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BiCG algorithm is an iterative method for solving the system of linear equations, and its
convergence is hard to know before computing. A methodology for predicting the convergence
of the BiCG algorithm through image recognition was proposed and validated by the previous
research, but still needs more improvements.

Firstly, the methodology was validated just by only one type of convolutional neural net-
work. Secondly, to improve the accuracy, the previous research only focused on changing
the methods of visualizing the matrices; as the result, the accuracy on this dataset with 875
matrix samples has reached 80% in almost every control group and 5-fold validation groups,
but the results of accuracy of proposed methods are so closed and hard to say they are useful
for increasing accuracy. What’s more, the CNN used in the previous research is a relatively
old CNN called LeNet, and the accuracy on positive samples is low as 53.4% on average.

My research purpose is exactly to improve these shortcomings, and I want to improve the
previous research on the same dataset by the following three dimensions:

(1)To introduce and adjust more convolutional networks, for checking if the proposed
methodology only works on the structure used by the previous research.

(2)the previous research proposed 2 kinds of visualization methods, and 4 different so-
lutions for the pixel, and thought they change accuracy. But I think they don’t change the
accuracy obviously and need to be validated if they are really useful for increasing accuracy.

(3)On the dataset which calculated convergence( label ) by using the residual of 10−10,
the previous research could only have a relatively low accuracy of 53.4% on average. I want to
improve the low accuracy when the previous research predicts positive( convergent ) samples.

To achieve these purposes, I import 3 convolutional neural networks of different struc-
tures. They are ShuffleNetV2, SqueezeNet, and ResNet50. After adjusting their parameters,
I use them through the same methodology and dataset of the previous research and compare
their result and the result gotten by the previous research. And, by validating the proposed
methodology through 3 imported CNNs, it turns out that the methodology is still working on
3 imported CNNs, and the methods of the previous research for increasing accuracy indeed
don’t work obviously by comparison. Besides, the prediction accuracy of positive samples has
been improved from 53.4% to 61.9% by ResNet50.
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Chapter 1

Introduction

1.1 Background

The problem of solving a large system of linear equations is widespread in current re-
search and industry. For example, when fluid dynamics is applied to engineering problems,
there will be occasions when a system of partial differential equations needs to be solved.
There is no good mathematical method for solving the analytical solution of the partial
differential equations, so the numerical solution of the partial differential equations is often
used for solving engineering problems. This is a method to discretize the partial differential
equation, and the representative methods are the finite difference method, boundary ele-
ment method, etc. After discretization, the problem of solving partial differential equations
eventually transforms into the problem of solving a large system of linear equations.

The following system of linear equations exists

Ax = b (1.1)

where A is a large n-dimensional sparse matrix, x is the unknown vector to be solved,
and b is the known vector. And how to compute this system of linear equations quickly and
inexpensively is a very critical problem.
There are two types of general methods, which are direct solution methods and iterative
solution methods. The direct solution methods are represented by the Gaussian elimination
method, which is based on the idea of using the primary transformation of the matrix to
eliminate the unknown quantities in order to transform A into an echelon matrix, and then
solving all the elements in x one by one by substituting b. However, in numerical computa-
tion, this method is considered to be time-consuming and memory-intensive.

Instead, the iterative methods are used more often. they begin by setting an initial
value of x and iterating through it so that the difference between Ax and b gets closer and
closer to a predetermined value measured by residual. These methods are very widely used
in scenarios where a computer is used to solve a system of linear equations. A representative
method of this type is the BiCG [1] algorithm.

But BiCG also has its problem, especially in the case of solving large systems of linear
equations, where a sparse matrix does not converge, time would be consumed very much.
So, that is the previous research’s motivation: If one can predict in advance whether the
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BiCG algorithm can solve a certain system of linear equations ( i.e., whether the corre-
sponding sparse matrix converges or not ), then one can avoid solving those systems of
linear equations that do not converge.

Computer vision is a branch of artificial intelligence that studies how to use computers
to understand and process image and video data. It involves a variety of different tasks,
such as image classification, target detection, image segmentation, and image generation.

Computer vision has a wide range of applications in many different fields, such as au-
tonomous driving, robotics, image search, medical image analysis, translation, etc. To solve
these problems, computer vision researchers use a variety of machine learning algorithms,
including convolutional neural networks ( CNNs ), deep learning, and autoencoders.

This research and the previous research hope to use convolutional neural networks to
extract features in sparse matrices to help predict the convergence of the BiCG algorithm.

1.2 The motivation

This research complements and extends the previous research by Ota [2]. In this paper,
I will always use the previous research to name his research.

In the previous research, a method based on image recognition is proposed to predict
the convergence of the BiCG algorithm.

The BiCG algorithm is a popular algorithm for solving the system of linear equations.
Because it converges quickly, it has been one of the most preferred algorithms in many
cases.

When using the BiCG algorithm, the residual is used to measure the convergence of
the algorithm. As the algorithm iterates, the residual decreases and eventually reaches a
predetermined threshold, indicating that the algorithm has reached convergence. In general,
the smaller the residual is set, the higher the precision computed, but the more time-
consuming.

To make a classifier that can predict if the BiCG algorithm will be convergent or not
on a system of linear equations before calculating it, the previous research collected 982
non-symmetric real sparse matrices from the SuiteSparse Matrix Collection website and
used 875 of them to produce the dataset: he first calculated their convergence using the
BiCG algorithm and tag their labels by convergent( label to 1 ) or divergent( label to 0
); then visualized these systems of linear equations( but just the sparse matrices of them
) into grayscale images, to let them become the fitting inputs of the convolutional neural
network. And, used the 5-fold cross-validation to check the accuracy of predicting.

