]})
(a) Let ρ ≤ xK or ρ ≤ 0. Then we have A {rM:3[R][A]} � A {rM:2[R][A]}.
(b) Let ρ ≥ xK and ρ ≥ 0. Then we have odr 7→ Acceptτ (ρ)/Stop.

Proof From (22.3.138) with t = 1, (22.3.132) with t = 1, and (22.3.134(p.227) ) we have
U1 = max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ} · · · ((1)) due to (5.1.10(p.17) ).

(a) Let ρ ≤ xK , hence K(ρ) ≥ 0 · · · ((2)) from Corollary 9.2.2(p.44) (b). Since vt(y) ≥ max{y, ρ} for any y and for t > 0 from

(22.3.133(p.227) )) and Vt ≥ ρ for t > 0 from (22.3.135(p.227) )), from
(22.3.138(p.228) )) and (5.1.10(p.17) ) we have Ut ≥ max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ} ≥ K(ρ) + ρ ≥ ρ
for any t > 0 due to (2) . Let ρ ≤ 0, hence −(1− β)ρ ≥ 0. From (1) we have U1 − ρ = max{K(ρ),−(1− β)ρ} ≥ 0, so U1 ≥ ρ;
accordingly, we have Ut ≥ ρ for t > 0 from Lemma 25.2.1(b). Consequently, whether ρ ≤ xK or ρ ≤ 0, it follows that Ut ≥ ρ
for t > 0. This fact means that “Reject the intervening quitting penalty ρ for all t > 0”, implying “Behave as if there does not
exist the intervening quitting penalty ρ”; in other words, it follows that rM:3[R][A] is reduced to rM:2[R][A].

(b) Let ρ ≥ xK and ρ ≥ 0. Then, we have Ut ≤ ρ for τ ≥ t ≥ 0 from Lemma 25.2.1(c), meaning “Accept the intervening
quitting penalty ρ and the process stops” for τ ≥ t > 0; in other words, we have Acceptt(ρ)/Stop for τ ≥ τ > 0 (see (20.1.9(p.212) )).
Accordingly, it follows that the assertion holds due to Lemma 20.1.2(p.212) .
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� Pom 25.2.1 (A {rM:3[R][A]}+)
(a) Let ρ ≤ xK or ρ ≤ 0. Then we have A {rM:3[R][A]+} � A {rM:2[R][A]+}.
(b) Let ρ ≥ xK and ρ ≥ 0. Then we have odr 7→ Acceptτ (ρ)/Stop.

Proof See Lemma 16.4.1(p.100) .

25.2.1 rM̃:3[R][A]
In the same way as in Section 23.1.2.1(p.235) we can easily verify that SOE{rM̃:3[R][A]} = SR→R̃[SOE{rM:3[R][A]}] (see (22.3.149(p.228) )
and (22.3.140)), hence, applying SR→R̃ to Tom 25.2.1 yields the following Tom.

� Tom 25.2.2 (A {rM̃:3[R][A]})
(a) Let ρ ≥ x

K̃ or ρ ≤ 0. Then we have A {rM̃:3[R][A]} � A {rM̃:2[R][A]}.
(b) Let ρ ≤ x

K̃ and ρ ≥ 0. Then we have odr 7→ Acceptτ (ρ)/Stop.

� Pom 25.2.2 (A {rM̃:3[R][A]}+)

(a) Let ρ ≥ x
K̃ or ρ ≤ 0. Then we have A {rM̃:3[R][A]+} � A {rM̃:2[R][A]+}.

(b) Let ρ ≤ x
K̃ and ρ ≥ 0. Then we have odr 7→ Acceptτ (ρ)/Stop.

Proof See Lemma 16.4.1(p.100) .

25.2.2 Conclusion 14 (Search-Allowed-Model 3)

In a selling model (buying model) we have:

C1. Let ρ ≤ xK or ρ ≤ 0 (ρ ≥ x
K̃ or ρ ≤ 0). Then we have Model 3 � Model 2.

C2. Let ρ ≥ xK and ρ ≥ 0 (ρ ≤ x
K̃ and ρ ≥ 0). Then we have optdr 7→ Acceptτ (ρ)/Stop.

C1 See Pom 25.2.1(p.258) (a) (Pom 25.2.2(p.259) (a)).

C2 See Pom 25.2.1(p.258) (b) (Pom 25.2.2(p.259) (b)).
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Chapter 26

The Whole Conclusion of Recall-Model

26.1 Conclusion 15

� Conclusions 23.1.3(p.238) -25.2.2(p.259) are summarized as below.

C1 Reduction

a. (model reduction) We have Model 3 � Model 2 (see C1 (p.258) ,C1 (p.259) ).

b. (optdr reduction) We have optdr 7→ Acceptτ (ρ)/Stop (see C2 (p.259) ).

c. optdr reduction) We have optdr 7→ Acceptτ (ρ)/Terminate (see C2b (p.244) ,C4b (p.255) ).

d. (chain of reduction) We have

A {rM:3[R][A]+} � A {rM:2[R][A]+} (see Pom 25.2.1(p.259) (a)) · · · (1◦).
A {rM:2[R][A]+} # A {rM:2[R][E]+} (see Pom 24.2.1(p.253) (a)) · · · (2◦).
A {rM̃:3[R][A]+} � A {rM̃:2[R][A]+} (see Pom 25.2.2(p.259) (a)) · · · (1•).
A {rM̃:2[R][A]+} # A {rM̃:2[R][E]+} (see Pom 24.2.2(p.254) (a)) · · · (2•).

From (1◦) and (2◦) we have

A {rM:3[R][A]+} � A {rM:2[R][A]+} # A {rM:2[R][E]+},

i.e, A {rM:3[R][A]+} is reduced to A {rM:2[R][E]+} via A {rM:2[R][A]+}. Likewise, from (1•) and (2•) we have

A {rM̃:3[R][A]+} � A {rM̃:2[R][A]+} # A {rM̃:2[R][E]+},

i.e., A {rM̃:3[R][A]+} is reduced to A {rM̃:2[R][E]+} via A {rM̃:2[R][A]+}. Let us refer to this reduction flows as the chain
of reductions.

� C1i(p.216) implies that it is not necessary to discuss any more for Model 3, hence, below we make discussions only for Model 1
and Model 2.

C2 Monotonicity

a. We have t-reservation-price (see C3 (p.250) ,C4a (p.255) ).

b. We have c-reservation-price (see C3 (p.238) ,C3c (p.244) ).

Remark 26.1.1 (myopic property) Thus far, it has been considered as a common sense that the reservation price is t-
dependent (see ⟨a(p.228) ⟩). However, from the fact that it can become constant (see ⟨c(p.228) ⟩) for the recall-model (see C3(p.238) ) we
noticed that the common sense does not always hold. Now, the constant reservation price implies that the optimal decision of
any point in time t > 0 is identical to that of time 1 at which the process terminates a period hence, i.e., the deadline, implying
that the optimal decision is the same as “behave as if the process terminates a period hence”, called the myopic property . Herein
it should be noted that although the property has been thought of as quite an isolated one which appears only for rM:1[R][E]
(recall-model; see Section 22.3.1.1.1(p.222) ), it appears also for a no-recall-model (see C1a(p.208) ).

C3 Inheritance and Collapse

a. The symmetry collapses ( |∼ ) between A {rM:1[R][E]+} and A {rM̃:1[R][E]+} (see C1(p.238) ).

b. The symmetry collapses ( |∼ ) between A {rM:1[R][A]+} and A {rM̃:1[R][A]+} (see C1(p.244) ).

c. The symmetry is inherited (∼ ) between A {rM:2[R][E]+} and A {rM̃:2[R][E]+} (see C1(p.250) ).

d. The symmetry collapses ( |∼ ) between A {rM:2[R][A]+} and A {rM̃:2[R][A]+} (see C1(p.255) ).
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C4 Diagonal symmetry

a. Confirm by yourself that the diagonal symmetry holds by comparing Pom 23.1.2(p.237) and Nem 23.1.1(p.235) .

b. Confirm by yourself that the diagonal symmetry holds by comparing Pom 23.2.2(p.243) and Nem 23.2.1(p.242) .

c. Confirm by yourself that the diagonal symmetry holds by comparing Pom 24.1.2(p.250) and Nem 24.1.1(p.248) .

d. Confirm by yourself that the diagonal symmetry holds by comparing Pom 24.2.2(p.254) and Nem 24.2.1(p.254) .

C5 Occurrence of ⃝⃝s , ⃝⃝∗ , and •dd
a. We have ⃝⃝s (see C2a(p.238) C3a(p.244) , C3(p.255) , C3(p.258) ).

b. We have ⃝⃝∗ (see C2b(p.238) ),

c. We have•dd (see C2c(p.238) , C3b(p.244) , C4a(p.255) ).
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Part 5

Epilogue

In the epilogue we state the whole conclusion of the present paper and the subjects of future studies

Chapter 27 Kernals in The Whole Conclusion of This Paper . . . . . . . . . . . . . . . . . . . . . 265

Chapter 28 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
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Chapter 27

Kernals in The Whole Conclusion of This Paper

This chapter summarizes kernels in the whole conclusion of this paper (see Conclusions 18.1(p.119) to 26.1(p.261) ).

27.1 Introduction of Some Novel Concepts
In order to attain the two study goals stated in Section 1.3(p.4) , we introduced some novel concepts as stated below, which are
all what have not been taken into consideration so far at all by any researchers.

[1] Quitting penalty (see A6(p.7) )

[2] Enforced-case and allowed-case (see Concept 2(p.9) )

[3] Quadruple-asset-trading-models and structured-unit-of-models (see Section 1.2(p.3) , Table 3.3.1(p.11) , and Section 3.4(p.12) ).

[4] Four kinds of points in time (see Concept 1(p.9) and Section 7.1(p.33) )

[5] Market restriction (see Section 16.4(p.100) )

[6] Strong assertion and weak assertion (see Section 7.3(p.37) )

These concepts serve as the impetus for opening the way to quite a new horizon for discussions of decision processes.

27.2 Main Findings
Below let us list main findings that have been obtained in this paper.

[7] Underlying functions

One of the most noteworthy results in this paper is the finding of the underlying functions T , L, K, and L (see Chap-
ter 5(p.17) ), the properties of which (see Lemmas 9.2.1(p.43) -9.3, Lemmas 11.6.1(p.66) -11.6.6, Lemmas 12.2.1(p.77) -12.2.6, and
Lemmas 13.6.1(p.89) -13.6.6) play a central role in the analysis of all models.

[8] Symmetry and Analogy

Another one of the most noteworthy results in this paper is the finding of the following eight successive theorems:

· Theorems 11.5.1(p.66) and 11.8.1(p.72) (symmetry).

· Theorems 12.3.1(p.81) and 12.3.2(p.82) (analogy).

· Theorems 13.5.1(p.88) and 13.5.2(p.88) (symmetry).

· Theorems 14.2.1(p.94) and 14.2.2(p.94) (analogy).

The first and third theorems (symmetry) above provide the answer to the question “ Is a buying problem always symmetrical
to a selling problem ?” in Motive 1(p.4) of this study. Note here that these theorems are what were derived on the premise
that prices are defined on the total market F = {−∞,∞}.

[9] Integration Theory

The whole of the integration theory depicted by Figure 15.1.1(p.97) consists of the flow of the eight successive theorems in [8].
This is the answer to the question “Can the theory integrating quadruple-asset-trading-problems exist ?” in Motive 2(p.4) .

[10] Inheritance and Collapse

Recall here that the symmetry and the analogy can be derived on the total market F , implying that if the market restriction
(see Section 16.4(p.100) ) is applied, it is questioned whether each of the symmetry and the analogy is inherited or collapses. In
fact , “inheritance” and “collapses” are both possible (see C2(p.119) , C2(p.133) , C2(p.175) , C2(p.207) , and C3(p.261) ). From this result it
follows that the answer to the question in the Motive 1(p.4) is “No !” on the restricted markets F+, F±, and F−. However,
the following should be noted.
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On the positive market F+ we have:

a. Symmetry In the most simple case “β = 1 and s = 0” the symmetry is inherited (∼ ) for both Model 1 (see
C2c1a(p.136) ) and Model 2 (see C2a(p.208) ).

b. Analogy In the most simple case “β = 1 and s = 0”, although the analogy is inherited ( ◃▹ ) for Model 1 (see
C2c2(p.136) ), it can collapse ( ◃▹| ) for Model 2 (see C2b(p.209) ).

[11] Diagonal symmetry

As seen in [10], the symmetry cannot be always inherited between the selling model and the buying model on F+ (see [10]).
However, it is proven that the symmetry is always inherited between the selling-problem on F− and the buying problem
on F+ (see Chapter 17(p.111) ), called the diagonal symmetry.

[12] Null-time-zone and deadline-falling

We showed that there exist three possibilities of the optimal initiating time,⃝⃝s , ⃝⃝∗ , and•dd (see Section 7.2.4.4(p.35) ). Here it
should be noted that the existence of ⃝⃝∗ and•dd inevitably leads us to the existence of the null-time-zone (Section 7.2.4.6(p.36) )
and that it also leads us, as its inevitable consequence, to the existence of the deadline-falling (see Figures 7.2.3(p.36) and
7.2.4). This should be said to be one of the most striking findings in this paper, and this fact prompts us to the overall
re-examination of the whole theory of decision processes that have been investigated so far without knowing the existence
of the deadline-falling (see Section A5(p.291) ). Furthermore it should be noted that the deadline falling•dd ∥can occur even in
the most simple case “β = 1 and s = 0” (see C3a(p.209) ).

[13] Posterior-skip-of-search

It is usual to consider that once conducting the search becomes optimal, it will become also optimal to continue conducting
the search after that. However, there exists a case that this expectation does not always hold (see Remark 7.2.1(p.34) ); in
other words, it is possible, although being very rare, that it can become optimal to skip the search after having conducted
the search for a while (see C7(p.218) ).

[14] Reduction

The reduction for models and optimal decision rules is another noteworthy finding in the paper (see Defs 20.1.1(p.212) ,
23.2.1(p.242) , C1(p.217) , and C1(p.261) ).

27.3 Alice’s Adventures in Wonderland
Herein recall the confusions and wonders upon which Alice fell and the suggestions which Dr. Rabbit told to her:

[15] Alice 1(p.9) (discount factor for cost)
See [39, Ross][0535] for the description concerning a managerial and economic implication of introducing the discount factor
β for profit. Strangely enough, there exists no reference, as far as we know, in which the persuasive explanation has been
stated for introducing the discount factor β for cost.

[16] Alice 2(p.36) (first-search-conducting-time)
Maybe some readers might consider that the optimal initiating time can be replaced by the optimal first-search-conducting-
time; however, by Dr. Rabbit’s instruction many of them will immediately notice that this way of thinking is not always
proper.

[17] Alice 3(p.36) (jumble of intuition and theory)
The two questions that Alice raised is what was caused by the jumble of intuition and theory. Fortunately, almost researchers
soon notice the mistake; however, unfortunately there might exist ones who lapse into the confusion and do not obstinately
admit it; as a result, a submitted paper might be rejected if such a researcher is selected as a referee.

[18] Alice 4(p.36) (deadline as the black hole)
Perhaps this may be what should be said to be one of the biggest findings in the present paper, which leads us not only
the re-examination of conventional theory of decision processes but also to quite a new horizon of the theory of decision
processes .

[19] Alice 5(p.37) (strong assertion and weak assertion)
It might seem to be a molehill at a glance to dare to define the two kinds of assertions; however, readers will know that the
two are at any price necessary in order to make discussions clearer by avoiding the half-and-half standpoint.

[20] Alice 6(p.53) (unknown box)
What is pointed out by Dr. Rabbit is not the vulnerability of the theory but what should be said to be the proof of its
expansivity.

Above confusions and wonders of Alice and suggestions of Dr. Rabbit are also the ventilation of philosophical background which
we have for the whole of this paper.
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27.4 Decision Theory as Natural Science
Almost all decision theories that have been made thus far by many researchers are discussed as mathematical subjects of study;
however, in this paper we take a hold on “decision” as a subject of study in natural science. Here, it should not be forgot that
the truth of mathematics lies in mathematics itself and the truth of physics lies in physics itself. Originally, no relation exists
between the two truths; if that helps, a part of physicists sometimes refer to the term “mathematics” as “arithmetic”. For
this reason we should cast our mind back to the apothegm of Einstein that was quoted in the title page of the paper, “As far
as the lows of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.”
Throughout the whole of the present paper, this philosophy is reflected on the following point:

[23] Finite planning horizon (see Remark 7.1.2(p.33) )
A decision process with the infinite planning horizon is a product of fantasy created by mathematicians, which does not
exist in the real world at all; for this reason, all of decision processes treated in the present paper are, right down the line,
of finite planning horizon.

267



268



Chapter 28

Future Studies

28.1 Recall-Model with P-mechanism
In Part 4(p.219) we tried the application of the integration theory to the recall-model with R-mechanism in which it suffices to
memorize only the best of prices once rejected. However, in the recall-model with P-mechanism we will confront the difficult
problem “Should which of prices once rejected be memorized ?”. It remains as a subject of future study how to tackle this
difficulty.

28.2 Overall Re-examination
We demonstrated that the introduction of the optimal initiating time inevitably leads us to “deadline-falling •dd ” (see Sec-
tion 7.2.4.7(p.36) ), which is not a rare case but a phenomenon which is very often possible (see Table 21.1.1(p.218) ). Moreover, we
also pointed out that this phenomenon might occur not only in the decision processes in this paper but also in more general-
ized decision processes such as Markovian decision processes [23,Howard,1960][0528] (see Section A5(p.291) ). This tells to us the
necessity of the overall re-examination for the whole of conventional discussions in which the concept of the optimal initiating
time has not been taken into account at all.

28.3 Different Variations of Basic Models
In Section 4.5(p.16) we showed the 10 variations of the basic models of asset trading problems. Since each variation has the 2
kinds of models (s-E-model and s-A-model), it follows that the 20 = 10 × 2 variations can be considered. Moreover, adding the
two models (model with terminal quitting penalty and model with intervening quitting penalty) to each of these variations, it
follows that we have in all the 40 = 20× 2 variations. Furthermore, since each variation has R-model and P-model, it eventually
follows that 80 = 40 × 2 variations can be defined. Additionally, since each conditions for each of these variations can be
independently specified, we can propose different mixed variations; for example

◦ Model with several search areas and limited search budget

◦ Model with uncertain deadline and mechanism switching

◦ Model with limited search budget, uncertain deadline, and mechanism switching

◦ Model with several search areas, limited search budget, uncertain deadline, and mechanism switching

◦ Model with recall, several search areas, limited search budget, uncertain deadline, and mechanism switching

◦ Model with uncertain recall, uncertain deadline, and mechanism switching
...

