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Abstract
By blending the primal-dual interior point method (PDIPM) and the return
mapping algorithm, we propose a hybrid strategy of implicit stress update for
a class of hypoelastic-plastic models with the hardening rule whose evolution
is restricted by the memory surface. The inequality constraint relevant to the
memory surface is replaced by the equality constraint by the introduction of a
slack variable, and the duality gap is gradually reduced by using path-following
method. First, we formulate an optimization problem corresponding to the prin-
ciple of maximum plastic dissipation for the standard von-Mises plasticity with
isotropic and kinematic hardening rules and its variant for the model with
the memory surface. Next, after function forms employed for the elastic-plastic
model are specified, the PDIPM to realize an implicit stress update is briefly
reviewed and then applied to the model involving the memory surface to replace
the relevant inequality constraint by the equality constraint by the introduction
of a slack variable. Then, we present a hybrid scheme that combines the stan-
dard return mapping algorithm with the PDIPM. The numerical accuracy of
the proposed stress update algorithm for the conventional elastic-plastic model
is verified in comparison with the standard return mapping algorithm using
iso-error map. Also, targeting a notched round steel bar under cyclic loading
with three different amplitudes, we demonstrate the performance for the stress
update using the elastic-plastic model with the memory surface. Finally, the
capability of the proposed algorithm is proven through a typical real-life example
such that a steel bridge is subjected to earthquake for which the residual load
carrying capacity must be estimated.
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2 SHINTAKU et al.

1 INTRODUCTION

When a steel structure such as a bridge and a nuclear power plant is subjected to earthquake, plastic deformation develops
in welds zone and around corners of intersection due to stress concentration and causes fatigue failure; see, for example,
Reference 1. To ensure safety of the steel structure, it becomes important to assess plastic deformation under cyclic loading
since low-cycle fatigue fracture depends on plastic strain, which is known to follow Coffin–Manson law.2,3

In general, to represent the plastic deformation under cyclic loading, an elastic-plastic model with an isotropic hard-
ening rule is combined with a kinematic hardening rule to realize Bauschinger effect. As a result, numerous attempts
have been made to develop kinematic hardening rules. Among these developments, Armstrong–Frederick rule4 is known
to successfully predict a nonlinear evolution process of the back stress by introducing a dynamic recovery term into the
Prager’s linear kinematic hardening rule.5 Subsequently, a further improved rule, so-called Chaboche model,6-8 was pro-
posed by superposing several sets of decomposed back stresses with the aim to describe the transient hardening behavior.
Since these kinematic hardening rules overestimate the change of back stress associated with ratcheting, a threshold in
one or several dynamic recovery terms or a critical state is introduced; see References 9-11. However, it is well known that
the conventional elastic-plastic model combined with these kinematic hardening rules is not able to realize the change of
hardening behavior under cyclic loading with various ranges of plastic strain. In fact, the change of yield stress depending
on the plastic range, which has been observed in our experimental study,12 cannot be captured by the conventional mod-
els. Thus, it is difficult to predict the plastic deformation in the steel structure under cyclic loading, because the range of
plastic strain is different by location around the stress concentration.

To realize the dependence of hardening behavior on the largest plastic strain in past, a memory surface in plas-
tic strain space is originally proposed by Chaboche6 and incorporated into an isotropic hardening rule. Subsequently,
the memory surface is generalized by Ohno13 to accommodate the nonhardening range appearing after reverse load-
ing. A further development14 is conducted to describe the vanishment of such history dependence after several cycles.
The effect of these memory surfaces has been incorporated into isotropic hardening rules,6,13-20 and also into the
kinematic hardening rule21,22 or both of them.23 Owing to the inequality constrained condition that the plastic strain
exist on or inside the memory surface, these elastic-plastic models can grasp the difference in hardening behavior
caused by the plastic strain range. However, since the plastic strain that defines the memory surface is generally deter-
mined as a solution of the maximization problem with the yield condition, the involved inequality constraints are
coupled with each other. Thus, it appears to be difficult to solve the corresponding initial-value problem for stress
update by standard implicit methods such as a conventional return mapping algorithm. Indeed, the nonlinear solu-
tion method such as the Newton method is required to obtain the plastic multiplier in implicit methods, while the
updated stress satisfying the yield condition is determined up to the plastic strain that is constrained by the memory
surface.

