212

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

l PAPER Special Section on Cryptography and Information Security

|

PoS Blockchain-Based Forward-Secure Public Key Encryption with
Immutable Keys and Post-Compromise Security Guarantees™*

Seiya NUTA*®, Jacob C. N. SCHULDT 'Y, Nonmembers, and Takashi NISHIDE®, Member

SUMMARY We present a forward-secure public-key encryption (PKE)
scheme without key update, i.e. both public and private keys are immutable.
In contrast, prior forward-secure PKE schemes achieve forward security
by constantly updating the secret keys. Our scheme is based on witness
encryption by Garg et al. (STOC 2013) and a proof-of-stake blockchain
with the distinguishable forking property introduced by Goyal et al. (TCC
2017), and ensures a ciphertext cannot be decrypted more than once, thereby
rendering a compromised secret key useless with respect to decryption of
past ciphertext the legitimate user has already decrypted. In this work,
we formalize the notion of blockchain-based forward-secure PKE, show the
feasibility of constructing a forward-secure PKE scheme without key update,
and discuss interesting properties of our scheme such as post-compromise
security.

key words: public-key encryption, forward security, blockchain

1. Introduction

Forward security for public-key encryption is a security no-
tion that ensures that a secret key compromise does not af-
fect the confidentiality of past ciphertexts. More specifically,
even if Alice’s long-term secret key sk 4 is compromised by
an eavesdropper Eve, who observed and recorded ciphertexts
sent to Alice in the past, forward security guarantees that Eve
does not learn the secrets required for decrypting these past
ciphertexts (i.e. sk is insufficient to decrypt).

While forward security in an interactive setting (e.g.
key exchange protocols), can be achieved relatively easily
by generating ephemeral secrets that are erased when no
longer needed, this is harder in a non-interactive setting.
However, one strategy for achieving forward security in a
non-interactive setting, is to constantly update or erasing
long term secrets. For example, a naive approach to obtain-
ing forward-secure PKE is generating a series of one-time
public/secret key pairs; once a key pair has been used, erase
the secret key as soon as possible to ensure that an adversary

Manuscript received March 15, 2022.
Manuscript revised August 14, 2022.
Manuscript publicized November 9, 2022.
TThe authors are with University of Tsukuba, Tsukuba-shi, 305-
8577 Japan.

TThe author is with National Institute of Advanced Industrial
Science and Technology, Tokyo, 135-0064 Japan.

*This article is based on the work he did when he was a student
of University of Tsukuba.

**This is an extended version of the paper that appeared in
INDOCRYPT2021 [21]. The updates from [21] are summarized in
Sect. 1.2.

a) E-mail: nuta@seiya.me

b) E-mail: jacob.schuldt@aist.go.jp

¢) E-mail: nishide @risk.tsukuba.ac.jp

DOI: 10.1587/transfun.2022CIP0016

cannot learn this key in a potential future compromise. The
disadvantage of this approach is that a sender needs to up-
date Alice’s public key if all of the key pairs have been used,
and furthermore needs to be aware of which keys Alice has
already used and erased. This makes the naive approach im-
practical, but more practical approaches to forward security
have been developed, which we will briefly outline below.

Canetti et al. [8] formally introduced forward-secure
PKE by extending the definition of PKE with a key update
algorithm. In their scheme, the encryption algorithm takes as
input a time period along with the receiver’s public key and
a message. The ciphertext is associated with the specified
time period. The key update algorithm takes as input a secret
key sk and outputs an updated secret key sk’ (the public key
pk remains the same). Even if an adversary compromises
sk’, they cannot decrypt ciphertexts in the prior periods (and
thus provides forward security).

Green et al. [16] presented a fine-grained forward-
secure (aka. absolute forward security [6]) encryption
scheme called puncturable encryption. It introduces a key
update algorithm similar to [8], but allows revoking a spe-
cific ciphertext, that is, the key update algorithm outputs an
updated secret key which can be used to decrypt ciphertexts
except the ciphertext given to the algorithm.

While interactive by definition, the recent work [2],
[11], [18] on ensuring forward security of O-RTT key ex-
change involves techniques that can be used to implement
forward security for non-interactive primitives such as PKE.
The idea behind O-RTT key exchange, introduced in proto-
cols such as TLS 1.3 [23], is to enable clients to send en-
crypted data in their first message using pre-shared secrets.
This essentially corresponds to a non-interactive encryption
for the server, and to provide forward security of this data,
is almost equivalent to constructing a forward-secure PKE
(e.g. see the bloom filter encryption in [11]).

To the best of our knowledge, forward security in a non-
interactive setting such as PKE, has only been achieved by
introducing key update [2], 8], [11], [16], [18], [22]. This
seems natural, since in an ordinary PKE, if an eavesdropper
Eve compromises the secret key sk, she can decrypt any ci-
phertext ¢ by simply running the decryption algorithm Dec
to obtain m « Dec(sk,c). Hence, in order to achieve for-
ward security, it is natural to prevent Eve from compromising
an unmodified secret key. In the key update approach, we
update or partially break the secret key sk to derive a new
secret key sk*1) which cannot be used for decrypting past
(or already decrypted) ciphertexts, and then erase the old key

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES

sk@.
1.1 Our Contribution

In this paper, we give a feasibility result of a forward-secure
encryption scheme without key update, i.e. both the pub-
lic key and the secret key remain unchanged like ordinary
(non-forward-secure) PKE. To achieve this, we allow the
PKE scheme to make use of a blockchain for encryption and
decryption of messages.

Firstly, we note that the standard definitions of correct-
ness and (forward) security are insufficient for capturing a
setting in which the PKE scheme depends on a blockchain.
This is due to the ability of an adversary to observe any
information posted to the blockchain when encrypting or de-
crypting messages, and the ability to post maliciously crafted
blocks to the blockchain, which might prevent an honest user
from correctly decrypting a ciphertext. Hence, we appropri-
ately extend these definitions. Our forward security notions
are obtained by extending the standard IND-CPA security
notion for ordinary PKE (see Appendix B) with two addi-
tional oracles. The first oracle, Leak, captures secret key
leakage that happens after the honest user decrypts the chal-
lenge ciphertext. The second oracle, HonestDec, captures
the information leakage an adversary can observe on the
blockchain when an honest user decrypts a ciphertext. For
the full details of our security definition, see Sect. 4.

Our construction of a forward-secure PKE without key
update, assumes the existence of a proof-of-stake blockchain
which satisfies properties described in [14]. We combine this
with witness encryption, which in general allows a plaintext
to be encrypted under an NP statement instead of a public
encryption key, and anyone in possession of a witness for
the statement, will be able to decrypt. In our construction,
we use witness encryption to tie a ciphertext to information
posted by the decryptor to the blockchain, and thereby turn
the blockchain into an immutable decryption log that only al-
lows a ciphertext to be decrypted once. In other words, like
puncturable encryption [16], our construction implements
fine-grained forward security which removes the ability to
decrypt on a ciphertext-by-ciphertext basis, as opposed to
the (standard) more coarse approach of revoking the ability
to decrypt any ciphertext constructed in the time period be-
tween key updates (we discuss security further in Sect.4).
Note that while encryptor and decryptor are required to inter-
act with the blockchain protocol to obtain an updated view of
the blockchain, the communication between the two remains
non-interactive: once the encryptor has created a cipher-
text based on his current view of the blockchain, no further
communication is required on his part and he can go offline
without affecting the decryptor’s ability to decrypt.

Specifically, the pair of public key and secret key in
our construction is simply that of a digital signature scheme.
The encryption algorithm uses witness encryption to en-
crypt a message for an NP statement capturing that a cer-
tain type of message signed by the receiver has been posted
to the blockchain. The decryption algorithm generates an

213

ephemeral secret esk, posts a signed message associated
with esk to the blockchain, which will allow the decryption
of the ciphertext using the relevant sequence of blocks on the
blockchain and esk as a witness (decryption key). Immedi-
ately after decryptions, the decryption algorithm erases esk
which ensures that an adversary compromising the secret
key, will not be able to decrypt as they do not know esk.
Since our construction uses a simple key pair of a dig-
ital signature scheme and these are immutable, the size of
the keys is obviously independent of the number of time
periods or decryptions unlike existing forward-secure PKE
schemes [8], [16]. Fixed immutable keys are furthermore
an interesting property from an application point of view.
For example, it is undesirable to use a fine-grained forward-
secure PKE scheme with key updates in a scenario where the
decryption key is used by multiple devices, such as laptops
and smartphones, as keys would have to be synchronized to
maintain fine-grained forward security. This concern is al-
leviated by fixed immutable secret keys. Lastly, we note that
our construction enjoys some interesting security properties
in addition to forward security, such as secret key leakage
detection and a variant of post-compromise security [9]. We
will discuss these benefits in detail in Sect. 5 and Sect. 6.

1.2 Updates from INDOCRYPT Version

Compared to the INDOCRYPT2021 version [21], we added
a more concrete discussion on post-compromise security
(Sect. 5), a supplementary explanation for the extractability
of witness encryption (Appendix A), an explanation of why
the correctness does not hold if the unique (instead of first)
blockchain record is used as a witness (Sect. 3.4), and another
mitigation against a message suppression attack from key
compromise detection (Sect. 6.4).

2. Preliminaries

In this section, we introduce building blocks and their se-
curity definitions. Besides the primitives defined below,
we make use of an EUF-CMA secure signature scheme
Sig = (Sig.KGen, Sig.Sign, Sig.Ver), and a one-way hash
function H : {0,1}" — {0,1}".

2.1 Witness Encryption

Witness Encryption is a type of encryption introduced by
Garg et al. [12]. Instead of a pair of public and private keys,
in witness encryption, a plaintext is encrypted with respect
to an NP statement x and the ciphertext can be decrypted
with the corresponding witness w.

Definition 1 (Witness Encryption [12]). A witness encryp-
tion scheme WE for NP language L (with witness relation R)
is a tuple of algorithms (WE.Enc, WE.Dec).

e ¢ «— WE.Enc(14,x,m): The encryption algorithm
WE.Enc takes as input a string x, and a message m,
and outputs a ciphertext c.

