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Abstract 12 

Mealiness is a phenomenon in which intercellular adhesions in apples loosen during storage, causing a soft 13 

and floury texture at the time of eating, and leading to lower consumer preference. Although apples can be 14 

stored and commercially sold throughout the year, the occurrence of mealiness is not monitored during 15 

storage. Therefore, the objective of this research was to non-destructively estimate the mealiness of apple 16 

fruit by means of laser scattering measurement. This method is based on laser light backscattering imaging 17 

but can quantify a wider range of backscattered light than the conventional method by utilizing high 18 

dynamic range (HDR) rendering techniques. Lasers with wavelengths of 633 nm and 850 nm were used as 19 

a light source, and after acquiring backscattered images, profiles and images were obtained. Profile features 20 

such as curve fitting coefficients and profile slopes and image features such as statistical image features 21 

and texture features were extracted from the profiles and images, respectively. PLS, SVM and ANN models 22 

were used for the estimation of mealiness. The results of the estimation based on these features showed that 23 

the ANN model combining both wavelengths had a higher performance (R=0.634, RMSE=7.621) than the 24 

models constructed from features of single wavelength measurements. In order to further improve the 25 
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 2 

performance of the model, we applied various ensemble learning methods to combine different estimation 26 

models. As a result, the ensemble model showed the highest performance (R=0.682, RMSE=7.281). These 27 

results suggest that laser scattering measurement is a promising method for estimating apple fruit mealiness. 28 
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Introduction 37 

Apples (Malus × domestica) are one of the most widely cultivated fruits in the world and are sold all 38 

year due to the widespread use of controlled atmosphere (CA) storage. The palatability of apples is derived 39 

not only from their chemical properties but also from their physical properties. In fact, firmness, crispiness, 40 

and ease of swallowing are more important factors in the palatability of apples than sweetness and acidity 41 

(Chen Jie Yu et al. 2011; Hayakawa et al. 2012). However, the current market value of apples is assessed 42 

by shape, degree of damage, and Brix of fruit juice, not by indicators related to texture. 43 

Therefore, the development of technologies to estimate apple texture indicators is important. However, 44 

the change in apple texture during storage varies widely among apple cultivars, and various deterioration 45 

phenomena can be observed including a decrease in flesh turgor pressure, increase in the degree of 46 

mealiness, and cell fracture (Cárdenas-Pérez et al. 2017; Gwanpua et al. 2016; Iwanami et al. 2005; 47 

Iwanami, Moriya, Kotoda, and Abe 2008; Iwanami, Moriya, Kotoda, Takahashi, et al. 2008). For instance, 48 

the decrease in turgor pressure and increase in mealiness are less likely to occur in “Kanzi” and “Fuji” 49 

apples, which are known to soften due to the fracture of the microstructure. On the other hand, “Jonagold” 50 

apples are known to become mealy and soften. 51 

Mealiness is an internal damage phenomenon in which the adhesion between cell tissues loosens, 52 

causing cells to separate. Loosening of the adhesion between cell tissues is caused by the solubilization of 53 

pectin in the fruit. It has been reported that non-mealy apples are juicy because the cells are strongly adhered 54 

to each other, and the cells are easily crushed. However mealy apples are broken down into several cell 55 

clusters in the mouth during eating, resulting in less crushed cells and a less juicy mouthfeel (Harker and 56 

Hallett 1992). Barreiro et al. (1998) reported that the increase in mealiness causes loss of crispiness, 57 

firmness, and juiciness, and increases a floury mouthfeel. 58 

Two methods have been developed to evaluate mealiness. The confined compression method has been 59 

more widely used; the method determines whether or not the apple is mealy by assessing the hardness and 60 
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juiciness obtained from a compression test based on a certain threshold value (Barreiro et al. 1999). On the 61 

other hand, the fruit disc shaking method measures the degree of mealiness quantitatively. In this method, 62 

apple discs are shaken in a sucrose solution, and the degree of mealiness (degree of disc collapse) is 63 

calculated from the weight ratio before and after the shaking (Iwanami et al. 2005; Iwanami, Moriya, 64 

Kotoda, and Abe 2008; Moriya et al. 2017; Motomura et al. 2000). 65 

Although the aforementioned methods of measuring mealiness provide objective information, they both 66 

involve destructive operations and have little practical application. Since the texture of agricultural products 67 

varies greatly between individuals and also changes significantly during storage (Liu et al. 2019; C. Ma et 68 

al. 2020; Saei et al. 2011), there is a need for non-destructive technologies that can inspect all products that 69 

are consumed. 70 

Non-destructive methods for evaluating apple mealiness include hyperspectral backscattering imaging 71 

analysis (Huang et al. 2012; Huang and Lu 2010), biospeckle imaging (Arefi et al. 2016), laser light 72 

backscattering imaging (LLBI)(Mollazade and Arefi 2017), nuclear magnetic resonance imaging (Barreiro 73 

et al. 1999, 2000), fluorescence spectroscopy (Moshou et al. 2003), near infrared spectroscopy (Mehinagic 74 

et al. 2003), ultrasound methods (Bechar et al. 2005), and acoustic methods (M Lashgari and Imanmehr 75 