In this regard, we are concerned with nonlinear programming methods, since various algorithms to solve constrained
optimization problems without dealing with inequality constraints directly. Notable among those is the primal-dual
interior point method (PDIPM) that is often employed to bypass the judgment on the inequality conditions; see a
review article.24 For instance, Krabbenhoft et al.25 demonstrated that the static equilibrium problem with a conventional
elastic-plastic model with von-Mises-type, Drucker-Prager-type and multisurface yield functions was formulated as a
global optimization problem relevant to the principal of maximum plastic dissipation and could be solved by the finite
element method (FEM) combined with the PDIPM with a comparable efficiency to the standard solution method. Also,
the PDIPM was successfully applied for a time-independent crystal plasticity model in small deformation theory in Ref-
erence 26, suppressing numerical instability due to the arbitrary property of multiple yield conditions. As for applications
other than material model, the PDIPM was employed to successfully solve contact problems27 and was coupled with the
Galerkin projection based on a reduced order model.28

Against these backgrounds, by effectively blending the PDIPM and the return mapping algorithm, we propose a
hybrid strategy of implicit stress update for a class of hypoelastic-plastic models with the hardening rule whose evolu-
tion is restricted by the memory surface. The proposed hybrid implicit stress update algorithm is an extension of that of
the previous study.29 That is, while the previous version was developed based on small strain theory, the version orig-
inally proposed in this study accommodates a hyoelastic constitutive law with logarithmic rate within the finite strain
framework. In addition, the drawback of the previous version that the flow vector is regarded as a constant within a time
interval is overcome by the application of the return mapping algorithm to handle the Chaboche model along with the
von Mises yield function, which was originally proposed by Lubarda and Besson30 for the Armstrong–Frederick rule.
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SHINTAKU et al. 3

First, the principle of maximum plastic dissipation is posed as an optimization problem with the constraint represented
by the yield function and is incorporated with the memory surface. Next, after specific function forms for the hardening
rules employed in this study are presented, the PDIPM for a standard elastic-plastic model is briefly reviewed and then
applied to the model involving the memory surface by reference to the previous study.25 Then, we propose a hybrid strat-
egy to combine the standard return mapping scheme for the isotropic and kinematic hardening rules with the PDIPM
employed to replace the inequality constraint relevant to the memory surface by the equality constraint by the introduc-
tion of a slack variable. It should be noted here that the present formulation of the PDIPM is different from that of the
previous study25 in that the stress update is realized by a local optimization within a time interval, which is independent
of the global equilibrium equation. The numerical accuracy of the proposed stress update algorithm for the conventional
elastic-plastic model is verified in comparison with the standard return mapping algorithm using iso-error map.31 Also,
to demonstrate the performance for the stress update using the elastic-plastic model with the memory surface, we target
a notched round steel bar under cyclic loading with three different amplitudes. Finally, the capability of the proposed
algorithm is proven through a typical real-life example such that a steel bridge is subjected to earthquake for which the
residual load carrying capacity must be estimated.

2 VARIATIONAL PROBLEM IN HYPOELASTO-PLASTICITY

2.1 Hypoelastic constitutive law

In general, the additive decomposition of the rate of deformation tensor is assumed for a hypoelasticity-based model in
plasticity as

d = de + dp
, (1)

where de and dp are the elastic and plastic components. Then the rate form of the Hooke’s law is given as

�̊� = C
e ∶ de

, (2)

where 𝝉 ≡ J𝝈 is the Kirchhoff stress, C
e is the fourth-order elastic modulus tensor. Here, 𝝈 is the Cauchy stress and J is

the determinant of the deformation gradient F. Also, •̊ denotes an objective co-rotational rate of • defined as

•̊ = •̇ −𝛀 • + • 𝛀, (3)

where
⋅
• indicates a time derivative of •. In this study, the following logarithmic rate32 is employed:

𝛀 = w +
Ndim∑

i≠j

[1 + (bi∕bj)
1 − (bi∕bj)

+ 2
ln(bi∕bj)

]
bidbj, (4)

where w is the skew-symmetric part of the velocity gradient L = ̇FF−1, bi is the ith eigenvalue of the left Cauchy–Green
tensor b = FFT, bi is the ith eigenprojection of b and Ndim is the spatial dimension.