214

e m/1 « WE.Dec(c,w): The decryption algorithm
WE.Dec takes as input a ciphertext ¢, and a string
w, and outputs a message m or the symbol L.

A witness encryption scheme WE is required to satisfy
correctness: for all security parameters A, all strings x
and w for which R(x,w) holds, for all m, it holds that
WE.Dec(WE.Enc(14, x, m), w) = m.

For a witness encryption scheme, we will use the se-
curity notion extractability, first proposed in [13], which in-
formally requires that, for all adversaries able to distinguish
between encryptions of different messages for a statement x,
there exists an extractor that can extract a witness w from the
adversary, such that R(x, w) holds. We use the adaptive def-
inition by Bellare et al. [5] in which A is allowed to specify
X.

Definition 2 (Extractability). A witness encryption scheme
with witness relation R is extractable if for every security
parameter A, every PPT adversary A = (A, Az) with a
random tape r, there exists a corresponding PPT algorithm
& (the extractor) such that:

(x,mgp, my, st)

— A (1% r);
V=b |pEq01}

A =R(x,w)|, WE.Enc(1%, x, mp);
b — Ay(st,c);

w 8(1’1, r);

(S

< neg()

The above definition ensures that if an adversary A
with non-negligible advantage (1) in distinguishing the ci-
phertexts of two messages exists, an extractor & with success
probability (1) — neg(A1) must also exist.

2.1.1 Instantiating Witness Encryption

Witness encryption is a strong cryptographic primitive and
efficiently instantiating this remains a work in progress. Re-
cent interesting results include constructions by Barta et al.
[3] based on the generic group model, and Bartusek et al.
[4] based on affine determinant programs, with the latter
claimed to be the first construction sufficiently efficient to
be implementable. However, these works do not consider
extractability, and it is unclear whether efficient extractors
can be obtained for these construction.

Goldwasser et al. [13] proposed a candidate extractable
witness encryption scheme but without a formal security
reduction. Liu et al. [20] proposed a construction based
on multi-linear maps, which can be instantiated from indis-
tinguishability obfuscation (iO) [1], which in turn can be
obtained from well-founded assumptions [19], leading to a
theoretical instantiation. A different approach was taken by

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

Goyal et al. [15] who show how the functionality of ex-
tractable witness encryption can be implemented efficiently
on a blockchain. This approach is especially appealing in re-
lation to our work due to the obtained efficiency and that our
construction already makes use of a blockchain. Note that
[15] requires the miners maintaining the blockchain to im-
plement additional functionality i.e. smaller changes would
have to be made to existing blockchain protocols to achieve
the desired functionality, and to maintain forward security,
the communication between miners and the decryptor must
be forward secure (e.g. by using TLS 1.3 [23]). Furthermore,
due to the dependency on a blockchain, [15] does not follow
the standard definition of witness encryption. However, in
this work, we will make use of the standard definitions above.

2.2 Blockchain Protocol

In general, a blockchain protocol is a multi-party distributed
protocol that maintains an ordered sequence of blocks
(blockchain) without a trusted third party. The blockchain is
continuously extended by parties called miners under a con-
sensus algorithm and forging sufficiently old blocks is con-
sidered difficult based on underlying hardness assumptions.
A Proof-of-Stake blockchain uses a consensus algorithm in
which a party with more stake (e.g. number of coins) is more
likely to succeed in mining a new block. Below, we recall
the abstract definition of blockchain protocols used in [14].

Definition 3 (Blockchain Protocol). A blockchain protocol
BLCy with validity predicate V is a tuple of algorithms
(BLCy .UpdateState, BLCy .GetRecords, BLCy .Broadcast).

e BLCy .UpdateState(11): It is a stateful algorithm that
takes as input the security parameter A and maintains
the local state st. It has no output.

e B «— BLCy.GetRecords(14,st): It takes as input the
security parameter A and a local state st, and outputs the
longest ordered sequence of blocks B (the blockchain)
contained in st.

e BLCy .Broadcast(14,m): It takes as input the security
parameter A and a message m, and spreads the message
m over the blockchain network. It outputs nothing.

In the above, V is a predicate which takes a sequence
of blocks B and outputs 1 if B is valid. The definition of
“validity” varies with the blockchain protocol; details of how
V is defined will not be important for our purpose.

2.2.1 Blockchain Execution

At a high level, the execution of the blockchain protocol
corresponds to the participants running UpdateState, which
will continuously update their state according to messages
broadcast using Broadcast e.g. a miner might broadcast a
new successfully mined block. Each participant can access
his current view of the blockchain via GetRecords. We as-
sume that (honest) miners will include any record broadcast
via Broadcast in the blocks they attempt to mine, which al-
lows all participating parties to have records added to the

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES

blockchain (e.g. in cryptocurrencies, a user might wish to
add a transaction).

In [14], the execution of a blockchain protocol is for-
mally modeled in the UC-framework [7], and is directed by
the environment Z, which initially activates all participants
as either honest or corrupt (as in [14], we only consider static
corruptions). All corrupt parties are controlled by an adver-
sary A. The execution starts by all honest users running
UpdateState on an empty state, and proceeds in rounds. In
each round, an honest user might receive a record from Z
which it will attempt to add to the blockchain, as well as
messages from the other parties. The user may then perform
any computation, broadcast a message via Broadcast, and
update its local state. A is responsible for delivering all
messages between parties, and may delay or reorder these,
but is not allowed to modify them. Z can communicate
with A and access the local view of the blockchain obtained
via GetRecords of any honest party. For a more detailed
discussion of the blockchain execution, see [14].

We will let EXECB-CV [A, Z, 1] denote the above ex-
ecution, and view «— EXECBLCV[A, Z, 11] denote the joint
view of all parties in the execution. The latter fully deter-
mines the former.

2.2.2 Blockchain Properties

We will now define several blockchain properties introduced
in [14], which our construction will be based on. In these def-
initions, we make use of the unique stake fraction of the last £
blocks of a blockchain B, which we denote u-stakefrac(B, ¢),
and which is defined to be the combined stake of all miners
who mined at least one of the last ¢ blocks in B divided by
the total amount of stake for the blockchain. Additionally,
we will use the notation B¢ to denote B with the last £ blocks
removed, and B < B to denote that B is a prefix of B. Lastly,
we will identify rounds of the blockchain protocol with in-
creasing positive integers in the natural way i.e. for rounds r
and 7, r < 7 means that round r is prior to or the same round
as 7.

The blockchain properties are defined based on the
following predicates: blockchain consistency (consistent),
which captures that all honest participants in the blockchain
protocol agrees upon all except the last £ blocks; suffi-
cient stake contribution (suf-stake), which captures that all
blockchains of length ¢ has a unique stake fraction of at least
B; and bounded stake forking (bd-stake-fork), which captures
that all maliciously constructed forks of the blockchain have
unique stake fraction less than . Formally, these predicates
are defined as:

« consistent(view) = 1 iff for all rounds r < 7 and honest
parties 7, j in view with blockchain B in round r and B
in round 7, respectively, it holds that B’ < B.

« suf-stake’(view, B) = 1 iff for every round r > r’ where
r’-th blockchain B satisfies |B’| > ¢, and each hon-
est party i with blockchain B at round r, it holds that
u-stakefrac(B,) > B.

215

. bd-stake—fork(fl’52)(view, a) = 1iff for all rounds r > 7,
each honest party i with blockchain B at round r, each
corrupt party j with blockchain B at round 7, if there
exists £’ > €1 + {, such that B[* < B and for all £ < ¢’,
B¢ £ B, then u-stakefrac(B, ¢’ — ¢)) < a.

Based on the consistency and sufficient stake contribution
predicates, we define the corresponding blockchain proper-
ties.

Definition 4 (Chain Consistency). A blockchain protocol
BLCy satisfies {o-consistency for adversary A in environ-
ment Z, if for every £ > {y:

Pr [consistent’ (view) | view « EXECE-®V[A, Z,11]]
> 1 —neg(Q).

Definition 5 (Sufficient Stake Contribution). A blockchain
protocol BLCy satisfies (€, B)-sufficient stake contribution
for adversary A in environment Z, if for every € > {y:

Pr [suf-stake’ (view, §) | view « EXECB®V[A, Z,11]]
> 1 —neg(Q).

Lastly, we consider a property called distinguishable
forking which requires that sufficient stake contribution and
bounded stake forking properties hold simultaneously. Note
that when this is the case (and @ < f), it is possible to
distinguish an honestly created extension of the blockchain
from an adversarially created fork by examining the unique
stake fraction shown in the extension or fork.

Definition 6 (Distinguishable Forking). A blockchain pro-
tocol BLCy satisfies (a, 8,1, >)-distinguishable forking for
adversary A in environment Z, if for every £ > (i and
0> 0:

@+ negi(d) < BA
Pr suf-stake (view, 8) = 1A
bd-stake-fork ©-)(view, a + neg; (1)) = 1

view « EXECBV [A, Z,11]]
> 1 — negy(Q).

Goyal et al. showed in [14] that Snowwhite, a Proof-
of-Stake based blockchain protocol proposed by Daian et al.
[10], satisfies all of the above properties.

2.2.3 Proof-of-Work Blockchain

The above properties, which will be used as a basis for the
security of our construction, are all stated with respect to a
blockchain based on Proof-of-Stake. It might be considered
whether it would be possible to instead rely on a blockchain
based on Proof-of-Work in which the blockchain is extended
by miners solving computational puzzles (i.e. relying on the
computational power of the miners). This, however, seems
difficult. More specifically, in the typical Proof-of-Work set-
ting, an adversary can locally compute a valid fork in realistic

216

time by solving the required puzzles and ignoring input from
honest miners. This would break the distinguishable forking
property which our construction crucially depends on. In
contrast, this property can be achieved in a Proof-of-Stake
blockchain because we assume, as in [14], that the adver-
sary controls only a minority stake and cannot forge digital
signatures of other miners controlling a majority stake.

