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Data-driven reproduction of various physical objects into virtual reality (VR) is a long-
standing challenge. Even with the rapid development of deep learning technology in recent
years, there are still many problems. (1) For static objects, when bringing reproduced objects
to the virtual world, it is difficult to convert them into a format that can be used in VR,
such as mesh, without losing the pre-computed highly accurate appearance. (2) For dynamic
objects, there are almost no cases that achieved reproducing both realistic appearance and
functionality without losing real-time performance. Aiming to solve these problems, we pro-
pose Deep Billboard, a technique for removing the constraints of reproducible objects and
utilizing them in real-time in virtual reality. The key is that while existing technologies have
aimed to reproduce 3D objects correctly in 3D space, Deep Billboard directly aims to repro-
duce 3D objects in a way that looks correct to the VR user, by representing objects only in
a single plane (billboard) that faces the user and is re-rendered frame by frame. Our system,
connecting a commercial VR headset with a server running neural rendering, allows real-time
high-resolution simulation of detailed rigid objects, hairy objects, actuated dynamic objects,
and more, in an interactive VR world, drastically narrowing the existing real-to-simulation
(real2sim) gap while preserving smooth interactivity. To the best of our knowledge, we are
the first to implement, evaluate, and open-source a functional system of high-quality neural
rendering in interactive VR applications, expanding the impact of neural rendering models to
interactive simulation such as gaming, shopping and robot learning beyond research demos.
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Chapter 1

Introduction

An aspirational goal for virtual reality (VR) is to bring in a rich diversity of real world
objects losslessly. Data-driven 3D modeling is increasingly in demand from the virtual
reality (VR) industry, which has been growing rapidly in recent years and it is expected to
be used in VR applications such as virtual shopping, showrooms, and telecommunications
that are grounded in the real world. In addition, Data-driven 3D modeling is a crucial
technology for robot learning research. It enables the creation of realistic simulations of
objects and environments for training and testing purposes, without the need for expensive
and potentially dangerous physical experiments. This will help improve the performance
and reliability of robot learning algorithms, leading to the development of more advanced
and capable robots. So far, using CG software to model shapes and movements by hand
has been the mainstream method. However, when trying to model the face of a specific
person or the pasta of a particular restaurant, it is unrealistic to accurately reproduce the
movement of facial muscles or the way sauce tangles in pasta. This is because it is impossible
to completely model the physical laws at work in these situations. Thus, manual modeling
methods were clearly unsuitable especially for modeling people, food, and clothing in their
original appearance and function, where humans are likely to notice discomfort. Even if the
objects are not as complex as those just mentioned, modeling them by hand is laborious,
requiring specialized knowledge and time, so data-driven 3D modeling will play an important
role in enriching realistic content and expanding the range of experiences in the virtual world
by making it possible for anyone to model them easily.

With recent advances in deep learning research, data-driven modeling techniques are
rapidly evolving, and at the demonstration level, it is now becoming possible to reproduce
static or time-varying objects from images or videos. In practice, however, automated
modeling techniques are not widely used. As for static scene reproduction, NeRF (Neural
Radiance Field) [1] can obtain highly accurate color and density 3D fields from dozens
of images. NeRF can predict the color and density of points on the line of sight using
a neural net when a new viewpoint is entered, and by using this, NeRF can generate a
high quality image from the new viewpoint that is almost indistinguishable from the real
one. However it is not yet available for use in existing real-time CG engines as it is. Some
studies [2, 3] have forced the conversion to mesh, etc., but it is known that the visual
quality is clearly deteriorated, and the reality is unfortunately lost, so it is difficult to say
that the VR experience has been greatly improved by deep 3D reproduction technologies.
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As for dynamic scene reproduction, there are several studies that have achieved this by
deforming simple meshes in real time (BANMo [4]). However, high resolution and detailed
deformations can not been captured, and the realism of the appearance and deformation are
limited by the mesh representation. Although several methods of mesh-independent spatio-
temporal reconstruction using NeRF have been proposed in recent years (HyperNeRF [5]),
they require recalculation of the color density in each frame, which is very computationally
expensive and not real-time at all. The reason why real-time rendering was becoming
possible with NeRF for static scene representation was because the they pre-calculate color
and density fields of the entire 3D space with grid sampling and caching in a very light
format that can be tuned by viewing direction, and objects were stored in files ranging in
size from a few hundred MB to several GB. However, in the reproduction of dynamic scenes,
the data size of the model becomes ridiculously large when caching a time-varying 3D field,
and although the reproduction of dynamic scenes using NeRF can achieve a high-definition
appearance, real-time rendering will be quite challenging to achieve even in the future. Also,
as with NeRF, since these are not in mesh format, it is not trivial how they would be used
in a virtual world.

Looking back on the history of the field of 3DCG and 3D games, some techniques have
long been used to represent objects with complex shapes more easily and lightly, and one
of these techniques is billboard. Billboard is a technique used for objects such as trees,
grass, fire, smoke, etc., which does not necessarily require much change in appearance as
the observer’s viewpoint changes, and represent pseudo-3D objects by tilting one or a few
images so that they are always facing the observer. This technique has long been used from
old 3D games such as Super Mario 64 to today. What we can learn from this is that it is
not necessary for a 3D object to have an exactly accurate 3D shape for VR users; rather,
it is sufficient if the observed 2D representation looks correct. Looking back at recent deep
learning-based 3D modeling methods based on this idea, the reasons why these methods are
difficult to be put to practical use in VR may be that (1) even though perfectly accurate
3D geometry is not necessary for 3D models, they are aiming for it, (2) despite the fact
that it is not suitable for direct optimization of the observation for users, for reducing
computational cost while maintaining observability from arbitrary viewpoints, 3D objects
have been reduced to a sort of classical representation format such as meshes.

