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TAKENS-TYPE RECONSTRUCTION THEOREMS OF

ONE-SIDED DYNAMICAL SYSTEMS

HISAO KATO

Abstract. The reconstruction theorem deals with dynamical systems
that are given by a map T : X → X of a compact metric space X together
with an observable f : X → R from X to the real line R. In 1981, by
use of Whitney’s embedding theorem, Takens proved that if T : M → M
is a (two-sided) diffeomorphism on a compact smooth manifold M with
dimM = d, for generic (T, f) there is a bijection between elements x ∈
M and corresponding sequence (fT j(x))2dj=0, and moreover, in 2002 Takens
proved a generalized version for endomorphisms.

In natural sciences and physical engineering, there has been an increase
in the importance of fractal sets and more complicated spaces, and also
in mathematics, many topological and dynamical properties and stochastic
analysis of such spaces have been studied. In the present paper, by use of
some topological methods we extend the Takens’ reconstruction theorems of
compact smooth manifolds to reconstruction theorems of “non-invertible”
dynamical systems for a large class of compact metric spaces, which contains
PL-manifolds, manifolds with branched structures and some fractal sets, e.g.
Menger manifolds, Sierpiński carpet and Sierpiński gasket and dendrites, etc.

1. Introduction

Throughout this paper, all spaces are separable metric spaces and maps
are continuous functions. Let N be the set of all nonnegative integers, i.e.,
N = {0, 1, 2, ...} and let Z be the set of all integers and R the real line.

A map h : X → Y is an embedding if h : X → h(X) is a homeomor-
phism. A pair (X,T ) is called a one-sided dynamical system (abbreviated as
dynamical system) if X is a separable metric space and T : X → X is any
map. Moreover, if T : X → X is a homeomorphism, i.e., invertible, then
(X,T ) is called a two-sided dynamical system. Also if T : X → X is not a
homeomorphism, (X,T ) called a non-invertible dynamical system.

Reconstruction of dynamical systems from a scalar time series is a topic
that has been extensively studied. The theoretical basis for methods of
recovering dynamical systems on compact manifolds from one-dimensional
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2 KATO

data was studied by Takens [Tak81, Tak02]. The embedding theorem of
Takens forms a bridge between the theory of (two-sided) nonlinear dynamical
systems on smooth manifolds and the analysis of experimental time series.
In 1981, Takens [Tak81], by use of Whitney’s embedding theorem, proved
that under some conditions of (two-sided) diffeomorphisms on a manifold,
the dynamical system can be reconstructed from the observations made with
generic functions.

Theorem 1.1. (Takens’ reconstruction theorem for diffeomorphisms [Tak81]
and [Noa91]) Suppose that M is a compact smooth manifold of dimension d.
Let Dr(M,M) be the space of all Cr-diffeomorphisms on M and Cr(M,R)
the set of all Cr-functions (r ≥ 1) from M to R. If E is the set of all
pairs (T, f) ∈ Dr(M,M) × Cr(M,R) such that the delay observation map

I
(0,1,2,..,2d)
T,f : M → R2d+1 defined by

x 7→ (fT j(x))2dj=0

is an embedding, then E is open and dense in Dr(M,M)× Cr(M,R).

Moreover, in 2002 Takens [Tak02], extended his theorem for endomor-
phisms on compact smooth manifolds as follows.

Theorem 1.2. (Takens’ reconstruction theorem for endomorphisms [Tak02])
Suppose that M is a compact smooth manifold of dimension d. Then there
is an open dense subset U ⊂ End1(M,M) × C1(M,R), where End1(M,M)
denotes the space of all C1-endomorphisms on M , such that, whenever

(T, f) ∈ U , there is a map π : I
(0,1,..,2d)
T,f (M)→M with π · I(0,1,..,2d)T,f = T 2d.

Embeddings of two-sided dynamical systems in the two-sided shift (RZ, σ)
have been studied by many authors (e.g. see [AAM18, Coo15, Gut15, Gut16,
GQS18, GT14, Jaw74, Lin99, LW00, Ner91, SYC91, Tak81]).

In general, one-sided dynamical systems are more diverse than two-sided
dynamical systems. In fact we know that two-sided (invertible) dynamical
systems of the unit interval I = [0, 1] are very simple, but one-side (non-
invertible) dynamical systems of I are very complicated and diverse, and so
now many researchers are trying to clarify them.

In [Kat20], we studied embeddings of non-invertible dynamical systems in
the one-sided shift (RN, σ). In this paper, by use of the topological methods
introduced in the paper [Kat20], we extend the above Takens’ reconstruc-
tion theorems of differential dynamical systems on compact manifolds to
theorems of “non-invertible” dynamical systems for a large class of compact
metric spaces. The main results of this paper are Theorem 5.4 and Theorem
6.9.

In this paper, we do not assume injectivity of T and so the proofs of our
results cannot any longer rely on the embedding theorems of Whitney and
Menger-Nöbeling [Eng95]. Instead, an essential role is played by the notion
defined in Definition 2.1.
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2. Definitions and notations

For a space X, dimX means the topological (covering) dimension of X
(e.g. see [Eng95], [HW41] and [Nag65]). Let X be compact metric space
and Y a space with a complete metric dY . Let C(X,Y ) denote the space
consisting of all maps f : X → Y . We equip C(X,Y ) with the metric d
defined by

d(f, g) = sup
x∈X

dY (f(x), g(x)).

Recall that C(X,Y ) is a complete metric space and hence Baire’s category
theorem holds in C(X,Y ).

A map g : X → Y of separable metric spaces is n-dimensional (n =
0, 1, 2, ...) if dim g−1(y) ≤ n for each y ∈ Y . Note that a closed map g :
X → Y is 0-dimensional if and only if for any 0-dimensional subset D
of Y , dim g−1(D) ≤ 0 (see [Eng95, Hurewic’s theorem (1.12.4)]). A map
T : X → X is doubly 0-dimensional if for each closed set A ⊂ X of dimension
0, one has dimT−1(A) ≤ 0 and dimT (A) = 0.

If K is a subset of a space X, then cl(K), bd(K) and int(K) denote the
closure, the boundary and the interior of K in X, respectively. A subset A
of a space X is an Fσ-set of X if A is a countable union of closed subsets
of X. Also, a subset B of X is a Gδ-set of X if B is an intersection of
countably many open subsets of X.

An indexed family (Cs)s∈S of subsets of a set X will by abuse of notation
also be denoted by {Cs}s∈S or {Cs : s ∈ S}. Hence if C = {Cs}s∈S is such a
family then its members Cs and Ct will be considered as different whenever
s 6= t. We then put

ord(C) = sup{ordx(C) : x ∈ X}, where ordx(C) = |{s ∈ S| x ∈ Cs}|.

Note that ord(C) so defined is by 1 larger than it would be according to the
usual definition, as e.g. in [Eng95, (1.6.6) Definition].

Modifying the definition of TSP in [Kat20], we define the notion of (k, η)
trajectory-separation property for k ∈ N and η > 0 which is very important
in this paper.

Definition 2.1. Let T : X → X be a map of a compact metric space X
with dimX = d <∞ and let k ∈ N, η > 0. Then T has the (k, η) trajectory-
separation property ((k, η)-TSP for short) provided that there is a closed set
H of X such that
(1) X \H is a union of finitely many disjoint open sets of diameter at most
η, and
(2) ord{T−p(H)}kp=0 ≤ d.
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3. reconstruction spaces of dynamical systems

For a space K, we consider the (one-sided) shift σ : KN → KN which is
defined by

σ(x0, x1, x2, x3....) = (x1, x2, x3....), xi ∈ K.
Let (X,T ) and (X ′, T ′) be dynamical systems. If h : X → X ′ is a map such
that the diagram

X
h−→ X ′

↓ T ↓ T ′

X
h−→ X ′

is commutative, then we say that h : (X,T ) → (X ′, T ′) is a morphism of
dynamical systems.

