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Abstract. We propose a conjecture that is a substantial generalization of the genus
zero assertions in both Monstrous Moonshine and Modular Moonshine. Our conjecture
essentially asserts that if we are given any homomorphism to the complex numbers from
a representation ring of a group ring for a subgroup of the Monster, we obtain a Haupt-
modul by applying this homomorphism to a self-dual integral form of the Moonshine
module. We reduce this conjecture to the genus-zero problem for “quasi-replicable”
functions, by applying Borcherds’s integral form of the Goddard-Thorn no-ghost theo-
rem together with some analysis of the Laplacian on an integral form of the Monster
Lie algebra. We prove our conjecture for cyclic subgroups of the Monster generated by
elements in class 4A, and we explicitly determine the multiplicities for a decomposition
of the integral Moonshine Module into indecomposable modules of the integral group
rings for these groups.
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1. Introduction

In this paper, we propose a new monstrous Moonshine conjecture, and prove some
partial results. Our conjecture captures the Hauptmodul assertions in both Conway and
Norton’s Monstrous Moonshine conjecture and Ryba’s Modular Moonshine conjecture,
replacing traces or Brauer characters of automorphisms with maps from representation
rings. Our generalization allows for new phenomena from non-semisimple representations
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over rings of integers, and we consider arbitrary subgroups of the Monster instead of just
cyclic groups.

1.1. Short history. Let us briefly recall the history of this question. In 1978, McKay
observed a numerical relationship between the coefficients in the q-expansion of the mod-
ular function j(τ) = q−1 + 744 + 196884q+ · · · (where q = e2πiτ and τ lies in the complex
upper half-plane H), and the dimensions 1, 196883, . . . of the smallest irreducible repre-
sentations of the Monster simple group M. Thompson then produced more numerical
evidence for a relationship, and suggested the existence of a natural graded representa-
tion of M whose graded dimensions yield the q-expansion of j − 744 [Thompson 1979b].
Furthermore, he suggested that the graded traces of elements of M on such a represen-
tation may be interesting. Conway and Norton [Conway-Norton 1979] and Thompson
[Thompson 1979a] developed this idea into the following concrete conjecture :

Conjecture. (Monstrous Moonshine) There is a natural infinite dimensional graded rep-
resentation V =

⊕∞
n=0 Vn of M, such that for any g ∈M, the series

∑
Tr(g|Vn)qn−1 is the

q-expansion of a modular function Tg(τ) on the complex upper half-plane H that satisfies
the following properties:

(1) Tg(τ) is invariant under a discrete subgroup Γg of SL2(R) that contains Γ0(12|g|).
(2) Tg(τ) generates the field of meromorphic functions on the smooth compactification

of the quotient Riemann surface H/Γg, i.e., Tg(τ) is a Hauptmodul for Γg. In
particular, H/Γg is a genus zero complex curve with finitely many punctures.

In fact, after undertaking a massive computation, Conway and Norton assigned candi-
date modular functions to each of the 194 conjugacy classes in M. In 1984, Frenkel, Lep-
owsky, and Meurman [Frenkel-Lepowsky-Meurman 1984] announced a candidate repre-
sentation, constructed in [Frenkel-Lepowsky-Meurman 1985], and they refined their con-
struction in [Frenkel-Lepowsky-Meurman 1988] to show that their representation, which
they named V \, is endowed with a vertex operator algebra structure whose automor-
phism group is precisely M. Furthermore, they showed that for elements centralizing a
2B involution, the graded traces were equal to the candidate modular functions. In 1992,
Borcherds showed that the Conway-Norton conjecture holds for V \, using (among other
tools) a string-theoretic quantization functor [Borcherds 1992].

Mathematicians were asking about Moonshine phenomona for groups other than the
Monster from near the beginning of the history of the subject: Conway and Norton de-
scribe some preliminary hints with subgroups of M in [Conway-Norton 1979], and Queen
[Queen 1981] did substantial computations showing that some simple combinations of
representations of sporadic groups produce the first terms in many Hauptmoduln. These
new phenomena now have two explanations:

(1) Norton’s 1987 Generalized Moonshine conjecture [Norton 1987] asserts the ex-
istence of projective representations V (g) of centralizers of elements in M such
that traces yield Hauptmoduln, and many of these centralizers often have spo-
radic subquotients. This was proved in [Carnahan 2012] following substantial
advances about twisted V \-modules in [Dong-Li-Mason 1997] and their fusion in
[van Ekeren-Möller-Scheithauer 2015], together with a proof in the Baby Monster
case [Höhn 2003].

(2) Ryba’s 1994 Modular Moonshine conjecture [Ryba 1996] asserts the existence of
vertex algebras over the finite field Fp with actions of centralizers of order p ele-
ments in M, such that the Brauer characters of p-regular elements are Hauptmod-
uln. This was proved for odd primes p in [Borcherds-Ryba 1996], [Borcherds 1998],
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[Borcherds 1999] and for the prime 2 in [Borcherds-Ryba 1996] under an assump-
tion that was resolved in [Carnahan 2017].

We note that M plays a central role in both explanations - that is, while looking for
phenomena away from the Monster, Conway, Norton, and Queen did calculations whose
results suggested the Monster was still fundamentally connected but in a more general
context.

1.2. Motivation for this paper. The work in this paper arose from our investigations
into generalizations of the Modular Moonshine conjecture. This conjecture originally as-
serted the existence of vertex algebras over Fp with well-behaved symmetries, but was
reinterpreted in [Borcherds-Ryba 1996] as a claim about Tate cohomology of prime or-
der automorphisms of a self-dual integral form of V \. Naturally, our first steps involved
studying Tate cohomology of composite order automorphisms, and we were guided by
a bold conjecture proposed by Borcherds that would unify Generalized Moonshine and
Modular Moonshine. This conjecture asserted the existence of projective representations
of centralizers CM(g) over cyclotomic integer rings Z[e2πi/n], that produced both the g-
twisted V \-modules V (g) when base changed to C and finite characteristic vertex algebras
gV when base changed to a finite ring. Recently, the second author of this paper showed
that Borcherds’s conjecture is too ambitious as stated [Urano 2020]. In particular, there
is a Fricke element of order 8 with nonzero degree 1 Tate cohomology, and this contra-
dicts one of the immediate consequences of the conjecture, namely that Fricke elements
have vanishing Tate cohomology in odd degree. More generally, some analysis of Tate
cohomology of elements of order 6 strongly suggests the non-existence of modules that
behave properly in different residue characteristics.

Further investigation revealed that many of the nice properties satisfied by Tate co-
homology of cyclic groups of prime order fail rather badly when considering composite
order. For example, we see in [Borcherds 1998] Corollary 2.2 that there is a superspace

isomorphism Ĥ∗(A⊗B) ∼= Ĥ∗(A)⊗ Ĥ∗(B) for Zp[Z/pZ]-modules A and B, but it is easy
to show that this fails for representations of cyclic groups of composite order. In partic-
ular, functions like “total dimension of Tate cohomology” fail to be homomorphisms on
the representation ring. We eventually concluded that the important part of Borcherds’s
investigation in [Borcherds 1998] lies not in the Tate cohomology, but in the ring homo-
morphisms from representation rings. It is after all the homomorphism property that
allows Borcherds to employ powerful methods like his integral no-ghost theorem and
Hodge theoretic analysis of the Monster Lie algebra.

We therefore consider arbitrary subrings R of C, and arbitrary subgroups G of M, and
consider the power series induced by applying homomorphisms from representation rings
to the complex numbers. The “representation ring” RepR(G) is the group completion
of the semiring of stable isomorphism classes of R[G]-modules that are R-torsion-free of
finite rank, where addition is given by direct sum, and multiplication is given by tensor
product. When X is a set of R-torsion-free R[G]-modules, we write RepXR (G) for the
subring generated by the elements of X and their Adams operations. We will focus on
the case where G is a subgroup of M, R is a subring of C, and V \

R = V \
Z⊗R is the self-dual

R-form for the Monster vertex operator algebra constructed in [Carnahan 2017]. In this

case, we have a subring Rep\R(G) ⊆ RepR(G), defined as the smallest subring containing

the indecomposable R[G]-module direct summands of V \
n,R, (n ≥ 0) and closed under

Adams operations.
Returning to Borcherds’s work, when G is a cyclic subgroup of M of prime order

p and R ∼= Zp (or an unramified extension), one has exactly three homomorphisms
φ : RepR(G) → C, namely dimension (i.e., trace of identity), the trace of a generator
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of G, and the total dimension of Tate cohomology. Borcherds found that applying any
of these maps to the graded pieces of V \

R yields a Hauptmodul. We therefore feel it is
natural to propose the following conjecture:

Conjecture 1.1. (Monstrous Moonshine for group rings) Let R be a subring of C, and

let G be a subgroup of M. Then for any ring homomorphism φ : Rep\R(G) → C, the
“generalized McKay-Thompson series”

Tφ(τ) :=
∑
n≥0

φ(V \
n,R)qn−1

is the q-expansion of a finite level Hauptmodul. That is, the holomorphic function Tφ(τ)
on the complex upper half plane H is invariant under a discrete subgroup Γφ < SL2(R)
containing Γ0(N) for some N , such that the quotient H/Γφ is genus zero with finitely
many punctures, and the field of meromorphic functions on the smooth compactification
is generated by Tφ. Here, V \

n,R is the n-eigenspace for the action of L0 on V \
Z ⊗R.

Attacking this conjecture presents several challenges beyond what we see in monstrous
Moonshine and Modular Moonshine. The biggest problem is that modules over the
group ring R[G] can be very complicated. For general R and G, the group ring has wild
representation type, meaning the problem of classifying modules is at least as hard as
classifying all finite dimensional modules over all finitely generated associative algebras
over a field (see e.g., [Klinger-Levy 2001] for a discussion of wildness for algebras over
rings). We are somewhat saved by our restriction to R-torsion free modules, as the
Jordan-Zassenhaus theorem (in the number ring case) gives us finitely many isomorphism
types in a fixed rank. Furthermore, by applying homomorphisms to C, we can pass from
studying isomorphism classes of modules to a coarser equivalence that collapses ideal
classes. Finally, by restricting to Rep\R(G), i.e., classes that appear in V \

R, we reduce the
complexity of the problem even further. However, we still don’t know if the smallest
cases Z[Z/2Z× Z/2Z] and Z[Z/8Z] of rings with infinitely many indecomposable Z-free
modules restrict to finite collections.

A second problem, as we will see in the discussion of results, is that we don’t have a way
to control our functions as well as Borcherds did in [Borcherds 1992] and [Borcherds 1998].
The notion of “quasi-replicability” that we obtain is new and not well-understood.

1.3. Main results. Our first important theorem is an enhancement of Borcherds’s inte-
gral no-ghost theorem [Borcherds 1999]:

Theorem. 3.6: Let R be a subring of C, and let V be a unitarizable U+(vir)R-module
of half central charge 12 equipped with an action of a group G that commutes with the
Virasoro action, and with a Virasoro-invariant G-invariant bilinear form, such that V is
self-dual. Let β be an element of II1,1 ⊗R such that (β, γ) ∈ R× for some γ ∈ II1,1 ⊗R,

let π1,1
β be the Heisenberg module attached to β, and let H = V ⊗ π1,1

β . Let P 1 = {v ∈
H|L0v = v, Liv = 0∀i > 0}, and let N1 be the radical of the inner product on P 1. Then,
V 1−(β,β)/2 ∼= P 1/N1 as R[G]-modules with G-invariant bilinear form.

Applying this result to V \
Z , we obtain a Lie algebra over Z whose primitive root spaces

are identified with homogeneous pieces of the vertex algebra.

Theorem. 4.13: There exists an integral form mZ of the Monster Lie algebra, satisfying
the following properties:

(1) mZ is a Z×Z-graded Borcherds-Kac-Moody Lie algebra over Z, with an invariant
bilinear form that identifies the degree (0, 0) subspace with the even unimodular
lattice II1,1.
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(2) mZ has a faithful Monster action by homogeneous inner-product-preserving Lie
algebra automorphisms, such that the Z[M]-module structure of the degree (m,n)
root space depends only on the value of mn, when (m,n) is primitive (because it

is isomorphic to V \
1+mn,Z).