Inspired by the classic billboard, we propose Deep Billboard, which extends billboard
with deep learning techniques. Deep Billboard is based on a simple billboard, but dynami-
cally generates the appropriate appearance for an observer based on the observer’s position,
time changes, and any other information that may affect the observation of the object, and
re-renders it on a 2D canvas every frame and create a pseudo-3D representation of the ob-
ject. This allows Deep Billboard to provide a high-quality appearance directly to the user
without being restricted by meshes, etc. when actually used in the virtual world. It also
allows objects to be represented at low computational cost, since there is no need to consider
accurate color and density fields or deformation of the entire object, but only to generate
a plausible image. On the other hand, the Billboard representation can be used only in a
limited way in suddenly VR because it throws away the shape information in a naive way.
Therefore, we present several systematic ideas, such as a way to realize simple interaction,
and a way to realize observation from multiple viewpoints, and show that they can be fully
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utilized in casual VR applications. That is, Deep Billboard offers a new alternative to the
problem of 3D restoration, in which 3D objects are represented by image or video prediction
rather than strictly restoring the 3D structure. This will be a breakthrough in data-driven
object reproduction, as it will enable the reproduction of complex objects that have been
difficult to achieve both real-time use and high quality in the past and actually used in the
virtual world.

In our experiments, we show examples of static and dynamic object reproduction using
DeepBillboard. We will also show interaction in VR space and a system for using DeepBill-
board with VR devices. Our possible contributions are as follows. (1) We designed the first
system to simulate 3D objects with 2D rendering on per-object. (2) We show simulations of
static and dynamic objects using DeepBillboard, as well as physical interactions and viewing
systems in VR. (3) We have open-sourced the DeepBillboard system and provided several
demos.
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Chapter 2

Related Works

2.1 Data-driven 3D reproduction

Data-driven reproduction methods can be divided into several categories depending on the
final representation format.

Explicit Representations The voxel-based methods [6, 7, 8] and mesh-based methods
[9, 10, 11, 12] are common approaches for 3D reconstruction. It is known that the former
is difficult to reconstruct at high resolution, while the latter is difficult to estimate complex
topology. MVS [13, 14, 15] is one of the best known practical applications of 3D mesh
reconstruction from images, and is commonly used in 3D modeling work today, but it cannot
capture delicate shapes such as hair, transparent areas, or view-dependent appearance, nor
can it model objects with few visual features.

Implicit Representation (Static Scene) [16, 17] leverage differentiable rendering to re-
construct 3D geometry with appearance from image collections. Neural Volumes [18], NeRF
[1] and followups [19, 20, 21, 22] learn color and density in 3D space using differentiable
ray marching from multiple camera perspectives. NeRFs achieve state of the art accuracy
in the novel view synthesis tasks. [23, 24, 25, 26] have made NeRF rendering 1000 times or
faster than the original NeRF by caching and optimizing data structures, making real-time
rendering possible. However, these methods only show how to utilize them in interactive 2D
viewers, and none of the studies have shown how to use them directly in VR. The common
way to use these methods in VR is to convert the (high expressive) trained model into a
(less expressive) mesh, which is often done both at the research level [3, 27] and in practical
use [2]. These converting methods are known to provide fast inference, but are known to
deteriorate the appearance, especially for objects with complex shapes such as hairy objects,
translucent objects or dynamic objects. In contrast, we aim to make the Neural Rendering
method usable as a high quality 3D model like a regular 3D model in VR without loss of
accuracy and with interactivity.

Implicit Representation (Dynamic Scene) [28, 5, 29, 30] are extensions of NeRF for
spatiotemporal reconstruction of dynamic scenes, allowing viewpoint interpolation from a
single video as input, under the same time evolution as the input video. However, there
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are some problems, such as the limited range of possible complementary viewpoints and
the inability to predict and render in real time. [31] is similar to these, but by learning
dynamics itself using deep state space models [32], it can predict and generate new time
evolution, independent of the time evolution of the original data. These methods are capable
of generating the entire observation angle of view, but how to utilize these methods on an
object-by-object basis in VR has not been discussed much. In this study, we present one
solution to this problem.

Viewpoint Interpolation Viewpoint interpolation is also a powerful approach to computer
graphics that allows three-dimensional objects and scenes to be visualized in a realistic way
without full 3D geometric model reconstruction. Multi plane images [33, 34] and light
field interpolation [35, 36, 37, 38] are such image-based approaches for novel view synthesis
without 3D reconstruction. When the postures of novel viewpoints can be limited, such
as forward-facing scenes, these representations are very light-weight, accurate and effective,
but otherwise, their use case is limited. [39, 40, 41, 42, 43] are stereo matching based
rendering methods that enable 3D reconstruction from fewer images but they suffer from
view inconsistency in the presence of surface occlusions when using local features in input
views to identify surfaces for novel view synthesis. [44, 45, 46, 47, 48] estimate surface using
volume rendering and provide very efficient 3D reconstruction but it is extremely difficult
to correctly estimate the shapes with transparent or fuzzy parts. In contrast, our goal is to
bring objects that are so complex that it is difficult to estimate their surface and appropriate
to use powerful methods such as NeRF, to VR to be used as 3D models.

