
N
i

t
. --z::

.£i"'

I ·,

I I §
I

'/-.

0
;:,

c.S:,

tl:

5fL I
/JX,

�

8

Algorithms for Network Flow Problems

with Matroidal and Submodular Constraints

by

Xiaodong ZHANG

January 1995

A DISSERTATION

submitted to the University of Tsukuba
in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY
m

Management Science and Engineering

DOCTORAL PROGRAM IN SOCIO-ECONOMIC PLANNING
THE UNIVERSITY OF TSUKUBA

85314094

Abstract

In this thesis, we present new algorithms for network flow problems with boundary constraints described by matroids or submodular functions. In Chapter 1 we introduce some preliminaries from theories of network flow problems, matroids, submodular systems and greedy algorithms for matroidal and submodular optimizations. In Chapter 2 we consider the problem of finding a maximum common subbase of two submodular systems on E with IEI = n, which is called the submodular intersection problem. The submodular intersection problem is a generalization of the so-called matroid intersection problem and has a lot of practical applications. The existing algorithms for the submodular intersection problem can be found in [72] of P. Schonsleben and [77] of E. Tardos, C. A. Tovey and M. A. Trick. Both algorithms consist of augmentations along successive augmenting paths in an auxiliary network. The number of augmentations are O(n3). The key to get this bound is that the successive augmenting paths are chosen in a lexicographic order; this idea is due to P. Schonsleben [72]. On the other hand, in [43] A. V. Goldberg and R. E. Tarjan proposed an excellent algorithm for ordinary maximum flow problems, which is called the preflow-push algorithm. The algorithm consists of only local operations of relabelings for distance labels and pushes for flows on arcs. Goldberg and Tarjan's idea is extended, in Chapter 2, to obtain an efficient algorithm for submodular intersection problem. Let (V;, f;) (i = 1, 2) be two submodular systems on E. The submodular intersection problem is to find a maximum common subbase x E P(fi) n P(h), where for each i = 1, 2 P(fi) is the submodular polyhedron associated with (Vi, Ji). First, we present a new algorithm by finding shortest augmenting paths in the auxiliary graph, which begins with a pair (y, z) of subbases of the given submodular systems and is convenient for adopting the preflowpush approach of A. V. Goldberg and R. E. Tarjan [43]. We require that y E B(fi),

11

z E P(fi) n P(h) and y 2 z. Using the technique of selecting the lexicographically

shortest path, the initial common subbase z converges to a maximum common subbase

by at most O(n3) augmentations. Secondly, by using the basic ideas of the preflow

push method and starting from the same initial subbase pair (y, z), we devise a faster

algorithm for the intersection problem consisting of only local operations of relabelings

and pushes, which requires in total O(n3) push and O(n2) relabeling operations by the

largest-label implementation with a specific order on the out-going arc list for each

vertex in the auxiliary graph. Since the proposed algorithm uses only local operations,

the present algorithm is very different from the previous ones. In Chapter 2, we also

propose a first-active implementation of our preflow-push approach. The resultant al

gorithm finds a maximum common sub base of two given submodular systems by 0(n4)

saturating push, O(n3) nonsaturating push and O(n2) relabeling operations. It is the
first algorithm that solves the submodular intersection problem (or equivalently the

maximum submodular flow problem) in strongly polynomial time without using a lexi

cographical ordering. For the submodular intersection problem, the algorithm devised

by P. Schonslben [72], finds a maximum common subbase by O(n3) augmentations

along the lexicographically shortest augmenting paths. Each augmenting path can be

found in O(n2) time by Dijkstra's shortest path algorithm with oracles for identifying

arcs in auxiliary networks. A complexity improvement over P. Schonsleben's algorithm
is made by E. Tardos, C. A. Tovey and M. A. Trick [77] by reducing the total time
in finding augmenting paths, using the idea of layered network due to E. A. Dinits

[12] for ordinary maximum flows. Their algorithm runs in O(n4 h) time, where his the
time to identify an arc in an auxiliary network and an arc capacity. Vve show that our

preflow-push algorithm has a lower time complexity with oracles for identifying arcs

and their capacities.

In Chapter 3 an efficient cost scaling algorithm is presented for the independent as

signment problem of M. Iri and N. Tomizawa [53], which is equivalent to the weighted

matroid intersection problem of J. Edmonds [13]. The independent assignment problem

or the weighted matroid intersection problem is used in determining the order of com

plexity of an electrical network [51], the unique solvability of an electrical network [51],
the structural solvability and controllability problems of large systems [64], controlla

bility and observability of a linear dynamical system with combinatorial constraints

111

[51], and the minimum-weight spanning arborescence problem [59]. Consider a bipartite graph G = (V+ , v-;A) with the left (right) end-vertex set v+

(v-) and the arc set A directed from v+ to v-. Two matroids M + = (V + , 7+) and M- = (v-, 7-) are defined, respectively, on v+ and v- with families 7+ � 2v+ and 7- � 2v - of independent sets. A cost function c : A - Z is given, where Z is the set of all integers. A subset M. of A is called an independent matching if any two arcs in 11/[have no common end-vertices (i.e. , M is a matching) and the left (right) end-vertex set of M is an independent set of M + (M-). For a positive integer k, a k-independent matching M is an independent matching of cardinality k. An optimal k-independent assignment in N is a k-independent matching A1 having the minimum cost c(.M) = �eEM c(e) among all the k-independent matchings. We propose an algorithm for solving the optimal k-independent assignment problem, which can be viewed as a generalization of J. B. Orlin and R. K. Ahuja's scaling algorithm [66] for the ordinary assignment problem. The concept of €-optimality is used in our algorithm which consists of scaling phases, each finds an c-optimal k-independent assignment. Each scaling phase starts with an c-optimal 0-independent assignment, ends with an c-optimal k-independent assignment. It can be decomposed into two parts: an auction-like algorithm (see [4], [66]) and a successive shortest path algorithm. In the auction-like algorithm we perform relabelings on a dual variable (potential), flow pushes on an arc and elementary transformations for an independent set. The successive shortest path algorithm uses shortest path augmentations and is similar to the algorithm proposed by M. Iri and N. Tomizawa [53]. On a bipartite graph with n vertices and integer arc costs bounded by C, an optimal k-independent assignment can be found in O(vkn2 log(kC)) time by our algorithm under an independence oracle for matroids. There are two algorithms with a computational complexity similar to ours, one proposed by H. N. Gabow and Y. Xu [40] and the other recently by M. Shigeno and S. Iwata [7 4]. Both a.re given for the weighted matroid intersection problem. Comparing our algorithm with that of H. N. Gabow and Y. Xu [40], we can see that our algorithm is simple and has advantage in the data structure and memory space. The algorithm of M. Shigeno and S. Iwata has a computation structure which is similar to that of our algorithm.

!V

In Chapter 4 we consider the problem of finding minimum-cost submodular flows. A submodular flow is a feasible flow in a capacitated network with the constraint that the flow boundary belongs to the base polyhedron described by a given submodular system. The problem is to find a submodular flow of minimum cost . The minimum-cost submodular flow problem was first considered by J . Edmonds and R. Giles [1 6]. This problem is a generalization of the submodular intersection problem, the independent assignment problem, the ordinary minimum-cost flow problem and others. We give an algorithm for the problem, which is a generalization of the algorithm for ordinary minimum-cost flows devised by A .V . Goldberg and R. E. Tarj an [44] and is also a direct generalization of our algorithm for the submodular intersection problem. The algorithm uses the technique of cost scaling and the concept of E-optimality. The procedure for each scaling phase converts a 2c-optimal submodular flow to an E-optimal submodular pseudo-flow and then converts it to an E-optimal submodular flow. This process is repeated for successively smaller values of E . In the procedure, we perform local operations such as relabelings for a potential variable on a vertex , flow pushes on an arc and elementary transformations of a base. For a directed graph with n vertices,
ni arcs, integer arc costs bounded by r and arc capacities bounded by U , a minimumcost submodular flow can be found in O(log(nr)) cost scalings and ea.ch scaling phase performs at most O(rnnU) relabeling and O(mn3 U) push operations. The complexity of the algorithm is pseudo-polynomial in general and the complexity becomes polynomial in case of minimum-cost 0-1 submodular flows. Since our algorithm is based on the so-called "local operations" consisting of relabeling and push operations, the structure of the algorithm is very simple and easy to implement. To get a polynomial time complexity for our algorithm is related to capacity scaling technique and other ideas. To devise a polynomial time algorithm based on a capacity scaling for submodular flows is still an unsolved problem.

V

Acknowledgments

I would like to express my sincere gratitude to my supervisor Professor Satoru Fujishige of the Institute of Socio-Economic Planning, University of Tsukuba, for introducing me to the theories of network flows and submodular systems and for his never-failing guidance. It is my very fortunate to have had P rofessor S atoru Fujishige as my supervisor. This dissertation summarizes part of the research carried out over a period of five years at Doctoral P rogram in Socio-Economic Planning at University of Tsukuba. The thesis is based on three papers ([37, 38, 84]). The first two papers are co-authored by Professor Satoru Fujishige. I wish to thank Professor Yoshitsugu Yamamoto and Associated P rofessor Kazuo Kishimoto of the University of Tsukuba for their valuable advice and kindly help . I am very grateful to Associate Professor Akira Nakayama of Fukushima University, Mr. Takeshi Naitoh of Shiga University, Mr. Sekitani of Science University of Tokyo, Mrs . Ping Zhan of the University of Tsukuba, Mr . Wakase Kise of Mitsubishi Electric Corporation, my colleagues Mr. Toshio Nemoto and Mr . Kazutoshi Ando for their friendly help and encouragement, and to Mr. Satoru Iwata of Kyoto University and Miss Maiko Shigeno of Tokyo Institute of Technology for their useful comments on Chapter 3. This research is financially supported by the Ministry of Education , Science and Culture of J a.pan to which I am very grateful. Finally, I would like to express my gratitude to my wife and child for their love and patient.

CONTENTS

Contents

Abstract

Acknowledgments

1 Introduction

2

1 . 1 Introduction 1 . 2 Graphs and Network Flow Problems 1 . 3 Preliminaries from Theory of Matroids 1 . 4 Preliminaries from Theory of Su bmod ular Systems 1 . 5 Greedy Algorithm
New Algorithms for the Intersect ion Problem of Submodular

terns 2 . 1 Introduction 2 . 2 A New Algorithm by Path Augmentations 2 . 3 A Faster Algorithm by the Prefiow-Push Approach

Sys-

3 An Efficient Cost Scaling Algorithm for the Independent Assignment

vi

I

V

1 1 8 1 2 1 3 22
26 26 28 32

Problem 45 3 . 1 Introduction 3 . 2 The Independent Assignment Problem 3 . 3 Applications of the Independent Assignment Problem 3 . 4 Further Properties of Matroids 3 . 5 The Exact and Approximate Optimality 3 .6 A Cost Scaling Framework 3 . 7 A Refinement o f the Approximate Optimality

45 46
47 49 5 1 52 54

CONTENTS Vll

3 . 8 The Complexity of the Algorithm 6 1

4 A Cost Scaling Algorithm fo r Minimum- Cost Submo dular Flows 65
4 . 1 The Minimum- Cost Submodular Flow Problem and the Optimality Con-

dition
4 . 2 Examples of Submodular Flow Problems
4 . 3 A Cost Scaling Algorithm
4 . 4 The Complexity of the Algorithm

5 Conclusion

References

65
68
70
73

86

92

In trod u ction 1

Chapter 1 .

Introduction

1 . 1 . Introduction

Historical Views

The classical network flow theory was founded by L. R. Ford and D . R. Fulkerson
([1 9] , [20]) and others . The most typical network flow problems are the maximum flow
problem and the minimum-cost flow problem.

For a maximum flow problem, a flow which satisfies capacity constraints on arcs
and flow conservation constraints on vertices except from source and sink vertices is
called a feasible fl.ow . Changing a feasible fl.ow only on one arc will violate the fl.ow
conservat ion constrains . The operations on a flow which maintain the feasibility of the
flow are such as flow augmentations on an augment ing path from the source vertex to
the sink vertex and fl.ow changes along a directed cycles . Most of the algorithms for
the ma..ximum flow problem are based on the augmenting path approach which was
init ialized by L . R. Ford and P. R. Fulkerson [20] . Among those famous algorithms of
such type , there are J . Edmonds and R . M. Karp 's algorithm [1 7] and E. A. Dinits ' s
algorithm [1 2] .

Another type of algorithms for maxmrnm flow problems is originated by A . V .
Karzanov [55] who first introduced the concept o f preflows and the local operations
called push and balance instead of the global operations by the augmenting path ap
proach . A preflow is a flow sat isfying capacity constraints on arcs and non-negat ivity
constraints on vert ices except from the source vertex, that is , the total flow into a ver
tex v is at least as great as the total flov-1 out of v . Changing a preflow only on one arc
may keep the constraints for the preflow . Such a change is called a push . A . V. Gold-

In trod u c t: ion 2

berg and R. E . Tarjan [43] developed an excellent algorithm of such type. They used the distance label instead of the level graph used by E . A. Dinits and A . V . Karzanov . Distance labels are the dual variables of a linear optimization problem, i.e. , here the maximum flow problem . The algorithm terminates when a preflow becomes a feasible flow and the feasibility of the distance label ensures the optimality of the flow. A. V . Goldberg and R . E . Ta.rj an ' s preflow-push algorithm is viewed as the most important development in the algorithmic theory for the maximum flow and minimum-cost flow problems in 1 980 's. Also many refinements on their algorithm have been suggested , such as R. K . Ahuja and J. B . Orlin 's algorithm [l] by a excess sea.ling and Cheriya.n and Ha.gerup 's algorithm [8] which introduced a randomized method for R. K. Ahuja and J . B . Orlin 's excess sea.ling algorithm. In Chapter 2 , we generalize A . V. Goldberg and R. E . Ta.rj a.n 's preflow-push algorithm to the submodula.r intersection problem. The complexity of the resultant algorithm is among the best. It is reported that A. V. Goldberg and R. E . Tarjan ' s algorithm is the most practical algorithm for maximum flow problems (see [54]) and the complexity of their algorithm is among those of best . The algorithms by the preflow-push approach are easily applied to construct parallel algorithms for maximum flow problems (A . V . Goldberg [42]) . The minimum-cost flow problem is much complicated than the maximum flow problem. There are many different algorithms for the minimum-cost flow problem. M. Klein [56] proposed an algorithm by the negative cycle canceling, i.e . , a feasible flow is modified into an optimal flow by successively canceling negative cycles . R. Hassin proposed an algorithm [49] by maintaining the dual feasibility of a flow and then modifying it into a primal feasible one through the positive cut canceling method. Another important type of algorithms for minimum-cost flow problems is called the successive shortest pa.th method. The algorithm starts from an optimal 0-flow and augments the flow on the shortest pa.th in the residual network while maintaining the non-negativity of reduced costs in a.res of the residual network. There are other algorithms such as the primal-dual method, the primal simplex method, the dual simplex method and the out-of-kilter method (see [2]) . Cost sea.ling and capacity scaling a.re fundamental techniques for recently developed low complexity algorithms for the minimum-cost flow problem. Based on the sea.ling method E . Tardos [76] proposed the first strongly polynomial algorithm for minimum-

In t rod u ct ion 3

cost flow problems . In [3 1] S. Fujishige improved the complexity of Tardos ' algorithm by introducing the dual framework of Tardos ' algorithm. A . V . Goldberg and R. E. Tarj an [44] proposed a cost scaling method based on the concept of c:-optimality. Their algorithm is a. generalization of the preflow-push algorithm for the maximum flow problem . The algorithm finds c:-optimal flows for successive smaller value of E . That is , given an c:-optimal flow , a subprocedure called refine procedure transfers it into an c:/2-optirnal flmv. Similarly to the concept of preflow , they use a pseudo-flow which sat isfies capacity constraints only in the algorithm in stead of a feasible circulation. In the refine procedure , two basic local operations of push and relabeling are performed repeatedly, where a relabeling is a change on the potential (a dual variable) of a vertex . In fact, the refine procedure is very similar to the preflow-push algorithm for the maximum flow problem. Implementations of the Goldberg-Tarjan minimum-cost flow algorithm have been investigated in [54]. A generalization of this algorithm to the submodular flow problem is presented in Chapter 4 . An important special case of the minimum-cost flow problem is the optimal assignment problem. In this problem, the graph is assumed to be a bipartite graph and the flow value of each arc takes on O or 1 . D. P . Bertsekas and J. Eckstein proposed a practical and efficient algorithm called the auction method [5] which assigns j obs to persons using auction , a kind of local operations. Incorporating cost scaling in th is method, they obtained an efficient polynomial time algorithm. Their computational results find the auction algorithm to be substantially faster than the best other methods for the assignment problem for several classes of networks. J . B. Orlin and R. K. Ahuja [66] constructed an efficient cost scaling algorithm by combining the auction method and the successive-shortest-path method. The hybrid version substantially improves the running times obtained by using either technique alone . For a bipartite graph with n vertices and m arcs, the auction algorithm starts with a null assignment and assigns all but at most 0 (fo) vertices; these unassigned vertices are subsequently assigned by the successive-shortest-path algorithm. In Cha.pt.er 3, we show that this combination method is also applicable to the independent assignment problem. The resultant algorithm has a tim.e bound which is comparable to the best available time bound. As mentioned above , in this thesis , several algorithms for classical network flow problems were generalized to network flow problems with rnatroida.l and submodular

In trod u c t ion 4

constraints on flow boundaries . The concept of matroid was first introduced in 1 935 by H . 'Whitney [83] and independently by B . L. van der Waerden [78]. Matroid defines a framework of an abstract linear independence structure of a given finite set . A submodular function is a real valued function defined on subsets of a given finite set . The rank function of a matroid is a special case of submodular functions . The research of H. Whitney and W . T . Tutte for matroids can be viewed as an early stage of the theory of submodular functions . J . Edmonds made a lot of contributions on matroids and polymatroids in 1960 's . In cooperative games of a characteristic function form, L . S . Shapley's work [73] is related to the theory of submodular functions . S. Fujishige 's extensive research on base polyhedra and submodular systems provided further theoretical developments in this area. Submodular functions frequently appear in the analysis of combinatorial systems such as graphs , networks, and algebraic systems. It often plays an important role in revealing the fundamental structure of a combinatorial problem. Many network flow problems can not be modeled as classical network flow problems. J . Edmonds and R. Giles [1 6] described a kind of network flows called submodular flows . Besides the capacity constraints of flows , it is required that the boundary of the flow belongs to the base polyhedron defined by a submodular function. In [16] J . Edmonds and R. Giles proved a very general min-max relation concerning submodular functions on directed graphs. Based on the ellipsoid method, M. Grotschel, L. Lovasz and A. Schrijver [45] solved the minimum-cost submodular flow problem in polynomial time. The minimum-cost submodular flow problem includes many other network flow problems and combinatorial optimization problems such as the orientation problem [23] , dijoin problem [22 , 25] , minimum-cost flow problem, intersection problem of two submodular systems [13 , 28], and directed cut covering problem [62] . In [26] , the applications of submodular flows in finding optimal supporting set in bipartite graphs and directed graphs and improving networks so as to have k edge-disjoint paths were discussed. W. H. Cunningham and A. Frank [11] proposed a polynomial time primal-dual algorithm to solve the minimum-cost submodular flow problem with an oracle for minimizing submodular functions. The algorithm uses only combinatorial steps (like building auxiliary networks and finding augmenting paths) instead of the ellipsoid method which is only of theoretical significance. The first strongly polynomial algorithm was based

In trod u ct ion 5

on the ellipsoid method (cf. M . Grotschel , L . Lovasz and A . S chrij ver [46]) . In [35]
S . Fuj ishige , H . Rock and U. Zimmermann generalized t he cost scaling method for
the minimum-cost fl.ow problem [7 1] , [3 1] t o the submodular flow problem and gave a
strongly polynomial time algorithm, provided that an oracle for exchange capacities
is available . The cycle canceling method of M. Klein [56] for the minimum-cost fl.ow
problem was adapted by U . Zimmermann [85] to the minimum-cost sub modular flow
problem . Vv. Cui and S . Fuj ishige [1 0] devised a finite variant of the cycle canceling
method for the submodular fl.ow problem with minimum-mean cycle selection and U .
Z immermann [86] developed a pseudo-polynomial variant .

In [28] S . Fuj ishige defined the independent fl.ow problem . In the problem, t here are
two specific vertex sets called the source vertex set and sink vertex set and a submodular
function defined on the source vertex set and the sink vertex set , respectively. It is
required t hat for an independent flow its b oundary on the source vertex set (the sink
vertex set) should be an element of the base polyhedron of the submodular function
on the source vertex set (sink vertex set) . It was pointed out in [32 , S . Fuj ishige]
that the submodular fl.ow problem and the independent fl.ow problem can be reduced
to each other . In [28 , S . Fuj ishige] a primal algorithm by canceling negat ive cycles
and a primal-dual algorithm by shortest path augmentat ions were proposed to find an
optimal independent fl.ow .

For the independent fl.ow problem, when submodular constraints are simplified into
matroidal constraints and the original graph is a bipartite graph with the source vertex
set (the sink vertex set) as its left vertex (right vertex) set , the resultant problem
is called the independent assignment problem which is first formulated and solved
by M . Iri and N . Tomizawa [53] . M . Iri and N . Tomizawa's algorithm in [53] for
finding an optimal independent assignment is a successive shortest path approach and
S . Fuj ishige 's algorithm in [27] for the same problem is a matroidal counterpart of the
primal-type algorithm for the ordinary assignment problem due to M . Klein [56] . For
the independent assignment problem with graphic matroids , an efficient cost scaling
algorithm was given in [4 1] by H . N. Gabow and Y. Xu . J . Edmonds [1 3] and E . L .
Lawler [58] have also considered an essentially equivalent problem called the weighted
matroid intersection problem , i . e . , the problem of finding a common independent set
in a fixed cardinality of two ma.troids , having the smallest (largest) total weight . The

In trod u c t: ion 6

algorithms for weighted matroid intersect ion problem can be found in [1 3] , [1 5] of J .
Edmonds , [58] of E . L . Lawler , [2 1] of A . Frank , [6 7] of J . B . Orlin and J . Vande Vate ,
[6] o f C . Brezovec , G . Cornuej ols and F . Glover , and [40] o f H . N . Gabow and Y . Xu .

As a special case of independent flow problems , we have the intersection problem of
two submodular systems which is an optimizat ion problem on the common subbases
of two base polyhedra. An algorithm devised by P. Schonsleben [72] finds a maximum
common subbase by O(n3) augmentations on the lexicographically shortest augment ing
paths in auxiliary networks and each augmenting path can be found in 0(n2) t ime
by Dij kstra's shortest path algorithm with oracles for ident ifying arcs in auxiliary
networks . A complexity improvement over P. Schonsleben 's algorithm is made by E .
Tardos , C . A . Tovey and M . A . Trick 's algorithm [77] by reducing the total time in
finding augment ing paths using the idea of layered network due to E. A. Dinits [1 2] .
Their algorithm runs in O(n4 h) where h is the t ime to identify an arc in an auxil iary
network and the arc 's capacity.

The practical applications of the independent assignment problem can be found
111 electric network problems , systems analysis and others such as the problems of
minimum fundamental equations in an electr ic network , topological conditions for the
existence of the unique solut ion in an electric network , order of complexity of a linear
electric network [5 1] and controllability/observability of a linear dynamical systems
with combinatorial constraints [5 1] . In [64] of K. Murota the applications of the in
dependent assignment problem and the submodular intersection problem to system
analysis are extensively studied . In [70] applications in engineering and in statics are
surveyed by A . Recski .
Outline of the Thesis
In this thesis , we present new algorithms for network flow problems with boundary
constraints described by matroids or submodular functions .

In Chapter 1 we introduce some preliminaries from theories of network flow prob
lems , matroids , submodular systems and greedy algorithms for matroidal and sub
modular optimizations . �Ne also describe some examples of submodular (supmodular)
functions and their relations to practical problems .

In Chapter 2 we consider the problem of finding a maximum common subbase of
two submodular systems on E with I E I = n called the intersection problem. The sub-

Jn trod u c t ion 7

modular intersection problem is a generalization of the so-called matroid intersection problem and has a lot of practical applications . Let (Vi , Ji) (i = 1 , 2) be two submodular systems on E . The submodular intersection problem is to find a maximum common subbase x E P (f i) n P (h) , where for each i = 1 , 2 P (f i) is the submodular polyhedron associated with (Vi, fi) . This problem is usually considered as a flow problem with boundary constraints described by submodular functions. First, we present a new algorithm by finding shortest augmenting paths in the auxiliary graph, which begins with a pair (y , ,2) of subbases of the given submodular systems and is convenient for adopting the preflow-push approach of A . V. Goldberg and R . E. Tarjan [43]. \"!\Te require that y E B(fi) , z E P (fi) n P (h) and y � z . Using the technique of selecting lexicographically shortest path, the initial common subbase z converges to a maximum common subbase by at most O (n3) path augmentations. Secondly, by using the basic ideas of the preflow-push method and starting from the same initial subbase pair (y, z) , we devise a faster algorithm for the intersection problem, which requires O(n3) push and 0(n2) relabeling operations in total by the largest-label implementation with a specific order on the out-going arc list of each vertex in the auxiliary gra.ph . In Chapter 3 an efficient cost scaling algorithm is presented for the independent assignment problem of M . Iri and N. Tomizawa [53] , which is equivalent to the weighted matroid intersection problem of J . Edmonds [13] . Let G = (V+ , v - ; A.) be a bipartite graph with the left (right) end-vertex set v+

(V-) and the arc set A. . For any lvf � A, a+ .M. (a-.A1) denotes the set of the left (right) end-vertices of arcs in _M. . A subset M of A is called a matching in the bipartite graph c = (v+ , v- ; A) if 1 a+ .M l = I -M l = 1 a-Ml . Let M + = (V+, I+) and M- = (v-, 1-), respectively, be matroids on v+ and vwith families I+ � 2v+ and 1- � 2v - of independent sets . A cost function c : A. - Z is given , where Z is the set of all integers. An independent matching l\1 � A is a matching in G such that a+ l\1 E 7+ and 13-l\1 E 1-. For a positive integer k, a
k - independent matching _M is an independent matching of cardinality k . An optimal
k - independent assignment is a k-independent matching lvl having the minimum cost c(.M) = = eE M c(e) among all the k-independent matchings. Our algorithm, which solves the optimal k-independent assignment problem, in general can be viewed as a generalization of J. B. Orlin and R. K. Ahuja's scaling

In trod u c t ion 8

algorithm [66] for the ordinary assignment problem . The cost scaling technique is
adopted in our algorithm . The p rocedure for each scaling phase can be decomposed
into two parts : an auction- like algorithm (see [4] , [66]) and a successive shortest path
algorithm . On a bipartite graph with n vertices and integer arc costs bounded by C ,
an optimal k- independent assignment can be found i n 0 (/kn2 log(kC)) t ime b y our
algorithm under an independence oracle for matroids .