Accordingly, variations that can be tackled with amounts to an astronomical number. In addition to what were stated above,
we can add discussions involved with the optimal initiating time OIT. Taking into consideration all variations stated above, we
believe that our integration theory will become a strong tools to tackle the vast amount of these variations—analyzing these
variations without this theory will be almost beyond the realm of possibility.
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A1 Direct Proof of Underlying Functions of Type R
A1.1 A {T̃R }
For convenience of reference, below let us copy Lemma 11.6.1(p.66) .

Lemma A1.1 (A {T̃R }) For any F ∈ F :

(a) T̃ (x) is continuous on (−∞,∞).
(b) T̃ (x) is nonincreasing on (−∞,∞).
(c) T̃ (x) is strictly decreasing on [a,∞).
(d) T̃ (x) + x is nondecreasing on (−∞,∞).
(e) T̃ (x) + x strictly increasing on (−∞, b].
(f) T̃ (x) = µ− x on [b,∞) and T̃ (x) < µ− x on (−∞, b).
(g) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].
(h) T̃ (x) ≤ min{0, µ− x} on x ∈ (−∞,∞).
(i) T̃ (0) = 0 if a > 0 and T̃ (0) = µ if b < 0.
(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.
(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.
(l) If x > y and b > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβµ+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.
(n) b > µ.

Proof First, for any x and y let us prove the following two inequalities:

−(x− y)F (y) ≥ T̃ (x)− T̃ (y) ≥ −(x− y)F (x) · · · ((1)),

(x− y)(1− F (y)) ≥ T̃ (x) + x− T̃ (y)− y ≥ (x− y)(1− F (x)) · · · ((2)).

Note here that T̃ (x) defined by (5.1.11(p.17) ) can be rewritten as T̃ (x) = E[(ξ − x)I(ξ < x)] for any x.† Then, for any x and

y let T̃ (x, y)
def
= E[(ξ − x)I(ξ ≤ y)]. Since 0 ≤ I(ξ ≤ y) ≤ 1, min{ξ − x, 0} ≤ 0, and min{ξ − x, 0} ≤ ξ − x, multiplying the

both-sides of I(ξ ≤ y) ≤ 1 by min{ξ − x, 0} leads to min{ξ − x, 0} = min{ξ − x, 0} × 1 ≤ min{ξ − x, 0}I(ξ > y) and then
multiplying the both-sides of min{ξ− x, 0} ≤ ξ− y by I(ξ > y) leads to min{ξ− x, 0}I(ξ > y) ≤ (ξ− x)I(ξ > y). Hence, since
min{ξ − x, 0} ≤ (ξ − x)I(ξ > y), from (5.1.11) we have T̃ (x) ≤ E[(ξ − x)I(ξ > y)] = T̃ (x, y). Accordingly, for any x and y we
have

T̃ (x)− T̃ (y) ≤ T̃ (x, y)− T̃ (y) = E[(ξ − x)I(ξ ≤ y)]− E[(ξ − y)I(ξ ≤ y)] = −(x− y)E[I(ξ ≤ y)].

In addition, since

E[I(ξ ≤ y)] =
∫∞
−∞ I(ξ ≤ y)f(ξ)dξ =

∫ y+

−∞ 1× f(ξ)dξ +
∫∞
y− 0× f(ξ)dξ =

∫ y+

−∞ f(ξ)dξ = F (y)

for any y, we have T̃ (x)− T̃ (y) ≤ −(x− y)F (y) for any x and y, hence the former half of (1) is true. Multiplying both sides of
the inequality by −1 leads to T̃ (y)− T̃ (x) ≥ (x− y)F (y) = −(y − x)F (y), and then interchanging the notations x and y yields
T̃ (x)− T̃ (y) ≥ −(x− y)F (x), hence the latter half of (1) is true. (2) is immediate from adding x− y to the both-sides of (1) .
Let us note here that T̃ (x) defined by (5.1.11) can be rewritten as

T̃ (x) = E[min{ξ − x, 0}I(b ≥ ξ)] + E[min{ξ − x, 0}I(ξ > b)]. · · · ((3))

= E[min{ξ − x, 0}I(ξ ≥ a)] + E[min{ξ − x, 0}I(a > ξ)]. · · · ((4)).

(a,b) Immediate from the fact that min{ξ − x, 0} is continuous and nonincreasing in x ∈ (−∞,∞) for any given ξ.

(c) Let x > y > a. Then, since −(x − y) < 0 and F (y) > 0 due to (2.1.2 (2,3) (p.8) ), we have −(x − y)F (y) < 0, hence
0 > T̃ (x)− T̃ (y) from (1) , i.e., T̃ (y) > T̃ (x), so T̃ (x) is strictly decreasing on (a,∞) · · · ((5)). Suppose T̃ (a) = T̃ (x) for any x > a,

hence x − a > 0. Then, for any sufficiently small ε > 0 such that x − a > 2ε > 0 we have a < a + ε < x − ε < x, hence
T̃ (a) = T̃ (x) < T̃ (a+ε) ≤ T̃ (a) from (5) and (b), which is a contradiction. Thus it must be that T̃ (a) ̸= T̃ (x) for any x > a, i.e.,
T̃ (a) > T̃ (x) for any x > a or T̃ (a) < T̃ (x) for any x > a. Since the latter is impossible due to (b), it follows that T̃ (a) > T̃ (x)
for any x > a, hence together with (5) it eventually follows that T̃ (x) is strictly decreasing on [a,∞) instead of (a,∞).

(d) Evident from the fact that T̃ (x) + x = E[min{ξ, x}] from (5.1.11) and that min{ξ, x} is nondecreasing in x for any ξ.

(e) Let b > x > y, hence F (x) < 1 due to (2.1.2 (1,2) (p.8) ). Then, since (x− y)(1− F (x)) > 0, we have T̃ (x) + x > T̃ (y) + y
from (2) , i.e., T̃ (x) + x is strictly increasing on (−∞, b) · · · ((6)). Suppose T̃ (b) + b = T̃ (x) + x for any x < b. Then, for any

sufficiently small ε > 0 such that b − x > ε we have x < x + ε < b, hence T̃ (b) + b = T̃ (x) + x < T̃ (x + ε) + x + ε ≤ T̃ (b) + b
due to (6) and (d), which is a contradiction. Thus, T̃ (x) + x ̸= T̃ (b) + b for x < b, i.e., T̃ (x) + x > T̃ (b) + b for x < b or
T̃ (x) + x < T̃ (b) + b for x < b. Since the former is impossible due to (d), it must be that T̃ (x) + x < T̃ (b) + b for x < b, hence,
together with (6) it follows that T̃ (x) + x is strictly increasing on (−∞, b].

(f) Let x ≥ b. If b ≥ ξ, then x ≥ ξ, hence min{ξ − x, 0} = ξ − x, and if ξ > b, then f(ξ) = 0 due to (2.1.4 (3) (p.8) ). Thus,
from (3) we have T̃ (x) = E[(ξ − x)I(b ≥ ξ)] + 0 = E[(ξ − x)I(b ≥ ξ)] + E[(ξ − x)I(ξ > b)] = E[(ξ − x)(I(b ≥ ξ) + I(ξ >

†In general, if a given statement S is true, then I(S) = 1, or else I(S) = 0.

271



b))] = E[ξ − x] = µ − x,† hence the former half is true. Then, since T̃ (b) = µ − b or equivalently T̃ (b) + b = µ, if b > x, from
(e) we have T̃ (x) + x < T̃ (b) + b = µ, hence T̃ (x) < µ− x, so the latter half is true.

(g) Let a ≥ x. If ξ ≥ a, then since ξ ≥ x, we have min{ξ− x, 0} = 0 and if a > ξ, then since f(ξ) = 0 due to (2.1.4 (1) (p.8) ),
we have E[min{ξ−x, 0}I(a > ξ)] = 0. Accordingly, we have T̃ (x) = 0 from (4) , hence the latter half is true. Let x > a. Then,
since T̃ (x) < T̃ (a) from (c) and since T̃ (a) = 0 from the fact stated just above, we have T̃ (x) < 0 for x > a, hence the former
half is true.

(h) From (f) we have T̃ (x) ≤ µ−x for any x and from (g) we have T̃ (x) ≤ 0 for any x, thus it follows that T̃ (x) ≤ min{0, µ−x}
for any x.

(i) From (5.1.11(p.17) ) we have T̃ (0) = E[min{ξ, 0}] = E[min{ξ, 0}I(a ≤ ξ ≤ b)]. If a > 0, then min{ξ, 0}I(a ≤ ξ ≤ b) =
min{ξ, 0}I(0 < a ≤ ξ ≤ b) = 0 × I(0 < a ≤ ξ ≤ b) = 0, hence T̃ (0) = E[0] = 0, and if b < 0, then min{ξ, 0}I(a ≤ ξ ≤ b) =
min{ξ, 0} × I(a ≤ ξ ≤ b < 0) = ξ × I(a ≤ ξ ≤ b < 0) = ξ, hence T̃ (0) = E[ξ] = µ.

(j) If β = 1, then βT̃ (x) + x = T̃ (x) + x, hence the assertion is true from (d).

(k) Since βT̃ (x) + x = β(T̃ (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (d).

(l) Let x > y and b > y. If x ≥ b, then T̃ (x) + x ≥ T̃ (b) + b > T̃ (y) + y due to (d,e), and if b > x, then b > x > y, hence
T̃ (x) + x > T̃ (y) + y due to (e).

(m) From (5.1.11(p.17) ) we have

λβT̃ (λβµ+ s) + s = λβE[min{ξ − λβµ− s, 0}] + s

= E[min{λβξ − (λβ)2µ− λβs, 0}] + s

= E[min{λβξ − (λβ)2µ+ (1− λβ)s, s}],

which is nondecreasing in s and strictly increasing in s if λβ < 1.

(n) Evident from (2.1.3(p.8) ).

A1.2 A {L̃R }, A {K̃R }, A {L̃R }, and κ̃R

From (5.1.13(p.17) ) and (5.1.14) and from Lemma A1.1(f) we obtain, noting (9.2.1(p.42) ),

L̃ (x)

{
= λβµ+ s− λβx on [b,−∞) · · · (1),
< λβµ+ s− λβx on (−∞, b) · · · (2),

(A 1.1)

K̃ (x)

{
= λβµ+ s− δx on [b,∞) · · · (1),
< λβµ+ s− δx on (−∞, b) · · · (2).

(A 1.2)

In addition, from Lemma A1.1(g) we have

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(A 1.3)

hence we obtain

K̃ (x) + x ≤ βx+ s on (−∞,∞). (A 1.4)

Then, from (A1.2 (1)) and (A 1.3 (2)) we get

K̃ (x) + x =

{
λβµ+ s+ (1− λ)βx on [b,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(A 1.5)

Since K̃ (x) = L̃ (x)− (1− β)x from (5.1.14) and (5.1.13), if x
L̃ and x

K̃ exist, then

K̃ (xL̃ ) = −(1− β) xL̃ · · · (1), L̃ (xK̃ ) = (1− β) xK̃ · · · (2). (A 1.6)

Lemma A1.2 (A {L̃R })

(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβµ+ s)/λβ ≥ (<) b ⇔ x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b.

†I(b ≥ ξ) + I(ξ > b) = 1.
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Proof (a-c) Immediate from (5.1.13(p.17) ) and Lemma A1.1(a-c).

(d) Let s = 0. Then, since L̃ (x) = λβT̃ (x), from Lemma A1.1(g) we have L̃ (x) = 0 for a ≥ x and L̃ (x) < 0 for x > a, hence
x
L̃ = a by the definition of x

L̃ (see Section 5.2(p.19) (b)), so x
L̃ < (≥) x ⇒ L̃ (x) < (=) 0. The inverse is true by contraposition.

In addition, since L̃ (x) = 0 ⇒ L̃ (x) ≥ 0, we have L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

(e1) From (A1.1 (1)) and due to λ > 0 and β > 0 we have L̃ (x) < 0 for a sufficiently large x > 0 such that x ≥ b. In
addition, we have L̃ (a) = λβT̃ (a) + s = s > 0 from Lemma A1.1(g). Hence, from (a,c) it follows that x

L̃ uniquely exists. The
inequality x

L̃ > a is immediate from L̃ (a) > 0 and (c). The latter half is evident.

(e2) If (λβµ + s)/λβ ≥ (<) b, from (A1.1) we have L̃ ((λβµ + s)/λβ) = (<) λβµ + s − λβ(λβµ + s)/λβ = 0, hence
x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b from (e1).

Corollary A1.1 (A {L̃R})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Proof (a) Clearly x
L̃ < (≥) x⇒ L̃ (x) < (≥) 0 from Lemma A1.2(d,e1). The inverse holds by contraposition.

(b) Since x
L̃ < (≥) x ⇒ L̃ (x) < (≥) 0 due to (a) and since clearly L̃ (x) < (≥) 0 ⇒ L̃ (x) ≤ (≥) 0, we have x

L̃ < (≥) x ⇒
L̃ (x) ≤ (≥) 0. In addition, if x

L̃ = x, then L̃ (x) = L̃ (xL̃ ) = 0 ≤ 0 or equivalently x
L̃ = x ⇒ L̃ (x) ≤ 0, hence it eventually

follows that x
L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Lemma A1.3 (A {K̃R })
(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K̃ (x) + x is strictly increasing on (−∞, b].

(h) If x > y and b > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

2. (λβµ+ s)/δ ≥ (<) b ⇔ x
K̃ = (<) (λβµ+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

Proof (a-c) Immediate from (5.1.14(p.17) ) and Lemma A1.1(a-c).

(d) Immediate from (5.1.14) and Lemma A1.1(b).

(e) From (5.1.14) we have

K̃ (x) + x = λβT̃ (x) + βx+ s = λβ(T̃ (x) + x) + (1− λ)βx+ s · · · ((1)),

hence the assertion holds from Lemma A1.1(d).

(f) Obvious from (1) and Lemma A1.1(d).

(g) Clearly from (1) and Lemma A1.1(e).

(h) Let x > y and b > y. If x ≥ b, then K̃ (x) + x ≥ K̃ (b) + b > K̃ (y) + y due to (e,g), and if b > x, then b > x > y, hence
K̃ (x) + x > K̃ (y) + y due to (g). Thus, whether x ≥ b or b > x, we have K̃ (x) + x > K̃ (y) + y

(i) Let β = 1 and s = 0. Then, since K̃ (x) = λT̃ (x) due to (5.1.14(p.17) ), from Lemma A1.1(g) we have K̃ (x) = 0 for a ≥ x
and K̃ (x) < 0 for x > a, so x

K̃ = a by the definition of x
K̃ (see Section 5.2(p.19) (b)). Hence x

K̃ < (≥) x⇒ K̃ (x) < (=) 0. The
inverse holds by contraposition. In addition, since K̃ (x) = 0 ⇒ K̃ (x) ≥ 0, we have K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

(j1) First see (A 1.3 (2)). Then, if β = 1, then s > 0, hence K̃ (x) = s > 0 for any x ≤ a and if β < 1, then K̃ (x) > 0 for any
sufficiently small x < 0 such that x ≤ a. Hence, whether β = 1 or β < 1, we have K̃ (x) > 0 for any sufficiently small x. Next,
for any sufficiently large x > 0 such that x ≥ b, from (A1.2 (1)) we have K̃ (x) < 0, whether β = or β < 1, since δ > 0 due
to (9.2.2 (1) (p.42) ). Hence, it follows that there exists the solution x

K̃ whether β = or β < 1. Let β < 1. Then, the solution is
unique due to (d). Let β = 1, hence s > 0. Then, since K̃ (a) = s > 0 from (A1.3 (2)), we have x

K̃ > a, hence K̃ (x) is strictly
decreasing on the neighbourhood of x = x

K̃ due to (c), implying that the solution x
K̃ is unique. Therefore, whether β = or

β < 1, the solution is unique. Thus the latter half is immediate.

(j2) Let (λβµ+ s)/δ ≥ (<) b. Then, from (A1.2 (1(2))) we have K̃ ((λβµ+ s)/δ) = (<) λβµ+ s− δ(λβµ+ s)/δ = 0, hence
x
K̃ = (<) (λβµ+ s)/δ due to (j1). The inverse is true by contraposition.

(j3) If κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0 from (5.1.17(p.17) ), hence x
K̃ < (= (>)) 0 from (j1).
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Corollary A1.2 (A {K̃R})
(a) x

K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.
(b) x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Proof (a) Clearly x
K̃ < (≥) x⇒ K̃ (x) < (≥) 0 due to Lemma A1.3(i,j1). The inverse holds by contraposition.

(b) Since x
K̃ < (≥) x ⇒ K̃ (x) < (≥) 0 due to (a) and since K̃ (x) < (≥) 0 ⇒ K̃ (x) ≤ (≥) 0, we have x

K̃ < (≥) x ⇒
K̃ (x) ≤ (≥) 0. In addition, if x

K̃ = x, then K̃ (x) = K̃ ( xK̃ ) = 0 ≤ 0, hence it eventually follows that x
K̃ ≤ (≥) x ⇒

K̃ (x) ≤ (≥) 0.

Lemma A1.4 (A {L̃R /K̃R })
(a) Let β = 1 and s = 0. Then x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (>)) 0.

Proof (a) If β = 1 and s = 0, then x
L̃ = a from Lemma A1.2(d) and x

K̃ = a from
Lemma A1.3(i), hence x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then K̃ (xL̃ ) = 0 from (A1.6 (1)), hence x
K̃ = x

L̃ from Lemma A1.3(j1).

(c) Let β < 1 and s = 0. Then x
L̃ = a · · · ((1)) from Lemma A1.2(d). Suppose a < 0. Then, since x

L̃ < 0, we have

K̃ (xL̃ ) > 0 from (A1.6 (1)), hence x
L̃ < x

K̃ from Lemma A1.3(j1). Furthermore, from (5.1.16(p.17) ) and (5.1.17(p.17) ) we have
K̃ (0) = λβT̃ (0)+s = λβT̃ (0) < 0 due to Lemma A1.1(g), hence x

K̃ < 0 from Lemma A1.3(j1). Suppose a = (>) 0. Then, since
x
L̃ = (>) 0 from (1) , we have K̃ (xL̃ ) = (<) 0 from (A1.6 (1)), thus x

L̃ = (>) x
K̃ from Lemma A1.3(j1). Furthermore, from

(5.1.16(p.17) ) and (5.1.17(p.17) ) we have K̃ (0) = λβT̃ (0) = (=) 0 due to Lemma A1.1(g), hence x
K̃ = (=) 0 from Lemma A1.3(j1).