2.2.4 Additional Blockchain Notation

Each block of a blockchain B contains a list of records. A
record is a set of fields and a field is an arbitrary string. We
denote the i-th block of B as B[;}, the number of records in
the i-th block as |By;)|, the j-th record in the i-th block as
By;;1, and each field in a record r as r.name. We use the
notation » € B if there exists i, j such that Bp;j;; = r, and
r ¢ B when this is not the case.

Also, we overload the consistency predicate, and define
Consistent[(Bpreﬁx,B) to hold for two sequences of blocks,

Bprei and B, if and only if B, < Bi.e. By, with the last
¢ blocks truncated is a prefix of B. Finally, for a blockchain
satisfying («, B3, €1, £»)-distinguishable forking, we introduce
a predicate ext-suf-stk -0 -2)(B, i) (short for “extended with
sufficient stake”), which takes a sequence of blocks B and
index i where i > 0, and holds if and only if the number of
blocks after the i-th block is larger than ¢ + ¢, and at least 8
fraction of stake is proved' in the last £, blocks. Intuitively,
ext-suf-stk determines whether the i-th block looks honestly
created, assuming stakes of adversaries are bounded by «
(where a < ().

3. Forward-Secure PKE without Key Update

In this section, we give definitions and the construction of our
forward-secure PKE scheme without key update. In contrast
to existing forward-secure PKE schemes [8], [16], both pk
and sk are immutable, and since we do not employ key update
to achieve forward security, the syntax looks much closer to
the traditional non-forward-secure PKE schemes except we
allow the encryption and decryption algorithm to make use
of a blockchain protocol.

Specifically, we assume that both encryptor and decryp-
tor are participants in a blockchain protocol, and will allow
the encryption and decryption algorithms direct access to the
state of the encryptor and decryptor, respectively. Note that
this does not necessarily require that the encryptor or decryp-
tor have any stake in the blockchain, but that they have the
ability to broadcast messages across the blockchain network,
and can extract, from their local state, their current view of
the blockchain. Itis assumed that both encryptor and decryp-
tor will maintain their state by running UpdateState of the
blockchain protocol, and that the encryption and decryption
algorithms will have access to the most recent state when ex-
tracting the current view of the blockchain via GetRecords.

THow to prove stake vary in PoS blockchain protocols. For
example, presenting a digital signature is one typical method.

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

In other words, we treat the input state st to the encryption
and decryption algorithms as a reference to the most current
state (as opposed to the value of the state at the time the
algorithms are called), which will allow, for example, the al-
gorithms to broadcast a message, and wait for this message to
be included in the blockchain, before continuing execution.

The syntax of our forward-secure PKE scheme is as
follows:

Definition 7 (FSPKE). A forward-secure public-key en-
cryption scheme without key update under the existence
of a blockchain protocol BLCy is a tuple of algorithms
(FSPKE.KGen, FSPKE.Enc, FSPKE.Dec).

e (pk,sk) « FSPKE.KGen(11): The key generation al-
gorithm FSPKE.KGen takes as input the security pa-
rameter A. It outputs a key pair (pk, sk).

o ¢ «— FSPKE.Enc(st, pk,m): The encryption algorithm
FSPKE.Enc takes as input a reference to a blockchain
state st, a public key pk and a message m. It outputs a
ciphertext c.

e m/1 « FSPKE.Dec(st,sk,c): The decryption al-
gorithm FSPKE.Dec takes as input a reference to a
blockchain state st, a secret key sk and a ciphertext c.
It outputs a message m or the symbol L.

3.1 Correctness

Unlike ordinary (forward-secure) PKE, the correctness of
a PKE scheme dependent on a blockchain is non-trivial.
Specifically, when decryption is dependent on information
obtained from or posted to the blockchain, we need to con-
sider potential adversarial interference from other entities
with access to the blockchain. Firstly, malicious miners
can potentially prevent correct decryption by simply not
including any information required for decryption in the
blockchain. Secondly, since the basic premise of the use
of the blockchain is that anyone can post a block, and by
doing so, any malicious user might be able to interfere with
the decryption by honest users. We capture this aspect of the
use of a blockchain, by considering a correctness definition
similar to a security game, in which the adversary attempts
to prevent decryption of an honestly constructed ciphertext.
Note that besides controlling corrupt parties, the adversary in
our definition can make honestly mined blocks contain ma-
liciously generated messages by simply broadcasting these,
since we assume that all honest miners will include messages
received via the broadcast functionality of the blockchain.
We define correctness via the security game shown in
Fig. 1 in which the adversary can instruct two honest users
to encrypt and decrypt any time during the execution of the
blockchain protocol via the Enc and Dec oracles. Note that
for the correctness definition to be meaningful, we will only
consider adversaries that query these oracles once in that or-
der. We refer to such adversaries as correctness-admissible.
Furthermore, note that additional restrictions on the adver-
sary and the execution of the blockchain are likely to be

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES

217

Corr .
Gﬂ,Z,FSPKE,m,i,j(/l) :

(pk, sk) «— FSPKE.KGen(11);
EXECBLCV [ﬂEnc,DeC(pk), zZ,]/l];
output m’ = m

Enc() :

output c*

c¢* « FSPKE.Enc(st;, pk, m);

Dec() :
m’ « FSPKE.Dec(st;, sk, c*);
output m’

Fig.1 Game defining correctness.

required for correctness to hold for any scheme that makes
meaningful use of the blockchain. In particular, the delay an
adversary might introduce for messages sent to honest parties
might have to be limited, and the execution of the blockchain
protocol might be required to extend the blockchain. How-
ever, we will not include such restrictions or guarantees in
the definition below, but introduce appropriate assumptions
when showing correctness of our concrete scheme.

Definition 8 (Correctness). Let BLCy be a blockchain with
the validity predicate V, and let FSPKE = (FSPKE.KGen,
FSPKE.Enc, FSPKE.Dec) be a public-key encryption scheme
with access to BLCy. We say that FSPKE satisfies correct-
ness for adversary A in environment Z and for security
parameter A, if for every plaintext m, every pair of honest
usersiand j in Z, there exists a negligible function £(-) such
that the following holds:

Pr G(;?,rrZ,FSPKE,m,i,j(/l) =1 [=21-¢()
where the security game GO () is defined in

A, Z,FSPKE,m,i,j
Fig. 1.

3.2 Security

We will now define a security notion capturing forward secu-
rity for a PKE scheme FSPKE based on a blockchain. Like
in the case of correctness, the definition is non-standard due
to the ability of an adversary to observe and manipulate the
blockchain. Our security notion, which we denote fs-IND-
CPA security, is based on the standard IND-CPA security
notion for ordinary PKE (see Appendix B), in which the
adversary is challenged to distinguish between the encryp-
tion ¢* of two adversarially chosen messages, mgy and m;.
However, we allow the adversary to access two new oracles:
Leak and HonestDec. The first oracle, Leak, captures the
notion of a key compromise. When it is invoked, it will
return the secret key to the adversary, but before doing so, it
ensures that the challenge ciphertext has been decrypted by
running m* < FSPKE.Dec(st, sk, c*). In previous forward
security notions, this oracle would correspond to an oracle
that updates the secret key and returns the new (updated) key
to the adversary.

The second oracle, HonestDec(c), captures potential
information leakage from records posted on the blockchain
by honest users in the decryption process’. Specifically, in
the blockchain setting, an honest user might be required to
post information related to a ciphertext c or their secret key

sk, in order to be able to decrypt c. Since the blockchain is
public, an adversary will be able to obtain this information
just by monitoring the blockchain. To capture this, the oracle
HonestDec allows the adversary to submit any ciphertext c,
which the oracle will decrypt as m « FSPKE.Dec(st, sk, ¢).
However, as we consider a CPA security notion, the de-
cryption result m will not be returned to the adversary (he
will only be able to observe any information posted to the
blockchain in the decryption process). Our definition can be
extended to a CCA notion, simply by returning m and re-
stricting the adversary from submitting ¢*. Note that in our
definition below, no restrictions are placed on ¢ submitted to
HonestDec.

Finally, note that the fs-IND-CPA definition itself is
generic: it does not place any assumptions on the adver-
sary in terms of adversarial control of the blockchain (e.g.
the amount of stake held by the adversary). For our con-
crete scheme, which will be presented in Sect. 3.3, we will
show that fs-IND-CPA security holds, assuming the stake
controlled by the adversary is sufficiently small as in [14].

Security is defined via the game shown in Fig. 2. We say
that an adversary fs-IND-CPA A is admissible if A queries
the challenge oracle Chal once with messages mg and m; of
equal length, and only queries the Leak oracle after Chal has
been queried (without loss of generality, we can assume any
A always queries both oracles).

Definition 9 (fs-IND-CPA). Let BLCy be a blockchain
protocol with the validity predicate V, and let FSPKE =
(FSPKE.KGen, FSPKE.Enc,FSPKE.Dec) be a public-key
encryption scheme with access to BLCy. We define the
advantage Advf;'ﬁSD;,?(EA(/l) of an adversary A against the

fs-IND-CPA security of FSPKE as

fs-IND-CPA/ 7y .__
AdV 7 Fspie (A) =

fs-IND-CPA _
Pr [G;(,Z,FSPKE,i,j(/l) = 1] - 5‘

where the security game Gf;j!’\‘ZD”F%Fg\KEJ’j(/I) is defined in
Fig.2. We say that FSPKE is fs-IND-CPA secure against
an admissible adversary A in environment Z if for all hon-

estusersiand jin Z, Advf;{'!ﬁng,?(FéA(/l) is negligible in A.

Note that similar to puncturable encryption [16], the
above security notion guarantees fine-grained forward secu-
rity i.e. the scheme must support removing the ability to de-
crypt just a single ciphertext. This improves upon the notion

TNote that encryption might likewise require information being
posted to the blockchain, but this is already captured by running the
encryption algorithm when constructing the challenge ciphertext
c*.