Several applicat ions of the independent assignment problem are described in a sec
tion of Chapter 3 .

I n Chapter 4 we consider the problem o f finding minimum-cost submodular flows .
A submodular flow is a feasible flow on a flow network with the constraint that the
flow boundary belongs to the base polyhedron described by a submodular system . The
problem is to find a submodular flow of minimum cost . We give many combinatorial
problems in a section , which can be formulat ed into a submodular flow problem.

An algorithm for the problem is constructed , which is a generalization of the algo
rithm for minimum-cost flows devised by A .V . Goldberg and R. E . Tarj an [44] . Our
algorithm uses the technique of cost scaling and the concept of c:-optimality. The pro
cedure for each scaling phase converts a. 2s-optimal submodular flow to an E-optimal
submodular pseudo-flow and t hen converts it to an E-opt imal submodular flow for suc
cessively smaller values of E . In the procedure , two basic operat ions called Relabel
and Push are performed . The complexity of the algorithm is proved to be pseudo
p olynomial in general and the complexity becomes polynomial in case of minimum-cost
0- 1 submodular flows .

In Chapter 5 we discuss some future t opics in theories and algorithms , summarize
the computation complexity of some existing algorithms and make some comparisons
of our algorithms with other algorithms in theoretical and computat inal aspect s .

1 . 2 . Graphs and Network Flow Problems

Let V and A be two finite sets , where V is called the vertex set and A the arc se t. a+

and a- are two functions from A to V . a+ a is called the initial end-vertex of a and
a- a is called the terrn:inal end-vertex of a. G = (V, A; a+ , fY-) is called a directed graph
with vertex set V and arc set A .

ln t rod u c r; ion 9

An arc a such that 3+ a = 3- a is called a seU._ loop and arcs a, 1 , a2 such that
{ 3+ a, 1 , a- a i } = { 3+ a2 , 3- a2 } are called parallel arcs. An arc a is often expressed by
the ordered pair (a+ a, a- a) when there is no confusion from the context .

Sometimes , we do not distinguish a+ a from 3- a for each a E A . In this case we cal l
the graph G = (V, A) an undirected graph and call each a E A an edge instead of an
arc .

A path in G is an alternating sequence (vo , a 1 , v 1 , cL2 , · · · , vk- J , ak , vk:) (k 2:: 0) of
vert ices Vi (i = 0 , 1 · · • , k) and arcs ai (i = 1 , 2 , · · · , k) such that { a+ a; , a- ai } =

{ Vi- l , v; } . If a+ ai = vi- 1 and 3- ai = v; (i = 1 , 2 , · · · , k) , then we call the alternating
sequence a directed path in G. A path or a directed path (v0 , a 1 , v 1 , a2 , · · · , vk- l , a1c , Vk)
in G with v0 = Vk is called a cycle or a directed cycle (k 2:: 1) in G, respectively. A
graph G is said to be connected if for every two vertices u , v E V there exists a path
from u to v . A connected graph G i s called a tree i f there exists no cycle in G.

Vve call a graph H = (VV, B ; a+ H , 3- H) a S'llbgraph of a graph G = (V, A; a+ , a-)
if vv <;;;; V) B <;;;; A and a+ H and a- H are , respect ively, the restrict ion of a+ and a
to B . A rn;-1ximal connected subgraph of G is called a connected component of G. A
forest is a graph G such that every connected component of G is a tree . The rank of
a graph G = (V, A) is the number . of its vertices minus the number of i ts connected
components .

Let R be the set of all real numbers .
Shortest path problem. Given a directed graph G = (V, A) and a length function
l : A ___, R. For a directed path P = (v0 , a 1 , v1 , a2 , · · · , vk- l , a1c , vk) of G, the length of P
is defined to be the sum of ��= l l (ai) . For two specified vert ices s , t in V , the shortest
path problem is to find a directed path of the shortest length among all d irected paths
from s to t .

Define b+ v = { a I a E A , a+ a = v} and 6-v = { a I a E A , a- a = v } for each v E V .
Maximum flow problem. Given a network N = (G = (V, A) ; c , Q. , s , t) ·where s (t) is
a specified source vertex (sink vertex) of V and c , r (c 2:: r) are , respectively, the upper
and lower capacity functions from A to R . Let rp : A ___, R be a flow function of N. A
flow function rp sat isfying £(a) :S rp(a.) :S c(a.) for each a E A is called a feasib le fiow on
N. The maximum flow problem is formulated as follows .

In t rod u ct. ion 1 0

Maximize L cp(a) - L cp(a)

subject to f(a) ::;; cp(a) ::;; c(a) (a E A) ,
L cp(a) - L cp(a) = O (v E V - { s , t }) .

aEo+ v aE6- v

(1 . 2 . 1)
That is , the maximum flow problem seeks a feasible flow which sends the maximum amount of flow from s to t . The function 3cp : V - R defined by

acp(v) = L cp(a) - L cp(a) (v E V)
is called the boundary of cp .

aEo+ v aE8- v

(1. 2 . 2)
Minimum-cost flow problem. Consider a network N = (G = (V, A) ; c , f, 1 , b) , where c and f are the capacity functions defined as above, 1 : A -) R is a cost function for N and b : V - R is a demand function for N. A feasible flow cp satisfying
8cp (v) = b(v) (v E V) is called a feasible circulation in network N. The minimum-cost flow problem is formulated as follows.

Minimize L , (a)cp (a)
a E A subject to r(a) ::;; cp(a) ::;; c(a) (a E A),
acp(v) = b(v) (v E V) . (1. 2 . 3)

Assignment problem. Let v+ and v- be two disjoint sets . G = (V = v+ U
v -, A ; a+ , a-) is said to be a bipartite {directed) graph if &+ a E v+ and &- a E v- for each a E A. Let a network N be (G = (V + U v- , A) ; ,) with a cost function , : A --+ R. For a given positive integer k the k -assignment pro blem is described as follows.

Minimize L ,(a) rp(a)
aEA subject to cp(a) = 0 or 1 (a E A) ,
&cp(v) = 0 or 1 (v E v+) ,
acp(v) = 0 or - 1 (v E v-) ,
L cp(a) = k .
aEA

(1. 2 .4)

In t rod u ct ion

Given a network N = (G = (V, A) ; c, f) as above , for each U � V define

The function K,c c : 2 v __, R defined by '-

a E 6.+ U

1 1

(1 . 2 . 5)

(1 . 2 . 6)

(1 . 2 . 7)

is called the cut function of N, where the sum over the empty set is defined to be equal
to zero .

Theorem 1 . 2 . 1 (Hoffman) : There exists a feasible circulation in network N = (G =
(V, A) ; c , f, b) wi th c 2'.: f and I: vE V b(v) = 0 , i f and only if for each U � V we h ave

K,c ,iU) 2'.: b (U) = L b (v) . (1 . 2 . 8)
vEU

D

From Theorem 1 . 2 . 1 we can show

Theorem 1 . 2 . 2 (Gale) : Consider a biparti te graph G = (V+ , v- ; A) and suppose we
are given nonnegative (supply and demand) functions s : v+ __, R and d : v- __, R.
Then , there exis ts a nonnegative flow rp : A __, R such that

8rp (v) :::; s (v) , (v E v +) and - 8rp (v) 2'.: d(v) , (v E v-)

if and only if for each u- � v- we have

L s (v) 2'.: � d(v) .
v E { O+ a I a E 6. - u - } vE U -

(1 . 2 . 9)

(1. 2 . 1 0)

D

In trod u c t ion

1 . 3 . Preliminaries from Theory o f Matroids

12

Let E be a finite set . For any X s;;; E and e E E we write X + e and X - e instead
of X U { e } and X - { e } , respectively. The cardinality of X s;;; E is denoted by I X I .
Suppose that a family I of subsets of E satisfies the following (10) ~ (12) :

(IO) 0 E I .

The pair M = (E , I) is called a matroid. Each I E I is called an independent set
of matroid (E , I) and I the family of independent sets of matroid (E , I) .

An independent set which is maximal with respect to set inclusion is called a base.
Every base of mat roid (E , I) has the same cardinality. A subset of E which is not an
independent set is called a dependent set. A minimal dependent set is called a circuit.

The c losure function cl : 2£ ---. 2E of matroid (E, I) is defined by

cl (X) = X U { v E E I X + v is dependent }

for each X s;;; E . The closure function cl satisfies the following :

(cIO) VX s;;; E : X s;;; cl(X) .

(ell) VX, Y s;;; E : X s;;; cl (Y) ===} cl (X) s;;; cl (Y) .

(c12) VX s;;; E , Ve E E : e' E cl (X + e) - cl(X) ===} e E cl (X + e') - cl(X) .

(1 . 3 . 1 1)

For any independent set I E I and any element e E cl (J) - I , there exists a unique
circuit contained in I + e. Such a circuit is called the fundamental circuit with respect
to I and e , and is denoted by C (J l e) . For any base B of M and any element e E B,
the set E - c l (B - e) i s called t h e fundamental cocircuit with respect t o B and e , and
is denoted by K(B l e) .

For each X s;;; E we define the rank p(X) of X by

p(X) = max{ II I I J s;;; X, I E I} .

The rank funct ion p : 2 E _, Z sat isfies the following (pO) ~ (p2) :

(1 . 3 . 1 2)

In trod u ct; ion

(pO) \IX <;: E : 0 ::; p(X) ::; I X I .

(pl) X <;: Y <;: E ====> p(X) ::; p(Y) .

(p2) \IX, Y <;: E : p(X) + p (Y) 2 p(X U Y) + p(X n Y) .

1 3

Vve describe three examples of ma.troids. These are the graphic ma.troid , the linear matroid and the partition matroid. For a graph G = (V, A) with a. vertex set V and arc set A let I(G) be the set of those arc subsets ea.ch of which does not contain any cycle of G . Then M (G) = (A , I(G)) is a ma.troid with the family I(G) of independent sets. A matroid which can be obtained in this way is called a graphic matroid. For a set F = { a 1 , a2 , · · · , am } of vectors in Rn let I(F) be the set of those subsets of A each of which consists of linear independent vectors . M (F) = (F, I(F)) is a matroid with the family I(F) of independent sets. A matroid which can be obtained in this way is called a linear matroid. A graphic matroicl is a linear matroid. Let E = E1 U E2 U · · · U Ek be a union of k disjoint finite sets and let r 1 , r2 , · · · , rk be given nonnegative integers . Let I be the set of those subsets I of E that satisfies the property that for all i = 1, 2, • • • k , I contains no more than r; elements of E; . (E, I) is a matroid and is called a partition matroid.
1 . 4 . Preliminaries from Theory of Submodular Systems

In this section we give definitions of terms related to submoclular systems . Also some basic preliminary results are given. This section is largely due to [34] . Let E be a nonempty finite set and V be a collection of subsets of E which forms a distributive lattice with set union and intersection as the lattice operations, join and meet , i . e . , for each X, Y E D we ha:ve X U Y, X n Y E V . Let f : D -, R be a submodular function on the distributive lattice V , i .e . ,
\IX, Y E V : J(X) + J (Y) 2 f (X U Y) + f (X n Y) . (1 .4 . 1)

If 0, E E V and J(0) = 0, we call the pair (V, J) a submodular system on E . Function
J is called the rank func tion of (D , J) . From Property (p2) of a matroicl rank function defined in (1 . 3 . 12), the rank function of a ma.troid (E , I) satisfies (1.4. 1) and thus is

In troduc t ion 14

a submodular function on 2E . Another example of submodular function is the cut
function of a capacitated network defined in (1. 2 . 7) .

Define a polyhedron in RE by

P(f) = { x I .:c E RE , VX E 1) : x(X.) :::; J(X.)} , (1. 4 . 2)

where RE is the set of all functions from E to R and for any X � E we have x(X) = �eEX x (e) together with the convention x(0) = 0 . Vl/e call P(j) the submod'Ular po lyhedron associated with submodular system (D , f) . Also a vector in the

submodular polyhedron P(J) is called a sub base of (D, !) .
Define

B (J) = { .:c I x E P(f) , x (E) = f (E) } . (1. 4 . 3)

We call B (f) the base polyhedron associated with submodular system (D , f) . A vector

in B (J) is called a base of (D , !) .
We give some other examples of submodular functions and their applications.
Given a directed graph G = (V, A.) , define , for each 0 C X C V , the in- degree j'Unction p(X) as the number of arcs in A. directed from V - X to X and p(0) =

p (V) = 0. Then, p is a submodular function on subsets of V .

Definition 1 .4 . 1 : A directed graph G = (V, A.) i s said t o b e k -strongly- connected if

for any pair u , v E V , there exists k arc disjoint directed paths from u to v .

Theorem 1 .4 . 2 (Nash-,7\Tilliams [65]) : A directed graph G = (V, A) is k-strongly-
connected if and only if p(X) 2 k for 0 C X C V . □

Another example is the Entropy function. Let E = { x 1 , x2 , · · · , x 11 } be the set of

n random variables of values in { 1, 2 , • • • , N } . For each nonempty set X � E (for

convenience, say X = { x 1 , x2 , • • · , x1c }) , define
N N

h(X) = - I: · · · I: p(x 1 = i 1 , · · · , X1c = i1c) log2 p(x 1 = i 1 , · · · , X 1c = i1c) (1.4. 4)

and h(0) = 0 where p (x 1 = i 1 , · · · , X1c = i 1c) is the probability for event x 1 = i 1 , x2 =
i 2 , · · · , X 1c = i1c with the convention 0 log2 0 = 0 . Then h(X) is a submodular function
which plays an important role in some problems on information theories [29] , [47] .

In t rodu ct ion

Lemma 1 .4 . 3 : For any su bba.se x E P (f) deflne

D(x) = {X I X E V , x(X) = f (X) } .

Then ,
V X, Y E V(x) : X U Y, X n Y E V(x) .

Proof: For any X , Y E V(x) ,

15

(1 . 4 . 5)

(1 .4 . 6)

0 = f (X) - x (X) + j (Y) - x(Y) 2: f (X U Y) - x (X u Y) + f(X n Y) - x (X n Y) 2: 0 ,

where

min { f (X U Y) - x (X U Y) , f (X n Y) - x(X n Y) } 2: 0 .

Hence we must h ave f (X U Y) = x (X U Y) and f (X n Y) = x (X n Y) , i . e . ,

For any x E P (j) define

X U Y, X n Y E V (x) .

sat (x) = LJ { X I X E V , x (X) = f (X) } .

We call s at : P (j) -, 2 £ the s a tura ti on f uncti o n .
For any subb ase x E P (j) and e E sa.t (x) define

dep (x , e) = n{x I e E X E V , x (X) = J (X) } .

(1. 4 . 7)

(1 . 4 . 8)

□

(1 . 4 . 9)

(1 . 4 . 1 0)

For x E P (f) and e E E - sat (x) we define dep (x , e) = 0 . We ca.1 1 clep : P (f) x E - 2 E

the dep endence f unc tion.

By Lemma 1 .4 . 3 we have for any x E P (f) and e E E

f (sat (x)) = .1: (sa t (x)) , f (dep(x , e)) = x (dep(x , e)) . (1 . 4 . 1 1)

For any x E P (j) and e E E - sat (x) t he saturation capacity c (x , e) is defined by

c(x , e) = min { f (X) - :r (X) I e E X E V } . (1 . 4 . 1 2)

In trod uc t ion 16

Lemma 1 .4 .4 : For a nonnegative a , x E P (f) , e E sat (x) and e1 E dep (x , e) - { e } , we have :r + axe E P (j) if and only if O S c-v S c(.r , e) , where Xe E RE is defined by Xe (e) = 1 and Xe (e') = 0 for e' E E - { e } .

Proof: For O S a s c(x , e) and X E V, if e � X , then

(x + axe) (X) = x (X) S f (X) ,

and if e E X , then by the definition of c (x , e)

(x + axe) (X) = x (X) + a S f (X) .

This implies X + axe E P (f) .

(1 .4 . 13)

(1 . 4 . 1 4)

On the other hand , for a nonnegative a such that x + axe E P (j) we have a S
J (X) - x (X) for any X satisfying e E X E V since (x + axe) (X) S J (X) . That is ,

Ct � c(x , e) . □

For any x E P (j) , e E sat (x) and e' E dep(:r , e) - { e } the exchange capacity c(x , e , e')
is defined by

c(x , e , e') = min{f (X) - x(X) I e E X E V , e' � X } . (1 . 4 . 1 5)

Lemma 1 .4 . 5 : For a nonnegative a and x E P (f) , we have x + a(xe - Xe ') E P (f) if
and only if O s a S c (x , e, e') .

Proof: For a such that O s a s c(x , e, e') and X E V ,

(i) if e , e' E X or e , e' � X , then

(x + a(xe - Xe')) (X) = x(X) S f (X) ;

(ii) if e' E X , e � X , t hen

(x + a(xe - Xe ')) (X) = x (X) - a S f (X) - a S .f (X) ;

(iii) if e E X, e' � X , then by the definition of c (x , e , e') ,

(.1: + a (xe - Xe1)) (X) = x (X) + a S x (X) + f (X) - x(X) = f (X) .

Hence X + a(xe - Xe ') E P (f) .

(1 . 4 . 1 6)

(1 . 4 . 1 7)

(1 . 4 . 1 8)

In trod u ct ion 1 7

On the other hand , for a nonnegative u such that .T + u(Xe - Xe ') E P (.f) we have u ::; f (X) - x (X) for any X E V satisfying e E X and e' t}. X since (x + u(xe -xe ,)) (X) ::; f (X) . That is, u ::; c (x , e , e') . □

We call the transformation of .T into x + a(xe - Xe ') as in Lemma 1 .4 . 5 an elementary
transformation of :c .

Lemma 1 .4 . 6 : The base polyhedron B (.f) is the set of all the ma.,,cimal su bbases of (V , f) . In particu lar, B (.f) i 0 . Here, the partial mder among vec tors in RE is defined
by: x :s; y � Ve E E : x (e) ::; y (e) .
Proof: Denote by B '(f) the set of all the maximal subbases of (V , f) . Any x: E B(J) is maximal in P (f) since x (E) = f(E) , so that we have B (f) � B' (J) . Conversely, for any x E B' (J) ·we have sat(x) = E due to the maximality of x . It follows that
x (E) = x (sat (x)) = / (sat(x)) = f (E) , i . e . , x E B (J). Therefore, B' (J) � B (f) , and hence we have B' (f) = B (j) . □

The following lemmas are obtained by a direct adaptation of the results shown in [28] for polymatroids .
Lemma 1 . 4 . 7 : Suppose x E P (f) , u E sat(x) and v E dep(x , u) - { -u } . For any a E R
such that O < a ::; c(x , u , v) define y = x + a (xu - Xv) . Then , y E P (f) and

sat(y) = sat (x) . (1.4. 1 9)
Proof: From the definition of the exchange capacity we have y E P (J) . Also, since for any X E V such that X 2 sat(x) we have y(X) = x (X) and sat(x) is the unique maximal tight set X such that x(X) = J(X) , we have sat (y) = sat(:z:) . □

Lemma 1 .4 . 8 : Under the same assumption as in Lemma 1 . 4 . 7,
c(y , w) = c (x , w) (w E E - sat(x)) . (1 .4. 20)

Proof: Put Xo = sat(x) (= sat(y)) . Since x (X0) = f (X0) and y (X0) = J (Xo) , we have for any X E V
f (X) - y (X) f (X) - y(X) + f(Xo) - y (Xo)

In trod u c t ion

and similarly,

> f (X U X0) - y (X U Xo) + f (X n Xo) - y (X n Xo)

> f (X U Xo) - y (X U Xo)

f (X U Xo) - x (X U Xo) ,

J (X) - x (X) 2 f (X U Xo) - x (X U Xo) .

Hence the lemma follows from (1 . 4 . 1 2) .

18

(1 . 4 . 2 1)

(1 . 4 . 22)

□

Lemma 1 .4 . 9 : For any x E P (J) let u 1 , u2 and v2 be three distinc t elemen ts of E
su ch that

ui E sat (x) (i = l , 2) , _

v2 E dep (x , u2) , V2 � dep(x , u 1) .

For any a E R such that O < a :::; c (x , u2 , v2) define

Then we have u 1 E sat (y) and

dep(y , u 1) = clep (x , u 1) .

(1 . 4 . 23)

(1 . 4 . 24)

(1 . 4 . 25)

(1 . 4 . 26)

P roof: From Lemma 1 . 4 . 7 we have u 1 E sat (y) . Also we have u2 � dep (x , u 1) , since
otherwise we would have dep (x , u2) � dep(x , u 1) by the minimality of dep (x , u2) and
hence v2 E dep (x , ·u 1) . Therefore , putting X0 = dep(x , u 1) , ·we have y(X0) = x (X0) =
J (X0) and y (X) = x (X) for any X E T> with X � X0 . (1 . 4 . 26) follows from the
definition of the dependence function . □

Lemma 1 . 4 . 1 0 : For any x E P (J) let u 1 , u2 , v 1 and v2 be four dis tinct elemen ts of
E satisfying (1 . 4 . 23) , (1 . 4 . 24) and

(1 . 4 . 27)

Then for the vec tor y defined by (1 . 4 . 25) for any O < a :::; c (x , 1L2 , v2) we h ave

(1 . 4 . 28)

In trod u c t ion

Proof: For any z E P (f) and X0 E 7) such that z (Xo) = J (Xo) we have

f (X) - z (X) 2:: f (X n X0) - ,:: (X n X0) (X E V) .

For X0 _ clep (x , u 1) , we have

y (Xo) = x (Xo) = J(Xo)

and since u2 , V2 � clep (.T , u 1) , we have

y(X) = f(X) (X � Xo , X E V) .

S ince (1. 4 . 29) holds for z = x , y , (2 . 27) follows from (1 . 4 . 30) and (1 . 4 . 3 1) .

1 9

(1 . 4 . 29)

(1 . 4 . 3 0)

(1 . 4 . 3 1)

D

Lemma 1 . 4 . 1 1 : For any x E P (f) let u; , v; (i = 1 , 2 , • • • , q) be 2q distinct elemen ts of
E such that

u; E sat (x) , v; E dep (.:r , u;) (i = 1 , 2 , · · · , q) ,

Vj � clep(x , u;) (1 :S i < j :S q) .

(1 . 4 . 32)

(1 . 4 . 33)

For any a; (i = 1 , 2 , • • • , q) satisfying 0 < a ; :S c(x , u; , v;) (i = 1 , 2 , · · · , q) define a vector
y E RE by

Then ,

y = X + 'I::: a; (Xu; - XvJ -
i = l

y E P (J) , sat (y) = sat (x) ,

c(y , w) = c(x , w) (w E E - sat (x)) .

Proof: Considering the elementary t ransformations in the order of the pairs

(1 . 4 . 34)

(1 . 4 . 35)

(1 . 4 . 36)

the present lemma can be shown by repeatedly applying Lemmas 1 .4 . 7 ~ 1 .4 . 1 0 . D

Lemma 1 .4 . 1 2 ([34 , p . 1 1 9]) : For an arbitrary x E P (J) , let u , v E E , 0 < a <

c(:.r , 1L , v) and y E P (J) be such that

u E sat (x) , v E dep (x , u) , y = x + a(xu - Xv) . (1 . 4 . 37)

Jn t rod u c t ion

Consider w , s E E such that

then

s � dep(x , w) , s E dep(y , w) .

s E dep(:r , u) , v E dep(x , w) .

20

(1 . 4. 38)
(1. 4. 39)

D
A function g : D --+ R on the distributive lattice D is called a supermodular function if -g is a submodular function, i .e . ,

VX, Y E D : g (X) + g ('/.) :S g (X u Y) + g (X n Y) .

Given a submodular function f : D --+ R, we define
D = {Y I E - y E D}

and j# by
j# (Y) = J (E) - J (E - Y)

for each Y E D. Since for any X, Y E D
j# (X) + j# (Y)
= 2J (E) - (J (E - X) + J (E - Y))

:S 2J (E) - j ((E - X) U (E - Y)) - J ((E - X) n (E - Y))
= J (E) - J (E - X n Y) + f (E) - J (E - X U Y)
= j#(X u Y) + j#(x n Y),

(1. 4. 40)

(1.4.41)
(1. 4.42)

(1.4.43)
we see that j# is a su permod ular function on D. (D, j#) is called the dual supermodular system of (D, f) . Define a polyhedron in RE by

(1.4. 44)
We call P(J#) the supermodular po lyhedron associated with supermodular system
(- # D, f) .