In this paper, we need the following definition from [Kat20].

Definition 3.1. Let T : X → X be a map of a compact metric space X.
(a) Given a set S ⊂ N and a map f : X → R, the map (fT j)j∈S : X → RS
will be denoted by IST,f . We call this map the delay observation map at times

j ∈ S. Note that IT,f := INT,f : (X,T )→ (RN, σ) is a morphism of dynamical

systems. We call IT,f the infinite delay observation map for (T, f).

(b) We say that ISf is a trajectory-embedding if ISf (x) 6= ISf (y) whenever

T j(x) 6= T j(y) for all j ∈ S.

Remark 1. (1) In the statement of Theorem 1.2, the existence of such a

map π : I
(0,1,..,2d)
T,f (M) → M is equivalent to that I

(0,1,...,2d)
T,f is a trajectory-

embedding (see (2) of Proposition 4.1).
(2) In the statement (b) of Definition 3.1, for the case where T : X → X is
injective, ISf is an embedding if and only if ISf is a trajectory-embedding.

Let (X,T ) be a dynamical system of a compact metric space X. For
n ≥ 1, let Pn(T ) be the set of all periodic points of T with period ≤ n and
P (T ) the set of all periodic points of T , i.e.

Pn(T ) = {x ∈ X| there is an i such that 1 ≤ i ≤ n and T i(x) = x}

and P (T ) =
⋃
n≥1

Pn(T ).

Two points x and y of X are trajectory-separated for T if T j(x) 6= T j(y) for
j ∈ N. A morphism h : (X,T ) → (X ′, T ′) is a trajectory-monomorphism if
h(x), h(y) are trajectory-separated for T ′, whenever x, y ∈ X are trajectory-
separated for T .

Let x, y ∈ X and let oT (x) = (T i(x))i∈N and oT (y) = (T i(y))i∈N be orbits
of x and y for T respectively. We say that the orbit oT (x) is eventually
equivalent to the orbit oT (y) if the orbits will be equal in the future, i.e.,
there exists an n ∈ N such that T i(x) = T i(y) for each i ≥ n. In this
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case, we wright oT (x) ∼e oT (y). We see that this relation is an equivalence
relation. So we have the equivalence class

[oT (x)] = {oT (y)| oT (x) ∼e oT (y)}
containing oT (x) and we put

[O(T )] = {[oT (x)]| x ∈ X}.
Note that if T : X → X is injective, the function o : X → [O(T )] defined
by x 7→ [oT (x)] is bijective, i.e., o : X ∼= [O(T )]. Also, note that if h :
(X,T ) → (X ′, T ′) is a morphism of dynamical systems, then h induces the
function h : [O(T )]→ [O(T ′)] defined by h([oT (x)]) = [oT ′(h(x))] for x ∈ X.
A morphism h : (X,T ) → (X ′, T ′) of dynamical systems is a trajectory-
isomorphism if h induces the bijection h : [O(T )] ∼= [O(T ′)].

Proposition 3.2. Suppose that a morphism h : (X,T ) → (X ′, T ′) is a
trajectory-monomorphism and h is surjective, i.e., h(X) = X ′. Then h is a
trajectory-isomorphism:

h : [O(T )] ∼= [O(T ′)]

Proof. Since h is a trajectory-monomorphism, h induces an injective func-
tion from [O(T )] to [O(T ′)]. Also h induces a surjective function from [O(T )]
onto [O(T ′)], because that h is a surjective function. �

We need the definition of topological entropy and here we give the defi-
nition by Bowen [Bow78]. Let T : X → X be any map of a compact metric
space X. A subset E of X is (n, ε)-separated if for any x, y ∈ E with x 6= y,
there is a j ∈ N such that 0 ≤ j < n and d(T j(x), T j(y)) ≥ ε. If K is any
nonempty closed subset of X, sn(ε;K) denotes the largest cardinality of any
set E ⊂ K which is (n, ε)-separated. Also we define

s(ε;K) = lim sup
n→∞

1

n
log sn(ε;K),

h(T ;K) = lim
ε→0

s(ε;K).

It is well known that the topological entropy h(T ) of T is equal to h(T ;X)
(see [Bow78]).

Let (X,T ) and (Y, S) be one-sided dynamical systems of compact metric
spaces. The inverse limit of T is the space

lim←−(X,T ) = {(xi)∞i=0 ∈ XN | T (xi+1) = xi for each i ∈ N}

which has the topology inherited as a subspace of the product space XN. If
h : (X,T )→ (Y, S) is a morphism of dynamical systems, then the map

lim←−h : lim←−(X,T )→ lim←−(Y, S)

is defied by lim←−h((xi)i) = (h(xi))i for (xi)i ∈ lim←−(X,T ). Note that if T is a

homeomorphism, then X ∼= lim←−(X,T ).
Now, we will introduce the notion of reconstruction space of dynamical

systems which is the main theme of this paper.
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Definition 3.3. A compact metric space X is a reconstruction space of
dynamical systems if there exists a Gδ-dense set E of C(X,X) × C(X,R)
such that for (T, f) ∈ E, the infinite delay observation map

IT,f := INT,f : (X,T )→ (RN, σ)

satisfies the following conditions (1) and (2):
(1) IT,f : [O(T )] ∼= [O(σT,f )], where σT,f = σ|IT,f (X), and
(2) lim←− IT,f : lim←−(X,T )→ lim←−(IT,f (X), σT,f ) is a homeomorphism.

X
IT,f−→ IT,f (X) ⊂ RN

↓ T ↓ σT,f ↓ σ
X

IT,f−→ IT,f (X) ⊂ RN

Remark 2. In Definition 3.3, (1) implies that one can understand the
structure of orbits of (X,T ) from the analysis of time series (IT,f (X), σT,f ),
and (2) implies that (IT,f (X), σT,f ) reflects topological and dynamical prop-
erties of (X,T ). In fact, let P be any dynamical property such that (X,T )
has P if and only if (lim←−(X,T ), lim←−T ) has P; e.g. as such a property P min-

imal, topological transitive, topological mixing, sensitive, etc. Then (X,T )
has P whenever (IT,f (X), σT,f ) has P because that there is the following
commutative diagram of homeomorphisms:

lim←−(X,T )
lim←− IT,f
−→ lim←−(IT,f (X), σT,f )

↓ lim←−T ↓ lim←−σT,f

lim←−(X,T )
lim←− IT,f
−→ lim←−(IT,f (X), σT,f )

We show that many compact metric spaces (e.g. PL-manifolds, manifolds
with branched structures, Menger manifolds, Sierpiński carpet, Sierpiński
gasket and many fractal sets) are reconstruction spaces of dynamical sys-
tems. Our result means that almost all dynamical systems (X,T ) on a recon-
struction space X can be reconstructed from (observation) maps f : X → R
in the sense of ‘eventually equivalent orbits and inverse limits’, and so it
forms a bridge between the theory of nonlinear one-sided dynamical sys-
tems and nonlinear time series analysis.

4. Trajectory-embeddings in (RN, σ)

In this section, we study some fundamental properties of trajectory-
embeddings.

Proposition 4.1. Let (X,T ) be a dynamical system, f : X → R a map and

k ∈ N. Suppose that I
(0,1,..,k)
T,f : X → Rk+1 is a trajectory-embedding. Then

the following (1)-(4) hold.
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(1) There is the unique map σ
(0,1,..,k)
T,f : I

(0,1,..,k)
T,f (X)→ I

(0,1,..,k)
T,f (X) such that

the diagram

X
I
(0,1,..,k)
T,f−→ I

(0,1,..,k)
T,f (X) ⊂ Rk+1

↓ T ↓ σ(0,1,..,k)T,f

X
I
(0,1,..,k)
T,f−→ I

(0,1,..,k)
T,f (X) ⊂ Rk+1.

is commutative. In other words, the map σ
(0,1,..,k)
T,f defined by

(fT i(x))ki=0) 7→ (fT i(x))k+1
i=1 ) (x ∈ X)

is well-defined. And the morphism

I
(0,1,..,k)
T,f : (X,T )→ (I

(0,1,..,k)
T,f (X), σ

(0,1,..,k)
T,f )

is a trajectory-isomorphism. In particular, IT,f := INT,f : (X,T ) → (RN, σ)
is a trajectory-monomorphism.