2.2 Variational problem for elastoplasticity with isotropic and kinematic hardening

Given the yield function Φp(𝝉 ,A) defining the admissible space of the Kirchhoff stress 𝝉 = J𝝈 as Φp(𝝉 ,A) ≤ 0, the
maximum dissipation principle in plasticity is formulated as the following optimization problems with an inequality
constraint:

maximize
{𝝉 , A}

𝝉 ∶ dp − A ∗ �̇�. (5)

subject to Φp(𝝉 ,A) ≤ 0. (6)
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4 SHINTAKU et al.

Here, ∗ indicates an appropriate inner product defined according to the rank of tensor variables, A and �̇�. To solve this
maximization problem, we define the following Lagrangian function using the multiplier �̇�p

≥ 0 as

0
(
𝝉 ,A, �̇�p) = 𝝉 ∶ dp − A ∗ �̇� − �̇�pΦp(𝝉 ,A). (7)

Then, the necessary condition for optimality or, equivalently the KKT (Karush–Kuhn–Tucker) condition, is obtained as
the following set of equations and inequalities:

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝜕0

𝜕𝝉

= dp − �̇�p 𝜕Φp

𝜕𝝉

= 0, (8)

𝜕0

𝜕A
= −�̇� − �̇�p 𝜕Φp

𝜕A
= 0, (9)

Φp
≤ 0, �̇�

p
≥ 0, Φp

�̇�

p = 0, (10)

where Equations (8), (9), and (10) are the associated flow rule, associated hardening law, and complimentary condition,
respectively.

For example, let us employ the following von-Mises’ yield function:

Φp =
√

3
2
||𝜼|| − 𝜎y(𝛼i), (11)

where 𝜎y is the yield stress postulated by a hardening rule with the scalar-valued hardening variable 𝛼i. Also, ||𝜼|| is the
norm of the relative stress defined as

𝜼 = 𝝉d − 𝜷, (12)

where 𝝉d ≡ 𝝉 − (1∕3)tr(𝝉)1 with 1 being the second-order identity tensor and 𝜷 is the back stress. Identifying the current
yield stress 𝜎y = 𝜎y0 + 𝜅 with its initial value 𝜎y0 and the scalar-valued hardening variable as 𝛽 ≡ 𝜅 and associating the
back stress with the tensor-valued hardening variable𝜶k, we have the set of hardening variables and the corresponding set
of thermodynamic forces as 𝜶 =

{
𝛼

i
,𝜶

k} and A = {𝛽, 𝜷}, respectively. Thus, the maximization problem in Equation (5)
yields

maximize
{𝝉 , 𝛽, 𝜷}

𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k
. (13)

subject to Φp(𝝉 , 𝛽, 𝜷) ≤ 0. (14)

The corresponding KKT condition becomes

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝜕0

𝜕𝝉

= dp − �̇�p 𝜕Φp

𝜕𝝉

= 0 ⇒ dp = �̇�pNp, (15)

𝜕0

𝜕𝛽

= −�̇�i − �̇�p 𝜕Φp

𝜕𝛽

= 0 ⇒ �̇�

i = �̇�p
, (16)

𝜕0

𝜕𝜷

= −�̇�k − �̇�p 𝜕Φp

𝜕𝜷

= 0 ⇒ �̇�
k = �̇�pNp, (17)

Φp
≤ 0, �̇�

p
≥ 0, Φp

�̇�

p = 0, (18)

where we have defined the normal “vector” on the yield surface as

Np
≡

𝜕Φp

𝜕𝝉

=
√

3
2
𝜼

||𝜼|| =
√

3
2

N
p

and N
p
≡

𝜼

||𝜼|| . (19)