(d) Let β < 1 and s > 0. Then, from (5.1.16(p.17) ) and (5.1.17(p.17) ), if κ̃ < (= (>)) 0, we have K̃ (0) < (= (>)) 0, thus
x
K̃ < (= (>)) 0 from Lemma A1.3(j1). Accordingly L̃ (xK̃ ) < (= (>)) 0 from (A1.6 (2)), hence x

L̃ < (= (>)) x
K̃ from Lemma A1.2(e1).

Lemma A1.5 (A {L̃R })
(a) L̃ (s) is nondecreasing in s.

(b) If λβ < 1, then L̃ (s) is strictly increasing in s.

(c) Let λβµ ≤ a.

1. x
L̃ ≥ λβµ+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβµ+ s.

(d) Let λβµ > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβµ+ s.

Proof (a,b) From (5.1.15(p.17) ) and (5.1.13(p.17) ) we have L̃ (s) = λβT̃ (λβµ+s)+s, hence the assertion holds from Lemma A1.1(m).

(c) Let λβµ ≤ a. Then, from (5.1.15(p.17) ) and (5.1.13(p.17) ) we have L̃ (0) = L̃ (λβµ) = λβT̃ (λβµ) = 0 · · · ((1)) due to

Lemma A1.1(g).

(c1) Since s ≥ 0, from (a) we have L̃ (s) ≥ L̃ (0) = 0 due to (1) or equivalently L̃ (λβµ + s) ≥ 0 from (5.1.15(p.17) ), hence
x
L̃ ≥ λβµ+ s from Corollary A 1.1(a).

(c2) Let s > 0 and λβ < 1. Then, from (b) we have L̃ (s) > L̃ (0) = 0 due to (1) or equivalently L̃ (λβµ + s) > 0 from
(5.1.15), hence x

L̃ > λβµ+ s from Lemma A1.2(e1).

(d) Let λβµ > a. From (5.1.15(p.17) ) we have L̃ (0) = λβT̃ (λβµ) < 0 due to Lemma A1.1(g). Noting (A 1.1 (1)), for any
sufficiently large s > 0 such that λβµ + s ≥ b and λβµ + s > 0 we have L̃ (s) = L̃ (λβµ + s) = λβµ + s − λβ(λβµ + s) =
(1− λβ)(λβµ+ s) ≥ 0. Accordingly, due to (a) it follows that there exists the solution sL̃ > 0 of L̃ (s) = 0. Then L̃ (s) < 0 for
s < sL̃ and L̃ (s) ≥ 0 for s ≥ sL̃ or equivalently L̃ (λβµ + s) < 0 for s < sL̃ and L̃ (λβµ + s) ≥ 0 for s ≥ sL̃ . Hence, from
Corollary A 1.1(a) we get x

L̃ < λβµ+ s for s < sL̃ and x
L̃ ≥ λβµ+ s for s ≥ sL̃ .

Lemma A1.6 (κ̃R) We have:

(a) κ̃ = s if a > 0 and κ̃ = λβµ+ s if b < 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

Proof (a) Immediate from (5.1.16(p.17) ) and Lemma A1.1(i).

(b) Let β < 1 or s > 0. Then, if κ̃ < (= (>)) 0, we have K̃ (0) < (= (>)) 0 from (5.1.17(p.17) ), hence x
K̃ < (= (>)) 0 from

Lemma A1.3(j3). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.
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A2 Direct Proof of Underlying Functions of Type P
A2.1 A {TP }
For convenience of reference, below let us copy Lemma 12.2.1(p.77) .

Lemma A2.1 (A {TP }) For any F ∈ F we have:

(a) T (x) is continuous on (−∞,∞).
(b) T (x) is nonincreasing on (−∞,∞).
(c) T (x) is strictly decreasing on (−∞, b].
(d) T (x) + x is nondecreasing on (−∞,∞).
(e) T (x) + x is strictly increasing on [a⋆,∞).
(f) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞).
(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).
(h) T (x) ≥ max{0, a− x} on (−∞,∞).
(i) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0.
(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.
(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.
(l) If x < y and a⋆ < y, then T (x) + x < T (y) + y.

(m) λβT (λβa− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1.
(n) a⋆ < a.

A2.2 A {LP }, A {KP }, A {LP }, and κP

Noting Lemma A2.1(f), from (5.1.20(p.18) ) and (5.1.21) we obtain

L (x)

{
= λβa− s− λβx on (−∞, a⋆] · · · (1),
> λβa− s− λβx on (a⋆,∞) · · · (2),

(A 2.1)

K (x)

{
= λβa− s− δx on (−∞, a⋆] · · · (1),
> λβa− s− δx on (a⋆,∞) · · · (2).

(A 2.2)

In addition, from (5.1.21(p.18) ) and Lemma A2.1(g) we have

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),

= −(1− β)x− s on [b,∞) · · · (2),
(A 2.3)

from which we obtain
K (x) + x ≥ βx− s on (−∞,∞). (A 2.4)

Then, from (A2.2 (1)) and (A 2.3 (2)) we get

K (x) + x =

{
λβa− s+ (1− λ)βx on (−∞, a⋆] · · · (1),
βx− s on [b,∞) · · · (2).

(A 2.5)

Since K (x) = L (x)− (1− β)x from (5.1.21) and (5.1.20), if xL and xK exist, then

K (xL) = −(1− β) xL · · · (1), L (xK) = (1− β)xK · · · (2). (A 2.6)

Lemma A2.2 (A {LP })
(a) L (x) is continuous on (−∞,∞).
(b) L (x) is nonincreasing on (−∞,∞).
(c) L (x) is strictly decreasing on (−∞, b].
(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.
2. (λβa− s)/λβ ≤ (>) a⋆ ⇔ xL = (>) (λβa− s)/λβ > (≤) a⋆.

Proof (a-c) Immediate from (5.1.20(p.18) ) and Lemma A2.1(a-c).

(d) Let s = 0. Then, since L (x) = λβT (x), we have L (x) = 0 for b ≤ x and L (x) > 0 for x < b from Lemma A2.1(g),
hence xL = b by the definition of xL (see Section 5.2(p.19) (a)), thus xL > (≤) x ⇒ L (x) > (=) 0. The inverse is true by
contraposition. In addition, since L (x) = 0 ⇒ L (x) ≤ 0, we have L (x) > (=) 0 ⇒ L (x) > (≤) 0.

(e) Let s > 0.

(e1) From (A2.1 (1)) and the assumptions of λ > 0 and β > 0 we have L (x) > 0 for a sufficiently small x < 0 such that
x ≤ a⋆. In addition, we have L (b) = λβT (b)− s = −s < 0 from Lemma A2.1(g). Hence, from (a,c) it follows that xL uniquely
exists. The inequality xL < b is immediate from L (b) < 0. The latter half is evident.

(e2) If (λβa − s)/λβ ≤ (>) a⋆, from (A2.1 (1(2))) we have L ((λβa − s)/λβ) = (>) λβa − s − λβ(λβa − s)/λβ = 0, hence
xL = (>) (λβa− s)/λβ from (e1).
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Corollary A2.1 (A {LP})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Proof (a) Clearly xL > (≤) x⇒ L (x) > (≤) 0 from Lemma A2.2(d,e2). The inverse holds by contraposition.

(b) Since xL > (≤) x ⇒ L (x) > (≤) 0 due to (a) and since L (x) > (≤) 0 ⇒ L (x) ≥ (≤) 0, we have xL > (≤) x ⇒
L (x) ≥ (≤) 0. In addition, if xL = x, then L (x) = L ( xL ) = 0 ≥ 0 or equivalently xL = x ⇒ L (x) ≥ 0, hence it even-
tually follows that xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Lemma A2.3 (A {KP })
(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on [a⋆,∞).

(h) If x < y and a⋆ < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0 ⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x⇔ K (x) > (= (<)) 0.

2. (λβa− s)/δ ≤ (>) a⋆ ⇔ xK = (>) (λβa− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

Proof (a-c) Immediate from (5.1.21(p.18) ) and Lemma A2.1(a-c).

(d) Immediate from (5.1.21(p.18) ) and Lemma A2.1(b).

(e) From (5.1.21(p.18) ) we have

K (x) + x = λβT (x) + βx− s = λβ(T (x) + x) + (1− λ)βx− s · · · ((1)),

hence the assertion holds from Lemma A2.1(d).

(f) Obvious from (1) and Lemma A2.1(d).

(g) Clearly from (1) and Lemma A2.1(e).

(h) Let x < y and a⋆ < y. If x ≤ a⋆, then K(x) + x ≤ K(a⋆) + a⋆ < K(y) + y due to (e,g), and if a⋆ < x, then a⋆ < x < y,
hence K(x) + x < K(y) + y due to (g). Thus, whether x ≤ a⋆ or a⋆ < x, we have K(x) + x < K(y) + y

(i) Let β = 1 and s = 0. Then, since K (x) = λT (x) due to (5.1.21(p.18) ), from Lemma A2.1(g) we have K (x) = 0 for b ≤ x
and K (x) > 0 for x < b, so that xK = b due to the definition in Section 5.2(p.19) (a). Hence xK > (≤) x⇒ K (x) > (=) 0. The
inverse holds by contraposition. In addition, since K (x) = 0 ⇒ K (x) ≤ 0, we have K (x) > (=) 0 ⇒ K (x) > (≤) 0.

(j) Let β < 1 or s > 0.

(j1) First see (A 2.3 (2)). If β = 1, then s > 0, hence K (x) = −s < 0 for any x ≥ b and if β < 1, then K (x) < 0 for any
sufficiently large x > 0 such that x ≥ b, hence, whether β = 1 or β < 1, we have K (x) < 0 for any sufficiently large x. Next,
for any sufficiently small x < 0 such that x ≤ a⋆, from (A2.1 (1)) we have K (x) > 0, whether β = 1 or β < 1, since δ > 0 from
(9.2.2 (1) (p.42) ). Hence, it follows that there exists the solution xK whether β = 1 or β < 1. Let β < 1. Then, the solution is
unique due to (d). Let β = 1, hence s > 0. Then, since K (b) = −s < 0 from (A2.3 (2)), we have xK < b, hence K (x) is strictly
decreasing on the neighbourhood of x = xK due to (c), implying that the solution xK is unique. Therefore, whether β < 1 or
β = 1, the solution is unique. Thus the latter half is immediate.

(j2) Let (λβa− s)/δ ≤ (>) a⋆. Then, from (A2.2 (1(2))) we have K ((λβa− s)/δ) = (>) λβa− s− δ(λβa− s)/δ = 0, hence
xK = (>) (λβa− s)/δ due to (j1). The inverse is true by contraposition.

(j3) If κ > (= (<)) 0, then K (0) > (= (<)) 0 from (5.1.24(p.18) ), hence xK > (= (<)) 0 from (j1).

Corollary A2.2 (A {KP})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Proof (a) Clearly xK > (≤) x⇒ K (x) > (≤) 0 due to Lemma A2.3(i,j1). The inverse holds by contraposition.

(b) Since xK > (≤) x ⇒ K (x) > (≤) 0 due to (a) and since K (x) > (≤) 0 ⇒ K (x) ≥ (≤) 0, we have xK > (≤) x ⇒
K (x) ≥ (≤) 0. In addition, if xK = x, then K (x) = K (xK ) = 0 ≥ 0 or equivalently xK = x ⇒ K (x) ≥ 0, hence it eventually
follows that xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.
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Lemma A2.4 (A {LP /KP })
(a) Let β = 1 and s = 0. Then xL = xK = b.

(b) Let β = 1 and s > 0. Then xL = xK .

(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇒ xL > (= (<)) xK > (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇒ xL > (= (<)) xK > (= (<)) 0.

Proof (a) If β = 1 and s = 0, then xL = b from Lemma A2.2(d) and xK = b from Lemma A2.3(i), hence xL = xK = b.

(b) Let β = 1 and s > 0. Then K (xL) = 0 from (A2.6 (1)), hence xK = xL from Lemma A2.3(j1).

(c) Let β < 1 and s = 0. Then xL = b · · · ((1)) from Lemma A2.2(d). Suppose b > 0. Then, since xL > 0, we have

K (xL) < 0 from (A2.6 (1)), hence xL > xK from Lemma A2.3(j1). Furthermore, from (5.1.24(p.18) ) and (5.1.23(p.18) ) we have
K (0) = λβT (0)−s = λβT (0) > 0 due to Lemma A2.1(g), hence xK > 0 from Lemma A2.3(j1). Suppose b = (<) 0. Then, since
xL = (<) 0 from (1) , we have K ( xL ) = (>) 0 from (A2.6 (1)), thus xL = (<) xK from Lemma A2.3(j1). Furthermore, from
(5.1.24(p.18) ) and (5.1.23(p.18) ) we have K (0) = λβT (0) = (=) 0 due to Lemma A2.1(g), hence xK = (=) 0 from Lemma A2.3(j1).

(d) Let β < 1 and s > 0. Now, from (5.1.24(p.18) ) and (5.1.23(p.18) ), if κ > (= (<)) 0, then K (0) > (= (<)) 0, thus
xK > (= (<)) 0 from Lemma A2.3(j1). Accordingly L (xK ) > (= (<)) 0 from (A2.6 (2)), hence xL > (= (<)) xK from Lemma A2.2(e1).

Lemma A2.5 (A {LP })
(a) L (s) is nonincreasing in s.

(b) If λβ < 1, then L (s) is strictly decreasing in s.

(c) Let λβa ≥ b.

1. xL ≤ λβa− s.

2. Let s > 0 and λβ < 1. Then xL < λβa− s.

(d) Let λβa < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβa− s.

Proof (a,b) From (5.1.22(p.18) ) and (5.1.20(p.18) ) we have L (s) = L (λβa − s) = λβT (λβa − s) − s, hence the assertion holds
from Lemma A2.1(m).

(c) Let λβa ≥ b. Then, from (5.1.22(p.18) ) and (5.1.20(p.18) ) we have L (0) = L (λβa) = λβT (λβa) = 0 · · · ((1)) due to

Lemma A2.1(g).

(c1) Since s ≥ 0, from (a) and (5.1.20(p.18) ) we have L (s) ≤ L (0) = 0 due to (1) or equivalently L (λβa − s) ≤ 0, hence
xL ≤ λβa− s from Corollary A 2.1(a).

(c2) Let s > 0 and λβ < 1. Then, from (b) we have L (s) < L (0) = 0 due to (1) or equivalently L (λβa − s) < 0, thus
xL < λβa− s from Lemma A2.2(e1).

(d) Let λβa < b. From (5.1.22(p.18) ) we have L (0) = λβT (λβa) > 0 due to Lemma A2.1(g). Noting (A 2.1 (1)), for any
sufficiently large s > 0 such that λβa − s ≤ a⋆ and λβa − s < 0 we have L (s) = L (λβa − s) = λβa − s − λβ(λβa − s) =
(1− λβ)(λβa− s) ≤ 0. Accordingly, due to (a) it follows that there exists the solution sL > 0 of L (s) = 0. Then L (s) > 0 for
s < sL and L (s) ≤ 0 for s ≥ sL or equivalently L (λβa − s) > 0 for s < sL and L (λβa − s) ≤ 0 for s ≥ sL . Hence, from
Corollary A 2.1(a) we get xL > λβa− s for s < sL and xL ≤ λβa− s for s ≥ sL .

Lemma A2.6 (A {κP}) We have:

(a) κ = λβa− s if a⋆ > 0 and κ = −s if b < 0.

(b) Let β < 1 or s > 0, Then κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

Proof (a) Immediate from (5.1.23(p.18) ) and Lemma A2.1(i).

(b) Let β < 1 or s > 0. Then, if κ > (= (<)) 0, we have K (0) > (= (<)) 0 from (5.1.24(p.18) ) and (5.1.23(p.18) ), hence
xK > (= (<)) 0 from Lemma A2.3(j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.
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A3 Direct Proof of Underlying Functions of T̃ype P
A3.1 A {T̃P }
Lemma A3.1

(a) Let x ≤ a. Then z̃(x) = a
(b) Let a < x. Then a < z̃(x) < x.
(c) z̃(x) ≤ b for any x.

Proof (a) Let x ≤ a. If a < z · · · (II), then x < z, hence p̃(z)(z − x) > 0 due to (5.1.41 (2) (p.19) ), and if z ≤ a · · · (I), then
p̃(z)(z − x) = 0 due to (5.1.41 (1) (p.19) ) (see Figure A 3.1 below). Hence z̃(x) = a due to Def. 5.1.2(p.19) .

-
a
•◦ x

-z ≤ a

(I)
� a < z

(II)

Figure A 3.1: Case x ≤ a

(b) Let a < x. If x ≤ z · · · (III), then p̃(z)(z− x) ≥ 0, if a < z < x · · · (II), then p̃(z)(z− x) < 0 due to (5.1.41 (2) (p.19) ), and if
z ≤ a · · · (I), then p̃(z)(z−x) = 0 due to (5.1.41 (1) (p.19) ) (see Figure A 3.2 just below). Hence, z̃(x) is given by a z on a < z < x,
i.e., a < z̃(x) < x.

-
a
•◦

x
◦• x

-z ≤ a

(I)
-� a < z < x

(II)
� x ≤ z

(III)

Figure A 3.2: Case a < x

(c) Assume that z̃(x) > b for a certain x. Then, since p̃(z̃(x)) = 1 = p̃(b) due to (5.1.42 (2) (p.19) ), from (5.1.38(p.19) ) we have
T̃ (x) = z̃(x)− x > b− x = p̃(b)(b− x) ≥ T̃ (x), which is a contradiction. Hence, it must be that z̃(x) ≤ b for any x.

Corollary A3.1 a ≤ z̃(x) ≤ b for any x.

Proof Evident from Lemma A3.1.

Lemma A3.2 p̃(z) is nondecreasing on (−∞,∞) and strictly increasing in z ∈ [a, b].

Proof The former half is immediate from (5.1.31(p.18) ). For a ≤ z′ < z ≤ b we have p̃(z) − p̃(z′) = Pr{ξ ≤ z} − Pr{ξ ≤ z′} =
Pr{z′ < ξ ≤ z} =

∫ z

z′ f(ξ)dξ > 0 (See (2.1.4 (2) (p.8) )), hence p(z) > p(z′), i.e., p(z) is strictly increasing on [a, b].