2.2 Generative 3D-aware Image Synthesis

Recently, 3D aware image generation based on Generative Adversarial Networks [49] has be-
come feasible. Voxel-based GAN [50, 51, 52, 53, 54] generate voxels directly using 3DCNNs,
but their inefficient representation of 3D space makes it difficult to generate high resolution
due to memory constraints during training. Some mesh-based GAN [55, 56] have been
proposed, but they are difficult to generate with high fidelity due to lack of expressiveness.
As an alternative, implicit representation networks have been proposed for 3D scene gener-
ation [57, 58, 59], however, the 3D consistency was not enough and the generated images
were not as good as the 2D GAN. Several studies [60, 61, 62] have solved the previous
problems by combining the NeRF mechanism with 3D GAN. Among them, EG3D [61]
enables real-time rendering by streamlining the coordinate input-based 3D representation,
and also enables its 3D reconstruction by optimizing the GAN seeds when given a single
target image. 3D-aware GANs are very powerful techniques, but these methods only work
well on people, cat faces, cars, etc., where huge data sets are available, and are not applica-
ble to new objects. Also, as with NeRF and others, the way to utilize them as 3D models
has not been explored much.
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2.3 Billboards

Billboard’s technique of using one or a few images to represent a 3D model has been used
from the 3D video games of the 1990s, such as Super Mario 64, to today. There are several
studies based on billboards. Some researches [63, 64, 65, 66, 67] use billboard for fire, smoke,
grass, trees or cartoon face modeling. However, all of these methods are limited in their
applicability. Several recent methods combined with machine learning have proposed new
ways to use billboards. Articulated Billboards [68] generates free-viewpoint images of a
soccer stadium, and does so by representing each of the players’ body parts on billboards
automatically generated from camera images. FreeStyleGAN [69] presents a demonstration
of a post-editing of the face of a mesh-reconstructed person using 2D GAN and billboards.
Rig-space Neural Rendering [70] is a research aimed at replacing ultra-high resolution 3D
models with 2DGAN and billboard representations to achieve both high quality and fast
rendering, but it assumes that a precise 3D model can be obtained in advance. Generally,
billboards are supposed to be powerful in that they can represent 3D models plausibly,
sometimes in a data-driven manner, while avoiding the difficulty of accurately reconstructing
3D structures, but in reality billboards are not widely used at all. Unlike these previous
studies of billboards, in this study, we show that billboards can be used to model a wide
range of real-world objects with little human effort, without limiting the scene to be modeled,
and proposes a method that can be used interactively like ordinary 3D models. With this,
we aim to make it easy to bring a wide range of real-world objects into VR and use them.
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Chapter 3

Preliminaries

3.1 Neural Radiance Fields

Neural radiance fields (NeRF) [1] are 3D representations that can be rendered from arbitrary
viewpoints, capturing continuous geometry and view-dependent appearances. The expected
color of a camera ray r(t) = o+ td can be estimated by a finite-sample approximation Ĉ(r):

Ĉ(r) =
N−1∑
i=0

wi c(r(ti)) , (3.1)

where wi = Ti

(
1 − exp(−σ(r(ti))δi)

)
(3.2)

Ti = exp

−
i−1∑
j=0

σ(r(tj))δj

 , (3.3)

where ti indicates the position of the point to be sampled from the ray, and δi = tt+1 − ti

are the distances between point samples. In NeRF, an MLP parameterizes c(·) and σ(·)
jointly and is trained to minimize the loss between the ground-truth pixel colors C(r) in
the images and the predicted colors Ĉ for a batch of rays R:

LRGB =
∑
r∈R

∥∥C(r) − Ĉ(r)
∥∥2

2 (3.4)

3.2 Deep State Space Models

Deep State Space Model (DSSM, also called Deep Karman Filters, Deep Markov Model,
or simply SSM)[32, 71] is a deep learning-based prediction model for time series. DSSM
assumes that the data observed at each time have latent states st and observations at each
time ot are generated from that states. Figure 3.1 shows the graphical model of DSSM is
shown. The DSSM predicts an observation o1:T conditioned on an initial state s0 and an
action sequence a1:T , as shown in equation (3.5).

p(o1:T |a1:T , s0) =
T∏

t=1
p(ot|a1:t, s0)

=
T∏

t=1

∫
p(ot|st)p(st|st−1, at)dst (3.5)
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Figure 3.1: Graphical model of DSSM. The solid line represents the generator distribution, and
the dotted line represents the inference distribution. Inference distributions are used only during
training.

The DSSM makes the assumption that the state vector st at each time point follows
a normal distribution. Plus, DSSM introduces an inference model q(st|st−1, at, ot) as in
VAE [72], models the generative process and the inference process by a neural network, and
finds their parameters by maximum likelihood estimation with the following variational
lower bounds.

log p(o1:T |a1:T ) ≥
T∑

t=1

(
Est∼q(st|st−1,at,ot)[log p(ot|st)]

−Est−1∼q(st−1|st−2,at−1,ot−1)[DKL(q(st|st−1, at, ot)∥p(st|st−1, at))]
)

(3.6)

DSSM can be used to predict future observations as shown in Figure 3.3.
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Figure 3.2: Examples of images generated by NeRF, from [1]. These are results of object recon-
struction of the NeRF Synthetic Dataset.