(2) There is a map π : I
(0,1,..,k)
T,f (X)→ X such that

π · I(0,1,..,k)T,f = T k and I
(0,1,..,k)
T,f · π = (σ

(0,1,..,k)
T,f )k

and so the map lim←− I
(0,1,..,k)
T,f : lim←−(X,T ) → lim←−(I

(0,1,..,k)
T,f (X), σ

(0,1,..,k)
T,f ) is a

homeomorphism.
(3) Let p(0,1,..,k) : RN → Rk+1 be the projection defined by (xi)i∈N 7→ (xi)

k
i=0.

Then p(0,1,..,k) : (IT,f (X), σT,f )→ (I
(0,1,..,k)
T,f (X), σ

(0,1,..,k)
T,f ) is an isomorphism

of dynamical systems, i.e., p(0,1,..,k) : IT,f (X)→ I
(0,1,..,k)
T,f (X) is a homeomor-

phism.

(4) h(T ) = h(σT,f ) = h(σ
(0,1,..,k)
T,f ).

Proof. Recall that I
(0,1,..,k)
T,f (x) = (fT i(x))ki=0 for x ∈ X. Since I

(0,1,..,k)
T,f is a

trajectory-embedding, the following claim (?) holds:

(?) If x, y ∈ X with (fT i(x))ki=0 = (fT i(y))ki=0, then T k(x) = T k(y).

We prove (1). Let x, y ∈ X with (fT i(x))ki=0 = (fT i(y))ki=0. By (?),
T k+1(x) = T k+1(y) and so fT k+1(x) = fT k+1(y). This implies that

(fT i(x))k+1
i=1 = (fT i(y))k+1

i=1 .

Thus σ
(0,1,..,k)
T,f is well-defined. Also, we see that the morphism

I
(0,1,..,k)
T,f : (X,T )→ (I

(0,1,..,k)
T,f (X), σ

(0,1,..,k)
T,f )

is a trajectory-isomorphism.

We prove (2). We show that there is a map π : I
(0,1,..,k)
T,f (X) → X such

that π · I(0,1,..,k)T,f = T k. Let x, y ∈ X such that I
(0,1,..,k)
T,f (x) = I

(0,1,..,k)
T,f (y).

By (?), T k(x) = T k(y). So the function π : I
(0,1,..,k)
T,f (X) → X defined by
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π(z) = T k(x) (z = I
(0,1,..,k)
T,f (x) ∈ I(0,1,..,k)T,f (X)) is well-defined. Then

(i) π · I(0,1,..,k)T,f = T k.

And so we have

I
(0,1,..,k)
T,f · π · I(0,1,..,k)T,f = I

(0,1,..,k)
T,f · T k = (σ

(0,1,..,k)
T,f )k · I(0,1,..,k)T,f .

Since I
(0,1,..,k)
T,f : X → I

(0,1,..,k)
T,f (X) is an onto map, we see that

(ii) I
(0,1,..,k)
T,f · π = (σ

(0,1,..,k)
T,f )k.

By use of (i) and (ii), we see that

lim←− I
(0,1,..,k)
T,f : lim←−(X,T )→ lim←−(I

(0,1,..,k)
T,f (X), σ

(0,1,..,k)
T,f )

is a homeomorphism and lim←− IT,f : lim←−(X,T )→ lim←−(IT,f (X), σT,f ) is also a
homeomorphism.

We prove (3). Note that p(0,1,..,k)(IT,f (X)) = I
(0,1,..,k)
T,f (X). Suppose that

I
(0,1,..,k)
T,f (x) = I

(0,1,..,k)
T,f (y) (x, y ∈ X). By (?), we see that T k(x) = T k(y)

and so
IT,f (x) = (fT i(x))i∈N = (fT i(y))i∈N = IT,f (y).

This implies that p(0,1,..,k) : IT,f (X)→ I
(0,1,..,k)
T,f (X) is a homeomorphism.

We prove (4). Since the diagram

X
I
(0,1,..,k)
T,f−→ Z = I

(0,1,..,k)
T,f (X) ⊂ Rk+1

↓ T ↓ σ(0,1,..,k)T,f

X
I
(0,1,..,k)
T,f−→ Z = I

(0,1,..,k)
T,f (X) ⊂ Rk+1.

is commutative, by Bowen’s theorem (e.g. see [MS93, Theorem 7.1]) we have

h(σ
(0,1,..,k)
T,f )) ≤ h(T ) ≤ h(σ

(0,1,..,k)
T,f ) + sup{h(T ; (I

(0,1,..,k)
T,f )−1(z))| z ∈ Z}.

Let z = I
(0,1,..,k)
T,f (x) (x ∈ X). By (?), we see that

T k((I
(0,1,..,k)
T,f )−1(z)) = {T k(x)}

is a one point set, and so h(T ; (I
(0,1,..,k)
T,f )−1(z)) = 0. Hence h(T ) = h(σ

(0,1,..,k)
T,f ).

By (3), h(T ) = h(σ
(0,1,..,k)
T,f ) = h(σT,f ).

�

By Proposition 4.1 and [Kat20, Theorem 3.1], we have the following result.

Theorem 4.2. Let X be a compact metric space with dimX = d <∞ and
let T : X → X be a doubly 0-dimensional map with dimP (T ) ≤ 0. Then
there is a dense Gδ-set D of C(X,R) such that for all f ∈ D,

IT,f = TN
T,f : (X,T )→ (RN, σ)

satisfies the following conditions:
(a) IT,f : [O(T )] ∼= [O(σT,f )],
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(b) lim←− IT,f : lim←−(X,T )→ lim←−(IT,f (X), σT,f ) is a homeomorphism,

(c) h(T ) = h(σT,f ) and
(d) if x, y ∈ X are trajectory-separated for T , then

|{i ∈ N| IT,f (x)i = IT,f (y)i}| ≤ 2d.

5. Reconstruction theorem in the one-sided shift (RN, σ)

For a compact metric space (Y, d), 2Y denotes the space whose elements
are nonempty closed subsets of Y and the space 2Y has the Hausdorf metric
dH . Note that (2Y , dH) is a compact metric space. Let Z be a space and let
ϕ : Z → 2Y ∪{∅} be a set-valued function, where we consider that the empty
set ∅ is an isolated point of the space 2Y ∪ {∅}. Then ϕ : Z → 2Y ∪ {∅}
is upper semi-continuous if for any z ∈ Z and any open neighborhood V of
ϕ(z) in Y , there is an open neighborhood U of z in Z such that ϕ(z′) ⊂ V
for any z′ ∈ U .

Let (X,T ) be any one-sided dynamical system. A point x ∈ X is a
chain recurrent point of T if for any ε > 0 there is a finite sequence x =
x0, x1, · · · , xm = x (m ≥ 1) of points of X such that d(T (xi), xi+1) < ε for
each i = 0, 1, · · · ,m− 1. Let CR(T ) be the set of all chain recurrent points
of T . Note that P (T ) ⊂ CR(T ), CR(T ) is a nonempty closed subset of X
and the set-valued function

CR : C(X,X)→ 2X , T 7→ CR(T )

is upper semi-continuous (see [BF85]).
We will define a class 0-DCR of compact metric spaces.