(3) The positive subalgebra nZ =
⊕

m≥1,n≥−1 mm,n,Z has Z≥0×Z≥0×Z-graded homology

H∗(nZ,Z) =
⊕

i≥0,m≥0,n∈ZH
i(nZ,Z)m,n. Furthermore, for any subgroup G of M,

and any i ≥ 0, and all degrees (m,n) such that (m − 1)n is coprime to |G|, the
representation H i(nZ,Z)m,n of G lies in the torsion ideal of the representation ring

RepZ(G). In particular, applying any ring homomorphism φ : Rep\Z(G) → C to
H i(nZ,Z)m,n yields zero.

From this homological vanishing theorem we obtain a complicated collection of relations
on the coefficients of the power series Tφ. We call the power series satisfying these relations
“quasi-replicable” (see Definition 5.8), and our main theorem is the following:

Theorem. 5.9: Let R be a subring of C, and let G be a subgroup of M. Then, for any
ring homomorphism φ : Rep\R(G)→ C, the power series Tφ is quasi-replicable of exponent
|G|.

Computational evidence suggests the quasi-replicability relations completely determine
the coefficients beyond a finite set, and we conjecture that quasi-replicable power series are
either Hauptmoduln or finite Laurent polynomials in the power series variable q. Quasi-
replicability is a weaker condition than Conway and Norton’s notion of replicability, and in
order to understand it, it seems we need more than simple modifications of the strategies
for proving modularity of replicable functions (e.g., in [Carnahan 2008] Corollary 5.4, or
[Cummins-Gannon-1997] Theorem 1.1 for completely replicable functions).

As we mentioned, our conjecture generalizes the Hauptmodul claims in both Monstrous
Moonshine and Modular Moonshine. Monstrous Moonshine concerns the case R = C,
because the ring homomorphisms RepC(G) → C are precisely the traces of elements of
G. Modular Moonshine concerns the case R ∼= Zp and G is generated by an element g of
prime order p and a commuting element h of order k coprime to p - more precisely, the
ring homomorphisms “trace of gh” and “Brauer character of h on total Tate cohomology
of g” coincide when g is Fricke. We also have an explicit result that goes beyond these
cases:

Theorem. 6.5 If R is any subring of C, and G is cyclic subgroup of M generated by
an element in conjugacy class 4A, then Tφ is one of the Hauptmoduln T1A = j − 744,

T2B = η(τ)24

η(2τ)24
+ 24, or T4A = η(2τ)48

η(τ)24η(4τ)24
− 24. Furthermore, the homogeneous pieces of V \

Z
are given as a sum of indecomposable modules for G with multiplicities explicitly given by
linear combinations of these Hauptmoduln.

In some cases we obtain incomplete results:

Theorem. 6.15 If R is any subring of C, and G is a cyclic subgroup of M generated by
an element in conjugacy class 6A then Tφ is either one of the Hauptmoduln T1A, T2A,
T3A, T6A, or a quasi-replicable power series whose coefficients are bounded below by those
of T6A and above by T3A.

We expect that this extra power series is in fact equal to T6A, and that more generally,
the analogous result holds for class pqA where p and q are distinct primes.

The situation with our main theorem is similar to the result we would get from
Borcherds’s proof of the Monstrous Moonshine conjecture if we stopped just before the
last step, i.e., if we didn’t know anything about the character table of M. Without the
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explicit comparison between the head characters conjectured in [Conway-Norton 1979]
and the first few graded pieces of V \ in section 9 of [Borcherds 1992], we would only
have the result that the McKay-Thompson series are completely replicable functions of
finite order. The main theorem of [Cummins-Gannon-1997] then implies the McKay-
Thompson series are either Hauptmoduln or “modular fictions”, that is, functions of the
form q−1 + εq for ε either 0 or a 24th root of unity. One difference in the complex case
is that we can eliminate the modular fictions by appealing to the modularity results of
[Dong-Li-Mason 1997], which imply the expansions of trace functions at other cusps must
come from characters of twisted modules. We may therefore hope that the work of Dong-
Li-Mason on twisted modules admits a generalization that could yield a way to eliminate
non-modular functions without explicit computation.

Our computational experiments suggest several other phenomena involving the Z[M]-

module structure of V \
Z , and we describe these in the open problems section at the end

of this paper.

2. Preparation

2.1. Representation rings. We begin with the results we need in the theory of integral
representations. All we need from this theory can be found in [Reiner 1970], which is a
nice overview of the state of the art as of 1970.

Definition 2.1. Let R be an integral domain, and G a finite group. We define the
representation category Rep

R
(G) to be the monoidal category of R[G]-modules that

are R-torsion-free of finite rank, with tensor product as monoidal structure. We define
the representation ring of R[G] (also known as the Green ring), written RepR(G), as
the group completion of the semiring of isomorphism classes in Rep

R
(G), together with

the operations of direct sum as addition and tensor product as multiplication. We define
the subring Rep\R(G) ⊆ RepR(G) as the smallest subring containing the indecomposable

R[G]-module direct summands of V \
n,R, (n ≥ 0) and closed under Adams operations (see

Definition 5.1).

For general R and large G, it is difficult to get any grasp on the structure of RepR(G).
For example, Z[G] has infinitely many isomorphism types of indecomposable representa-
tions whenever G has a non-cyclic Sylow subgroup [Heller-Reiner 1962], or the order of
G is a multiple of a nontrivial cube [Heller-Reiner 1963]. Furthermore, R[G]-modules do
not necessarily satisfy the Krull-Schmidt property, i.e., we do not necessarily have unique
decomposition into a sum of indecomposable modules [Reiner 1961].

However, we can avoid some of the problems when we consider ring homomorphisms
RepR(G) → C, because torsion classes are necessarily sent to zero. Indeed, the next
result implies that the torsion is precisely what we lose by inverting all primes outside
the support of |G|.

Theorem 2.2. (Main theorem of [Reiner 1967], see also section 16 of [Reiner 1970])
Let R be a Dedekind domain whose quotient field F is an algebraic number field, let G
be a finite group, and let R′ =

⋂
P⊃|G|RRP be the semi-local ring given by inverting all

elements coprime to |G|. Then, the additive map RepR(G) → RepR′(G) given by base
change has kernel equal to the subgroup of torsion elements. Furthermore, this subgroup
is an ideal in RepR(G), and equal to the finite set whose elements are [R[G]]− [M ] as M
ranges over all R-torsion-free R[G]-modules satisfying MP

∼= RP [G] for all primes P of
R.
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Corollary 2.3. Let R be a subring of C, let G be a finite group, and let R′ =
⋂
P⊃|G|RRP .

Then, any ring homomorphism from Rep\R(G) to C factors through a homomorphism to

Rep\R′(G) given by base change on objects.

Proof. Both Rep\R(G) and Rep\R′(G) are generated by objects defined over subrings of
number fields, so it suffices to consider the case R is a Dedekind domain whose quotient
field F is an algebraic number field. Any homomorphism from Rep\R(G) to C extends
non-uniquely to a group homomorphism from RepR(G), and since torsion lies in the
kernel, Theorem 2.2 yields a homomorphism RepR′(G) → C, that, when restricted to

Rep\R′(G) is what we want. �

Corollary 2.4. Let R be a subring of C, and let G be a finite group. Suppose we are given
a collection {Vi}i∈Z of objects in Rep

R
(G) with only finitely many nonzero, together with

R[G]-module maps di : Vi → Vi+1 and δi : Vi → Vi−1 satisfying di+1di = δi−1δi = 0 and
δi+1di+di−1δi = k idVi for some k ∈ R that is invertible in R′ =

⋂
P⊃|G|RRP (i.e., coprime

to |G|), and all i ∈ Z. Then, the homology of the complex (Vi, di) lies in the torsion ideal
of RepR(G), and after base change to R′, the homology vanishes. Furthermore, for any
ring homomorphism φ from a subring of RepR(G) containing all Vi to C, the alternating
sum

∑
i(−1)iφ(Vi) vanishes.

Proof. Base change to R′ makes k is invertible in R, and then the vanishing of homology
and the alternating sum follow from the argument in [Borcherds 1998] Lemma 2.9: If k
is invertible, then Ai is the direct sum of dδAi and δdAi (specifically, any x is uniquely
written as dδk−1x + δdk−1x), and d is an isomorphism from δdAi to dδAi+1. Thus the
sequence splits as a direct sum of isomorphisms. We conclude that the homology of
(Vi, di) lies in the kernel of the base change homomorphism, which is the torsion ideal
by Theorem 2.2. Then, by Corollary 2.3, φ factors through the corresponding subring of
RepR′(G). �

Remark 2.5. Any set of distinct homomorphisms RepR(G) → C is linearly independent
- this is shown in Lemma 6.5 of [Benson-Parker 1984] in the modular setting, and the
proof works here without change. This together with orthogonality of characters implies
that when |G| is invertible in R, all homomorphisms from RepR(G) to C are given by the
traces of elements.

2.2. Conformal vertex algebras.

Definition 2.6. Let R be a commutative ring. A vertex algebra over R is an R-
module V equipped with a distinguished vector 1 and an R-linear multiplication map
V ⊗R V → V ((z)), written a ⊗ b 7→ Y (a, z)b =

∑
n∈Z anbz

−n−1, satisfying the following
conditions:

(1) For all a ∈ V , Y (a, z)1 ∈ a+ zV [[z]].
(2) The Jacobi identity: For any r, s, t ∈ Z, and any u, v, w ∈ V ,∑

i≥0

(
r

i

)
(ut+iv)r+s−iw =

∑
i≥0

(−1)i
(
t

i

)
(ur+t−i(vs+iw)− (−1)tvs+t−i(ur+iw))

Definition 2.7. Let V be a vertex algebra over a commutative ring R. A conformal
vector of “half central charge” ĉ ∈ R is an element ω ∈ V satisfying the following
properties:

(1) ω0v = v−21 for all v ∈ V .
(2) ω1ω = 2ω
(3) ω3ω = ĉ1
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(4) ωiω = 0 for i = 2 or i > 3.
(5) L0 = ω1 acts semisimply with integer eigenvalues.

We typically write Y (ω, z) =
∑

n∈Z Lnz
−n−1, i.e., Ln = ωn+1. A conformal vertex algebra

is a vertex operator algebra if the L0-eigenspaces are projective R-modules of finite
rank.

Theorem 2.8. ([Borcherds 1986], [Dong-Griess 2012], [McRae 2014]) Let L be an even

integral lattice. There is a nontrivial central extension L̂ of L by 〈ε|ε2 = 1〉, unique

up to isomorphism. Furthermore, the rational Fock space VL,Q = Q{L̂} ⊗Q SymQ(L ⊗
t−1Q[t−1]) admits a unique vertex algebra structure over Q, such that Y (ι(γ) ⊗ 1, z) =

E−(−γ, z)E+(−γ, z)γzγ for all γ ∈ L̂. Here,

(1) Q{L̂} = Q[L̂]/(ε+ 1) denotes the twisted group ring,

(2) ι(γ) is the image of γ ∈ L̂ under the embedding into Q{L̂}.
(3) zγ multiplies ι(β) by z(β̄,γ̄), where γ̄ is the image of γ in L.

(4) E±(−γ, z) = exp
(∑

n∈±Z>0

−γ(n)
n

z−n
)

, where γ(n) acts by multiplication by the

element γ(n) = γ ⊗ tn ∈ L⊗ t−1Q[t−1] when n < 0, takes ι(β) to (γ̄, β̄)ι(β) when
n = 0, and annihilates ι(β) and satisfies [γ(n), β(m)] = n(γ̄, β̄)δn,−m when n > 0.