Lemma A3.3 z̃(x) is nondecreasing on (−∞,∞).

Proof From (5.1.38(p.19) ), for any x and y we have

T̃ (x) = p̃(z̃(x))(z̃(x)− x)

= p̃(z̃(x))(z̃(x)− y)− (x− y)p̃(z̃(x))

≥ T̃ (y)− (x− y)p̃(z̃(x))

= p̃(z̃(y))(z̃(y)− y)− (x− y)p̃(z̃(x))

= p̃(z̃(y))
(
z̃(y)− x+ (x− y)

)
− (x− y)p̃(z̃(x))

= p̃(z̃(y))(z̃(y)− x) + (x− y)(p̃(z̃(y))− p̃(z̃(x)))

≥ T̃ (x) + (x− y)(p̃(z̃(y))− p̃(z̃(x))).

Hence 0 ≥ (x − y)(p̃(z̃(y)) − p̃(z̃(x))). Let x > y. Then 0 ≥ p̃(z̃(y)) − p̃(z̃(x)) or equivalently p̃(z̃(x)) ≥ p̃(z̃(y)) · · · ((1)). Since

a ≤ z̃(x) ≤ b and a ≤ z̃(y) ≤ b from Corollary A 3.1, if z̃(x) < z̃(y), then p̃(z̃(x)) < p̃(z̃(y)) from Lemma A3.2, which contradicts
(1) . Hence, it must be that z̃(x) ≥ z̃(y), i.e., z̃(x) is nondecreasing in x ∈ (−∞,∞).

Lemma A3.4

(a) T̃ (x) is continuous on (−∞,∞).
(b) T̃ (x) is nonincreasing on (−∞,∞).
(c) T̃ (x) is strictly decreasing on [a,∞).
(d) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].
(e) T̃ (x) ≤ b− x on (−∞,∞).
(f) T̃ (x) + x is nondecreasing on (−∞,∞).
(g) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.
(h) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.
(i) T̃ (x) ≤ min{0, b− x} for any x ∈ (−∞,∞).
(j) λβT̃ (λβb+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.
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Proof (a,b) Immediate from the fact that p̃(z)(z−x) in (5.1.32(p.18) ) is continuous and nonincreasing in x ∈ (−∞,∞) for any
z.

(c) Let x′ > x > a. Then z̃(x) > a from Lemma A3.1(b). Accordingly, since p̃(z̃(x)) > 0 due to (5.1.41 (2)) and since
z̃(x) − x > z̃(x) − x′, from (5.1.38(p.19) ) we have T̃ (x) = p̃(z̃(x))(z̃(x) − x) > p̃(z̃(x))(z̃(x) − x′) ≥ T̃ (x′), i.e., T̃ (x) is strictly
decreasing on (a,∞) · · · ((1)). Assume T̃ (a) = T̃ (x) for a given x > a. Then, for any sufficiently small ε > 0 such that

x − a > 2ε > 0 we have a < a + ε < x − ε < x, hence T̃ (a) = T̃ (x) < T̃ (a + ε) ≤ T̃ (a) due to the strict decreasingness
shown just above and the nonincreasingness in (b), which is a contradiction. Thus, since T̃ (x) ̸= T̃ (a) for any x > a, we have
T̃ (x) < T̃ (a) for any x > a or T̃ (x) > T̃ (a) for any x > a. However, the latter is impossible due to (b), hence only the former
holds. Accordingly, it follows that T̃ (x) is strictly decreasing on [a,∞) instead of on (a,∞).

(d) Let x ≤ a. Then, since z̃(x) = a from Lemma A3.1(a), we have p̃(z̃(x)) = p̃(a) = 0 due to (5.1.41 (1)), hence
T̃ (x) = p̃(z̃(x))(z̃(x)− x) = 0 on (−∞, a]. Let x > a. Then, from (c) we have T̃ (x) < T̃ (a) = 0, i.e., T̃ (x) < 0 on (a,∞).

(e) From (5.1.32(p.18) ) and (5.1.42 (2) (p.19) ) we see that T̃ (x) ≤ p̃(b)(b− x) = b− x for any x on (−∞,∞).

(f) For x′ < x we have, from (5.1.38(p.19) ),

T̃ (x) + x = p̃(z̃(x))(z̃(x)− x) + x

= p̃(z̃(x))z̃(x) + (1− p̃(z̃(x)))x

≥ p̃(z̃(x))z̃(x) + (1− p̃(z̃(x)))x′

= p̃(z̃(x))(z̃(x)− x′) + x′ ≥ T̃ (x′) + x′,

hence it follows that T̃ (x) + x is nondecreasing in x,

(g) If β = 1, then βT̃ (x) + x = T (x) + x, hence the assertion is true from (f).

(h) Since βT̃ (x) + x = β(T̃ (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (f).

(i) Immediate from the fact that T̃ (x) ≤ b− x for any x from (e) and T̃ (x) ≤ 0 for any x from (d).

(j) From (5.1.32(p.18) ) we have

λβT̃ (λβb+ s) + s = λβminz p̃(z)(z − λβb− s) + s = minz p̃(z)(λβz − (λβ)2b− λβs) + s.

Then, for s > s′ we have

λβT̃ (λβb+ s) + s− λβT̃ (λβb+ s′)− s′

= minz p(z)(λβz − (λβ)2b− λβs)−minz p(z)(λβz − (λβ)2b− λβs′) + (s− s′)

≥ minz −p(z)λβ(s− s′) + (s− s′)†

≥ minz −(s− s′)λβ + (s− s′) (due to p(z) ≤ 1 and s− s′ > 0)

= −(s− s′)λβ + (s− s′)

= (s− s′)(1− λβ) ≥ (>) 0 if λβ ≤ (<) 1.

Hence, since λβT̃ (λβb+s)+s ≥ (>) λβT̃ (λβb+s′)+s′ if λβ ≤ (<) 1, it follows that λβT̃ (λβb+s)+s is nondecreasing (strictly
increasing) in s if λβ ≤ (<) 1.

Let us define
h̃(z) = p̃(z)(z − b)/(1− p̃(z)), z < b,

h̃⋆ = infz<b h̃(z),

¯
f = mina≤w≤b f(w) > 0 due to (2.1.4 (2) (p.8) ).

Below, for a given x let us define the following successive four assertions:

A1(x) = ⟨⟨ z̃(x) < b ⟩⟩,
A2(x) = ⟨⟨ T̃ (b, x) > T̃ (z′, x, ) for at least one z′ < b ⟩⟩,
A3(x) = ⟨⟨ b− h̃(z′) > x for at least one z′ < b ⟩⟩,
A4(x) = ⟨⟨ supz<b{b− h̃(z)} > x ⟩⟩.

Proposition A3.1 For any given x we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Proof Let T̃ (z, x)
def
= p̃(z)(z − x). Then (5.1.38(p.19) ) can be rewritten as T̃ (x) = minz T̃ (z, x) = T̃ (z̃(x), x).

1. Let A1(x) be true for any given x. Suppose T̃ (b, x) ≤ T̃ (z′, x) for all z′ < b. Then the minimum of T̃ (z, x) is attained at
z = b, i.e., z̃(x) = b (see Def. 5.1.2(p.19) ), which contradicts A1(x). Hence it must be that T̃ (b, x) > T̃ (z′, x) for at least one
z′ < b, thus A2(x) becomes true; accordingly, we have A1(x) ⇒ A2(x). Suppose A2(x) is true for any given x. Then, if
z̃(x) = b, we have T̃ (b, x) > T̃ (z′, x) ≥ T̃ (x) = T̃ (z̃(x), x) = T̃ (b, x), which is a contradiction, so z̃(x) ̸= b, hence it must be
that z̃(x) < b due to Lemma A3.1(c); accordingly, we have A2(x) ⇒ A1(x). Thus, it follows that we have A1(x) ⇔ A2(x)
for any given x.

†In general we have min a(x)−min b(x) ≥ min{a(x)− b(x)}.

279



2. Since p̃(b) = 1 from (5.1.42 (2) (p.19) ), for z′ < b (hence 1 > p̃(z′) from (5.1.42 (1))) we have

T̃ (b, x)− T̃ (z′, x)

= p̃(b)(b− x)− p̃(z′)(z′ − x)

= b− x− p̃(z′)(z′ − x)

= b− x− p̃(z′)(b− x+ z′ − b)

= b− x− p̃(z′)(b− x)− p̃(z′)(z′ − b)

= (1− p̃(z′))(b− x)− p̃(z′)(z′ − b)

= (1− p̃(z′))
(
b− x− p̃(z′)(z′ − b)/(1− p̃(z′))

)
= (1− p̃(z′))(b− x− h̃(z′))

= (1− p̃(z′))(b− h̃(z′)− x).

Accordingly, it is immediate that A2(x)⇔ A3(x) for any given x.

3. Let A3(x) be true for any given x. Then clearly A4(x) is also true, i.e., A3(x)⇒ A4(x). Let A4(x) be true for any given x.
Then evidently b− h̃(z′) > x for at least one z′ < b, hence A3(x) is true, so we have A4(x)⇒ A3(x). Accordingly, it follows
that A3(x)⇔ A4(x) for any given x.

From all the above we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Lemma A3.5

(a) −∞ < h̃⋆ < 0.

(b) x̃⋆ = b− h̃⋆ > b.

(c) x̃⋆ > (≤) x⇔ z̃(x) < (=) b.

(d) b⋆ > b.

Proof (a) For any infinitesimal ε > 0 such that a < a + ε < b we have 0 < p̃(a + ε) < 1 from (5.1.41 (2) (p.19) ) and
(5.1.42 (1) (p.19) ). Hence, h̃(a + ε) = p̃(a + ε)(a + ε − b)/(1 − p̃(a + ε)) < 0 · · · ((1)), so we see that h̃⋆ < 0 · · · ((2)). If z ≤ a · · · (I),
then p̃(z) = 0 due to (5.1.41 (1)), hence h̃(z) = 0 for z ≤ a, implying that h̃⋆ can be rewritten as h̃⋆ = infa<z<b h̃(z). Here let us
define

¯
f = infa<z<b f(ξ) > 0 (see (2.1.4 (2) (p.8) )). Assume that h̃⋆ = −∞. Then, there exists at least one z′ on a < z′ < b such

that h̃(z′) ≤ −N for any given N > 0. Hence, if the N is given by M/
¯
f with any M > 1, i.e., N = M/

¯
f , we have h̃(z′) ≤ −M/

¯
f

or equivalently p̃(z′)(z′ − b)/(1− p̃(z′)) ≤ −M/
¯
f . Hence, noting (5.1.31(p.18) ), we have

p̃(z′)(z′ − b) ≤ −(1− p̃(z′))M/
¯
f = −(1− Pr{ξ ≤ z′})M/

¯
f = −Pr{z′ < ξ}M/

¯
f · · · (∗)

where Pr{z′ < ξ} =
∫ b

z′ f(w)dw ≥
∫ b

z′ dw ×
¯
f = (b − z′)

¯
f . Accordingly, since p̃(z′)(z′ − b) ≤ −(b − z′)

¯
fM/

¯
f = (z′ − b)M , we

have p̃(z′) ≥M > 1 due to z′ − b < 0, which is a contradiction. Hence, it must follow that h̃⋆ > −∞.

(b) Since A1(x)⇒ A4(x) (see Proposition A3.1), we can rewritten (5.1.40(p.19) ) as

x̃⋆ = sup{x
∣∣ supz<b{b− h̃(z)} > x}

= supz<b{b− h̃(z)} · · · ((3))

= b− infz<b h̃(z) = b− h̃⋆ > b

due to (2) , hence (b) holds.

(c) Let x̃⋆ > x, hence supz<b{b − h̃(z)} > x from (3) , so z̃(x) < b due to A4(x) ⇒ A1(x). Let x̃⋆ ≤ x, hence supz<b{b −
h̃(z)} ≤ x from (3) , so we have supz<b{b − h̃(z)} ≤ x ⇒ z̃(x) ≥ b (consider the contraposition of A1(x) ⇔ A4(x)), hence we
obtain z̃(x) = b due to Lemma A3.1(c).

(d) First note T̃ (x) ≤ p̃(z′)(z′−x) for any x and z′. Accordingly, for any sufficiently small ε > 0 such that a+ε < b we have
T̃ (b) ≤ p̃(a+ ε)(a+ ε− b) < 0, hence, adding b to the inequality yields T̃ (b) + b < b, so T̃ (x) + x ≤ T̃ (b) + b < b for x ≤ b due to
Lemma A3.4(f). Then, if b⋆ ≤ b, we have T̃ (b⋆) + b⋆ ≤ T̃ (b) + b < b, hence from Lemma A3.4(a) we have T̃ (b⋆ + ε) + b⋆ + ε < b
for any sufficiently small ε > 0, so T̃ (b⋆ + ε) < b− (b⋆ + ε), which contradicts the definition of b⋆ (see (5.1.39(p.19) )). Therefore,
it must follow that b⋆ > b.

Lemma A3.6

(a) T̃ (x) + x is strictly increasing on (−∞, b⋆].

(b) T̃ (x) = b− x on [b⋆,∞) and T̃ (x) < b− x on (−∞, b⋆).

(c) T̃ (0) = b if b⋆ < 0 and T̃ (0) = 0 if a > 0.

(d) If x > y and b⋆ > y, then T̃ (x) + x > T̃ (y) + y.

Proof (a) From (5.1.38(p.19) ) we have

T̃ (x) + x = p̃(z̃(x))(z̃(x)− x) + x = p̃(z̃(x))z̃(x) + (1− p̃(z̃(x)))x. · · · ((1))
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◦ Let x̃⋆ > x. Then z̃(x) < b from Lemma A3.5(c), hence p̃(z̃(x)) < 1 due to (5.1.42 (1)) or equivalently 1− p̃(z̃(x)) > 0. If
x > x′, from (1) we have

T̃ (x) + x = p̃(z̃(x))z̃(x) + (1− p̃(z̃(x)))x > p̃(z̃(x))z̃(x) + (1− p̃(z̃(x)))x′ = p̃(z̃(x))(z̃(x)− x′) + x′ ≥ T̃ (x′) + x′,

i.e., T̃ (x) + x is strictly increasing on (−∞,∞), hence understandably so also on (−∞, b⋆].

◦ Let x̃⋆ ≤ x. Then z̃(x) = b from Lemma A3.5(c), hence p̃(z̃(x)) = 1 from (5.1.42 (2)), so T̃ (x) = p̃(z̃(x))(z̃(x) − x) =
b− x · · · ((2)). Suppose b⋆ > x̃⋆. Then, since b⋆ > b⋆ − 2ε > x̃⋆ for an infinitesimal ε > 0, we have b⋆ > b⋆ − ε > x̃⋆ + ε > x̃⋆

or equivalently x̃⋆ < b⋆ − ε; accordingly, due to (2) we obtain T̃ (b⋆ − ε) = b− (b⋆ − ε) · · · ((3)). Now, due to (5.1.39(p.19) ) we

have T̃ (b⋆ − ε) < b− (b⋆ − ε), which contradicts (3) . Accordingly, it must be that x̃⋆ ≥ b⋆. Let x′ < x < b⋆. Then, since
x̃⋆ > x, we have z̃(x) < b Lemma A3.5(c), hence p̃(z̃(x)) < 1 due to (5.1.42 (1)) or equivalently 1 − p̃(z̃(x)) > 0. Thus,
from (1) we have

T̃ (x) + x = p̃(z̃(x))z̃(x) + (1− p̃(z̃(x)))x > p̃(z̃(x))z̃(x) + (1− p̃(z̃(x)))x′ = p̃(z̃(x))(z̃(x)− x′) + x′ ≥ T̃ (x′) + x′,

i.e., T̃ (x) + x is strictly increasing on (−∞, b⋆), hence so also on (−∞, b⋆] for almost the same reason as in the proof of
Lemma 9.1.1(p.41) (c).

Accordingly, whether x̃⋆ > x or x̃⋆ ≤ x, it follows that T̃ (x) + x is strictly increasing on (−∞, b⋆].

(b) By the definition b⋆ (see (5.1.39(p.19) )) we have T̃ (x) < b− x for x < b⋆, i.e., T̃ (x) < b− x on (−∞, b⋆). Here note that
T̃ (x) ≤ b− x on (−∞,∞) due to Lemma A3.4(e), i.e., T̃ (x) + x ≤ b · · · ((4)) on (−∞,∞). Suppose T̃ (b⋆) + b⋆ < b. Then, for an

infinitesimal ε > 0 we have T̃ (b⋆ + ε) + b⋆ + ε < b due to Lemma A3.4(a), i.e., T̃ (b⋆ + ε) < b− (b⋆ + ε), which contradicts the
definition of b⋆ (see (5.1.39(p.19) )). Consequently, we have T̃ (b⋆)+ b⋆ = b · · · ((5)) or equivalently T̃ (b⋆) = b− b⋆. Let x > b⋆. Then,

from Lemma A3.4(f) we have T̃ (x) + x ≥ T̃ (b⋆) + b⋆ = b. From the result and (4) we have T̃ (x) + x = b, hence T̃ (x) = b − x
on (b⋆,∞). Thus, from (5) it follows that T̃ (x) = b− x also on [b⋆,∞).

(c) Let b⋆ < 0. Then, since 0 ∈ [b⋆,∞), we have T̃ (0) = b from the former half of (b). Now, we have T̃ (0) = minz p̃(z)z
from (5.1.32(p.18) ). Let a > 0. Then, if z ≤ a, we have p̃(z)z = 0 from (5.1.41 (1) (p.19) ) and if z > a (> 0), then p̃(z)z > 0 from
(5.1.41 (2)). Hence, from Def. 5.1.2(p.19) it follows that T̃ (0) = minx p̃(z)z = 0.

(d) Let x > y and b⋆ > y. If x ≥ b⋆, then T̃ (x) + x ≥ T̃ (b⋆) + b⋆ > T̃ (y) + y due to Lemma A3.4(f) and (a), and if b⋆ > x,
then b⋆ ≥ x > y, hence T̃ (x) + x > T̃ (y) + y due to (a). Thus, whether x ≥ b⋆ or b⋆ > x, we have T̃ (x) + x > T̃ (y) + y.

All the results obtained above (see Lemmas A3.1(p.278) -A 3.6) can be complied into Lemma A3.7 below.