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

218
ez e s e :
(pk. sk) — FSPKE.KGen(14); m < FSPKE.Dec(sl;, sk, ¢); m’ < FSPKE.Dec(st;, sk, c*):
$ output L output sk
b —{0,1};
EXECBLCV [ﬂHonestDec(-),Chal(»,-),Leak(pk)’ zZ, 1/1]; Chal(mo ml) .
b — A; ¢* « FSPKE.Enc(st;, pk, mp,);
output b’ = b output ¢*

Fig.2 Security game defining fs-IND-CPA security.

for standard forward-secure schemes based on key update, in
which the ability to decrypt all ciphertexts constructed be-
tween two key updates is lost in the second key update. Note
that adjusting the time period between key updates in this
type of scheme is a challenging task; frequent updates im-
plies that the ability to decrypt any ciphertext the decryptor
cannot immediately access and decrypt will be lost, whereas
infrequent updates implies that any adversary gaining ac-
cess to the decryption key will have the ability to decrypt a
potentially large number of previous ciphertexts i.e. any ci-
phertext constructed within the current time period (as well
as future ciphertexts). In contrast, fine-grained forward secu-
rity does not require a notion of time, and any ciphertext not
yet decrypted by the decryptor will remain decryptable. In
this sense, a fine-grained forward-secure scheme provides a
functionality closer to ordinary non-forward-secure encryp-
tion, while still providing strong security guarantees in the
case of key compromise. It should be noted, however, that
standard fine-grained forward-secure schemes inherently do
not protect against a particular type of message suppression
attack [6]. In Sect. 6.4, we discuss the details of this as well
as how our particular construction allows this type of attack
to be mitigated.

3.3 Construction

Our construction is inspired by the idea behind the construc-
tion of one-time programs using a proof-of-stake blockchain
presented by Goyal et al. [14], in particular, the use of a
proof-of-stake blockchain in combination with a witness en-
cryption scheme’. In our construction, a message is en-
crypted under an NP statement requiring that a certain type
of record associated to an ephemeral secret to be signed by
the receiver and posted to the blockchain. Here, the signing
key is the receiver’s long-term secret. The decryption algo-
rithm, which has access to the signing key, constructs and
signs such a record, posts this to the blockchain, and waits

TAs a one-time program is a powerful primitive, it might be
considered to base the construction of a forward-secure encryption
scheme directly on this (besides additional appropriate primitives).
However, we note that it is not clear whether such a construction
will be able to meet our security notions (e.g. [14] does not con-
sider correctness against malicious adversaries whereas we do),
and any potential construction will be much more complicated due
to the generality of one-time programs based on garbled circuits.
Hence, we focus on a direct construction based on a proof-of-stake
blockchain.

until the blockchain has been sufficiently extended. Then,
using the ephemeral secret and the blockchain containing the
corresponding record as a witness, the decryption algorithm
is able to decrypt the message.

Note that the ephemeral secret is the only secret required
to construct a valid witness required for decryption as the
blockchain is assumed to be public. Hence, neither the record
posted to the blockchain nor a key compromise must leak this.
The former is ensured by using a one-way hash function (and
high-entropy ephemeral secrets), and the latter is ensured
by deleting the ephemeral secret once decryption has been
completed. Note also, that an attacker without access to
the long-term signing key will be unable to construct an
appropriate record that can be used for decryption, assuming
the signature scheme is secure.

The key to making this construction forward secure is
to require the NP relation to check that the record used in
the witness is the first record in the blockchain that allows
decryption. This will prevent an attacker from creating a
valid witness for a given ciphertext once this has been de-
crypted by the receiver, even if the attacker gains access to
the long-term signing key.

The above assumes that the attacker cannot manipulate
the blockchain itself. To ensure the security extends to at-
tackers with a minority stake in the blockchain, we rely on
the distinguishable forking property (Definition 6). More
specifically, the distinguishable forking property guarantees
that honestly created blockchain extensions can be distin-
guished from adversarially constructed forks by examining
the unique stake in blockchain. Hence, by letting the NP re-
lation additionally check that blockchain used in the witness
is of sufficient length and has sufficient stake, we can ensure
that the attacker cannot decrypt by constructing a fork of the
blockchain.

Let WE be a witness encryption scheme for the NP
relation Rrspke (defined in Fig. 4), BLCy a blockchain pro-
tocol with the validity predicate V, Sig a public key signature
scheme, and H a one-way hash function. We present our con-
struction, FSPKE, of a forward-secure public-key encryption
scheme without key update in Fig. 3. Note that the scheme
depends on a set of parameters par = (8,¢.,{1,{>) which
should be set according to the properties of the underlying
blockchain protocol.

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES

219

(pk, sk) « FSPKE.KGen(11):

m «— FSPKE.Dec(st, sk, ¢):

1. (pk, sk) « Sig.KGen(11);
2. output (pk, sk)

¢ FSPKE.Enc(st, pk, m): - 0 < Hlesk);

2. id & {0, 1)

3. x =B |lid || pk);

4. CT « WE.Enc(11, x, m);
5. output ¢ = (id,CT)

. Parse c as (id, CT);
. esk & {0,1}4;

1
2
3
4. cert « Sig.Sign(sk,id || o);
1. B « BLCy .GetRecords(14, st); 5. r=(d| o | cert);
6. BLCy .Broadcast(14, r);
7. B « BLCy .GetRecords(14, st);
8. While r ¢ BI(¢1+02):
9 B «— BLCy .GetRecords(14, st);

10. w = (B | esk);
11. m < WE.Dec(CT, w);
12. Erase esk and then output m

Fig.3

A construction of FSPKE where WE is a witness encryption scheme for the NP relation

Rrspke (defined in Fig. 4), BLCy is a blockchain protocol with the validity predicate V' and parameters
par = (B, {c, €1, £2), Sig is a public key signature scheme, and H is a one-way hash function.

where

Rvaidslocks(B,B)) = V(B)=1AV(B') =1
Rvaidesk(pk, id, B', esk) = 3i*, 35,
ext-suf-stk B-(1-2)(B | i*)
A RDecAttempt(id, pk, BEI'*][_/'*])

A RNotYetDecrypted(B,, i*,j",id, pk)
A Rinowsesk(B', 1, j*, esk)

A pair of NP instance x = (B ||id || pk) and a witness w = (B’ || esk) satisfies Rrspke if and only if the following properties are satisfied:

Respre(B ||id || pk, B’ || esk) = Ryaigsiocks(B, B') A Rvaigesk(Pk, id, B, esk) A consistent‘c (B, B')

Rpecattempt(id, pk, r) == (r.id = id)
A (Sig.Ver(pk, r.id || r.o, r.cert) = 1)
RNotYetDecrypted(B’s i*,j*, id, Pk) = (VO < J < j*’
_‘RDecAttempt(id, pk, B[i*“j]))
ANVO<i<i*,V0<j< |Bfi]|,
_‘RDecAnempt(ids pk, BEi][j]))
Rinowsesk(B', 1", j*, esk) := H(esk) = Bii*JLf*J'o-

Fig.4

An NP relation Rrspke based on the blockchain protocol BLCy, with validity predicate V and

parameters par = (B3, €., €1, £2), Sig is a public key signature scheme, and H is a one-way hash function.

3.3.1 Relation Rgspke

The relation Rrspke used in WE and defined in Fig. 4 makes
use of several sub-relations. We discuss the intuition of these
in the following. Rvaiigsiocks €nsures that both sequences of
blocks satisfy blockchain-protocol-specific requirements i.e.
it denies malformed inputs. Rygigesk ensures that the cipher-
text has not yet been decrypted. It requires that the given
esk is valid for the first record on the blockchain which satis-
fies Rpecattempt- €xt-suf-stk used in Ryaiigesk ensures the i*-th
block is honestly created with all but negligible probability.
Rpecattempt is true if the given record r contains a decryption
attempt for the ciphertext associated with id. RnotyetDecrypted
ensures that before the j*-th record in the i*-th block in B’,
there’re no valid decryption attempts for the ciphertext as-
sociated with id. This relation guarantees that the ciphertext
can be decrypted only once. Rknowsesk €nsures that the party
who is trying to decrypt knows the ephemeral secret key esk
for the first decryption attempt.

3.4 Using the First vs a Unique Record

In Rvaigesk (Fig.4), using the unique (instead of first) valid
record affects the correctness.

Consider the case where Alice posted a valid decryption
attempt record r. Since the adversary Eve can easily post the
same record after the record r by duplicating it, if we require
the uniqueness of the record used for decryption in Ryajigesks
the adversary can easily prevent Alice from decrypting ci-
phertexts by duplicating and posting the record r’ such that
r’ = r before the blockchain sufficiently extends.

Thus, by using the first record, even if such a subsequent
duplicated record exists, Alice can use the first record r as a
part of the witness to decrypt. This is Why Ryajigesk requires
the first record to satisfy the relations.

3.5 Proof of Correctness

Before showing correctness of our scheme, we will introduce
mild assumptions regarding the execution of the blockchain.

220

Firstly, we will restrict our attention to blockchain execu-
tions that lead to a sufficient growth of the blockchain. More
specifically, we will refer to a blockchain execution as ¢-
growth respecting if the blockchain of all honest parties is
extended with at least £ blocks following a broadcast by
an honest party. Finally, we restrict the delay in terms of
growth of the blockchain, an adversary might introduce for
messages broadcast by honest parties. Specifically, we re-
fer to a blockchain execution as ¢-delay respecting, if the
blockchain of any honest users is extended with at most £
blocks between an honest user broadcasting a message and
this is delivered to all other honest users.

Theorem 1. Assume the signature scheme Sig is EUF-
CMA secure and that the blockchain protocol BLCy pro-
vides {.-consistency, and (»,)-sufficient stake for all
PPT adversaries with stake at most @’ in environment Z.
Then the construction described in Fig.3 with parame-
ters par = (B,{.,€1,>) satisfies correctness for any PPT
correctness-admissible adversary A in Z with stake at most
@ < min(e’, B) in blockchain executions that are €-delay and
(€ + €1 + 20)-growth respecting.