Moreover, VL,Q admits an integral form VL, spanned by the coefficients of series of the

form E−(γ, z) for γ ∈ L̂, applied to vectors of the form eγ for γ ∈ L̂, and if L is
unimodular, then VL admits a conformal vector.

We note that by Proposition 5.8 in [McRae 2014], the integral form VL has a conformal
vector if and only if L is unimodular.

Definition 2.9. Let (V, Y,1, ω) be a conformal vertex algebra over a commutative ring
R. A symmetric R-bilinear form (, ) on V , with values in R, is invariant if

(u, Y (u, z)w) = (Y (eL1(−z2)L0u, z−1)v, w)

for all u, v, w ∈ V .

2.3. Integral forms for Virasoro and the Monster vertex algebra. We briefly
recall some previously known results. Let vir be the Lie algebra over Z with basis
{Li}i∈Z ∪{ c2} and relations [Lm, Ln] = (m−n)Lm+n +

(
m+1

3

)
δm+n,0

c
2

and [ c
2
, Ln] = 0. We

write Witt>0 and Witt<0 for the subalgebras spanned by {Li}i>0 and {Li}i<0, respec-
tively.

Theorem 2.10. (Theorem 5.7 of [Borcherds 1999]) There exists a Z-Hopf subalgebra
U+(vir) of U(vir ⊗Q) whose Lie algebra of primitive elements is vir, and which admits
a structural basis. Furthermore, U+(vir) acts on the vertex algebra over Z attached to
any even unimodular lattice.

We will not use the structural basis property, but it is essentially a smoothness property:
when the Lie algebra of primitive vectors is finite dimensional, the existence of a structural
basis is equivalent to being isomorphic to the Hopf algebra of differential operators on a
smooth formal group.

Definition 2.11. We say that a vertex operator algebra over a commutative ring R is
strongly conformal if it admits an action of U+(vir)⊗R compatible with the Virasoro
action arising from ω.

Theorem 2.12. There exists a vertex operator algebra V \
Z over Z, satisfying the following

properties:
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(1) V \
Z is strongly conformal.

(2) V \
Z has an invariant symmetric bilinear form, such that V \ is self-dual.

(3) V \
Z admits a faithful action of M that preserves the bilinear form and commutes

with the U+(vir)-action.

(4) V \
Z ⊗ C is isomorphic to the Monster vertex operator algebra V \ constructed in

[Frenkel-Lepowsky-Meurman 1988].

Proof. All of the claims except the existence of the U+(vir) action are given in Theorem
3.22 in [Carnahan 2017]. The U+(vir) action is transported from the action on the Leech
lattice vertex operator algebra VΛ by the cyclic orbifold construction in the following
way: Let P = {2, 3, 5, 7}. Then for any pair of distinct p, q ∈ P , we constructed a
Z[1/pq, eπi/pq]-form of V \, and in Theorem 3.9 of loc. cit. we showed that these forms
have M-symmetry. For each p ∈ P , there is a pB-pure elementary subgroup Hp ⊂ M of
order p2, and we may decompose our Z[1/pq, eπi/pq]-form into a direct sum of eigenspaces
for the action ofHp. By the cyclic orbifold correspondence, these eigenspaces are identified
with eigenspaces for an action of an elementary subgroup on VΛ, and thereby inherit the
U+(vir) ⊗ Z[1/pq, eπi/pq]-action. For distinct p, q, r ∈ P , Proposition 3.15 of loc. cit.
gives an isomorphism between the Z[1/pq, eπi/pq]-form and the Z[1/pr, eπi/pr]-form, when
both are base-changed to Z[1/pqr, eπi/pqr], and the actions of U+(vir)⊗Z[1/pq, eπi/pq] and

U+(vir) ⊗ Z[1/pr, eπi/pr] are identified after base change. Then, when V \
Z is constructed

by descent, we obtain an action of U+(vir) by the same descent. �

3. The integral no ghost theorem

We apply an integral enhancement of the Goddard-Thorn [Goddard-Thorn-1972] no-
ghost theorem from [Borcherds 1999] to produce an integral form of the Monster Lie
algebra.

Definition 3.1. Let R be a subring of C, and let W be a free R-module with an action of
the Virasoro algebra of central charge 26, equipped with an R-valued symmetric Virasoro-
invariant bilinear form (where “Virasoro-invariant” means Li is adjoint to L−i for all
integers i). We define the “old covariant quantization” OCQR(W ) to be the R-module
P 1/N1 with its induced inner product, where P 1 = {v ∈ W |L0v = v, Liv = 0, ∀i > 0}
is the weight 1 primary subspace, and N1 = {v ∈ P 1|(v, w) = 0,∀w ∈ P 1} is the
nullspace (or radical) of P 1.

The name “old covariant quantization” comes from string theory. BRST cohomology is
an equivalent functor, which is newer and considered “more systematic” [Polchinski-1998].
We use OCQ because there is an existing treatment over rings other than C in the
literature [Borcherds 1999].

Proposition 3.2. OCQR describes a functor from the groupoid of Virasoro represen-
tations of central charge 26 with invariant inner product over R to the groupoid of R-
modules with nondegenerate inner product. Here, morphisms in the source groupoid are
inner-product preserving Virasoro-equivariant R-module isomorphisms, and morphisms
in the target are inner-product preserving R-module isomorphisms. If W is a confor-
mal vertex algebra and the inner-product is invariant in the sense of vertex algebras, then
OCQR(W ) is a Lie algebra, and the induced inner product is invariant in the sense of Lie
algebras. Furthermore, vertex algebra automorphisms preserving the conformal element
are taken to Lie algebra automorphisms.

Proof. For the first claim, it suffices to show that any Virasoro-equivariant inner-product-
preserving R-module isomorphism V → W induces an inner-product-preserving iso-
morphism of R-modules P 1

V /N
1
V → P 1

W/N
1
W . By Virasoro equivariance, this restricts
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to an Virasoro-equivariant inner-product-preserving R-module isomorphism P 1
V → P 1

W ,
and because inner products are preserved, this map induces an R-module isomorphism
N1
V → N1

W of nullspaces. We then obtain an isomorphism of R-modules with nondegen-
erate inner product.

For the second claim, the Lie algebra structure is given by [u+N1
W , v+N1

W ] = (u0v) +
N1
W . The invariance claims can be checked after taking the tensor product with C, and

they are well-known for R = C (see e.g., Lemma 3.2.2 of [Carnahan 2012]). �

We now consider the oscillator cancellation property. Over C, if V is a Virasoro repre-
sentation of central charge 24 with finite dimensional L0-eigenspaces and nondegenerate
Virasoro-invariant inner product, and β ∈ (II1,1⊗C)\{0}, then OCQ(V ⊗π1,1

β ) is isomor-

phic to the eigenspace V
1− (β,β)

2

= {v ∈ V |L0v = v − (β,β)
2
v}. Here, π1,1

β is the irreducible

module for the Heisenberg vertex algebra π1,1
0 attached to the vector β.

Definition 3.3. Let R be a subring of C, and let V be a U+(vir)R-module equipped
with a symmetric nondegenerate Virasoro-invariant bilinear form. We fix vectors β, γ ∈
II1,1 ⊗ R satisfying (β, γ) 6= 0, (γ, γ) = 0, let π1,1

β,R be the Heisenberg module attached to

β over R, and define H = V ⊗R π1,1
β,R. We define operators Ki = γ(−i) = (1⊗ γ(−1))i on

H, and define the transverse subspace to be T = {v ∈ H|Kiv = Liv = 0, ∀i > 0}.

Theorem 3.4. Let R be a subring of C, and let V be an R-free U+(vir)R-module equipped
with an action of a group G that commutes with the Virasoro action, and with a symmetric
nondegenerate Virasoro-invariant G-invariant bilinear form such that V is self-dual with
respect to the form. Then, with notation as given in the preceding definition, if (β, γ) ∈
R×, then V ∼= T as R-free R[G]-modules with inner product, and in particular T is
self-dual.

Proof. The proof over C works by considering the subspace KC = {x ∈ HC|Kix = 0,∀i >
0} of HC, and showing that the radical of the inner product on KC has both VC ⊗ Ceβ
and TC as complements in KC. We then obtain an inner-product-preserving isomorphism
between VC and TC, i.e., an inner-product-preserving map VC → KC that takes values in
elements x satisfying Lix = 0 for all i > 0. To show that this isomorphism exists over
R, it suffices to produce an R-linear map V → K = {x ∈ H|Kix = 0,∀i > 0} that takes
each v ∈ V to an element in K of the form v⊗eβ+ · · · , that is annihilated by all Li, i > 0,
where the unwritten summands lie in the radical.

The argument of [Borcherds 1999] section 6 adapts to our situation, but we need to
change the language to remove the assumption that we are analyzing the fake Monster
Lie algebra. Within the Heisenberg vertex algebra π1,1

0 , we have a commutative R-algebra
Y − generated by {e−γ−1D

(n)eγ}n>0, and a subalgebra Y ′ generated by Ki, i < 0. These
two algebras become equal after passing to the field of fractions. The action of U+(vir)
on H restricts to actions of the subalgebra U = U+(Witt>0) and the subalgebra U ′ ⊂ U
generated by Li, i > 0. As with Y − and Y ′, we see that U and U ′ become equal after base
change to the field of fractions. We know from the lattice vertex algebra construction
that the subspace Y −eβ ⊂ π1,1

β,R is stable under the action of U+(vir), so U and U ′ also
act on this subspace.

In the proof of Lemma 6.3 of [Borcherds 1999], we find that the graded dual of Y −eβ

contains the free U -module generated by eβ,∗ as a sub-U -module, and the subspace
(eβ,∗U)n lies in (Y −eβ)∗n as an index

∏
|λ|=n(β, γ)l(λ) subgroup, where l(λ) is the num-

ber of parts in the partition λ. Thus, by our assumption that (β, γ) is invertible in R,
these subspaces are equal.
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By freeness of eβ,∗U , for any v ∈ V , there is a unique U -module map eβ,∗U → V taking
eβ,∗ to v. This induces an isomorphism V → HomU(eβ,∗U, V ) of R-free R[G]-modules.
Dualizing the rank 1 free U -module, we have the isomorphism

HomU(eβ,∗U, V )
∼→ HomU(R, V ⊗R Y −eβ).

Thus, composing these two isomorphisms yields an inner-product-preserving isomorphism
from V to the space of U -invariant elements of V ⊗R Y −eβ. That is, for each v ∈ V ,
there is a unique U -invariant vector in V ⊗R Y −eβ of the form v ⊗ eβ + · · · , where the
unwritten summands are elements of V ⊗ Ieβ, with I denoting the augmentation ideal of
Y −. By U -invariance, we know that this vector is annihilated by Li for all i > 0.

It remains to show that the vectors of the form v ⊗ eβ + · · · lie in K, rather than just
KC. Since π1,1

β is U+(vir)-stable, such vectors lie in H, so it suffices to show that they
are annihilated by all Ki, i > 0. However, this can be checked after base change to C,
where it is already known to hold. Thus, we have an injective map V → T of R-free
R[G]-modules that preserves the inner product. This is an isomorphism, because the base
change VC → TC is an isomorphism, and V is self-dual.

The inverse map T → V is defined by taking the eβ term of any vector v⊗ eβ + · · · in
T to get a vector in V . Any additional terms lie in the radical of the form on K. �

To complete the proof of oscillator cancellation, we show that the primary space of
weight 1 is the direct sum of the weight 1 transverse space with the null space. We are
thankful to Richard Borcherds for pointing out the importance of self-duality of T .

Lemma 3.5. Let R be a subring of C, let P be a finite rank free R-module with R-valued
symmetric bilinear form, let T be a submodule, and let N be the radical of the form.
Suppose T is self-dual with respect to the form, and P ⊗R C = T ⊗R C⊕N ⊗R C. Then
P = T ⊕N .