2019; Majid Lashgari et al. 2020). With the exception of LLBI, non-destructive techniques have several 76 

problems in practical application, such as the high price of equipment (e.g., hyperspectral cameras), long 77 

measurement times, and the need for contact between the fruit and the device. 78 

LLBI is a technique for quantifying the spatial distribution of backscattered light by capturing the 79 

backscattering of an object with a monochrome camera. LLBI simultaneously acquires information related 80 

to both the absorption coefficient and the reduced scattering coefficient of the measured object, which are 81 

related to its chemical and physical properties, respectively. However, it is possible to focus on the physical 82 

properties of the object by selecting illumination wavelengths in which the effect of absorption is small. 83 

LLBI is a non-contact, non-destructive technology and can be operated at low cost since its basic 84 
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configuration is based on a monochrome camera and several single-wavelength laser sources. 85 

LLBI has been used to predict the pre- and post-harvest quality for a variety of agricultural products 86 

such as apples (Baranyai et al. 2009), bananas (Zulkifli et al. 2019), pears (Adebayo et al. 2017), sweet 87 

potatoes (Sanchez, Hashim, Shamsudin, and Nor 2020), apricots (Mozaffari et al. 2022), plums (Rezaei 88 

Kalaj et al. 2016), potatoes (Babazadeh et al. 2016), and cocoa beans (Lockman et al. 2019). However, one 89 

of the problems in LLBI is that it relies on the analysis of a limited image area. Imaging devices can 90 

typically capture the whole object, but the scattered light is saturated near the incident point and cannot be 91 

analyzed. In contrast, areas that are far from the incident point are too dark to acquire relevant signals, since 92 

the intensity of scattered light in turbid materials decreases rapidly with increasing distance from the 93 

incident point. Typically, a circular region with a diameter of 15 mm at most from the incident point can be 94 

analyzed (Abildgaard et al. 2015; Cen et al. 2013; Højager Attermann et al. 2011). In other words, 95 

conventional LLBI has used local image information to estimate the overall quality. 96 

This problem led us to modify the LLBI method by developing a system that can capture multiple 97 

scattering images obtained at different exposure times. These multiple images can then be combined into a 98 

high dynamic range (HDR) composite to quantify a wider range of surface area, including areas near and 99 

far from the incident point. This modified method, which we termed as the laser scattering method, has 100 

been used to estimate the firmness of apples (Iida et al. 2022), and has been shown to increase the analysis 101 

area fourfold. This study attempted to estimate apple mealiness using the laser scattering method. As a 102 

method for quantifying mealiness, we used the fruit disc shaking method, which provides more detailed 103 

information on the degree of mealiness, rather than the confined compression method that has been widely 104 

used in previous studies but only distinguishes whether or not the apple is mealy (Mollazade and Arefi 105 

2017). In addition, the relationship between light scattering and mealiness degree was investigated by 106 

measuring the 3-dimensional microstructure using X-ray CT. 107 

 108 
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Materials and Methods 109 
Materials 110 

One hundred fresh and externally undamaged 'Jonagold' apples which had been harvested in 2021 were 111 

purchased from Aomori Prefecture, Japan. The apples were stored in an incubator (LTE510, Tokyo 112 

Rikakikai Co., Ltd., Japan) to accelerate mealiness. The apples were divided into 2 groups; the first group 113 

was immediately stored at 20°C, while the other group was first stored at 4°C for 1 month and were then 114 

transferred to the 20°C incubator. Ten apples were measured each week, including the day of purchase (0 115 

week), and the maximum storage period at 20°C was four weeks. 116 

 117 
Laser Scattering Measurement 118 
Laser scattering system 119 

The laser scattering measurement system was constructed as shown in Fig. 1, following the basic 120 

structure explained in previous studies (Babazadeh et al. 2016; Iida et al. 2022; Mollazade and Arefi 2017; 121 

Sanchez, Hashim, Shamsudin, and Mohd Nor 2020). A 12-bit monochrome CMOS camera (ORCA-spark, 122 

Hamamatsu Photonics Co, Tokyo, Japan) was used for image capture. The camera was mounted on a 123 

camera stand (EMVA-SL, Misumi Croup Inc., Tokyo, Japan) at a height of 210 mm from the optical surface 124 

plate, and images of the samples were captured in a horizontal direction. In order to limit the effect of light 125 

absorption by the apple peel, lasers with wavelengths of 633 nm (Self-Contained He-Ne Laser, 0.8 mW, 126 

Thorlabs, Inc.) and 850 nm (Alignment laser diode 5 mW, Edmund Optics Japan Co.) were used for 127 

illumination, and both lasers were fixed at a height of 185 mm. He-Ne lasers with a typical wavelength of 128 

633 nm have been used in previous studies for backscattering imaging (Askoura et al. 2016). On the other 129 

hand, the 850 nm laser was selected based on the report that the near-infrared region between 800 nm and 130 