In t rod u ct ion

We describe two practical examples of supermodular functions . Let A1 , · · · , An be random events , S = { A 1 , · · · , An } , and let , for

2 1

(1 . 4 . 45)
g (X) = p(Ai 1 , · • · , AiJ denote the probability that all events in X occur. Then g is a supermodular function on the subsets of S . This fact is related to sieving techniques. The second example is on convex games . Let E = { 1 , 2 , • • • , n } be n players and v : 2E -+ R be a characteristic function where each X � E is considered as a coalition. A characteristic-function game (E , v) is called a convex game [73] if the characteristic function v is a supermodular function. The core of the game (E , v) is the set of payoff vectors defined by

{ x I x E RE , VX E E : x (X) 2 v(X) , x (E) = v (E) } . (1 .4.46)
Next, we introduce two fundamental operations on a submodular system (D , f) called reduction and contraction by vectors . For any vector x E RE define r : 2E -+ R by

r (x) = min{ f(Z) + x (X - Z) I X ;;2 z E D} (1.4.4 7)
for each X � E. The function r is a submodular function on 2E . Define

P(J)1' = {y I y E P(j) , y '.S X } (1.4.48)
and if x E P(J#) , define

BUY = {y I y E B (j), y '.S X } , (1 .4.49)
then we have P(r) = P(J) 1' and B(r) = B (f) x . \T\Te call the submodular system (2E, r) the reduction of (V, J) by vector x . For a submodular system (D, f) and any vector x E P (f) define fx : 2E -+ R by

Jx (X) = min { f (Z) - x (Z - X) I X � Z E V} (1 .4.50)
for each X � E. The function fx is a submodular function on 2£ _ Define

[P(J)] x = { y I Y E RE , X V Y E P(f) } , (1.4. 5 1)

Jn t; rod u c t; ion 22

B (j) x = { y I Y E B (J) , y 2'. x } , (1 . 4 . 52)

where x V y is the vector in RE defined by (x V y) (e) = rnax{ .r (e) , y(e) } (e E E) . Then
we have P (jx) = [P (J)] x and B (fr) = B (J) x - We call the submodular system (2£ , fx)
the contraction of (D , f) by vector x .

Lemma 1 .4 . 1 3 : For each z E B (fx) , we have z - x 2'. 0 .

Proof: For each v E E , z E B (fx) implies that

z (v) = z (E) - z (E - v) = fx (E) - z (E - v) 2: .fx (E) - .fx (E - v) .

From (1 . 4 . 50) and fx (E) = f (E) , we have

fx (E - v) '.S J (E) - x (E - (E - v)) = f (E) - x (v) .

The present lemma. follows from (1 . 4 . 5 3) and (1 . 4 . 54) .

1 . 5 . Greedy Algorithm

(1 . 4 . 53)

(1 . 4 . 54)

□

In this section , we introduce an efficient algorithm called the greedy algorithm for the
following linear optimizat ion problem . The greedy algorithm is a. procedure that a.t
each stage of the algorithm it chooses the locally most desirable element then available
without regard to future consequences . J . B . Kruskal [57] presented a greedy algorithm
to find a minimum weight spanning subgraph of a directed graph . It was extended by
R. Rado [68] to the problem of finding an optimal independent set of a ma.troid .

Given a. ma.troid M = (E , I) and a weight function w : E -+ R. Let B be the set
of all bases of M . A linear optimization problem is defined as

(P 111) Minimize L w (e)
eEB

subj ect to B E B .

(1 . 5 . 5 5)

(1 . 5 . 56)

The solution B of the above problem i s called a minimum-weight base with respect to
the weight funct ion w .

In trod u c t ion 23

Given a submoclular system ('D , f) on E and a weight function w : E -+ R, a linear optimization problem is defined as
(P ;) Minimize I: w (e) .:r (e)

eE E subj ect to x E B (f).
(1 .5.57)
(1 . 5.58)

For Problem (Pm) the following lemma gives an optimality condit ion for a base.
Lemma 1 . 5 . 1 : Given a weigh t function w : E -+ R (the set of all Teal n umbern) . A
base B of M = (E , I) .satisfies w (B) = min{ w(B') I B' E B} if and only if for each
pair (u , 1J) such that u E C (B l v) we have w(u) ::; w (v) .

The following is a greedy algorithm for Problem (P rn) . A greedy algorithm (See J . Edmonds [14]) Input : Let E = { e1, e2 , · · · , en } be such that

D

(1. 5. 59)
for a proper ordering of E. O utput : A minimum-weight base I11 . Step 0 : Io - 0 , i - 1 . Step 1 : If Ii-l U { e; } E I , put Ii - I;_ 1 U { e; } . Otherwise, put I; - I;-1 . Step 2 : If i = n , output 111 and stop. Otherwise, set i - i + 1 and go to Step 1 . (End)
Theorem 1 . 5 . 2 (Rado [68]) : The greedy algori thm for matroid.s terminates with a
minim um-weight base . D

For a submodular system ('D, J) on E, given any two elements u. , v E E, X E E is said to be a ?lfJ - se t if 11. E X and v 1 X . VVe define a directed graph G('D) = (E , A) by setting A = { (u , v) I there is no 'LlfJ-set in D }. We call two element v. , v E E equivalent if both (v. , ·u) and (v, u) are in A of G('D) . By this definition, -.ve have an equivalence relation on E , i .e . ,
u is equivalent to v ==} v is equivalent to u , u i s equivalent to v and v is equivalent to w ==> u i s equivalent to w.

In trod u ct;ion 24

Denote the equivalence classes by E1 , • • • , Ek which form a partit ion of E. Let jv be an order on the set IT(D) = { Ei I i = 1 , · · · , k } defined by : Ei -jv EJ if and only if there exists an arc in A from a vertex in EJ to a vertex in E; or i = j . V\le see that jv is a partial order on TI (D), i . e . , it satisfies that (i) E; jv E; (i = l , · · · , k) , (i i) E; jv EJ , EJ jv E; ===? E; = Ej , (iii) E; -jv Ej , Ej -jv E, ===? Ei -jv E1 .
We denote by P = (TI(D), -jv) for this partially ordered partition of E. If k = n =

IE I , i . e . , TI('D) consists of singletons , then we call 'D simp le. If u , v is equivalent , then for an arbitrary x E B(J) , y = x + a(xu - Xv) E B(f) holds for ;:my a E R. It follows that
L w (e)y (e) = a(w(u) - w(v)) + L w(e)x (e) . (1 . 5. 60)
eE E eE E If w(u) # w(v), I:eE E w(e) y(e) can take an arbitrary value by choosing a proper value of O'. . Hence there is no optimal solution for P roblem (P;) in this case . \i\Then for each equivalent pair u, v , w (u) = w(v) holds, then we can treat E; (i = 1 , · · · , k) as one element e; for Problem (P;). Therefore , without loss of generality we suppose that D is simple and consider jv as a partial order on E. \i\Te have

Theorem 1 . 5 . 3 (Fujishige and Tomizawa [36]) : Problem (P;) has a flnite optimal so
lu tion if and on ly if w : E --+ R is a monotone nondecreasing function from P = (E, jv)
to (R, :S), i . e . , Ve, e' E E : e =5v e' ===? w (e) :S w(e') . □

Corollary 1 . 5 .4 (see Fujishige [34]) : When the weight function w satisfies the condi
tion in Theorem l . 5. 3 , an optimal solu tion x of (P ;) is given by

(1 . 5. 6 1)
where 0 = A o C A. 1 C · · · C A.11 = E is such that {e;} = Ai - A.;_ 1 ,

(1 . 5. 62)
and (1 . 5 . 63)

In t; rodu c t ion 25

□

Theorem 1 . 5 . 5 (see Fujishige [34]) : A base .'.C E B(J) is an optimal solu tion of Prob
lem (P;) if ancl only if for each e , e' E E such that e' E dep(:r , e) vve have w(e) 2
w(e') . □

If w is a monotone nondecreasing function from P = (E , -jv) t.o (R, :::;) and E = { e 1 , e2 , . . · , en } satisfies the condition that e ; -jv ej implies i :::; J (i , j = 1 , 2 . . · , n), then from Corollary 1 . 5 .4 we can devise the following algorithm. A greedy algorithm Step 1 : Find an ordering (e 1 , e2 , · · · , en) of E such that e; -jv ej implies i < J (i , j = 1 , 2, · · · , n) . Step 2 : Compute a vector x E RE by
x(e;) = f(S;) - f(S;_ 1) (i = 1, 2 , · · · , n), (1 . 5 .64)

where for each i = 1 , 2 · · · , n S; is the set of the first i elements of (e 1 , e2 , · · · , en) and
S0 = 0 . Then x is a minimum-weight base of (D , f) with respect to weight w . (End)

New A lgori t h m s for t h e In tersec tion Problem o(S u b m od u lar Sys tems

Chapter 2 .

New Algorithms for the Intersection Problem of

Submodular Systems

2 . 1 . Introduction

26

We consider the problem of finding a maximum common subbase of two submodular
systems , called the intersection problem (see [34]) ; the precise description of the prob
lem will be given at the end of this section . The intersection problem is a generalization
of the so-called matroid intersect ion problem and has a lot of practical applicat ions (see
[50] , [5 1] , [64] , [70]) . An algorithm for the intersection problem was presented in [34]
(also see [28] , [33] , [72] , [77]) . S tarting from a common subbase and finding the lexi
cographically shortest augmenting paths O(n3) t imes in auxiliary networks , one can
reach a solution of the problem.

The submodular intersection problem is closely related to the maximum flow prob
lem . In the network theory, there are two main approaches to solve the maximum
flow problem-algorithms by finding augmenting paths and algorithms by applying
the basic preflow-push and relabeling operations . The latter is relat ively nev,r and has
been shown t o be very efficient for maximum flow problems . In the so called "ne
oflow" problems [32] , which include the submodular intersect ion problem as a special
case , several algorithms for such problems by finding shortest augmenting paths have
been presented . The main purpose of our research in this chapter is to introduce the
preflow-push approach to the intersection problem of submodular systems .

In this chapter we first present a new algorithm by path augmentations , but it be
gins with a pair of subbases and is convenient for adopting the preflow-push approach
of Goldberg and Tarjan [43] . Secondly, by using the basic ideas of the preflow-push

New A lgori th m s for t h e In tersec t ion Pro b lem of Su bmodular Sys tems 27

method, we devise a faster algorithm for the intersection problem which requires 0(n3) push and 0 (n2) relabeling operations in total by the largest-label implementation with a specific order (related to the lexicographical ordering of P. Schonsleben 's [72]) on the a.re list of ea.ch vertex in the auxiliary graph. Instead of using the lexicographical ordering, we propose a first-active implementation. The algorithrn finds a maximum common subba.se of two given submodular systems by 0 (n4) saturating push, 0 (n3) nonsaturating push and 0 (n2) relabeling operations. The algorithm by the first-active implementation is the first one that the intersection problem (or equivalently the maximum submodular flow problem) is solved in strongly polynomial time without using a lexicographical ordering . The algorithm devised by P. Schi:insleben [72] finds a maximum common subba.se by 0(n3) augn1enta.tions on the lexicographically shortest augmenting paths in auxiliary networks and each augmenting path can be found in 0(n2) time by Dijkstra's shortest path algorithm with oracles for identifying arcs in auxiliary networks . A complexity improvement over P. Schonsleben 's algorithm is made by E . Tardos, C . A. Tovey and M. A. Trick 's algorithm [77] by reducing the total time in finding augmenting paths using the idea of layered network due to E. A. Dini ts [1 2] . Their algorithm runs in 0 (n4h) time where h is the time to identify an arc in an auxiliary network and an arc 's capacity. Let (Di, f;) (i = 1, 2) be two submodular systems on E with IEI = n , where IEI is the cardinality of E . The intersection prob lem is given as follows (see [34]) .
(P) Maximize x (E)

subject to x E P(fi) n P(h),
where for ea.ch i = 1, 2 P (f;) is the submodular polyhedron associated with (Di, Ji).
Theorem 2 . 1 . 1 (The Intersection Theorem [34]) : For the in tersection problem (P) ,

max{x (E) I x E P(fi) n P(h) }
= min{fi (X) + h(E - X) I X E D1 n 'D2 }, (2. 1. 1)

New A lgori t h m s for the In tersec tion Problem of S u bmod ular Sys tems 28

The intersection theorem will play a very fundamental role in developing our algorithms . The proof is left in Section 2 . 2 . In our algorithms we assume oracles for saturation functions , saturation ca.pa.cities, dependence functions and exchange capacities of the given submoclula.r systems . For each i = 1 , 2 we denote the saturation function of (D; , f;) by sat i , and similarly, the other functions and capacities associated with (Di , Ji)-
2 . 2 . A New Algorithm by Path Augmentat ions

Initiate with a subba.se pair f3 = (y , z) such that
y E B(fi) , z E P (h) , (2. 2. 2)

(2. 2 . 3)
(2 . 2 .3) implies that z is a common subba.se of (Di, Ji) (i = 1 , 2) . Also for any x E P(h) n P (h) , from (2 . 2. 2) we have y (E) = fi(E) 2: x (E) . Therefore ,

y (E) 2: max{x (E) I x E P(ji) n P (/2) } . (2. 2 .4)
It follows that if we have y = z , then z (= y) is a maximum common subba.se. We can apply the greedy algorithm described in Section 1 . 5 to find a base y of (D 1 , Ji) and a ba.se z' of (D2 , h) (see [34]) . Putting z (e) = min{y (e) , z' (e) } (e E E) , the subba.se pair (y , z) satisfies the above conditions (2 . 2 . 2) and (2 . 2.3) . Finding a base of (Vi , J J for ea.ch 1: = 1 , 2 requires n evaluations of function J i. Define an auxiliary network Nf3 = (G /3 = (V, A13) , T/ , T13-, c13) associated with /3 =
(y , z) as follows.
where

A_1 A2 f3

E l A2 V = , Af3 = A;3 U fJ ,
{ a' I a+ a' = u , a-al = v , u , v E V, U E clep 1 (y , v) - { v } } ,
{ a" I fJ+ a11 = u , 8- a" = v, u , v E V, v E dep2 (z, u) - { u } } .

c/3 : A,a ----'> R is the capacity function defined by

(2.2. 5)
(2.2 .6)
(2. 2. 7)

(2. 2. 8)

New A lgorith m s for t h e ln tersect ion Pro b lem of S u bmod u lar Systems

T/ (the entrance set) and Tf3- (the exit set) are defined by
T/ { v I v E V, y(v) > z (v) } , Tf3- -- { v I v E V, v E E - sat2 (z) } .

A new algorithm for solving the intersection problem is described as follows .
An Algorithm by Path A ugmentations

29

(2 . 2. 9)
(2 . 2 . 10)

Input : (V; , f;) (i = 1 , 2) on E and an initial subbase pair f3 = (y , z) satisfying (2 . 2. 2) and (2.2. 3). Output : A solution z of (P) . Step 1 : While y -f z , do the following (a)~ (c) : (a) Construct the auxiliary network Nf3 = (G13 = (V, Af3), TJ , T13- , cf3) associated with f3 = (y , z) . If there is no directed pa.th from T/ to Tj-, then stop (z is a solution of
(P)) . (b) Let L be a directed path from T/ to T;i in G f3 having the smallest number of arcs and put

(a+ L is the initial vertex of L and a-L the terminal vertex of L) . (c) For each arc a in L , if a E A} , then put

and if a E A�, then put

Also put z (a-L) +- z (a-L) + a . Step 2 : The current z (= y) is a solution of (P) and the algorithm terminates . (Encl)

(2 .2. 12)

(2. 2. 1 3)

In the execution of (c) , we assume that the arcs in A} lying on pa.th L a.re in this order (uL vi), - - - , (v-t , v1) a.long the direction of path L . S imilarly the a.res in A� lying

New A. lgori t J1 m s for t h e In tersec t ion Problem o[Su bmocl u la.r Sys tems 30

on r)ath L are assumed to have order as (u21 v
1

2) • • • (u2 v2)
) ') q ' q .

By the way of choosing

path L , for each i , j such that 1 :S i < j :S p we have

(2 .2 .14)

and for each i, j such that 1 :S i < J s; q we have

(2 .2 . 15)

After the execution of (c) , the generated sub base pair is denote by (Ye n Za) . It can be

expressed as

and

Ya = y + L a(xv 1
- Xud

l l

i = l

Z c,, = Z + L a(xu2 - Xv2) + axvl .
t t p

i=l

(2.2. 1 6)

(2.2. 1 7)

By Lemma 1.4 .11, we have Ya E B(J1) and Zo: E P(h). Obviously, Yo:(E) = y(E) and

Yo: � zo: . Therefore, we have

Lemma 2 . 2 . 1 : If the algorithm terminates at (a) of Step 1 , z is a solu tion of (P) .

Proof: Let U be the set of the vertices in Gp which are reachable by directed paths

from T;t . Note that U ::/= E . For each v E E - U and u E U we have

Therefore, from (2 .2. 18) and the relation v E dep1 (y , v) , we have

(2. 2. 18)

(2 .2. 1 9)

(2. 2. 20)

Hence E - U = U v E E - U dep 1 (y , v) . According to Lemma 1 . 4. 3 and Equation (1 .4. 1 1) ,

we have fi (E - U) = y(E - U) . For the same reason , h (U) = z (U) . Hence for any
x E P(fi) n P(h) ,

z(E) = :i (U) + z (E - U) = h(U) + y (E - U) = h(U) + h (E - U) � x (E) . (2. 2. 21)

We conclude that z is a solution of (P) . □

New A lgori t h m s for t h e In tersect ion Problem of S u bmod u lar Systems 31

Lemma 2 . 2 . 2 : z (= y) in Step 2 is a solu tion of (P) . D

Proof of Theorem 2 . 1 . 1 :
First we need t o show the values of

max{ x (E) I x E P (fi) n P (h) } (2 . 2 . 22)

and
(2 . 2 . 23)

i n Theorem 2 . 1 . 1 are well defined . The second i s the minimum on finitely many values ,
thus is well defined . Note that (2 . 2 . 22) is a linear programming problem and that
for any x E P (Ji) n P (h) , we have x (E) ::; fi (E) . So the opt imal value , if any,
is bounded above and it is easy to see that there exist feasible solutions . Applying
the well known duality theorem on linear programming , we see that (2 . 2 . 22) always
possesses an optimal solut ion . Let z be an optimal solut ion to it . In P (fi) there exists
a maximal subbase y with y 2: z. From Lemma 1 .4 . 6 , y E B (fi) . This subbase pair
(y , z) satisfies conditions (2 . 2 . 2) and (2 . 2 . 3) . If we start with this pair in our algorithm ,
then the algorithm will soon stop at (a) of Step 1 when y f. z or stop at Step 2 when
y = z. From the proof of Lemma 2 . 2 . 1 and condition (2 . 2 . 2) , there exist s },,. E 'D 1 n 'D2

such that z (E) = fi (Y) + h(E - Y) . This implies

min { f1 (X) + h(E - X) I X E 'D1 n 'D
2 } ::; max{x (E) I x E P (fi) n P (h) } . (2 . 2 . 24)

The inverse inequality

min { fi (X) + h(E - X) I X E 'D1 n 'D2 } 2 max{x (E) I x E P (fi) n P (h) } . (2 . 2 . 25)

follows trivially from the inequality

x (E) = x (X) + x (E - X) ::; fi (X) + h (E - X) (2 . 2 . 26)

for any common subbase x and X E 'D1 n 'D2 . D

If the rank functions Ji and h are integer-valued , then our algorithm stops in a
finite number of steps provided that we start with an integral initial subbase pair .

New A lgord h m s for t h e In tersec t ion Problem of S' u bmod u lar Systems 32

Each time we carry out (c) of Step 1 , the value of z (E) increases by a > 0 given by
(2 . 2 . 1 1) . By our assumpt ion a should be integral and thus a 2:: 1 .

Furthermore , we can refine our algorithm by using the technique [60 , 72] of selecting
the lexicographically shortest path in (b) of Step 1 so that the cycle (a) ~ (c) in S tep 1
is repeated at most O (n3) t imes .

2 . 3 . A Faster Algorithm by the Preflow-Push Approach

For the intersection problem (P) , we start with a subbase pair .B = (y , z) satisfying
conditions (2 . 2 . 2) and (2 . 2 . 3) of Section 2 . 2 . Define an auxiliary graph Gf3 = (V , A(3)

0 0

with vertex set V and arc set A.(3 as fol lows :

where

{ s+ , s - } U E ,

st u S,e u A} u Aj ,

(2 . 3 . 1)

(2 . 3 . 2)

st { (e , s +) \ e E E } , (2 . 3 . 3)

S"r3 { (e , s -) \ e E E - sat2 (z) } , (2 . 3 . 4)
0 1 + A(3 { a' \ 8 a' = 'U, , a- al = v , u , v E E , u E dep 1 (y , v) - { v} } , (2 . 3 . 5)
0 2 A(3 { a" I a+ a" = ·u , a- a" = v , u , v E E , V E dep2 (z , u) - { u } } . (2 . 3 . 6)

Also , define e(v) = y(v) - z (v) for each v E E , where note that e (v) 2:: 0 . When
e(v) > 0, we call v an active vertex .

Definit ion 2 . 3 . 1 ([43]) : A function d from V to nonnegative integers is said to b e a
valid labeling for Gp if d(s+) = n + 2 , d(s -) = 0 and d(a+ a) � d(a- a) + 1 for every arc
a E A(3 ,

Lemma 2 . 3 . 2 : For any valid labeling d, if d(v) < n + 2 , then d(v) is a lower bound of
the actual dis tance from v to s - in Gp , where the length of each arc is equal to 1 . If

d(v) 2:: n + 2 , then d (v) - (n + 2) is a lower bound of the actual dis tance from v to s+
0 0

in Gf3 and s- is not reachable from v in GfJ .

New A lgor i t h m s for t h e In tersec t ion Pro b lem or S u bmod u la.r Sys tems 33

Proof: If cl(v) < n + 2 , let L be a shortest path from v to s- in 013 having length l .
We express L as a sequence (v = v 1 , v2 , • • • , v 1 , s -) o f the vertices i n L . By th e definition
of a valid labeling cl we have

(2 . 3 . 7)

i . e . , cl(v) � l . The proof for the case cl(v) ?: n + 2 can be made similarly. □

We start with a valid labeling cl such that cl (s+) = n + 2 , cl(s-) = 0 and cl(v) =

1 (v E E) . We define two basic operat ions Push(a) and Relab el (v) for each a E A,e
and v E V for our algorithm :

Push(a) : Applicabil ity : a+ a is act ive , a E A.;3 and n + 2 2 cl(a+ a) = cl(a- a) + 1 ;
Action :

Case 1 : If a E Ab , then put y t-- Ya = y + a(xw - Xv) , where v = a+ a , w = a- a and
a = min { c 1 (y , w , v) , e (v) } .

Case 2 : If a E ,,4l then put z t-- Zc., = z + a(xv - Xw) , where v = a+ a , w = a- a and
a = min { c2 (z , v , w) , e (v) } .

Case 3 : If a E Sj ' then put z f-- Zc., = z+axv , where V = a+ a and a = min { c2 (z , v) , e (v) } .

It should b e noted that if P ush(a) is applicable for a E A,g , then a 1 ,§; _

Lemma 2 .3 . 3 : Actions in all ca.ses main tain the ini tial conditions (2 . 2 . 2) and (2 . 2 . 3)
requfred for (y , z) .

Proof: I n Case l , because of the definit ion of a , we have y E B (fi) and y ?: z . Case
2 is similar to Case 1 . In Case 3 , y is not changed and ::: is stil l in P (h) b ecause of the
definit ion of a .

Relabel(v) : Applicab ility : v is act ive and for any a E A;3 with 3+ a
cl(o+ a) � d(o- a) ;
Action : Put d(v) t-- min { d(w) + 1 J (v, w) E A.;3 } .

□

v we have

Lemma 2 . 3 .4 : If e (v) > 0 and d(v) � n + 2, then ei ther a push for some a E A,e with
a+ a = v or a relabel of v is applicable .

New A lgorith m s for t h e In tersect;ion Problem of S' u bmod u lar Sys tems 34

Proof: Suppose e (v) > 0 and d(v) :::;; n + 2 . From the definition of the arc set A13 ,

there exists an arc a E A13 such that a+ a = v . If a push operation is not applicable
to V , then d(a+ a) < cl(a-a) + 1 for any a E Ap with a+a = v . This implies that a

relabeling operation is applicable to v . Also note that such a push and a relabel are
not simultaneously applicable . D

Lemma 2 . 3 . 5 : The basic operations keep cl a valid labeling.

Proof: Obviously, any relabeling operation does not change the values of d(s +) and

d(s -) and keeps the relation d(a+ a) :::;; d(a-a) + 1 for any a E A13 .

Next, we consider the push operations . In Case 1 , suppose a push on a E A} with
a+ a = u and a- a = V introduces new arc a' with a+ a' = w and a- a' = p. Then, before

the push we have (i) u = p or there exists an arc in A} from u to p and (ii) v = w or

there exists an arc in A} from w to v (see Lemma 1.4.12) . Consequently,

Hence ,

cl(u) :::;; d(p) + 1 , d(u) = cl(v) + 1 , d(w) :::;; d (v) + 1 .

d(w) :::;; d(v) + 1 = d(u) :::;; d(p) + 1.