2.3 Incorporation with memory surface

To represent the dependency of the hardening behavior on the the plastic strain amplitude, Chaboche6 incorporated a
memory surface defined in the plastic strain space into the an isotropic hardening law. Subsequently, the generalization
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SHINTAKU et al. 5

was made by Ohno,13 and followed by Yoshida and Uemori33 who expressed the surface in the stress space as

Φm
σ (p,p; 𝜷m) = ||𝜷m − p|| − p ≤ 0, (20)

where p and p are the thermodynamic forces representing the origin and radius of the memory surface, respectively. Also,
𝜷

m is the thermodynamic force conjugate to the plastic strain and may be assumed to be the same as the back stress so
that 𝜷m

≡ 𝜷 as in Yoshida and Uemori.33

Employing the inequality (20) as an additional constraint condition to the maximization problem (13), we have
another optimization problem as

maximize 𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k − pq̇ − p ∶ q̇, (21)
subject to Φp(𝝉 , 𝛽, 𝜷) ≤ 0, (22)

Φm
σ (p,p; 𝜷m) ≤ 0, (23)

where q and q are internal variables conjugate to p and p, respectively. Then, defining the Lagrangian functional as

1 (𝝉 , 𝛽, 𝜷, p,p) = 𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k − pq̇ − p ∶ q̇ − �̇�pΦp(𝝉 , 𝛽, 𝜷) − �̇�mΦm
σ (p,p; 𝜷m), (24)

we have the following KKT condition:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

𝜕1

𝜕𝝉

= dp − �̇�p 𝜕Φp

𝜕𝝉

= 0 ⇒ dp = �̇�pNp, (25)

𝜕1

𝜕𝛽

= −�̇�i − �̇�p 𝜕Φp

𝜕𝛽

= 0 ⇒ �̇�

i = �̇�p, (26)

𝜕1

𝜕𝜷

= −�̇�k − �̇�p 𝜕Φp

𝜕𝜷

= 0 ⇒ �̇�
k = �̇�pNp, (27)

𝜕1

𝜕p
= −q̇ − �̇�m 𝜕Φ

m
œ

𝜕p
= 0 ⇒ q̇ = �̇�m, (28)

𝜕1

𝜕p
= −q̇ − �̇�m 𝜕Φ

m
œ

𝜕p
= 0 ⇒ q̇ = �̇�mNm

œ, (29)

Φp
≤ 0, �̇�

p
≥ 0, Φp

�̇�

p = 0 (30)
Φm

œ ≤ 0, �̇�

m
≥ 0, Φm

œ �̇�
m = 0 (31)

where the normal “vector” on the memory surface have been defined as

Nm
σ ≡

𝜕Φm
σ

𝜕p
. (32)

Meanwhile, the memory surface originally defined by Chaboche6 and subsequently generalized by Ohno13 is given in
the plastic strain space as

Φm
ε (q,q; 𝜺p) = ||𝜺p − q|| − q ≤ 0, (33)

where the plastic strain 𝜺p is defined by the following time integral:

𝜺
p =
∫T

dpdT. (34)

Also, the normal “vector” on it is defined as

Nm
ε ≡

𝜕Φm
ε

𝜕q
. (35)

If 𝜷m is identified with 𝜷 and if the Prager’s linear hardening rule ̇
𝜷

m = Lmdp is assumed with dp being identified with
�̇�

k, the expressions in Equations (20) and (33) are found to be identical.33 Here, Lm is a material constant. Although the
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6 SHINTAKU et al.

employment of other hardening rules may not assure the consistency, most of the relationships above are expected to be
acceptable. It should be noted that, regarding 𝜷m in (20) as a function of the plastic strain (34), we have transformed the
memory surface (20) in the stress space into the one in the strain space as in Equation (33).