Proof (Theorem 1). Firstly note that the definition of £.-
consistency directly implies that for blockchain B used in the
encryption performed in the Enc oracle and the blockchain B’
used in the decryption in the Dec oracle, consistent‘ (B, B’)
holds with overwhelming probability.

Secondly, since the execution is (¢ + £; + 2£)-growth
respecting, the blockchain B’ contained in st; used in the
decryption must be extended with £ + £; + 2{, blocks after
the broadcast of 7 in line 6 of the decryption algorithm. Since
the execution is also £-delay respecting, » must have been
delivered to all honest miners before B’ has been extended
with £ blocks, and due to the (£», 8)-sufficient stake property
and @ < B, the next £, blocks must contain an honestly
mined block (which must include r unless r has already
been posted) with overwhelming probability. Hence, there
must be at least £] +¢, blocks after the block containing », and
again due to the (¢, 8)-sufficient stake property, the £, last
blocks of these will have stake at least 8. This implies that
ext-suf-stk(ﬁ’f"m(B’, i*) is satisfied, where i* is the index of
the block containing r.

Combined with the observation that r is honestly
constructed, the above implies that the witness B’ || esk
constructed in the decryption is a valid witness unless
RnotvetDecrypted does not hold. This happens only if B’ con-
tains a block with index less than i* with a record r’ for
which .0 # r.o- but which satisfies Rpecatempt(id, pk,r”)
for the id used in the encryption. This in turn implies that
r’.cert is a valid signature on r’.id || r".o. However, if A
can cause such a record to be added to B’, we can con-
struct a PPT algorithm 8 which breaks the EUF-CMA of
the digital signature scheme. B simply plays the correct-
ness game with A simulating all honest parties, and using
his signing oracle to obtain r.cert corresponding to a sig-
nature on r.id||r.o. After the game finishes, it searches
B’ — GetRecords(1%, st;) for a valid record r’ (posted by A)

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

such that Sig.Ver(pk,r’.id || r’.o,r’.cert) = 1 holds. Lastly,
it outputs the pair (r’.id || r’.o, r’.cert) in the EUF-CMA se-
curity game.

Since the signature scheme is assumed to be secure, we
conclude that 8 will only succeed with negligible probabil-
ity, and hence, that Rnotyetpecrypted Will hold with overwhelm-
ing probability. Thus the theorem holds. O

Note that in the above, we assume that WE does not
impose a length bound on the used witness. If the maximum
witness length of the witness encryption is bounded, we ad-
ditionally need to assume that the number of records posted
to the blockchain by (A for a certain period is bounded for
correctness to hold. In other words, we would require the
honest user is able to decrypt before ‘A posts so many blocks
to the blockchain such that it cannot be used as a witness due
to the length bound being exceeded. A similar assumption
is necessary in the framework of [14].

Secondly, we make the simplifying assumption that an
honest decryptor decrypts sequentially. Note that if an honest
decryptor Alice does multiple decryptions concurrently, an
adversary Eve could potentially disrupt the decryption of
an honestly created ciphertext cp from Bob with the id ID
by sending another ciphertext cg with the same ID which
is public in the blockchain. In this case, Alice will post
two decryption attempts concurrently (both of which have
the same ID) to the blockchain, and one of the two will not
be usable as a witness since only the first record is valid.
However, we note that Alice is still able to decrypt both cp
and cg because at least one of the decryption attempts is
still valid i.e. as long as Alice stores the witnesses for the
ciphertexts being decrypted concurrently, she will be able to
decrypt cp and cg, assuming the latter is otherwise correctly
constructed (note that correctness does not guarantee that
maliciously constructed ciphertexts can be decrypted).

Lastly, we note that correctness would still hold even if
the encryptor bases his encryption on a previously obtained
version of the blockchain as opposed to the most recent up-to-
date version. This is because our construction (Fig. 4) only
requires the blockchain B used in encryption to be a prefix of
and be consistent (w.r.t. consistent’ as defined in Sect. 2.2)
with the decryptor’s blockchain B’. However, note again that
if the witness encryption only supports witnesses of bounded
size, the difference in terms of blocks between the versions
of the blockchain used by encryptor and decryptor cannot
exceed this bound, as decryption would otherwise fail.

3.6 Efficiency

The efficiency of our construction essentially follows from
the efficiency of the underlying signature scheme, witness
encryption scheme, and blockchain. We emphasize that
neither encryptor nor decryptor are required to participate

TFor ease of notation, as in [14], we use the entire blockchain
B’ as part of the witness w. However, we note that essentially only
the blocks appended to the blockchain after encryption suffice as
part of the witness w.

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES

in the blockchain protocol itself, but are only required to be
able to access an up-to-date version of the blockchain, and
in case of the decryptor, be able to post a message to the
blockchain e.g. by requesting a miner to do so. Depending
on the premise of the blockchain protocol execution, the
latter might involve an additional cost to the decryptor (e.g.
paying a fee to the miner).

In more detail, key generation and public/private key
size correspond to that of the signature scheme, and the com-
putational encryption cost and the ciphertext size correspond
to that of the witness encryption scheme, assuming accessing
the blockchain does not involve any computational require-
ments. Decryption firstly requires the decryptor to post a
signed message to the blockchain. Note that he will not be
able to immediately decrypt once this has been posted, but
must wait for the blockchain to grow sufficiently to satisfy
distinguishable forking (Definition 6). Once this happens, he
will invoke the decryption of the witness encryption scheme,
which will most likely dominate the computational decryp-
tion cost (compared to signing). We refer the reader to
Sect.2.1.1 for a discussion of potential witness encryption
instantiations.

Finally, we note that the relation in Fig.4, which is
required to be implemented by the witness encryption, is
relatively complex, which could be an efficiency concern as
ciphertext size and encryption/decryption cost typically scale
with the size and complexity of the encryption statement
and witness™'". However, as noted in [20], this can be
addressed by the use of succinct non-interactive arguments
of knowledge (SNARKS) (e.g. see [17]). In our construction,
the decryptor could include a SNARK common reference
string in his public key'™", allowing the relation in Fig. 4 to
be proved using the SNARK and the witness encryption to
only rely on the verification and succinct witness from the
SNARK. This would alleviate concerns regarding encryption
cost and ciphertext size.

4. Security Analysis

The following theorem establishes the security of our con-
struction.

Theorem 2. Assume WE is an extractable witness encryp-
tion scheme for the NP relation Respkg, Sig is an EUF-CMA-
secure signature scheme, H is a one-way hash function,
and BLCy is a blockchain protocol satisfying (a, B,€1,€2)-
distinguishable forking property for any PPT adversary with

TNote that in our construction, the lower bound of the witness
size would be {1 + €, + {4 blocks where ¢ and ¢, are blockchain-
specific parameters from the distinguishable forking property (see
Sect. 2.2), and ¢ is the difference in the number of blocks between
the blockchain obtained by encryptor and decryptor.

TWe note the approach by Goyal et al. [15] allows efficient
encryption and only requires the decryptor to perform a potentially
heavy computation related to the relevant statement and witness.

1 To maintain forward security, the randomness and trapdoor for
this common reference string must be securely erased by the key
pair holder after key generation.

221

stake fraction at most « in environment Z. Then the con-
struction described in Fig. 3 is fs-IND-CPA secure for any
admissible PPT adversary A in Z with at most a stake
fraction.

4.1 Proof of Theorem 2
4.1.1 Simulation of the Blockchain

Theorem 2 is with respect to an adversary ‘A who controls
at most an « stake fraction of the blockchain. With the
exception of Claim 3, our security reduction will simulate
the parties holding the remaining stake fraction for A, by
honestly executing the blockchain protocol BLCy. We do
not include an explicit simulation of this in the following
proof.

Proof (Theorem 2). Let FORGE be the event that A
causes honest user j to add a maliciously constructed
record r* to the blockchain contained in st; that can
be used to decrypt the challenge ciphertext ¢*. More
precisely, FORGE denotes that r* is the first record in
sequence of blocks B « GetRecords(14,st;) satisfying
Sig.Ver(pk,r*.id || r*.o,r*.cert) = 1. Note that since the
Leak oracle will add a valid record to the blockchain con-
tained in st; for decryption of ¢*, A needs to compute r*.cert
and post r* before Leak does so (i.e. without sk) for FORGE
to occur. That is, intuitively speaking, posting r* means
that A can forge a valid signature r*.cert. In the following
lemma, we formalize this intuition.

Lemma 1. Assume that Sig is an EUF-CMA secure signa-
ture scheme. Then Pr[FORGE] < neg(A).

Proof (Lemma I). If FORGE occurs, we can construct an
adversary Bsjg which breaks EUF-CMA security of Sig. Bsjg
simulates the role of a challenger in the fs-IND-CPA game
for A, and is defined as follows:

1. Upon receiving pk in the EUF-CMA game, Bgjq for-
wards pk to A. Whenrunning, Bgjg simulates all honest
parties in the blockchain and executes the blockchain
protocols honestly. If HonestDec(c) is called where
¢ = (id,CT), Bgiy performs the decryption operations
as described in Fig. 3 except it computes cert using the
signing oracle of the EUF-CMA game. Lastly, Bgg
adds (id|[o) to a set £. When A calls Leak, Bgjq
aborts A after decryption of c¢*, before the secret key
sk is returned.

2. When A finishes its execution (or is terminated by Bgg
due to a call to Leak), Bgjg searches the blockchain
B «— GetRecords(1%, st;) for a valid record r* such that
(r*.id||r*.0) ¢ X, and outputs (r*.id || r*.o, r*.cert) if
such a record is found.

From the above description, it should be clear that Bg;g pro-
vides a perfect simulation for A up until abortion, and that,
assuming FORGE occurs, Bgjg returns a valid forgery. O

222

Let S be the event that the adversary A wins the fs-
IND-CPA game. In the following lemma, we consider the
case A wins the game without causing a valid maliciously
constructed record to the blockchain of honest user j that can
be used for decrypting the challenge ciphertext, i.e. without
FORGE occurring.