Lemma A3.7 (A {T̃P }) For any F ∈ F we have:

(a) T̃ (x) is continuous on (−∞,∞) ← ← Lemma A3.4(a)

(b) T̃ (x) is nonincreasing on (−∞,∞) ← ← Lemma A3.4(b)

(c) T̃ (x) is strictly decreasing on [a,∞) ← ← Lemma A3.4(c)

(d) T̃ (x) + x is nondecreasing on (−∞,∞) ← ← Lemma A3.4(f)

(e) T̃ (x) + x is strictly increasing on (−∞, b⋆] ← ← Lemma A3.6(a)

(f) T̃ (x) = b− x on [b⋆,∞) and T (x) < b− x on (−∞, b⋆) ← ← Lemma A3.6(b)

(g) T̃ (x) < 0 on (a,∞) and T (x) = 0 on (−∞, a] ← ← Lemma A3.4(d)

(h) T̃ (x) ≤ min{0, b− x} on (−∞,∞) ← ← Lemma A3.4(i)

(i) T̃ (0) = b if b⋆ < 0 and T (0) = 0 if a > 0 ← ← Lemma A3.6(c)

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1 ← ← Lemma A3.4(g)

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1 ← ← Lemma A3.4(h)

(l) If x > y and b⋆ > y, then T (x) + x > T (y) + y ← ← Lemma A3.6(d)

(m) λβT̃ (λβb+ s) + s is nondecreasing in s and strictly increasing in s if λβ < 1 ← ← Lemma A3.4(j)

(n) b⋆ > b ← ← Lemma A3.5(d)

A3.2 A {L̃P }, A {K̃P }, A {L̃P }, and κ̃P

From (5.1.33(p.19) ) and (5.1.34(p.19) ) and from Lemma A3.7(f) we obtain, noting (9.2.1(p.42) ),

L̃ (x)

{
= λβb+ s− λβx on [b⋆,−∞) · · · (1),
< λβb+ s− λβx on (−∞, b⋆) · · · (2),

(A 3.1)

K̃ (x)

{
= λβb+ s− δx on [b⋆,∞) · · · (1),
< λβb+ s− δx on (−∞, b⋆) · · · (2).

(A 3.2)

In addition, from (5.1.34(p.19) ) and Lemma A3.7(g) we have

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(A 3.3)

hence we obtain

K̃ (x) + x ≤ βx+ s on (−∞,∞). (A 3.4)
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Then, from (A3.2 (1)) and (A 3.3 (2)) we get

K̃ (x) + x =

{
λβb+ s+ (1− λ)βx on [b⋆,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(A 3.5)

Since K̃ (x) = L̃ (x)− (1− β)x from (5.1.34(p.19) ) and (5.1.33(p.19) ), if x
L̃ and x

K̃ exist, then

K̃ (xL̃ ) = −(1− β) xL̃ · · · (1), L̃ (xK̃ ) = (1− β) xK̃ · · · (2). (A 3.6)

Lemma A3.8 (L̃P )

(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβb+ s)/λβ ≥ (<) b⋆ ⇔ x
L̃ = (<) (λβb+ s)/λβ < (≥) b⋆.

Proof (a-c) Immediate from (5.1.33(p.19) ) and Lemma A3.7(a-c).

(d) Let s = 0. Then, since L̃ (x) = λβT̃ (x), from Lemma A3.7(g) we have L̃ (x) = 0 for a ≥ x and L̃ (x) < 0 for x > a,
hence x

L̃ = a by definition (see Section 5.2(p.19) (b)), so x
L̃ < (≥) x ⇒ L̃ (x) < (=) 0. The inverse is true by contraposition. In

addition, since L̃ (x) = 0 ⇒ L̃ (x) ≥ 0, we have L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

(e1) From (A3.1 (1)) and the assumption of λ > 0 and β > 0 we have L̃ (x) < 0 for a sufficiently large x > 0 such that
x > b⋆. In addition, we have L̃ (a) = λβT̃ (a) + s = s > 0 from Lemma A3.7(g). Hence, from (a,c) it follows that x

L̃ uniquely
exists. The inequality x

L̃ > a is immediate from L̃ (a) > 0 and (c). The latter half is evident.

(e2) If (λβb + s)/λβ ≥ (<) b⋆, from (A3.1) we have L̃ ((λβb + s)/λβ) = (<) λβb + s − λβ(λβb + s)/λβ = 0, hence
x
L̃ = (<) (λβb+ s)/λβ from (e1).

Corollary A3.2 (L̃P )

(a) x
L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.

(b) x
L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Proof (a) Clearly x
L̃ < (≥) x⇒ L̃ (x) < (≥) 0 · · · (∗) from Lemma A3.8(d,e1). The inverse is true by contraposition.

(b) Since x
L̃ < (≥) x ⇒ L̃ (x) < (≥) 0 due to (a) and since L̃ (x) < (≥) 0 ⇒ L̃ (x) ≤ (≥) 0, we have x

L̃ < (≥) x ⇒
L̃ (x) ≤ (≥) 0. In addition, if x

L̃ = x, then L̃ (x) = L̃ (xL̃ ) = 0 ≤ 0 or equivalently x
L̃ = x ⇒ L̃ (x) ≤ 0, hence it even-

tually follows that x
L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Lemma A3.9 (K̃P )

(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly increasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on (−∞, b⋆].

(h) If x > y and b⋆ > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

2. (λβb+ s)/δ ≥ (<) b⋆ ⇔ x
K̃ = (<) (λβb+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

Proof (a-c) Evident from (5.1.34(p.19) ) and Lemma A3.7(a-c).

(d) Evident from Lemma A3.7(b) and (5.1.34(p.19) ).

(e) From (5.1.34(p.19) ) we have

K̃ (x) + x = λβT̃ (x) + βx+ s = λβ(T̃ (x) + x) + (1− λ)βx+ s · · · ((1)),

hence the assertion is immediate from Lemma A3.7(d).

(f) Evident from (1) and Lemma A3.7(d).

(g) Evident from (1) and Lemma A3.7(e).

282



(h) Let x > y and b⋆ > y. If x ≥ b⋆, then K̃ (x) + x ≥ K̃ (b⋆) + b⋆ > K̃ (y) + y due to (e,g), and if b⋆ > x, then b⋆ > x > y,
hence K̃ (x) + x > K̃ (y) + y due to (g).

(i) Let β = 1 and s = 0. Then, since K̃ (x) = λT̃ (x) due to (5.1.34(p.19) ), from Lemma A3.7(g) we have K̃ (x) = 0 for a ≥ x
and K̃ (x) < 0 for x > a, so x

K̃ = a by the definition of x
K̃ (See Section 5.2(p.19) (b)). Hence x

K̃ < (≥) x⇒ K̃ (x) < (=) 0. The
inverse is immediate by contraposition. In addition, since K̃ (x) = 0 ⇒ K̃ (x) ≥ 0, we have K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

(j1) First see (A 3.3 (2)). Then, if β = 1, then s > 0, hence K̃ (x) = s > 0 for any x ≤ a and if β < 1, then K̃ (x) > 0 for
any sufficiently small x < 0 such that x < a. Hence, whether β = 1 or β < 1, we have K̃ (x) > 0 for any sufficiently small x.
Next, for any sufficiently large x > 0 such that x ≥ b⋆, from (A3.2 (1)) we have K̃ (x) < 0 since to δ > 0 due to (9.2.2 (1) (p.42) ).
Hence, it follows that there exists the solution x

K̃ whether β = 1 or β < 1. Let β < 1. Then, the solution is unique due to (d).
Let β = 1, hence s > 0. Then, since K̃ (a) = s > 0 from (A3.3 (2)), we have x

K̃ > a, hence K̃ (x) is strictly decreasing on the
neighbourhood of x = x

K̃ due to (c), implying that the solution x
K̃ is unique. Therefore, whether β = 1 or β < 1, the solution

is unique. Thus, the latter half is immediate.

(j2) Let (λβb+ s)/δ ≥ (<) b⋆. Then, from (A3.2 (1(2))) we have K̃ ((λβb+ s)/δ) = (<) λβb+ s− δ(λβb+ s)/δ = 0, hence
x
K̃ = (<) (λβb+ s)/δ due to (j1). Its inverse is also true by contraposition.

(j3) If κ̃ < (= (>)) 0, then K̃ (0) = κ̃ < (= (>)) 0 from (5.1.36(p.19) ) and (5.1.37(p.19) ), hence x
K̃ < (= (>)) 0 from (j1).

The corollary below is used when it is not specified whether s > 0 or s = 0.

Corollary A3.3 (K̃P )

(a) x
K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.

(b) x
K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Proof (a) Clearly x
K̃ < (≥) x⇒ K̃ (x) < (≥) 0 · · · (∗) due to Lemma A3.9(i,j1). The inverse is immediate by contraposition.

(b) Since x
K̃ < (≥) x ⇒ K̃ (x) < (≥) 0 due to (a) and since K̃ (x) < (≥) 0 ⇒ K̃ (x) ≤ (≥) 0, we have x

K̃ < (≥) x ⇒
K̃ (x) ≤ (≥) 0. In addition, if x

K̃ = x, then K̃ (x) = K̃ ( xK̃ ) = 0 ≤ 0, hence it eventually follows that x
K̃ ≤ (≥) x ⇒

K̃ (x) ≤ (≥) 0.

Lemma A3.10 (L̃P/K̃P )

(a) Let β = 1 and s = 0. Then x
L̃ = x

K̃ = a.
(b) Let β = 1 and s > 0. Then x

L̃ = x
K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (=)) 0.
(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇒ x

L̃ < (= (>)) x
K̃ < (= (>)) 0.

Proof (a) If β = 1 and s = 0, then x
L̃ = a from Lemma A3.8(d) and x

K̃ = a from
Lemma A3.9(i), hence x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then K̃ (xL̃ ) = 0 from (A3.6 (1)), hence x
K̃ = x

L̃ from
Lemma A3.9(j1).

(c) Let β < 1 and s = 0. Then x
L̃ = a · · · ((1)) from Lemma A3.8(d). Suppose a < 0. Then, since x

L̃ < 0, we have

K̃ (xL̃ ) > 0 from (A3.6 (1)), hence x
K̃ > x

L̃ from Lemma A3.9(j1). Furthermore, from (5.1.37(p.19) ) and (5.1.36(p.19) ) we have
K̃ (0) = λβT̃ (0)+s = λβT̃ (0) < 0 due to Lemma A3.7(g), hence x

K̃ < 0 from Lemma A3.9(j1). Suppose a = (>) 0. Then, since
x
L̃ = (>) 0 from (1) , we have K̃ (xL̃ ) = (<) 0 due to (A 3.6 (1)), hence x

L̃ = (>) x
K̃ from Lemma A3.9(j1). Furthermore, from

(5.1.37(p.19) ) and (5.1.36(p.19) ) we have K̃ (0) = λβT̃ (0) = 0 due to Lemma A3.7(g), hence x
K̃ = (=) 0 from Lemma A3.9(j1).

(d) Let β < 1 and s > 0. Since κ̃ = K̃ (0) from (5.1.36(p.19) ) and (5.1.37(p.19) ), if κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0, hence
x
K̃ < (= (>)) 0 from Lemma A3.9(j1). Accordingly L̃ (xK̃ ) < (= (>)) 0 from (A3.6 (2)), so
x
L̃ < (= (>)) x

K̃ from Lemma A3.8(e1).

Lemma A3.11 (L̃P )

(a) L̃ (s) is nondecreasing in s.
(b) If λβ < 1, then L̃ (s) is strictly increasing in s.
(c) Let λβb ≤ a.

1. x
L̃ ≥ λβb+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβb+ s.

(d) Let λβb > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβb+ s.

Proof (a,b) From (5.1.35(p.19) ) and (5.1.33(p.19) ) we have L̃ (s) = λβT̃ (λβb + s) + s · · · ((1)), hence the assertions are true from

Lemma A3.7(m).

(c) Let λβµ ≤ a. Then, from (1) we have L̃ (0) = λβT̃ (λβb) = 0 · · · ((2)) due to Lemma A3.7(g).

(c1) Since s ≥ 0, from (a) we have L̃ (s) ≥ L̃ (0) = 0 due to (2) or equivalently L̃ (λβb + s) ≥ 0, hence x
L̃ ≥ βb + s from

Corollary A 3.2(a).

(c2) Let s > 0 and λβ < 1. Then, from (b) we have L̃ (s) > L̃ (0) = 0 due (2) , hence L̃ (λβb+ s) > 0, so x
L̃ > λβb+ s from

Lemma A3.8(e1).
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(d) Let λβb > a. From (1) we have L̃ (0) = λβT̃ (λβb) < 0 due to Lemma A3.7(g). Noting (A 3.1 (1)), for any sufficiently
large s > 0 such that λβb+ s ≥ b⋆ and λβb+ s > 0 we have L̃ (s) = L̃ (λβb+ s) = λβb+ s−λβ(λβb+ s) = (1−λβ)(βb+ s) ≥ 0.
Accordingly, due to (a) it follows that there exists a sL̃ > 0 where L̃ (s) < 0 for s < sL̃ and L̃ (s) ≥ 0 for s ≥ sL̃ , or
equivalently, L̃ (λβb+ s) < 0 for s < sL̃ and L̃ (λβb+ s) ≥ 0 for s ≥ sL̃ . Hence, from Corollary A 3.2(a) we have x

L̃ < βb+ s
for s < sL̃ and x

L̃ ≥ βb+ s for s ≥ sL̃ .

Lemma A3.12 (A {κ̃P}) We have:

(a) κ̃ = λβb+ s if b⋆ < 0 and κ̃ = s if a > 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

Proof (a) Immediate from (5.1.36(p.19) ) and Lemma A3.7(i).

(b) Let β < 1 or s > 0. Then, if κ̃ > (= (<)) 0, we have K̃ (0) > (= (<)) 0 from (5.1.37(p.19) ) and (5.1.36(p.19) ), hence
x
K̃ > (= (<)) 0 from Lemma A3.9(j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

A4 Direct Proof of Assertion Systems
A4.1 A {M̃:1[R][A]}
Since K̃ (x) + (1− β)x = L̃ (x) for any x due to (5.1.14(p.17) ) and (5.1.13(p.17) ), from (6.5.4(p.31) ) we have

Vt − βVt−1 = min{L̃ (Vt−1), 0} ≤ 0, t > 1. (A 4.1)
Accordingly:

1. If L̃ (Vt−1) ≤ 0, then Vt − βVt−1 = L̃ (Vt−1), hence

Vt = L̃ (Vt−1) + βVt−1 = K̃ (Vt−1) + Vt−1, t > 1. (A 4.2)

2. If L̃ (Vt−1) ≥ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.3)

Now, from (6.5.4(p.31) ) with t = 2 we have

V2 − V1 = min{K̃ (V1),−(1− β)V1}. (A 4.4)

Finally, from (A4.1) we see that

L̃ (Vt−1) < (>) 0⇒ ConducttN (SkiptN)
†. (A 4.5)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.14) (b)) and that

λ = 1 · · · (1) (see A2(p.14) ), δ = 1 · · · (2) (see (9.2.1(p.42) )). (A 4.6)

� Tom A4.1 (A {M̃:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.

Proof Let β = 1 and s = 0. Then, from (5.1.14(p.17) ) we have K̃ (x) = T̃ (x) ≤ 0 · · · ((1)) for any x due to

Lemma A1.1(p.271) (g), hence from (6.5.4(p.31) ) and (1) we have Vt = min{T̃ (Vt−1) + Vt−1, Vt−1} = min{T̃ (Vt−1), 0} + Vt−1 =
T̃ (Vt−1) + Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T̃ (V1) + V1, we have V2 ≤ V1 due to (1) . Suppose Vt−1 ≥ Vt. Then, from
Lemma A1.1(p.271) (d) we have Vt ≥ T̃ (Vt)+Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing in t > 0.

(b) Since V1 = µ from (6.5.3(p.31) ), we have V1 > a. Suppose Vt−1 > a. Then, noting b > a, from (2) we have Vt > T̃ (a)+a = a
due to Lemma A1.1(p.271) (l,g). Accordingly, by induction Vt−1 > a for t > 1, hence L̃ (Vt−1) < 0 for t > 1 due to Lemma A1.2(d),
so L̃ (Vt−1) < 0 · · · ((3)) for τ ≥ t > 1. Hence, from (A4.1) we obtain Vt− βVt−1 < 0 for τ ≥ t > 1, i.e., Vt < βVt−1 for τ ≥ t > 1.

Accordingly Vτ < βVτ−1 < · · · < βτ−1V1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1

due to (3) and (A 4.5).

Let us define

S19 ⃝
s N ⃝∗ ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}

†See Section 6.1(p.21) .
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� Tom A4.2 (A {M̃:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βµ > a.

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).
i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S19(p.284) ◦N ∗∥ is true.

Proof Let β < 1 or s > 0. Note here (A 4.6 (1,2) (p.284) ).

(a) Since x
K̃ ≤ (βµ + s)/δ = βµ + s = V1 due to Lemma A1.3(p.273) (j2) and (6.5.3(p.31) ), we have K̃ (V1) ≤ 0 due to

Lemma A1.3(p.273) (j1), hence V2 − V1 ≤ 0 from (A4.4), i.e., V1 ≥ V2. Suppose Vt−1 ≥ Vt. Then, from (6.5.4(p.31) ) and
Lemma A1.3(p.273) (e) we have Vt ≥ min{K̃ (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing
in t > 0. Consider a sufficiently small M < 0 such that βµ + s ≥ M and a ≥ M , hence V1 ≥ M . Suppose Vt−1 ≥ M . Then,
from Lemma A1.3(p.273) (e) and (A 1.5 (2) (p.272) ) we have Vt ≥ min{K̃ (M) + M,βM} = min{βM + s, βM} ≥ min{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≥ M for t > 0, i.e., Vt is lower bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (6.5.4(p.31) ) we have V = min{K̃ (V ) + V, βV }, hence 0 = min{K̃ (V ),−(1− β)βV }. Thus, since
K̃ (V ) ≥ 0, we have V ≤ x

K̃ from Lemma A1.3(p.273) (j1).

(b) Let βµ ≤ a · · · ((1)). Then x
L̃ ≥ βµ + s = V1 from Lemma A1.5(p.274) (c1) with λ = 1 and δ = 1, hence x

L̃ ≥ Vt−1 for

t > 1 from (a). Accordingly, since L̃ (Vt−1) ≥ 0 for t > 1 due to Corollary A 1.1(p.273) (a), we have L̃ (Vt−1) ≥ 0 for τ ≥ t > 1.