1200 nm shows reduced light absorption in apples (van Beers et al. 2017). Due to limited space around the 131 

camera, the 633 nm laser was placed behind the sample and was reflected by three mirrors before being 132 

irradiated on the sample at an angle of 15.0 degrees. The laser light was focused on the sample surface with 133 

an achromatic lens (MgF2 coated achromatic lens, Edmund Optics Japan Co.). The 850 nm laser was 134 
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directly irradiated onto the sample surface at an angle of 25.5 degrees. These measurements were performed 135 

in a dark room. 136 

 137 
Fig. 1 Schematic diagram of laser scattering measurement device 138 

M: Mirror, L: Achromatic lens 139 

 140 

Backscattering images were captured at two opposing points on the equatorial line of the apple. After the 141 

apples were fixed using a ring-shaped spherical container, the height of the apple was adjusted so that the 142 

incident point was just on the equatorial plane. 143 

To obtain high-dynamic-range images, the images were captured with eight different exposure times, 144 

ranging from 100 ms to 103.5 ms at 100.5 ms intervals. For all images, the offset and gain were both set to 0, 145 

and the binning was set to 1 × 1. LabVIEW 2018 (National Instruments Corp., USA) was used to control 146 

the camera, and the acquired images were saved in the TIFF format. 147 

Obtaining the intensity profile (Analysis of backscattered images) 148 

Fig. 2 shows the image analysis flow after capturing images with the eight different exposure times 149 

explained above. First, the laser incident point was estimated from the image. Generally, the incident point 150 

can be detected as the point in the image with the highest intensity. However, since the strong laser light 151 

causes saturation near the incident point even in the image taken with a minimum exposure time of 1 ms, 152 

the incident point could not be detected with this method. Therefore, the image taken with an exposure time 153 

of 100 ms was binarized using the Otsu method (Otsu 1979) after smoothing with a 5 × 5 median filter and 154 

the incident point was calculated as the point of gravity of the scattering area.  155 



 8 

 156 

 157 

Fig. 2 Flow from image analysis to acquisition of the high-dynamic-range intensity profile 158 

(1) The laser incident point is estimated by using the image acquired with 100 ms exposure time: (a) Raw 159 

image, (b) Image processed with a median filter to reduce noise, (c) Binarization by Otsu method, (d) 160 

Calculation of the center of gravity (estimated incident point) 161 

(2) The intensity profile is acquired: (e) Radial averaging is performed for images acquired with the eight 162 

exposure times, (f) After dark correction, each profile is multiplied by the inverse of the exposure time 163 

and transformed logarithmically, (g) Finally, the average of the eight intensity profiles are calculated. 164 

 165 

Next, a circular region with a diameter of 70 mm from the incident point was set as the region of interest 166 

(ROI). The distance from the incident point was calculated for all pixels in the ROI, and the average 167 

intensity value was calculated for the points with equal radial distances. The intensity of the dark frame 168 

acquired with the cap on the camera was subtracted from all intensities (dark correction), resulting in eight 169 
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profiles shown in Fig. 2(e). The intensities were normalized by multiplying each of them with the reciprocal 170 

of their exposure time (Fig. 2(f)). Furthermore, the normalized intensity values for the eight exposure times 171 

were averaged after logarithmic transformation. The distribution of intensity of scattered light along the 172 

radial distance from the incident point is called the intensity profile. Since the intensity was saturated within 173 

1 mm of radial distance from the incident point, the intensity data between 0 and 1 mm radial distance were 174 

removed from the obtained profile. 175 

Finally, the intensity profiles were corrected for the effect of fruit curvature. This is important because 176 

the backscattering images are captured as images taken from the plane surface of a semi-infinite object and 177 

fruit curvature affects both the intensity and radial distance of the measured scattered light. In this study, a 178 

correction method based on the Lambert cosine law was used to correct the intensity of scattered light 179 

(Yankun Peng and Lu 2006; Qing et al. 2007). This method assumes that backscattered light is strongest in 180 

the direction normal to the sample surface and that backscattered light in other directions are proportional 181 

to the cosine of the angle between the normal. Since the backscattered light captured with the camera is at 182 

an angle with the normal due to the fruit curvature, it is converted back to the maximum intensity using the 183 

diameter of the fruit. Similarly, the radial distance was corrected following the method developed by the 184 

same authors (Yankun Peng and Lu 2006). These correction methods have been shown to increase 185 

estimation performance by 2.0–3.5% in estimating apple firmness and soluble solids content (Yankun Peng 186 

and Lu 2006; Qing et al. 2007). 187 

Various libraries in MATLAB2021b (Mathworks) and Python (Version 3.8.13) were used for these 188 

analyses. 189 

Fruit disc shaking method 190 

Referring to previous studies (Iwanami et al. 2005; Iwanami, Moriya, Kotoda, and Abe 2008; Moriya et 191 

al. 2017), the degree of mealiness was quantified using the modified fruit disc shaking method. First, for 192 

each incident point, discs (10 mm in diameter, 5 mm thick) were taken just below the skin by a cork borer. 193 
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The discs were soaked in 12% sucrose solution for 45 min under vacuum condition. After soaking, excess 194 

water was wiped off with gauze, and the discs were weighed (Wi). The discs were then transferred to a 30 195 

mm diameter test tube containing 10 mL of 12% sucrose solution, shaken in a continuous shaker (PLUS 196 