Figure 3.3: Example of video generated by DSSM, from [73]. This model learns video frames from
a side view of a reinforcement learning agent.

9



Chapter 4

Deep Billboards

Figure 4.1: Deep Billboard object on a single canvas. Since billboard object is rendered for a single
perspective, it feels flat when viewed from other angles.

4.1 Method

We propose Deep Billboard, a generalization of the classic billboard. In contrast to
classic billboard, Deep Billboards textures are redrawn each frame with images generated by
Neural Rendering model, conditioned by the viewer’s perspective (Figure. 4.1). Compared
to standard explicit 3D models such as meshes, Deep Billboards enable object rendering of
much higher resolutions, drastically improving the realism of virtual experiences while pre-
serving real-time interactivity. Any Deep image or video generative model can be combined
with our Deep Billboards.

The main algorithm of Deep Billboard is described in the Algorithm.1. Deep Billboard’s
job is, in addition to that of a classic billboard, to update its own texture every time step
by generating a new observation image according to the viewer’s point of view with neural
rendering model. The model is required to produce either an alpha-mapped RGBA image
or an image with the non-object areas filled with a single color. The figures in the paper
show images filled with a single color for clarity, but in practice the background of the image
is transparent and used as a texture. Here, we described d and x as inputs, and additional
inputs such as information of environmental light or user actions, for example, can be added
to the input depending on the generation model. Conversely, if the image generation model
does not take into account the distance to the observer, x may not be used as an input.
Deep Billboards can utilize a wide range of objects in VR without the difficulty of explicit
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Algorithm 1 Deepbillboard for viewpoints of viewer A
Require: novel view synthesis model F , billboard B

1: while the billboard is seen by A do
2: Tilt B to face A’s viewpoint position
3: Get input of F
4: Generate Observation Ô = F (d, x)
5: where d, x = rotation of B, viewpoint position of A
6: Update the billboard texture of B with Ô
7: end while

3D reconstruction. As examples, we show their use for static objects (NeRF Billboard)
and self-moving dynamic objects (World Billboard). The scope of applicable objects will be
discussed later. Figure 4.2 shows an example of the visual result.

4.2 Static Scene

Figure 4.2: Qualitative results of our NeRF Billboard on NeRF-Synthetic dataset.

As an example of Deep Billboard’s use for static objects, we show its combination with
NeRF. NeRF uses a neural network to implicitly parameterize emitted color and volume
density functions with spatial coordinates as inputs, which is passed to a ray-tracing integra-
tion for view-conditioned image generation. While NeRF allows a much higher-resolution
3D construction that is comparable to the real objects, prior works importing NeRF into
VR converting the models back to coarse meshes, due to software incompatibility, high
computational demand, and slow rendering of original NeRF models. In contrast to these
works, we directly utilize neural rendering without explicitly converting to a 3D model,
thus creating a 3D model that looks exactly as it was learned in NeRF. For real-time neural
rendering, we instead used PlenOctrees [24], an extension of NeRF to update the billboards.
When NeRF and PlenOctrees are trained on images taken casually, there is a problem that
the background remains in the generated image. To solve this problem, the density outside
the rough bounding volume of the object was overwritten to 0 for the PlenOctrees format
data. Note that, to the best of our knowledge, our system is the first to import NeRF
models directly into an interactive VR application without loss of appearance.
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4.3 Dynamic Scene

Figure 4.3: Qualitative Results of World Billboard on our toy dataset.

While NeRF allows rich rendering of complex static objects, extension to dynamic
scenes is still an active area of research [1]. To show the versatility of our Deep Billboard
system, we also replace our billboard updater using PlaNet [73], a neural state-space model
(SSM) or a world model for action-conditioned video prediction in deep reinforcement learn-
ing (RL), to achieve data-driven reproduction of time-varying objects from a single video
only. From a single 10-minute video labeled with the camera position and orientation, we
learned video prediction conditioned on the initial viewpoint image and viewpoint series, and
reproduced the time-varying 3D object through the billboard in our interactive VR system.
World Billboard is also used in the same way as Algorithm.1, but unlike NeRF Billboard,
the object’s state s at the previous time is stored and used to generate the image at the
next time, allowing for the generation of object motion. The training data for PlaNet was
preprocessed from real-world video and transformed into a set of normalized 10-frame series
of images. This preprocessing included frame scaling to normalize the distance between the
camera and the subject, cropping the object area, and filling in the background.

4.4 Physical Interaction

Figure 4.4: Combination of NeRF Billboard and 3D mesh.

Another disadvantage of a classic billboard is that it does not allow physical interaction.
To solve this problem, we propose a system where a billboard is used for visual interaction
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(a) Cloths (b) Snow

(c) Lift up (d) Shadow

Figure 4.5: Deep Billboard provides basic physical interaction.
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while an invisible rough mesh for physics interaction (Figure 4.4). Figure 4.5 shows the four
basic physical interactions realized with this approach. (See the supplemental videos.) In
this example, we use invisible meshes acquired by following prior works [3, 27] that converts
a learned neural rendering model to a mesh by marching cube algorithm. Even if a mesh
is not prepared using such kind of methods, physical interactions can roughly be achieved
using alternative meshes, such as a spherical mesh, for example. In Figure 4.5a, the cloth
is dropped from above and placed over the object; it can be seen that the cloth deforms
with the shape of the object, regardless of the shape of the Billboard 2D image itself. In
Figure 4.5b the object is being snowed on from above, and the snow that hits it appears
to bounce back. In Figure 4.5c shows an object being lifted by touching it, indicating that
this method can also handle object movement. In Figure 4.5d, we can see that the suitable
shadow appears when illuminated by a light source. From these experiments, it can be
said that the combination of visible billboard and invisible mesh is able to simultaneously
realize good visuals and good basic physics. The range of feasible physical interactions will
be discussed later.