(2. 3. 8)

(2 .3 .9)

Therefore , d is still valid in Case 1. The proof for Case 2 is similar to that for Case 1 .

For a push on a E S'ji in Case 3, i f a < c2 (z , v) , then Aj remains the same since for

any e E sat2(za) we have dep2(za , e) = dep2(z, e) . If a = c2 (z , v) , then v E sat2 (za)

For any e E sat2 (z) we have dep2 (z, e) = depiza , e) , since v � dep2 (z , e) ; and for any

e E sat2 (za) - sat2(z) there may be some new arc (e, e') (i.e. , e' E depiza, e)) , for

which we get d (e) < d(e') + 1 since d(e) :::;; d(s -) + 1 = 1. D

Lemma 2 . 3 . 6 : For any v E E the dis tance label cl (v) never decreases by basic opera
tions, and we have d(v) :::;; n + 3.

Proof: For any ·v E E we have d(v) :::;; d(s+) + 1 = n + 3 , since (v , s +) E .A.13 . D

Lemma 2 . 3 . 7 : Relabeling operations are carried ou t at most n(n + 2) times .

Proof: A relabeling operation makes the value of I:v E E d(v) increase by at least one

and we have n :::;; I: uE E cl(v) :=:; n(n + 3) . The present lemma easily follows from this

fact. D

Ne w A lgori t h m s for t h e In tersec t ion Problem of S' u hmod u lar Systems 35

Lemma 2 . 3 . 8 : For a s ubbase pair f3 = (y , z) satisfying condi tions (2. 2 .2) and (2 .2 . 3) ,
if there is n o ac tive vertex v in G/3 with d(-u) :s; n + 2 , then z is a solu tion of (P) .

Proof: If there is no active vertex , then we have e (v) = 0 for each v E E, i .e . , y = z ,
and from condition (2 . 2 . 2) y(= z) is a solution of (P) . If there is an active vertex , let

U � E be the set of the vertices in G/3 which are reachable by directed paths from the

active vertices . By the definition we have U -=J. 0 . If U = E and E - sat2 (z) -=J. 0 , then

there is an act ive vertex v such that s - is reachable from v . This contradicts the fact

d(v) = n + 3. Therefore, if U = E, we have sat2 (z) = E, which irnplies that z is a

solut ion of (P) . If U -=J. E, we have y(E - U) = Ji (E - U) and z (U) = h (U) . Hence,

z(E) = z(U) + z (E - U) = h(U) + fi (E - U) . It follows from Theorem 2 . 1 . 1 that z
is a solution of (P) . D

Our algorithm repeats basic operations until there is no active vertex v with d(v) ::;

n + 2 . In the following ·we make refinements on the order of the basic operations to be

carried out.

Let 1r : V ___, { 1 , 2, · · • , n + 2} be a one-to-one mapping , i.e . , a numbering of the
vertices in V . For any v E E we have an arc list List13(v) formed by the out-going arc

set { a I a E Aµ , &+ a = v } arranged in the order of the increasing magnitude of the

values of 1r(8- a) . Each vertex v has a current arc a in the list. Initially , the current

arc of v is the first element of List(] (v) .

In our implementation of the algorithm, we always select the active vertex v such

that

d(v) = max{ d(w) I w E E , d(w) :S n + 2 , e (w) > O } (2 . 3. 10)

and check i f a push operation i s applicable for the current arc a of List/3 (v) . If the push

operation is not applicable, then the next arc , if any, in List13 (v) becomes the current

arc . Otherwise, we perform a push operation, which results in (1) e (v) = 0 or (2) e(v) >
0 and a � Aµ . In the first ca.se ·we select a new active vertex with the largest label and

repeat the above process . In the second case, we let the next arc, if any , in the arc list

of v be the current arc of v . During the algorithm, if we reach the end of the arc list

of v with e (v) > 0 and want to renew the current arc in ListfJ (v) , then we let the first
arc in the list be the current arc and carry out a relabeling operation for v .

New A lgori t h m s for t h e In tersec tion Pro blem of S u bmod u lar Systems 36

Lemma 2 . 3 . 9 : Throughou t the algori thm the following proper(v (*) is main tained:
(*) For each v E E any arc a before the curren t arc in Listf3 (v) satisfies d (o+ a) :::;
d(o- a) .

Proof: S uppose that currently (*) holds and that the next basic operation is a relabeling operation for a vertex v . This operation does not generate any new a.re . Denote the current distance label by d and the one after the operation by cl' . Note that
d(w) :::; d1 (w) (w E V). For Listf3 (v) the current arc is made to be the first element of the list. Furthermore, for any other list Li stf3 (u) (u =j:. v) and any arc a before the current arc in Listf3 (u) we have d1(o+ a) � d1 (8-a) since d(a+ a) = cl1 (a+ a) (= d(u)) and d(a-a) :::; d1 (8-a). Hence, (*) holds after the relabeling operation . Next, suppose that currently (*) holds and that the next basic operation is a push for the current a.re a in List/3 (u) for a vertex u . Note that label d is not changed by the push. Therefore, it suffices to show that after the push operation any new arc a placed before the current arc in List13 (w) for some w E E satisfies d(a+ ci) :::; d(o-&,) . Suppose, on the contrary, that some such new arc a satisfies

(2 . 3 . 1 1)
We show that (2.3 . 1 1) leads us to a contradiction. Vve examine Cases 1 ~3 for the push indicated below the definition of Push(a).
Case 1 : Let u = a+ a , v = a- a and p = a- a . Recall that w = a+ fr . Before the push on arc a we have (i) u = p or there exists an arc in A} from u to p and (ii) v = w or there exists an arc in A} from w to v ([34]) . Therefore,

d(w) � d(v) + 1 , d (u) = d(v) + 1 , d(u) :::; d (p) + 1 , d(w) = d(p) + 1 .
Note that the la.st equation in (2 . 3 . 1 2) is (2. 3. 1 1). S ince from (2 . 3 . 12)

cl(w) = cl(p) + 1 � d(u) = d(v) + 1 � d(w) ,
we have d(u) = d(p) + 1 , d(w) = d(v) + 1 .
It follows from (2. 3. 14) that

(2. 3. 12)

(2. 3. 1 3)
(2. 3. 1 4)

(i) u i- p and there exists an arc a' E Ab from u to p for ·which a push is applicable,

New A. Igorith rn s for t h e In tersection Problem of S u bmod u/ar Sys tems 37

(ii) v ::J w and there exists an arc a" E A.1 from w to v for which a push is applicable .

From the assumption , (i) implies that arc a precedes arc a' in List13 (u) and hence 1r (p) > 1r(v) , whereas (ii) implies that a.re a precedes arc a" in List13 (w) and hence 1r (p) < 1r(v) , a contradiction .

Case 2 : Case 2 leads us to a contradiction similar to Case 1 .

Case 3 : In the proof of Lemma 2 . 3 .5 we have already shown that d(fJ+ a) :S d(8- a) ,

which contradicts (2 . 3 . 1 1) . □

Definition 2 . 3 . 1 0 : A push on (v , w) E A,rJ is called a satura ting push if one of the

following three conditions holds :

(a) The push is of Case 1 and e(v) 2 i\(y , w , v) ,

(b) The push is of Case 2 and e(-u) 2 c2(z , v , w) ,

(c) The push is of Case 3 and e (v) 2 c-2(z , v) .

Definition 2 . 3 . 1 1 : If a push is not a saturating push , then it is called a nonsaturating push.
Lemma 2 . 3 . 1 2 : The number of saturating pusl1 operations is at most 2n2 (n + 2) .

Proof: By a saturating push on an arc in List13 (v) the current arc shifts to the next

arc. From Lemma 2 . 3 . 9, we know that between two successive relabeling operations

on v, there are at most 2n saturating pushes on arcs going out from v. So the total

number of saturating pushes on arcs going out from v is at most 2n(n + 2) . This proves

the lemma. □

Lemma 2 . 3 . 1 3 : The number of nonsaturating pushes is at most n2 (n + 2) .

Proof: Between two successive nonsaturating pushes on a.res going out from v there

is at least one relabeling operation on some other vertex , since vertex v becomes in

active just after the first nonsaturating push and turns active again before the second

New A lgorit h m s for t h e In tersection Problem of Su bmodula.r Systems 38

nonsaturating push . This is impossible if no relabeling happens between the two nonsaturating pushes, since v had the largest label among all active vertices at the first nonsaturating push. Hence, the number of nonsaturating pushes on arcs going out from v is at most n (n + 2) . Therefore, the total number of nonsaturating pushes required by the algorithm a.re at most n2 (n + 2) . D
Now, we have

Theorem 2 . 3 . 1 4 : The new algori thm terminates afteT canying ou t O (n2) relabeling
operations and 0(n3) push operations.

Proof : Directly from Lemmas 2. 3 . 7, 2. 3. 12 and 2 . 3 . 13 . D
Finally, we describe an implementation of our preflow algorithm without using the specific order on the arc list and the current arcs . Define a list Ld of all vertices in V with cl(v) � n + 2 . The vertices of V in Ld is arranged in the order of the decreasing magnitude of the values of d . For the vertices having the same value of cl, they can be ordered in any way. In list Ld there is a vertex called the current vertex of Ld . Initially the current vertex is the first vertex of LJ . Since cl(v) > d(w) holds for each admissible arc in A,a , we have an important property of list Ld , i .e . , if (v , w) in A,e is an admissible arc, then v appears before w in LJ. Preflow Algorithm (first-active implementation) Step 1 : Let Ld be the list of V and v be the current vertex. If v is an active vertex, go to Step 2. If v is not the last vertex of Ld , replace v as the current vertex by the vertex right after v on Lc1 and go to the beginning of Step 1 . If ·v is the last vertex of Lc1, then output the current /3 and stop. Step 2 : Find an admissible arc (v, w) , perform push on (v, w) and go to Step 1. If there is no admissible arc going out from v, then relabel v. For the new cl(v), if d(v) > n + 2 then delete v from LJ. If Ld is empty then output the current /3 and stop, otherwise let the first vertex of Lc1 be the current vertex and go to Step 1 . (Encl)
Define a pass over Ld as a period of the algorithm that begins with the first vertex of Lc1 and ends when a relabeling is performed or when the algorithm terminates. S ince

Ne w A lgori t h m s for t h e In tersec t ion Pro blem of 811 bmod u lar Sys tems 39

the distance label d is not changed and the excess of each active vertex is pushed to

vertices after it , the vertices before the current vertex are inactive . It follows that the
output /3 gives a required maximum subbase .

Lemma 2 . 3 . 1 5 : There are at mos t n (n + 2) pa.sses before the algorithm terminates .

Proof: Since there is a relabeling operation in each pass except the last one , the

present lemma follows from Theorem 2 . 3 . 7. D

Lemma 2 . 3 . 1 6 : The n umber of non.saturating pushes in the algori thm (firnt-ac tive
implemen tation) is at mos t n2 (n + 2) .

Proof: In each pass , a nonsaturating push on v makes v an inactive vertex and the

current vertex shifts . So, there are at most n nonsaturating pushes in each pass . D

Lemma 2 . 3 . 1 7 : The n umber of saturating push operations in the algori thm (first
active implemen tation) is at mos t 2n3(n + 2) .

Proof: In a fixed pass , after a saturating push on (v , w) , (v , w) is not an arc in A;9

until v becomes inactive (see Lemma. 1 . 4 . 12) . In the pass , there is no push on (v , w)
again after v becomes inactive. Hence, in a pass there are at most 2n saturating pushes

on arcs going out from v. It follows that there are at most 2n2 saturating pushes in a
pass. The present lemma is from Lemma 2 . 3. 15. D

Example : Consider an example ([51]) of an electric network with the underlying

graph G = (V, A*) shown in Figure 1, where each dotted line with an arrov,r denotes

the existence of self- or mutual-coupling in the direction of the arrow . Under some

generality assumption on the coupling parameters the network is uniquely solvable if

and only if the optimal value of the objective function rp : A - R of the following

problem (2 . 3 . 15) is equal to the rank ra (A*) of G , where ra is the rank function of

graph G ([82]) . Consider a bipartite graph G = (v+ , v- ; A) shown in Figure 2, where

each arc a E A. of G denotes the existence of self- or mutual-coupling from branch

a- a E A* to branch a+ a E A*.

Ne w A lgor i t h m s for t h e In t ersect ion Problem of S u b m o d ular Systems

Now , the problem is :

where

Maximize L <p(a)
aEA subject to a+ <p E P (rc),

a- <p E P (rc),

40

(2 . 3. 15)

(2 . 3. 1 6)
(2 . 3. 1 7)

and o+ v (o - v) is the set of the arcs going out from v (coming into v) in the bipartite graph shown in Figure 2. Problem (2 . 3.15) can be reduced to an intersection problem as follows . Put E = A and define submodular funct ions fi (i = 1 , 2) on 2 E as follows.
fi (X) = rc (a+x) (X � E(= A)) ,
fz (X) = rc (a-x) (X � E(= A)) ,

(2 . 3. 18)
(2 . 3 .19)

where a+ X (a-X) is the set of the initial (terminal) vertices of the arcs in X in the bipartite graph G. Then, Problem (2. 3 . 15) is equivalent to the following.
P : Maximize x (E) (2 . 3. 20)

subject to x E P(fi) n P (fz).
We show how our algorithm works for this example . We start from y E B(fi) and

z E P(h) given by
y = X(l , l) + X(2 , l) + X(4 , l) , z = 0 . (2 . 3. 2 1)

Note that { 1, 2 , 4 } is a spanning tree of G and y is a base of (2E , fi) . The initial auxiliary graph is shown in Figure 3 . For convenience , we denote Yr , ZH for any T, H � E by
YT = L Xe , ZH = L Xe · (2 . 3. 22)

eET eEH In order to avoid confusions between a vertex set and its vertex numbering, instead of the numbering function 1r we introduce a linear ordering on E U { s + , s-} as follows.
s- < (1, 1) < (2, 1) < (2 , 3) < (3 , 1) < (4 , 1) < (5 , 3) < (6 , 2) < (6, 4) < (6 , 5) < (6, 6) < s + . (2. 3.23)

New A lgori thms for t h e In tersec t ion Problem of 8u bmod ular Sy.s tems 41

At the beginning, we put d(s+) = 1 2 , d(s-) = O and d (v) = 1 for any v E E . Initially we take {3 = (Yr , zH) with T = { (1 , 1) , (2 , 1) , (4 , 1) } and H = 0 . After a selection of v E E such that e(v) > 0 and cl(v) = max { cl(u) I e (it) > 0 , u E E , d(u) :::_: 12 } , we have two types of actions (A) and (B) as follows :
(A) Finding the first arc in Listf3 (v) which is applicable for push . This can be done by two steps . The first step is to find out the set

The second is to choose, if A(v) i- 0 , an arc (v , u) such that u is the minimum element in A(v) with respect to the linear ordering (2 .3 . 23) . Perform a push operation on the selected arc and revise T and H after the push .
(B) If A (v) = 0, then relabel v .

Here , we note that the values of the saturation capacities and the exchange capacities are always O or 1 since we start with a 0- 1 valued sub base pair . By an arc with (or \vi th out) an underline , we mean that the arc is in A� (or not in A1) . After 11 push and 7 relabeling operations we reach an optimal solution of Problem P in (2 .3 . 20) . The algorithm is performed as follows :
(A) Push on ((1 , 1) , s-) , and we have T = { (1, 1), (2, 1) , (4 , 1)} and H = { (l, l)} .
(B) Relabel (2, 1) we have d((2 , 1)) =2 .
(A) Push on ((2 , 1) , (1 , 1)) , and we have T = { (1 , 1) , (2 , 1), (4, l)} and H = { (2, 1)} .
(B) Relabel (1 , 1) we have cl((l , 1)) =2 .
(A) Push on ((1 , 1) , (3 , 1)) , and we have T = { (2 , 1) , (3, 1), (4, 1) } and H = { (2 , 1)} .
(B) Relabel (3, 1) we have cl((3 , 1)) =2 .
(A) Push on ((3 , 1) , (5 , 3)) , and we have T = { (2 , 1) , (4 , 1), (5 , 3)} and H = { (2 , 1)} .
(B) Relabel (4 , 1) we have d((4, 1)) =3 .
(A) Push on ((4 , 1) , (1 , 1)) , and we have T = { (l , 1) , (2 , 1), (5, 3) } and H = { (2 , 1)} .
(B) Relabel (1 , 1) we have d((l, 1)) =3

Ne w A lgori t h m s for t h e In tersec t ion Pmblem of S u b m o d u /a.r Sys tems 42

(A) Push on ((1 , 1) , (2 , 1)) , and we have T = {(l , 1) , (2 , 1) , (5, 3) } and H = { (l , 1) } .
(A) Push on ((2 , 1) , (6 , 2)) , and we have T = {(1 , 1) , (5, 3) , (6 , 2) } and H = { (l , 1) } .
(A) Push on ((5 , 3) , s-) , and we have T = { (1 , 1), (5, 3) , (6 , 2) } and H = { (1 , 1), (5, 3) } .
(B) Relabel (6 ,2) we have d ((6 , 2)) =2 .
(A) Push on ((6 , 2) , (2 , 3)) , and we have T = { (1 , 1), (2 , 3) , (5, 3) } and H = { (1 , 1) , (5, 3) } .
(B) Relabel (2 ,3) we have d ((2 , 3)) =2 .
(A) Push on ((2 , 3) , (6 ,4)) , and we have T = { (1 , 1) , (5, 3), (6, 4) } and H = { (1 , 1) , (5, 3)} .
(A) Push on ((6 , 4) , s-) , and we have T = H = { (1 , 1) , (5 , 3) , (6, 4) } .
There is no vertex with e (v) > 0 and the algorithm terminates . For P roblem (2 . 3 . 1 5) , put <.p = ZH (the output of the algorithm) . Then <.p is an optimal solution of Problem (2. 3. 15) with the optimal value being equal to the rank of graph G. Hence we conclude that the given electric network is uniquely solvable.

New A lgorit h m s for t: h e In tersec tion Pro b lem of S u bm o d u la.r Sys tems

3
4

2

Figure 1 : A graph G representing an electric network with mutual couplings

v+

1

2

3

4

5

6

2

3

4

5

6

Figure 2 : The bipartite graph G

43

44

(1 , 1)

s

(6,6)

Figure 3 : The initial auxiliary graph

A n Effi cien t Cos t Scaling A lgori t h m for t h e In clepen clen t A ss ign m e n t Problem

Chapter 3 .

An Efficient Cost Scaling Algorithm for the

Independent Assignment Problem

3 . 1 . Introduction

45

The independent assignment problem was formulated and solved by M. Iri and N. Tomizawa [53] . Given a bipartite graph with matroidal structures on both of the two sets of end-vertices, the independent assignment problem is to find a maximum independent matching [8 1] having the smallest total cost, where a cost is given to each arc. It is a natural extension of the ordinary assignment problem. The weighted matroid intersection problem considered by J. Edmonds [1 3], E. L. Lawler [58] and others is equivalent to the independent assignment problem. The theoretical analyses and algorithms for the independent assignment problem can be found in [53] and [27] . Algorithms for the weighted matroid intersection problem were given by J . Edmonds [1 3], [1 5] , E . L. Lawler [58], A. Frank [2 1] , J . B. Orlin and J . Vande Vate [67] , C. Brezovec , G. Cornuejols and F. Glover [6] , H . N. Gabow and Y. Xu [40] and others. Recently, M. Shigeno and S . Iwata [74] have proposed an approximateweight-splitting algorithm for the weighted matroid intersection problem which is an approximate version of A. Frank 's algorithm [21] . The cost scaling approach based on the approximate optimality plays a fundamental role in recent efficient algorithms for ordinary minimum-cost flows and bipartite matchings. We propose an efficient cost scaling algorithm for the independent assignment problem. Our algorithm in general can be viewed as a generalization of the cost scaling algorithm, recently given by J. B . Orlin and R. K . Ahuja [66] , for the ordinary assignment problem . The cost scaling technique is adopted in our algorithm. The procedure

A n Effi cien t Cos t Sea.ling A lgori t h m for t h e In depen den t A ssign men t Problem 46

for each scaling phase can be decomposed into two parts : an auction-like algorithm (see [4] , [66]) and a successive shortest path algorithm. \Ve provide a complexity analysis under the independence oracle for matroids and we show that on a bipartite graph with n vertices and integer arc costs bounded by C , an optimal r-independent assignment can be found in 0(ftn2 log(rC)) time by our algorithm under an independence oracle for matroids. In Sections 3 . 2, 3 . 3 and 3.4 we give the definition of the independent assignment problem, some applications of the independent assignment problem and some further properties of matroids , respectively. The optimality and E-optimality conditions for the problem are given in Section 3 . 5. Sections 3 . 6 and 3 . 7 describe the det ail of our algorithm. Section 3 . 8 , is concerned with the complexity analysis of the algorithm .
3 . 2 . The Independent Assignment Problem

Let G = (V + , v- ; A) be a bipartite graph with the left (right) end-vertex set v+ (V-) and the arc set A For any a E A. , a+ a (3- a) is the initial (terminal) end-vertex of a. We assume that a+ a E v+ and 3- a E v- for each a E A Also for any M � A., a+ _M (3-A1) denotes the set of the initial (terminal) end-vertices of arcs in _M. A subset M of A. is called a matching in the bipartite graph G = (v+ , v- ; A) if 1 a+ A1 1 = IM I = 1 a-Ml . Let M+ = (V+ , I+) and M- = (V-, I-) , respectively, be matroicls on v+ and v- with families I+ � 2v + and I- � 2v - of independent sets. A cost function c : A --+ Z is given , where Z is the set of all integers. \Ve denote this network by
N = (G = (v+ , v-; A) , M+ , M-, c). An independent matching .M � A in N is a matching in G such that a+ M E I+ and
a-lv1 E I-. The maximum independent matching problem is to find an independent matching A1 in N of the maximum cardinality. For a positive integer k, a k -independent matching Jvf in N is an independent matching of cardinality k. An optimal k - independent assignment in N is a k-independent matching M having the minimum cost c(M) = I:eE M c(e) among all the k-independent matchings in N. \Vhen costs are taken into account , we use the term, assignment, instead of matching (in a bipartite graph) .

An Efli cien t Cos t Scaling A lgori t h m for t h e In depen den t A ss ign m en t Problem 47

Let B+ (B-) be any base of M + (M -) , where we assume that I B+ I = I B- 1 = r .
In this chapter we will give a new efficient scaling algorithm for finding an opti

mal r-independent assignment if there exists one . The general optimal k- independent
assignment problem ca.n be solved by our algorithm after applying k - truncation (see
[82]) of M + and M - . Throughout this chapter , we denote the closure function of M +

(M -) by c1+ (cl-) , the fundamental circuit with respect to I and e in M + (M -) by
c+ (J l e) (C - (J l e)) and the fundamental cocircuit with respect to B and e in M + (M -)
by K+ (B l e) (K- (B l e)) . For convenience we assume that any single element subset is
independent , i . e . , there exist no self-loops in M .

3 . 3 . Applicat ions o f the Independent Assignment Problem

Minimum-cost spanning arborescence . Given a directed graph G = (V, A) with
a cost function c : A. � R. A spanning arborescence is a spanning tree T of G
sat isfying that there exists a vertex ·v E V and for each other vertex u there exists
a directed path from v to u consist ing of only arcs in T . Let the cost of a tree be
the sum of all costs of its arcs . The minimum-cost spanning arborescence problem is
the problem to find a spanning arborescence of the minimum cost among all spanning
arborescences . The problem has applications in optimal water supply networks and
others . \Ve can formulate this problem into an independent assignment problem. Let
G = (v+ , v- ; A, c') with v+ = A, v- = V and

A = { (a, 06 a) I a E A.} , (3 . 3 . 1)

·with c' (a , &6 a) = c(a) . The matroid on v+ is the graphic mat roid of G and the
matroid on v- is a free matroid , i . e . , any subset of v- is defined to be an independent
set . We have that a (I V J - 1)- independent assignment is a spanning arborescence of
G. Hence the minimum-cost spanning arborescence problem is reduced to the optimal
(J V I - 1) - independent assignment problem .
Controllability /observability of a linear dynamical system with combinato
rial constraints . Consider a discrete-t ime linear dynamical system represented by a
system of d ifference equat ions :

x (t + 1) = Ax(t) + Bu(t)

A n Efficien t Cos t Scaling A lgorit h m for /; /Jp In depen den t A.ssign m e n t Problem

y(t) = Cx (t) + Du(t)

48

(3 . 3 . 2)

for t = 0 , 1 , · · · , n - 1 , where x (t) , u (t) and y (t) are the n-dimensional state vector , the
r-dimensional control vector and the p-dimensional observat ion vector , respect ively, at
t ime t . A , B, C and D are constant matrices of appropriate sizes .

As is well known , the necessary and sufficient c011dit ion for System (3 . 3 . 2) to be
controllable is

rank [B , AB , · · · , A.n - l BJ = n

and that for System (3 . 3 . 2) to be observable is

rank [C' , A.' C' , • • • , A.m - 1 C'] = n

where the prime denotes the transposition of a matrix .

(3 . 3 . 3)

(3 . 3 . 4)

However , due to physical constraints o r the need to decrease the cost , the following
restrict ions are frequently happens in practice .
(i) every control terminal can not be used more than a prescribed number of t imes ,
(i i) at every t ime, at most a prescribed number of control terminals can be used ,
(i ') every observation terminal can not be used more than a prescribed number of times ,
(ii ') at every t ime , at most a prescribed number of observation terminals can be used .