SHAKER EP-1, TAITEC, Tokyo) for 7 h, and reweighed (Ws). Finally, the degree of mealiness ((Wi – 197 

Ws)/Wi×100%) was calculated. 198 

Observation of Microstructure using Micro-CT 199 
Micro-CT 200 

Three apples stored at 20°C for 0, 2, and 4 weeks were prepared as samples for the observation of 201 

microstructure. Five cylindrical samples of 12 mm diameter and 15 mm height were cut out from each 202 

apple with their skin on. The samples were wrapped in plastic wrap to prevent drying until observation. 203 

Samples were scanned using a high-resolution X-ray μ-CT system (inspXio SMX-100CT, Shimadzu Corp., 204 

Japan). The X-ray CT conditions were as follows: tube voltage 60 kV, tube current 100 μA, no metal filter, 205 

600 views, and 12×1 averaging. The measurement time was 4 min per sample. The measured projections 206 

were digitized by an ultra-high-speed computing system (HPC inspeXio, Shimadzu Corp., Japan) as 512 × 207 

512 size, 16-bit images, with a voxel size of 10 μm. 208 

Image analysis 209 

A square ROI of 300 × 300 pixels was cropped from the center of the 512 × 512 pixel image and was 210 

used for further analysis. Gaussian smoothing (standard deviation: 5) was applied to all images to reduce 211 

the noise before applying binarization using the Otsu method (Otsu 1979) to segment the image into cells 212 

(white) and pores (black). The volume distribution of individual pores was then calculated for each sample. 213 

Image preprocessing was performed using Pydicom (ver. 2.3.0) and OpenCV (ver. 4.6.0) of Python (ver. 214 

3.8.13), and pore volume distribution was calculated using BoneJ plugin (Richard et al. 2021). BoneJ has 215 

been used in previous studies to quantify microstructural differences between different apple varieties with 216 

comparable porosity (Ting et al. 2013). 217 
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Estimation of mealiness 218 
Feature engineering from profiles and backscattered images 219 

In order to construct an estimation model, it is necessary to extract features from the backscattered images. 220 

Features obtained from backscattered images can be classified into two types: profile features and image 221 

features (Mollazade et al. 2013; Mollazade and Arefi 2017; Romano et al. 2008). 222 

The profile features were calculated from the intensity profiles and consisted of two types of features: 223 

the fitting coefficients obtained by approximating the profile with mathematical functions, and the gradients 224 

of the profile. The former was calculated by fitting 11 mathematical functions to the profiles: nine types of 225 

semi-Gaussian functions (Mollazade et al. 2012), a Gaussian-Lorentzian function (Mollazade and Arefi 226 

2017), and Farrell's simplified function (Thomas J. Farrell et al. 1992). Since these 11 functions were 227 

developed to fit the intensity profile before logarithmic transformation, the intensity profile was converted 228 

back by exponential multiplication. In addition, the intensity profiles were scaled to a maximum value of 1 229 

for Farrell’s simplified function. The latter type of profile feature was calculated as the slope of the profile 230 

obtained at 1 mm intervals (Iida et al. 2022). A total of 62 profile features were obtained for each laser 231 

wavelength. 232 

The image features were obtained from the original laser scattering images. Before any meaningful 233 

features could be extracted, it was necessary to segment the ROI from the backscattered image. The ROI 234 

segmentation step was performed by first binarizing the backscattered image using the Otsu method to 235 

separate the background from the light scattering areas. Subsequently, saturated areas near the incident 236 

point were removed, resulting in a donut-shaped ROI. 237 

Two types of image features were obtained by analyzing the ROI, namely, statistical and texture features. 238 

Statistical features are parameters which could be calculated from the image using standard statistical 239 

calculations. Eighteen statistical features such as mean intensity and area of light scattering were calculated. 240 

On the other hand, texture features are characterized by the spatial arrangement of the brightness values of 241 

the pixels in a region (Zheng et al. 2006). In addition to the texture features used in LLBI analysis 242 
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(Mollazade et al. 2013; Mozaffari et al. 2022): Gray-Level Co-Occurrence Matrix (GLCM) features, Gray 243 

Level Run Length Matrix (GLRLM) features, and Local binary patterns (LBP) features, the following 244 

texture features were added to obtain a comprehensive understanding of the data: Neighborhood Gray Tone 245 

Difference Matrix (NGTDM) feature, Statistical Feature Matrix (SFM) feature, Law's Texture Energy 246 

Measures (LTE) features, Fractal Dimension Texture Analysis (FDTA) features, and Fourier Power 247 

Spectrum (FPS) features (Christodoulou et al. 2003; Kaplan 1999; Wu et al. 1992; Wu and Chen 1992). 248 

These added up to 70 image features for each wavelength. In order to extract these features from the images, 249 

pyfeats (ver. 1.0.0), a related library in Python was used. 250 

In total, 264 features were calculated with 132 features for each wavelength. The complete list of 251 

calculated features can be found in Supplementary data (SI1). 252 

Construction and evaluation of estimation model 253 

To construct an estimation model that retains generalizability, the data were divided into training (80%) 254 

and test (20%) sets. Data were divided so that multiple measurements acquired from the same apple would 255 

not be separated into the training and test datasets. Next, the training data were standardized to have mean 256 