Definition 5.1. Let 0-DCR be the class of all compact metric spaces X
such that X satisfies the following two conditions:
(0-D) The set of doubly 0-dimensional maps T : X → X is dense in
C(X,X).
(0-CR) The set of maps T : X → X with dimCR(T ) = 0 is dense in
C(X,X).

Remark 3. Note that for a compact metric space X, both the set of
0-dimensional maps T : X → X and the set of maps T : X → X with
dimCR(T ) = 0 are Gδ-sets of C(X,X) (e.g. see [KOU16]). So we see
that if X belongs to 0-DCR, then the set of all maps T : X → X such that
T is a 0-dimensional map with dimCR(T ) = 0 is a dense Gδ-set of C(X,X).

Let A be a (nonempty) closed subset of a compact metric space X. Here
we consider the following condition: D(A) < η if A can be decomposed into
finitely many mutually disjoint closed sets Ai with diam(Ai) < η for each
i, i.e., A =

⋃
iAi, diam(Ai) < η, and Ai ∩ Aj = ∅ for i 6= j. Note that

dimA = 0 if and only if D(A) < η for each η > 0.
Modyfying the proof of [KM20, Lemma 3.11], we have the following.
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Lemma 5.2. (c.f. [KM20, Lemma 3.11]) Let η > 0 and k ∈ N. Suppose
that T : X → X is a doubly 0-dimensional map of a compact metric space

X such that dimX = d <∞ and D(cl[
⋃4k
p=0 T

−p(P (T ))]) < η. Then T has

(k, η)-TSP.

Proof. Since D(cl[
⋃4k
p=0 T

−p(P (T ))]) < η, there is an open cover

C = {Ci | 1 ≤ i ≤M}
of X such that
(a) diam(Ci) < η for each 1 ≤ i ≤M , and

(b) bd(Ci) ∩ (cl[
⋃4k
p=0 T

−p(P (T ))]) = ∅ for each 1 ≤ i ≤M .

Put K =
⋃M
i=1 bd(Ci). By (b) there is an open neighborhood K ′ of K in

X such that for any point z ∈ K ′, T t(z)∩ T t′(z) = ∅ for −2k ≤ t < t′ ≤ 2k.
By modyfying the proof of [KM20, Lemma 3.11], we see that there is an

open cover C′ = {C ′i | 1 ≤ i ≤M} of X such that
(1) C ′i ⊂ Ci for each 1 ≤ i ≤M , and
(2) ord{f−p(bd(C ′i)) | 1 ≤ i ≤M,p = 0, 1, ..., k} ≤ d, and

(3) bd(C ′i) ∩ (cl[
⋃4k
p=0 T

−p(P (T ))]) = ∅ for each 1 ≤ i ≤M .

Put c′1 = cl(C ′1), c
′
i = cl(int[(C ′i) \ (

⋃
j<iC

′
j)]) for 2 ≤ i ≤M . We define

H =
M⋃
i=1

bd(c′i) and Ui = int(c′i) (i = 1, 2, ..,M).

Then H satisfies the desired conditions of (k, η)-TSP. �

Lemma 5.3. (A version of Borsuk’s homotopy extension theorem, c.f. [Bor67,
(8.1)Theorem] and [Mil01, Theorem 4.1.3]) Let X be a compact metric space
and M a closed subset of X, and let maps f ′, g′ : M → R satisfy d(f ′, g′) < ε.
If g : X → R is an extension of g′, then f ′ has an extension f : X → R
such that d(f, g) < ε.

Let X be any compact metric space. For each α > 0 and S ⊂ N a set of
cardinarity 2d+1, let E(α;S) be the subset of C(X,X)×C(X,R) consisting
of all pairs (T, f) such that IST,f : X → RS is an α trajectory-embedding (i.e.,

IST,f (x) 6= IST,f (y) whenever x, y ∈ X with d(T j(x), T j(y)) ≥ α for all j ∈ S).
The main theorem of this paper is the following.

Main Theorem 5.4. (Reconstruction theorem of dynamical systems) Let
X be a compact metric space with dimX = d <∞. Suppose that X belongs
to the class 0-DCR.Then the following assertions (1)− (3) hold.

(1) (α trajectory-embedding) Let α > 0 and S ⊂ N a set of cardinarity
2d+ 1. Then the set E(α;S) is a dense open set of C(X,X)× C(X,R).

(2) (Trajectory-embedding) There exists a Gδ-dense set E of C(X,X) ×
C(X,R) such that if (T, f) ∈ E, for any S ⊂ N of cardinality 2d+ 1

IST,f : X → RS
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is a trajectory-embedding.

(3) (Infinite delay observation) If E is the set as in the above (2), then for
any (T, f) ∈ E,

IT,f = TN
T,f : (X,T )→ (RN, σ)

satisfies the following conditions:
(a) IT,f : [O(T )] ∼= [O(σT,f )],
(b lim←− IT,f : lim←−(X,T )→ lim←−(IT,f (X), σT,f ) is a homeomorphism,

(c) h(T ) = h(σT,f ) and
(d) if x, y ∈ X are trajectory-separated for T , then

|{i ∈ N| IT,f (x)i = IT,f (y)i}| ≤ 2d.

In particular, X is a reconstruction space of dynamical systems.

X
IT,f−→ IT,f (X) ⊂ RN

↓ T ↓ σT,f ↓ σ
X

IT,f−→ IT,f (X) ⊂ RN

Proof. We prove (1). Let α > 0 and S ⊂ N of cardinality 2d + 1. For each
T ∈ C(X,X), we put

L(T : α, S) =

{(x, y) ∈ X ×X| d(T j(x), T j(y)) ≥ α for j ∈ S} ⊂ X ×X.
Recall the set

E(α;S) =

{(T, f) ∈ C(X,X)× C(X,R)|IST,f (x) 6= IST,f (y) for (x, y) ∈ L(T : α, S)}.
We will show that E(α;S) is an open subset of C(X,X)× C(X,R). Let

(T, f) ∈ E(α;S). Since L(T : α, S) is compact, we can choose a neighbor-
hood K of L(T : α, S) in X ×X and ε > 0 such that for any (x, y) ∈ K,

d(IST,f (x), IST,f (y)) ≥ 2ε.

Note that if L(T : α, S) = ∅, we choose K as an empty set ∅. Since the
set-valued function

L(α, S) : C(X,X)→ 2X×X ∪ {∅}, T 7→ L(T : α, S)

is an upper semi-continuous set-valued function, we can choose a neighbor-
hood U(T ) of T in C(X,X) and a neighborhood V (f) of f ∈ C(X,R) such
that if (T ′, f ′) ∈ U(T )× V (f) then L(T ′ : α, S) ⊂ K and for (x, y) ∈ K,

d(IST ′,f ′(x), IST ′,f ′(y)) ≥ ε.

Since L(T ′ : α, S) ⊂ K, we see that IST ′,f ′(x) 6= IST ′,f ′(y) for (x, y) ∈ L(T ′ :

α, S). Then (T ′, f ′) ∈ E(α, S) and so U(T ) × V (f) ⊂ E(α;S). Hence
E(α, S) is an open set of C(X,X)× C(X,R).

Next, we will show that E(α;S) is dense in C(X,X) × C(X,R). Let
(T, f) ∈ C(X,X) × C(X,R) and ε > 0. Since f : X → R is uniformly
continuous, there is a sufficiently small positive number η > 0 such that η <
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α and if x, y ∈ X with d(x, y) < η, then d(f(x), f(y)) < ε. Let k = maxS.
By Remark 3, we can choose T1 ∈ C(X,X) such that d(T, T1) < ε/2 and T1
is a 0-dimensional map with dimCR(T1) = 0. Since

dim(
4k⋃
p=0

T−p1 (CR(T1))) = 0,

we choose a closed neighborhood W of
⋃4k
p=0 T

−p
1 (CR(T1)) in X such that

D(W ) < η. Since the set function CR : C(X,X) → 2X is upper semi-
continuous and X satisfies the condition 0-D of Definition 5.1, we can choose
a doubly 0-dimensional map T2 ∈ C(X,X) such that d(T1, T2) < ε/2 and⋃4k
p=0 T

−p
2 (CR(T2)) ⊂W . Then D(

⋃4k
p=0 T

−p
2 (CR(T2))) < η and so

D(cl[
4k⋃
p=0

T−p2 (P (T2))]) < η.