Hence, from (A4.3) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ . Hence
t∗τ = 1 for τ > 1 (see Preference Rule 7.2.1(p.35) ), i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c) Let βµ > a.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption “β < 1 or s > 0” in the lemma. Then (λβµ+s)/δ = µ+s · · · ((3)) due
to (2) and (A 4.6 (2)). In addition, we have x

L̃ = x
K̃ · · · ((4)) from Lemma A1.4(p.274) (b), we have K̃ (xL̃ ) = K̃ (xK̃ ) = 0 · · · ((5)).

(c1i) Let µ+ s ≥ b. Then x
L̃ = x

K̃ = µ+ s = V1 from (4) , Lemma A1.3(p.273) (j2), (3) , and (6.5.3(p.31) ). Accordingly, since
x
L̃ ≥ Vt−1 for t > 1 from (a), we have L̃ (Vt−1) ≥ 0 for t > 1 due to Lemma A1.2(p.272) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let µ+ s < b. Then x
L̃ = x

K̃ < µ+ s = V1 < b from (4) , Lemma A1.3(p.273) (j2), and (6.5.3(p.31) ), hence b > Vt−1 for
t > 1 from (a). Suppose Vt−1 > x

L̃ , hence L̃ (Vt−1) < 0 from Lemma A1.2(p.272) (e1). Then, from (A4.2), Lemma A1.3(p.273) (g),
and (5) we have Vt > K̃ ( xL̃ ) + x

L̃ = x
L̃ . Accordingly, by induction Vt−1 > x

L̃ for t > 1, hence, L̃ (Vt−1) < 0 for t > 1 from
Lemma A1.2(p.272) (e1). Thus, for the same reason as in the proof of Tom A4.1(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConducttN
for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let a < 0 ((κ̃ < 0)) . Then x
L̃ < x

K̃ < 0 · · · ((6)) from Lemma A1.4(p.274) (c ((d))). Now, since x
K̃ ≤ βµ + s due

to Lemma A1.3(p.273) (j2) with λ = 1 and δ = 1, we have x
K̃ ≤ V1 from (6.5.3(p.31) ). Suppose x

K̃ ≤ Vt−1. Then, from
Lemma A1.3(p.273) (e) we have Vt ≥ min{K̃ ( xK̃ ) + x

K̃ , β x
K̃} = min{ xK̃ , β x

K̃} = x
K̃ due to x

K̃ < 0. Accordingly, by induction
Vt−1 ≥ x

K̃ for t > 1, hence Vt−1 > x
L̃ for t > 1 from (6) , thus L̃ (Vt−1) < 0 for t > 1 due to Corollary A 1.1(p.273) (a). Hence, for

the same reason as in the proof of Tom A4.1(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and CONDUCTtN for τ ≥ t > 1.

(c2ii) Let a = 0 ((κ̃ = 0)) . Then x
L̃ = x

K̃ · · · ((7)) from Lemma A1.4(p.274) (c ((d))).

(c2ii1) Let βµ + s ≥ b. Then, x
K̃ = βµ + s = V1 from Lemma A1.3(p.273) (j2) and (6.5.3(p.31) ). Suppose Vt−1 = x

K̃ , hence
Vt−1 = x

L̃ from (7) , thus L̃ (Vt−1) = L̃ ( xL̃ ) = 0. Then, from (A4.2) we have Vt = K̃ ( xK̃ ) + x
K̃ = x

K̃ . Accordingly, by
induction Vt−1 = x

K̃ for t > 1, hence Vt−1 = x
L̃ for t > 1 due to (7) . Then, since L̃ (Vt−1) = L̃ ( xL̃ ) = 0 for t > 1, we have

Vt = βVt−1 for t > 1 from (A4.3), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βµ + s < b. Then, since V1 < b from (6.5.3(p.31) ), we have Vt−1 < b for t > 1 due to (a). In addition, we have
x
K̃ < βµ + s = V1 from Lemma A1.3(p.273) (j2). Suppose x

K̃ < Vt−1, hence x
L̃ < Vt−1 from (7) . Then, since L̃ (Vt−1) < 0 due

to Corollary A 1.2(p.272) (e1), from (A4.2) and
Lemma A1.3(p.273) (g) we have Vt > K̃ ( xK̃ ) + x

K̃ = x
K̃ . Hence, by induction x

K̃ < Vt−1 for t > 1, thus x
L̃ < Vt−1 for t > 1

due to (7) . Accordingly, since L̃ (Vt−1) < 0 for t > 1 due to Corollary A 1.1(p.273) (a), for the same reason as in the proof of
Tom A4.1(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConductτN for τ ≥ t > 1.

(c2iii) Let a > 0 ((κ̃ > 0)) . Then x
L̃ > x

K̃ · · · ((8)) from Lemma A1.4(p.274) (c ((d))).

(c2iii1) Let βµ+ s ≥ b or sL̃ ≤ s. First, let βµ+ s ≥ b. Then, since x
K̃ = βµ+ s = V1 from Lemma A1.3(p.273) (j2), we have

x
L̃ > V1 from (8) , hence x

L̃ ≥ V1. Next, let sL̃ ≤ s. Then, since x
L̃ ≥ βµ+ s due to Lemma A1.5(p.274) (d), we have x

L̃ ≥ V1
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from (6.5.3(p.31) ). Accordingly, whether βµ + s ≥ b or sL̃ ≤ s, we have x
L̃ ≥ V1, so x

L̃ ≥ Vt−1 for t > 1 due to (a). Hence,
since L̃ (Vt−1) ≥ 0 for t > 1 from Corollary A 1.1(p.273) (a), for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for
τ > 1.

(c2iii2) Let βµ+s < b · · · ((9)) and s < sL̃ . Then, from (8) and Lemma A1.5(p.274) (d) we have x
K̃ < x

L̃ < βµ+s = V1 · · · ((10 )),
hence K̃ (V1) < 0 · · · ((11 )) from Lemma A1.3(p.273) (j1). In addition, since V1 < b due to (9) and (6.5.3(p.31) ), we have Vt−1 < b

for t > 0 from (a). Now, from (A4.4) and (11) we have V2 − V1 < 0, i.e., V2 < V1. Suppose Vt−1 > Vt. Then, from (6.5.4(p.31) )
and Lemma A1.3(p.273) (g) we have Vt > min{K̃ (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 > Vt for t > 1, i.e., Vt is
strictly decreasing in t > 0. Note that V1 > x

L̃ due to (10) , so V1 ≥ x
L̃ . Assume that Vt−1 ≥ x

L̃ for all t > 1, hence V ≥ x
L̃ .

Now, from (8) and V ≤ x
K̃ in (a) we have the contradiction of V ≤ x

K̃ < x
L̃ ≤ V . Hence, it is impossible that Vt−1 ≥ x

L̃ for
all t > 1, implying that there exists t• > 1 such that

V1 > V2 > · · · > Vt•−1 > x
L̃ ≥ Vt• > Vt•+1 > Vt•+2 > · · · , (A 4.7)

from which
Vt−1 > x

L̃ , t• ≥ t > 1, x
L̃ ≥ Vt−1, t > t•. (A 4.8)

Therefore, from Corollary A 1.1(p.273) (a) we have L̃ (Vt−1) < 0 · · · ((12 )) for t• ≥ t > 1 and L̃ (Vt−1) ≥ 0 · · · ((13 )) for t > t•.

1. Let t• ≥ τ > 1. Then, since L̃ (Vt−1) < 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of Tom A4.1(b)

we have ⃝s dOITsτ ⟨τ⟩ N for t• ≥ τ > 1 and ConducttN for τ ≥ t > 1. Hence S19(p.284) (1) is true.

2. Let τ > t•. First, let τ ≥ t > t•. Then, since L̃ (Vt−1) ≥ 0 for τ ≥ t > t• from (13) , we have Vt = βVt−1 for τ ≥ t > t• from
(A4.3), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•Vt• · · · ((15 )).

Next, let t• ≥ t > 1. Then, from (12) and (A 4.1) we have Vt − βVt−1 < 0 for t• ≥ t > 1, i.e., Vt < βVt−1 for t• ≥ t > 1,
hence

Vt• < βVt•−1 < β2Vt•−2 < · · · < βt•−1V1 · · · ((16 )).

From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•Vt• < βτ−t•+1Vt•−1 < βτ−t•+2Vt•−2 < · · · < βτ−1V1,

hence we obtain t∗τ = t• for τ > t• due to Preference Rule 7.2.1(p.35) , i.e., ⃝⃝∗ ndOITτ ⟨t•⟩ ∥ for τ > 1. In addition, we have

ConducttN for t• ≥ t > 1 due to (12) and (A 4.5). Hence S19(p.284) (2) is true.

A4.2 A {M:1[P][A]}
Since K (x) + (1− β)x = L (x) for any x due to (5.1.21(p.18) ) and (5.1.20(p.18) ), from (6.5.6(p.31) ) we have

Vt − βVt−1 = max{L (Vt−1), 0} ≥ 0, t > 1. (A 4.9)

Accordingly:

1. If L (Vt−1) ≥ 0, then Vt − βVt−1 = L (Vt−1), hence

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1, t > 1. (A 4.10)

2. If L (Vt−1) ≤ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.11)

Now, from (6.5.6(p.31) ) with t = 2 we have

V2 − V1 = max{K (V1),−(1− β)V1}. (A 4.12)

Finally, from (A4.9) we see that

L (Vt−1) > (<) 0⇒ ConducttN (SkiptN). (A 4.13)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.14) (b)) and that

λ = 1 · · · (1) (see A2(p.14) ), δ = 1 · · · (2) (see (9.2.1(p.42) )). (A 4.14)

� Tom A4.3 (A {M:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.
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Proof Let β = 1 and s = 0. Then, from (5.1.21(p.18) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to Lemma A2.1(g), hence

from (6.5.6(p.31) ) and (1) we have
Vt = max{T (Vt−1) + Vt−1, Vt−1} = max{T (Vt−1), 0}+ Vt−1 = T (Vt−1) + Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T (V1) + V1, we have V2 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from Lemma A2.1(d) we have
Vt ≤ T (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0.

(b) Since V1 = a from (6.5.5), we have V1 < b. Suppose Vt−1 < b. Then, noting a⋆ < a < b due to Lemma A2.1(p.275) (n), from
(2) we have Vt < T (b) + b = b due to Lemma A2.1(p.275) (3,g). Accordingly, by induction Vt−1 < b for t > 1, hence L (Vt−1) > 0
for t > 1 due to Lemma A2.2(d), so L (Vt−1) > 0 · · · ((3)) for τ ≥ t > 1. Hence, from (A4.9) we obtain Vt − βVt−1 > 0 for

τ ≥ t > 1, i.e., Vt > βVt−1 for τ ≥ t > 1. Accordingly Vτ > βVτ−1 > · · · > βτ−1V1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ ⟨τ⟩ N

for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.13).

Let us define

S20 ⃝
s N ⃝∗ ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
� Tom A4.4 (A {M:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.
(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βa < b.

1. Let β = 1.
i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).
i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let b = 0 ((κ = 0)).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let b < 0 ((κ < 0)).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S20(p.287) ◦N ∗∥ is true.

Proof Let β < 1 or s > 0. First see (A 4.14(p.286) )

(a) Since xK ≥ (λβa − s)/δ = βa − s = V1 due to Lemma A2.3(p.276) (j2) and (6.5.5(p.31) ), we have K (V1) ≥ 0 due to
Lemma A2.3(p.276) (j1), hence V2 − V1 ≥ 0 from (A4.12), i.e., V1 ≤ V2. Suppose Vt−1 ≤ Vt. Then, from (6.5.6(p.31) ) and
Lemma A2.3(p.276) (e) we have Vt ≤ max{K (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing
in t > 0. Consider a sufficiently large M > 0 such that βa − s ≤ M and b ≤ M , hence V1 ≤ M . Suppose Vt−1 ≤ M . Then,
from Lemma A2.3(p.276) (e) and (A 2.5 (2) (p.275) ) we have Vt ≤ max{K (M) +M,βM} = max{βM − s, βM} ≤ max{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≤ M for t > 0, i.e., Vt is upper bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (6.5.6(p.31) ) we have V = max{K (V ) + V, βV }, hence 0 = max{K (V ),−(1− β)βV }. Thus, since
K (V ) ≤ 0, we have V ≥ xK from Lemma A2.3(p.276) (j1).

(b) Let βa ≥ b · · · ((1)). Then xL ≤ βa − s = V1 from Lemma A2.5(p.277) (c1) with λ = 1 and δ = 1, hence xL ≤ Vt−1 for

t > 1 from (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 due to Corollary A 2.1(p.276) (a), we have L (Vt−1) ≤ 0 for τ ≥ t > 1.

Hence, from (A4.11(p.286) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ ,
hence t∗τ = 1 for τ > 1 due to Preference Rule 7.2.1(p.35) , i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c) Let βa < b.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption“β < 1 or s > 0” in the lemma. Then (λβa− s)/δ = a− s · · · ((3))
due to (2) and (A 4.14 (2) (p.286) ). In addition, we have xL = xK · · · ((4)) from Lemma A2.4(p.277) (b), we have K ( xL ) = K (xK ) =

0 · · · ((5)).

(c1i) Let a− s ≤ a⋆. Then xL = xK = a− s = V1 from (4) , Lemma A2.3(p.276) (j2), (3) , and (6.5.5(p.31) ). Accordingly, since
xL ≤ Vt−1 for t > 1 from (a), we have L (Vt−1) ≤ 0 for t > 1 due to Lemma A2.2(p.275) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let a−s > a⋆. Then xL = xK > a−s = V1 > a⋆ from (4) , Lemma A2.3(p.276) (j2), and (6.5.5(p.31) ), hence a⋆ < Vt−1 for
t > 1 from (a). Suppose Vt−1 < xL , hence L (Vt−1) > 0 from Lemma A2.2(p.275) (e1). Then, from (A4.10), Lemma A2.3(p.276) (g),
and (4) we have Vt < K ( xL )+ xL = K (xK )+ xL = xL . Accordingly, by induction Vt−1 < xL for t > 1, hence, L (Vt−1) > 0
for t > 1 from Lemma A2.2(p.275) (e1). Thus, for the same reason as in the proof of Tom A4.3(b) we have ⃝s dOITsτ ⟨τ⟩ N for
τ > 1 and ConducttN for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .
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(c2i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((6)) from Lemma A2.4(p.277) (c ((d))). Now, since xK ≥ βa − s due

to Lemma A2.3(p.276) (j2) with λ = 1 and δ = 1, we have xK ≥ V1 from (6.5.5(p.31) ). Suppose xK ≥ Vt−1. Then, from
Lemma A2.3(p.276) (e) we have Vt ≤ max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK > 0. Accordingly, by
induction Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (6) , thus L (Vt−1) > 0 for t > 1 due to Corollary A 2.1(p.276) (a).
Hence, for the same reason as in the proof of Tom A4.3(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and conducttN for τ ≥ t > 1.

(c2ii) Let b = 0 ((κ = 0)) . Then xL = xK · · · ((7)) from Lemma A2.4(p.277) (c ((d))).

(c2ii1) Let βa − s ≤ a⋆. Then, xK = βa − s = V1 from Lemma A2.3(p.276) (j2) and (6.5.5(p.31) ). Suppose Vt−1 = xK , hence
Vt−1 = xL from (7) , thus L (Vt−1) = L ( xL ) = 0. Then, from (A4.10) we have Vt = K (xK ) + xK = xK . Accordingly, by
induction Vt−1 = xK for t > 1, hence Vt−1 = xL for t > 1 due to (7) . Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, we have
Vt = βVt−1 for t > 1 from (A4.11), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βa−s > a⋆. Then, since V1 > a⋆, we have Vt−1 > a⋆ for t > 1 due to (a). In addition, we have xK > βa−s = V1

from Lemma A2.3(p.276) (j2) and (6.5.5(p.31) ). Suppose xK > Vt−1, hence xL > Vt−1 from (7) . Then, since L (Vt−1) > 0 due
to Corollary A 2.1(p.276) (a), from (A4.10) and Lemma A2.3(p.276) (g) we have Vt < K (xK ) + xK = xK . Hence, by induction
xK > Vt−1 for t > 1, thus xL > Vt−1 for t > 1 due to (7) . Accordingly, since L (Vt−1) > 0 for t > 1 due to Corollary A 2.1(p.276) (a),
for the same reason as in the proof of Tom A4.3(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConductτN for τ ≥ t > 1.

(c2iii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((8)) from Lemma A2.4(p.277) (c ((d))).

(c2iii1) Let βa − s ≤ a⋆ or sL ≤ s. First, let βa − s ≤ a⋆. Then, since xK = βa − s = V1 from Lemma A2.3(p.276) (j2),
we have xL < V1 from (8) , hence xL ≤ V1. Next, let sL ≤ s. Then, since xL ≤ βa − s due to Lemma A2.5(p.277) (d), we
have xL ≤ V1 and (6.5.5(p.31) ). Accordingly, whether βa − s ≤ a⋆ or sL ≤ s, we have xL ≤ V1, so xL ≤ Vt−1 for t > 1 due
to (a). Hence, since L (Vt−1) ≤ 0 for t > 1 from Corollary A 2.1(p.276) (a), for the same reason as in the proof of (b) we obtain

• dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βa − s > a⋆ · · · ((9)) and s < sL . Then, from (8) and Lemma A2.5(p.277) (b) we have xK > xL > βa − s =

V1 · · · ((10 )), hence K (V1) > 0 · · · ((11 )) from Lemma A2.3(p.276) (j1). In addition, since V1 > a⋆ due to (9) , we have Vt−1 > a⋆ for

t > 0 from (a). Now, from (A4.12) and (11) we have V2 − V1 > 0, i.e., V2 > V1. Suppose Vt−1 < Vt. Then, from (6.5.6(p.31) )
and Lemma A2.3(p.276) (g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 < Vt for t > 1, i.e., Vt is
strictly increasing in t > 0. Note that V1 < xL due to (10) . Assume that Vt−1 ≤ xL for all t > 1, hence V ≤ xL . Now, from
(8) and V ≥ xK in (a) we have the contradiction of V ≥ xK > xL ≥ V . Hence, it is impossible that Vt−1 ≤ xL for all t > 1,
implying that there exists t• > 1 such that

V1 < V2 < · · · < Vt•−1 < xL ≤ Vt• < Vt•+1 < Vt•+2 < · · · , (A 4.15)

from which
Vt−1 < xL , t• ≥ t > 1, xL ≤ Vt−1, t > t•. (A 4.16)

Therefore, from Corollary A 2.1(p.276) (a) we have L (Vt−1) > 0 · · · ((12 )) for t• ≥ t > 1 and L (Vt−1) ≤ 0 · · · ((13 )) for t > t•.