Lemma 2. Assume WE is an extractable witness encryption
scheme, H is a one-way hash function, and the blockchain
protocol BLCy satisfies (a, B,{1,()-distinguishable forking
property in Z. Then iPr[S|—|FORGE] - %i < neg(Q).

Proof (Lemma 2). Assume there exists an fs-IND-
CPA attacker ‘A with non-negligible advantage & =
\Pr [S|-FORGE] - l From A, we construct an attacker
AYE against WE as follows. Firstly, we choose random
esk «— {0,1}", and compute y < H(esk). The value y will
be hardcoded into AWE, and we use the notation ﬂZVE to
denote this. Hardcoding y into A"E is needed, as below, we
will consider a value y given by an external one-way chal-
lenger for H, and hence, A"E cannot generate y internally.

ﬂ;VE will simulate the fs-IND-CPA game for A =
(A, Ay) as follows:

1. AN generates a FSPKE key pair as (pk,sk) «
FSPKE.KGen(1%).

2. ANE sends pk to A; and forwards its output mo,m;
and x = (B||id|| pk) as the challenge instance in the
extractability game, where B and id are computed as

B — BLCy.GetRecords(14,st;) and id < {0, 1}4 re-
spectively.

3. Upon receiving the challenge ciphertext c*, ﬂ\,;VE for-
wards c¢* to A,. '

« If HonestDec oracle is called by A, ﬂ‘;"E executes
step 1 to 5 of the decryption algorithm for the given
ciphertext c, as defined in the construction, except
it replaces o~ with the hardcoded value y if c is the
challenge ciphertext'.

« If the Leak oracle is called by A, A)'E responds
in the same way as in HonestDec, and then returns
sk.

4. Lastly, A, outputs b, and ﬂ‘;"E forwards this as its own
response in the extractability game.

From the above description, it should be clear that the view
of A is identical to the fs-IND-CPA game, and that if A suc-
cessfully distinguishes the encryption of mg and m;, so will
AN in the extractable witness encryption game. Since WE
is extractable, there exists a PPT extractor & for ?IZVE, and
assuming we can show that ﬂZVE successfully distinguishes
with a non-negligible advantage, & will likewise be able
to compute a valid witness with non-negligible advantage.
However, here a subtle issue arises: from the assumption

"Note that ?{WE cannot fully decrypt the challenge ciphertext

c*, as it does not know the preimage of the hardcoded value y,

which is required to construct a witness for decryption.

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

that the advantage of A is &, it only follows that ﬂWE has
advantage & when the choice of y is considered part of the
probability space defining the advantage. For a fixed value of
y, even if this is correctly distributed, we can no longer draw
the conclusion that ﬂWE has advantage €. Nevertheless, the
following claim shows that, with probability £/2 over the
choice of y, ﬂZVE will have an advantage larger than £/2.

Claim 1. Let b’ denote the bit output by .?[WE let b denote the
challenge bit in the extractability game, and let Good,, denote
the event that Pr[b = b'] > /2 + 1/2. Then, Pr[Good]1>
&/2, where the probability is taken over a random choice of
esk «— {0,1}" and y «— H(esk).

Proof (Claim 1). Let Succ denote the event b* = b when
esk «— {0,1}" is picked at random and y « H(esk). From
the construction of A)'* and the assumption that the advan-
tage of A is &, we have that Pr[Succ] = € + 1/2. Hence,

1
£+ 3= Pr[Succ|Good,] Pr[Good,]

+ Pr[Succ|-~Good,,] Pr[-Good,]
< Pr[Good,] + Pr[Succ|-Good,]
1

£
< Pr[Good, | + = + =
r[Good,] 5%5

where the last inequality follows by the definition of ~Good,,.
Rearranging the terms, we obtain Pr[Good,] > &/2. O

The above claim allows us to conclude that we can ex-
tract a valid witness for x specified by A}'® (including its
internal fs-IND-CPA attacker A) with non-negligible prob-
ability, despite invoking the extractor & with ?lWE for a fixed
(but randomly chosen) y. This can be seen as follows Letw
denote the witness extracted by & from A}'E. Then we have
that

Pr[Rrspre(x,)]
> Pr[b = b" A Rrspre(x, w)]
> Pr[Goody] - Pr[b = b’ A Rrspre(x, w)lGOOdy]
>¢&/2-Pr[b=D" A Respke(x, w)|Goody]. D

By definition, Good,, ensures that the advantage of .?IZVE is
greater than £/2, and we obtain that
£/2 < Pr[b = b’|Good,] — =
< Pr[b = b" A Rrspke(x, w)|Good,]
+Pr[b = b’ A =Rrspke(x, w)|Good,,] — =
< Pr[b = b’ A Rrspke(x, w)|Good, | + neg(A)

where the last inequality follows from the extractability of
WE (note that extractability requires a successful extractor
exists for all successful adversaries, including any adversary
AE for values of y such that Good,, is satisfied). Rearrang-
ing the terms yields that

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES

Pr [b = b’ A Rrspre(x, w)lGOOdy] > — —neg(d)

(STRC]

and combining this with (1) we obtain that

Pr[Respre(x,w)] = = - (5 = neg(1).

&
2
Note that if € is non-negligible, then so is Pr[Rpspke(x, w)].
In other words, with non-negligible probability, we obtain a
valid witness w for x specified by ﬂZVE via the extractor &.
In the following, we will show that if a valid witness
can be extracted, we can either break the onewayness of the
hash function H, or the distinguishable forking property of

BLCy.

Let HONEST be the event that & outputs a sequence
of blocks B’ containing the record r* honestly constructed
in the first decryption query of the challenge ciphertext c¢*
(either a query to Dec or Leak) as the first valid record that
allows decryption of ¢*. We have that

Pr[Rrspke(x, w)] =
Pr{ Respre (x, w)|HONEST] - Pr{HONEST]
+ Pr[Respre(x, w)| -HONEST] - Pr{~HONEST]
< Pr[Respe(x, w)|HONEST]
+ Pr{ Respre(x, w)| =HONEST]. @)

Claim 2. If Pr[Respke(x, w)|HONEST] is non-negligible,
there exists an adversary Bow against the onewayness of
H with non-negligible advantage.

Proof (Claim 2). Bow is constructed as follows. Given
a challenge y*, Bow simply constructs AWE as described
above, but using y* as the embedded y value. Note that
as Bow’s challenge is constructed as y* = H(esk™) for a
randomly chosen esk*, the construction of ﬂ‘;ﬁE is identical

to the above description. Bow then runs & for ﬂ‘;’f to
obtain a witness w, and forwards w.esk as the solution in
the onewayness game. Since HONEST occurs, & outputs a
witness w corresponding to the honestly created record r*
for the challenge ciphertext c* i.e. ¥* must have been posted
by the HonestDec or the Leak oracle. Furthermore, it must
hold that H(w.esk) = r*.o-, and due to the construction of
ﬂ‘;ﬁE, r*.0 = y*. Thus the obtained value w.esk satisfies

w.esk = H™'(y*), and Bow therefore successfully wins the
onewayness game. m]

Claim 3. If Pr[Respke(x, w)|=HONEST] is non-negligible,
there exists an adversary Bpg\c breaking the (a,p,€1,62)-
distinguishable forking property of the blockchain with non-
negligible advantage.

Proof (Claim 3). The construction of Bg ¢ is straightfor-
ward: Bgic simply runs &, and returns its output B’. Note,
however, that Bgc plays the role of an adversary against
the distinguishable forking property of the blockchain, and
therefore must abide by the rules for this type of adversary. In

223

particular, Bg ¢ cannot control the honest parties participat-
ing in the blockchain protocol. Nevertheless, the simulation
remains straightforward: Bpg ¢ simply corrupts the parties
required by the underlying adversary A, who will have a
total stake fraction at most @, and forwards any messages to
honest parties over the blockchain network as dictated by A.

Since HONEST is assumed not to occur, the first valid
record r’ in B’ allowing decryption of ¢* does not corre-
spond to the honestly generated record r* in a Dec or Leak
upon submission of ¢* (recall that B’ from a valid witness
is required to contain a valid record allowing decryption
of ¢*). Furthermore, since FORGE is also assumed not to
occur, r’ cannot occur before r* in the honest blockchain
B” « GetRecords(1%,st;) held by the honest user j. This
implies that from the block in B’ in which r’ occurs, B’
cannot be a prefix of B”’. Additionally, witness correctness
implies that there are at least £ = ¢ + £ blocks after the
block in which r’ occurs, and that the last £’ — £; blocks of
these contain a combined stake fraction more than 5. Hence,
B’ contradicts the (a, 3, {1, {>)-distinguishable forking prop-
erty, which requires these blocks to contain a stake fraction
less than @ < . Hence, Claim 3 follows. O

Combining the above observations, we conclude that
the existence of an adversary A with non-negligible advan-
tage implies Pr[Rrspke(x,w)] being non-negligible, which
in turn implies that either the onewayness of H or the distin-
guishable forking property of BLCy can be broken with non-
negligible advantage due to (2) in combination with Claim 2
and Claim 3. This contradicts the assumption that H and
BLCy are secure, and we hence conclude that all A must
have negligible advantage. Hence, Lemma 2 follows. O

Putting Lemma 1 and Lemma 2 together, we obtain:
AV Espke (1)

Pr[S] — %'

Pr[S|FORGE] Pr[FORGE]

1
+ Pr[S|-FORGE] Pr[-FORGE] — 5’

1
< |Pr[S|-FORGE] Pr[-FORGE] - > + Pr[FORGE]
1
< |Pr[S|-FORGE](1 — Pr[FORGE]) — 3 + Pr[FORGE]
< neg(d) + neg() = neg(d).
Hence, Theorem 2 follows. O

5. Post-Compromise Security

In this section, we discuss a security notion called post-
compromise security (PCS) [9], which is not typically con-
sidered for PKE. The following is an informal definition of

224

PCS for authenticated key exchange (AKE) introduced in
[9]:

A protocol between Alice and Bob provides Post-
Compromise Security (PCS) if Alice has a security
guarantee about communication with Bob, even if
Bob’s secrets have already been compromised.