Let G = (V + , v- ; A.) be a bipartite graph with v+ the set of all columns of the
wide matrix in (3 . 3 . 4) ,

v- = {y(t) . I t = o 1 . . . n - 1 i = 1 2 . . . P}
2 ' ') ' ' ' '

(3 . 3 . 5)

and the arc set A is a corresponding from y(t) i to the ith column of the matrix A' 1 C' .
The matroid on v+ is defined to be the linear matroid . Suppose , in constraint (ii ') , the
prescribed number for each period t is r1 (t = 0 , 1 , · · · , n - 1) . The matroid on v- is
defined t o be the partition matroid with partition of v- as Vt = { y(t) i I i = 1 , 2 , · · · , p}
(t = 0 , 1 , · · · , n - 1) . Consequently, the problem of determining whether System (3 . 3 . 2)
i s observable under constraints (i i ') is reduced to the problem that whether there exists
an n- independent assignment for G. Moreover , we can consider the problem of selecting
the observation variables of the minimum cost under constraint (ii ') . The problem is
reduced to the optimal n- independent assignment problem . The problems for other
types of constraints can be treated in a similar way.

A n Efficien t Cos t Scaling A lgori t h m for t h e In depen den t .Assign m e n t Problem 49

The applications to the structural solvability and controllability of large-scale systems is extensively studied and presented by K . Murota in [64]. The applications in electric network theory can be found in A . Recski [70] and M . Iri [50] .
3 . 4 . Further Prop erties o f Matroids
In this section we give some further properties of matroids which play a fundamental role in our algorithm . Some of them are adopted from M . Iri and N. Tomizawa [53]. We provide no proofs for those well known (see , e .g . , [52] and [82]) .

Let M = (E , I) be a matroid with a family I of independent sets .
Lemma 3 .4 . 1 : If I E I and v E cl (I) - I , then for each u E C (I l v) , I + v - u is an
independen t set . □

Lemma 3 . 4 . 2 : For a given I E I, if 2q distinc t elemen ts u 1 , · · · , uq (E I) and v 1 , · · · , Vq

(E cl (J) - I) satisfy the relations :

(3 .4.6)
and

(3 .4 . 7)

then for each n-1, = 1 , · · · , q Im = (I - { u 1 , · · · , um }) U { v1 , · · · , vm } is also an independen t
set and cl (Im) = c l (I) . Furth ermore, for m = 2 , · · · , q , we h ave Um E C (Im- 1 l vm) - D

Lemma 3 . 4 . 3 : For I E I and a pair (u, v) such that v E cl(I) - I , u E C(I l v) - v,
denote the independen t set I + v - u by I' . If (w, z) is a pair such that z E cl (J1) - I' ,
w � C(I l z) and w E C(I' l z) - z then we have
(i) ei ther u = z or u E C (I l z) - z ,

(i i) either v = w or w E C (I l v) - v. □

A n Effi cien t Cos t Scaling A lgori t h m for t h e In depen den t A ssign men t Problem 50
For a family S = { S1 , · · · , S1 } of subsets of E , a transversal of S is a set { e 1 , · · · , e t } of t distinct elements of E such that e; E Si for i = 1 , • • • , t .

Lemma 3 .4 .4 : Let B b e a base of M and v 1 , · · · , Vt be t elemen ts of B , where t S ! B l .
Suppose that there are t circui ts C1 , · · · , Ci of M sucll that (1) v1c E C1c for k = 1, · · · , t
and (2) vk � C1 if k c:/ l , for k , l = 1 , · · · , t . Denote T1c = K(B l vk) - vk for k = l , · · · , t .
Then , th ere exists a common transversal of the families C = { C1 , · · · , Ct } and T = {T1, · · · , Tt } .
Proof: It is known [8, p. 74] that there is a common transversal for C and T if and only if for each X, Y � { 1 , · · · , t } we have

I (U Ck) n (U T1) I 2 I X I + J Y I - t .
k E X I E Y

Since I X n Y I 2 ! X I + I Y I - t , from (3 . 4 . 8) it is sufficient for us to verify that
k E X n Y I E X n Y

(3. 4. 8)

(3 . 4 . 9)
Without loss of generality we prove (3.4. 9) when X n Y = { l , · · · , t } . That is, we prove that

t t I (U Ck) n (U T1c) I 2 t . (3 .4. 1 0)
Denote Io = { v 1 , · · · , vt } and Ii = B - I0 . Since vk E cl(C1c - v1c) for k = 1 , · · · , t , we have

B � cl((LJ (Ck - vk)) U 11) . (3 .4. 1 1)
k = l Hence, there exist U 1 , · · · , U t E utcc l (ck - Vk) such that Ji + U 1 + · · · + Ut is a base of

M . From the assumptions on C and { v 1 , · · · , vt } we have { ·u 1 , · · · , ut } n Io = 0. For each 1 :::; l S t , since Ii + u1 E I, we have Io ;;2 C(B l 11, 1) - (Ii + u1) c:/ 0 . Hence, there is some element Vs E Io n C(B l u1) . This implies that B + u 1 - Vs is also a base, i .e . ,
U J 1 cl(B - vs) - Thus U [E Ts . Vve have U 1 , . . . , U t E ut= 1 Tk and hence (3.4 .10) is valid. D

A n Efficien t Cost Scaling Algori t h m for t h e In depen den t A ss ign m en t Problem

3 . 5 . The Exact and Approximate Optimality

51

In this section we define an auxiliary network and give optimality and c-optimality
conditions for the independent assignment problem in terms of auxil iary networks .
The concept of c-optimality was introduced by D . P . Bertsekas [4] and E . Tardos [76]
for the minimum-cost flow problem and is essential in our cost scaling framework .

Given a network N = (G = (V+ , v- ; A) , M + , M - , c) as in Section 3 . 2 , let 3+ (3-)
be the family of b ases of M + (M -) . Consider a triple 6 = (B+ , !vi, B -) that satisfies
the following conditions :

_M is a matching of G = (v + , v- ; A) ,

B+ E 3+ and B- E 3- ,

3+ _M � B+ and 3- 1W � B - .

(3 . 5 . 1 2)

(3 . 5 . 1 3)

(3 . 5 . 1 4)

We define the auxiliary n etwork N6 associated with 6 = (B+ , lvl, B-) a.s N6 = (G6 =

(V* , A6) , M + , M - , c6) with vertex set V* = v+ U v- and a.re set A6 = AB+ U A U
111 U AB - , where

{ (u , v) I V E v + - B+ , u E c+ (B+ j v) - v } ,

{ (v , u) I V E v- - B- , u E c - (B - J v) - v } ,

{ a I a E M} (a : a reorientation o f a)

and c6 : A6 ---+ Z is defined from c : A ---+ Z as

c6 (a) = { �
(a)

- c(a) if

if
if

a E A
a E AB+ U AB
a E l\1 .

(3 . 5 . 1 5)

(3 . 5 . 1 6)

(3 . 5 . 1 7)

(3 . 5 . 1 8)

A triple 6 = (B+ , l\1, B-) that satisfies conditions (3 . 5 . 1 2) ~ (3 . 5 . 14) is called an
independent partial assignment and if, in addition , I -M l = r , then 6 = (B+ , NI, B -) is
called an independent assignment.

In the auxiliary network ,/\f 6 , we consider c6 (a) as the length of arc a E A6 . Then ,
we have the following .

Theorem 3 . 5 . 1 (Fuj ishige [27]) : An independen t assignmen t 6 = (B+ , 111, B-) is an
optimal independen t assignmen t of N if and only if there is n o negative directed cycle
fu � . □

A n Efficien t Cos t Scaling A lgori t h m for /; h e In depen den t Assign m e n t Problem 52

Given a function p : V* __, R, called a potent'ia l, we define c6. ,p (a) = c6 (a) + p (a+ a) -
p(8- a) for each a E A6 . From Theorem 3 . 5 . 1 we also have

Theorem 3 . 5 . 2 : An independen t; assignmen t 6 = (B+ , M, B-) is an optimal inde
penden t assignmen t; of N if and only if th ere exis ts a poten tial p such that c6 ,p (a) 2: 0
for all a E A6 . □

Definition 3 . 5 . 3 : An independent partial assignment 6 = (B+ , A1, B -) is said t o be
c - op timal if there exists a p otential p such that c6 ,p (a) 2: - E for all a E AL'.:. . □

Put C = maxaE A) c (a)) . Then , we have

Lemma 3 . 5 . 4 : Any independen t assignmen t is E -optimal for E 2: C and any E-op timal
independen t assignmen t with E < 1 /) 4r) is an optimal independen t assignmen t .

Proof: The first part o f t he lemma can be verified by t aking p - 0 . For t h e second
part of the lemma, we see that if c < 1 /) 4r I , then there is no negative directed cycle
in N6. , since the length La EC c6. (a) = LaE C c6 ,JJ (a) of each cycle C is an integer and
is greater than or equal t o -E j 4r l > - 1 . Hence , t he opt imality of the independent
assignment follows from Theorem 3 . 5 . 1 . D

3 .6 . A Cost Scaling Framework

Vie first give a h igher-level descript ion of our cost-scaling algorithm for finding an
optimal independent assignment . Starting from E = C, t he algorithm proceeds by
obtaining E-optimal independent assignments for successively smaller values of c until
the value of c is less than 1 / j 4r) . Thus , at the end we have an optimal independent
ass ignment due to Lemma 3 . 5 . 4 . Therefore , the algorithm consists of a number of cost
scaling phases . In each cost-scaling phase , the algorithm performs procedure Refine
which transforms a 2c-optimal independent assignment to an E-optimal independent
assignment .

Procedure Refine consists of two subprocedures : Auction and SuccessiveShortest
Path . Procedure Auct ion can be viewed as a generalization of the auction procedure

An Efficien t Cos t Scaling A. lgori l: h m for the In depen den t A ssign m e n t Problem 53

given by J . B . Orlin and R. K. Ahuj a [66] which is designed for the optimal assign
ment problem on a bipartite graph without any additional matroid constraints . The
auct ion procedure by Orlin and Ahuja [66] is a variat ion of the auction algorithm by
D . P. Bertsekas and J . Eckstein [5] . Our procedure Auction starts with an 1::-optimal
independent assignment and first converts it into an E / 4-optimal independent partial
assignment ti. = (B+ , lvf, B-) with j A1 j = 0 . During the execution of the procedure ,
the E / 4-optimality of the independent partial assignment is maintained and at the
terminat ion the obtained independent partial assignment lvf sat isfies r - JM I :S Jr.
Procedure SuccessiveShortestPath starts with this independent part ial assignment and
further enlarges the size of Nl one by one through successive shortest path augmenta
tion steps , which yields an c/2-opt imal independent assignment at t he termination .

The opt imal independent assignment algorithm is described as follows . Details of
the subprocedures will be given in t he next section . The value of the parameter E is not
changed during the execution of procedure Refine and its subprocedures Auction and
SuccessiveShortestPath . The input L can be any posit ive integer and will be optimized
later (in S ection 3 . 8) .

Algorithm Assignment

Input : N = (G = (v+ , v- ; A) , M + , M - , c) , a potential p 0 , a positive integer L ,
and E = C = max { j c(a) I I a E A} .
Output : An optimal independent assignment ti. = (B+ , A1, B -) of N.
Step 1 : While E � 1 / j 4r l , put c' - c/4 , perform procedure Refine(E' , L , p) and put
E - E/2 .
(End)

Procedure Refine(1: , L , p)

Input : N, L , E , and p such that t here exists a 4c:-opt imal independent assignment
with respect to p .
Output : A potential p and a 2c:-optimal independent assignment ti. = (B+ , M, B-) of

A. n Efficien t Cost Scaling A lgori t h m for t h e In depen den t Assign men t Problem

N with respect to p . Step 1 : Perform procedure Auction(E, L , p) . Step 2 : Perform procedure SuccessiveShortestPath(E , p, Li = (B+ , M , B-)) . (End)
3 . 7 . A Refinement of the Approximate Optimality

54

For an c:-optimal independent partial assignment .6. = (B+ , M, B-) with respect to a potential p , an arc a E A6 is called an admissib le arc in N6 if - E � c6 ,P (a) < 0 . Each
v E B+ - 3+ M (v E B - - a- lvf) is called a source (sink) vertex . For each v E V* we define a basic operation Relabel(v) for our procedure Refine.
Relabel (v) : Applicability : v E V* and for any a E A6 with 3+ a = v we have c,0. ,p (a) 2' O; Action : Put p(v) +- p(v) - c: .

We can easily see the following.
Lemma 3 . 7 . 1 : The relabeling operation keeps the c:-optimali ty of ,6. = (B+ , M, B-)
with respec t to tll e updated poten tial p .

A directed path of N6 starting from a source vertex and consisting of only admissible arcs is called an admissible path. We consider the following three types of admissible path P. \"!\Te denote by (v - w) a path consisting of a single arc (v , w) and by (v -. w - u) a path of arcs (v, w) and (w , u).
Type 1 : P = (v -+ w) such that (v , w) E AB+ and p(w) = max {p(u) I (v , u) E AB+ } . Type 2 : P = (v -. w) such that v E B+ - a+ Af and w E B- . Type 3 : P = (v -+ w - u) such that (w , u) E AB- and p('u) = max {p(z) I (w , z) E AB- } .

Three types of push operations are defined for our procedure Refine. Push operations are performed on admissible paths of the above three types .

A n Efficien t Cos t Scaling A lgori t h m for t h e In depen den t A ssign m en t Problem

Pushl (P) : Applicability : P = (v __, w) is an admissible path of Type 1 .
Action : Put B + f--- B + + w - v .
Push2 (P) : Applicability : P = (v __, w) is an admissible path of Type 2 .
Action : P ut M f--- M + (v , w) - { a E IV! I 3 - a = w } . .
Push3 (P) : Applicability : P = (v __, w -, u) is an admissible path of Type 3 .
Action : Put B- f--- B - + w - u and lvf f--- M + (v , w) - { a E M I a-a = u } .

55

Lemma 3. 7 . 2 : All three types of pushes main tain condi tions (3 . 5 . 1 2)~ (3 . 5 . 14) and
the €-optimali ty of Li = (B+ , _M, B-) with respect to the curren t poten tial p .

Proof: I t i s easily verified that 6 satisfies conditions (3 . 5 . 1 2) ~ (3 . 5 . 1 4) after the push
operations . We prove that the €-opt imality is also maintained . Suppose that by
Push l (P) the action Bi f--- B+ + w - v yields a new arc (u, z) E A

B
+ • From Lemma
l

3 . 4 . 3 we have

(i) v = z or (v , z) E AB+ ,

(ii) u = w or (u ' w) E AB+ .

(i) , (i i) and the c-optimality imply that p(v) -p(z) 2: - E and p(u) -p(w) 2: - E . If v =I= z ,
then the selection o f w implies p (z) :S p (w) . Hence , p(u) - p(z) 2: p (u) - p(w) 2: - E .

If v = z , then

p(u) - p(z) = p(u) - p(v) 2: p(w) - p (v) - E > - E , (3 . 7 . 1 9)

where note that p(w) - p(v) > 0 due to the admissibility of arc (v , w) .
For Push2 (P) , the only new arc introduced is (w , v) . S ince (v , w) is admissible

before the push , we have c(w , v) + p(w) - p(v) > 0 > - E .

The case of Push3 (P) can be verified similar ly . D

The first subprocedure of procedure Refine is Auction . The basic operations in
procedure Auction are Relabelings and P ushes . In procedure Auction , the number of
Relabelings on each source vertex is not more than L + 4 . The size of _M is enlarged

An Effi cien t Cos t Scaling A lgori t h m for t h e In depen den t A ssign m en t Pro blem 56

through push operat ions . If L is selected large enough , procedure Auction will termi
nate with an E-optimal independent assignment (see Lemma 3 . 8 . 5) . P rocedure Auction
is described as follows .

Procedure A uction(E , L , p)

Input : L and p such that there exists a 4E-opt imal independent assignment with re
spect to p .
Output : A potential p and an E-optimal independent partial assignment t:. = (B+ , lvf, B-)
with respect to p .
Step 1 : Put lvl = 0 and p(v) - p(v) - 4E fo r any v E v- . Find a base B+ o f M +

such that
(3 . 7 . 20)

and B- of M- such that
(3 . 7 . 2 1)

Step 2 : If there exists n o source vertex v which is relabeled less than L+4 t imes , then
the procedure terminates and let the current t:. = (B+ , _M, B-) and p be the output .
Otherwise , find a source vertex v relabeled less than L + 4 times .
Step 3 : If for each a E A.6. with a+ a = v we have c6 ,p (a) 2:: 0 , then p erform Relabel(v)
and go to Step 2 . Otherwise go to S tep 4 .
Step 4 : Let V (v) = {u I (v , u) E A.6. and i s admissible} (V (v) i s not empty within
this step) .
(4- 1) Applicability : V(v) n B- i 0 .
Find u E V (v) n B- . Perform P ush2(v --, u) and Relabel('u) , and g o t o Step 2 .
(4-2) Applicability : V (v) n B - = 0 and V (v) n (v- - B-) i 0 .
Find u E V (v) n (V - - B-) . I f for each a E A6 with o+ a = u we have c6 ,p (a) 2:: 0 ,
then p erform Relabel (u) and go t o Step 2 . Otherwise find w E B- such that P = (v --,
u __, w) is an admissible path of Type 3 . Perform Push3(P) and Relabel (u) , and go to
Step 2 .
(4-3) Applicability : V (v) n v- = 0 and V(v) n (V+ - B+) i 0 .
Find w E v+ - B+ such that P = (v --, w) i s an admissible path o f Type 1 ; perform

A n Efli cien t Cos t Scaling A lgori t h m for t h e In depen den t A ssign m en t Problem

Push l (P) , Relabel (v) and go to S tep 2 .
(End)

57

Lemma 3 . 7 .3 : The relabehng operations in procedure A u c tion are performed only
when th ey are applicable.

Proof: The relabeling operat ion in Step 3 and the first one in Step (4- 2) are obviously
valid . For the relabeling operation in Step (4- 1) and the second one in Step (4- 2) , note
that there is only one arc (u , v) going out from u after the corresponding push operation .
Before the push , (v , u) is an admissible arc , which implies c(u , v) + p('l.l) - p('u) > 0 .
Therefore , such relabeling operat ions are applicable . For t h e relabeling operation in
Step (4- 3) , since all the arcs going out from v are from v to v- and not admissible in
this step . So the relabeling operation is valid . D

Vve can easily see that the independent partial assignment 6 = (B+ , M, B-) defined
in Step 1 of procedure Auction is 0-optimal . Because of Lemmas 3 . 7 . 1 ~3 . 7 . 3 , we get an
c:-optimal independent partial assignment and the corresponding potential p at the end
of procedure Auct ion . S tarting with them , we perform procedure SuccessiveShortest
P ath described below . V\fe get a 2c:-optimal independent assignment at the termination
of procedure SuccessiveShortestPath . In procedure SuccessiveShortestPath , the cost
function c and the potent ial p obtained at the end of procedure Auction are modi
fied into c and j5 such that the initial independent partial ass ignment in procedure
SuccessiveShortestPath is 0-opt imal with respect to c and p , and then the size of the
independent partial assignment is enlarged one by one through successive shortest path
augmentation steps . The augmentation step is essentially the same as that of M . Iri
and N . Tomizawa [53] .

Procedure SuccessiveShortestPath(E , p , 6 = (B+ , M, B-))

Input : A potential p and an E-optimal independent partial assignment 6 = (B+ , M,
B -) with respect to p.
Output : A potential p and a 2E-optimal independent assignment 6 = (B+ , lv1, B-)
with respect to p .

An Effi cien t; Cos t Sea.ling A lgori t h m for t h e In depen den t Assign m en t Problem

Step 1 : Put

and

p(V) = { p(V) - c
p(v)

for V E (v+ - B+) u B
for V E (v- - B-) u B+

for a E 11v1
for a E A - M.

S imilarly as (3 . 5 . 1 8) we define cL'>. : AL',. _, R in t erms of c instead of c.

58

(3 . 7 . 22)

(3 . 7 . 23)

Step 2 : For each a E AL',. l e t l (a) = cL',. (a) + p(o+ a) - p(o- a) be the length of arc a .
For each v E V* let p (v) b e the length of a shortest path from the source vertex set
s+ = B+ - a+ Jvl to vertex v in NL',_ , If there exists some sink vertex u E B- - [}- M
which is not reachable from s+ , stop (there is no r-inclependent matching in N) .
Otherwise go to Step 3 .
Step 3 : Choose a fixed sink vertex w and find a. shortest directed path P i n NL'>. from
s+ to w ; if there are more than one such pa.th , choose one which consists of the fewest
number of arcs . Denote the arc set of P by Ap . Put

B- - (B- u { o+ a I a E Ap n AB- }) - {a-a I a E Ap n AB- } ,

l\1 ..- (l'vf u (A p n A)) - { a l a E Ap n l\1} ,

j5 - p + p.

Step 4 : If j M j = r , then put p ..- j3 and stop . Otherwise go to S tep 2 .
(End)

(3 . 7 . 25)

(3 . 7 .26)

(3 . 7 . 27)

For simplifying our argument we assume in Step 3 that every v E V* is reachable
from s+ = B+ - a+ _M .

Lemma 3 . 7 .4 : If procedUTe SuccessiveSlwrtestPath stops at Step 2, then there is no
r-independen t match ing in N. □

The proof of this lemma. will be given in S ection 3 . 8 .
The remaining of this section i s t h e proof o f t h e validity of procedure Succes

siveShortestPath . The argument is similar to that of M . Iri and N . Tomizawa [53] .

A n Efficien t Cos t Scaling Algori t h m for t h e In depen den t Assign m en t Pro blem 59

It is straightforward to see that in Step 1 of procedure SuccessiveShortestPath 6. = (B + , _M, B-) is a 0-optimal independent partial assignment with respect to JJ and c .
Lemma 3 . 7 .5 : In Step 2 , 6. = (B+ , _M, B -) is 0-optimal independen t partial assign
men t wi th respect to the poten tial j5 + f5 and cost function c.
Proof : By the definition of 73 we have j5(8- a) :::; p(o+ a) + l (a) for each a E A6 , i .e., cc-, (a) + p(o+ a) + p(o+ a) - (p(3- a) + p(o- a)) 2:: 0 . D
Lemma 3 . 7 . 6 : After an execu tion of Step 3 6. = (B + , _M, B-) satisfies condi tions (3. 5. 1 2)~(3 . 5. 14) .
Proof : We begin by verifying condition (3. 5 . 1 3) . From the definition of P we have for any a E Ap j5(3- a) = p(o+ a) + l (a) . It follows that

(3 . 7. 28)
Denote 6. = (B + , _M, B-) obtained at the beginning of Step 3 by 6. 1 = (Bt, _M1 , B1"). Suppose that the arc set Ap n AB+ is given by {a 1 , - - · , aq } with ai = (ui, vi) (i = 1 , · · · , q) . Since c6 (a) = 0 for a E Ap n A s+ , we have p(ui) = p(vi) (i = 1 , · · · , q) from (3. 7.28) . Also by definition, at the end of Step 3

(3. 7 . 29)
Without loss of generality, let u/s and v; 's be numbered in such a way that

(3. 7 .30)
and that if p(ui) = p(vi) = p(uj) = p(vj) (i < j) , then ai lies nearer to the initial vertex of path P than aj along P . From these assumptions it is seen that there exists no arc (ui, vj) in A s+ with 1 :::; i < j :::; q due to the 0-optimality and the way of selecting P . Hence, by Lemma 3.4. 2 B+ is a base of M+ . By a similar reasoning , we can show that B- is also a base of M - . The verification of conditions (3 . 5 . 12) and (3. 5 . 14) on

□

A n Effi cien t Cos t 8caling A lgorith m for the In depen den t Assign men t Problem 60

Lemma 3. 7. 7: After an execu tion of Step 3 6. = (B+ , Jvl, B -) is a 0-op timal indepen
den t partjaJ assignmen t wi th respect to th e curren t poten tial j5 and cos t function c .

Proof: The notations are the same as in the proof of Lemma 3 . 7 . 6 . Vve prove that for
each a E A.6. - A.6. 1 we have c.6. (a) + p(EJ+ a) - p(EJ- a) ?_ 0 . Here ,

(3 . 7 . 3 1)

For any a E]\If - M1 we have a E Ap n A. . From (3 . 7 . 28) we get c.6. (a) + p(o+ a) -
p(o- a) = 0 .

Next , consider the arcs i n AB+ - A8+ . Define
J

(3 . 7 . 32)

and Io = Bt . Then , from Lemma 3 . 4 . 2 Im = Im-I - Um + Vm i s a base o f M + for each
m = 1 , · · · , q. Note that Iq = B+ . We prove by induction on m = 0 , • • • , q that for
each m = 0 , · · · , q and a E A1m we have p(o+ a) - p(o- a) ?_ 0 . This is true for m = 0
due to Lemma 3 . 7 . 5 . Suppose that it is true for m = k - 1 (1 � k � q) . For m = k ,
let a = (w , z) E A1,.,,, - A1m_ 1 • From Lemma 3 . 4 . 3 we have

(i) Um = Z or (um , z) E A1m -] l

Therefore , p (um) ?. f5(z) and p (w) ?. p(vm) - It follows that p (w) ?. p(z) smce
p(11.m) = p(vm) - Thus the induction assumption is true for m = k, which is the
required conclusion .