1. Let t• ≥ τ > 1. Then, since L (Vt−1) > 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of Tom A4.3(b)

we have ⃝s dOITsτ ⟨τ⟩ N for t• ≥ τ > 1 and ConducttN for τ ≥ t > 1. Hence S20(p.287) (1) is true.

2. Let τ > t•. Firstly, let τ ≥ t > t•. Then, since L (Vt−1) ≤ 0 for τ ≥ t > t• from (13) , we have Vt = βVt−1 for τ ≥ t > t• from
(A4.11), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•Vt• · · · ((15 )).

Next, let t• ≥ t > 1. Then, from (12) and (A 4.9) we have Vt − βVt−1 > 0 for t• ≥ t > 1, i.e., Vt > βVt−1 for t• ≥ t > 1,
hence

Vt• > βVt•−1 > β2Vt•−2 > · · · > βt•−1V1 · · · ((16 )).
From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•Vt• > βτ−t•+1Vt•−1 > βτ−t•+2Vt•−2 > · · · > βτ−1V1,

hence we obtain t∗τ = t• for τ > t• due to Preference Rule 7.2.1(p.35) , i.e., ⃝⃝∗ ndOITτ ⟨t•⟩ ∥ for τ > t•. In addition, we have

ConducttN for t• ≥ t > 1 due to (12) and (A 4.13). Hence S20(p.287) (2) is true.

A4.3 A {M̃:1[P][A]}
Since K̃ (x) + (1− β)x = L̃ (x) due to (5.1.34(p.19) ) and (5.1.33(p.19) ), from (6.5.8(p.31) ) we have

Vt − βVt−1 = min{L̃ (Vt−1), 0} ≤ 0, t > 1. (A 4.17)
Accordingly:

1. If L̃ (Vt−1) ≤ 0, then Vt − βVt−1 = L̃ (Vt−1), hence

Vt = L̃ (Vt−1) + βVt−1 = K̃ (Vt−1) + Vt−1, t > 1. (A 4.18)

2. If L̃ (Vt−1) ≥ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.19)
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Now, from (6.5.8(p.31) ) with t = 2 we have

V2 − V1 = min{K̃ (V1),−(1− β)V1}. (A 4.20)

Finally, from (A4.17) we see that

L̃ (Vt−1) < (>) 0⇒ ConducttN (Skipt). (A 4.21)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.14) (b)) and that
λ = 1 · · · (1) (see A2(p.14) ), δ = 1 (see (9.2.1(p.42) )). (A 4.22)

(A 4.23)
� Tom A4.5 (A {M̃:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.

Proof Let β = 1 and s = 0. Then, from (5.1.34(p.19) ) we have K̃ (x) = T̃ (x) ≤ 0 · · · ((1)) for any x due to

Lemma 13.6.1(p.89) (g), hence from (6.5.8(p.31) ) and (1) we have Vt = min{T̃ (Vt−1)+Vt−1, Vt−1} = T̃ (Vt−1)+Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T̃ (V1) + V1, we have V2 ≤ V1 due to (1) . Suppose Vt−1 ≥ Vt. Then, from
Lemma A3.7(p.281) (d) we have Vt ≥ T̃ (Vt)+Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing in t > 0.

(b) Since V1 = b from (6.5.7(p.31) ), we have V1 > a. Suppose Vt−1 > a. Then, noting b⋆ > b > a due to Lemma A3.7(p.281) (n),
from (2) we have Vt > T̃ (a) + a = a due to Lemma A3.7(p.281) (l,g). Accordingly, by induction Vt−1 > a for t > 1, hence
L̃ (Vt−1) < 0 for t > 1 due to Lemma A3.8(p.282) (d), thus L̃ (Vt−1) < 0 · · · ((3)) for τ ≥ t > 1. Hence, from (A4.17) we obtain

Vt − βVt−1 < 0 for τ ≥ t > 1, i.e., Vt < βVt−1 for τ ≥ t > 1. Accordingly Vτ < βVτ−1 < · · · < βτ−1V1, hence t∗τ = τ for τ > 1,
i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.21).

Let us define

S21 ⃝
s N ⃝∗ ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) ⃝⃝∗ ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
� Tom A4.6 (A {M̃:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βb ≤ a. Then .

(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)) .

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ > 1⟩ N where Conductτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)) .

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆ and s < sL̃ . Then S21 ◦N ∗△ is true.

Proof Let β < 1 or s > 0. First note (A 4.22 (1,2) (p.289) ).

(a) Since x
K̃ ≤ (βb + s)/δ = βb + s = V1 due to Lemma A3.9(p.282) (j2) and (6.5.7(p.31) ), we have K̃ (V1) ≤ 0 due to

Lemma A3.9(p.282) (j1), hence V2 − V1 ≤ 0 from the right side of (A 4.20), i.e., V1 ≥ V2. Suppose Vt−1 ≥ Vt. Then, from
(6.5.8(p.31) ) and Lemma A3.9(p.282) (e) we have Vt ≥ min{K̃ (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e.,
Vt is nonincreasing in t > 0. Consider a sufficiently small M < 0 such that βb + s ≥ M and a ≥ M , hence V1 ≥ M . Suppose
Vt−1 ≥ M . Then, from Lemma A3.9(p.282) (e) and (A 3.5 (2) (p.282) ) we have Vt ≥ min{K̃ (M) +M,βM} = min{βM + s, βM} ≥
min{M,M} = M due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≥M for t > 0, i.e., Vt is lower bounded in t. Accordingly Vt

converges to a finite V as t→∞. Then, from (6.5.8(p.31) ) we have V = min{K̃ (V )+V, βV }, hence 0 = min{K̃ (V ),−(1−β)βV }.
Thus, since K̃ (V ) ≥ 0, we have V ≤ x

K̃ from Lemma A3.9(p.282) (j1).

(b) Let βb ≤ a · · · ((1)). Then x
L̃ ≥ βb + s = V1 from Lemma A3.11(p.283) (c1) with λ = 1 and δ = 1, hence x

L̃ ≥ Vt−1 for

t > 1 from (a). Accordingly, since L̃ (Vt−1) ≥ 0 for t > 1 due to Corollary A 3.2(a), we have L̃ (Vt−1) ≥ 0 for τ ≥ t > 1. Hence,

from (A4.19) we have Vt = βVt−1 for τ ≥ t > 1. Thus, we have Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ , hence
t∗τ = 1 for τ > 1, i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1 due to Preference Rule 7.2.1(p.35) , i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c) Let βb > a.
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(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption “β < 1 or s > 0” in the lemma. Then, we see that (λβb+ s)/δ =

b+ s · · · ((3)) due to (2) and (A 4.22) and that x
L̃ = x

K̃ · · · ((4)) from Lemma A3.10(p.283) (b), hence K̃ (xL̃ ) = K̃ (xK̃ ) = 0 · · · ((5)).

(c1i) Let b + s ≥ b⋆. Then x
L̃ = x

K̃ = b + s = V1 from (4) , Lemma A3.9(p.282) (j2, (3) , and (6.5.7(p.31) ). Accordingly, since
x
L̃ ≥ Vt−1 for t > 1 from (a), we have L̃ (Vt−1) ≥ 0 for t > 1 due to
Lemma A3.8(p.282) (e1). Hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let b + s < b⋆. Then x
L̃ = x

K̃ < b + s = V1 < b⋆ from (4) , Lemma A3.9(p.282) (j2), and (6.5.7(p.31) ), hence b⋆ > Vt−1

for t > 1 from (a). Suppose Vt−1 > x
L̃ , hence L̃ (Vt−1) < 0 from

Lemma A3.8(p.282) (e1). Then, from (A4.18), Lemma A3.9(p.282) (g), and (5) we have Vt > K̃ ( xL̃ ) + x
L̃ = x

L̃ . Accordingly, by
induction Vt−1 > x

L̃ for t > 1, hence, L̃ (Vt−1) < 0 for t > 1 from
Lemma A3.8(p.282) (e1). Thus, for the same reason as in the proof of Tom A4.5(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and ConducttN
for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let a < 0 ((κ̃ < 0)) . Then x
L̃ < x

K̃ < 0 · · · ((6)) from Lemma A3.10(p.283) (c ((d))). Now, since x
K̃ ≤ βb + s due to

Lemma A3.9(p.282) (j2) with λ = 1 and δ = 1, we have x
K̃ ≤ V1 from (6.5.7(p.31) ). Suppose x

K̃ ≤ Vt−1. Then, from Lemma A3.9(e)
we have Vt ≥ min{K̃ ( xK̃ )+ x

K̃ , β x
K̃} = min{ xK̃ , β x

K̃} = x
K̃ due to x

K̃ < 0. Accordingly, by induction Vt−1 ≥ x
K̃ for t > 1,

hence Vt−1 > x
L̃ for t > 1 from (6) , thus L̃ (Vt−1) < 0 for t > 1 due to Corollary A 3.2(p.282) (a). Hence, for the same reason as

in the proof of Tom A4.5(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and CONDUCTtN for τ ≥ t > 1.

(c2ii) Let a = 0 ((κ̃ = 0)) . Then x
L̃ = x

K̃ · · · ((7)) from Lemma A3.10(p.283) (c ((d))).

(c2ii1) Let βb + s ≥ b⋆. Then, x
K̃ = βb + s = V1 from Lemma A3.9(p.282) (j2) and (6.5.7(p.31) ). Suppose Vt−1 = x

K̃ , hence
Vt−1 = x

L̃ from (7) , thus L̃ (Vt−1) = L̃ ( xL̃ ) = 0. Then, from (A4.18) we have Vt = K̃ ( xK̃ ) + x
K̃ = x

K̃ . Accordingly, by
induction Vt−1 = x

K̃ for t > 1, hence Vt−1 = x
L̃ for t > 1 due to (7) . Then, since L̃ (Vt−1) = L̃ ( xL̃ ) = 0 for t > 1, we have

Vt = βVt−1 for t > 1 from (A4.19), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βb + s < b⋆. Then, since V1 < b⋆ from (6.5.7(p.31) ), we have Vt−1 < b⋆ for t > 1 due to (a). In addition, we
have x

K̃ < βb+ s = V1 from Lemma A3.9(p.282) (j2). Suppose x
K̃ < Vt−1, hence x

L̃ < Vt−1 from (7) . Then, since L̃ (Vt−1) < 0
due to Corollary A 3.2(p.282) (a), from (A4.18) and Lemma A3.9(p.282) (g) we have Vt > K̃ ( xK̃ ) + x

K̃ = x
K̃ . Hence, by induction

x
K̃ < Vt−1 for t > 1, thus x

L̃ < Vt−1 for t > 1 due to (7) . Accordingly, since L̃ (Vt−1) < 0 for t > 1 due to Corollary A 3.2(p.282) (a),
for the same reason as in the proof of Tom A4.5(b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and ConducttN for τ ≥ t > 1.

(c2iii) Let a > 0 ((κ̃ > 0)) . Then x
L̃ > x

K̃ · · · ((8)) from Lemma A3.10(c ((d))).

(c2iii1) Let βb+ s ≥ b⋆ or sL̃ ≤ s. Firstly, let βb+ s ≥ b⋆. Then, since x
K̃ = βb− s = V1 from

Lemma A3.9(p.282) (j2), we have x
L̃ > V1 from (8) , hence x

L̃ ≥ V1. Next, let sL̃ ≤ s. Then, since x
L̃ ≥ βb + s due to

Lemma A3.11(p.283) (d), we have x
L̃ ≥ V1. Accordingly, whether βb + s ≥ b or sL̃ ≤ s, we have x

L̃ ≥ V1, thus x
L̃ ≥ Vt−1 for

t > 1 due to (a). Hence, since L̃ (Vt−1) ≥ 0 for t > 1 from Corollary A 3.2(p.282) (a), for the same reason as in the proof of (b) we
obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βb + s < b⋆ · · · ((9)) and s < sL̃ . Then, from (8) and Lemma A3.11(p.283) (d) we have x
K̃ < x

L̃ < βb + s =

V1 · · · ((10 )), hence K̃ (V1) < 0 · · · ((11 )) from Lemma A3.9(p.282) (j1). In addition, since V1 < b⋆ due to (9) , we have Vt−1 < b⋆

for t > 0 from (a). Now, from (A4.20) and (11) we have V2 − V1 < 0, i.e., V2 < V1. Suppose Vt−1 > Vt. Then, from
Lemma A3.9(p.282) (g) we have Vt > min{K̃ (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 > Vt for t > 1, i.e., Vt is
strictly decreasing in t > 0. Note that V1 > x

L̃ due to (10) . Assume that Vt−1 ≥ x
L̃ for all t > 1, hence V ≥ x

L̃ due to (a).
Then, from (8) and V ≤ x

K̃ in (a) we have the contradiction of V ≤ x
K̃ < x

L̃ ≤ V . Hence, it is impossible that Vt−1 ≥ x
L̃

for all t > 1, implying that there exists t• > 1 such that

V1 > V2 > · · · > Vt•−1 > x
L̃ ≥ Vt• > Vt•+1 > Vt•+2 > · · · , (A 4.24)

from which
Vt−1 > x

L̃ , t• ≥ t > 1, x
L̃ ≥ Vt−1, t > t•. (A 4.25)

Therefore, from Corollary A 3.2(p.282) (a) we have L̃ (Vt−1) < 0 · · · ((12 )) for t• ≥ t > 1 and L̃ (Vt−1) ≥ 0 · · · ((13 )) for t > t•.

1. Let t• ≥ τ > 1. Then, since L̃ (Vt−1) < 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of Tom A4.5(b)

we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and ConducttN for τ ≥ t > 1. Hence S21(p.289) (1) is true.
2. Let τ > t•. Firstly, let τ ≥ t > t•. Then, since L̃ (Vt−1) ≥ 0 for τ ≥ t > t• from (13) , we have Vt − βVt−1 = 0 for τ ≥ t > t•

from (A4.17) , i.e., Vt = βVt−1 for τ ≥ t > t•, thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•Vt• · · · ((15 )).

Next, let t• ≥ t > 1. Then, from (12) and (A 4.17) we have Vt − βVt−1 < 0 for t• ≥ t > 1, i.e., Vt < βVt−1 for t• ≥ t > 1,
hence

Vt• < βVt•−1 < β2Vt•−2 < · · · < βt•−1V1 · · · ((16 )).
From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•Vt• < βτ−t•+1Vt•−1 < βτ−t•+2Vt•−2 < · · · < βτ−1V1,

hence we obtain t∗τ = t• for τ > t• due to Preference Rule 7.2.1(p.35) , i.e., ⃝⃝∗ ndOITτ ⟨t•⟩ for τ > t•. In addition, we have

ConducttN for t• ≥ t > 1 due to (12) and (A 4.21). Hence S21(2) is true.
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A5 Optimal Initiating Time in Markovian Decision Processes
This section defines the optimal initiating time OIT in Markovian decision processes (MDP) [23,Howard,1960][0528] and discusses
its implications.

A5.1 Standard Definition of Markovian Decision Processes

To begin with, let us provide the most standard definition of Markovian decision process with a finite horizon [23,Howard][0528] [39,
Ross][0535] .

A5.1.1 Maximization MDP

Consider a finite number of points in time equally spaced on the time axis (see Figure 2.1.1(p.7) ). At each time t ≥ 0 the process
is observed to be in a state i ∈ I, called the state space. At each time t ≥ 0 in a state i an action x ∈ A(i), called the action
space. If an action x ∈ A(i) is taken at a given time t in state i ∈ I, then a reward r(i, x) can be obtained and the present state
i changes into j ∈ I at the next time t−1 with a known probability p(j|i, x). Then let us call the process the maximization MDP

for short. By vt(i) let us denote the maximum of the total expected present discounted reward gained over a given planning
horizon starting from a time t in state i. Then the following system of equations holds:

vt(i) = maxx∈A(i)

{
r(i, x) + β

∑
j∈I p(j|i, x)vt−1(j)

}
, i ∈ I, t > 0, (A 5.1)

where v0(i) is a value specified for an reason inherent for the process; in many cases, v0(i) = maxx∈A(i) r(i, x).

A5.1.2 Minimization MDP

This is the inverse of the maximization MDP where if an action x ∈ A(i) is taken at a given time t ≥ 0 in state i ∈ I, a cost r(i, x)
must be paid. Then let us call the process the minimization MDP for short. By vt(i) let us denote the minimum of the total
expected present discounted cost incurred over a given planning horizon from starting a time t in state i. Then the following
system of equations holds:

vt(i) = minx∈A(i)

{
r(i, x) + β

∑
j∈I p(j|i, x)vt−1(j)

}
, i ∈ I, t > 0, (A 5.2)

where v0(i) is a value specified for a reason inherent for the process; in many cases, v0(i) = minx∈A(i) r(i, x).

A5.2 Optimal Initiating Time

A5.2.1 Initiating State i◦

Markovian decision processes is what is already completed as a mathematical theory. However, in Concept 1(p.9) we pointed out
that an activity of human being regarding a decision process is first triggered only when its existence is recognized ; in other
words, without its recognition, human being does not take on any behavior involved with the decision process at all. Below let us
consider only iiA-case (see A2bii(p.9) ), i.e., whenever it reaches the starting time τ , you have the option whether to immediately
initiate the process or to postpone its initiation. Furthermore, let us postulate that whenever the process is initiated at a time
t, it is assumed to be always in a specified state i◦ ∈ I , called the initiating state. Then let us define

Vt
def
= vt(i

◦), t ≥ 0. (A 5.3)
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A5.2.2 Some Examples

By using some examples, below let us show that the monotonicity of the original sequence V[τ ] is not always inherited to the
β-adjusted sequence Vβ[τ ] (see Section 7.2.4.3(p.35) ). Below let:

original sequence V[τ ] → · · · · ·
β-adjusted sequence Vβ[τ ] → ◦ ◦ ◦ ◦ ◦

optimal initiating time t∗τ → •

Example 1.5.1 (maximization MDP) Suppose the original sequence V[τ ] is strictly increasing in t with

Vτ > Vτ−1 > Vτ−2 > · · · > V0 > 0.

Then, as seen in Figure A 5.1 below, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0 > 0; i.e., the monotonicity of the original
sequence V[τ ] is inherited to the β-adjusted sequence Vβ[τ ] where the optimal initiating time t∗16 = 16 (⃝⃝s ).
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·
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·
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Figure A 5.1: Inheritance of monotonicity
Example 1.5.2 (maximization MDP) Suppose the original sequence V[τ ] is strictly increasing in t with

Vτ > βVτ−1 > Vτ−2 > · · · > Vτ−t′ > 0 > Vτ−t′−1 > · · · > V0.