4.5 System

Figure 4.6: Deep Billboard VR system overview.

Neural rendering models such as NeRF or PlaNet require large computational power,
so we have built a system that uses cloud rendering to enable even inexpensive VR headsets
to handle highly accurate pseudo-3D models as long as they have an internet connection
(Figure. 4.6). Each Deep Billboard object is rendered on a separate cloud server process, and
rendered 2D frame is sent to the VR system per frame to achieve real-time interaction with
minimal on-board processing. Our system operated NeRF Billboard (800x800 rendering
resolution) at roughly 10 ∼ 15 fps and World Billboard (256x256 rendering resolution) at
roughly 20 fps with a single TITAN X GPU (cloud server).
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Chapter 5

NeRF Billboards

5.1 Implementation

NeRF Billboard, as mentioned above, combines NeRF and DeepBillboard and uses NeRF’s
novel view synthesis to display static objects as if they were 3D objects in NeRF quality,
without being bound by meshes or other representation formats. However, there are some
problems in combining the two as they are, so we made the following modifications.

5.1.1 Real-time rendering

Since the original NeRF takes about 30 seconds to synthesize one Novel view, we use its
successor, PlenOctrees, instead of NeRF for training and rendering. PlenOctrees learns the
field by dividing the field into Octrees, representing each microregion as spherical harmonics,
and optimizing these spherical harmonics with the gradient method. By not passing through
a neural net, the rendering is 3000 times faster, while producing rendering accuracy equal
to or better than the original NeRF. We trained PlenOctrees with 3 degrees of freedom for
spherical harmonics and 8 octree depths (up to 512 grid divisions).

5.1.2 Trimming Learned 3D Field

In order to appear like a 3D model in the virtual world, it must be possible to give the
billboards an appropriate transparency map. Therefore, if the image used to train NeRF
or PlenOctrees contains a background, the generated image must be rendered with the
background removed. Since the PlenOctrees representation can determine whether each
octree cell is background or not by its position in space, we solved this problem by removing
the background octree cells by setting a threshold on the spatial coordinates in advance.
Also, the original implementation of PlenOctrees outputs only RGB, but we have changed
it to output an RGBA image based on the density field obtained by training PlenOctrees
and calculating transmittance in the same way as NeRF.
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(a) before extracted (b) Mesh (c) Point Cloud (d) Deep Billboard

Figure 5.1: Qualitative comparison between mesh, point cloud and DeepBillboard.

5.2 Results

5.2.1 Comparison with Meshes and Point Clouds

To evaluate the performance of NeRF Billboard, we compared the object representation
by Deep Billboard with that of NeRF converted to a simple mesh or point cloud in actual
CG software. The point cloud was acquired by uniformly grid sampling color and density
from the NeRF and adopting where the density was above a certain level. The mesh was
obtained by marching cube of the point cloud.

First of all, it can be seen that the conversion to mesh or point cloud clearly deteriorates
the visual accuracy. For example, the ropes on the ship in the mesh or point cloud have
disappeared, the stuffed animal has turned black, and the fine irregularities have become
smooth in appearance. While the Deep Billboard clearly shows every detail, the plush toy
made with Deep Billboard has a noisy haze on the surface of the object, which reduces the
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Figure 5.2: Qualitative comparison between nvdiffrec (results from [3]) and DeepBillboard (results
from [24]).

visual quality.

5.2.2 Comparison with Mesh Optimization-based Method using NeRF

Table 5.1: Quantitative comparison of NVDiffRec and DeepBillboard. Average results for the eight
scenes in the NeRF realistic synthetic dataset. Each scene consists of 100 training images, and
200 test images, with masks and known camera poses. Results from NeRF diffrec are taken from
diffrec paper [1].

Method PSNR↑ SSIM↑ LPIPS↓

NVDiffRec [3] 29.05 0.939 0.081

DeepBillboard (PlenOctree) [24] 31.71 0.958 0.053

Next, we compare DeepBillboard to NVDiffRec, a very recently published method for
high quality mesh extraction from NeRF. Looking at Figure 5.2, the visual quality seems
clearly better in DeepBillboard than in NVDiffRec. For example, the rope of the ship and
the weave of the mic are not well reproduced in NVDiffRec. Also, looking at the drums, we
can see that there are areas where the gloss is not well acquired in NVDiffRec. Table 5.1 is
a quantitative comparison. From this table, we can see that DeepBillboard provides better
visual observations than NVDiffRec, even quantitatively.

5.2.3 Quality as a 3D object

Finally, Figure 5.3 shows how NeRF Billboard was actually employed in the CG software.
The model generated with a clean dataset (NeRF Synthetic Dataset) can be displayed

17



Figure 5.3: Interactive use of Deep Billboard. https://www.youtube.com/watch?v=_-hvK3IUZn8

at about 30 fps with sufficient resolution without any discomfort, but compared to other
regular 3D objects, it felt a bit delayed. Also, the way the light hit the objects appeared to
vary from object to object was a bit disconcerting. The sushi model generated with images
taken by oneself seemed a bit flat, but this could be due to the fact that the training data
had not been undistorted.