The above is the previous research’s method. As the purpose of the previous research,
the previous research wants to generate classifiers that could predict the convergence with
an accuracy higher as possible. To reach this purpose, the previous research used several
methods to generate images of matrices of datasets, such as using two visualization methods
to generate matrix images, For calculating the labels( convergence ) of datasets, the previous
did many trials, as we can see in his control test group as follows:

• Convergence is computed and labeled with the residual of 10−6. In this case, there
are 235 matrix images labeled Positive ( convergent ), and 640 matrix images labeled
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Negative(divergent)

• Convergence is computed with and labeled with the residual of 10−6. But in this case,
the previous research used a kind of matrix C called pre-conditioner multiplied simul-
taneously for both sides of the Ax = b, calculated new equations like CAx = Cb, and
labeled their convergence, in this case, there are 289 matrix images labeled to Positive
( convergent ), and 586 matrix images labeled to Negative( divergent ).

• To equalize or balance the number of negative samples and positive samples in the
datasets, the previous research extracted a certain percentage of the matrices in the
above control group to form the dataset with both Negative and Positive of 235, and
the total size of this dataset became 470.

• The convergence was recalculated at residuals of 10−10 and labeled, with a total of 176
Positive ( convergent ) data and 699 divergent.

I am particularly interested in the last control group because the dataset of this group is
made by a lower residual. As I mentioned before, a lower residual makes the BiCG algo-
rithm more precise, but, the experiment of this control group is a very small part of previous
research, and needs to be extended. What’s more, the prediction accuracy is not very good,
especially on True positive samples.

Another shortcoming of the previous research is, to improve accuracy, the previous re-
search always used methods like changing the residual, changing the visualization method,
or resetting labels in many ways, all of these methods can be seen as the pre-processing
methods in the machine learning perspective. Plus, through this machine learning perspec-
tive, the previous research used only one structure of the neural network but didn’t do more
trials in this dimension.

Indeed, there is still a more fundamental question that the previous research did not
explicitly address: does this method of using image recognition techniques to predict the
convergence of the BiCG algorithm can only work on the CNN used by the previous re-
search? Or it also works on other convolutional neural network structures as well.

Therefore, in this research, to improve the accuracy of the dataset of residual = 10−10,
and figure out the question I mentioned above, I would import more neural network struc-
tures, try to modify them, and evaluate the methods of previous research. Actually, many
neural networks structure have been widely used in computer vision fields such as hand-
written digit recognition and medical image detection, because these fields are similar to
the previous research in the image recognition part, I thought the neural network structure
with good performance on these fields would be promising in this subject.

As a result, it turns out that previous research’s method is also working on other con-
volutional neural networks as well. Some of these structures even have higher accuracy
between groups during the k-fold ( 5-fold in this research ) cross-validation. And what’s
more, this computer vision’s perspective-based method did improve the accuracy of predic-
tion in the group made by the residual of 10−10

The dataset used in this research was produced and provided by the previous research, and
I would like to thank him for his work.
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1.3 Thesis overview

In Chapter 2, I summarise the research related to the application of image recognition.
The processing of the data in this study follows a similar process to these studies.
In Chapter 3, I introduce the two theories that are most important for this study. The first
is the BiCG algorithm, which is both the subject of this study and the tool used to calculate
the convergence ( labeled values ) of the data for this study; the second is the convolutional
neural network, which is the primary research method for this study. However different
the classifiers used in this study and the prior studies may be, they are both in essence
convolutional neural networks.

In Chapter 4, I present the previous research of this study, including its idea, its method,
its implementation process, and its results. In addition, the datasets used in this study and
the prior research, and the way they were grouped in the k-fold cross-validation also appear
in this chapter.

In Chapter 5, I introduce three new convolutional neural networks with different struc-
tures that were introduced in this study to validate and improve the methodology of the
previous research. They are ShuffleNetV2, SqueezeNet, and ResNet50.

In Chapter 6, I present experimental data comparing the results of the new neural
network structures introduced with those of the previous research. The main purpose is to
show that the methods proposed in the previous research to improve accuracy are of little
help, such as why the two different pictorial methods are not helpful for prediction, and
that resolution is far from being a decisive factor. Finally, it is given to what extent the
network I introduced and adapted outperforms the previous research in the dataset where
the residuals are 10−10 and the labels are calculated.

In Chapter 7, I conclude this study and look at future work.
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Chapter 2

Related Work

2.1 Handwritten digit recognition

Handwritten digit recognition is a technology that recognizes handwritten digits. This
technology is often used to automate the processing of handwritten documents, such as
recognizing amounts on checks in a banking system or recognizing handwritten data in
spreadsheet software.

A commonly used method for handwritten digit recognition over these years is to use
a convolutional neural network. The network is trained on a large number of handwritten
digits and is able to learn the features of different digits and is able to accurately recog-
nize the input handwritten digits based on these features. By continuously adjusting the
parameters of the model, it can be made to achieve higher accuracy in recognizing new
handwritten digits.

In the research of LeCun et al [3]. A method for recognizing handwritten digits using a
backpropagation network ( i.e., a multilayer perceptron ) is described. The paper proposes
using each pixel of the training sample as an input to the neural network and training the
network using supervised learning methods to map the input to the correct digit labels. The
paper also proposes a method called the backpropagation algorithm to adjust the network
weights to minimize the training error.

They described the use of convolutional neural networks ( CNNs ) to recognize hand-
written digits. The paper describes methods for converting images into convolutional layers
with multiple feature maps and using a maximum pooling layer to reduce the spatial size
of the image. The paper also proposes a method to improve recognition accuracy using
deep CNNs with multiple convolutional-maximum pooling layers stacked together. This is
a very early study of handwritten digit recognition using convolutional neural networks, in
which the research method with the MNIST dataset has been followed in the present-day
handwritten digit recognition techniques. Moreover, its research method has been widely
applied to other image recognition fields.
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2.2 The application of image recognition technology in med-
ical images

Image recognition technology has many applications in disease diagnosis. Image recog-
nition technology can be used to recognize medical images, such as CT scans and X-rays.
With these images, doctors can diagnose a patient’s disease more accurately. For example,
with CT scan images, doctors can detect the presence of tumors in the lungs. At the same
time, image recognition technology can also be used to screen for diseases, helping doctors
to detect potential diseases earlier and take effective treatment measures. Overall, image
recognition technology is very useful in disease diagnosis, improving the accuracy and time-
liness of diagnosis and helping doctors to better treat diseases.