Proof. We first note that there is a unique inner-product-preserving projection P ⊗RC→
T ⊗R C, namely the projection that has kernel N ⊗R C. Since T ⊆ P , the image of P
under this projection necessarily contains T , and since the bilinear form on P is R-valued,
the image is contained in the dual module T∨ = {x ∈ T ⊗R C|∀y ∈ T, (x, y) ∈ R}. By
self-duality of T , restriction yields a surjective norm-preserving projection P → T , and
the kernel is N . �

Theorem 3.6. Let R be a subring of C, and let V be a unitarizable U+(vir)R-module
of half central charge 12 equipped with an action of a group G that commutes with the
Virasoro action, and with a Virasoro-invariant G-invariant bilinear form, such that V is
self-dual. Let β be an element of II1,1 ⊗R such that (β, γ) ∈ R× for some γ ∈ II1,1 ⊗R,

let π1,1
β be the Heisenberg module attached to β, and let H = V ⊗ π1,1

β . Define P 1 = {v ∈
H|L0v = v, Liv = 0,∀i > 0}, and N1 the radical of the inner product on P 1. Then,
V

1− (β,β)
2

∼= P 1/N1 as R[G]-modules.

Proof. Let γ ∈ II1,1 ⊗R satisfy (β, γ) ∈ R×.
Case 1: If β has nonzero norm, we may take γ to be a sum of linearly independent
norm zero vectors γ1, γ2, with (β, γi) 6= 0. Let R1 = R[(β, γ1)−1], R2 = R[(β, γ2)−1],
and R3 = R[(β, γ1)−1, (β, γ2)−1]. Let T1 be the transverse space over R1 constructed
using γ1, and T2 the transverse space over R2 constructed using γ2. By Theorem 3.4, for
i = 1, 2, each weight 1 subspace T 1

i is self-dual, and by the last half of the Goddard-Thorn
theorem over C, P 1 ⊗R C = (T 1

i ⊗Ri C) ⊕ (N1 ⊗R C). Thus, we may apply Lemma 3.5
to conclude P 1 ⊗R Ri = T 1

i ⊕ (N1 ⊗R Ri). Once again applying Theorem 3.4, we obtain
the isomorphism (V ⊗R Rie

β)1 ∼= (P 1/N1) ⊗R Ri, and (V ⊗R Rie
β)1 = V

1− (β,β)
2

⊗R Rie
β

by degree considerations.
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We now apply Zariski descent. We have Ri[G]-module isomorphisms V
1− (β,β)

2

⊗R Ri
∼=

(P 1/N1) ⊗R Ri for i = 1, 2, and they glue along R3 to yield an isomorphism V
1− (β,β)

2

∼=
P 1/N1 over R.
Case 2: If β has norm zero, then there exists a norm zero γ1 such that (β, γ1) = (β, γ) ∈
R×. In this case, descent is unnecessary, and the first half of the above argument yields
V

1− (β,β)
2

∼= P 1/N1 as R[G]-modules. �

Remark 3.7. Theorem 3.6 is our refinement of the integral no-ghost theorem (Theorem
6.5 of [Borcherds 1999]). Borcherds’s theorem is only stated for the case V is the vertex
algebra of a Niemeier lattice, and it only asserts that if β is n times a primitive vector,
then OCQZ(H) has determinant dividing a power of n. However, his proof is substantially
more general, and implicitly uses the isomorphism that we establish.

Remark 3.8. In [Borcherds 1999], Borcherds remarks that the root spaces of some Lie
algebras that come from OCQ do not depend solely on the norm of the root. As an
example, he points out that for β ∈ II25,1 primitive of norm zero, the degree β piece of
the fake Monster Lie algebra is isomorphic to the Niemeier lattice β⊥/Zβ. This does not
contradict the isomorphism in our result for the following reason: to isolate the degree
β piece in the norm zero part of a II1,1-grading, we must take V to be the lattice vertex
algebra Vβ⊥/Zβ in the statement of our theorem. For other primitive norm zero vectors,
we need to input other lattice vertex algebras as V .

Definition 3.9. Let R be a subring of C. We define the R-form mR of the Monster Lie
algebra to be OCQR(V \

R ⊗R VII1,1,R).

Corollary 3.10. Let R be a subring of C. The R-form of the Monster Lie algebra mR is
a II1,1-graded Lie algebra with homogeneous action of M, and the M-action on the graded
pieces mm,n,R is given by the following R[M]-module isomorphisms

mm,n,R
∼=


V \

1+mn,R gcd(m,n) ∈ R×

II1,1 ⊗R with trivial action (m,n) = (0, 0)

0 mn = 0, (m,n) 6= (0, 0)

mysterious otherwise

Furthermore, for any subgroup G of M and any ring homomorphism φ : Rep\R(G) → C,
if gcd(m,n) is a unit in R′ =

⋂
P⊃|G|RRP , then

φ(mm,n,R) = φ(V \
1+mn,R).

Moreover, mR has an invariant bilinear form that restricts to a perfect pairing between the
degree (m,n) and (−m,−n) submodules, and a contragradient involution ω that negates
degrees in II1,1, such that the homogeneous pieces with lattice degree (m,n) satisfying
gcd(m,n) ∈ R× are self-dual under the corresponding contragradient form.

Proof. The Lie algebra structure, invariant form, and Monster action come from basic
properties of the OCQ functor. The grading and involution come from the corresponding
structures on VII1,1,R. The identification of mm,n,R with homogeneous spaces of V \ follows
from Theorem 3.6. The cases where mn = 0 follow from the decomposition of the space
of weight one vectors in V \

R ⊗ π1,1
(m,n),R as the direct sum of V \

1,R ⊗R π
1,1
(m,n),R,0 = 0 and

V \
0,R ⊗R π

1,1
(m,n),R,1 = R ⊗R (II1,1 ⊗ R), and the fact that L1γ

−1eβ = (γ, β)eβ. This means

the primary vectors are γ−1e
β for (γ, β) = 0, and the inner product vanishes identically

on this space except when β = 0, in which case it is nondegenerate. The equality of
φ-values follows from Corollary 2.3. �
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The reader might wonder if we can have stronger control over the parts of mZ in non-
primitive lattice degree β. As the next result shows, there seems to be a fundamental
problem with cancelling π1,1

β .

Proposition 3.11. Let β ∈ II1,1 be a non-primitive vector of negative norm. Then,
there exists a Virasoro representation V of central charge 24 over Z, such that P 1/N1 6∼=
V

1− (β,β)
2

.

Proof. Let V = U+(Witt<0)v for a nonzero vector v of conformal weight −(β, β)/2 > 0.

This is an integral form of the Verma module M(24,− (β,β)
2

). Then the lowest weight

spaces are Zv of weight − (β,β)
2

and ZL−1v of weight 1 − (β,β)
2

. Because eβ has weight
(β,β)

2
, the weight 1 subspace of V ⊗ π1,1

β is then (II1,1 ⊗ Zv) ⊕ (Zeβ ⊗ ZL−1v), where

we write II1,1 to mean {γ−1e
β|γ ∈ II1,1}, which lies in weight 1 + (β,β)

2
. L1 acts on

this space by L1(γ−1e
β ⊗ nv + reβ ⊗ sL−1v) = (γ, β)eβ ⊗ nv − reβ ⊗ s(β, β)v, so P 1

consists of all γ−1e
β ⊗ nv + reβ ⊗ sL−1v satisfying n(γ, β) = rs(β, β). This is spanned

by β−1e
β ⊗ v + eβ ⊗ L−1v and γ−1e

β ⊗ v for (γ, β) = 0. N1 is spanned by L−1(eβ ⊗ v) =
β−1e

β⊗v+eβ⊗L−1v, so the quotient P 1/N1 is represented by {γ−1e
β⊗v|(γ, β) = 0} with

its induced inner product. Let us compare this space with V
1− (β,β)

2

, i.e., the span of L−1v.

Let (v, v) = a for a 6= 0, so (L−1v, L−1v) = (L1L−1v, v) = −(β, β)(v, v) = −(β, β)a. On
the other hand, (γ−1e

β, γ−1e
β) = (γ, γ). Thus, γ−1e

β⊗v has norm (γ, γ)a. The subgroup
of P 1/N1 generated by vectors of norm −(β, β)a is therefore strictly smaller than P 1/N1

when β is not primitive. �

4. Hodge theory on Lie algebra cohomology

We introduce Borcherds-Kac-Moody Lie algebras over subrings R of C, and extend a
theorem of Kostant about the spectrum of the Laplacian to this setting. We roughly
follow the treatment in [Jurisich 1996].

Definition 4.1. Let I be a countable set, and let A = (ai,j)i,j∈I be a real matrix. We
say that A is a Borcherds-Cartan matrix if the following 3 conditions are satisfied:

(1) A is symmetrizable, i.e., there is a diagonal matrix D whose diagonal entries are
positive real, such that DA is symmetric.

(2) If ai,i > 0, then ai,i = 2.
(3) For all k 6= j, aj,k ≤ 0. For all i ∈ I such that ai,i > 0, ai,j ∈ Z≤0 for all j 6= i.

Let A be a Borcherds-Cartan matrix. The Borcherds-Kac-Moody Lie algebra g(A) is the
Lie algebra over C with generators ei, fi, hi, i ∈ I, and the following defining relations:

(1) For all i, j, k ∈ I, [hi, hj] = 0, [hi, ek] = ai,kek, [hi, fk] = −ai,kfk, [ei, fj] = δi,jhi

(2) For all i 6= j with ai,i > 0, (ad ei)
−2

ai,j
ai,i

+1
ej = 0, (ad fi)

−2
ai,j
ai,i

+1
fj = 0. For all

i, j ∈ I such tha ai,j = 0, [ei, ej] = 0 and [fi, fj] = 0.

A Borcherds-Kac-Moody Lie algebra (also called BKM algebra, or generalized
Kac-Moody Lie algebra) over C is a Lie algebra g isomorphic to one of the form
g(A)/C oD, where C is a central ideal in g(A), and D is a commutative Lie algebra of
derivations. The Cartan subalgebra of g(A)/C oD is h = (h(A)/C) oD, where h(A)
is the subalgebra of g(A) generated by {hi}.

Lemma 4.2. Let g be a Borcherds-Kac-Moody Lie algebra over C. Then g admits an
invariant bilinear form, and this is unique up to rescaling.

Proof. The existence and uniqueness is Theorem 1.6 of [Jurisich 1996]. �
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Definition 4.3. Let g be a BKM algebra over C. A root is a nonzero eigenvalue for the
action of h, i.e., a linear map α : h→ C such that there exists a nonzero v ∈ g such that
for all h ∈ h, [h, v] = α(h)v. The set of roots is written ∆. The root space attached to
a root α is the eigenspace gα = {v ∈ g|∀x ∈ h, [x, v] = α(x)v}. A simple root is a root
given by the eigenvalue αi of ei for some i (characterized by αi(hj) = ai,j). A root α is
real (written α ∈ ∆re) if (α, α) > 0, and imaginary (written α ∈ ∆im) otherwise. The
root lattice is the Z-span of simple roots in h∗. A root α is positive (written α ∈ ∆+)
if it is a non-negative integer combination of αi, and negative if −α is positive. A Weyl
vector for a BKM algebra over C is some ρ ∈ h∗ such that (ρ, α) = −(α, α)/2 for all
simple roots α.

We briefly review the properties of the Monster Lie algebra m.

Theorem 4.4. ([Borcherds 1992]) The Monster Lie algebra m is a BKM algebra over C,
with 2-dimensional Cartan subalgebra h, and roots graded by Z × Z with inner product
((a, b), (c, d)) = ad+bc (that is, the lattice II1,1). The multiplicity of the (m,n) root space
is c(mn), where J(τ) =

∑
n≥−1 c(n)qn = q−1 + 196884q+ 21493760q2 + · · · . The positive

roots are those of degree (m,n) with m > 0, and the simple roots are those of degree (1, n)
for some n. The Weyl vector is (−1, 0). When (m,n) 6= (0, 0), the degree (m,n) part of

m is isomorphic to V \
1+mn as a representation of M. In particular, the isomorphism type

depends only on the product mn.