For a E AB - - AB - , the proof is similar .
1

D

From Lemma 3 . 7 . 7 , the arc length l (a) defined in Step 2 is nonnegative for each
a E A 6 . Consequently, p(v) is well defined and can be computed efficiently by Dijkstra's
algorithm .

Lemma 3 . 7. 8 : The ou tpu t L:. = (B + , M, B-) of procedure SuccessiveShortestPath is
a 2E-optimal independen t assignmen t with respect to th e corresponding p and c .

Proof: From (3 . 7 . 23) we h ave l c6 (a) - c.6. (a) I � 2c for all a E A6 . Hence , the present
lemma follows from Lemma 3 . 7 . 7 . D

A n Ef/i cien t Cos t Sea.ling A lgori t h m for t h e In depen denc A ssign m e n t Problem

3 . 8 . The Complexity o f the Algorithm

61

In the algorithm we assume an oracle , called an independence oracle , for testing whether a given set is independent . C learly, in our algorithm procedure Refine is executed O(log(rC')) times. Pro cedure Refine is divided into procedures Auction and SuccessiveShortestPath. We first analyze procedure Auction .
Lemma 3 . 8 . 1 : During an execu tion of procedure Auc tion each vertex in V* can b e
relabeled a t most L + 4 times and thus the total number of relabeling operations is at
most (L + 4) 1V* I .
Proof: For each v E v+ we relabel v only when it_ is relabeled less than L+4 times . So, it is relabeled at most L + 4 times. For each u E v- , at the moment of the last relabeling on ·u , there exists v E v+ such that (v , u) is admissible. Thus we have
p(v) - p(u) + c(v, u) < 0. Denote the potential o btainecl at the end of Step 1 by j5. Then, .6. = (B+ , M, B-) in Step 1 is a 0-optimal independent partial assignment associated with j5 . Since (v, u) E Ae; , we have p(v) - j5(v.) + c(v, ?J.) 2: 0 . Hence,

p(u) - p(u) > p(1,) + c(v, u) - j5(v) - c(v , u) 2: -(L + 4)c (3 . 8. 33)
Therefore, u can be relabeled at most L + 4 times. D

Lemma 3 . 8 . 2 : The total n um ber of push operations during an execu tion of procedure
A uc tion is at mos t (L + 4) I V* I .
P roof : Since ea.ch push operation is followed by a relabeling operation, the present lemma follows from Lemma. 3. 8. 1 . D

Each push or relabeling operation requires O (J V* J) time for searching an arc. Hence , we have
Theorem 3 . 8 . 3 : The complexi ty of procedure Auc tion is O(L J V* J 2) . D

The efficiency of our algorithm depends on the size of the final .M obtained by procedure Auction which can be controlled by the choice of L . A relation between L and the size of M will be given in Lemma 3. 8 . 5.

A n Effi cien t, Co.s t Sca/hig A. lgori t h m for t h e In depen den t A ssign m en t; Pro blem 62

Assume that the outputs of procedure Auction are � = (B+ , _M, B -) and p , and the input is p 1 , Let 6 1 = (Et, A11 , B-;) be a 4c-optimal independent assignment with respect to P1 , If B+ - Et is not empty, suppose B+ - Et = { 'Vi , · · · , vt } and put C/ = c+ (Bt ! v/) (i = 1 , - - · , t) . Also define
(3 . 8 .34)

Apply Lemma 3 . 4 . 4 to these two families { ct I i = 1 , • • • , t } and {T/ I i = 1 , • · · , t } , let { ut, · · · , ut } (= E t - B+) be the common transversal of them . (It may b e noted here that obtaining a transversal of each of the two families is enough for the present argument, but we use Lemma 3 . 4 . 4 that appeared in the original version of [38] .) Then, for a bij ection f from { 1 , · · · , t } to itself we have ut E Cj(i)
n T/ for each i = 1 , · · · , t , i . e . , (v; , u;) E A t,. and (ut , Vj(i)

) E At,. 1 for each i = 1 , · · · , t . S imilarly, if B1 - Bis not empty, suppose B1 - B- = { v1 , · · · , v; } and let { u 1 , · · · , u; } (= B- - B;-) be the common transversal of ci- = c- (B - ! v;) (i = 1 , · · · , s) and
(3. 8.3 5)

There exists a bij ection g from { 1 , · · · , s } to itself such that (v; , u:;) E At,. and (u:; , v_; i)) E At,. 1 for each i = 1 , · · • , s . For each vertex v E V in a directed graph G = (V, A) we define
I { a I a E A, 3+ a = v } I ,
l { a I a E A, 8-a = v } I -

(3 . 8 .36)
(3 . 8 . 37)

We consider two directed graphs H = (W, F) and H1 = (Hi, Fi) that are, respectively, subgraphs of N6. and N6. 1
with W = Bt U B + U H1 U B- and

F _M1 U !\If U (u I= 1 { (v;, u;) }) u (ut= i { (v; , u;) }) ,
1\lf1 U ,M U (u != 1 {(ut , v}(i))}) U (uf= 1 { (u; , v; i))}).

(3 . 8 . 38)
(3 . 8 . 39)

Let s+ = B+ - 3+ _M and s- = B- - 3- _M. Note that Et = 3+ lvf1 and H1 = 3- M1 . It is easy to verify the following properties of H and H1 :

(3 .8 . 40)

An Efii cien t Cos t Scaling A /gori t h m for t h e In depen den t Assign men t Problem

and dH v = dki v = { �
It follows from (3. 8. 40)~ (3 . 8.42) that

for v E ,s+ for v E ,s-

for V E 5+ for V E ,s- .

the graph H = (VV, F) is decomposed into j S+ I (= 1 s- 1) vertex-disjoint directed paths from s+ to s- and some vertex-disjoint directed cycles,
the graph H1 = (VV, Fi) is decomposed into 1 s- 1 (� j S+ f) vertex-disjoint directed paths from s- to s+ and some vertex-disjoint d irected cycles. Lemma 3.7.4 follows from (3. 8.43). Furthermore, we have

63

(3 . 8. 4 1)
(3. 8. 42)

(3.8 .43)
(3 . 8.44)

(3 . 8 .45)
Let l x J be the largest integer not exceeding x and Ix l be the smallest integer not less than x.

Lemma 3 . 8 . 4 : Th e arc se t F defined in (3. 8 . 38) has no less than 1 (r - I M l)L/51 arcs.
Proof: Let 6 1 = (Et, lvf.1 , B;-), 6 = (B+, M, B-), p 1 and p be those appearing above. From (3. 8. 43) and the c-optimality of 6 = (B+ , lvf., B-) in N;::,. we have

(3. 8 . 46)
On the other hand, from (3. 8 .44) and the 4s-optimality o f 6 1 we have

(3. 8.47)
Note that p(v) = p1 (v) - 4c for v E s- , since the potential of sink vertex v decreases by 4c at the beginning of procedure Auction and then remains unchanged. From the termination condition of procedure Auction, we have p(v) = p1 (v) - (L + 4)c for v E s+ . Also, I:aE F

i
Ct:,. 1 (a) = - I:aEF ct:,. (a) . Hence, from (3. 8.46) and (3 . 8 .47) ,

- I F l c < L p(v) - L p(v) + L c;::,. (a) (3. 8.48)

A n Efficien t Cos t Scaling A lgori t h m for t h e Jn depen den t A ssign men t Pro blem 64

Consequently, I F I 2 f (r - 1 -M l)L/51 . D

From Lemma 3 . 8. 4 we have
Lemma 3 . 8 . 5 : Let .6. = (B+ , l'vf, B-) be the ou tpu t of procedure A uction . Then we
have I -M l 2 f (r - I M l) L/51 - 3r . If we choose L 2 20r , then I A1 1 = r .

Proof: I t easily follows from (3. 8.45) and Lemma 3 . 8.4 that I M I 2 I (r - l A1 l) L/5l - 3r . Let L be not less than 20r . If I A1 1 #- r , i.e . , r - IM I 2 1 , then the above inequality would imply I M I 2 I L/51 - 3r = 4r - 3r = r , a contradiction. Therefore , I M J = r . □
Next, we turn to analyze procedure SuccessiveShortestPath . In each iteration of Steps 2 and 3 in procedure SuccessiveShortestPath , M is augmented by one. Therefore, the number of such iterations is r - I M I , where .6. = (B+ , M, B-) is the input . The dominating part of the computation is Dijkstra 's algorithm for finding j5(v) and the required shortest directed path, which requires O(J V* l 2) times. Hence, we get

Theorem 3 . 8 . 6 : The complexi ty of procedure SuccessiveShortestPath is O ((r - I MI) JV* J 2) when _M is the inpu t . □
Finally, we have

Theorem 3 . 8. 7 : If we choose L = f20-/r - 51 , then the complexi ty of the optimal
independen t assignmen t algmithm is O(-/rl V* l 2 log(rC)) with the independence oracle.

Proof: Procedure Refine is executed O(log(rC)) times. From (3. 8.45) and Lemma 3. 8 . 4 we have 3r + J M J 2 f(r - J A1 J) L/5l \i\/hen L = f20 -Jr - 5l , we have r - J MJ � -Jr-Hence, Theorems 3. 8. 3 and 3. 8.6 imply the present theorem. D

A Cost Sea.ling A lgori thm for Min im u m- Cost S' u bm o d u la.r);,lows

Chapter 4 .

A Cost Scaling Algorithm for Minimum- Cost

Submodular Flows

65

4 . 1 . The Minimum-C ost Submodular Flow Problem and the

Optimality Condit ion

In this chapter , we consider the problem of finding minimum-cost submodular flows . An
algorithm for the problem is constructed which is a generalization of the algorithm for
minimum-cost flows devised by A .V . Goldberg and R. E . Tarj an ([44]) . Our algorithm
uses the technique of cost scal ing , the complexity of the algorithm i s proved to be
pseudo-polynomial and in case of minimum-cost 0- 1 submodular flows the complexity
is polynomial .

The definit ion o f the minimum-cost submodular flow problem is given belo-w . Let
G = (V, A) be a directed graph with a vertex set V (I V I = n) and an arc set A
(I A ! = m) with no self- loop and no multiple edges . Also let function c : A. - Z (the set
of all integers) be an upper capacity function , f : A. --t Z be a lower capacity function
and , : A. _, Z be a cost funct ion . D � 2V is a family with 0 , V E D and closed with
respect to the set union and intersection . f : D _, Z is a submodular funct ion on D
with J (0) = J (V) = 0 . Given a flow function <p : A. _, R, if

�(a) � <p(a) � c(a) (a E A.) , (4 . 1 . 1)

then <p is said t o b e a feasible fiow.
A minimum-cost submodular flow (or an op timal submodular flow) is a feasible flow

A. Cost Scaling Algorit hm for Minim um -Cost Su bmodular Flows

cp : A --+ R which is a solution to the following Problem (P 5) :

(P s) Minimize }: ,(a)cp(a)
aEA subj ect to Q(a) :::; cp(a) :::; c (a) (a E A) ,
fJcp E B(J).

66

(4. 1 . 2)
(4. 1 . 3)
(4. 1 . 4)

A flow cp satisfying (4. 1 . 3) and (4. 1. 4) is called a wbmodular flow. The following theorem is concerned with the existence of a submodular flow (() .
Theorem 4 . 1 . 1 ([24]) : There exists a su bmodular flow for the su bmodular flow prob
lem (P s) if and only if (4. 1 . 5)
or (4. 1 . 6)
where for each X � V .0,.+x = { a I a E A, a+ a E X, a-a E V - X } and .0..- x = { a I a E A , a- a E X) a+ a E V - X } . □

Since the capacity functions take finite real values, the set of all feasible solution of Problem (P s) is a bounded and closed set. It follows that there exists an optimal solution of Problem (P 5) if the problem is feasible. Vie adopt a theorem from [34 , p. 136], which shows an optimality condition for submodular flows.
Theorem 4 . 1 . 2 : A su bmodular flow cp : A --+ R for Problem (Ps) is optimal if and
only if there exists a function p : V --+ R such that , defining "Ip : A --+ R by

(4 . 1 . 7)

we have for each a E A "/p (a) > 0 =} cp(a) = Q(a) , (4 . 1 . 8)

,p(a) < 0 =} cp(a) = c(a) (4. 1 . 9)

A Cost Scaling A lgorit hm for Min im u m - Cost 8u bmodular Flows 67
and su ch that the boundary 8tp : V - R is a maximum weigh t base of B (f) wi th
respect to the weight function p i . e . ,

L 8cp(v)p (v) = max{ I: x (v)p(v) I x E B (f) } . (4. 1 . 1 0)
v E V v E V D

Given a pair 6 = (tp , z) called a submodular pse1.ldo-.fiow formed by a feasible flow cp and a base z E B (J) , we define an auxiliary network Nt:,. = (G6 = (V, At:,.), c6 , 'fo) where G c:,. is a directed graph with vertex set V and arc set A6 . At,. is defined as
Ac:,. Acp u B'P u CZ
Acp { a I a E A, ({'(a) < c(a)} ,
B'P { a I a E A , ({' (a) > r(a) } (a : a reorientation of a) ,
CZ {(u, v) I u , v E V, u E dep (z, v) - { v } } .

The capacity function c6 : At,. - R is given by
{ c(a) - ({'(a) (a E A'P) Ct:,. (a) = �(a) - r(a) (a E Bcp , a (E A) : a reorientation of a)

c (z , v , u) (a = (u, v) E C,,)
and 16 : At. _, R is the length funct ion given by

{ 1 (a) (a E Acp) 16 (a) = -1 (a) (a E Bcp , a (E A) : a reorientation of a) . 0 (a = (u , v) E Cz) -

(4. 1 . 11)
(4. 1 . 1 2)
(4. 1 . 1 3)
(4. 1. 1 4)

(4 . 1. 1 5)

(4. 1. 1 6)
Theorem 4 . 1 . 3 ([34, p . 1 37]) : A su bmodular flow lp : A - R for Problem (P s) is
optimal if and only if there exists no directed cycle of negative length , relative to
the length func tion 16. , in the auxiliary network N6. = (G6. = (V, .46) , Cf>. , 16.) where
6 = (cp, z) with z = Olp . □

Using the auxiliary network N6. = (G6 = (V, A.6.) , c6 , 16) and Lemma 1 . 5 . 5, we can rewrite the optimality condition given by Theorem 4. 1 .2 as follows .

A Cost; Sea.ling A lgorith m for Min im u m - Cost Submodu la.r Flows 68

Theorem 4 . 1 .4 : A submodular flow <p : A -----. R for Problem (Ps) is optimal if and
only if there exis ts a function JJ : V -----. R such that , denning 16 ,P : A.6 __, R by

(4 . 1 . 1 7)

we have for each a E A.6 , 16 ,p (a) 2 0 , where 6 = (r.p, z) wi th z = O<p . □

For a positive real number E we define €-opt imality for a submodular pseudo-flow
6 = (<p , z) . This concept is fundamental for our cost scaling algorithm.

Definition 4 . 1 . 5 : A submodular pseudo-flow 6 = (r.p , z) i s said to be € - optimal if
there exists a potential function JJ : V __, R such that 16 ,P (a) 2 - E for all a E A.6. . □

Put r = maxaE A b(a) I . Then , we have

Lemma 4 . 1 . 6 : Any submodular pseudo-fl.ow is E-optimal for € 2 r and any € -optimal
su bmodular flow (z = 3r.p) with E < 1 / I V I is an optimal submodular flow.

Proof: The first part of the lemma can be verified by taking p - 0 . For the second
part of the lemma, we see that if E < 1 / IV I , t hen there is no negative directed cycle
in Nt:. = (Gt:. = (V, A.t:.) , ct:. , ,'6) , since the length La Ec 11e; (a) = L aEC J6. ,p (a) of each
cycle C is an integer and is greater than or equal to -c l V I > - 1 . Hence , the optimality
of the submodular fl.ow follows from Theorem 4 . 1 . 3 .

4. 2 . Examples o f Submodular Flow Problems

□

In this sect ion we describe several examples of submodular flow problems .
Strongly-connected orientation. Consider an undirected graph Gu = (V, E) , the
k -strongly- connected orientation prob lem is to orient all edges of Gu to make it k
strongly-connected for a given p ositive integer k or show t his is impossible . In the
minimum-cost k - strongly- connected orientation problem each orientation of an edge
has a cost and we seek a k-strongly-connected orientat ion of smallest possible cost . In
[23] , A . Frank has formulated this problem as a minimum-cost 0- 1 submodular flow
problem with the submodula.r function p(X) - k (cf. Theorem 1.4 . 2) .

A Cost Scaling A lgor i t h m for Minim u m - Cost Subm o d u lar Flows 69

Reachability orientation . Consider a mixed graph, with both directed arcs and undirected edges . Let s be a fixed vertex of the graph . The k -reachab'ility orientation

problem is to orient the undirected edges so that each vertex can be reached by k arcdisj oint directed path from s . The minimum-cost k -reachability orientation prob lem (defined similarly) can be formulated as a minimum-cost 0- 1 submodular flow problem . Both problems are related to the reliability theory. Vertex reachability. Consider a directed graph G = (V, A.) with nonnegative arccosts and a distinguished vertex s . The minimum- cost k -vertex-reachability problem is to find a minimum-cost set B of arcs such that any vertex can be reached from s by k vertex-disjo int directed paths consisting only arcs in B . A . Frank and E . Tardos [26] reduce this problem to a minimum-cost 0-1 submodular flow problem. It is a natural extension of the minimum-cost spanning arborescence problem . Independent flow problem. Consider a network
(4 . 2 . 1 8)

where s+ , s- c V with s+ n s- = 0, c (.r) is the upper (lower) capacity function on A , (v+ , j+) ((v- , 1 -)) is a su bmod ular system on s+ (s-) , and , is the cost function on A. The minimilm-cost independent flow problem is defined by
Minimize I: a E A 1(a)cp (a)

subject to _g(a) :S cp(a) :S c(a) (a E A) ,
(ocp)s+ E B (J+) , (ocp)5'- E B(J-) ,

ocp (v) = 0 (v E V - s+ n s-) .
Here, (or.p)5+ ((ocp) 5'-) is the restriction of or.p : V -+ R to s+ (s-) .

(4. 2. 1 9)
(4 . 2. 20)
(4 . 2. 2 1)
(4 . 2 . 22)

The independent flow problem was first considered by S . Fujishige [28] which is the generalization of both the independent assignment problem and the submodular intersection problem. The problem has many engineering applications (see [5 1 , 52]) . Also , the independent flow problem can be reduced to a submodular flow problem and vice versa (see [34]) . Polymatroidal flow problem. Consider a network
N = (G = (V, A) , _g, 1, (Vt , J;;) , (V;; , J;;)(v E V)) , (4. 2 . 23)

A Cost Sea.ling Algo6 t h m for Min im u m - Cost S u bmod ula.r Plows 70

where _g_ is a lower capacity function 011 A , 1 is a cost function 011 A , and ('D; , fv+)
((D;; , f;;)) is a submodular system on b + v (b- v) for each v E V (see Section 1 . 2 for
definit ions of b+v and b- v) . The polymatroidal fiow problem (R . Hassin [48] and E . L .
Lawler and C . U . Martel [60 , 6 1]) i s given as follows

Minimize I: a E A --y (a) <p(a)

subject to f(a) ::; cp(a) (a E A) ,

lpo+ v E P (f;;) , lp◊- V E r uv-) (v E V) ,

!Jtp(v) = 0 (v E V) ,

(4 . 2 . 24)

(4 . 2 . 25)

(4 . 2 . 26)

(4 . 2 . 27)

where tp0+ v (cp8 - v) is the restriction of <p : A -+ R to b+ v (b- v) . In [63] an application
of the polymatroidal flow problem to multiprocessor scheduling problems has been
studied . Also , the polymatroidal flow problem can be reduced to a submodular flow
problem and vice versa (see [34]) .

4 . 3 . A Cost Scaling Algorithm

In our cost sea.ling algorithm, we execute a procedure called Refine which converts a
2c-opt imal submodular flow to an E-optimal submodular pseudo-flow and then converts
it to an E-optimal submodular flow . Two basic operations called Relabel and Push are
performed in procedure Refine. Given a submodular pseudo-flow L':. = (<p , z) and the
corresponding auxiliary network N6 = (G6 = (V, A6) , c6 , 16) , suppose that we have
a potential function p such that L':. is E-opt imal with respect to p. For each v E V let
e (v) = z (v) - 3tp(v) , which is called the excess on v . If e (v) > 0 , then v is called an
active vertex .

For an E-optimal submodular pseudo-flow with respect to a potential p , an arc
a E A6 is called an admissib le arc in }lc,. = (G6 = (V, A6) , c6 , --y,0,) if -E ::; 16 ,p (a) < 0 .
Note that in our algorithm p(v) /c for any v E V is always an integer , and hence for
each a E C2 a is an admissible arc if and only if 16 ,p (a) = - E .

The relabeling operation o n v E V i s defined as :
Relabel(v) : Applicability : e (v) > 0 and for any a E A6 with a+ a

1 t., ,P (a) 2: 0 ;
v we have

A Cost Scaling A lgori t hm for Min im um-Cost Submodu lar Flows

Action: p(v) - p(v) - E .

The push operation on (v , w) E A,0. is defined as : Pushl (v, w) : Applicability : e(v) > 0 , 16 ,p(v, w) < 0 and (v , w) E A'P U B'P ; Action : If (v , w) E A,p , then rp(v , w) - rp(v, w) + min(e(v), c,0.(v, w)) . If (v, w) E B,p , then rp(w, v) - rp(w , v) - min(e(v) , c,0.(v, w)). P ush2 (v , w): Applicability : e(v) > 0, (v, w) E Cz and 1,0. ,p(v , w) = - E . Action : :� - z + a(xw - Xv) where 0: = min(e (v), c6(v, w)).

71

Lemma 4 . 3 . 1 : If v is an active vertex, then ei th er a push for some a E A6 with
a+ a = v or a relabel of v is applicable . □

An algorithm for the minimum-cost submodular flow problem is described as follows . The L in t he input can be any posit ive integer at the moment and will be appropriately determined in the next section .
Algorithm Minimum-Cost Submodular Flow. Input : N = (G = (V, A) , c , f, 1', ('D , J)) , a positive integer L, a potential p = 0 and
E = r /2 = max{ f'"y(a) l /2 I a E A} . Output : A minimum-cost submodular flow rp in N. Step 1 : While E :2: 1 /(2 I V I), perform procedure Refine(c, L, p) and put E - c/2 . (End)
Procedure Refine(c: , L , p) . Input : c, L , and p such that there exists a 2E-optimal submodular flow rp with respect
to p . Output : A potential p and an E-optimal submodular flow tp with respect to p . Step 0 : For the current p, find an integer vector zo in B (f) such that

L p(v) z0 (v) = ma.x L p(v) z' (v).
vEV z' E B(f) vEV

(4.3 . 28)

A Cost Sea.ling A lgorit h m for Min im u m - Cost S u bm o d u lar Flows

P ut .i - zo. For each (v, w) E A, if 'Yc::. ,p (v, w) < 0 then put <p(v, w) - c(v, w), otherwise put <p(v , w) -s;_(v, w) . Put 6 - (<p, z) .

72

Step 1 : While there exists a vertex v E V that satisfies e(v) > 0 and has been relabeled less than L times, choose one such vertex v and do the fol lowing (1 -1) ~(1 -3) (if there exists no such vertex , then the procedure terminates and let the current <p, E and
p be the output) . (1- 1) Applicability : For any a E At,,. with a+ a = v we have 16. ,p (a) 2 O ;
p(v) - p(v) - E . (1 -2) Applicability : ,c::. ,p (v, w) < 0 and (v, w) E Ac,o U Bc,o ; Perform Pushl(v , w) . (1- 3) Applicability : ,c::. ,p (v, w) = - E and (v, w) E Cz ; Perform Push2(v, w). (End)

We have the following lemmas.
Lemma 4 . 3 . 2 (cf. Lemma 1 . 5.5) : The su bmodular pseudo-flow 6 defined in Step 0 of proced ure Refin e is 0-optimal with respect to the poten tial function in the inp u t .

Proof: 16. ,p(a) 2 0 for each a E Ac,oUBc,o is directly from the definition of <p. 1t,,. ,p (a) 2 0 for each a E Cz is from Lemma 1 .5.5. □

Lemma 4 . 3 . 3 : Th e relabeling operation in procedure Refine keeps the E -optimality of
6 = (cp , z) with respect to the updated poten tial p . □

Lemma 4 . 3 .4 : Both t wo types of push operations keep 6 = (<p, z) a s u bmodular

pseudo-flow and the E-optirnality of 6 = (cp , z) with respec t to the curren t poten tial p .

Proof: Since the potential function is not changed, i t is enough to prove that 16. ,p (a) 2
- E for any new arc generated by a push .

A Cost Scaling A lgori t h m for Minim u m - Cosi S u bm o d u lar Flows 73

Suppose (w , s) is a nevi' arc after a push operat ion on an admissible arc (u , v) E Cz .
By Lemma 1 .4 . 1 2 we have
i) u = s or (u , s) E Cz and
ii) v = w or (w , v) E C, .

If u # s and w # v , from i) we have p (il) - p(s) > - E and from ii) we have
p(w) - p(v) 2: -E . Hence

P(w) - p(s) 2: p(v) - p(s) - c = p(u) + c - p(s) - E 2: - E .

If u = s and w # v , then

p(w) - p(s) 2: p(v) - p(s) - r; = p(v) - p(u) - c = 0 .