Altaf’s paper [4] presents the application of deep learning in medical image analysis and
discusses its strengths, challenges, and directions for development. It also outlines common
approaches to deep learning in medical image analysis, including convolutional neural net-
works ( CNNs ), recurrent neural networks ( RNNs ), and generative adversarial networks
( GANs ).

The paper also explores the challenges faced when using deep learning methods for
medical image analysis, including data bias, missing labels, and model generalization ca-
pabilities. Finally, the paper also looks at the future direction of deep learning in medical
image analysis.

In the research of Kallenberg et al. [5], A new approach to the analysis of breast density
using unsupervised learning methods is proposed. The method uses a convolutional neural
network ( CNN ) model and uses an unsupervised clustering method for segmentation. The
paper also describes how the method can be used to risk score mammograms.

Experiments are conducted to validate the method and compare it with other methods.
The experimental results show that the accuracy of breast density segmentation and risk
scoring of mammograms using this method is high.

2.3 Using convolutional neural networks to determine the
storage format of large sparse matrices

Researchers believe that the multiplication of sparse matrices can be accelerated if a
suitable storage format is chosen for the sparse matrix.

So in the research by Cui [6] et al. deep learning techniques were used to automatically
select the storage format for sparse matrices. Cui et al decided on the label of the matrix, i.e.,
the storage format, by comparing their time performance in coefficient matrix multiplication
among several formats such as COO, CSR, BSR, and ELL. After that, convolutional neural
networks are used to learn the image distribution of the matrix in relation to its label values
to obtain the classifier.
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Chapter 3

Background Theory

First I will introduce two of the most important theories in previous research: the BiCG
algorithm and convolutional neural networks( CNNs ).

3.1 BiCG algorithm

In numerical computation, when faced with the problem of solving a system of linear
equations, it is preferable to use some iterative solution methods than using Gaussian elim-
ination methods.

I think the advantages of this method are the control-possible precision due to the use
of residuals to measure the distance between the solution set and the true solution, and the
promise of completing the solution in a finite number of iterations.

The BiCG( biconjugate gradient ) algorithm is an iterative method used to solve sys-
tems of linear equations. it is a variant of the conjugate gradient method. Like the conjugate
gradient method, it is typically used to solve large, sparse systems of linear equations.

The basic idea behind the BiCG algorithm is to find a solution to a system of linear
equations by constructing a sequence of approximate solutions, called "iterates", that con-
verge to the exact solution. This is done by using information from the previous iterates
to construct a new iterate that is "closer" to the exact solution. The algorithm continues in
this manner until the solution is found to be within a specified tolerance.

One of the key features of the BiCG algorithm is that it uses a combination of two
different conjugate vectors to construct each new iterate. This allows the algorithm to con-
verge faster than other iterative methods, such as the gradient descent method.

The above process can be described as follows

7



αk = rT
k rk

pT
k qk

xk+1 = xk + αkpk

rk+1 = rk − αkqk

βk =
rT

k+1rk+1

rT
k rk

pk+1 = rk+1 + βkpk

qk+1 = Apk+1

And, to implement the BiCG algorithm, the algorithm can be written in a few simple
steps:

Algorithm 1 The Step of BiCG
1. Initialize the algorithm by selecting a starting point ( i.e., an initial guess for the solution ) and
setting the iteration

2. counter to 0.

3. Compute the residual vector, which is the difference between the right-hand side of the
system of equations and the product of the coefficient matrix and the current iterate.

4. Compute the direction vector using the residual vector and the previous direction vec-
tor.

5. Update the current iterate by adding a multiple of the direction vector to it.

6. Update the iteration counter and check if the current iterate is close enough to the ex-
act solution. If it is, stop and return the current iterate as the solution. Otherwise, go back to
step 2 and continue the iteration.
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Some of the key features of the BiCG algorithm include:

• BiCG is an iterative algorithm, which means that it generates a sequence of approx-
imate solutions to a system of linear equations. It does not directly compute the
exact solution, but it can often produce solutions that are accurate enough for many
applications.

• BiCG is a variant of the Conjugate Gradient ( CG ) algorithm, which means that it
uses the same principle of minimizing the residual error at each iteration. However,
BiCG uses a different formula to update the search direction at each iteration, which
can make it more effective for certain types of problems.

• BiCG can be used in a variety of applications, including linear regression, image pro-
cessing, and data analysis.

• BiCG is particularly well-suited for solving large, sparse systems of equations. This is
because it uses iterative methods, which can be more efficient than direct methods for
solving such systems.

Some of the advantages of the BiCG algorithm include:

• BiCG is an efficient algorithm for solving large, sparse systems of linear equations.
This makes it well-suited for applications such as data analysis and image processing,
where such systems are common.

• BiCG is relatively easy to implement, which makes it accessible to a wide range of
users.

• BiCG can be used in a variety of applications, including linear regression, image pro-
cessing, and data analysis.

Some of the disadvantages of the BiCG algorithm include:

• BiCG is an iterative algorithm, which means that it does not directly compute the
exact solution to a system of linear equations. Instead, it generates a sequence of
approximate solutions, which can be less accurate than the exact solution.

• BiCG can be sensitive to the initial starting point, which can affect the convergence
of the algorithm. This can make it difficult to use in some situations.

• BiCG may not always converge, or it may converge to a solution that is not accurate
enough for the given application. This can be a problem in situations where an accurate
solution is required.