Definition 4.5. Let R be a subring of C. A BKM algebra over R is a Lie algebra gR
over R such that the following properties hold:

(1) gR ⊗R C is a BKM algebra over C.
(2) gR has a subalgebra hR such that hR⊗RC is a Cartan subalgebra of gR⊗RC, and

the roots of gR ⊗R C (with respect to hR ⊗R C) restrict to R-linear functionals
hR → R.

(3) gR splits as a direct sum of hR and root spaces.

Theorem 4.6. The Monster Lie algebra mZ is a BKM algebra over Z. In particular,
any R-form mR is a BKM algebra over R.

Proof. From Corollary 3.10, we obtain the decomposition into root spaces, and also see
that mR = mZ ⊗ R, so in particular, if R = C, we obtain m. The Cartan subalgebra is
hZ = II1,1, and the roots are Z-linear functionals to Z. �

4.1. The Chevalley-Eilenberg complex.

Definition 4.7. Given a Lie algebra n over a subring R of C, the Chevalley-Eilenberg
complex for the trivial n-module R is (

∧∗ n, δ), where

δ(x1 ∧ · · · ∧ xn) =
∑
i<j

(−1)i+j+1[xi, xj] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn.

The homology of n with coefficients in R is the homology of the Chevalley-Eilenberg
complex.

We note that in particular, δ(x ∧ y) = [x, y] for x, y ∈ n.

Lemma 4.8. Let g be a BKM algebra over a subring R of C with a positive definite
contravariant hermitian form 〈, 〉, and let n be the positive subalgebra, i.e., the subalgebra
generated by {ei}i∈I . Then:



MONSTROUS MOONSHINE FOR INTEGRAL GROUP RINGS 15

(1) The operator δ satisfies

δ(a1 ∧ · · · ∧ ar) =
∑

1≤s<t≤r

ε(s, t)δ(as ∧ at) ∧ a1 ∧ · · · âs · · · ât · · · ∧ ar

+ (r − 2)
∑

1≤s≤r

(−1)ds(d1+···+ds−1)δ(as) ∧ a1 ∧ · · · âs · · · ∧ ar

for ai ∈
∧di n, and ε(s, t) = (−1)(ds+dt)(d1+···+ds−1)+dt(ds+1+···+dt−1). In particular, δ

is a differential operator of order 2 and degree −1.
(2) δ has an adjoint d on

∧∗ n with respect to the contravariant form.
(3) d and δ are disjoint square-zero operators that respect the weight grading. Here,

by “disjoint”, we mean dδx = 0 implies δx = 0 and δdx = 0 implies dx = 0.
(4) d(a ∧ b) = da ∧ b + (−1)ija ∧ db for a ∈

∧i n, b ∈
∧j n. In particular, d is a

differential operator of order 1 and degree 1.

Proof. The first claim is the lemma after Theorem 2.5.1 in [Fuks 1986], and follows from
a direct calculation.

The second claim is clear from the definition of contravariant form.
For the third claim, the square-zero property is clear, and the preservation of the weight

grading follows from the explicit formula for δ. Disjointness follows from the positive
definite property of the contravariant inner product on

∧∗ n. Specifically, if dδx = 0,
then (δx, δx) = (dδx, x) = 0, implying δx = 0, and similarly for dx. This was noted in
Remark 2.3 in [Kostant 1961].

The fourth claim is given in the same place as the first. �

Lemma 4.9. Let g be a BKM algebra over a subring R of C with Weyl vector ρ, and a
nondegenerate contravariant hermitian form 〈, 〉. Let n be the positive subalgebra. Then,
for any positive root γ, d[ei, x] = γ(hi)ei ∧ x+ ei · dx for all x ∈ nγ.

Proof. We will use the contravariant inner product on
∧∗ g, restricted to

∧∗ n to do our
computations. In particular, we compute on one hand 〈d[ei, x], a ∧ b〉 and on the other
hand 〈ei ∧ x, a∧ b〉+ 〈ei · dx, a∧ b〉. Because the inner product on

∧2 n is nondegenerate,
equality after taking the inner product with arbitrary a∧b implies equality of the original
elements. However, we need to be careful with contravariance, because applying the
Chevalley generator fi may produce an element of g not in n. Most notably, if x, y ∈ n,
then the equality 〈x, [hi, y]〉 = 〈dx, hi ∧ y〉 holds in

∧∗ g but hi 6∈ n, so the right side does
not make sense as an inner product in

∧∗ n.
We split the computation into cases, using the fact that as a subspace of g, n =

(ad ei)n+ker(ad fi)+Cei. Thus, when taking the inner product with a∧b, we may assume
that a and b are either taken by ad fi to n, or are equal to ei. Our first computation is:

〈d[ei, x], a ∧ b〉 = 〈[ei, x], [a, b]〉
= −〈x, [fi, [a, b]]〉
= 〈x, [a, [b, fi]]〉+ 〈x, [b, [fi, a]]〉,
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regardless of the form of a and b. We write dx =
∑
aj ∧ bj. Then, if [a, fi], [b, fi] ∈ n, we

have

〈ei · dx, a ∧ b〉 =
∑
j

〈[ei, aj], a〉〈bj, b〉 − 〈[ei, aj], b〉〈bj, a〉

+ 〈aj, a〉〈[ei, bj], b〉 − 〈aj, b〉〈[ei, bj], a〉

=
∑
j

〈aj, [a, fi]〉〈bj, b〉 − 〈aj, [b, fi]〉〈bj, a〉

+ 〈aj, a〉〈bj, [b, fi]〉 − 〈aj, b〉〈bj, [a, fi]〉
= 〈dx, [a, fi] ∧ b+ a ∧ [b, fi]〉
= 〈x, [a, [b, fi]]〉+ 〈x, [b, [fi, a]]〉.

Thus, in these cases, we have equality

〈d[ei, x], a ∧ b〉 = 〈ei · dx, a ∧ b〉.

Furthermore, in these cases, 〈ei ∧ x, a ∧ b〉 = 〈ei, a〉〈x, b〉 − 〈ei, b〉〈x, a〉 = 0, so our claim
is satisfied in this case.

If a = ei and [fi, b] ∈ n, with b ∈ gβ, then our 3 terms are

〈d[ei, x], a ∧ b〉 = 〈x, [a, [b, fi]]〉+ 〈x, [b, [fi, a]]〉
= 〈x, [a, [b, fi]]〉+ 〈x, [hi, b]〉
= 〈x, [a, [b, fi]]〉+ β(hi)〈x, b〉

and

〈ei · dx, a ∧ b〉 =
∑
j

〈[ei, aj], ei〉〈bj, b〉 − 〈[ei, aj], b〉〈bj, ei〉

+ 〈aj, ei〉〈[ei, bj], b〉 − 〈aj, b〉〈[ei, bj], ei〉

=
∑
j

〈aj, ei〉〈bj, [b, fi]〉 − 〈aj, [b, fi]〉〈bj, ei〉

= 〈dx, a ∧ [b, fi]〉
= 〈x, [a, [b, fi]]〉

and

〈ei ∧ x, a ∧ b〉 = 〈ei, ei〉〈x, b〉 − 〈ei, b〉〈x, ei〉
= 〈x, b〉

so our claim is satisfied in this case, as well. The case [fi, a] ∈ n and b = ei is essentially
the same computation, so we omit it, and the case a = b = ei trivially yields a ∧ b = 0.
This completes the proof. �

Lemma 4.10. Let x ∈ gα and y ∈ gβ. Then, d[x, y] = (α, β)x ∧ y + x · dy − y · dx.

Proof. We induct on the number of simple roots into which α decomposes. If α is simple,
then we may assume x is some Chevalley generator ei, and then this is resolved by Lemma
4.9. If x = [ei, x

′], then [x, y] = [[ei, x
′], y] = [ei, [x

′, y]] − [x′, [ei, y]], so we have reduced
to a sum of brackets where the left entry decomposes into fewer simple roots. Assuming
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the claim holds in those cases, we have

d[x, y] = d[ei, [x
′, y]]− d[x′, [ei, y]]

= (αi, α− αi + β)ei ∧ [x′, y] + ei · d[x′, y]− (α− αi, β + αi)x
′ ∧ [ei, y]

− x′ · d[ei, y] + [ei, y] · dx′

= (αi, α− αi + β)ei ∧ [x′, y] + (α− αi, β)(x ∧ y + x′ ∧ [ei, y]) + ei · x′ · dy
− ei · y · dx′ − (α− αi, β + αi)x

′ ∧ [ei, y] + (αi, β)(x ∧ y − ei ∧ [x′, y])

− x′ · ei · dy + [ei, y] · dx′

= (αi, α− αi)ei ∧ [x′, y] + (α, β)x ∧ y + (α− αi,−αi)x′ ∧ [ei, y]

+ x · dy − y · ei · dx′

Using Lemma 4.9, we see that:

y · dx = y · d[ei, x
′]

= (αi, α− αi)([y, ei] ∧ x′ + ei ∧ [y, x′]) + y · ei · dx′

so combining this with the previous computation, we obtain the answer we want. �

4.2. Properties of the Laplacian. The following result is stated in [Borcherds 1998]
section 3, but we have been unable to find a proof in the generality we need here. In the
finite dimensional case, it is Theorem 5.7 in [Kostant 1961].

Theorem 4.11. Let R be a subring of C that is closed under complex conjugation, let
g be a BKM algebra over R with Weyl vector ρ, and suppose g is given a nondegenerate
contravariant hermitian form. Let n be the positive subalgebra. Let (

∧∗(n), δ) be the
Chevalley-Eilenberg complex for the trivial n-module R, and let d be the adjoint of δ with
respect to the contravariant hermitian form. Then, the Laplacian ∆ = dδ + δd acts on
the α weight space of

∧∗ n via multiplication by (α, α + 2ρ)/2.

Proof. By Lemma 4.8, the operator ∆, as the graded commutator of d and δ, is a differ-
ential operator of order 2 on

∧∗(n). The function taking α to (α, α+2ρ)/2 is a quadratic
polynomial on the root lattice, so it suffices to show the assertion of the theorem holds
for elements of n and

∧2 n.
The case of n can be done by induction on the number of simple roots into which α

decomposes. If α is simple, then gα lies in the kernel of both δ and d, so ∆ acts by
zero, which is equal to (α, α + 2ρ)/2. Now, suppose the claim holds for α, and consider
the action on [ei, x] for some x ∈ gα. By Lemma 4.9, d[ei, x] = α(hi)ei ∧ x + ei · dx, so
∆[ei, x] = α(hi)[ei, x] + δ(ei · dx). Writing dx =

∑
aj ∧ bj, we have

δ(ei · dx) =
∑
j

δ([ei, aj] ∧ bj + aj ∧ [ei, bj])

=
∑
j

[[ei, aj], bj] + [aj, [ei, bj]]

=
∑
j

[ei, [aj, bj]]

= (ad ei)δ(dx)

=
(α, α + 2ρ)

2
[ei, x]
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Since (α+αi,α+αi+2ρ)
2

− (α,α+2ρ)
2

= (α, αi) = α(hi), we conclude that

∆[ei, x] =
(α + αi, α + αi + 2ρ)

2
[ei, x].

Thus, ∆ acts as expected on the α + αi-weight space.
For

∧2 n, we let x ∈ nα and y ∈ nβ. Then, ∆(x∧ y) = δd(x∧ y) + d[x, y] = δ(dx∧ y−
x ∧ dy) + d[x, y]. If dx =

∑
j aj ∧ bj and dy =

∑
k ck ∧ dk, we get

δ(
∑
j

aj ∧ bj ∧ y −
∑
k

x ∧ ck ∧ dk)

=
∑
j

[aj, bj] ∧ y − [aj, y] ∧ bj + [bj, y] ∧ aj

− (
∑
k

[x, ck] ∧ dk − [x, dk] ∧ ck + [ck, dk] ∧ x)

= (δdx) ∧ y − (δdy) ∧ x+ y · dx− x · dy.