By Lemma 5.2, we see that T2 has (k, η)-TSP. Hence there is a closed set H
of X such that
(1) X \H is a union of finitely many disjoint open sets Ui (i = 1, 2, ...,m)
of diameter at most η, and
(2) ord{T−p2 (H)}kp=0 ≤ d.

We choose a small open neighborhood G of H in M such that

(2′) ord{T−j2 (G)}kj=0 ≤ d.
Then we may assume that X \ cl(G) is a union of disjoint open sets Vi(i =
1, 2, ...,m) such that cl(Vi) ⊂ Ui. Note that cl(Vi)∩cl(Vj) = ∅(i 6= j). For
each i, take a point ti which belongs to a sufficiently small neighborhood of
f(cl(Vi)) in R such that ti 6= tj if i 6= j. We define a map

g′ :
m⋃
i=1

cl(Vi)→ R

by g′(cl(Vi)) = ti. Then by Lemma 5.3, we have an extension g : X → R of g′

with d(g, f) < ε. We will prove (T2, g) ∈ E(α;S). Let (x, y) ∈ L(T2 : α, S).
By (2’),

|{j ∈ S| T j2 (x) ∈ G}| ≤ d
and

|{j ∈ S| T j2 (y) ∈ G}| ≤ d.
Since |S| = 2d+ 1, we can find some j ∈ S such that T j2 (x), T j2 (y) ∈ X \G.

Since d(T j2 (x), T j2 (y)) ≥ α and diam(cl(Vi)) < η < α for each i = 1, 2, ..,m,

there are n, n′ such that n 6= n′ and T j2 (x) ∈ cl(Vn) and T j2 (y) ∈ cl(Vn′).

Then gT j2 (x) = tn 6= tn′ = gT j2 (y). This implies IST2,g(x) 6= IST2,g(y) and
hence

(T2, g) ∈ E(α;S).
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Note that d(T, T2) < ε and d(f, g) < ε. So we see that E(α;S) is a dense
open set of C(X,X)× C(X,R).

We will prove (2). Let J be the set of all set S ⊂ N of cardinality (2d+1).
Note that J is a countable set. We define

E =
⋂
{E(1/n;S)| S ∈ J and n ∈ N \ {0}}.

Then we see that E is a desired dense Gδ-set in C(X,X)× C(X,R).
Finally we will prove (3). Let (T, f) ∈ E. Note that if k = 2d, then (T, f)

satisfies the conditions of Proposition 4.1. Hence

IT,f : [O(T )] ∼= [O(σT,f )], h(T ) = h(σT,f )

and lim←− IT,f : lim←−(X,T )→ lim←−(IT,f (X), σT,f ) is a homeomorphism.

We prove (d). Let x, y ∈ X be trajectory-separated points for T . Suppose,
on the contrary, that

|{i ∈ N| IT,f (x)i = IT,f (y)i}| > 2d.

Then we can choose a set S′ ⊂ {i ∈ N| IT,f (x)i = IT,f (y)i} with |S′| = 2d+1.

This is a contradiction to the fact that IS
′

T,f is a trajectory-embedding.
This completes the proof.

�

6. The class 0-DCR

In this section, we consider the following general problem.

Problem 6.1. What kinds of compact metric spaces belong to the class
0-DCR ?

We will show that PL-manifolds, some branched manifolds and some frac-
tal sets, e.g. Menger manifolds, Sierpiński carpet, Sierpiński gasket and
dendrites, belong to the class 0-DCR.

In [KOU16] Krupski, Omiljanowski and Ungeheuer defined the class 0-CR
which is the family of all compact metric spaces X such that the set CR(T )
is 0-dimensional for a generic map T ∈ C(X,X). They proved the following
result.

Theorem 6.2. ([KOU16, Theorem 5.1]) If X is a (compact) polyhedron,
then X ∈ 0-CR. Moreover, if X is a compact metric space that admits an
ε-retraction rε : X → P onto a polyhedron P ⊂ X for each ε > 0 (i.e.,
d(rε, idX) < ε and rε|P = idP ), then X ∈ 0-CR.

Now, we consider the family 0-D of all compact metric spaces X such that
the set of all doubly 0-dimensional maps on X is dense in C(X,X). A map
T : X → X is said to be a piecewise embedding if there is a countable family
{Fi}i∈N of closed subsets of X such that X =

⋃
i∈N Fi and T |Fi : Fi → X

is injective for each i ∈ N. Note that if a map T : X → X is a piecewise
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embedding, then T is doubly 0-dimensional because that dimT−1(x) is a
countable set for each x ∈ X and

dimT (A) = max{dimT (A ∩ Fi) | i ∈ N} ≤ 0

for any 0-dimensional closed set A of X (see the countable sum theorem for
dimension [Eng95, Theorem 3.1.8]).

A (compact) d-dimensional polyhedron P (d ≥ 1) is called a manifold
with branched structures if P =

⋃
j∈JMj ∪M , where

(1) {Mj}j∈J (|J | <∞) is a finite family of mutually disjoint sub-polyhedra
Mj of P such that for each j ∈ J ,

Mj = Nj ∪ϕα
⋃
{Nj,α|α ∈ Jj},

where Jj is a finite set, Nj and Nj,α (α ∈ Jj) are d-dimensional PL-manifolds
with boundaries, and Mj is obtained from Nj by attaching Nj,α (α ∈ Jj)
via locally embedding maps ϕα : N ′j,α → ∂Nj from a (d − 1)-dimensional

(compact) submanifold N ′j,α of ∂Nj,α into ∂Nj , i.e., Mj is the quotient space

of the topological sum Njqα∈Jj Nj,α under the identifications x ∼ ϕα(x) for
x ∈ N ′j,α ⊂ ∂Nj,α and the quotient map is denoted by qj : Nj qα∈Jj Nj,α →
Mj (= Nj ∪

⋃
{qj(Nj,α)| α ∈ Jj}),

(2) M is a close set of P with

M ∩
⋃
j∈J

Nj = ∅,

(3) P \
⋃
j Nj (⊃M) is a d-dimensional (non-compact) manifold.

Remark 4. All PL-manifolds are manifolds with branched structures.
The associated template of the well-know Lorenz attractor is a manifold
with branched structures [GL02].

Let K be a simplicial complex and let K(m) be the m-skeleton of K, i.e.,
the set of all simplexes ofK whose dimension are≤ m. For a vertex v ofK(0),
let St(v,K) be the closed star of v, i.e., St(v,K) =

⋃
{σ ∈ K| v ∈ σ}. Also

let βK denote the barycentric subdivision of K. Let ∆ =< p0, p1, · · · , pn >
be a fixed n-simplex. Let σ =< v0, v1, ..., vn > be an n-simplexes and let
F be the set of all sequence v = s0, s1, · · · , sn = σ of faces of σ such that
si−1 is a face of si and dim si−1 + 1 = dim si (= i) for i = 1, 2, ..., n. Then
|F | = (n+ 1)! and

σ =
⋃
{< b(s0), b(s1), · · · , b(sn) > | (s0, s1, · · · , sn) ∈ F},

where b(si) is the barycenter of si. Consider the folding map (at barycenters)
fσ : |βσ| → ∆ which is the simplicial map defined by fσ(b(si)) = pi for each
i = 0, 1, 2, ..., n. Note that fσ is a piecewise embedding.

Proposition 6.3. Let P be a manifold with branched structures with dimP ≥
1. Then the set of all piecewise embedding maps T : P → P is dense in
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C(P, P ). In particular, P belongs to 0-DCR. Hence P is a reconstruction
space of dynamical systems.