3.1.1 Convolutional Neural Network

A convolutional neural network ( CNN ) is a type of artificial neural network that is
designed to process data that has a grid-like structure, such as an image. It is called a
"convolutional" neural network because it uses a mathematical operation called convolution
to filter the input data.
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Convolutional neural networks are typically used for image recognition and classifica-
tion tasks, such as identifying objects in an image or classifying an image as belonging to a
certain category. They are also used for other types of data that have a grid-like structure,
such as video frames and audio signals.

The basic structure of a CNN consists of an input layer, multiple hidden layers, and
an output layer. The hidden layers are made up of a series of convolutional layers, which
apply convolutional filters to the input data, and pooling layers, which downsample the
data to reduce its dimensionality. The output layer produces the final prediction based on
the filtered and downsampled data. As shown in Fig.3.1.

Figure 3.1: The scheme of Convolutional Neural Network

To train a CNN, we first need to provide it with a large dataset of labeled examples.
The network uses these examples to learn the patterns and features that are important for
making accurate predictions. This is done using a variant of the backpropagation algorithm,
which is a widely used method for training neural networks.

Once the network has been trained, we can use it to make predictions on new, unseen
data. The network applies the filters and pooling operations learned during training to the
new data, and produces a prediction based on the resulting processed data. In sum-
mary, a convolutional neural network is a type of artificial neural network that is designed
to process grid-like data, such as images. It uses convolutional and pooling layers to learn
patterns and features in the data and can be trained to make predictions on new, unseen
data.

In the following subsection, I will introduce the structure of a convolutional neural
network in the sequence of levels
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3.2 Convolution layer

The role of the convolutional layer is to perform convolutional operations on the input
data and extract meaningful features by learning parameters.

Specifically, the convolution layer divides the input data into several small blocks, each
of which is convolved with a matrix of weights. This weight matrix is called a convolution
kernel ( also called a filter ). Each convolution kernel has a number of weights, which are
parameters learned during the training process.

In the convolution operation, the input data of each chunk is dotted with the weights
of the corresponding convolution kernel, and then all the dotted results are added up to get
a new value, which is the convolution result of this chunk.

The output of the convolution layer is a multi-channel two-dimensional matrix. Each
channel corresponds to a convolution kernel, and each convolution kernel corresponds to an
output channel. In this way, the convolutional layer can extract many different features at
the same time.

The above process can be found in Figure 3.2.

Figure 3.2: The convolution

The main parameters of the convolutional layer are
The shape of the input data: i.e., the length, width, and number of channels of the input
data.

A number of convolution kernels: i.e., the number of output channels of the convolution
layer.

The size of the convolution kernel: i.e., the length and width of the convolution kernel.
Step size: i.e., the distance that the convolution kernel moves each time on the input

data.
Padding: i.e., the number of pixels to be padded at the edges of the input data.
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In practice, convolutional layers usually follow a nonlinear activation function, such as
a ReLU layer, after the convolutional layers to enhance the representation of the model.
Maximum pooling layers can also be inserted between convolutional layers to reduce the
number of model parameters and improve the generalization capability.
During the training process, the weight parameters of the convolutional layers are learned
automatically by the backpropagation algorithm. The basic idea of the backpropagation
algorithm is that, for a given training sample, the output of the model is calculated by for-
ward propagation, then the difference between the output and the true label is calculated,
and then the parameters of the model are adjusted in the direction of the difference so that
the model can predict the output more accurately in the next forward propagation.

3.2.1 Pooling layer

Pooling layer is a common neural network layer that is mainly used to reduce the size
of the input data and extract the important features of the input data at the same time.

The input of the pooling layer is a multi-channel two-dimensional matrix. It divides
the input data into several chunks, each of which can be either a two-dimensional matrix
or a one-dimensional vector. Then, the pooling layer performs a pooling operation on each
chunk to obtain a smaller output.

Common pooling operations include maximum pooling and average pooling. Maximum
pooling is to take the maximum value in a small block as the output, while average pooling
is to take the average of all elements in a small block as the output.

Their differences in average pooling and maximum pooling can be seen in the example
of Figure 3.3.

Figure 3.3: The pooling
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The main parameters of the pooling layer are:

• The shape of the input data: the length, width, and number of channels of the input
data.

• Size of the pooling operation: the length and width of the chunks required for the
pooling operation.

• Step size: the distance that the pooling operation moves each time on the input data.

• Padding: the number of pixels to be padded at the edges of the input data.

The output of the pooling layer is a multi-channel two-dimensional matrix, each chan-
nel corresponding to one input channel. The pooling layer has no learning parameters and
its output is only related to the input.

The pooling layer is usually used following the convolutional layer, which reduces the
number of model parameters, reduces the risk of overfitting, and improves generalization
ability. Pooling layers can also improve the computational efficiency of the model because
reducing the size of the input data means that fewer elements need to be computed as well.

However, pooling layers also have some drawbacks. Since a pooling layer discards some
of the information of the input data, it may affect the representation capability of the model.
In addition, pooling layers also lead to a reduction in the spatial resolution of the input
data, which may affect the model’s ability to extract fine-grained features.

3.2.2 Fully connected layer

The fully connected layer ( also known as the fully corresponding connected layer or
the densely connected layer ) is used in many deep learning models.

The input of the fully connected layer is a one-dimensional vector, and its output is
also a one-dimensional vector. Between the input layer and output layer, there are one or
a dozen of hidden layers, as shown in Fig 3.4.

The main role of the fully connected layer is to perform a linear transformation of the
input vector and extract meaningful features by learning parameters.

Specifically, the input vector of the fully connected layer is dotted with a weight matrix
and then a bias vector is added to obtain a new vector, which is the output of the fully
connected layer. Both this weight matrix and the bias vector are parameters learned during
the training process.

The output of the fully connected layer is usually passed through a nonlinear activation
function, such as a ReLU function, a sigmoid function, or a softmax function, to enhance
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the representation of the model.