I f u # s and w = v , then

p(w) - p(s) 2 p (w) - p(u) - E = p(v) - p(u) - E = 0 .

If u = s and w = v , then p(w) - p(s) = p(v) - p(u) = E .

Therefore "/6. ,p (w , s) 2: - r; holds .

(4 . 3 . 29)

(4 . 3 . 30)

(4 . 3 . 3 1)

A push o n an admissible arc (u , v) E A.'P U B'P only produces a new arc (v , u) for
which we have 16 (v , u) + p(v) - p(u) > 0 . □

Lemma 4 . 3 . 5 : A t the end of procedure Renne , the ou tpu ts are a poten tial p and an
E-optimal su bmodular flow with respect to the poten tial p . D

Proof: The present lemma is from Lemma 4 . 3 . 3 , 4 . 3 .4 , 01.p 2: z (since e (v) :::; 0) and

z (V) = f (V) = 81.p(V) = 0 .

4 .4 . The Complexity of the Algorithm

Our cost scaling algorithm repeatedly p erforms procedure Refine. Obviously the it
erat ion number of procedure Refine is O (log (I V ! r)) due to Lemmas 4 . 3 . 5 and 4 . 1 . 6 .
I n this section , t h e complexity o f procedure Refine i s analyzed . We first estimate the
number of relabelings on each vertex in V during an execution of procedure Refine and
then estimate the number of pushes during an execut ion of procedure Refine .

We give a lemma and a corol lary of it where f (V) = 0 is not ctSsumed .

A Cost Scaling A lgor i thm for .Min im u m - Cost 8 u b m o d u lar Flows 74

Lemma 4 .4 . 1 : Let z , z' E B (f) and z (v) , z' (v) � 0 for all v E V , where (D , f) is a
s ubmodular system on V . Suppose that for a poten tial function p : V - R and E > 0
we h ave p('ll) - p(v) � - E for any u , v E V with u E dep(z , v) - { v } . Then ,

L p (v) (z (v) - z' (v)) � -c J (V) . (4 . 4 . 32)
vEV

Proof: Define a bipartite graph Gb = (V, V' ; Az) where V' is a copy of V and A z =
{ (u , v') I u , v E V, u E dep (z , v) } . The upper capacities of the arcs in A2 are assumed
to be infinity and the lower capacities of the arcs in Az are assumed to be zero . For
any subset U of V let W = {w I w E V, u' E U' , (w , u') E A.2 } . It follows from
the definition of A.2 , 1¥ , Lemma 1 . 4 . 3 and Equation (1 .4 . 1 1) that z (1¥) = J (W) and
U � W . Hence z' (U) ::; z' (W) ::; J(vV) = z (W) . Consequently, from Theorem 1. 2 . 2 ,
there exists a function g : A.2 - R+ such that

where
fJ+ u = { (u , v') I v' E V' , (u , v') E A.2 } ,

6-v' = { (u , v') I u E V, (u , v') E A2 } ,

and z' (v') = z' (v) for v' E V' .
Define p (v ') = p (v) for v' E V' . Then ,

L p (v) (z (v) - z' (v))
vE V

= L z (u)p(u) - L z' (v')p(v')
uEV v' E V '

u E V v ' E V '

aE A ,

� -[L g(a)
a E A ,

= -E L z (u)
u E V

= -Ej (V) .

(4 .4 . 33)

(4 . 4 . 34)

(4 . 4 . 35)

(4 . 4 . 36)

□

A. Cost Scaling A lgori thm for Minim um-Cost 8ubmodu la.r Flows 75

Corollary 4 .4 . 2 : Let z , z' E B(f) and cl E Rv be such that z (v) + d(v) , z' (v) + d(v) � 0
for all v E V , where (D , f) is a su bmodular system on V . Suppose that for a poten tial
func tion p : V -c; R and E: > 0 we h ave p(u) - p(v) � - E: for any u , v E V wi th ·u E clep(z, v) - { v } . Then ,

L p(v)(z(v) - z' (v)) � -E :(f(V) + d(V)) . (4 . 4. 37)
v E V

□

Let 6. 1 = (cp', z' = ocp') be a 2E:-optimal submoclular flow with respect to p' and 6. = (rp , z) be an E:-optima.l submodular pseuclo-flovv with respect to p , where p' is the input of an execution of procedure Refine and 6 = (cp, z) and p are the current submodular pseudo-flow and the corresponding potential function within the execution of procedure Refine. Define
{ v E V I z (v) - 8rp(v) > O },
{ v E V I z (v) - orp(v) < O } ,
{ (v, , v) E A\O [rp' (u, v) > rp(u, v) }
U { (u, v) E B'P I cp(v, u) > cp' (v, u) } ,

E_ { (u, v) E A'P, I tp(u, v) > cp' (u, v) }
u { (u, v) E B'P , I cp1 (1;, u) > cp(v, u) }.

Note that p' (v) = p(v) for v E s- since we only relabel active vertices. Then,
L 11:, ,p (a) (cp' (a) - cp(a)) + L 11:, ,p (a) (cp (a) - cp' (a))

L 11:,(a)(cp' (a) - cp(a)) + L 11:, (a) (cp(a) - cp' (a,))

L ,1:, (a) (cp' (a) - cp(a)) + L 'fo (a) (tp(a) - cp1 (a))

(4 . 4 . 38) (4.4 .39)
(4 .4.40)
(4.4 .4 1)

+ I:: p(v) ((rp' (a) - cp(a)) + (cp(a) - cp' (a)))
v E V

A Cost S'ca/ing A lgori t h m for Minim u m - Cost S'u bmodular Flows

- L P(v) ((r;/ (a) - 1P(a)) + (cp (o.) - cp' (ii)))
v E V

- I: p(v) (ocp (v) - ocp' (v))
v E V

L ,t. (a) (cp' (a) - cp(a)) + L 'fo (a) (cp(a) - cp' (a))

- L p(v) (ocp(v) - z (v)) - L p(v) (z (v) - z' (v))
v E V v E V

L "'/6. (a) (cp' (a) - cp(a)) + L ,6 (a) (1P(a) - cp' (a))

- L p(v) (ocp(v) - z (v)) - L p(v) (81P(v) - z(v))

76

- L p(v) (z (v) - z' (v)) . (4 . 4 .42)
v E V

On the other hand , we have

,t.' ,p' (a) (1P (a) - cp1 (a)) + L 16' ,p1 (a) (1P' (a) - 1P (a))
a E E- nB

'P
,

16, (a) (cp (a) - ip1 (a)) + L

+ I: (p' (a+a) - p' (cr a)) (1P' (a) - cp(a))

L 1t. 1 (a) (<,o (a) - cp' (a)) + L "'/6 1 (a) (<,o' (a) - cp(a))

+ I: p' (v) (I: (<,o(a) - <p1 (a)) + I: (cp' (a) - cp(a)))
v E V aE E_ nA"' , , o + a = v a E E- nB"', , o+ c,=v

- I: p' (v) (I: (<p (a) - cp' (a)) + I: (1P' (a) - cp(a)))
vEV aE E_ nA"' , , 8- a=v aEE- nB"', , 8- a=v

vEV

- L p' (v) (z (v) - 81P(v)) - L P' (v) (z' (v) - z (v))
v E V v E V

A Cost Scaling A lgor i thm for Min im u m - Cost S u bmodu lar Flows 77

- I: p' (v) (z (v) - ocp(v)) - I: p' (v) (z (v) - ocp (v))

- L p' (v)(z ' (v) - z (v)) . (4 . 4 . 43)
v E V

From (4 . 4 .42) ,

- L p(v) (ocp(v) - z (v)) - L p(v) (ocp(v) - z (v))

+ L p (v) (z (v) - z' (v))
vEV

;::: -c:d(V) - c(L (cp' (a) - cp(a)) + L (cp(a) - cp' (a))) . (4 . 4 . 44)
aEE+ nA� a E E+ nB�

From (4 . 4 . 43) ,

- L p' (v) (z (v) - 8cp(v)) - L p' (v) (z (v) - 8cp(v))

+ L p' (V) (z' (V) - z (V))
v E V

Putt ing U = maxa E A (j c(a) I + l f(a) j) and adding the above two inequalities , we have

I: (p' (v) - p(v)) (z (v) - 8cp(v)) ::; 3cd(V) + 1 2c:mU. (4 . 4 . 46)
vES+

Lemma 4 .4 .3 : If for a s ubmodu lar pseudo-flow 6. = (cp, z) in procedure Refine, there
exis ts v E V su ch that e (1;) > 0 and { a I a E A0. , a+ a = v} = 0 , then Problem (P s) is
infeasible .

A Cost Sea.ling A lgori t hm for Minim u m - Cost Su bmod,, lar Flows 78

Proof: If Problem (P s) is feasible , then procedure Refine is well defined since any submodular flow is r-optimal with respect to p = 0 which is the input for the first procedure Refine. Let the current potential function be p and the potential function in inputs be 1 I The inequality (4 .4. 46) holds . But { a I a E A,-:,., a+ a = v } = 0 implies that relabeling operations can be carried out any times on v . This is impossible by (4.4.46) . Therefore , Problem (P s) is infeasible . D
If c, .Q, z and c.p are integer vectors , j is an integer valued function and procedure Refine terminates when each active vertex is relabeled L (an integer) times , then from (4.4.46)

Hence,
L LE :=; L (p' (v) - p(v)) (z (v) - 8cp(v)) .

vE.S'+ vE .S'+

L :=; (3d(V) + 12mD) / j S+ I .
(4.4 . 47)
(4.4.48)

Theorem 4 .4 .4 : If we take L > 3d(V) + 12rnU and rnlabel each vertex at most L
times, then procedure Refine terminates at (cp, z) such tha t z = 8c.p .
Proof : Suppose on the contrary that procedure Refine terminates with (cp, z) such that z -1- 8cp , i.e . , s+ -1- 0. Then, the remaining active vertices are all relabeled exactly
L times . Hence ,

L :=; (3d(V) + 12mU) / l s+ I ::; 3d(V) + 12mU.
This is a contradiction.

Define x (v) = - U j bv l for each v E V, where
bv = { (u , w) I (u , w) E A , u = v or w = v } .

(4 .4. 49)
D

(4.4. 50)
If P roblem (P s) has a feasible solution cp, then x E P(J) since x :=; 3cp E B(f). Let fx be the contraction of f by the vector x. Replacing f by f x in Problem (P s) does not change the set of all feasible submodular flows . For given z , z' E B (f x) as above, we have z - x 2:: 0 and z' - x 2:'. 0 from Lemma 1 .4 . 13 . Then, from (4 .4. 46) and
- x (V) = I:v E V U j bv l ::; 2rnU we have

L (p' (v) - p(v)) (z (v) - 3cp(v)) ::; 18crnU. (4.4. 51)
vE .S'+

A Cost Scal ing A lgorith m for Min im u m - Cost S'u bmodular Flows 79
Theorem 4 .4 . 5 : If we take L = 1 8mU + 1 and relabel each vertex at mos t L times ,
then procedure Renne terminates at (rp , z) such that z = 3rp .

Proof: Let cl = -x , the present theorem follows from Theorem 4 .4 . 4 .
For a 0-1 minimum-cost submodular flow problem, we have

L (p1(v) - p(v)) (z (v) - 3({)(v)) :S l 8c1n .
v E S +

□

(4 . 4 . 52)
Inequality (4 .4. 52) is essential to construct a hybrid version algorithm for a 0-1 minimumcost submodular flow problem which is similar to the approach in Chapter 3. To estimate the number of pushes , we must make refinements on the order of basic operations to be carried out. First we make refinements on the order of selecting active vertices for operations of relabeling and push. Vie use a topologica.1 numbering on V which was initiated by H. N . Gabow and Y. Xu [40] for constructing a valid augmenting path. Let T : V -+ Z+ be a nonnegative integer function on V . T is said to be a topological
numbering on V if it satisfies the following : (Tl) If a is an admissible arc , T (d+ a) 2: T(<Y a), (T2) If a is an admissible arc in A'P U Bip , T (o+ a) > T(3-a) .
Definition 4 .4 . 6 : An admissible arc a E All. is called a strongly admissible arc if a E A'P u Bip, or a E CZ with T (o+ a) = T(a- a) . □

Lemma 4 .4 . 7 : A. push operation on a, strongly admissible arc keeps T a topological
n umbering on V.
Proof: Suppose (w , s) is a new admissible arc after a push operation on a strongly admissible arc (u, v) E Cz . By Lemma 1 .4 . 12, we have i) u = s or (u , s) E Cz and ii) v = w or (w, v) E C z . If u -/:- s and w -/:- v , from i) we have p(u) - p(s) > - E and from ii) we have
p(w) - p(v) 2: - E . Since (w , s) is admissible , so

p(u) 2 p (s) - E = p (w) 2 p(v) - E = p(u) . (4.4. 53)

A Cost Sea.Jing A lgorithm for Min im u m - Cost S' u bmod ula.r Flows 80

Therefore , equality holds throughout the above inequalities and consequently (u, s) and (w, v) are admissible arcs . Thus T (w) � T(v) = T (v.) � 7(s) . If u = s and w -/:- v , then p(u) = p(s) = p(w) + E � p (v) = p(u) + E , a contradiction . If u i- s and w = v , then p(u) � p(s) - E = p(w) = p(v) = p(1.L) + E, a contradiction. If 'l.l = s and w = v , then p(w) - p(s) = p(v) - p(v.) = E , which implies that (w , s) is not an admissible arc in this case. A push on an admissible arc (u , v) E A,o U B,,o only produces a new arc (v, u) which is not an admissible arc since 16 (v, u) + p(v) - p(u) > 0. D
Suppose a relabeling is performed on v . Let T be the maximum value of current

T . Put T +-- T + 1 and then put T(v) +-- T. The modified T is a valid topological numbering on V , since there is no admissible arc going into v right after v is relabeled. If during the algorithm we find that there is no strong admissible a.re going out from v , then T(v) is replaced by max{T(w) I (v, w) E C2 is admissible} . The modified T is still a valid topological numbering on V . Now, we define a list L(r,p) o f V . The vertices of V in Lc r,p) are arranged in the order of the decreasing magnitude of the values of T . For the vertices having the same value of T , we arrange these vertices in the order of the increasing magnitude of the values of p. For the vertices having the same values of T and of p, they can be ordered in any way. In list L (r,p) there is a vertex called the current vertex of L (r ,p l . Since T (v) > T (w) holds for each admissible arc (v, w) E A.,,o U B,,o and T(v) � T(w) , p (v) = p (w) - E holds for each admissible arc (v , w) E C2 , we have an important property of list L(r,p) , i.e. , if (v, w) in A.6 is an admissible arc, then v appears before w in Lcr,p) · Initially, T(v) = 0 (v E V) , L(r,p) contains the vertices in V in the order of the increasing magnitude of the values of p and the current vertex of L(r,p) is the first vertex of L(r,p) · T = 0 is a topological numbering for the initial L'-. of procedure Refine since .6. is 0-optimal by Lemma 4 . 3. 2 and thus there is no admissible arc in
N6 = (G6 = (V, A.ti) , cti , 16) -In the following we make refinements on the · order of the push operations to be carried out . Let 1r : V -+ { l , 2, . . . , n} be a one-to-one mapping, i .e . , a numbering of the vertices in V. Based on this 1r 1 we define a list L" on V by the rule :

v is before w on L1r {:::::::} K(v) > 1r (w) (4 . 4 . 54)

A Cost Scaling A lgori t h m for Minim u m - Cost S' u b m o d u far Flows 8 1

for any v, w E V , For a fixed 'll in V, we define a list Li st-rr (u) on the ordered pair set { (u , v) I v E V - { u } } by
(u , v) is before (il, w) on Li st -rr (u) ¢.::::::? v is before w on L-rr (v , w i= u). (4 .4. 55)

In List1C (u) there is an element called the current arc of u . Initially, the current a.re of u is the first element in List-rr (u) . \Ve should point out that list L (T ,p) is used in selecting active vertices and has no relation to the definition of current arcs. We give an implementation of procedure Refine which is called the first-active implementation. Procedure Refine(E, L , p) (first-active implementation) . Input : E , L = l 8 rnU + l , and p such that there exists a 2E-optimal submodular flow r.p with respect to p . Output : A potential p and an 1:-optimal submodular flow r.p with respect to p . Step 0 : For the current p, find an integer vector z0 in B (f) such that
L p(v) zo (v) = max L p(v) z' (v) .
v E V

z ' E B (J)
v E V

Put z +- z0 . For each (v , w) E A, if 16 ,p (v, w) < 0 then put
r.p(V, W) +- c(V, W), otherwise put r.p(v , w) -�(v , w) . · Put 6. +- (r.p , z) .

(4 . 4 .56)

Step 1 : Let Le r,p) be the list of V and v be the current vertex . If ·u is an active vertex and relabeled less than L times, go to Step 2. If v is not the last vertex of L (T,p) , replace
v as the current vertex by the vertex right after v on L(r,p) and go to the beginning of Step 1 . If v is the last vertex of Le r,p) , then output the current potential p and E-optimal submodular flow r.p with respect to p and stop. Step 2 : Let (v, w) be the current arc of v . (2-1) Applicability : 16 ,p (v , w) < 0 and (v , w) E A'P U B'P ; Perform P ushl (v, w). Go to Step 1. (2-2) Applicability : 16 ,p(v , w) = - E and (v, w) E C2 is strongly admissible; Perform Push2(v, w) . Go to Step 1 . (2-3) Applicability : (v , w) � A.6 , or (v, w) is not strongly admissible and not the last element in List-rr(v);

A Cost Scaling A lgori t h m for Minim u m - Cost S' u bmodular Flows 82

Replace the current arc (v , w) by (v , u) which is next to (v , w) in Listrr (v) . Go to the
beginning of Step 2 .
(2-4) Applicability : (v , w) i s the last element i n Listrr (v) , (v , w) � A.c-. o r (v , w) i s not
strongly admissible , and there is at least one admissible arc in Li.st 1r (v) ;
Put T(v) = max{ T(w) I (v , w) E C2 is admissible } and let (v , w) be the current arc of v
where (v , w) is the first admissible arc in List1r (v) achieving the value max{ T(u) I (v , u) E
Cz is admissible } with u = w . Put v at the right position in L(T ,P) ba.sed on the new
values of T(v) and p(v) . If this changes the position of v , then let the vertex next to
v b efore the replacement be the current vertex and go to Step 1 . Otherwise , p erform
Push2(v , w) and go to Step 1 .
(2 -5) Applicability : (v , w) is the last element in Listrr (v) and there is no admissible arc
in Li st rr (v) ;
p(v) ,_ p (v) - E , T ,- T + 1 and T (v) ,_ T. Place v at the b eginning vertex of L(T,JJ)

and let it be the current vertex . Go to S tep 1 .
(End)

Lemma 4 .4 . 8 : Throughou t the algori thm the following property (*) is maintained :
(*) For each v E V and the curren t arc (v , w) , any arc (v , u.) E A.c-. lying before (v , w)
i n Listrr (v) is n o t a s trongly admissible arc .

Proof: Suppose that currently (*) holds and that the next basic operat ion is a relabel
ing operation for a vertex u0 . This operat ion does not generate any new arc . Denote
the current potent ial function by p, and that after the operation by p' . Note that
p' (w) s p(w) (w E V) . For u0 , the current arc for it is made to be the first element in
List rr (uo) . Furthermore , for any other v (v c:J. uo) let (v , w) be the current arc of v and
(v , u) E A.c-. be the predecessor of (v , w) . We have

(4 .4 . 57)

From (4 . 4 . 57) and since T is not changed for u c:J. u0 , (v , u) is still not a strongly
admissible arc . If u = u0 , we have (v , u0) is not admissible since p(u.0) is reduced by E .

Next , suppose that currently (*) holds and that the next basic operation i s a push
for the current arc (u , v) E Cz where (<p , z) is the current submodular pseudo-flow .

A Cost Scaling A lgorit h m for Min im u m - Cos /; S u b m o d u lar Flows 83

We denote the submoclular pseudo-flow after the push operation by (<p, z') . Note that

potential p is not changed by the push. Therefore , it is sufficient to show that after

the push operation any new arc (w , s) E Cz ' placed before the current arc in List1r(w)

i s not a strongly admissible arc . B y Lemma 1 .4. 1 2 , we have i) u = s or (u , s) E Cz and
ii) v = w or (w , v) E Cz .

If u #- s and w i- v . Suppose on the contrary that p(w) -p(s) = - E and T(w) = T (s) .
It is showed in the proof of Lemma 4 . 4. 7 that (u , s) and (w , v) are all strongly admissible
arcs. It follows that v is before s in L1r . Hence (w, s) is after (w , v) . By the induction

assumption, (w , v) is before the current arc of w and (w , v) is not a strongly admissible

arc before the push . It is a contradiction.

If u = s and w 'I v , then p(w) � p(v) - E = p(u) = p(s) .

If u i- s and w = v , then p(w) = p(v) = p(u) + E � p(s) .

If u = s and w = v , then p(w) - p(s) = p (v) - p (u) = E > 0.

Hence , (*) holds after the push operation of type Push2.

For the push operation on (u , v) of type Pushl , the only new arc is (v , u) which is

not an admissible arc.

Finally, we note that the replacements in (2-4) of Step 2 maintain property (*) . D

In the beginning of (2-4) of Step 2 , there is at least one admissible arc in List1r(v)

and the current arc is the last element of List1r(v). From Lemma 4. 4 . 8 , there exists no

strongly admissible arc in List1r (1J) . S ince each admissible arc in A'P U B'P is a strongly

admissible arc. Consequently, in List1r(v) there is no admissible arc in A'P U B'P and

there is at least one admissible arc in Cz . Hence, (2-4) of S tep 2 is well defined. We note

that when entering Step 2, one and only one of Step (2-1) ~ Step (2-5) is applicable.

Lemma 4 .4 .9 : Procedure Refine terminates with an E-optimal su brnodular flow cp

with respect to the obtained poten tial function p.

Proof: From the property of L(T,p) and the last vertex on L(T
.p) is inact ive at the

t ermination, there is no active vertex in V. The present lemma follows from Lemmas

4. 3 .2~4. 3 .4. D

A Cost Scaling A lgorithm for Minim u m - Cost Submodular Flows 84

Definition 4 .4 . 1 0 : A push on a = (v , w) E A,0.. is called a sa turating push if e (v) � c,0.. (a) . If a push on a = (v , w) E A,0.. is not a saturating push , then it is called a nonsat1trat'ing push. D

Define a pass over L(T,P) as a period of the algorithm that begins vvith the first vertex on L(T,P) and ends when a relabeling is performed or when the algorithm terminates .
Lemma 4.4 . 1 1: During a procedure Renne there are at mos t O (nrnU) passes befme the algoritl11n terminates .
Proof: Since there is a relabeling operation m each pass except t he last one , the present lemma follows from Theorem 4.4 .5. D
Lemma 4 .4 . 1 2 : The n umber of nonsaturating pushes dming a procedure Renne (firs tactive implemen tation) is at most O(n2rnU) .

Proof: In each pass, a nonsaturating push on 'U makes v an inactive vertex and the current vertex shifts . So, there are at most n - 1 nonsaturat ing pushes in each pass .
□

Lemma 4 .4 . 1 3 : The n umber of saturating push operations during a prncedure Refine (first-active implemen tation) is at mos t O (n3mU) .

Proof: Note that after an execution of (2-4) of Step 2 the current arc of v is shifted backward. Between two successive relabelings on v, (2-4) of Step 2 is carried out at most n - 1 times since the number of the different values of T (w) (w E V, T(w) < T(v)) is less than n before the first execution of (2-4) of Step 2 and each execution of (2-4) of Step 2 reduces the number of the different values of T(w) (w E V, T(w) < T (v)) by at least one. By a saturating push on an arc in List"(v) the current arc shifts to the next arc. From Lemma 4.4 . 8 we see that between two successive relabelings on v there are at most 2n(n - 1) saturating pushes on arcs going out from v. It follows form Theorem 4.4 .5 that there are at most O(n2mU) saturating pushes for each vertex v during a

A Cost Sea.Jing A lgori thm for Minim u m - Cost S u bm o d u lar Flows 85

procedure Refine . The present lemma follows from the fact that the cardinality of V
lS n . □

Finally, we have

Theorem 4 .4 . 1 4 : The complexity of the minim um-co.st s ubmodular flow algori thm
by tl1 e firs t-active implemen tation is O (n3 niU log (nr)) with the oracles for dependence
functions and exchange capaci ties of the given su bmodular system . □

Con clusion 86

Chapter 5 .