Proof. Let dimP = d ≥ 1. Since P is a polyhedron, by Theorem 6.2, P
belongs to the class 0-CR.

We will show that P belongs to the class 0-D. Let T ∈ C(P, P ) and ε > 0.
We choose a simplicial complex K of P such that mesh(K) is sufficiently
small, i.e., mesh(K) < ε/2. Take a simplicial approximation T1 : P = |L| →
|K| of T such that d(T, T1) < ε/2, where L is a subdivision of K.

By modifying T1, we will construct a map T ′1 : |βL| → P such that for
each d-simplex s of βL, T ′1|s : s → P is an embedding and d(T1, T

′
1) < ε.

We consider the following abstract simplicial complex K̃ which contains the
simplicial complex K as follows: For each 0 ≤ k ≤ d, let

Ak = {(a0, a1, .., ak) ∈ Nk+1 | d = k + Σk
i=0ai}.

For each k-simplex σ =< v0, v1, ..., vk > (k ≤ d) ofK and each (a0, a1, .., ak) ∈
Ak, we consider the abstract d-simplex

< v0, v1, ..., vk; (a0, a1, .., ak) >

=< p(v0,0), p(v0,1), .., p(v0,a0), p(v1,0), p(v1,1), .., p(v1,a1), · · · , p(vk,0), p(vk,1).., p(vk,ak) >

where we assume vi = p(vi,0) ∈ K(0) (i = 0, 1, ..., k). In particular,

< v0, v1, ..., vd; (0, 0, .., 0) >=< p(v0,0), p(v1,0), .., p(vd,0) >=< v0, v1, ..., vd >∈ K(d)

and

< v; d >=< p(v,0), p(v,1), ..., p(v,d) >

for each vertex v ∈ K(0), where v = p(v,0). We define the abstract simplicial

complex K̃ as follows:

K̃ = K
⋃
{s |s is a face of < v0, v1, ..., vk; (a0, a1, .., ak) >, 0 ≤ k ≤ d− 1,

(a0, a1, .., ak) ∈ Ak, and < v0, v1, ..., vk >∈ K(k) \K(k−1)}.
For each 0 ≤ k ≤ d− 1, we put

Hk =
⋃
{< v0, v1, ..., vk; (a0, a1, .., ak) > | < v0, v1, ..., vk >∈ K(k) \K(k−1),

(a0, a1, .., ak) ∈ Ak}.
We will construct a retraction r : |K̃| → |K| such that

r| < v0, v1, ..., vk; (a0, a1, .., ak) >

is injective. Recall that P = |K| is a manifold with branched structures. So
we assume that

P =
⋃
j∈J

Mj ∪M,Mj = Nj ∪ϕα
⋃
{Nj,α|α ∈ Jj},

N ′j,α, ϕα and qj are defined as before.
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By induction on k (0 ≤ k ≤ d − 1), we construct hk :
⋃k
i=0Hi → |K|.

First, for the case k = 0 we will construct a map h0 : H0 → |K| as follows.

Let v ∈ K(0).
If v /∈

⋃
{N ′j,α | j ∈ J, α ∈ Jj}, we choose an embedding

h0 :< v; d > (=< p(v,0), p(v,1), ..., p(v,d) >)→ P \
⋃
{N ′j,α | j ∈ J, α ∈ Jj}

with h0(v) = v, because that P \
⋃
{N ′j,α| j ∈ J, α ∈ Jj} is a d-dimensional

(non-compact) manifold.
If v ∈ N ′j,α for some j ∈ J and α ∈ Jj , we choose an embedding

h0 :< v; d >→ Nj

with h0(v) = v, because that Nj is a d-dimensional manifold. So we have a
map h0 : H0 → |K|.

Now we assume that hk−1 :
⋃k−1
i=0 Hi → |K| have been constructed. Let

< v0, v1, ..., vk > be a k-simplex of K.
If < v0, v1, ..., vk >⊂ P \

⋃
{N ′j,α| j ∈ J, α ∈ Jj}, then we can choose an

embedding

hk :< v0, v1, ..., vk; (a0, a1, .., ak) >→ P \
⋃
{N ′j,α| j ∈ J, α ∈ Jj}

satisfying the following conditions (a) and (b):
(a) hk| < v0, v1, ..., vk >= id and
(b)

hk|Hk−1∩ < v0, v1, ..., vk; (a0, a1, .., ak) >=

hk−1|Hk−1∩ < v0, v1, ..., vk; (a0, a1, .., ak) > .

If < v0, v1, ..., vk >⊂ Nj for some j ∈ J and

< v0, v1, ..., vk > ∩
⋃
{N ′j,α| j ∈ J, α ∈ Jj} 6= ∅,

then we choose an embedding hk :< v0, v1, ..., vk; (a0, a1, .., ak) >→ Nj sat-
isfying (a) and (b) as above.

If < v0, v1, ..., vk >⊂ Nj,α and

< v0, v1, ..., vk > ∩N ′j,α 6= ∅ 6=< v0, v1, ..., vk > \N ′j,α,

then we choose an embedding

hk :< v0, v1, ..., vk; (a0, a1, .., ak) >→ Nj ∪Nj,α

satisfying (a) and (b) as above, because that as the assumption of the case
k − 1, we can assume that

hk−1(Hk−1 ∩ ∂ < v0, v1, ..., vk; (a0, a1, .., ak) >)

is contained in a d-dimensional manifold in Nj ∪ Nj,α. By induction on k,

we obtain hd−1. By use of hd−1 we have a retraction r : |K̃| → |K| such
that r| < v0, v1, ..., vk; (a0, a1, .., ak) > is injective.
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Next, we will define a PL-map ϕ : |L| → |K̃| which is a piecewise embed-
ding. For each d-simplex σ of L, we consider the simplex

T1(σ) =< v0, v1, ..., vk >∈ K (k ≤ d).

For each vertex vi (i = 0, 1, .., k) of T1(σ), we consider the face

T−1(vi) ∩ σ =< w(i,0), w(i,1), .., w(i,ai) >= σvi

of σ. Note that d = k + Σk
i=0ai and

σ =< w(v0,0), .., w(v0,a0), w(v1,0), .., w(v1,a1), · · · , w(vk,0), .., w(vk,ak) >

≡ σv0 ∗ σv1 ∗ · · · ∗ σvk .
We put

βσv0 ∗ βσv1 ∗ · · · ∗ βσvk = {τ0 ∗ τ1 · · · ∗ τk| τi ∈ βσi, dim τi = ai}.
Then βσv0 ∗βσv1 ∗· · ·∗βσvk gives a subdivision of σ. Consider the (abstract)
d-simplex

∆σ =< v0, v1, ..., vk; (a0, a1, .., ak) >

=< p(v0,0), .., p(v0,a0), p(v1,0), .., p(v1,a1), · · · , p(vk,0), .., p(vk,ak) >
of K̃ and consider the folding map

fσvi : |βσvi | → ∆vi =< p(vi,0), .., p(vi,ai) > (∈ K̃)

(0 ≤ i ≤ k) defined as before.
For each d-simplex σ of L, we have a map

ϕσ = fσv0 ∗ fσv1 · · · ∗ fσvk :

σ = |βσv0 ∗ βσv1 ∗ · · · ∗ βσvk | → ∆v0 ∗∆v1 ∗ · · · ∗∆vk = ∆σ ∈ K̃.
Note that if dimT1(σ) = d, ϕσ = T1|σ.

By use of ϕσ (σ ∈ L(d) \L(d−1)), we have a desired PL map ϕ : |L| → |K̃|
which is a piecewise embedding. Finally, we put T ′1 = rϕ : P → P . Then
T ′1 is a piecewise embedding. Also by the constraction of r, we may assume
that d(T1, T

′
1) < ε/2. This means that P satisfies the condition (0-D). This

completes the proof. �

Many dynamical properties of Cantor sets have been studied. Here we
consider dynamical properties of higher dimensional fractal sets.