Then, as seen in Figure A 5.2 below, the monotonicity of the original sequence V[τ ] is inherited to its β-adjusted sequence Vβ[τ ];
however, in this example, the optimal initiating time does not change, i.e., t∗16 = 16 (⃝⃝s ).
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Figure A 5.2: Inheritance of monotonicity
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Example 1.5.3 (maximization MDP) Suppose Vt is strictly decreasing in t where

0 < Vτ < βVτ−1 < Vτ−2 < · · · < V0.

Then, as seen in Figure A 5.3 below, the monotonicity of the original sequence V[τ ] collapses in its β-adjusted sequence Vβ[τ ]

where t∗1 = 6 (⃝⃝∗ ).
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Figure A 5.3: Collapse of monotonicity

Example 1.5.4 (minimization MDP) Suppose Vt is strictly decreasing in t with

0 < Vτ < βVτ−1 < · · · < Vτ−t′ < 0 < Vτ−t′−1 < · · · < V0.

Then, as seen in Figure A 5.4 below, the monotonicity in the original sequence V[τ ] is inherited to its β-adjusted sequence Vβ[τ ]

where t∗16 = 16 (⃝⃝s ).
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Figure A 5.4: Inheritance of monotonicity

A6 Numerical Calculations
A 6.1 Numerical Example and Numerical Experiment

In general, a numerical calculation is to calculate a given expression by substitute numerical values for constants, parameters,
and variables which the expression have. In the paper we attempt to conduct numerical calculations from the following two
viewpoints. One is to reconfirm the results which have already proved, the other to confirm expectations which it is hard to
theoretically prove; Let us call the former the numerical example and the latter the numerical experiment. Throughout the
paper, in numerical calculations we use the uniform distribution function (see (A 7.5(p.296) ) and (A 7.6)).

A6.2 Calculation of Solutions xK, xL, and sL

In the numerical calculation of a given The most basic function used in numerical calculations is T -Function defined by
(5.1.1(p.17) )).model, very often it is required to calculate the solutions xK, xL, and sL (see Section 5.2(p.19) ). The following
lemma is used for the calculations.

Lemma A6.1 ( xK , xL , sL )

(a) min{a, (λβµ− s)/δ} ≤ xK ≤ max{b, 0}.
(b) min{a, (λβµ− s)/λ} ≤ xL ≤ b.
(c) 0 ≤ sL ≤ λβµ−min{a, 0}.

Proof (a) First, let x ≤ a · · · ((1)). Then, from (9.2.4 (1) (p.42) ) we have K (x) = λβµ−s−δx = δ((λβµ−s)/δ−x), hence K (x) ≥ 0

for x ≤ (λβµ− s)/δ. From this and (1) we have K (x) ≥ 0 for x ≤ min{a, (λβµ− s)/δ}, hence K (min{a, (λβµ− s)/δ}) ≥ 0.

1. Let K (min{a, (λβµ− s)/δ}) > 0. Then min{a, (λβµ− s)/δ} < xK · · · ((2)) due to Corollary 9.2.2(p.44) (a).

2. Let K (min{a, (λβµ− s)/δ}) = 0.

◦ If β = 1 and s = 0, then min{a, (λβµ− s)/δ} ≥ xK due to Lemma 9.2.2(i). Since min{a, (λβµ− s)/δ} ≤ a < b = xK ,
hence min{a, (λβµ− s)/δ} = xK .
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◦ If β < 1 or s > 0, then min{a, (λβµ− s)/δ} = xK due to Lemma 9.2.2(j1).

Accordingly min{a, (λβµ− s)/δ} = xK · · · ((3)) whether “β = 1 and s = 0” or “β < 1 or s > 0”.

Thus min{a, (λβµ− s)/δ} ≤ xK · · · ((4)) from (2) and (3) .

Next, let b ≤ x · · · ((5)). Then, from (9.2.5 (2) (p.42) ) we have K (x) ≤ 0 for 0 ≤ x. From this and (5) we have K (x) ≤ 0 for

max{b, 0} ≤ x, hence 0 ≥ K (max{b, 0}). Accordingly, due to Corollary 9.2.2(p.44) (a) we have xK ≤ max{b, 0}. From this and
(4) the assertion becomes true.

(b) First, let x ≤ a · · · ((6)). Then, from (9.2.3 (1) (p.42) ) we have L (x) = λβµ−s−λβx = λβ((λβµ−s)/λβ−x), hence L (x) ≥ 0

for x ≤ (λβµ− s)/λβ. From this and (6) we have L (x) ≥ 0 for x ≤ min{a, (λβµ− s)/λβ}, hence L (min{a, (λβµ− s)/λβ}) ≥ 0.

1. Let L (min{a, (λβµ− s)/λβ}) > 0. Then min{a, (λβµ− s)/λβ} < xL · · · ((7)) due to Corollary 9.2.1(a).

2. Let L (min{a, (λβµ− s)/λβ}) = 0.

◦ If s = 0, then min{a, (λβµ− s)/λβ} ≥ xL due to Lemma 9.2.1(d). Since min{a, (λβµ− s)/λββ} ≤ a < b = xL , hence
min{a, (λβµ− s)/λβ} = xL .

◦ If s > 0, then min{a, (λβµ− s)/λβ} = xL due to Lemma 9.2.1(e1).

Accordingly, min{a, (λβµ− s)/λβ} = xL · · · ((8)) whether s = 0 or s > 0.

Thus min{a, (λβµ− s)/λβ} ≤ xL · · · ((9)) from (7) and (8) .

Next, let b ≤ x · · · ((10 )). Then, from (5.1.3) and Lemma 9.1.1(g) we have L (x) = −s, hence 0 ≥ L (b). Accordingly, due to

Corollary 9.2.1(p.43) (a) we have xL ≤ b. From this and (9) the assertion becomes true.

(c) From (5.1.5(p.17) ) and (5.1.3) we have L (0) = λβT (λβµ) ≥ 0 · · · ((11 )) due to

Lemma 9.1.1(g). For a sufficiently large s > 0 such that λβµ− s ≤ a and λβµ− s ≤ 0 · · · ((12 )), hence s ≥ λβµ−a and s ≥ λβµ,

so s ≥ max{λβµ − a, λβµ} = λβµ + max{−a, 0} = λβµ − min{a, 0} · · · ((13 )). Then, from (5.1.5(p.17) ) and Lemma 9.1.1(f) we

have L (s) = λβT (λβµ−s)−s = λβ(µ−λβµ+s)−s = λβµ−λβ(λβµ−s)−s = (1−λβ)(λβµ−s). Hence, due to (12) we have
L (s) ≤ 0 for s ≥ λβµ −min{a, 0}, so L (λβµ −min{a, 0}) ≤ 0. From this and (11) we have L (0) ≥ 0 ≥ L (λβµ −min{a, 0}),
hence due to Lemma 9.2.4(p.44) (a) we have 0 ≤ sL ≤ λβµ−min{a, 0}.

A6.3 Calculation of Solutions x
K̃, x

L̃ , and sL̃

The following lemma is used to find the solutions x
K̃, x

L̃, and sL̃ by the numerical calculation.

Lemma A6.2 ( xK̃ , xL̃ , sL̃ )

(a) max{b, (λβµ+ s)/δ} ≥ x
K̃ ≥ min{a, 0}.

(b) max{b, (λβµ+ s)/λβ} ≥ x
L̃ ≥ a.

(c) 0 ≤ sL̃ ≤ −λβµ+max{b, 0}.

Proof First, applying the operation R to Lemma A6.1(p.293) leads to

(a) min{−â, (−λβµ̂− s)/δ ≤ − x̂K ≤ max{−b̂, 0}.
(b) min{−â, (−λβµ̂− s)/λ}β ≤ − x̂L ≤ −b̂.
(c) 0 ≤ sL ≤ −λβµ̂−min{−â, 0}.

Secondly, rearranging the above produces

(a) −max{â, (λβµ̂+ s)/δ ≤ − x̂K ≤ −min{b̂, 0}.
(b) −max{â, (λβµ̂+ s)/λ}β ≤ − x̂L ≤ −b̂.
(c) 0 ≤ sL ≤ −λβµ̂+max{â, 0}.

Thirdly, rearranging the above yields

(a) max{â, (λβµ̂+ s)/δ ≥ x̂K ≥ min{b̂, 0}.
(b) max{â, (λβµ̂+ s)/λ}β ≥ x̂L ≥ b̂.

(c) 0 ≤ sL ≤ −λβµ̂+max{â, 0}.

Next, applying the operation CR to the above yields

(a) max{b̌, (λβµ̌+ s)/δ ≥ ˇ̃xK
≥ min{ǎ, 0}.

(b) max{b̌, (λβµ̌+ s)/λ}β ≥ ˇ̃xL
≥ ǎ.

(c) 0 ≤ sˇ̃L ≤ −λβµ̌+max{b̌, 0}.

Finally, applying the operation IR to the above leads to the three inequalities in the lemma .
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A7 Others

A 7.1 Formulas

Proposition A7.1 For given sets X and Y we have

{F̌
∣∣ F ∈ X ∩ Y } = {F̌

∣∣ F ∈ X} ∩ {F̌
∣∣ F ∈ Y }. (A 7.1)

{F̌
∣∣ F ∈ X ∪ Y } = {F̌

∣∣ F ∈ X} ∪ {F̌
∣∣ F ∈ Y }. (A 7.2)

• Proof of (A 7.1) First, consider a F̌ defined by (11.1.2(p.55) ) where F ∈ F and let the F̌ ∈ {F̌
∣∣ F ∈ X ∩Y } · · · (∗). Then, for

the F corresponding to the F̌ we have F ∈ X ∩ Y or equivalently F ∈ X and F ∈ Y . Hence, for the F̌ corresponding to the F ,
clearly F̌ ∈ {F̌

∣∣ F ∈ X} and F̌ ∈ {F̌
∣∣ F ∈ Y }, thus the F̌ ∈ {F̌

∣∣ F ∈ X} ∩ {F̌
∣∣ F ∈ Y } · · · (∗∗). Accordingly (∗) ⊆ (∗∗).

Next, consider a F̌ and let F̌ ∈ {F̌
∣∣ F ∈ X}∩{F̌

∣∣ F ∈ Y } · · · (∗∗). Then, we have F̌ ∈ {F̌
∣∣ F ∈ X} and (∩) F̌ ∈ {F̌

∣∣ F ∈ Y },
hence, for F corresponding to the F̌ we have F ∈ X and (∩) F ∈ Y or equivalently F ∈ X ∩ Y . Thus, for the F̌ corresponding
to the F we have F̌ ∈ {F̌

∣∣ F ∈ X ∩ Y } · · · (∗), so that (∗∗) ⊆ (∗). Accordingly, we have (∗) = (∗∗).
• Proof of (A 7.2) Almost the same as the proof of (A 7.1) only except that the symbol ∩ changes into ∪ .

Proposition A7.2 For given sets Xk, k ∈ K = {1, 2, · · · , n}, we have

{F̌
∣∣ F ∈ ∩k∈KXk} = ∩k∈K{F̌

∣∣ F ∈ Xk}. (A 7.3)

{F̌
∣∣ F ∈ ∪k∈KXk} = ∪k∈K{F̌

∣∣ F ∈ Xk}. (A 7.4)

Proof Evident from Proposition A7.1.

A7.2 Monotonicity of Solution

Proposition A7.3 For the solution xt of a given equation gt(x) = 0 we have:

[a] Let gt(x) is nondecreasing in x for all t.

1. If gt(x) is nondecreasing in t, then xt is nonincreasing in t.

2. If gt(x) is nonincreasing in t, then xt is nondecreasing in t.

[b] Let gt(x) is nonincreasing in x for all t.

1. If gt(x) is nondecreasing in t, then xt is nondecreasing in t.

2. If gt(x) is nonincreasing in t, then xt is nonincreasing in t.

Proof Evident from figures below:

x

Case that gt(x) is nondecreasing in t ([a1])

• • •
xt′′′ xt′′← xt

′←

gt′′′ (x)
↑

gt′′ (x)

↑

gt′ (x)

0 x

Case that gt(x) is nonincreasing in t ([a2])

• • •
xt′ xt′′→ xt′′′→

gt′ (x)
↓

gt′′ (x)

↓

gt′′′ (x)

Figure A 7.1: Case that gt(x) is nondecreasing in x ([a])

0 x

Case that gt(x) is nondecreasing in t ([b1])

• • •
xt

′ → xt
′′ →xt

′′′
gt′′′ (x)↑
gt′′ (x)↑
gt′ (x)

0 x

Case that gt(x) is nonincreasing in t ([b2])

• • •
xt

′′′← xt
′′ ←xt

′
gt′ (x)↓
gt′′ (x)↓
gt′′′ (x)

Figure A 7.2: Case that gt(x) is nonincreasing in x ([b])
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A7.3 Uniform Probability Density Function

For given a and b such as −∞ < a < b <∞ let consider the uniform probability density function:

f(x) =


0, x < a,

1/(b− a), a ≤ x ≤ b,

0, b < x,

(A 7.5)

where the expectation is µ = 0.5(a+ b). Then, noting Lemma 9.1.1(p.41) (f,g), we have:

T (x) =


0.5(a+ b)− x, x < a, · · · (1),

0.5(b− x)2/(b− a), a ≤ x ≤ b, · · · (2),

0, b < x, · · · (3).

(A 7.6)

A7.4 Graphs of TR (x)

From Lemma 9.1.1(p.41) (b,f,g) it can be immediately seen that TR (x) is depicted as in (I) of the graph below. Similarly, from
Lemma 9.2.2(p.43) (b, (9.2.4 (1) (p.42) ), and (9.2.5 (2)) it can be immediately seen that KR (x) is depicted as in (II) of the graph
below.

ba

a

µ−
x

TR (x)

(I)

ba

λβµ−
s−

δx

KR (x)

(II)

−(1− β)x− s
−(1− β)b− s

Figure A 7.3: Graph of TP (x) and KP (x)

A7.5 Graph of TP (x)

From Lemma 12.2.1(p.77) (b,f,g) it can be immediately seen that TP (x) can be depicted as in the graph below.

ba

a

a⋆

a−
x

TP (x)

Figure A 7.4: Graph of TP (x)

Below let us consider the uniform distribution function. Then p(z) = 1 for z ≤ a from (5.1.28 (1) (p.18) ), p(z) =
∫ b

z
1/(b− a)dξ =

(b− z)/(b− a) for a ≤ z ≤ b, and p(z) = 0 for b ≤ z from (5.1.29 (2) (p.18) ), hence

T (z, x)
def
= p(z)(z − x) =


z − x, z ≤ a · · · ((1))
(b− z)(z − x)/(b− a), a ≤ z ≤ b · · · ((2))
0, b ≤ z · · · ((3))

where T (x) = maxz T (z, x) = T (z(x), x) · · · ((4)). Let us here define g∗(z, x) = (b− z)(z−x)/(b−a) for any x and z on (−∞,∞).

By z∗(x) let us denote z attaining the maximum of g∗(z, x) for a given x, then clearly z∗(x) = (b + x)/2 · · · ((5)). Note that

g∗(z, x) can be depicted as one of the three possible smooth curves in Figure A 7.5 below, depending on a value that z∗(x) takes
on, i.e., z∗(x) ≤ a, a ≤ z∗(x) ≤ b, and b ≤ z∗(x). Accordingly, it follows that T (x) can be depicted as one of the three possible
broken curves, each of which has the line of the angle 45◦ on z ≤ a and the horizontal line on b ≤ z.
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Figure A 7.5: Graph of g∗(z, x)
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(3) b ≤ z∗(x)

z∗(x)
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, x
)

z −
x

From (5) and Figure A 7.5 we can immediately know that

1. Let z∗(x) ≤ a, i.e., (b+x)/2 ≤ a, hence x ≤ 2a−b. Then z(x) = a · · · ((6)), hence T (x) = T (a, x) = a−x · · · ((7)) on (−∞, 2a−b]
from (1) .

2. Let a < z∗(x) ≤ b, i.e., a < (b + x)/2 ≤ b, hence 2a − b < x ≤ b. Then z(x) = z∗(x) = (b + x)/2 > a · · · ((8)) on

(2a − b, b], hence T (x) = T (z∗(x), x) = g∗(z∗(x), x) = (b − z∗(x))(z∗(x) − x)/(b − a) = (b − x)2/4(b − a). Now, we have

m(x)
def
= T (x)− a+ x = ((b− x)2 − 4(b− a)(a− x))/4(b− a). Then m′(x) = (x− 2a+ b)/2(b− a) > 0. Accordingly m(x) is

strictly increasing on 2a− b < x ≤ b. In addition to the fact, since it can be easily confirmed that m(2a− b) = 0, it follows
that m(x) > 0 on 2a− b < x ≤ b, hence T (x)− a+ x > 0 on 2a− b < x ≤ b, so T (x) > a− x · · · ((9)) on (2a− b, b].

3. Let b ≤ z∗(x), i.e., b ≤ (b+x)/2, hence b ≤ x. Then z(x) = b > a · · · ((10)) on [b,∞), hence T (x) = T (b, x) = 0 from (3) , hence

T (x) = 0 ≥ b− x > a− x · · · ((11 )) on [b,∞).

Collecting up (7) , (9) , and (11) , we have

T (x)


= a− x, x ≤ 2a− b,

> a− x, 2a− b < x ≤ b,

> a− x, b ≤ x.

Similarly, collecting up (6) , (8) , and (10) , we have

z(x)


= a, x ≤ 2a− b,

> a, 2a− b < x ≤ b,

> a, b ≤ x.

Accordingly, from (5.1.26(p.18) ) and (5.1.27) we immediately obtain

a⋆ = 2a− b · · · (1) and x⋆ = 2a− b · · · (2). (A 7.7)

Example 1.7.1 (Discontinuity of z(x)) z(x) is not always continuous in x = x⋆; in fact we can demonstrate a numerical
example in which z(x) is not continuous in x = x⋆. For example let us consider F (w) with f(w) such that f(w) ≈ 0.05701 on
[0.1, 0.599], f(w) is a triangle on [0.599, 0.7] with its maximum at w = 0.6, and f(w) ≈ 0.06982 on [0.7, 3.0]. Then we have
z(x) ≈ 0.599 for x ≤ 0.48568 and z(x) ≈ 1.7 for x < 0.48568, i.e., z(x) is discontinuous at x = 0.48568.
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