By considering encryption, transmission of the cipher-
text and corresponding decryption to be a protocol, the above
provides a PCS notion for a PKE scheme. Note that while
forward security considers past ciphertexts decrypted before
a key compromise, PCS considers security guarantees on
future ciphertexts sent after a key compromise.

Intuitively, due to the non-interactive nature of encryp-
tion and decryption, once the secret key has been compro-
mised, all security guarantees appear to be lost since the
adversary has all the required inputs to decrypt a ciphertext.
However, our construction provides certain security guaran-
tees even after a key compromise, which we will discuss in
the following.

5.1 PCS of Proposed PKE Scheme

In PCS, the adversary is assumed to know the long-term
secrets, and we thus need to consider additional assumptions
to rule out a trivial attack as the adversary already knows
all the inputs to impersonate the compromised user in the
case of AKE or decrypt a ciphertext in the case of PKE. For
example, in PCS for AKE ([9]), it is assumed there is at least
one uncompromised session before the session under attack,
in order to achieve PCS. In the uncompromised session,
honest parties can establish a secret which the adversary
cannot obtain and thus it is possible to achieve some security
guarantees by relying on this uncompromised secret.

Likewise, for PCS of our PKE construction, we consider
the following assumption: an honest decryptor successfully
decrypts the challenge ciphertext ¢*. Under this assumption,
we claim the following security guarantee:

Claim 4. Assume WE is an extractable witness encryption
scheme, H is a one-way hash function, and the blockchain
protocol BLCy satisfies («, 8, {1, {2)-distinguishable forking
property.

In our PKE scheme, suppose an adversary Eve knows
Alice’s long-term secret key sk and eavesdrops the challenge
ciphertext c¢*. As long as Alice decrypts c* successfully, Eve
cannot learn any information regarding the plaintext of c*
with all but negligible probability.

Proof Sketch (Claim 4). Claim 4 assumes Alice success-
fully decrypts ¢*. This assumption implies that Alice is the
first to post a valid decryption record to the blockchain, as
this is required for the NP relation used for the witness en-
cryption scheme to hold true. Specifically, Rnotvetbecrypted
(Fig.4) must hold.

This is similar to what was discussed in Lemma 2,
specifically the case where the adversary does not post a

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

valid decryption attempt for ¢* to the blockchain in the fs-
IND-CPA game. Following a similar argument, if the adver-
sary can determine the plaintext of ¢*, we can construct an
adversary against the extractable witness encryption.

Since WE is extactable, there then exists a PPT extrac-
tor & which extracts a witness to decrypt ¢*. While Eve
knows the long-term secret key sk, because it is used only
for signing a decryption attempt and the first decryption at-
tempt posted by Alice already exists in the blockchain, as
we showed in Claim 2 and Claim 3, & needs to break the
onewayness of H or forge a fork of a blockchain excluding
Alice’s decryption attempt. This contradicts the assumption
that H and BLCy are secure. Hence, Claim 4 follows.]

Claim 4 means that Eve needs to win a decryption race
with Alice for every ciphertext and only the winner can
decrypt a given ciphertext. Moreover, even if Alice loses the
race, there is still an interesting security property we call key
compromise detection, which allows Alice to detect this. We
discuss this in the following section.

5.2 Key Compromise Detection

Our construction requires the decryptor to post an appro-
priate message to the blockchain to decrypt a ciphertext.
Specifically, Alice (holding the key pair pks and skgp) is
required to post a record r to the blockchain such that
Sig.Ver(pka, r.id|| r.o, r.cert) = 1 holds to be able to de-
crypt a ciphertext ¢ = (id, CT).

By monitoring the blockchain and checking if such a
record is posted, Alice will notice if someone else is trying
to decrypt her ciphertext using her private key. Hence, it is
possible for Alice to detect a key compromise if the compro-
mised key is ever attempted to be used for decryption. This
property is not achievable if decryption can be done without
any information being made public.

6. Discussion

Besides forward security, and the additional post compro-
mise security properties discussed above, our construction
provides other interesting properties which lead to advan-
tages compared to existing approaches, but also impacts
aspects such as decryption privacy. In the following, we
discuss these in further detail.

6.1 Fixed Immutable Secret Keys

The unique feature of our construction is that forward secu-
rity is achieved without key updates, and secret keys are short
and immutable. This property provides several advantages.
Firstly, while the size of secret keys in most previous
works [8], [16] depends on the number of key updates, our
construction achieves a constant size secret key and further-
more does not impose a predetermined maximum number of
possible key updates (such as Bloom filter encryption [11]).
Secondly, fixed immutable keys are interesting from an

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES

application point of view. For example, a fixed secret key
can be embedded in secure read-only memory, which would
provide an additional hardware-based defense against key
compromise. Note that in our construction, the secret key is
only required for signature generation, which is a standard
functionality supported by most trusted platform modules
(TPMs), and that the remaining part of decryption can be
done without direct access to the secret key. In contrast, pro-
viding similar protection for a dynamically changing secret
key of non-constant size is a harder task requiring a more
advanced trusted execution environment, which in turn is
more difficult and expensive to implement securely.

Lastly, a fixed secret key allows the key to be distributed
among several independent devices or servers without intro-
ducing security concerns due to a potential lack of synchro-
nization. Key distribution might be desirable e.g. if the same
user uses several different devices or several servers are used
to implement load balancing (here the servers look like one
server from the outside). In this case, security concerns
might arise for schemes implementing fine-grained forward
security based on key update. For example, if a device de-
crypts a ciphertext ¢, the local key of that device will be
rendered useless for future decryptions of ¢ to ensure for-
ward security. However, unless the keys stored by all other
devices are updated with respect to ¢, an adversary will still
be able to decrypt ¢ by compromising a device with a key
that has not yet been updated. Hence, this creates a po-
tentially significant synchronization problem. On the other
hand, this problem is completely eliminated by a scheme
with fixed secret keys, as there is no need to update keys to
ensure security.

6.2 Decryption Privacy

As we discussed in Sect. 5.2, our construction requires the
decryptor to post an appropriate message to the blockchain
to decrypt a ciphertext.

As r.cert (Sect.5.2) is publicly verifiable with respect
to Alice’s public key pk 4 and id uniquely identifies ¢, anyone
monitoring the blockchain, which is assumed to be publicly
accessible, will be able to tell when Alice decrypts a specific
ciphertext, i.e. the construction does not provide Alice with
privacy regarding decryption.

6.3 One-Time Decryption

In existing fine-grained encryption schemes without interac-
tion [11], [16], [18], basically a ciphertext can be decrypted
only once even by a legitimate user because an updated secret
key cannot be used for decrypting past ciphertexts; the same
limitation applies to our construction. Note that one-time

In a scheme based on periodical key updates, this type of at-
tack does not work assuming the key has been updated after the
ciphertext was constructed and the attacker compromises this up-
dated key. However, schemes based on periodical key updates only
achieve coarse-grained forward security (eventual forward security
[6]) and are still vulnerable to the attack until the key is updated.

225

decryption is an inherent property of fine-grained forward
security.

6.4 Message Suppression Attacks and Mitigations

As we mentioned in Sect.3.2, a standard fine-grained
forward-secure scheme with perfect correctness inherently
does not protect against message suppression attacks [6]. A
message suppression attack is a man-in-the-middle attack
where the attacker is assumed to control the communication
between an encryptor and decryptor simply and does not de-
liver a given ciphertext c. Then, if the attacker is allowed to
compromise the secret key, he will be able to decrypt ¢ due to
the perfect correctness of the scheme and the fact that ¢ has
not been attempted to decrypt by the legitimate decryptor’.

To mitigate the attack in our construction, we can in-
troduce decryption expiration (similar to eventual forward
security [6]) by checking in the witness relation Rgspke (x, w)
that the number of blocks in w.B’ extended from x.B is less
than a predefined expiration threshold. This ensures that
if the adversary does not compromise the secret key before
the extension of the blockchain passes the threshold, he will
not be able to decrypt the intercepted ciphertext. However,
this will also require the legitimate decryptor to decrypt the
ciphertext before the expiration, as he would otherwise lose
the ability to do so. Finally note that this change does not
interfere with the property that once the decryptor has de-
crypted a ciphertext, this can no longer be decrypted by an
adversary compromising the decryption key i.e. fine-grained
forward security is maintained.

In addition to introducing decryption expiration, our
construction can detect a message suppression attack thanks
to key compromise detection (Sect.5.2). If Eve tries to
decrypt a ciphertext which Alice does not know, since the
decryption attempt is recorded in the blockchain, Alice can
notice that the message suppression attack happened to her.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant
Number 20K 11807.

References

[1] M.R. Albrecht, P. Farshim, S. Han, D. Hotheinz, E. Larraia, and K.G.
Paterson, “Multilinear maps from obfuscation,” J. Cryptol., vol.33,
no.3, pp.1080-1113, 2020.

[2] N. Aviram, K. Gellert, and T. Jager, “Session resumption proto-
cols and efficient forward security for TLS 1.3 0-RTT,” Advances in
Cryptology — EUROCRYPT, pp.117-150, 2019.

[3] O. Barta, Y. Ishai, R. Ostrovsky, and D.J. Wu, “On succinct argu-
ments and witness encryption from groups,” Advances in Cryptol-
ogy — CRYPTO, vol.12170, pp.776-806, 2020.

[4] J. Bartusek, Y. Ishai, A. Jain, F. Ma, A. Sahai, and M. Zhandry,
“Affine determinant programs: A framework for obfuscation and
witness encryption,” 11th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2020, T. Vidick, ed., vol.151 of LIPIcs,
pp.82:1-82:39, 2020.

http://dx.doi.org/10.1007/s00145-019-09340-0
http://dx.doi.org/10.1007/s00145-019-09340-0
http://dx.doi.org/10.1007/s00145-019-09340-0
http://dx.doi.org/10.1007/978-3-030-17656-3_5
http://dx.doi.org/10.1007/978-3-030-17656-3_5
http://dx.doi.org/10.1007/978-3-030-17656-3_5
http://dx.doi.org/10.1007/978-3-030-56784-2_26
http://dx.doi.org/10.1007/978-3-030-56784-2_26
http://dx.doi.org/10.1007/978-3-030-56784-2_26
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.82
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.82
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.82
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.82
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.82

226

[S] M. Bellare and V.T. Hoang, “Adaptive witness encryption and asym-
metric password-based cryptography,” Public-Key Cryptography —
PKC, pp.308-331, 2015.