0 and variance 1, and the test data were standardized with the same mean and variance. In order to eliminate 257 

redundant features, the filter method was applied to the features. Specifically, correlation coefficients were 258 

calculated between the mealiness and features in the training data, and features with correlation coefficients 259 

lower than an absolute value of 0.1 were not used in model construction and estimation. 260 

PLS, SVM and ANN were used as estimation models to evaluate the possibility of mealiness estimation. 261 

Hyperparameters were optimized by Grid Search using 10-fold cross-validation, and the hyperparameters 262 

which obtained the lowest average Root Mean Squared Error (RMSE) were chosen. The hyperparameter in 263 

the PLS model was the number of latent variables, and those in the SVM model were the regularization 264 

term and the gamma coefficient of the Radial Basis Function (RBF) which was used as the kernel function. 265 

Finally, the ANN model was structured with 3 hidden layers, and a linear function and Rectified Linear 266 
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Unit (ReLU) function were used for the output layer and hidden layer, respectively. Adaptive moment was 267 

adopted for the learning algorithm. The hyperparameters for the ANN model were the node size for each 268 

layer, batch size, and the L2-regularization term. The estimation model set up with the obtained 269 

hyperparameters was trained again on the training data, and the test data were estimated with the constructed 270 

estimation model to obtain predicted values. 271 

The multiple correlation coefficient (R) and the root mean square error (RMSE) were used as metrics to 272 

evaluate the performance of the models. Moreover, the ratio of prediction to deviation (RPD), the range 273 

error ratio (RER), and the evaluation index (EI) were used as assessment guidelines for model performance. 274 

RPD, RER, and EI were calculated by the following formulas, respectively.  275 

��� = �� ����⁄ (1) 276 

��� = ����� ����⁄ (2) 277 

��(%) = 100 × 2 ×���� �����⁄ (3) 278 

where SD indicates the standard deviation of the target and RANGE is the difference between the maximum 279 

and minimum values of the target. 280 

RPD values below 1.5 indicate that the model performance is not usable, values between 1.5 and 2.0 281 

suggest a possibility to distinguish between high and low values, and values over 2.0 reveal a possibility of 282 

quantitative prediction (Saeys et al. 2005). The RER is related to the range of the objective variable, where 283 

values over 4.0 indicate that the model is acceptable for sample screening and values over 10.0 reveal a 284 

quality control level (Gohain et al. 2021). The EI is also a metric that takes into account the distribution 285 

range of the objective variable. The EI can be assigned to the following five ranks: very high (EI<12.4%), 286 

high (12.5–24.9%), slightly high (25.0–37.4%), low (37.5–49.9%), and very low (EI>50%). Models with 287 

EI below 37.4% are described as "practical" (Mizuno et al. 1988; Suzuki et al. 2008). 288 

 289 
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Results and Discussion 290 
Changes in apple quality during storage 291 
Changes in mealiness 292 

The “Jonagold” apples measured in this study are known to become mealy during storage. Fig. 3 shows 293 

the change in mealiness as the average of 20 measurements from 10 apples each week. Mealiness increased 294 

with the increase in storage period, as reported in previous studies (Iwanami et al. 2005; Iwanami, Moriya, 295 

Kotoda, and Abe 2008). Moreover, the increase was especially rapid in the latter half of the storage period. 296 

Two-way ANOVA was performed to determine if mealiness changed by storage group and storage period. 297 

As a result, both the storage group and storage period were shown to significantly affect mealiness (p<0.05). 298 

The reason for the significant difference between storage groups is likely to be due to the effect of one 299 

month of refrigerated storage. These results of two-way ANOVA can be found in Supplementary data (SI2). 300 

 301 

 302 

Fig. 3 Change in mealiness during storage 303 

The horizontal axis indicates the storage period at 20°C, and the vertical axis shows the mealiness degree. 304 

The error bars show the standard deviation for each storage period. 305 

 306 
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The degree of mealiness sometimes showed negative values, meaning that the apple discs weighed 307 

heavier after the 7-h shaking than their initial weight. In these cases, previous studies (Iwanami et al. 2005) 308 

replaced the negative values with zero. However, since the final goal of this study was to estimate the degree 309 

of mealiness and the adjustment of the objective variable was expected to affect the performance of the 310 

estimation model, the negative values were used as they were in this study.  311 

As can be seen from the large error bar in Fig. 3, mealiness varied largely among apples stored for the 312 

same storage period, with standard deviations ranging from 2.13 to 12.78. Furthermore, the mealiness of 313 

the two samples obtained from one apple varied greatly, with differences ranging from 0.16% to 27.76%, 314 

indicating that the degree of mealiness was not uniform even within the same apple. This variation may be 315 

attributed to the heterogeneous microstructure of the apple, which has been reported for many other 316 

vegetables and fruits (Chaïb et al. 2007; Ella Missang et al. 2011; Iida et al. 2022; Khan and Vincent 1990; 317 