2.4 Specific forms of hardening rules

To represent the isotropic hardening behavior evolving subject to the constraint of the memory surface, we define the
following yield stress

𝜎y = 𝜎y0 + 𝜅y(𝛼i) + 𝜅m(𝛼m), (36)

where 𝜎y0 + 𝜅y(𝛼y) is a conventional hardening function with 𝜎y0 being the initial yield stress. In this study, we employ is
the conventional Voce’s hardening rule given as

𝜅y(𝛼i) = Ly𝛼
i + Ry(1 − exp(−ry𝛼

i)). (37)

where Ly, Ry, and ry are material constants. Here, using Equation (26), we have

𝛼

i =
∫T
�̇�

pdT, (38)

which is regarded as the accumulated plastic strain. Also, 𝜅m is an additional isotropic hardening function depending on
the evolution of the memory surface. Similarly to the model we proposed Reference 20, we assume the following function
form for 𝜅m:

𝜅m(𝛼m) = Lq(q)𝛼m
, (39)

where Lq(q) is a function of the radius of the memory surface q, and 𝛼m is the internal variable whose evolution law is
defined as follows:

�̇�

m = �̇�i − q̇. (40)

Thus, 𝛼m is an increasing function of 𝛼i. In addition, the hardening modulus Lq(q) is assumed to evolve according to the
following rule:

̇Lq =
(

m1q2 +m2q +m3
)

q̇, (41)

where m1, m2, and m3 are nonnegative material constants.
The evolution law for q was suggested by Ohno13 as

q̇ =
(

dp ∶ N
m
ε

)
H(Φm

ε ) = �̇�p
(

N
p
∶ N

m
ε

)
H(Φm

ε ), (42)

where H(•) is the Heaviside function such that if • < 0, then H(•) = 0 and if • ≥ 0, then H(•) = 1. Thus, q̇ = �̇�m
≥ 0 is

guaranteed. Also, according to Equation (33), if a plastic strain is on the memory surface, that is, Φm
ε = 0, we have q̇ ≥ 0,

while q̇ = 0 holds if Φm
ε < 0. On the other hand, the evolution law13 for q that is the origin of the memory surface is

assumed to be expressed by the following form:

q̇ = q̇N
m
ε = �̇�p(N

p
∶ N

m
ε )H(Φm

ε )N
m
ε . (43)

Ohno13 suggested to multiply c and 1 − c by (42) and (43), respectively, to adjust the contribution of each effect. However,
the same simplification as Zhu et al.22 is employed, that is, c = 1 so that q = 0, since the nonhardening range was not
observed from our experimental results.12

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7195 by U
niversity O

f T
sukuba, W

iley O
nline L

ibrary on [15/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SHINTAKU et al. 7

(A) (B)

F I G U R E 1 Isotropic hardening behavior depending on memory surface. (A) monotonic loading; (B) cyclic loading after monotonic
loading

It is confirmed from Equation (28) (q̇ = �̇�m) that the relationships postulated for q are consistent with the com-
plimentary condition in Equation (31). That is, under monotonic loading as shown in Figure 1A, the radius q and
𝛼

i coincide. Then, only Lq evolves according to Equation (41) because q̇ > 0, while 𝛼m does not because q̇ = �̇�i in
Equation (40). In other words, since �̇�m = 0, the contribution of the memory surface to the isotropic hardening is
zero, that is, 𝜅m(𝛼m) = 0. On the other hand, under cyclic loading as shown in Figure 1B, since q̇ = 0 because Φm

ε =
0, the accumulated plastic strain 𝛼

i becomes larger than the radius of the memory surface q. Then, whereas Lq in
Equation (41) does not evolve, only 𝛼m evolves according to Equation (40). In summary, the isotropic hardening is
driven by 𝜅m(𝛼m) > 0 under cyclic loading, while the hardening modulus Lq(q) increases on its own under monotonic
loading.

To represent the kinematic hardening behavior, the objective rate of the back stress is expressed as the sum of stress
rates as

̊
𝜷 =

Nkin∑

k=1

̊
𝜷

(k)
, (44)

Adopting the Chaboche model,6-8 which is known as an extension of Armstrong-Frederick rule,4 we postulate each stress
rate as

̊
𝜷

(k) = akdp − bk�̇�
p
𝜷
(k)
, (45)

where ak and bk are material constants. As mentioned before, the relationship between the hardening rule in Equation (27)
and the evolution equation (45) is not consistent.