[6] C.Boyd and K. Gellert, “A modern view on forward security,” The
Computer Journal, vol.64, no.4, pp.639-652, 2020.

[7] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” Proc. 42nd IEEE Symposium on Founda-
tions of Computer Science, pp.136-145, IEEE, 2001.

[8] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-
key encryption scheme,” Advances in Cryptology — EUROCRYPT,
pp.255-271, 2003.

[9] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-compromise
security,” IEEE 29th Computer Security Foundations Symposium
(CSF), pp.164-178, 2016.

[10] P.Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake,” Fi-
nancial Cryptography and Data Security, pp.23—41, 2019.

[11] D. Derler, T. Jager, D. Slamanig, and C. Striecks, “Bloom filter
encryption and applications to efficient forward-secret O-RTT key
exchange,” Advances in Cryptology — EUROCRYPT, pp.425-455,
2018.

[12] S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption
and its applications,” Proc. Forty-Fifth Annual ACM Symposium on
Theory of Computing, STOC, pp.467—476, 2013.

[13] S.Goldwasser, Y.T. Kalai, R.A. Popa, V. Vaikuntanathan, and N. Zel-
dovich, “How to run turing machines on encrypted data,” Advances
in Cryptology — CRYPTO, pp.536-553, 2013.

[14] R. Goyal and V. Goyal, “Overcoming cryptographic impossibility
results using blockchains,” Theory of Cryptography Conference,
pp.529-561, 2017.

[15] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song, “Stor-
ing and retrieving secrets on a blockchain,” Public-Key Cryptogra-
phy — PKC, pp.252-282, 2022.

[16] M.D. Green and I. Miers, “Forward secure asynchronous messaging
from puncturable encryption,” Proc. IEEE Symposium on Security
and Privacy, pp.305-320, 2015.

[17] J. Groth, “On the size of pairing-based non-interactive arguments,”
Advances in Cryptology — EUROCRYPT, vol.9666, pp.305-326,
2016.

[18] F.Giinther, B. Hale, T. Jager, and S. Lauer, “O-RTT key exchange with
full forward secrecy,” Advances in Cryptology —EUROCRYPT,
pp.519-548, 2017.

[19] A.Jain, H. Lin, and A. Sahai, “Indistinguishability obfuscation from
well-founded assumptions,” STOC: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp.60-73, 2021.

[20] J. Liu, T. Jager, S.A. Kakvi, and B. Warinschi, “How to build time-
lock encryption,” Des. Codes Cryptogr., vol.86, no.11, pp.2549—
2586, 2018.

[21] S. Nuta, J.C.N. Schuldt, and T. Nishide, “Forward-secure public
key encryption without key update from proof-of-stake blockchain,”
Progress in Cryptology — INDOCRYPT, pp.436-461, 2021.

[22] D. Pointcheval and O. Sanders, “Forward secure non-interactive
key exchange,” Security and Cryptography for Networks, pp.21-39,
2014.

[23] ERescorla, “The transport layer security (TLS) protocol version 1.3,”
RFC8446, 2018.

Appendix A: Intuition Behind Definition 2

For clarity, we explain why an extractor & with success
probability £(1) — neg(Ad) exists. Observe that if A has
success probability 1/2 + &(1) in guessing b, we have

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

eA)=Pr[b=0"]- %‘
=Pr[b=0b"AR(x,w)] +Pr[b=0"A=R(x,w)] - %
< |Pr[b=0b" A R(x,w)]|

+

Pr[b=b" A =R(x,w)] - %'

< |Pr[b=0b" A R(x,w)]| + neg(1)

where the last inequality follows by Definition 2. Re-
arranging the terms, we obtain Pr[b’ = b A R(x,w)] =
&(A) —neg(Q). Since Pr[b’ = b A R(x,w)] is non-negligible
if the A’s advantage &(1) is non-negligible, it leads to the
existence of a successful E9 extracting the witness w. We
use this extractability property in the security proof to rig-
orously show that there exists a reduction which breaks the
underlying hardness assumptions with non-negligible prob-
ability.

Appendix B: IND-CPA Security

For reference, we present the IND-CPA security game for
ordinary PKE scheme.

Definition 10 (IND-CPA). Letr PKE = (PKE.KGen,
PKE.Enc, PKE.Dec) be a public-key encryption scheme. We

define the IND-CPA seucirty game G';'('?l;EEA(/l) as:

Gopie () :
(pk, sk) «— PKE.KGen(1%);

b {0.1);
bl — ﬂCha|(~,~)(pk’ 1/1),
output b’ = b

Chal(mo,ml) :
¢* « PKE.Enc(pk,my);
output c*

We say that PKE is IND-CPA secure if for all PPT

adversaries, ‘Pr [Gy{'?F',EEA(/l) = 1] - 1/2‘ is negligible in A.
In both the fs-IND-CPA (Fig.2) and IND-CPA games,
the adversary guesses which message (1 or mp) corresponds
to the challenge ciphertext ¢*. The major differences are, in
the fs-IND-CPA game, the adversary also has a blockchain
access, an oracle HonestDec which captures the information
leakage the adversary can observe on the blockchain, and an
oracle Leak which captures the notion of forward security.

http://dx.doi.org/10.1007/978-3-662-46447-2_14
http://dx.doi.org/10.1007/978-3-662-46447-2_14
http://dx.doi.org/10.1007/978-3-662-46447-2_14
http://dx.doi.org/10.1093/comjnl/bxaa104
http://dx.doi.org/10.1093/comjnl/bxaa104
http://dx.doi.org/10.1109/sfcs.2001.959888
http://dx.doi.org/10.1109/sfcs.2001.959888
http://dx.doi.org/10.1109/sfcs.2001.959888
http://dx.doi.org/10.1007/3-540-39200-9_16
http://dx.doi.org/10.1007/3-540-39200-9_16
http://dx.doi.org/10.1007/3-540-39200-9_16
http://dx.doi.org/10.1109/csf.2016.19
http://dx.doi.org/10.1109/csf.2016.19
http://dx.doi.org/10.1109/csf.2016.19
http://dx.doi.org/10.1007/978-3-030-32101-7_2
http://dx.doi.org/10.1007/978-3-030-32101-7_2
http://dx.doi.org/10.1007/978-3-030-32101-7_2
http://dx.doi.org/10.1007/s00145-021-09374-3
http://dx.doi.org/10.1007/s00145-021-09374-3
http://dx.doi.org/10.1007/s00145-021-09374-3
http://dx.doi.org/10.1007/s00145-021-09374-3
http://dx.doi.org/10.1145/2488608.2488667
http://dx.doi.org/10.1145/2488608.2488667
http://dx.doi.org/10.1145/2488608.2488667
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-319-70500-2_18
http://dx.doi.org/10.1007/978-3-319-70500-2_18
http://dx.doi.org/10.1007/978-3-319-70500-2_18
http://dx.doi.org/10.1007/978-3-030-97121-2_10
http://dx.doi.org/10.1007/978-3-030-97121-2_10
http://dx.doi.org/10.1007/978-3-030-97121-2_10
http://dx.doi.org/10.1109/sp.2015.26
http://dx.doi.org/10.1109/sp.2015.26
http://dx.doi.org/10.1109/sp.2015.26
http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://dx.doi.org/10.1145/3406325.3451093
http://dx.doi.org/10.1145/3406325.3451093
http://dx.doi.org/10.1145/3406325.3451093
http://dx.doi.org/10.1007/s10623-018-0461-x
http://dx.doi.org/10.1007/s10623-018-0461-x
http://dx.doi.org/10.1007/s10623-018-0461-x
http://dx.doi.org/10.1007/978-3-030-92518-5_20
http://dx.doi.org/10.1007/978-3-030-92518-5_20
http://dx.doi.org/10.1007/978-3-030-92518-5_20
http://dx.doi.org/10.1007/978-3-319-10879-7_2
http://dx.doi.org/10.1007/978-3-319-10879-7_2
http://dx.doi.org/10.1007/978-3-319-10879-7_2
http://dx.doi.org/10.17487/rfc8446
http://dx.doi.org/10.17487/rfc8446

NUTA et al.: POS BLOCKCHAIN-BASED FORWARD-SECURE PKE WITH IMMUTABLE KEYS AND POST-COMPROMISE SECURITY GUARANTEES
227

Seiya Nuta received B.S. degree from Uni-
versity of Tsukuba in 2018 and M.S. degree from
University of Tsukuba in 2020. Currently he is
developing and researching edge computing in
a real-world content delivery network. His re-
search interests include cryptography and oper-
ating systems.

Jacob C. N. Schuldt obtained a B.Sc.
degree and a M.Sc. degree (cand.scient) from
The University of Copenhagen, and a Ph.D. de-
gree from The University of Tokyo. He is cur-
rently a senior research scientist in the Advanced
Cryptosystems Research Group, National Insti-
tute of Advanced Industrial Science and Tech-
nology (AIST), Japan. Before joining AIST, he
held postdoctoral research positions at AIST and
Royal Holloway, University of London.

Takashi Nishide received B.S. degree from
the University of Tokyo in 1997, M.S. degree
from the University of Southern California in
2003, and Dr.E. degree from the University of
Electro-Communications in 2008. From 1997 to
2009, he had worked at Hitachi Software Engi-
neering Co., Ltd., developing security products.
From 2009 to 2013, he had been an assistant pro-
fessor at Kyushu University and from 2013 he is
an associate professor at University of Tsukuba.
His research is in the areas of cryptography and

information security.