For 0 ≤ k < n, we will construct a space Lnk in an n-simplex
M0 =< v0, v1, ..., vn > by Lefshetz’s method (see [Chi96, p.129] and [Lef31]).
We define a sequence {(Mi, Li)}i∈N of compact n-dimensional polyhedra Mi

with triangulations Li inductively as follows. Let M0 be the n-simplex
< v0, v1, ..., vn > with the standard simplicial complex structure L0. Sup-
pose (Mi, Li) has been defined. Let

Mi+1 =
⋃
{St(v, β2(Li)) | v is a vertex of β(L

(k)
i )}

and
Li+1 = β2Li|Mi+1.
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Note that Mi+1 may be regarded as a regular neighborhood of the k-skeleton
of Li. Then {Mi}i∈N is a decreasing sequence and we obtained a compact
metric space

Lnk =
⋂
i∈N

Mi.

Note that L1
0 is a Cantor set and L2d+1

d (= µd) is called the d-dimensional
Menger compactum. Also L2

1 is called the Sierpiński carpet. A space X
is a d-dimensional Menger manifold if X is compact and each point x of
X has a neighborhood W of x in X such that W is homeomorphic to the
d-dimensional Menger compactum µd ( see [Bes88] for geometric properties
of µd).

Also the Sierpiński gasket can be constructed from an equilateral triangle
by repeated removal of (open) triangular subsets: Start with an equilat-
eral triangle. Subdivide it into four smaller congruent equilateral triangles
and remove the central (open) triangle. Repeat this step with each of the
remaining smaller triangles infinitely. So we have a sequence {Xi}i∈N of
2-dimensional polyhedra in the plane and the intersection X =

⋂
i∈NXi is

called the Sierpiński gasket.
A compact connected metric space (=continuum) X is said to be a den-

drite if X is a 1-dimensional locally connected continuum which contains no
simple closed curve.

Proposition 6.4. Let M be a d-dimensional Menger manifold. Then M
belongs to 0-DCR and hence M is a reconstruction space. More precisely,
there exists a Gδ-dense set E′ of C(M,M)×C(M,R) such that if (T, f) ∈ E′,
then for any S ⊂ N of cardinality 2d + 1, IST,f : M → RS is an embedding
and so

IT,f = TN
T,f : (M,T )→ (RN, σ)

is an embedding.

Proof. By [Bes88, Definition 1.2.1 and Corollary 5.2.2], for each ε > 0, M
admits an ε-retraction rε : M → P onto a d-dimensional polyhedron P ⊂M .
Hence by Theorem 6.2, M belongs to 0-CR. Also it is well-known that the
set e(M,M) of all embeddings T : M → M is a Gδ dense set of C(M,M)
(see [Bes88, Theorem 2.3.8]). Hence M belongs to 0-DCR. By use of the
fact that e(M,M) is a Gδ dense set of C(M,M) and by modifying the proof
of Theorem 5.4, we can complete the latter part of the proof. �

We will show that the Sierpiński carpet belongs to 0-DCR. In [Why58,
p.323], Whyburn proved that the Sierpiński carpet is homeomorphic to any
S-curve X, i.e., X is a plane locally connected 1-dimensional continuum
whose complement in the plane consists of countably many components
with frontiers being mutually disjoint simple closed curves {Si}i∈N. Such
simple closed curves {Si}i∈N are called the rational circles of the S-curve X.
The union of all these circles {Si}i∈N is called the rational part of X, and the
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remainder X \ (
⋃
i≥0 Si) is called the irrational part of X. Moreover, Why-

burn ([Why58]) proved that if K1,K2 are S-curves and C1, C2 are frontiers
of components of complements of K1,K2 in the plane R2 respectively, then
each homeomorphism of C1 onto C2 can be extended to a homeomorphism
of K1 onto K2. We need the following lemma.

Lemma 6.5. Let X be an S-curve in the plane R2 and let {Si}i∈N be rational
circles of X, and S0 the frontier of the unbounded component of R2 \ X.
Let Bk (k ≥ 1) be the disk in R2 with ∂Bk = Sk. If p : R2 → H is
the decomposition map of R2 obtained by identifying the sets B1, B2, ... to
single points respectively, then the decomposition space H is homeomorphic
to R2, p(X) = D is a disk in the plane H with ∂D = p(S0), and the set
{p(Si) |i = 1, 2, ..} is a countable set in D \ ∂D. Moreover, for a point x of
X \ S0, x is in the irrational part of X if and only if p−1(p(x)) = {x}.
Proof. By the Moore’s theorem [Kur68, p.380], we see that H is homeomor-
phic to R2 and p(X) = D is a disk. Note that the set {p(Sj)|j ≥ 1} is a
countable set in the disk D. �

Proposition 6.6. Let X = L2
1 ⊂ R2 be the Sierpiński carpet. Then X

belongs to 0-DCR.

Proof. Let ε > 0. Recall the Lefshetz’s construction of L2
1 as before. We

see that Mi+1 is regarded as a regular neighborhood of the 1-skeleton of Li.

So we can easily see that X admits an ε-retraction rε : X → |L(1)
i | for a

sufficiently large i ∈ N. Hence X belongs to 0-CR.
We will show that X belongs to the class 0-D. Let T ∈ C(X,X) and

ε > 0. Let M0 = ∆2 be a 2-simplex in the plane R2 with the standard
simplicial complex structure L0. We have the sequence (Mi, Li) defined as
before, i.e.,

Mi+1 =
⋃
{St(v, β2(Li)) | v is a vertex of β(L

(1)
i )}

and
Li+1 = β2Li|Mi+1.

Then X = L2
1 =

⋂
i∈NMi. Note that St(v, β2(Li)) is a disk in R2 and

St(v, β2(Li)) ∩X
is an S-curve. Choose a sufficiently large natural number i0 so that

diam St(v, β2(Li0)) < ε

for each vertex v of β(Li
(1)
0 ). Put Dv = St(v, β2(Li0)).

Let {Sk}k≥1 be the family of rational circles Sk of the S-curve X such
that Sk ⊂ intR2Mi0+1 and let Bk be the disk with ∂Bk = Sk for each k ≥ 1.
Let p : R2 → H be the decomposition map of R2 obtained by identifying
the sets B1, B2, ... to single points respectively. Then p(Dv) is a disk in the
plane H. So we have a family

{p(Dv) | v is a vertex of β(Li
(1)
0 )}
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of disks in H such that

p(Mi0+1) =
⋃
{p(Dv) | v is a vertex of β(Li

(1)
0 )}

and
ord({p(Dv) | v is a vertex of β(Li

(1)
0 )}) ≤ 2.

Since p(Sk) = {sk} is a one point set and so the set Z = {sk |k ≥ 1} is

a countable set in p(Mi0+1), for each v ∈ β(Li
(1)
0 ) we have a disk Ev in

p(Mi0+1) (⊂ H) such that
(1) ∂Ev ∩ Z = ∅,
(2) p(Dv) ⊂ intp(Mi0+1)Ev,

(3) diam p−1(Ev) < ε and

(4) ord{Ev| v is a vertex of β(Li
(1)
0 )} ≤ 2.

If necessary, by use of homeomorphism of R2 we may assume that H =
R2 and each Ev is a convex set in H. Put D′v = p−1(Ev) ∩ X. Since
Dv ⊂ intXD

′
v, the family

{intXD
′
v| v is a vertex of β(Li

(1)
0 )}

is an open cover of X.
Choose a large natural number j0 ≥ i0 such that for each 2-simplex σ of

Lj0 , there is a vertex v of β(Li
(1)
0 ) such that T (σ ∩X) ⊂ intXD

′
v. For each

w ∈ L(0)
j0

, we put

V (w) = {v| v is a vertex of β(L
(1)
i0

) and T (w) ∈ D′v}.