3 IMPLICIT STRESS UPDATE FOR ELASTOPLASTICITY WITH MEMORY
SURFACE

A hybrid strategy of stress update for an elastoplastic model with memory surface is proposed by blending the conven-
tional return mapping algorithm and the PDIPM. First, the PDIPM for the standard elastic-plastic model is formulated
in line with the principal of maximum plastic dissipation by reference to previous study.25 Second, the PDIPM is
extended to incorporate the model with memory surface. Finally, we originally present a hybrid formulation and per-
form its time-discretization to realize a new implicit algorithm for an elastoplastic constitutive law with memory
surface.

3.1 PDIPM for standard elastoplasticity

Prior to proposing the hybrid implicit stress update algorithm, we present the PDIPM for the standard elastic-plastic
model with isotropic and kinematic hardening by referring to Krabbenhoft et al.25
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8 SHINTAKU et al.

In line with a PDIPM originally proposed by Yamashita,34 the maximization problem (13) is rewritten by the
introduction of a logarithmic barrier function 𝜇1 log s with 𝜇1 being a positive small value as follows:

maximize
{𝝉 , 𝛽, 𝜷}

𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k + 𝜇1 log s, (46)

subject to Φp(𝝉 , 𝛽, 𝜷) + s = 0, (47)

where the inequality constrain (14) is transformed to the equality constraint by the introduction of slack variable s > 0.
Then, the Lagrangian functional is defined as


PD
0 (𝝉 , 𝛽, 𝜷, s) = 𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k + 𝜇1 log s − �̇�p (Φp(𝝉 , 𝛽, 𝜷) + s

)
, (48)

where �̇�p is the Lagrange multiplier. The stationary point of this Lagrangian function can be obtained as

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

𝜕
PD
0

𝜕𝝉

= dp − �̇�p 𝜕Φp

𝜕𝝉

= 0 ⇒ dp = �̇�pNp. (49)

𝜕
PD
0

𝜕𝛽

= −�̇�i − �̇�p 𝜕Φp

𝜕𝛽

= 0 ⇒ �̇�

i = �̇�p
. (50)

𝜕
PD
0

𝜕𝜷

= −�̇�k − �̇�p 𝜕Φp

𝜕𝜷

= 0 ⇒ �̇�
k = �̇�pNp. (51)

𝜕
PD
0

𝜕�̇�
p = −Φp(𝝉 , 𝛽, 𝜷) − s = 0 ⇒ Φp(𝝉 , 𝛽, 𝜷) + s = 0. (52)

𝜕
PD
0

𝜕s
= 𝜇1

s
− �̇�p = 0 ⇒ 𝜇1 − �̇�ps = 0. (53)

This format with the barrier function is the same as that of Krabbenhoft et al.,25 in which the relevant variational
formulation is presented for conventional elastic-plastic models.

As will be presented in Section 2.4, when a standard plasticity model is employed and time discretization is applied
to Equations (49), (50), and (51), the reduced set of simultaneous equations for unknowns, s > 0 and �̇�p, is obtained as
follows:

{Φp + s = 0. (54)
𝜇1 − �̇�ps = 0. (55)

Here, the former and latter equations correspond to the modified yield function and complementary condition, respec-
tively. When specific function forms of 𝛽 ≡ 𝜅 and 𝜷 are provided as functions of 𝛼i and 𝜶k

≡ 𝜺
p, respectively, the number

of equations is reduced from five down to two after time-discretization. Then, the discretized problem consists of a set of
nonlinear algebraic equations s > 0 and Δ𝛾p.

To obtained the above saddle point, we employ the path-following method as a common maneuver. That is, Equations
(54) and (55) are numerically solved for �̇�p and s by Newton method, while the duality gap 𝜇1 is gradually brought close to
zero. This algorithm enables us to obtain the solution of the optimization problem Equation (46) and (47) that is supposed
to be the same as that of the original problem without making a true or false determination of the inequality constraint. In
other words, the primal and dual problem can concurrently be solved while the complementary condition (55) is satisfied
with a decrease in the duality gap that represents the difference between these two objective functions.