T. Ma et al. 2021). It should also be noted that the degree of mealiness obtained by the fruit shaking method 318 

may be influenced by the amount of liquid adhering to the apple disks when weighed, leading to a margin 319 

of error. 320 

The high variability in mealiness among apples stored in similar conditions and even within each apple 321 

indicate that mealiness cannot be estimated from storage conditions alone. Therefore, technologies that 322 

allow apple mealiness to be estimated non-destructively and on multiple points would be valuable. 323 

Change in microstructure during storage and its relationship to mealiness 324 

Fig. 4(a), (b), and (c) are representative X-ray CT images of apple samples after 0, 2, and 4 weeks of 325 

storage. All images are acquired at the same depth from the skin. These images indicate the increase in large 326 

pores and the decrease in adhesion between cell tissues during storage. This tendency was analyzed 327 

quantitatively. 328 

 329 
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 330 

Fig. 4 Change in microstructure due to storage 331 

(a)–(c) Representative X-ray CT images for each storage period, (d)–(f) The pore volume distribution for 332 

each storage period. The lines show the mean of the probability density functions estimated by kernel 333 

density estimation, and the filled areas show the standard deviations of the probability density function 334 
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among samples stored for the same period. (g) Comparison of the mean pore volume distribution between 335 

different storage periods. 336 

 337 

X-ray CT images for five samples per storage period (0, 2, and 4 weeks) were 3-dimensionally-analyzed 338 

and the individual pore volumes were calculated (Fig. 4(d)–(f)). Fig. 4(g) is given to compare of the 339 

common logarithmically transformed average pore volume distribution for each storage period. The 340 

average pore volume was approximately 0.002 mm3 and increased with prolonged storage. The proportion 341 

of small pores was relatively high in all samples, and the proportion of large pores varied among different 342 

storage periods, increasing at 4 weeks of storage. The occurrence of large pores is consistent with the 343 

increase in the degree of mealiness, and this relationship between the increase in large pores and cell 344 

detachment due to cell separation and disintegration has been reported in previous studies (Li et al. 2020; 345 

Muziri et al. 2016). 346 

Change in the laser scattering properties during storage and their relationship to 347 
mealiness 348 

Changes in cell microstructure during storage are known to affect their interactions with light as well as 349 

the sensory characteristics of the apple such as mealiness. The former was quantified as the intensity profiles 350 

and backscattered image features obtained from laser scattering measurement, and their relationship to the 351 

degree of mealiness was clarified. Fig. 5 shows average backscattered images and average profiles 352 

calculated for three groups: the first group consisting of five samples with the highest degree of mealiness, 353 

the second group of five samples closest to the average degree of mealiness, and the third group of five 354 

samples with the lowest degree of mealiness. The degrees of mealiness for the high, average, and low 355 

groups were 41.12 ± 5.37%, 7.88 ± 0.27%, and -3.55 ± 0.61%, respectively. The profiles showed little 356 

difference between the low and middle groups, but the overall intensity of the profiles in the high mealiness 357 

group decreased. In addition, the backscattered image showed a decrease in the scattered region with the 358 

increase in mealiness. These observations were quantitatively confirmed by calculating the correlation 359 
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between the features obtained from the laser scattering measurement and the degree of mealiness. 360 

 361 

 362 

Fig. 5 The changes in backscattered images and intensity profiles with the increase in mealiness 363 

(a)–(c) Average backscattered image for (a) low, (b) middle, and (c) high mealiness groups 364 

(d) Average profiles for the three groups 365 

 366 

Fig. 6 shows scatter plots of the fifteen samples analyzed, where the degree of mealiness is plotted 367 

against four feature types: coefficients of fitted functions, gradients of the intensity profile, statistical image 368 

features, and texture features. For each feature type, the feature with the highest correlation with mealiness 369 

is shown: the first coefficient of the fitted Gaussian function (Fig.6(a)), the gradient between 3–4 mm in 370 

the profile (Fig.6(b)), the area of the scattering region (mm2) (Fig.6(c)), and the Run Length Non-uniformity 371 

(RLN) in GLRLM (Fig.6(d)). Although all features were obtained from images acquired with both 633-nm 372 

and 850-nm lasers, features with the highest correlations with mealiness were obtained with the 633-nm 373 

laser. The correlation coefficients between these features and mealiness were -0.882, -0.704, -0.760 and -374 

0.816, respectively. 375 

 376 
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 377 
Fig. 6 Relationship between four laser scattering features and the degree of mealiness 378 

(a) Fitting coefficient (the first coefficient of the fitted Gaussian model), (b) Gradient feature (gradient 379 

between 3–4 mm), (c) Statistical image feature (the area of scattering region (mm2)), (d) Texture feature 380 

(Run Length Non-uniformity). Colors indicate the high-, middle- and low-mealiness groups. 381 