Figure 3.4: Fully connected layer

The main parameters of the fully connected layer are

• The dimension of the input vector: i.e., the number of elements of the input vector.

• The dimension of the output vector: the number of elements of the output vector.

During the training process, the weight matrix and bias vectors of the fully connected
layer are learned automatically by the backpropagation algorithm. The basic idea of the
backpropagation algorithm is that for a given training sample, the output of the model is
calculated by forward propagation, then the difference between the output and the true
label is calculated, and then the parameters of the model are adjusted in the direction of
the difference so that the model can predict the output more accurately in the next forward
propagation.

Fully-connected layers are used in many deep learning models, including multilayer per-
ceptrons, convolutional neural networks, recurrent neural networks, etc. Fully connected
layers can be used to extract multiple features of the input data and automatically learn
these features during the training process.

Since the number of weight parameters of the fully connected layer is proportional to
the dimensionality of the input vector, when the dimensionality of the input vector is large,
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the number of parameters of the fully connected layer will also be large, which leads to an
increase in the training time and memory consumption of the model. In addition, fully-
connected layers do not handle spatial structure information well, so when processing data
with spatial structure information such as images, it is usually necessary to use a convolu-
tional layer to extract features.
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Chapter 4

The Previous Research:
Predicting the convergence of
BiCG method from grayscale
matrix images

After proposing the idea of obtaining classifiers that can predict the convergence of
sparse matrices by training neural networks, the previous research implements its idea
through the process shown in Fig 4.1.

Figure 4.1: The process of the previous research

In the following, I will describe each step of the process shown above:
The dataset used in this research was downloaded by the previous research from the

SuitesSparse Matrix Collection website.
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The Suitesparse Matrix Collection is an online database that collects a large sample of
sparse matrices. These sparse matrices come from a variety of resources, including linear
algebra, computer graphics, signal processing, optimization, and machine learning.

The site provides a large sample of sparse matrices that can be used by researchers
and developers. The site provides extensive documentation and instructions to help users
understand the properties and uses of matrices.

This section will describe the previous research on how to make datasets and also how
to transform sparse matrices into labeled ones that can be fed into convolutional neural
networks.

4.0.1 Obtain the labels’ values of the matrix by BiCG algorithm

In this step, the convergence of b = Ax needs to be solved using the BiCG algorithm.
The initial value of x and residual r0 is set as follows.

X0 = [0, 0, 0, 0, . . . . . . , 0]T (4.1)

The residuals in the previous study are 10−6 and 10−10, and my research only focuses on
the case of 10−10, which is the case as follows

||r|||2 <= 10−6||b|||2 (4.2)

4.0.2 Visualization of the matrix to obtain an image of the matrix

In this section, we will talk about how to convert matrix data into grayscale images.
The previous research used two different methods, one is called SuiteSparse and the other
is called Sigmoid. The idea of both methods is to first take the absolute values of the
matrix elements, then use a method of smoothing similar to Gaussian blur to unify the size
of the matrix, and finally use different normalization methods to transform the values of
the elements to between 0 and 255.

Their algorithms are as follows.
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Algorithm 2 SuiteSparse
1. Take the non-zero elements in A to their absolute values, i.e., make them positive.
2. Divide the dimension n of the matrix by the dimension d of the image to be generated, and the
number obtained after the cut is denoted as s
3. Divide the matrix by the square of s × s, take the maximum value of each block to represent
this matrix, and reconstruct a new matrix A

′ in this way.
4. Take the common logarithm of the non-zero elements of A

′

5. Find the standard deviation σ of the median Me of the non-zero elements for which the
common logarithm is found.
6. Transform the elements a

′

i,j in A
′ by the following equation:

grayscale =


255 Me + σ < log10 (a′

i,j)

128 + [127 log10(a
′
i,j)−Me

σ ] Me − σ ≤ log10(a′

i,j) ≤ Me + σ

0 Me − σ > log10(a′

i,j)
(4.3)

7. If the matrix [ n
s ] is not an integer, the image needs to be expanded and the lost quality is

corrected with bicubic

Algorithm 3 Sigmoid
1. Take the non-zero elements in A to their absolute values, i.e., make them positive.
2. Divide the dimension n of the matrix by the dimension d of the image to be generated, and the
number obtained after the cut is denoted as s
3. Divide the matrix by the square of s × s, take the maximum value of each block to represent
this matrix, and reconstruct a new matrix A

′ in this way.
4. Take the common logarithm of the non-zero elements of A

′

5. Find the mean µ, and the standard deviation σ for the non-zero elements of the over common
logarithm
6. u = log10 nonzero(A′), and use the following formula for normalization

ui = ui − µ

σ
(4.4)

7. The normalized values in 6 are normalized to between 0 and 1 using the sigmoid function, and
then multiplied by 255 ( and round ) to obtain the grayscale value
8. If the matrix [ n

s ] is not an integer, the image needs to be expanded and the lost quality is
corrected with bicubic
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4.1 Dataset

This research wanted to examine the control group of the previous research at a residual
of 10−10 using multiple computer vision. This is a dataset with a slightly disproportionate
ratio of negative to positive samples. There are 176 negative data and 699 positive data, as
shown in the following Table 4.1.

Table 4.1: The number of samples in 2 classes
positive samples negative samples account

176(20%) 699(80.0%) 875

To control the previous research, they were grouped exactly the same as in the previous
research. The ratios are shown in Table 4.2.

Table 4.2: Sample size of each group
group1 group2 group3 group4 group5

negative( divergent ) 140 140 140 140 139
positive( convergent ) 35 35 35 35 36

4.2 Training model and validation

Due to the small data set, k-fold cross-validation was used to test the model in the
previous research. This method is also used in this research

4.2.1 K-fold cross validation

K-fold cross-validation is a method used to evaluate the performance of a model. It
does this by dividing the dataset into K different subsets, using one subset at a time as
the test set and the remaining K-1 subsets as the training set for training and evaluation,
so that the evaluation results of K models can be obtained. The final model performance
evaluation result is the average of the K evaluation results.