5.3 Discussion

Limitation of Mesh and Point Cloud The quality of meshes and point clouds tended
to be low overall. This is because (1) mesh and point cloud cannot reproduce viewpoint-
dependent changes in appearance, and thus cannot generate optimized observations for each
viewpoin. (2) NeRF cannot accurately predict the density in details, so it tends to produce
shape errors that expand the size of the object and the color of the empty space is assigned,
resulting in an overall blurred shape and a grayish color.

Haze near the boundary of an object The reason for the haze is probably that NeRF
does not acquire a field near the boundary of the object with a complete separation between
the object and the background when training. For example, if the background is always
black, it is no problem for NeRF to learn that the area near the object’s surface is also
black on certain viewpoints. To solve this problem, we can simply perform high fidelity
background removal before training, or prepare several patterns of backgrounds in training
data, for example.

5.4 Summary

NeRF Billboard can create pseudo-3D objects in virtual worlds using NeRF’s real-time, high-
quality novel view synthesis as it is. The NeRF Billboard was shown to be clearly better
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than meshes and point clouds both qualitatively and quantitatively in terms of appearance.
On the other hand, there are some problems, such as the fact that the accuracy of the model
depends greatly on how the background is processed and the training data is captured, there
is some delay, and the lighting is fixed differently from CG space, but these problems will
be solved gradually in the future.
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Chapter 6

World Billboards

6.1 Implementation

As mentioned earlier, World Billboard combines DeepBillboard and video prediction for
data-driven modeling of dynamic objects, i.e., objects that change appearance and shape
by themselves or by being manipulated by someone else. For video prediction, we use DSSM
(Deep State Space Models), a deep learning-based basic method. This section describes how
to use DSSM in conjunction with DeepBillboard and how it can be implemented. In order
to simplify the problem set up, the experiment was conducted using only toy dolls that
move on their own.

6.1.1 Input/Output Definitions

Figure 6.1: Graphical model of our DSSM and definitions of inputs and outputs.

Since DeepBillboard is an object-by-object pseudo-3D reproduction method, DSSM
desires to be able to predict the video that will be pasted directly onto the billboard.
Therefore, the DSSM input is the viewpoint, and the output is the video such that the
target object is in the center of the frame.
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Output In order to learn video predictions correctly and efficiently, the outputs are defined
in detail as follows.

1. The object is at the center of the frame
2. The rendered size of the object is fixed
3. The object keeps horizontal orientation in the frame
4. Background is removed

As the distance between the viewpoint and the subject increases, the object should
appear smaller, but since the billboard itself appears smaller as the distance increases, the
size of the object should not be changed. Similarly, the object should appear to tilt as the
viewpoint tilts, but the tilt of the object should not change with the tilt of the viewpoint
because the billboard itself appears to tilt. Finally, in order for the backside of the object
to be properly reflected in the virtual world, the areas other than the object must be able
to be processed transparently.

Input Based on the output definition, the only input required is the relative position of
the viewpoint from the object center. (Strictly speaking, the horizontal direction cannot be
defined directly above the object, so we assume that the object is not observed from the
top.) Relative position can be decomposed into relative angle and relative distance, but
since the change in appearance with distance is relatively small, we use only relative angle
as input for DSSM in this case.

6.1.2 Photography Device

In this and the following sections, we will explain how to capture the object and how to
preprocess the captured video in order to obtain the input and output data described above.

Figure 6.2: A look of the taking video data. We use a smartphone and an external physical gimbal.

As shown in Figure 6.2, we use iPhone13 Pro, with external physical stabilizer and
Record3D (an iPhone app). A ChArUco board is also used to estimate the camera’s po-
sition, orientation and target object position. Initially, we used an action camera, but we
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(a) input frame (b) pose estimation (c) background prediction (d) background removal (e) output frame

Figure 6.3: Chromakey-Free Video Preprocessing

found that the camera’s internal parameters were constantly changing due to digital cam-
era stabilization, which is one of the strengths of action cameras, making it impossible to
accurately estimate the camera’s position and posture. Therefore, we selected these devices
in order to provide image stabilization without such digital image stabilization. (Theo-
retically, it should be possible to learn from a dataset created from shaky video without
image stabilization, but we believed that a simple video prediction model such as DSSM
would also learn the behavior of shaking, so we placed importance on physically stabilizing
the camera.) Record3D is an iPhone application that does not dare to apply digital image
stabilization. This app can also capture depth, but we did not use it. We shot about 15
minutes of video at 1920 ∗ 1440 @10fps, about 12 minutes for training and the rest for
evaluation. Objects were captured by randomly moving the camera from about 120° left
and right and 75°up and down in front of the object.

6.1.3 Preprocess

Video data preprocessing consists of roughly three processes. We use OpenCV for the image
processing described below.

Pose Estimation First, from the ChArUco board in the video, we estimate the camera’s
pose and the object’s position. Figure 6.3b is a visualization of the results. First, the
ChArUco board is used to determine the relative pose of the board with the camera as the
origin. Next, the camera’s pose is obtained with the board as the origin. Finally, since
the relative positions of the board and the target object is fixed, the position of the target
object in the image can be determined by projecting the three-dimensional position of the
target object with the board as the origin onto the frame.