Nevertheless, the numerical algorithm tends to be slightly complex due to an exception processing to have s ≥ 0. In
fact, Krabbenhoft et al.25 presented a measure to intentionally set s at a small positive value if s becomes negative during
an iteration process. To avoid this issue, we replace s in Equation (48) with s2

1 so that Equations (54) and (55) are modified
as follows:

{
Φp + s2

1 = 0. (56)
𝜇1 − �̇�ps2

1 = 0. (57)

It should be noted that the optimization presented here is locally performed, while the previous study25 incorporates the
optimization into a set of global governing equations.
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SHINTAKU et al. 9

3.2 PDIPM for elastoplasticity with memory surface

When a standard elastic-plastic model with isotropic and/or kinematic hardening rules is considered, the computational
efficiency of the PDIPM is poor in comparison with the conventional return mapping algorithm. In fact, the nonlinear
algebraic equation is solved just once in the return mapping algorithm, whereas it is necessary to solve that Equations
(56) and (57) repeatedly while gradually bringing the duality gap closer to zero. In other words, at each iterative step
for obtaining the global equilibrium, the nonlinear simultaneous equations must be solved for the number of times
repeated. Thus, the application of the PDIPM to conventional elastic-plastic models is not efficient at all in terms of
computational efficiency. However, when the standard elastic-plastic model is combined with the memory surface as pre-
sented in Section 2.3, the stress update process with the standard return mapping algorithm hardly obtain the unique
solution in a stable manner. This is because inequality constraint (23) depends on the plastic strain that is determined
by the admissible stress satisfying another inequality constraint (22); see Equation (33). In such cases, the application
of the PDIPM is effective. In this subsection, the formulation in the previous subsection is extended to accommodate
the evolution equations for the additional internal state variables subject to the constraint (23) defining the memory
surface.

Applying the same line described in the previous subsection, we transform the optimization problem (21) with
inequality constrains (22) and (23) as

maximize 𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k − pq̇ + 𝜇1 log s2
1 + 𝜇2 log s2

2, (58)
subject to Φp(𝝉 , 𝛽, 𝜷) + s2

1 = 0, (59)
Φm
σ (p; 𝜷m) + s2

2 = 0, (60)

in which we have reflected q ≡ 0 or, equivalently, p ≡ 0. The Lagrangian functional is given as


PD
1 (𝝉 , 𝛽, 𝜷, p, s1, s2) = PD

0 (𝝉 , 𝛽, 𝜷, s1) − pq̇ + 𝜇2 log s2
2 − �̇�

m (
Φm
σ (p; 𝜷m) + s2

2
)
. (61)

The stationary point of this Lagrangian that is equivalent to the set of optimal solutions of the original constrained max-
imization problem defined above reads to Equations (25)–(28) along with the following set of nonlinear simultaneous
equations:

⎧
⎪
⎪
⎨
⎪
⎪⎩

Φp + s2
1 = 0. (62)

𝜇1 − �̇�ps2
1 = 0. (63)

Φm
𝜎
+ s2

2 = 0. (64)
𝜇2 − q̇s2

2 = 0. (65)

Here, Equations (62) and (63) are the same as Equations (56) and (57), respectively, and Equations (64) and (65) are the
constraint condition for the memory surface and the corresponding complementary condition, respectively.

Again, there is no need for a true or false determination of both of the inequality constraints (22) and (23). Thus, the
set of solutions of Equations (62)–(65) can stably be obtained, even though the internal state variables associated with the
memory surface are determined by the admissible stress satisfying the yield condition. Nevertheless, as mentioned above,
the PDIPM must be time-consuming. This motivates us to combine the local return mapping algorithm for the evolu-
tion equations associated with the yield condition and the PDIPM for those of the memory surface as will be presented
below.