4.3 Results

In the dataset produced with a residual of 10−10, which is of most interest to my study,
the results obtained by the previous research are shown in the following table 4.3. and table
4.4.

Although the accuracy in the table reaches 85%, the accuracy of the prediction in
the positive sample is relatively low. It is only the low percentage of the positive samples
occupying the whole data set that causes the overall higher precision. The predicted
data for the labeled samples are as follows, and the visualization method used for the dataset
used in this table is SuiteSparse.
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Table 4.3: The accuracy of baseline
size group1(%) group2(%) group3(%) group4(%) group5(%) Average(%)

28 × 28 84.0 86.2 86.2 86.8 81.7 85.0
56 × 56 87.4 86.8 86.2 86.8 81.7 85.7

112 × 112 86.2 86.8 88.0 88.0 81.7 86.1
224 × 224 86.8 82.8 86.8 86.8 81.7 85.0

Table 4.4: 28 × 28 pixel’s prediction by baseline
group2(%) group3(%) group4(%) group5(%) Average(%)

TN 129(92.1) 129(92.1) 135(96.4) 127(90.7) 130(92.8) 650(93.5)
FN 17 13 19 10 23 82
FP 11 11 5 13 9 49
TP 18(51.4) 22(62.8) 16(45.7) 25(71.4) 13(36.1) 94(53.4)

Total 175 175) 175 175 175 875

4.4 Summary of the previous research

In previous research, the authors proposed a method to predict the convergence of the
BiCG algorithm using convolutional neural networks. After computing the system of linear
equations with two residuals of 10−6 and 10−10, labels of convergence or non-convergence
are given for the corresponding sparse matrices.

Afterward, two visualization methods, SuiteSparse and Sigmoid, were used to trans-
form the matrix datasets into grayscale images which are suitable for loading into the
convolutional neural network. The previous research used methods such as changing
the visualization method, scaling, and changing the residual accuracy to try to improve the
accuracy of the prediction. However, from the machine learning perspective, these are all
pre-processing methods for the data and the authors did not try to use more neural network
structures for improvement.

In addition, the prediction accuracy for the positive samples was only 53.4 % on aver-
age in the dataset generated by increasing the residual accuracy to 10−10.

These shortcomings are what my research hopes to improve.
In the next chapter, I will introduce the new structure of the CNNs I used.
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Chapter 5

Fundamental knowledge of the
improvement method

The new methods introduced in this research are mainly new CNNs of computer vi-
sion. Considering that the image resolutions of pixels in the previous research are 28 × 28,
56×56, 112×112, 224×224, and most of the CNN are applicable to images with resolutions
above 224 × 224, the lightweight networks ShuffleNetV2, SqueezeNet; and ResNet50 which
is applicable to small size images.

5.1 Several CNN structures of computer vision

ShuffleNet V2 is a lightweight convolutional neural network structure. ShuffleNet V2
uses an operation called "shuffle" to reduce the interaction between channels, thus reducing
the computational complexity.

SqueezeNet is also a lightweight convolutional neural network structure that can be used
especially for mobile devices. SqueezeNet uses a module called "fire" to extract features and
reduces the number of parameters in the model by reducing the size of the convolutional
kernel.

ResNet50 is a deep convolutional neural network structure for computer vision appli-
cations. ResNet50 solves the gradient disappearance problem in deep neural networks by
using residual connections to train deeper networks. ResNet50 has achieved high accuracy
on the ImageNet dataset and is widely used in computer vision.

5.1.1 ShuffleNetV2:A light-weight neural network

ShuffleNet V2 was presented at the 2018 IEEE Conference on Computer Vision and
Pattern Recognition ( CVPR ).Ma [7] proposed the ShuffleNet V2 structure and compared
the impact of different design parameters on the network performance. The authors also
conducted experiments using a variety of datasets and demonstrated that ShuffleNet V2
provides high accuracy in computer vision applications while maintaining low computa-
tional complexity and memory footprint.
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It uses "shuffle", "pointwise group convolution" and "channel shuffle" operations to re-
duce computational complexity and memory consumption, and "bottleneck design" to im-
prove network performance. It is suitable for computer vision applications, especially for
mobile devices, and has achieved good results in many applications.

"Shuffle" is an operation used to reduce the interaction between channels, which re-
duces the computational complexity. This operation is achieved by dividing the channels
into groups and then swapping them within the groups. For example, if a channel is di-
vided into two groups, the channel in the first group can be swapped with the channel
in the second group. This reduces the interaction between channels and thus reduces the
computational complexity.

The "pointwise group convolution" divides the channels into multiple groups and con-
volves each group with a convolution kernel. For example, if the channels are divided into
two groups, two convolution kernels can be used for convolution. This reduces the number
of parameters and thus the memory footprint of the model.

The "channel shuffle" is implemented by randomly disrupting the order of channels be-
tween each layer. This increases the generalization ability of the model.

In addition, ShuffleNet V2 also uses a design called "bottleneck design" to improve the
performance of the network. This design reduces the number of parameters by using a small
convolutional kernel between each layer and reduces the output size by using a convolutional
kernel with a step of 2, thus reducing the computational complexity.

5.1.2 SqueezeNet: Another light-weight neural network

SqueezeNet was proposed by FN Iandola and other researchers [8] in the paper "SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" published in
2016.

It is a small convolutional neural network whose structure is designed to minimize the
number of parameters and computational effort of the model while maintaining excellent
classification performance. It is commonly used for image classification tasks and works
well on many resource-constrained devices.

The network structure consists of a series of convolutional and pooling layers that con-
tain a number of components called "Fire" blocks. Each Fire block consists of a "Squeeze"
layer and two "Expand" layers. layer uses a set of 1x1 convolutional kernels and a set of 3x3
convolutional kernels to increase the number of output channels.