Conclusion

In this final chapter we discuss some future topics in theories and algorithms , summarize the computational complexity of some existing algorithms and make some comparisons of our proposed algorithms with other ones from the point of view of theoretical and computationa.l aspects. Submodular (or supermodular) functions on distributive lattices share similar structures with convex (or concave) functions on convex sets . The reason for the analogy between a submodular function and a convex function is nicely explained by the Lovasz extension of a submodular function . Such an analogy has been recognized as a reason of the importance of submodular functions in the analysis of combinatorial systems such a.s graphs, networks and algebraic systems . Applications of matroids and submodular systems to practical engineering problems and information and system theories have been ext ensively made by M . Iri, A, Recski , S. Fuj ishige, K . Murata and others . Recently, uses of submodular systems and their extensions in scheduling problems have been extensively studied. The theory of matroids and submodular systems provides us a systematic mathematical foundation which enables us to better recognize the essential structures of the fields of applications. We believe that there will be more and more applications of matroids and submodular systems since these reveal combinatorially nice and deep structures of combinatorial systems . Also, such applications would require further developments in constructing efficient and practical algorithms. Our algorithms provide a general basis for applications . The algorithms in this thesis are designed for a larger class of problems described by abstract structures of matroids or submodular systems . However , if the algorithms are to be applied to some specific problems such as the analysis/ design of very large systems

Con cl usion 87

in physical and engineering applications, the algorithm should be refined to adopt to the characteristic features of such systems . In other words , our algorithms are likely to be less efficient for a narrower class if the refinements are not made, but they give a general basis for devising efficient ones for specific problems. Such refinements are of practical importance. The difference between our algorithms and others in performance for specific problems should be studied . Computationally, the structure of our algorithm is new and quite different from those of the existing previous algorithms . In this thesis , we give time complexities on the basis of some oracles . In applying our algorithms to practical problems we must be very careful in constructing a subroutine for an oracle. The following three a.re the most crucial for the practical efficiency : (1) what kind of oracle to adopt, (2) how to represent a. matroid or a submodular system and (3) how to correlate with the representations in different stages of the solution process . ,i\That kind of oracles to adopt in our algorithms in order to improve the practical efficiency is one of the important future studies . In the following we examine the difference between our algorithm for the independent assignment problem and other existing algorithms. There are two algorithms with computational complexities similar to ours , one proposed by H. N. Ga.bow and Y. Xu [40] and the other recently by M . Shigeno and S. Iwata. [74] . Both are given for the weighted matroid intersection problem. H. N. Ga.bow and Y. Xu uses A. Frank 's version of linear programming dual problem for the weighted matroid intersection problem [2 1]. The algorithm also makes scaling on weights. Each sea.ling adds one bit of precision to the original weights and finds a 1 -optimal solution for these weights . The algorithm for a specified scale consists of two steps : the Hungarian search step and the augmenting step . The former step changes the values of dual variables (potentials) so as to make the admissible graph (consisting of only admissible arcs) have augmenting paths. The latter step consists of a sequence of augmentations. The augmenting paths used in the augmenting step are not required to be a kind of shortest paths. To make an augmenting path a valid one, they assign a topological numbering to the vertex set and require the numbering in the path satisfying certain conditions. To perform the Hungarian search step and the augmenting step , they use several lists of size 0(n) for each vertex. It i s necessary in the algorithm to store the auxiliary network for improving complexity. Besides making modifications on the potential for ea.ch vertex,

Con clusion 88

the algorithm keeps a topological numbering on the vertex set which also changes frequently. Our algorithm is similar to the algorithm of H . N. Gabow and Y . Xu in the sense that both algorithms are based on the cost sea.ling. Computationally, our algorithm is quite different from their algorithm. In our algorithm we need two lists for the source vertex set and sink vertex set. Storing the whole auxiliary network is not necessary since for each local operation related to a vertex v , we only need to identify arcs which are incident to v . Therefore , H . N. Ga.bow and Y . Xu's algorithm uses a space which is at lea.st three times larger than that used in our algorithm, disregarding the space required by the oracles . The approximate-weight-splitting algorithm of M. Shigeno and S . Iwata uses a different optimality condition. The weight vector w is split into any two weight vectors u and v such that w = u + v. The optimality condition states that if B is a minimumweight k-independent set of a ma.troid M 1 on a finite set E with respect to the weight vector u and B is also a minimum-weight k-independent set of a matroid M 2 on the set E with respect to the weight vector v , then B is a minimum-weight common kindependent set of the two matroids M 1 and M 2 with respect to the weight vector w. This condition is an elementary one . The theoretical background of their algorithm is simpler than th.at of our algorithm. They also only use local operations of relabeling split weights and elementary transformations for an independent set. Hence, the computation structure is almost the same as ours. We will make a comparison only on theoretical complexity in the following. Both algorithms have been generalized to the minimum-cost 0- 1 submodular flow problem (see [75] and [39]) . In our generalization, we have shown that the number of relabelings of potential for each vertex is 0(m) , where there are n vertices. In their generalization, they proved that the number of relabelings of the split weight for each arc is 0 (m) , there are m arcs in original graph. Therefore, our algorithm runs in O(rnn2 log(nC)) time while their algorithm runs in O(m2n log(nC)) time . Both time bounds are for the case where we assume an oracle for exchange capacities of a given submodular system without using a hybrid version . Also , when considering the hybrid versions, in our algorithm we can shift to a procedure SuccessiveShortestPath by choosing L = 0 (/m) while the optimal selection for their algorithm is L = 0 (fo).

Con clusion 89

Therefore , the complexity of our hybrid version becomes 0(.jnin2 log(nC)) , which is lower than the complexity 0(Jnnm log(nC)) of their hybrid version. As to the case of the independent assignment problem , when their algorithm for the weighted matroid intersection problem is generalized to the independent assignment problem , the algorithm should deal with the split costs defined on arc set A while our potential function is defined on vertex set v+ U v- . \f\Te can make a similar argument on the complexity comparison for this case . H. N . Gabow and Y . Xu in [41] have given an efficient algorithm for the independent assignment problem on graphic matroids with a dynamic tree data structure for the independence oracle . It will be an important and interesting work to find an efficient independence oracle for our hybrid version algorithm for linear or graphic matroid, since the structure of operations in the algorithm is quite different from that of H . N. Gabow and Y. Xu's . To apply our algorithm for the general graph matching problem is also an interesting future work . There are many combinatorial optimization problems that can not be modeled by matroidal structures. We mention a few new structures as generalizations of a matroid and related concepts . Here , it is worth considering whether the approach of our algorithm is still applicable to such new structures . R . Chandrasekaran and S . N . Kabadi [7] introduced the concept of pseudomatroid. I t i s a common generalization of a family of independent sets of a matroid, a family of bases of a matroid and a generalized matroid [24] . They also defined a polyhedral version of a pseudomatroid called a polypseudomatroid, which has nice properties such as the total dual integrality of the defining inequalities and the validity of a greedy algorithm. Another generalization of matroid independence systems , called a (2, 2) -system, is given by R. Euler in [1 8] . The defined independence system gives a unified formulation of matroid intersect ion problems, vertex-packing independence systems and b-matchings problems. R. L . Rardin and M. Sudit have introduced a new structure called a paroid. A paroid is formed by a matroid and a partition of the ground finite set. In [69] they show that paroid optimization formulations are suitable for several classical combinatorial problems such as k-matroid intersection, general graph matching , traveling salesman, vertex packing, satisfiability, graph partitioning, and knapsack problems . In the following we briefly describe a few existing algorithms for minimum-cost sub-

Con clusion 90

modular flow problems and point out some interesting problems for future research . The first polynomial algorithm for the minimum-cost submoclular flow problem of Grotschel, Lovasz and Schrij ver [46] is based on the ellipsoid method which seems to have only theoretical significance. Vv . H. Cunningham and A . Frank [1 1] proposed the first polynomial algorithm which is purely combinatorial . The optimality theorem, Theorem 4. 1 . 2 , is fundamental to their algorithm. In the algorithm, a feasible submodular is maintained while we try to modify potentials to satisfy the optimalty conditions in Theorem 4. 1 . 2. Given a feasible submodular flow cp and a potential function p , choose an arc a in A'P U B'P with a negative reduced cost, i. e . , an arc a violating the optimality conditions. A procedure, called Inner Algorithm in VV . H . Cunningham and A. Frank 's algorithm, finds a new pair (cp, p) such that the arc a no longer violates the optimality conditions while at the same time the other arcs satisfying the optimality conditions before do not violate the optimality conditions. Inner Algorithm consists of two parts. One performs flow changes only which sends a maximum flow on arc a under certain constraints. Any maximum submodular flow algorithm can work for this purpose . Our algorithm in Chapter 2 can also be used . The other part of Inner Algorithm is used to change the potential, when the changes on the flow fail to make arc a satisfy the optimality conditions. Their algorithm also uses cost scaling and requires in total 0 (mn3 log(f)) path augmentations. In stead of reducing the discrepancy from the optimality conditions on each arc, one may use the method of canceling negative cycles in an auxiliary network with reduced costs as arc lengths . The first negative cycle method for the independent flow problem is due to S. Fuj ishige [28]. U . Zimmermann [85] also gave an algorithm for the submodular flow problem by a similar approach. Their algorithms may not terminate in finitely many steps. With minimum-mean cycle selection, W. Cui and S . Fuj ishige [1 0] proposed a finite algorithm and U. Zimmermann [86] developed a pseudo-polynomial variant that finds 0(mU) negative cycles. With a certain weight function, the minimum-ratio cycle selection method also leads to a pseudo-polynomial algorithm (see C. Wallacher [79]). In [80] C. Wallacher and U. Zimmermann showed that for a large number of weight functions, the cycle canceling method for submodular flow problems terminates after finding 0 (rnU log(mfU)) negative cycles. They also presented a polynomial variant that solves the problem by finding 0 (n2m log (mf U))

Con c l u sion 9 1

negative cycles , which is the first polynomial algorithm by canceling negative cycles .
Another algorithm of strongly polynomial complexity is due to S . Fuj ishige , H . Rock

and U . Zimmermann [35] . The algorithm adopts a t ree proj ect ion approach for the
calculation of the current cost approximation . (For the classical minimum-cost flow
problem the tree proj ection technique was given by S . Fuj ishige [3 1] and was indepen
dently noticed by H. Rock and U. Zimmermann .) For a sequence of approximations of
the cost function --y , a minimum-cost submodular flow problem for each approximation
cost funct ion ,' is solved by means of the primal-dual method of W. H. Cunningham
and A . Frank [1 1] with or without scaling of --y' . The number of approximations is
b ounded by m + n(n - 1) and each approximat ion cost function ,' satisfies !--y1 (a) I :S: n 2

for all a E A . Therefore , V'l . H . Cunningham and A . Frank's algorithm for such cost
function runs in strongly polynomial t ime with or without scaling .

The algorithm given in Chapter 4 is not a polynomial one . The improvement on
its complexity seems to be related to a capacity scaling technique and other ideas . To
devise an efficient algorithm base on a capacity scaling for submodular flows is still an
unsolved problem .

Finally, we mention a few developments in theories related to submodular systems .
A concept , called a generalized po lymatroid , that is very similar to sub modular base
polyhedra is defined by A . Frank [24] . S . Fuj ishige [30] has shown that every generalized
polymatroid can be obtained from a base polyhedron by a simple construction . Also ,
a bisubmodular system is first considered in [7] , which is a natural generalizat ion of
a polypseudomatroid . The class of polyhedra associated with bisubmodular systems
includes submodular polyhedra, base polyhedra , generalized polymatroids [24] , and
polypseudomatroids [7] . In [3] K. Ando, S . Fuj ishige and T. Naitoh have defined and
studied a subclass of bisubmodular systems called the proper bisubmodular system
which also includes base po lyhedra, polypseudomatroids and a class of generalized
polymatroids . The bisubmodular funct ion in a proper bisubmodular system is defined
in a domain which can be represented by a distributive lattice . Also they consider
bidirected flows in a bidirected networks as an application of a proper bisubmodular
system. To construct efficient algorithm for biclirected flows with possible bisubmodular
constraints is an interesting future research subject .

Referen ces 92

References

[l] R. K . Ahuj a and J . B . Orlin : A fast and simple algorithm for the maximum flow

problem . Operations Research 37 (1 990) 748- 759 .

[2] R. K. Ahuja, T . L . Magnanti and J . B . Orlin : Network Flows . In : Handbooks in OR & MS Vol. 1 (G . L. Nemhauser et al . , eds . , Elsevier S cience Publishers B . V. ,

North-Holland , 1989) .

(3] K . Ando , S . Fuj ishige and T . Naitoh : Proper bisubmodular systems and bidirected

flows . D iscussion Paper No. 532 , Institute of Socio-Economic P lanning , University

of Tsukuba (1 993) .

[4} D . P. Bertsekas : A distributed algorithm for the assignment problem. \i\!orking

Paper , Laboratory for Information and Decision Systems , MIT (Cambridge , MA ,

1 979) .

[5] D . P . Bertsekas and J . Eckstein : Dual coordinate step methods for linear network

flow problems . Mathematica l Programming 42 (1 988) 203-243 .

[6] C . Brezovec , G . Cornuejols and F . Glover : Two algorithms for weighted matroid

intersection . Mathematical Programming 36 (1 986) 39-53 .

[7] R. Chandrasekaran and S . N . Kabadi : P seudomatroids . Discrete Mathematics 71

(1 988) 205-2 1 7 .

[8] J . Cheriyan and T . Hagerup : A randomized maximum-flow algorithm, Proceedings of the IEEE 30th Annual Symposiicm on Foundations of Computer Science (1 989)

1 1 8- 1 2 3 .

Referen ces 93

[9] J. Cheriyan and S. N. Maheshwari: Analysis of preflow push algorithms for maximum network flows. SIAM Jovrnal on Compvting 18 (1 989) 1 057- 1 086 .
[1 0] Vv . Cui and S. Fuj ishige : A primal algorithm for the submodular flow problem with minimum-mean cycle selection . Journal of the Opera tions Research Society of Japan 3 1 (1 988) 43 1 -440 .
[1 1] W . H . Cunningham and A . Frank: A primal-dual algorithm for submodular flows . Mathematics of Operations Research 1 0 (1 985) 251 -262 .
[1 2] E . A. Dinits : Algorithm for solution of a problem of maximum flow in a network with power estimation . Soviet Mathematics 1 1 (1 970) 1 277- 1 280 .
[1 3] J . Edmonds: Submodular functions, matroids, and certain polyhedra. Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications (R. Guy, H. Hanani , N. Sauer and J . Schonheim , eds., Gordon and Breach, New York, 1 970) , 69-87.
[14] J. Edmonds : Matroids and the greedy algorithm. Mathernatical Programming 1 (1 97 1) 127-136.
[15] J . Edmonds: Matroid intersection algorithm. A nnals of Discrete Mathematics 4 (1 979) 39-49 .
[16] J . Edmonds and R. Giles : A min-max relation for submodular functions on graphs . A nnals of Discrete Mathematics 1 (1 977) 1 85-204.
[1 7] J. Edmonds and R. M . Karp : Theoretical improvements in algorithmic efficiency for network flow problems . Jovrnal of A CM 1 9 (1 972) 248-264 .
[1 8] R. Euler : Augmenting paths and a class of independence systems. Bonn Workshop on Combinatorial Optimization (A. Bachem, M. Grotschel and B . Korte , eds . , North Holland, Amsterdam, 1 98 1) 69-82 .
[1 9] L . R. Ford, Jr. , and D. R. Fulkerson : Maximal flow through a network . Canadian Journal of Mathematics 8 (1 956) 399-404.

Referen ces 94

[20] L. R. Ford , J r . , and D . R. Fulkerson : Flows in Networks (Princeton University

Press , Princeton , N. J . , 1 962) .

[2 1] A . Frank : A weighted matroid intersection algorithm. Journal of A lgorithms 2

(1 98 1) 328-336 .

[22] A . Frank : How to make a digraph strongly connected . Combinatorica 1 (1 98 1)

1 45- 1 53 .

[23] A . Frank : An algorithm for su bmod ular functions on graphs . A nnals of Discrete

Mathematics 1 6 (1 982) 1 89- 2 1 2 .

[24] A . Frank : Generalized polymatroids . I n :A . Hajnal et . al. , eds . , Finite and Infinite

Sets (North-Holland , Amsterdam-New York, 1 984) 285- 294 .

[25] A . Frank : Augmenting graphs to meet edge-connect ivity requirements . SIA M

Journal o n Discre te Mathematics 5 (1 992) 25- 53 .

[26] A . Frank and E . Tardos : An application of submodular flows . Linear A lgebra and

its Applications 1 14/ 1 1 5 (1 989) 329-348 .

[27] S . Fuj ishige : A primal approach to the independent assignment problem . Journal

of the Operations Research Society of Japan 20 (1 977) 1 - 1 5 .

[28] S . Fuj ishige : Algorithms for solving the independent-flow problems . Journal of the

Operations Research Society of Japan 2 1 (1 978) 1 89-204 .

[29] S . Fuj ishige : Polymatroidal dependence structure of a set of random variables .

Information and Control 39 (1 978) 55-72 .

[30] S . Fuj ishige : A note on Frank's generalized polymatroids . Discrete Applied Math

ematics 7 (1 984) 1 05- 1 09 .

[3 1] S . Fuj ishige : A capacity-rounding algorithm for the minimum cost circulation

problem- A dual framework of the Tardos algorithm . Mathematical Programming

35 (1 986) 298-308 .

Referen ces 95

[3 2] S . Fujishige : From classical flow problems to the "neoflow" problem (in J apanese) . Transaction of the Inst'itv,te of Electronics, Information and Com,munication Engineers of Japan J 70-A 1 39-145 .
[33] S . Fujishige : An out-of-kilter method for submodular flows. Discrete Applied Mathematics 1 7 (1 987) 3- 16 .
[34] S . Fujishige : Sitbmodular Functions and Optimization (North-Holland, Amsterdam, 1 99 1).
[3 5] S. Fuj ishige , H. Rock and U . Zimmermann: A strongly polynomial algorithm for minimum cost submodular flow problems . Mathematics of Operations Research 14 (1989) 60-69.
[36] S. Fujishige and N. Tomizawa: A note on submodular functions on distributive lattices. Journal of the Operations Research Society of Japan 26 (1983) 3 09-3 1 8.
[37] S. Fujishige and X. Zhang : New algorithms for t he intersection problem of submodular systems . Japan Journal of Indus tria l and Applied Mathematics 9 (1992) 369-382.
[38] S. Fujishige and X. Zhang: An efficient cost scaling algorithm for the independent assignment problem. Journal of the Operations Research Society of Japan (to appear) .
[39] S. Fujishige and X . Zhang : A cost scaling framework for submodular flows and its refinement for 0-1 submodular flows . Manuscript (1994) .
[40] H . N . Ga.bow and Y . Xu: Efficient theoretic and pract ical algorithms for linear matroid intersection problems. Technical Report No. CU-CS-424-89 , Computer Science Department, University of Colorado, (1 989) .
[4 1] H. N . Gabow and Y. Xu : Efficient algorithms for independent assignment on graphic Matroids. Technical Report No. CU-CS-468-90, Computer Science Department , University of Colorado, (1 990) .

Referen ces 96

[42] A. V . Goldberg : Processor-efficient implementation of a maximum flov,1 algorithm. Information Process·ing Letters (1 9 91) 1 79-1 85 .
[43] A. V . Goldberg and R. E . Tarj an : A new approach to the maximum flow problem. Journal of the A ssociation for Computing Machinery 35 (1 988) 92 1 -940 .
[44] A. V . Goldberg and R. E . Tarjan : Finding minimum-cost circulations by successive approximation . Mathematics of Operations Research 1 5 (1 990) 430-466.
[45] M . Grotschel , L . Lovasz and A. Schrijver : The e llipsoid method and its consequences in combinatorial optimization . Combinatorica 1 (1 981) 169-1 97.
[46] M . Grotschel, L . Lovasz and A. Schrijver: Geometric A lgorithms and Combinato ria l Optimization (Algorithms and Combinatorics 2) (Springer, Berlin, 1988) .
[47] T. S. Han : The capacity region of general multiple-access channel with certain correlated sources. Information and Control 40 (1979) 37-80 .
[48] R. Hassin : Minimum-cost flow with set-constraints. Networks 12 (1 982) 1-21 .
[49] R. Hassin: Algorithms for the minimum-cost circulations problem based on maximizing the mean improvement . Tel Aviv University Statistics Department Working Paper, Tel Aviv , Israel , (1 99 1) .
[50] M. Iri : Applications of matroid theory. Mathematical Programming - The State of the Art (A . Ba.chem, M . Grotschel and B. Korte, eds . , Springer , Berlin , 1983) , 1 58-201 .
[5 1] M. Iri and S. Fujishige : Use of matroid theory in operations research, circuits and system theory. International Journal of Systems Science 1 2 (198 1) 27-54 .
[52] M. Iri, S . Fujishige and T. Oyama: Graphs, Network and Matroids (in Japanese) (Sangyo-Tosho ,Tokyo, 1986) .
[53] M . Iri and N . Tomizawa: An algorithm fo r finding an optimal "independent assignment" . Journal of the Operations Research Society of Japan 1 9 (1976) 32-57 .

Referen ces 97

(54] D. S. Johnson and C. C. McGeoch (eds.) : Network Flows and Matching: First DIMA CS Implementatior1, Chal lenge (DIMACS Series in Discrete Mathematics and Theoretical Computer Science Vol . 1 2) (American Mathematics Society, Princeton, N. J., 1 992) .
[55] A. V. Karzanov : Determining the maximal flow in a network by the method of preflows. Soviet Mathematics Doklady 1 5 (1 974) 434-437.
[56] M. Klein: A primal method for minimal cost flows with applications to the assignment and transportation problems . . Management Science 14 (1 967) 205-220.
[5 7] J. B. Kruskal : On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7 (1956) 48-50.
[58] E. L. Lawler : Matroid intersection algorithms. Mathematical Programming 9 (1 975) 3 1-56.
[59] E. L . Lawler : Combinatorial Optimization - Networks and Matroids (Holt , Rinehart and Winston , New York , 1976).
[60] E. L. Lawler and C. U. Martel : Computing maximal polymatroidal network flows. Mathematics of Operations Research 7 (1 982) 3 34-347.
[61] E . L. Lawler and C. U. Martel : Flow network formulations of polymatroid optimizat ion problems. Annals of Discrete Mathematics 1 6 189- 200.
[62] C. Lucchesi and D. H. Younger : A minimax relation for directed graphs. Journal of the London Mathematical Society 17 (1 978) 369-374.
[63] C. U. Martel : Preemptive scheduling with release times, deadlines , and due times. Journal of the A ssociation for Comvuting Machinery 2 9 (1982) 8 1 2-829.
[64] K. Murata: Systems Ana lysis by Graphs and A1atroids - Strnctura l So lvability and Contro l lability (Algorithms and Combinatorics , Vol . 3, Springer , Berlin, 1987) .
[65] C. St. J . A. Nash-Williams : Edge-disj oint spanning trees of finite graphs. Journal of the London Mathematical Society 36 (1 961) 445-450.

Referen ces 98

[66] J . B . Orlin and R. K . Ahuj a: New scaling algorithms for the assignment and
minimum mean cycle problems . Mathematical Programming 54 (1 992) 41 -56 .

[67] J . B . Orlin and J . Vande Vate : On a ' primal ' mat roid intersection algorithm . S loan
School Technical Report , MIT (Cambridge , 1 984) .

[68] R. Rado : Note on independence functions . Proceedings of the London Mathematical Society 7 (1 957) 300-320 .

[69] R. L . Rardin and M . Sudit : Pa.raids: a. canonical format for combinatorial opti
mization . Discrete App lied Mathematics 39 (1 992) 37-56 .

[70] A . Recski : Matroid Theory and Applications in Electric Network Theory and in Statics (Algorithms and Combinatorics , Vol . 3, Springer , Berlin , 1 989) .

[7 1] H . Rock : Scaling techniques for minimal cost network flows . In: Discrete Structures and A lgorithms (U . Papa, ed . , Hanser , Mi.inchen , 1 980) , 1 8 1 - 1 9 1 .

[72] P . Schonsleben : Ganzzahlige Polyma.t roid-Intresektions-Algorithmen , Disserta
tion , Eidgenossische Technisch Hochschule Zurich , 1 980 .

[73] L . S . Shapley : Cores of convex games . International Journal of Game Theory 1
(1 97 1) 1 1 -26 .

[74] M . Shigeno and S . Iwata : Approximate-weight-splitt ing algorithm for a minimum
common b ase of a pair of matroids . Research Report No. B-278 , Department of
Information Sciences , Tokyo Institute of Technology (1 993) .

[75] M . Shigeno and S . Iwata : Approximate- cost-splitting algorithm for minimum cost
0- 1 submodular flow problems . International Symposium on Mathematical Pro
gramming (1 994) .

[76] E . Tardos : A strongly polynomial minimum cost circulation algorithm . Combinatorica 5 (1 985) 247-256 .

[77] E . Tardos, C . A . Tovey and M . A . Trick : Layered augmenting path algorithms . Mathematics of Operations Research 1 1 (1 986) 362- 370 .

R,eferen ces 99

[78] B. L. Van cler \i\laerclen: Moderne A lgebra (second edition) (Springer , Berlin , 1 93 7) .
[79] C . Wallacher: A generalization of the minimum-mean cycle selection rule in cycle canceling algorithms. Report, Inst . for Ang. Matht. , Braunschweig , (1 9 9 1) .
[80] C. \i\lallacher and U . Zimmermann : A polynomial cycle canceling algorithm for submodular flows. Discussion paper (1 994)
[8 1] D . J . A. Welsh: On matroid theorems of Edmonds and Rado . Journal of the

London Mathematical Society 2 (1 970) 25 1-256.
[82] D. J . A. Welsh: Matroid Theory (Academic Press , London , 1 9 76) .
[83] H. Whitney : On the abstract properties of linear dependence . American Journal

of Mathematics 5 7 (1 935) 509-533 .
[84] X. Zhang: A cost scaling algorithm for minimum-cost submodular flows. Manuscript (1 994).
[85] U. Zimmermann: Minimization on submodular flows . Discrete App lied Mathemat

ics 4 (1982) 303-323 .
[86] U. Zimmermann: Negative circuits for flows and submodular flows . Discrete Ap

plied Mathematics 36 (1992) 1 79-1 89 .

	0
	i
	ii
	iii
	iv
	v
	vi
	vii
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099