Note that 1 ≤ |V (w)| ≤ 2. Since Z is a countable set in H = R2 and by
use of usual general position arguments in the plane, we see that for any

w ∈ L(0)
j0

, take a point w̃ of the irrational part of
⋂
{D′v| v ∈ V (w)} such

that
(5) if w,w′ ∈ L(0)

j0
and w 6= w′, then w̃ 6= w̃′,

(6) the set {p(w̃) |w ∈ L(0)
j0
} is in general position of the plane H = R2 and

the segment [p(w̃), p(w̃′)] in R2 contains no point of Z.

Let σ be any 2-simplex in Lj0 and σ =< w0, w1, w2 >. Consider the
2-simplex σ̃ =< p(w̃0), p(w̃1), p(w̃2 > in H = R2. Then we have a natural
homeomorphism hσ : ∂σ → p−1(∂σ̃) with hσ(wi) = w̃i. We may assume
that if σ1, σ2 are 2-simplexes in Lj0 with ∂σ1∩∂σ2 6= ∅, then

hσ1 |∂σ1 ∩ ∂σ2 = hσ2 |∂σ1 ∩ ∂σ2.
Since σ ∩ X and p−1(σ̃) ∩ X are S-curves, by Whyburn theorem as above
there is a homeomorphism ϕσ : σ ∩X → p−1(σ̃) ∩X which is an extension

of hσ. By use of ϕσ (σ ∈ L(2)
j0
\L(1)

j0
), we have a desired piecewise embedding

T ′ : X → X with d(T, T ′) < ε. Hence X belongs to 0-D. �

Proposition 6.7. Let X be the Sierpiński gasket. Then X belongs to 0-
DCR.
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Proof. For each ε > 0, X admits an ε-retraction rε : X → P (= Pε) onto a
subgraph P of X and so X belongs to 0-CR. We will show that X belongs to
the class 0-D. Let T ∈ C(X,X) and ε > 0. Since T is uniform continuous, we
choose a sufficiently small positive number 0 < δ < ε such that d(T, Trδ) < ε,
where rδ is a δ-retraction. Note that X is a countable union of segments
Jn (n ∈ N) in R2 and also we can choose such a retraction rδ such that rδ|Jn
is injective, and hence it is a doubly 0-dimensional map. Consider the map
rδT |P : P → P . Since P is a graph and hence it is a 1-dimensional manifold
with branched Published online: 18 December 2020structures, we have a
piecewise embedding map g : P → P such that d(g, rδT |P ) < ε. Then

d(T, grδ) ≤ d(T, Trδ) + d(Trδ, rδTrδ) + d(rδTrδ, grδ) < 3ε

and grδ is a doubly 0-dimensional map. Hence X belongs to the class 0-
DCR. �

Proposition 6.8. Let X be any dendrite. Then X belongs to 0-DCR.

Proof. Since X is a dendrite, we see that for each ε > 0, X admits an ε-
retraction rε : X → P onto a subtree P of X. Hence X belongs to 0-CR
(see also [KOU16]).

We will show that X belongs to the class 0-D. Note that X is a countable
union of arcs Jn (n ∈ N) and we can choose such a retraction rε such that
rε|Jn is injective and hence it is a doubly 0-dimensional map. By the same
arguments as the proof of Proposition 6.7, we see that X belongs to 0-D. �

Finally, we obtain the following consequence.

Theorem 6.9. Let X be one of the following spaces: PL-manifold, mani-
fold with branched structures, Menger manifold, Sierpiński carpet, Sierpiński
gasket and dendrite. Then X is a reconstruction space of dynamical systems.

7. Application: Reconstructions of one-sided dynamical
systems from nonlinear time series analysis

There have been attempts to reconstruct dynamical models directly from
data, and nonlinear methods for the analysis of time series data have been
extensively investigated. This research is an inverse problem to the numeri-
cal analysis of dynamical systems model, in that it seeks to identify models
that fit data.

Time-delay embedding is well-known for nonlinear time series analysis,
and it is used in several research fields such as physics, meteorology, infor-
matics, neuroscience and so on. In laboratories, experimentalists are striving
to find principles of phenomenons from a lot of data and they use delay em-
bedding for reconstructing the dynamical systems from experimental time
series. For smooth dynamical systems on manifolds, the celebrated Takens’
reconstruction theorem ensures validity of the delay embedding analysis.
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Takens’ theorem means that many dynamics theoretically can be recon-
structed by the delay coordinate system, more precisely almost all (two-
sided) dynamical systems can be reconstructed from observation maps (see
Takens [Tak81, Tak02] and Sauer,Yorke and Casdagli [SYC91]). So Takens’
theorem is the basis for nonlinear time series analysis and form a bridge
between the theory of nonlinear differential dynamical systems on smooth
manifolds and nonlinear time series analysis.

However, unfortunately the systems may not to be two-sided and more-
over, they may not be systems on manifolds. Recently we freqently en-
counter a situation where we have to study dynamical systems of spaces
that cannot have differential structure. In natural sciences and physical
engineering, there has been an increase in importance of fractal sets and
more complicated spaces, and also in mathematics, the dynamical prop-
erties and stochastic analysis of such spaces have been studied by many
authors. Our reconstruction theorem theoretically ensures validity of the
delay embedding analysis for (topological) dynamical systems on such com-
plicated compact metric spaces, i.e., almost all one-sided dynamical systems
(X,T ) of spaces X belonging to 0-DCR can be reconstructed from observa-
tion maps f : X → R in the sense of ”trajectory embedding”, i.e., the delay
observation map

I
(0,1,2,··· ,k)
T,f : (X,T )→ (I

(0,1,2,··· ,k)
T,f (X), σ

(0,1,···k)
T,f )

is a trajectory-embedding for a natural number k ≥ 2 dimX, and so the
dynamical system

(I
(0,1,2,··· ,k)
T,f (X), σ

(0,1,2,··· ,k)
T,f )

may reflect many dynamical and topological properties of the original dy-
namical system (X,T ). Especially,

IT,f : [O(T )] ∼= [O(σ
(0,1,2,··· ,k)
T,f )]

and

lim←− IT,f : lim←−(X,T ) ∼= lim←−(I
(0,1,2,··· ,k)
T,f (X), σ

(0,1,2,··· ,k)
T,f )

X
I
(0,1,2,··· ,k)
T,f−→ I

(0,1,2,··· ,k)
T,f (X) ⊂ Rk+1

↓ T ↓ σ(0,1,2,··· ,k)T,f

X
I
(0,1,2,··· ,k)
T,f−→ I

(0,1,2,··· ,k)
T,f (X) ⊂ Rk+1.

In laboratories, experimentalists may understand how the system (X,T )
will go in the future in the sense of orbital classification from the analysis
of experimental time series and they understand the geometric properties of

(X,T ) by use of the inverse limit space lim←−(I
(0,1,2,··· ,k)
T,f (X), σ

(0,1,2,··· ,k)
T,f ). More

precisely, for x, y ∈ X, if one can find a time n ∈ N such that

|{i ∈ N| fT i(x) = fT i(y), 0 ≤ i ≤ n}| = 2 dimX + 1,
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then T j(x) = T j(y) for j ≥ n and hence [oT (x)] = [oT (y)].
For more general case where a d-dimensional compact metric spaceX does

not belong to 0-DCR and (X,T ) is any one-sided dynamical system, we have
an extension (µd, T ′) of (X,T ), where µd is the d-dimensional Menger com-
pactum containing X and T ′ : µd → µd is an extension of T (see [Bes88]).
By Proposition 6.4, there is a possibility to be able to investigate the ap-
proximate properties of the dynamical system (X,T ) by use of time-delay
embedding of the dynamical system (µd, T ′).
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