In addition, it uses a technique called "deep separable convolution", which uses fewer
parameters for convolution and has higher computational efficiency. In addition, SqueezeNet
uses skip connections ( also known as short-circuit connections ) to avoid losing information
in the network.

5.1.3 ResNet50

Resnet50 is a deep neural network that derives its name "ResNet50" from the fact that
it has 50 convolutional layers by He [9].
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The structure of ResNet50 consists of a number of residual blocks, each of which con-
tains a set of convolutional and batch normalization layers. The input of each residual block
is convolved and batch normalized, and then the input itself is added as the output. This
type of connection is called a cross-layer connection or residual connection.

The purpose of using cross-layer connectivity is to solve the problem of gradient dis-
appearance in deep neural networks. In deep neural networks, as the number of layers
increases, the gradient usually becomes smaller and smaller, leading to poorer training
results. Using cross-layer connectivity allows the network to learn the residual function
instead of the original function, which helps solve the degradation problem in deep neural
networks and allows the network to converge faster.

ResNet50 also uses a batch normalization layer to control the bias and variance of the
activation function in the network. The batch normalization layer calculates the mean and
variance on each batch of training data and then normalizes the input data by subtracting
the mean and dividing it by the variance. Using a batch normalization layer can help pre-
vent overfitting and allow the network to generalize better to new data.
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Chapter 6

Predicting the convergence of
large sparse matrices in BiCG
algorithm based on computer
vision

In the experiments, I will first measure the similarity between the two visualization
methods, SuiteSparse and Sigmoid, using cosine similarity to explain the question posed
by the previous research -Why is the final classification accuracy of the two visualization
methods similar?

Second, I will measure the accuracy of all the neural network structures used, taking
the four resolutions’ situations respectively to show that the classification accuracy does
not differ significantly in this range of 28 to 224 resolutions.

Finally, I will give the performance of each neural network structure for the predictions
of Positive Samples at 28 × 28 resolution. to show whether the neural network structure I
used in my research is an improvement over the previous research.

Since the experiments are mainly focused on training the neural network structures, I
will give my flow in this process as Fig 6.1.

Figure 6.1: The main process of this research
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The experimental procedure of this research is shown above, the datasets were loaded
into ShuffleNetV2, SqueezeNet, and ResNet50 respectively for 5-fold cross-validation.

In order to better compare the accuracy of each group, I used the dataset with groupings
that were consistent with the previous research

The following Table 6.1. is the parameter of the neural network I used.

Table 6.1: The parameter of CNNs used
CNNs ShuffleNet V2 SqueezeNet ResNet50

Loss function Cross Entropy Loss Cross Entropy Loss Cross Entropy Loss
Optimizer Adam Adam Adam

Learning rate 1 × 10−3 1 × 10−4 5 × 10−5

6.1 Evaluation of two visualization methods through cosine
similarity

The authors of the previous research concluded that there was not much difference in
the accuracy of the predictions obtained by the two proposed methods of visualizing the
matrix.

So, in this research, I first tested the cosine similarity of the images generated by the
two visualization methods. The idea of the cosine similarity is to expand the matrix into a
one-dimensional vector and to calculate it by the following equation.

similarity = cos(θ) = A · B

||A||||B||
(6.1)

If the cosine similarity is closer to 1, the more similar the two matrices are. In this
experiment, all the images generated by the two visualization methods were expanded in
turn and the cosine similarity was calculated. As shown in Fig 6.2. :
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Figure 6.2: Similarity between two visualization methods

With such a high cosine similarity, the authors’ view seems to be confirmed in some
ways.

Therefore, in the following sections, I would discard the Sigmoid visualization method
and use only the images generated by the SuiteSparse method for the experiments.

6.2 The comparison of different CNN structures

In this section, the prediction results of four different computer vision CNN structures,
including Baseline’s neural network, will be shown at four resolutions of matrix images. The
validation method uses a 5-fold cross-validation, and the evaluation method uses accuracy,
which is formulated as follows:

Accuracy = TN + TP

TN + FN + FP + TP
(6.2)

where TN means True Negative, TP means True Positive, FP means False Positive,
FN means False Negative

6.3 Comparison of prediction accuracy between models

First I will give the results of the baseline experiment, as the Table 6.2.

Table 6.2: The accuracy of baseline
size group1(%) group2(%) group3(%) group4(%) group5(%) Average(%)

28 × 28 84.0 86.2 86.2 86.8 81.7 85.0
56 × 56 87.4 86.8 86.2 86.8 81.7 85.7

112 × 112 86.2 86.8 88.0 88.0 81.7 86.1
224 × 224 86.8 82.8 86.8 86.8 81.7 85.0
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The table above showed the accuracy rate of the Baseline for a residual of 10−10.
According to this table, I have guessed that the most significant difference is not caused

by the resolution of the image, but there is a difference across groups and the variation of
this difference is obvious and similar. So I conducted experiments using more computer
vision models. And, I will give a comparison of the accuracy between the different models
through 4-pixel solutions respectively in Table 6.3., 6.4., 6.5., 6.6.