Combining this with Lemma 4.10 yields the answer. �

Corollary 4.12. Let R be a subring of C, and let n be the positive subalgebra of the R-
form of the Monster Lie algebra mR from Definition 3.9. Then, the Laplacian ∆ = dδ+δd
acts as (m− 1)n on the degree (m,n) part of

∧∗ n.

Proof. It suffices to prove this for R = Z, since the eigenvalues are preserved by base
change. By Corollary 3.10, the contravariant form on mZ is positive definite, and the
simple roots have the form (1, n), with norm −2n, so (−1, 0) is a Weyl vector. Thus, we

may apply Theorem 4.11, which asserts that ∆ acts as (α+2ρ,α)
2

= ((m−2,n),(m,n))
2

= (m−1)n
on the degree (m,n) space in

∧∗ n. �

Summing up, we have the following facts about the Monster Lie algebra:

Theorem 4.13. There exists an integral form mZ of the Monster Lie algebra, satisfying
the following properties:

(1) mZ is a Z×Z-graded Borcherds-Kac-Moody Lie algebra over Z, with an invariant
bilinear form that identifies the degree (0, 0) subspace with the even unimodular
lattice II1,1.

(2) mZ has a faithful Monster action by homogeneous inner-product-preserving Lie
algebra automorphisms, such that the Z[M]-module structure of the degree (m,n)
root space depends only on the value of mn, when gcd(m,n) = 1, i.e., if (m,n) is

primitive. In particular, this space is isomorphic to V \
1+mn,Z.

(3) The positive subalgebra nZ =
⊕

m≥1,n≥−1 mm,n,Z has Z≥0×Z≥0×Z-graded homology

H∗(nZ,Z) =
⊕

i≥0,m≥0,n∈ZH
i(nZ,Z)m,n. Furthermore, for any subgroup G of M,

and any i ≥ 0, and all degrees (m,n) such that (m − 1)n is coprime to |G|, the
representation H i(nZ,Z)m,n of G lies in the torsion ideal of the representation ring

RepZ(G). In particular, applying any ring homomorphism φ : Rep\Z(G) → C to
H i(nZ,Z)m,n yields zero.

Proof. The first two claims are given in Corollary 3.10 and Theorem 4.6. For the last
claim, Corollary 4.12 asserts the Laplacian acts as (m − 1)n on the degree (m,n) part
of
∧∗ n, and Corollary 2.4 implies the Chevalley-Eilenberg complex has homology in the

torsion ideal of RepZ(G). �
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5. Quasi-replicability

5.1. Adams operations. We will analyze the exterior powers of n using Adams opera-
tions, which are linear maps on the representation ring.

Definition 5.1. Let R be a subring of C, and let G be a finite group. For any R-torsion-
free R[G]-module X of finite rank, we define∧

−q
X =

∑
n≥0

(−q)n ∧n X ∈ RepR(G)[q].

We define the Adams operations {ψn}n≥1 on RepR(G) by setting ψn(X) to be the qn dq
q

coefficient of −d log
∧
−qX ∈ RepR(G)[[q]]dq. That is, we let∑

n>0

ψn(X)qn
dq

q
= −

d(
∧
−qX)∧
−qX

On the rationalized representation ring, this can be rewritten as the identity∧
−q
X = exp(−

∑
n>0

ψn(X)qn/n).

in (RepR(G)⊗Q)[[q]].

Lemma 5.2. The Adams operations satisfy the following properties:

(1) If X is a module of dimension 1, then ψn(X) = X⊗n.
(2) ψn(X ⊕ Y ) = ψn(X)⊕ ψn(Y )
(3) ψn commutes with base change of the coefficient ring.
(4) Tr(g|ψn(X)) = Tr(gn|X).
(5) Newton’s formula holds:

∑n−1
j=0 (−1)j+1(ψn−jV )(∧jV ) = (−1)nn ∧n V , and we

obtain the following recursion: ψnV =
∑n−1

j=1 (−1)j+1(ψn−jV )(∧jV )−(−1)nn∧nV .

Proof. We prove these in the order they are stated:

(1) For this, we just use the definition: The right side is Xdq
1−qX , so we get∑

n>0

ψn(X)qn
dq

q
=
∑
n>0

X⊗nqn
dq

q
.

(2) This follows from the fact that
∧
−q takes direct sums to products, together with

the Leibniz rule.
(3) This follows from the fact that formation of the exterior algebra commutes with

base change.
(4) We may base change to a ring with enough roots of unity, then split X into one

dimensional eigenmodules for g.
(5) Multiplying both sides of the defining relation by

∧
−q and applying the substitu-

tion t = −q yields(
∞∑
k=1

(−1)k−1ψk(V )tk−1

)(
∞∑
j=0

∧jV tj
)

=
∞∑
m=1

m ∧m V tm−1,

so Newton’s formula follows from comparing the coefficients attached to tn−1. The
recursion comes from isolating the j = 0 term.

�
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Remark 5.3. When R is a field of characteristic zero, we also have ψn(X ⊗ Y ) =
ψn(X) ⊗ ψn(Y ) and ψm(ψn(X)) = ψmnX, so in particular, the Adams operations form
a commutative monoid of ring homomorphisms generated by ψp for p prime. However,
these identities fail for R a general commutative ring. Explicit counterexamples are given
in Remark 6.7.

We then have our version of the twisted denominator identity:

Theorem 5.4. Let R be a subring of C, let G be a subgroup of M, and let φ : Rep\R(G)→
C be a ring homomorphism. Then, for any (a, b) for which (a − 1)b is a unit in R′ =⋂
P⊃|G|RRP , the paqb term in

exp

(
−
∞∑
k=1

1

k

(
∞∑
m=1

∞∑
n=−1

φ(ψk(mm,n,R))pkmqkn

))
vanishes.

Proof. Corollary 4.12 asserts that for all (a, b), the Laplacian acts on (
∧∗ n)a,b by (a −

1)b, and under our assumption, this quantity is a unit in R′. Thus, by Corollary 2.4,∑
(−1)iφ((

∧i n)a,b) = 0. Expanding (
∧∗ n)a,b in terms of Adams operations yields the

claim. �

Definition 5.5. Let R be a subring of C, and let G be a subgroup of M. Then, for any
ring homomorphism φ : RepR(G)→ C, we define the functions

T
[m]
φ (τ) =

∑
ad=m

1

a

∑
n≥−1

φ(ψa(md,n,R))qan

for all m ≥ 1.

Proposition 5.6. −
∑∞

k=1
1
k

(∑∞
m=1

∑∞
n=−1 φ(ψk(mm,n,R))pkmqkn

)
= −

∑
m>0 p

mT
[m]
φ (τ)

Proof.

−
∞∑
k=1

1

k

(
∞∑
m=1

∞∑
n=−1

φ(ψk(mm,n,R))pkmqkn

)
= −

∞∑
m=1

∑
a|m

1

a

∞∑
n=−1

φ(ψa(mm/a,n,R))pmqan

= −
∞∑
m=1

pm
∑
ad=m

1

a

∑
n≥−1

φ(ψa(md,n,R))qan

= −
∑
m>0

pmT
[m]
φ (τ)

�

Corollary 5.7. The paqb coefficient of

exp

(
−
∑
m>0

pmT
[m]
φ (τ)

)
vanishes for all (a− 1)b coprime to |G|.

Proof. By Proposition 5.6, we have

exp

(
−
∑
m>0

pmT
[m]
φ (τ)

)
= exp

(
−
∞∑
k=1

1

k

(
∞∑
m=1

∞∑
n=−1

φ(ψk(mm,n,R))pkmqkn

))
and Theorem 5.4 asserts that the paqb term vanishes when (a− 1)b is coprime to |G|. �
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5.2. Quasi-replicability, main result.

Definition 5.8. A periodic holomorphic function on the complex upper half-plane f(τ) =
q−1 +

∑
n≥0 anq

n is quasi-replicable of exponent N if for m ≥ 1, there exist holomorphic

functions f [m](τ) on the complex upper half-plane, satisfying the following conditions:

(1) f [1](τ) = f(τ).

(2) f [m](τ) is periodic in τ with q-expansion f [m](τ) = 1
m
q−m +

∑
n>−m a

[m]
n qn.

(3) If gcd(m,n) = 1, then the qn coefficient of f [m](τ) is equal to the qmn coefficient

of f(τ), i.e., a
[m]
n = a

[1]
mn.

(4) the paqb coefficient of

exp

(
−
∑
m>0

pmf [m](τ)

)
vanishes for all (a− 1)b coprime to N .

We now have our main theorem:

Theorem 5.9. Let R be a subring of C, and let G be a subgroup of M. Then, for
any ring homomorphism φ : Rep\R(G) → C, the “generalized McKay-Thompson series”

Tφ(τ) =
∑

n≥0 φ(V \
n,R)qn−1 is quasi-replicable of exponent |G|.

Proof. We set f [m](τ) = T
[m]
φ (τ) =

∑
ad=m

1
a

∑
n≥−1 φ(ψa(md,n,R))qan following Definition

5.5. Then, the first condition follows from the isomorphism m1,n,R
∼= V \

1+n,R given in
Corollary 3.10. The second and third conditions follow immediately from the defining

formula for T
[m]
φ (τ) together with the fact that the unique real simple root of m has degree

(1,−1) (i.e., mm,n,R = 0 when mn < −1). The fourth condition is precisely Corollary
5.7. �

Remark 5.10. The quasi-replicability condition is related to the notion of “replicability”
introduced in [Conway-Norton 1979] and further explained in [Norton 1984], in the fol-
lowing way: If f(τ) is replicable, then there are uniquely defined holomorphic functions
f (k)(τ) for all k ≥ 1, such that the following equality holds in some neighborhood of the
cusp (i∞, i∞) in the product of two complex upper half-planes:

f(σ)− f(τ) = p−1 exp

(
−
∞∑
m=1

pm

m

∑
ad=m,0≤b<d

f (a)

(
aτ + b

d

))
,

where p = e2πiσ. Setting f [m](τ) = 1
m

∑
ad=m f

(a)(aτ+b
d

) we find that replicable functions
are quasi-replicable of exponent 1. There is also a notion of “finite order” replicability,
defined by the condition that the “replicates” f (k) are periodic in k. We can define

“quasi-replicate” functions T
(k)
φ (τ) =

∑
n≥−1 φ(ψk(V \

n))qn−1, and these are periodic in k

when the Adams operations ψk are periodic. However, it appears that we do not have
enough control over mm,n for non-primitive vectors (m,n) to turn this into a good, precise
analogue of finite order replicability.

6. Explicit results

6.1. Cyclic subgroups of order 4 in the Monster. Let G be a cyclic group of or-
der 4. The indecomposable Z[G]-modules were classified into 9 isomorphism types by
Roiter [Roiter 1960], and independently in the Ph. D. dissertations [Knee 1962] and
[Troy 1961]. The tensor structure is given in [Reiner 1965], and we use this to classify
the homomorphisms φ : RepZ(G)→ C.
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Definition 6.1. We fix notation for the 9 isomorphism classes of indecomposable Z[G]-
modules. Let g be a generator of G.

(1) A is the trivial module Z.
(2) B is Z with g acting as −1.
(3) C is the rank 2 module Zx⊕ Zy with gx = y, gy = −x.
(4) D is the group ring Z[G]
(5) E is the rank 2 module Zx⊕ Zy with gx = y, gy = x.
(6) CA is the unique non-split extension of C by A.
(7) CB is the unique non-split extension of C by B.
(8) CE is the non-split extension of C by E that is not the group ring.
(9) CAB is the non-split extension of C by A⊕B.