Background Removal Although it is easy to remove the background by using a green
back screen or something, it is troublesome to prepare such an environment. We therefore
devised a method to remove the background by generating a background image using NeRF
(Figure 6.3c, Figure 6.3d). There are many off-the-shelf tools that can automatically remove
the background, but they are inconvenient as they are not accurate enough when the object
is captured small in the frame or when captured with complex backgrounds, and these
tools do not support the background when the camera moves and the background changes.
We trained NeRF to generate the background from 15 seconds of video taken in the room
beforehand. This NeRF-based background processing is versatile, but it can still introduce
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noise if the background is complex, so this time we shot the target with a monotonous
background.

Target Cropping Finally, crop the image with the background removed. The center of
the cropping is the center of the object in the image obtained earlier, and the size of the
cropping is scaled inversely proportional to the distance between the object and the camera.
The cropped image is resized to 64*64 and used for training.

6.1.4 Deep State Space Model

We use the DSSM for video forecasting, or more precisely, we use the RSSM (Recurrent
State Space Model), which is an extension of the DSSM, following the implementation of
[73]. This model adds not only a vector of stochastic transitions to the latent variables in
the DSSM, but also a vector of deterministic transitions. This allows for better inference of
macroscopic information such as the angle of the object being rendered. The input to the
model is a 3D view with positional encoding. When training, the first frame is also given
as input and the next 10 frames are predicted. The dimensions of both the stochastic and
deterministic latent variables are 64.

6.2 Results

6.2.1 Prediction Quality

We evaluate the correctness of the video prediction, i.e., whether the appearance changes
plausibly when the viewpoint changes, and whether the object deforms plausibly. We com-
pare the predictions for the 10 frames in the test data (Figure 6.4). In this case, since only
the viewpoints are input to the model, we prepared a video created by collecting frames
corresponding to the viewpoints of the training data that are closest to each viewpoint of
the test data as a comparative target of plausibility of the video prediction. (Named “near”
in the figures) To check for changes between frames, we also visualize the areas where there
have been time changes in HSV color space. (Named “dx” in the figures.) Note that the
movement of the target object is not known from the first frame and the change of view-
point, and is probabilistic, so the prediction does not have to be the same as the true frames
displayed with “true” with respect to the object’s movement.

In Figure 6.4, comparing “true” and “pred”, we can see that the object’s orientation
is correctly estimated and generated. Also, from ‘pred dx‘, there is no abrupt change in
the object’s posture, and the change is as smooth as that of “true dx”. Next, comparing
“near” and “pred” and their time diffs, we can see that “near” also seems to have the
correct posture, but the object suddenly deforms like a warp, which means that it cannot
generate a continuous moving images, whereas “true” shows smooth changes in head and
hand movements. From these results, it can be said that the trained video prediction model
is able to generate smooth motion in the correct posture and meets the requirements of
DeepBillboard in these respects.

Next, Figure 6.5 shows the output of the long-time (150 step, 15 seconds) prediction.
It is known that DSSM tends to fail in the prediction of longer steps if it is not trained well,
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Figure 6.4: Comparison of the results of video prediction conditioned on viewpoint series. “true” is
ground truth, “near” is the frame of training data closest to the viewpoint, and “pred” is prediction
by DSSM. “dx” visualizes the areas in those videos that have changed over time.

24



but the figure shows that our DSSM is able to predict the correct direction of the generated
image without violently failing in the long-term prediction. However, it cannot be said that
the DSSM faithfully reproduces the motion of the object, for example, around t = 25 ∼ 35,
the object is frozen with no motion at all, and the overall number of hand movements is
apparently less than the correct image.

6.2.2 Quality as a 3D object

Finally, Figure 6.8 shows how World Billboard was actually employed in the CG software.
First of all, it seems that this model has an angle at which the aforementioned freezing
phenomenon tends to occur. Also, when the viewpoint movement was stopped, the model
tended to repeat the same movement. In addition, the resolution is too rough to be consid-
ered realistic, and the model does not blend well with the CG space, making it look as if it
is floating. On the other hand, when viewed from a distance, it can be said to look like a
3D model that moves as it should.

6.3 Discussion

Unnatural Freezes or Excessive Repetition This is likely caused by the fact that DSSM
is not able to separately learn changes in the observed images due to changes in viewpoint
and changes in the observed images due to changes in time, so it is influenced by the
viewpoint information and reproduces movements that are not originally related to that
viewpoint but are more likely to be observed at that viewpoint. Another likely cause is
that when the system is given an unknown viewpoint series, such as when the viewpoint
change stops, it is unable to make use of what it has learned, and its predictions are about
to fail. To solve this, it may be necessary to improve the system so that it can learn latent
variables and their transitions in a way that removes viewpoint information, or so that it
can generate video while predicting explicit rough 3D structures.

Decrease in frequency of local movements The posture of the object itself was repro-
duced correctly, but the frequency of local movements, such as the movement of the bear’s
head and hands, for example, tended to appear much less frequently. This is probably be-
cause DSSM has learned that when predicting the future, it is more plausible if the object
does not move much, i.e., it is easier to keep the generation loss small. To solve this problem,
one approach would be to accelerate the learning of motion by using a model that evaluates
the likelihood of the generated video and the generated series of latent variables, or another
approach would be to reduce the likelihood of not moving too much by conditioning the
video prediction on past video with a longer number of steps to begin with.