Table 6.3: 5 groups of 4 different models under 28 × 28 pixel resolution
model name group1(%) group2(%) group3(%) group4(%) group5(%) Average(%)

baseline 84.0 86.2 86.2 86.8 81.7 85.0
ShuffleNetV2 82.3 78.9 79.4 84.0 76.0 80.1
SqueezeNet 77.7 82.9 74.9 80.6 80.6 79.3
ResNet50 84.6 85.1 86.9 88.6 78.3 84.7

Table 6.4: 5 groups of 4 different models under 56 × 56 pixel resolution
model name group1(%) group2(%) group3(%) group4(%) group5(%) Average(%)

baseline 87.4 86.8 86.2 86.8 81.7 85.7
ShuffleNetV2 81.7 77.7 79.4 82.3 74.3 79.1
SqueezeNet 73.7 84.6 72.6 81.7 81.1 78.7
ResNet50 85.7 85.1 85.1 87.1 79.2 84.4
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Table 6.5: 5 groups of 4 different models under 112 × 112 pixel resolution
model name group1(%) group2(%) group3(%) group4(%) group5(%) Average(%)

baseline 86.2 86.8 88.0 88.0 81.7 86.1
ShuffleNetV2 79.4 77.1 76.7 86.3 76.7 79.2
SqueezeNet 75.4 82.9 76.0 80.0 77.7 78.4
ResNet50 88.6 84.0 84.6 90.9 79.4 85.5

Table 6.6: 5 groups of 4 different models under 224 × 224 pixel resolution
model name group1(%) group2(%) group3(%) group4(%) group5(%) Average(%)

baseline 86.8 82.8 86.8 86.8 81.7 85.0
ShuffleNetV2 82.3 81.1 79.4 83.4 72.6 79.8
SqueezeNet 74.3 80.0 76.0 81.7 82.3 78.9
ResNet50 91.4 81.7 83.4 83.4 80 84.0

In the above tables, I have used the same datasets to perform experiments on three vi-
sion models, ShuffleNetV2, SqueezeNet, and ResNet50. Further confirming my conjecture,
the accuracy does not cause significant difference at the resolutions of 28×28, 56×56, 112×
112, 224 × 224, and all the computer vision models basically conform to this pattern. And,
the variation in accuracy between groups is indeed similar across all computer vision mod-
els, i.e., if a model performs well or poorly on a particular group, it performs similarly at
all resolutions.

One more notable thing: Although the accuracy of these models all looks to be in the
neighborhood of about 80 to 85, the actual TP to TN ratio difference is very large. We will
illustrate this in the table below. Since each resolution exhibits similar performance, the
following experiments use only the case at a resolution of 28 × 28 as an illustration.
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6.4 Performance on positive data prediction

As mentioned in the previous section, although all models have 80% 85% accuracy
in prediction, the high accuracy for True Negative prediction can mask the low accuracy
of True Positive prediction in the final accuracy calculation due to the imbalance between
Negative and Positive data, which is also a problem in the previous research.

In this research, the introduced ResNet50 model possesses a better performance than
the Baseline in terms of the proportion of True Positive. The following table shows the
comparison of the 4 models in terms of True Positive prediction accuracy in the case of
28 × 28 images in the dataset.

I gave out the result in Table 6.7. as follows

Table 6.7: The number and ratio of TP in prediction, 28 × 28 pixel resolution, numbers in paren-
theses are ratios

model name group1(%) group2(%) group3(%) group4(%) group5(%) Average(%)
baseline 18(51.4) 22(62.8) 16(45.7) 25(71.4) 13(36.1) 94(53.4)

ShuffleNetV2 24(68.6) 17(48.6) 12(34.3) 19(54.3) 8(22.2) 80(45.5)
SqueezeNet 5(14.3) 6(17.1) 21(60.0) 23(65.7) 20(55.6) 75(42.6)
ResNet50 22(62.9) 20(57.1) 23(65.7) 26(74.2) 18(50.0) 109(61.9)

Total 35 35 35 35 36 176

As noted in the table above, ShuffleNetV2 and SqueezeNet outperformed Baseline’s
neural network in predictions for Positive data only in some groups. On average, the per-
formance is lower than that of the Baseline.

In contrast, ResNet50 not only outperforms Baseline on average, but also shows much
better prediction accuracy than Baseline in some groups where Baseline has very low pre-
diction success ( e.g., groups 1, 3, and 5 ). This is not only proof that ResNet50 may be
a more suitable neural network than Baseline in this research, but it can also prove that
trying new computer vision models is a feasible and valuable research method in the study
of this problem.

Considering that the dataset of this research is images of sparse matrices, I think the
study of the type and proportion of sparse matrices in these groups is also a future work
worth exploring.
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Chapter 7

Conclusion

This research imported 3 new convolutional neural networks to evaluate the methodol-
ogy proposed by the previous research and showed the proposed methods for increasing the
accuracy are not so working. Finally, it turns out that the deep neural network ResNet50
can improve the shortcoming of low accuracy when predicting positive( convergent ) sam-
ples. Three new different CNNs structures, ShuffleNetV2, SqueezeNet, and ResNet50, were
used in this research and validated by using the same datasets from the previous research.
By comparison, it turns out that differences between groups were more obvious than differ-
ences between 4-pixel resolutions.

Secondly, the datasets produced with residuals of 10−10 which we cared about most,
had a lower correct prediction rate in the classifier produced in the previous research, with
an average of only 53.4%. Among them, the prediction rates were 51.4% for group 1, 45.7%
for group 3, and only 36.1% for group 5, respectively.

And, the neural network of ResNet50 introduced in this study not only improved the
average prediction accuracy from 53.4% to 61.9% but also improved the accuracy of 11.5%,
20% and 13.9% in group 1, group 3 and group 5, respectively.

It showed that in some ways, ResNet50 may be a more suitable neural network than
the previous research’s structure for this problem, and also proved that trying new com-
puter vision networks or models is a feasible and valuable research method for increasing
the accuracy in this problem. The other neural network structures introduced in this study,
although not as good as Baseline’s accuracy, also outperform the Baseline in some specific
groups. What’s more, it implies that the methodology of previous research can also work
on other CNNs as well.

In the follow-up study, I will optimize the parameters of the neural networks to obtain
better prediction accuracy. In addition, since different computer vision models have differ-
ent prediction performances in different groups, I have a guess: this is essentially due to the
different visual models’ different abilities to perceive sparse matrices with different patterns.
I will try to prove this guess. And if it’s real, a scheme or algorithm that integrates the use
of visual models to allow the most suitable neural network structure to make predictions
on the most suitable images can be proposed, then it is possible to expect further improve-
ments in the accuracy of classification and prediction.
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