 382 

The first coefficient of the fitted Gaussian function (Fig. 6(a)) is the asymptotic value of scattered light 383 

intensity at large radial distances from the incident point (Y Peng and Lu 2005). On the other hand, the 384 

gradient at 3–4 mm from the incident point (Fig. 6(b)) is obtained relatively close to the incident point. 385 
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These results show that mealiness is related to the whole profile, ranging from the initial attenuation of the 386 

profile to the intensity of scattered light at large distances from the incident point. 387 

As observed from the images in Fig. 5 and shown in Fig. 6(c), the area of scattered light was reduced as 388 

mealiness increased. The area values were calculated by counting the number of pixels in the scattering 389 

area and converting pixels to mm. Mealiness has been related to an increase in intercellular space and 390 

porosity within the microstructure as well as cell separation and rupture (Li et al. 2020; Ting et al. 2013). 391 

Considering these reports, the decrease in the area of scattered light may be influenced by the decrease in 392 

scattering frequency due to the collapse of the dense microstructure of the apple fruit. 393 

The texture feature Run Length Nonuniformity (RLN) quantifies the non-uniformity of the Run Length 394 

Matrix (Chu et al. 1990; Tang 1998). Run Length calculates the number of consecutive pixels with the same 395 

intensity value, and the Run Length Matrix stores this information as a single intensity value and count (run 396 

length). A lower RLN indicates that the Run Length Matrix is more uniform, meaning that the image 397 

contains a variety of run lengths (Galloway 1975) and therefore higher variability in intensity between 398 

connected pixels. Based on Fig. 6(d), the negative correlation between mealiness and RLN indicates that 399 

as mealiness increased, neighboring pixels in the laser scattering image became more varied. This may be 400 

caused by the collapse of cells leading to a more complex microstructure which causes non-uniform light 401 

scattering patterns. 402 

Results of estimation models 403 

To estimate apple mealiness from laser scattering measurement, a total of 132 features were calculated 404 

from the laser scattering images acquired with either the 633-nm or 850-nm laser light. Forty three of these 405 

features were obtained by fitting 11 functions to the intensity profile. All functions were fitted with a 406 

coefficient of determination (R2) over 0.91, which is a good fit to the measured data. The fitting performance 407 

of all the functions is shown in the supplementary data (SI3).  408 

After removing redundant features as explained in the construction of the estimation model, 78 features 409 
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were selected from the features calculated from the 633-nm laser image, and 74 features were selected from 410 

the features calculated from the 850-nm laser image. For models using the data obtained from both lasers, 411 

a total of 152 features were used. 412 

The sample size was reduced to 198 because 2 samples collapsed during the shaking process of the fruit 413 

disc shaking method and the degree of mealiness could not be calculated from these samples. The 198 414 

samples were split into 158 and 40 for the training and test data, respectively. 415 

Table 1 shows the results for all estimation models. For the single wavelength model, the ANN and SVM 416 

were able to accurately estimate the test data. As discussed in previous studies (Babazadeh et al. 2016; M 417 

Lashgari and Imanmehr 2019; Mollazade and Arefi 2017; Mozaffari et al. 2022), there is a latent nonlinear 418 

relationship between scattering data and mealiness. Therefore, nonlinear models such as ANN and SVM 419 

may adapt well to laser backscattering measurements. 420 

When comparing the estimation performance between models built using data acquired with 633-nm and 421 

850-nm lasers, the 633-nm models were superior for all algorithms. Furthermore, when data acquired with 422 

the two lasers were combined, estimation performance improved, with the ANN showing the lowest RMSE 423 

for the test data (R = 0.634, RMSE = 7.621). 424 

  425 
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Table 1 Performance of estimation models 426 

Single wavelength: models constructed using features acquired from a single laser (633 nm or 850 nm), 427 

Single model: models constructed with a single algorithm (PLS, SVM, or ANN), Two wavelengths: 428 

models constructed using features acquired from both lasers, Ensemble model: models constructed by the 429 

ensemble of predicted values from two or more single models 430 

Model 
R RMSE RPD RER EI 

train test train test train test train test train Test 

Single wavelength / Single model 

Wavelength Model  

633 

ANN 0.57 0.61 7.76 8.05 1.18 1.24 6.69 5.06 29.90 39.50 

PLS 0.60 0.55 7.28 8.22 1.25 1.21 7.13 4.95 28.10 40.40 

SVM 0.52 0.65 8.22 8.65 1.11 1.15 6.31 4.71 31.70 42.50 

850 

ANN 0.50 0.59 8.12 8.45 1.12 1.17 6.39 4.82 31.30 41.50 

PLS 0.64 0.36 6.96 12.73 1.31 0.78 7.46 3.20 26.80 62.50 

SVM 0.52 0.59 8.14 8.63 1.12 1.15 6.37 4.72 31.40 42.40 

Two wavelengths / Single model 

ANN 0.67 0.63 6.96 7.62 1.31 1.31 7.46 5.34 26.8 37.4 

PLS 0.72 0.59 6.3 8.78 1.45 1.13 8.23 4.64 24.3 43.1 

SVM 0.61 0.66 7.78 8.26 1.17 1.2 6.67 4.93 30.0 40.6 

Two wavelengths / Ensemble model 

Simple averaging 0.72 0.66 6.69 7.45 1.36 1.34 7.76 5.47 25.8 36.6 

Weighted averaging 0.72 0.66 6.66 7.46 1.37 1.33 7.79 5.46 25.7 36.6 

Stacking 0.75 0.68 6.25 7.28 1.46 1.37 8.30 5.60 24.1 35.8 

 431 

 432 

In order to improve the estimation model performance, ensemble learning methods were adopted. 433 