Visual Quality Simply increasing the resolution and training the DSSM may seem to
solve the problem, but the DSSM tends to produce blurred images because it learns with
reconstruction errors. Instead, it is possible to train a model that forcibly converts the
low-resolution DSSM results into a high-resolution model, but this is not easy because it is
difficult to obtain the plausibility of temporal changes in local visual features.
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6.4 Summary

The object orientation itself can be correctly predicted and generated, and the motion can
be generated smoothly. On the other hand, the frequency of small movements tends to be
low, the movements are sometimes incorrect depending on the viewpoint, and the visual
reality is still insufficient, leaving room for improvement.
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Figure 6.5: 150 frames predicted by DSSM. (1 of 3)
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Figure 6.6: 150 frames predicted by DSSM. (2 of 3)
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Figure 6.7: 150 frames predicted by DSSM. (3 of 3)
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Figure 6.8: Interactive use of World Billboard. https://www.youtube.com/watch?v=
DtniMnkj0qQ
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Chapter 7

Disucussion

We have looked at the use of DeepBillboard with NeRF Billboard and World Billboard as
examples. Here we will discuss DeepBillboard in general in several respects.

Visual quality of the Object Itself As for static objects, the NeRF Billboard example
shows that they works well enough in the virtual world at sufficient resolution and at
sufficient fps. As for dynamic scenes, however, sufficient fps was achieved, but not yet
sufficient resolution. Since NeRF Billboards’s very fast rendering is in virtue of PlenOctree’s
caching of the color density field (which can result in file sizes of several hundred MB
to several GB), if we try to reproduce a dynamic 3D scene as precisely as NeRF, the
caching size will simply be too large for the time resolution, which is not very realistic. A
video prediction-based model such as World Billboard can generate images at high speed.
However, for high-resolution training and generation that captures temporal changes in local
visual features, it will be important to use an approach that is based on video prediction
but can directly change observations in the observation space, such as Stable Diffusion [74],
rather than an approach that represents everything in the latent space, such as DSSM, since
there is too much information on the surface of the object and it is impossible to fully express
it in latent variables. In the World Billboard experiment, there was also a problem that
the object motion was too influenced by the viewpoint probably because the viewpoint and
motion were not learned separately when training video predictions. This could be solved
by generating images based on explicit prediction and understanding of rough object’s 3D
shape. Again, it will be important not to explicitly predict the high-resolution 3D structure,
but rather that the 3D structure is only an aid and the observation is generated directly in
the space of the observed image.

Quality as a 3D object In both NeRF Billboard and World Billboard, we felt that there
are still barriers to making DeepBillboard objects feel completely identical to regular 3D
models. The main reasons are (1) insufficient visual quality (World Billboard), (2) a little
delay, (3) not being able to reflect ambient light, and (4) sketchy physical interactions. (1)
was mentioned in the previous paragraph. For (2), there may be approaches such as a)
improving Internet communication technology, b) generating observations in advance by
predicting VR users’ movements a few milliseconds in advance, c) generating some or all of
the possible observations a few milliseconds in advance and sending them all to the user,
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and then selecting the appropriate observations on the user side device, etc. For (3), we
believe that this can be solved in the near future, since the successor method of NeRF
in recent years has already solved this problem. As for (4), in particular, the reality is
diminished when touching the Deep Billboard object in VR and the object penetrates the
hand. Also, our World Billboard does not infer the shape of the object at all, so it can only
give a fake 3D mesh, such as a sphere, and complex interactions are not possible. These
problems can be solved by Deep Billboard inferring more accurate shapes, but in practice
there are few situations where accurate shapes are required, so it may be more practical to
define rule-based interactions with the hand, for example.

Dataset Making Deep Billboard also aims to make it easy for anyone to create 3D objects,
but currently, especially creating a World Billboard data set is very laborious. First, the
required length of time for the data is very long, at least 15 minutes, and it is necessary to
take video from various angles, with as little bias as possible, taking care to fit the object in
the camera’s angle of view. Other requirements include, for example, markers, monotonous
backgrounds, and appropriate lighting. We would also like to automate the process of taking
data using a robot. In doing so, we will be able to pursue efficient data capturing methods.
Also, meta-learning could be used to improve the learning process so that new targets can
be learned more efficiently from a small amount of data if similar data is available.

7.1 Limitations

In theory, Deep Billboard can model everything in the physical world in 3D in a data-
driven way, as long as you have video data of the object. However, there are several major
limitations. (1) Since the accuracy of reproduction depends directly on the accuracy of video
prediction, objects with complex appearance changes that cannot be learned well by video
prediction models cannot be reproduced well. (2) While explicit shapes are not required to
be calculated, complex physical interactions cannot be represented if the 3D shape is not
known. (3) The shape and size of the Billboard canvas is fixed, so objects that grow in size
or split up cannot be reproduced. Solving these limitations are our future work.
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Chapter 8

Conclusion

We propose Deep Billboard, an extension of the existing Billboard concept. We show
that a wide range of objects can be modeled by Deep Billboard in a data-driven way while
avoiding the difficulty of 3D reconstruction, and can be used like regular objects by providing
interactivity. We hope to see more deep learning research based on Deep Billboard developed
in the future and we hope to see more realistic objects in the virtual world.
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