Theorem 6.2. Let φ : RepZ(G) → C be a ring homomorphism. Then φ takes the
indecomposable modules (A,B,C,D,E,CA, CB, CE, CAB) to one of the following tuples:

(1) (1, 1, 2, 4, 2, 3, 3, 4, 4), from the rank, or “trace of 1” homomorphism.
(2) (1, 1,−2, 0, 2,−1,−1, 0, 0), from the “trace of g2” homomorphism.
(3) (1, 1, 2, 0, 2, 1, 1, 2, 2), from the “total dimension of Tate cohomology of g2” homo-

morphism.
(4) (1,−1, 0, 0, 0, 1,−1, 0, 0), from the “trace of g” homomorphism.
(5) (1,−1, 0, 0, 0,−1, 1, 0, 0), (1, 1, 0, 0, 0, 1, 1, 0, 0), and (1, 1, 0, 0, 0,−1,−1, 0, 0). We

call these “twisted versions” of the trace of g, because they are the same up to
sign.

(6) (1, 1, 0, 0, 0, 1, 1, 2, 2), from an exotic function.

In particular, φ takes values in integers.

Proof. We reproduce the multiplication table from [Reiner 1965]:

A B C D E CA CB CE CAB

A A B C D E CA CB CE CAB

B A C D E CB CA CE CAB

C 2E 2D 2C D + E D + E C +D + E C +D + E
D 4D 2D 3D 3D 4D 4D
E 2E C +D C +D C +D + E C +D + E
CA A+ 2D B + 2D CAB + 2D CE + 2D
CB A+ 2D CAB + 2D CE + 2D
CE CE + CAB + 2D CE + CAB + 2D
CAB CE + CAB + 2D

Case 1: If φ(D) is nonzero, then by D⊗X ∼= D⊕ rankX , we get the rank homomorphism.
Case 2: We assume φ(D) = 0. Since the tensor squares of C and E are both 2E, we
consider the case φ(E) = 2. Then, φ(C) can be 2 or −2.
Case 2a: Suppose φ(D) = 0 and φ(C) = 2. Then, the remaining values of φ are
uniquely determined by tensoring with C and E, and we get the “total dimension of Tate
cohomology of g2” homomorphism.
Case 2b: Suppose φ(D) = 0 and φ(C) = −2. Then, the remaining values of φ are
uniquely determined by tensoring with C and E, and we get the “trace of g2” homomor-
phism.
Case 3: Suppose φ(D) = φ(E) = φ(C) = 0. Then, φ(B)2 = φ(CA)2 = φ(CB)2 = 1,
and φ(CB) = φ(B)φ(CA), so we split into 4 cases depending on the signs of φ(B) and
φ(CA). Because φ(CAB)φ(CA) = φ(CAB)φ(CB) = φ(CE), we find that φ(B) = −1
implies φ(CAB) = φ(CE) = 0. If φ(B) = 1 and φ(CA) = −1, then φ(CE)2 = φ(CE +
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CAB + 2D) = 0, so once again φ(CAB) = φ(CE) = 0. These three cases yield the “trace
of g” homomorphism and two twisted versions.
Case 3’: If φ(B) = φ(CA) = 1, then φ(CE) = φ(CAB)φ(CA) = φ(CAB), so φ(CE)2 =
φ(CE +CAB + 2D) = 2φ(CE). We conclude that φ(CE) is 0 or 2. These two values yield
the remaining maps. �

Remark 6.3. The indecomposable modules CE and CAB cannot be distinguished by ho-
momorphisms from the representation ring. However, we will see that they never appear
in the decomposition of V \

Z under any order 4 automorphism.

We now consider the decomposition of V \
Z under the action of automorphisms of order

4.

Lemma 6.4. The indecomposable Z[G]-modules restrict to 〈g2〉 in the following way,
where I denotes the rank 1 module with g2 acting by −1, and H denotes the subgroup
〈g2〉:

A B C D E CA CB CE CAB

H-rep. Z Z 2I 2Z[H] 2Z Z[H] + I Z[H] + I Z + I + Z[H] Z + I + Z[H]

Furthermore, if G is generated by an element g of order 4 in M, then we have the
following lists of possible indecomposable representations in V \

n,Z:

(1) g in class 4A: A, B, D, E for n even, and C, D, CA, CB for n odd.
(2) g in class 4B: A, B, D, E for all n.
(3) g in class 4C: A, B, D, E for n even, and C, D, CA, CB for n odd.
(4) g in class 4D: A, B, D, E for n even, and C, D, CA, CB for n odd.

In particular, the indecomposable representations CE and CAB do not appear.

Proof. Using cases 1 and 2 in the proof of Theorem 6.2, we obtain the decomposition.
By Theorems 5.2, 5.3 in [Borcherds-Ryba 1996], if g2 lies in class 2A (i.e., for class 4B),

then V \
n,Z decomposes into Z and Z[H] for all n, and if g2 lies in class 2B (i.e., for classes

4A, 4C, 4D), then V \
n,Z decomposes into Z and Z[H] for n even and I and Z[H] for n

odd. The lack of terms combining Z and I eliminates CE and CAB from possibility. �

We continue with class 4A, where we have the most complete information. The key
property that helps us is that T2B = q−1 + 276q − 2048q2 + 11202q3 − · · · while T4A =
q−1 + 276q + 2048q2 + 11202q3 + · · · , i.e., the coefficients of T2B have the same size as
those of T4A, but alternate sign.

Theorem 6.5. Let G be a cyclic subgroup of M generated by an element in class 4A.
Then, V \

Z decomposes as a direct sum of the indecomposable Z[G]-modules A, D, and CA,
and they generate a subring of RepZ(G) isomorphic to Z[d, c]/(d2−4d, c2−2d−1, (c−3)d).
There are exactly 3 homomorphisms from this ring to C, corresponding to the traces of
elements in classes 1A, 2B, and 4A. The multiplicities an, dn, cn of the indecomposable
modules A,D,CA in V \

n,Z are given by the generating function formula ∑
anq

n−1∑
dnq

n−1∑
cnq

n−1

 =

 0 1/2 1/2
1/4 1/4 −1/2
0 −1/2 1/2

 T1A(τ)
T2B(τ)
T4A(τ)

 .

Proof. The trace of g is equal to the trace of g2 on V \
n when n is even, so B and E cannot

appear. The trace of g is minus the trace of g2 on V \
n when n is odd, so C and CB cannot

appear. This leaves the possibilities we listed, and the structure of the ring generated
by these indecomposable modules is given by the tensor products listed in the proof of
Theorem 6.2. �
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For the remaining classes, we do not have comprehensive multiplicity information,
because there is at least one Tφ that we don’t know how to evaluate. However, we
can put a bound on the “order” of quasi-replicability, by using periodicity of Adams
operations.

Proposition 6.6. Let G be a cyclic subgroup of M generated by an element of order
4. Then, the Adams operations on the indecomposable Z[G]-modules appearing in V \ are
periodic with period at most 8.

Proof. We first compute the exterior powers of indecomposable modules: they can be
distinguished for all cases except Λ2D, by considering eigenvalues of the corresponding
complex representations and the decomposition under the action of H = 〈g2〉, and for
the remaining case by similarity for matrices mod 2 (we checked this with a SAGE
computation [SAGE 2017]). A brief calculation with log derivatives yields the values and
periodicity we want.

A B C D E CA CB

H-rep. Z Z 2I 2Z[H] 2Z Z[H] + I Z[H] + I
Λ2 0 0 A C +D B CA CA

Λ3 0 0 0 D 0 A B
Λ4 0 0 0 B 0 0 0

ψ2k+1 A B C D E CA CB

ψ4k+2 A A 2E − 2A 2D − 2C 2E − 2B A+2D−2CA A+2D−2CB

ψ8k+4 A A 2A 4E − 4B 2A 3A 3A
ψ8k A A 2A 4A 2A 3A 3A

�

Remark 6.7. As we mentioned in Remark 5.3, the Adams operations are neither closed
under composition, nor do they give us endomorphisms of representation rings. From
the table, we see that for composition, ψ2(ψ2(C)) = ψ2(2E − 2A) = 4E − 4B − 2A
while ψ4(C) = 2A, and for multiplication, we have ψ2(C2) = ψ2(2E) = 4E − 4B while
(ψ2(C))2 = (2E − 2A)2 = 4A

Corollary 6.8. Let G be a cyclic subgroup of M generated by an element of order 4,
and let R be a subring of C. Then, for any ring homomorphism Rep\R(G) → C, the

series Tφ is quasi-replicable of exponent 2, and the “quasi-replicate” functions T
(k)
φ (τ) =∑

n≥−1 φ(ψk(V \
n))qn−1 are periodic in k with period 8.

Proof. This follows immediately from the 8-periodicity of Adams operations and the

definition of T
(k)
φ . �

Our best remaining case is 4B, with at most 1 extra function:

Proposition 6.9. Let G be a cyclic subgroup of M generated by an element in class 4B.
Then, V \

Z decomposes as a direct sum of the indecomposable Z[G]-modules A, D, E, and

possibly B. Rep\Z(G) is either (if B is not present) Z[d, e]/((d − 4)d, (e − 2)d, (e − 2)e)
or (if B is present) Z[b, d, e]/(b2 − a, (b − 1)d, (d − 4)d, (b − 1)e, (e − 2)d, (e − 2)e). If
B is not present, then there are 3 homomorphisms from this ring to C, corresponding
to the traces of elements in classes 1A, 2A, and 4B. If B is present, then there are
4 homomorphisms to C, given by the 3 traces together with a twisted version of trace
taking (A,B,D,E) to (1, 1, 0, 0). For this last map φ, the coefficients of Tφ are bounded
above and below by the corresponding coefficients of T2A(τ) and T4B(τ). Specifically, if

we denote the multiplicities of the Z[G]-modules A,B,D,E in V \
n,Z by an, bn, dn, en, we

have the following relations between these numbers and the qn−1 coefficients of generalized
McKay-Thompson series:
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(1) T1A(τ) =
∑

n(an + bn + 4dn + 2en)qn−1 = q−1 + 0 + 196884q + 21493760q2 +
864299970q3 + · · ·

(2) T2A(τ) =
∑

n(an + bn + 2en)qn−1 = q−1 + 0 + 4372q + 96256q2 + 1240002q3 + · · ·
(3) T4B(τ) =

∑
n(an − bn)qn−1 = q−1 + 0 + 52q + 0q2 + 834q3 + · · ·

(4) Tφ(τ) =
∑

n(an + bn)qn−1 = q−1 + 0 + (a2 + b2)q + (a3 + b3)q2 + · · ·
In particular, the multiplicity of D in V \

n,Z is dn, and this is given by the qn−1 coefficient

of T1A(τ)−T2A(τ)
4

= 48128q + 5349376q2 + 215764992q3 + · · · .

Proof. The indecomposable modules are given in Lemma 6.4, and the tensor products
and homomorphisms are listed in the proof of Theorem 6.2. �

We note that the last claim in this proposition implies Z[G] makes up a large proportion
of the indecomposable summands in V \

n , and this proportion approaches 1 as n→∞.
Let us consider further what we can know about this extra function Tφ. Quasi-

replicability gives us an identity for each p2iq2j+1, where 0 < i < j. For example,
vanishing of (

∧∗ nZ2)1,2k+1 (equivalently, vanishing of the p2q2k+1 term in the product)

yields V \
4k+3,Z2

= V \
2k+3,Z2

⊕
⊕k

i=1 V
\
i+1,Z2

⊗V \
2k+2−i,Z2

, and applying φ yields a4k+3 +b4k+3 =

a2k+3 + b2k+3 +
∑k

i=1(ai+1 + bi+1)(a2k+2−i + b2k+2−i). We my use this to establish some
asymptotic behavior.

Proposition 6.10. For even n, we have c1n
−3/4eπ

√
2n < an < c2n

−3/4eπ
√

8n for some
strictly positive constants c1, c2. Furthermore, either an = 0 for all odd n, or for any
ε > 0, there is some N such that for all n ≡ 3 (mod 4) satisfying n > N , we have

an > eπ
√

2n(1−ε).