Ensemble learning is a method where initial predicted values are calculated from multiple independent 434 

weak learning algorithms (base models) and these initial predicted values are used as inputs for further 435 
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modeling to output the final predicted values. In the field of food quality management, ensemble learning 436 

methods have been used as an algorithm for food safety risk prediction (Wu and Weng 2021), estimation 437 

of chicken meat authenticity (Parastar et al. 2020), and milk adulteration detection (Neto et al. 2019). In 438 

this study, the simple averaging method, the weighted averaging method, and the stacking method (Mendes-439 

Moreira et al. 2012; Zhou 2021) were adopted as ensemble learning methods. In the simple averaging 440 

method, the predicted values from multiple base models are averaged, giving the final predicted values. In 441 

the weighted averaging method, the weighted average is used to average the predicted values from multiple 442 

base models. Finally, the stacking method builds a meta-model that uses the predicted values from multiple 443 

base models as its features (Anderson et al. 2021; Shen et al. 2020). In this study, we adopted ensemble 444 

learning with PLS, SVM, and ANN models as the base models and SVM was used as the meta-model in 445 

the stacking method. 446 

The performance of all ensemble models improved over the single model, suggesting that ensemble 447 

learning can enhance the strengths of the individual base models. Among the three types of ensemble 448 

models, the stacking model showed the best performance. Fig. 7 shows the relationship between the 449 

observed and estimated degree of mealiness obtained from the stacking model. Although some of the data 450 

with high degrees of mealiness were not successfully estimated, the evaluation metrics of the stacking 451 

model were 0.682 and 7.281% for R and RMSE, respectively, and the overall tendency of the degree of 452 

mealiness could be estimated. Moreover, RPD, RER, and EI were 1.37, 5.60, and 35.8, respectively. The 453 

RPD value falls in the range of "not usable," while the ranges for RER and EI evaluated the models as 454 

"acceptable for sample screening" and "slightly high accuracy”. Overall, these results indicated that the 455 

performance of the estimation model is satisfactory for practical use. 456 

 457 
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 458 

Fig. 7 Observed-Estimated plot of the best ensemble model 459 

Light blue plots show the training data, orange plots show the test data, and the black dashed line is the 460 

ideal line (y = x). The evaluation metrics of training and test data are shown in the upper left corner. 461 

 462 

In this study, the samples were stored for one month to induce mealiness. However, there were still only 463 

a few samples with high degrees of mealiness, leading to an imbalanced distribution of the objective 464 

variable. For further improvement of the estimation performance, it may be necessary to increase the 465 

number of samples with higher degrees of mealiness. Moreover, further research is required to determine 466 

whether similar or improved performance can be obtained for estimating mealiness in other cultivars or 467 

apples with green skin. 468 

 469 

Conclusions 470 

The objective of this study was to estimate apple mealiness by means of laser scattering measurement. 471 

Laser scattering measurement is based on conventional backscattering imaging but is improved in terms 472 

of exposure time and by adapting high dynamic image rendering. These leads to the advantage of being 473 

able to quantify scattered light far from the incident point. In this study, lasers with wavelengths of 633 474 

nm and 850 nm were used based on previous research reports. To estimate apple mealiness from the 475 

image data acquired by the laser scattering measurement, comprehensive feature extraction was 476 
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conducted. The profile features that characterize the intensity profile, and image features that characterize 477 

the scattering image itself were calculated, leading to a total of 132 features for each wavelength.  478 

The objective variable, mealiness, was quantified by the fruit disc shaking method, which evaluates the 479 

degree of mealiness as a continuous value and provides more detailed information than the conventional 480 

binary method. Although mealiness increased gradually due to storage, there was large variability among 481 

different apples stored for the same period, indicating the need to evaluate mealiness for each apple. On 482 

the other hand, the degree of mealiness was found to correlate with a variety of laser scattering features, 483 

such as the coefficient and slope of the fitted curve, statistical image features, and texture features. In 484 

addition, microstructure analysis focusing on pore volume using X-ray CT showed that the number of 485 

large pores increased with the storage period and suggested that differences in microstructure affected 486 

light scattering. 487 

Finally, several models were calculated to estimate the degree of mealiness from laser scattering 488 

features. When comparing the estimation performance between models built using data acquired with 489 

633-nm and 850-nm lasers, the 633-nm models were superior for all algorithms. Optimization results 490 

showed that the use of feature values acquired at both wavelengths combined with a nonlinear model 491 

resulted in a good performance. Furthermore, the ensemble learning method showed improved 492 

performance (R=0.682, RMSE=7.281) compared to models built with a single algorithm. Overall, these 493 

results indicated that the laser scattering method can non-destructively estimate the degree of mealiness 494 

and has a potential to be applied for practical use. 495 
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