Proof. Theorem 8.11 of [Duncan-Griffin-Ono 2015] gives an exact formula for the co-
efficients of McKay-Thompson series, and we find that the q2k+1-st coefficient of T4B

grows like 2−1/4(2k + 1)−3/4eπ
√

2(2k+1), and the corresponding coefficient of T2A grows

like 2−3/4(2k + 1)−3/4eπ
√

8(2k+1). This latter figure gives us our upper bound for all k,
and our lower bound for a2k+2. The recursion formula for φ implies a4k+3 ≥ a2k+3 +∑k

i=1 ai+1a2k+2−i, so a4k+3 is strictly positive for all k ≥ n−3
2

. Now, let ε′ > 0 satisfy

ai+1 > eπ
√

2i(1−ε′) for the unique i ≡ 2 (mod 4) satisfying i ∈ {k − 1, k, k + 1, k + 2}.
Then, 2k + 2 − i is even, so a2k+2−i > 2−1/2k−3/4eπ

√
2k. Applying the recursion for-

mula, we find that a4k+3 > 2−1/2k−3/4eπ(
√

2k+
√

2k−2−ε
√

2k+4). For k sufficiently large, this is

greater than eπ
√

2(4k+3)(1−ε′′) for ε′′ < 2ε′

3
. Iterating the substitution k 7→ 4k + 3, ε′ 7→ ε′′,

we eventually find ε′′ < ε. �

The classes 4C and 4D are similar but have more potential classes and functions. The
analysis for elements of orders 9 and 25 is also similar, but there are substantially more
indecomposable modules to consider, and the computation of Adams operations seems
to require a lot of computer memory.

6.2. Cyclic subgroups of order 6. We begin by reviewing the results of [Knee 1962],
which gives an algorithm for classifying indecomposable representations of cyclic groups of
square-free order. Let p, q be distinct primes. The irreducible representations of Z/pqZ
over Z are represented by matrices of the form Γ1,Γp,Γq,Γpq, where each Γr has size
φ(r) and equivalence classes are parametrized by ideal classes in Z[ζr] = Z[e2πi/r]. Inde-
composable representations of Z/pqZ over Z are represented by block upper triangular
matrices, whose diagonal blocks have at most one copy of each type Γr, where r is weakly
increasing as we progress down the diagonal. Two indecomposable representations of
this form are equivalent if and only if one can be taken to the other by a sequence of
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“sigma” transformations (conjugation by strictly block upper triangular matrices) and
“delta” transformations (conjugation by block diagonal matrices).

For any representing block-upper triangular matrix W , we form a decorated graph
whose vertices are labeled with the values of r attached to the diagonal blocks, where
r < r′ are connected by an edge if and only if there is a nonzero entry in the block that
shares rows with Γr and columns with Γr′ . A representation is indecomposable if and only
if all matrices in the equivalence class have connected graphs. Within each equivalence
class of indecomposable representations, there is a representative with minimal graph,
and in this graph r is adjacent to r′ only if r′/r is a prime.

Lemma 6.11. If 2 indecomposable Z[Z/6Z]-modules yield identical minimal graphs, then
they are equivalent.

Proof. Because we are concerned with the case p = 2, q = 3, the relevant ideal class groups
are trivial. A brief computation in SAGE shows that for each decorated connected graph
with vertex labels taken from a subset of {1, 2, 3, 6}, there is a unique orbit under the
action of sigma and delta transformations, such that this graph is the minimal graph of
the equivalence class [SAGE 2017]. �

We write Γ(r1, r2, . . .) to denote an indecomposable representation whose block diag-
onals are Γr1 ,Γr2 , . . .. We note that in general, this notation may not determine the
representation up to equivalence.

Lemma 6.12. Let ρ : Z/6Z → AutV \
Z be a representation taking a generator to an

element in class 6A. Then, any indecomposable submodule has one of the following forms:
Γ1, Γ(1, 2), Γ(1, 3), Γ(1, 2, 3), and Γ(1, 2, 3, 6). Furthermore, the only submodule of the
form Γ(1, 2, 3, 6) is isomorphic to the group ring Z[Z/6Z], and its decorated graph is a
4-cycle 1− 2− 6− 3− 1.

Proof. The nontrivial powers of 6A elements lie in classes 2A and 3A, so Modular Moon-
shine for these classes [Borcherds-Ryba 1996], [Carnahan 2017] implies the restriction
to subgroups of orders 2 and 3 have no indecomposable constituents equivalent to the
augmentation ideals. Restriction to a subgroup of order 2 erases the 1 − 3 and 2 −
6 edges, and we eliminate those graphs that have isolated 2 or 6. This eliminates
Γ2,Γ6,Γ(2, 6),Γ(1, 2, 6),Γ(2, 3, 6). Restriction to a subgroup of order 3 erases the 1 − 2
and 3 − 6 edges, and we eliminate those graphs that have isolated 3 or 6. This elimi-
nates Γ3,Γ6,Γ(3, 6),Γ(1, 3, 6),Γ(2, 3, 6). We are left with the graph types we claimed. In
particular, Γ(1, 2, 3, 6) must be given by a cycle, and it is straightforward to see that the
group ring gives suitable connectivity. �

Lemma 6.13. We have the following tensor products of indecomposable representations
appearing in Lemma 6.12 (abbreviating Γ(1, 2, 3, 6) as D):

Γ1 Γ(1, 2) Γ(1, 3) Γ(1, 2, 3) D
Γ1 Γ1 Γ(1, 2) Γ(1, 3) Γ(1, 2, 3) D

Γ(1, 2) 2Γ(1, 2) D D + Γ(1, 2) 2D
Γ(1, 3) 3Γ(1, 3) D + 2Γ(1, 3) 3D

Γ(1, 2, 3) 2D + Γ(1, 3) + Γ1 4D
D 6D

Proof. This follows from restriction to the subgroups of orders 2 and 3, together with the
tensor product computations in [Borcherds 1998]. �

Proposition 6.14. Let φ : Rep\Z(Z/6Z)→ C be a ring homomorphism induced by send-
ing a generator g to class 6A. Then φ takes the tuple (Γ1,Γ(1, 2),Γ(1, 3),Γ(1, 2, 3), D) of
indecomposable modules to one of the following tuples:
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(1) (1, 2, 3, 4, 6), from the rank, or “trace of 1” homomorphism.
(2) (1, 0, 3, 2, 0), from the “trace of g3” homomorphism.
(3) (1, 2, 0, 1, 0), from the “trace of g2” homomorphism.
(4) (1, 0, 0,−1, 0), from the “trace of g” homomorphism.
(5) (1, 0, 0, 1, 0), from a twisted version of the trace of g.

In particular, φ takes values in integers.

Proof. From Lemma 6.13, D ⊗ X = (dimX)D so φ(D) is 0 or 6. If it is 6, we get the
rank homomorphism, so from now on we assume φ(D) = 0. Let h2 = φ(Γ(1, 2)) and
h3 = φ(Γ(1, 3)). Since Γ(1, 2)2 = 2Γ(1, 2), Γ(1, 3)2 = 3Γ(1, 3) and Γ(1, 2) ⊗ Γ(1, 3) = 0,
we have (h2, h3) = (2, 0), (0, 3), (0, 0).

Case (2, 0): Γ(1, 2, 3) is sent to 1 because of tensoring with Γ(1, 2), so we get Tr(g2).
Case (0, 3): By essentially the same argument as the (2, 0) case, we get Tr(g3).
Case (0, 0): The tensor square of Γ(1, 2, 3) is taken 1, so Γ(1, 2, 3) is taken to ±1. We

get Tr(g) from −1, and a twisted version of trace from 1. �

Theorem 6.15. Let φ : Rep\Z(Z/6Z)→ C be a ring homomorphism attached to a cyclic
group generated by a 6A element. Then, the power series Tφ(τ) is one of T1A, T2A, T3A, T6A

or some quasi-replicable function of exponent 6, whose qn coefficient is a non-negative
integer bounded below by the qn coefficient of T6A = q−1 + 79q+ 352q2 + 1431q3 + · · · and
bounded above by the qn coefficient of T3A = q−1 + 783q + 8672q2 + 65367q3 + · · · .

Proof. By Proposition 6.14, we have 5 possible ring homomorphisms, and 4 of them are
traces, yielding the McKay-Thompson series attached to powers of g. The last homomor-
phism yields a power series whose coefficients satisfy the claimed bounds, because the
evaluation on any indecomposable module satisfies the same bounds. Quasi-replicability
follows from Theorem 5.9. �

Conjecture 6.16. The extra function is equal to T6A. Equivalently, Γ(1, 2, 3) does not

appear in the 6A-decomposition of V \
Z .

As we mentioned in the introduction, we expect similar behavior for all elements of type
pqA for p, q distinct primes - these are the elements whose powers are all Fricke-invariant.
The main difficulty is proving a suitable substitute for Lemma 6.11. For other elements
of order pq, or more generally other elements of square-free composite order, we have less
control over the coefficients of the functions Tφ and indecomposable submodules, but we
can still put bounds on multiplicities.

7. Open problems

(1) Are quasi-replicable functions “almost all modular”? If we remove the “quasi”
prefix, we know that replicable functions of finite order are either “modular fic-
tions” (i.e., of the form q−1 + aq for a = 0 or a a root of unity) or Hauptmoduln
of finite level, when their coefficients are algebraic integers [Carnahan 2008]. In
fact, if f(τ) =

∑
n anq

n is replicable of finite order, and
∑

n∈Z n|σ(an)|2 > 1 for
some automorphism σ of C, then f is a Hauptmodul.

(2) For which R and G are the Adams operations for the R[G]-module structure

on V \
R periodic? That is, for which group rings do we have some N such that

ψk(V \
n,R) = ψk+N(V \

n,R) for all n, k ≥ 0? This is a natural question in light of
the previous one, since it implies the finite order property on the quasi-replicable
functions. When |G| is invertible in R, periodicity follows from the fact that all
homomorphisms are traces of elements.
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(3) Does every ring homomorphism Rep\R(G) → C take each V \
n,R to an algebraic

integer? This may help when trying to show that a series is a Hauptmodul.
(4) How bad can the ring Rep\R(G) get? We could optimistically hope that it is finite

rank for R = Z and G = M, and we could pessimistically consider the possibility
that even for the minimal examples R ∼= Z2 and G = Z/2Z×Z/2Z or G = Z/8Z
where RepR(G) is infinitely generated, Rep\R(G) may also be infinitely generated
[Nazarova 1961], [Heller-Reiner 1962], [Heller-Reiner 1963]. The case of a cyclic
group generated by a 4A element, where by Theorem 6.5 we see only 3 out of a
possible 9 indecomposable representations of Z/4Z, is evidence (perhaps weak)
that some significant simplification can happen. Specific question: what is the
smallest subgroup G of M, if one exists, such that Rep\Z(G) is infinitely generated?

(5) For which subgroups G < M and subrings R ⊂ C is V \
R asymptotically regular

as an R[G]-module? That is, do the maximal free R[G] summands Mn ⊂ V \
n,R

satisfy limn→∞
dimMn

dimV \n
= 1? By Corollary 8.2 in [Duncan-Griffin-Ono 2015], this

is true for R = C and G arbitrary, and this is shown in more generality in
[Aricheta-Beneish 2019]. The results of Modular Moonshine also imply asymp-
totic regularity for arbitrary R and G cyclic of prime order. Our results in section
6 imply asymptotic regularity for R any subring of C and G a cyclic group gen-
erated by an element of type 4A, 4B, or 6A.

(6) What if instead of considering homomorphisms to C to make coefficients of power

series, we allowed for a target ring that didn’t annihilate torsion, such as Rep\R(G)
itself? This would let us consider finer-grained information about representations,
and in particular we could distinguish isomorphism types in ideal classes. How-
ever, if we consider modular forms with torsion coefficients, then the notion of
Hauptmodul in this setting may need revision.

(7) Can one construct a theory of twisted modules attached to general homomor-
phisms from representation rings? This seems like the most promising potential
route to a general modularity result, generalizing [Dong-Li-Mason 1997].
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