3.3 Hybrid stress update for elastoplasticity with memory surface

We propose a new implicit stress update scheme for elastoplasticity with memory surface by combining a conventional
return mapping algorithm that is employed to satisfy the yield condition and the PDIPM to satisfy the memory surface
condition. Because of this feature, the resulting stress update algorithm is hybrid. Having said that, to formulate the cor-
responding optimization problem, we simply replace the constraint in Equation (59) by the original inequality constraint
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10 SHINTAKU et al.

in Equation (22) as

maximize 𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k − pq̇ + 𝜇2 log s2
2. (66)

subject to Φp(𝝉 , 𝛽, 𝜷) ≤ 0. (67)
Φm
σ (p; 𝜷m) + s2

2 = 0. (68)

To remove the constraint conditions, the Lagrangian functional is introduced in a normal fashion as


Hybrid (𝝉 , 𝛽, 𝜷, p) = 𝝉 ∶ dp − 𝛽�̇�i − 𝜷 ∶ �̇�k − pq̇ − �̇�pΦp(𝝉 , 𝛽, 𝜷) + 𝜇2 log s2

2 − �̇�
m (
Φm
σ (p; 𝜷m) + s2

2
)
, (69)

Then, the following KKT conditions are obtained:

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

dp = �̇�pNp
. (70)

�̇�

i = �̇�p
. (71)

�̇�
k = �̇�pNp

. (72)
Φp
≤ 0, �̇�

p
≥ 0, Φp

�̇�

p = 0. (73)
q̇ = �̇�m

. (74)
Φm
𝜎
+ s2

2 = 0. (75)
𝜇2 − �̇�ms2

2 = 0. (76)

Here, the first four relationships associated with the flow and hardening rules subjected to the yield condition are solved
with the return mapping method, while the remaining three are solved with the PDIPM. However, we realize that the
both sets of relationships are coupled with each other when adopting the specific function forms provided in Section 2.4.
Therefore, an efficient numerical algorithm needs to be developed and will be presented in the next section.

4 TIME DISCRETIZATION AND NUMERICAL ALGORITHM

The set of governing equations derived in the previous sections is discretized in time, and the corresponding numerical
algorithm for implicit stress update is established.

4.1 Time discretization

The backward Euler scheme is employed for time discretization. Adopting the von-Mises yield function with the
Chaboche model, we apply the return mapping method to Equations (70), (71), (72), and (73) by reference to that originally
proposed by Lubarda and Benson30 to handle the Armstrong–Frederick rule. The derived algebraic equations are com-
bined with the discretized forms of Equations (74), (75), and (76) to compose the set of simultaneous nonlinear equations.
In the formulation, •n and •n+1 denote the values of • at time Tn and Tn+1, respectively, and Δ• is the increment of •
between Tn and Tn+1. Also, • in ⬦ [•] is the argument of function ⬦.

The increment of the Kirchhoff stress can be obtained from Equations (1) and (2) as

Δ𝝉 = C
e ∶ Δde + Δ𝛀𝝉n − 𝝉nΔ𝛀. (77)

where Δde = Δd − Δdp. The substitution of Equations (70), (11), and (19) to this expression yields the following update
formula for the Kirchhoff stress:

𝝉n+1 = 𝝉n +C
e ∶

(
Δd − Δdp) + Δ𝛀𝝉n − 𝝉nΔ𝛀 = 𝝉 trial

n+1 −
√

6GΔ𝛾p 𝜼n+1
‖‖𝜼n+1

‖‖
+ Δ𝛀𝝉n − 𝝉nΔ𝛀, (78)

where trial Kirchhoff stress has been defined as 𝝉 trial
n+1 ∶= 𝝉n +C

e ∶ Δd and G is shear moduli of elasticity.
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SHINTAKU et al. 11

From Equation (16), the increment of the hardening variable for isotropic hardening is identified with the plastic mul-
tiplier as Δ𝛼i = Δ𝛾p, so that 𝛼i

n+1 = 𝛼
i
n + Δ𝛾p. Then, one of the isotropic hardening functions in Equation (37) irrelevant

to the memory surface is given as

𝜅y
[
Δ𝛾p] = Ly(𝛼i

n + Δ𝛾p) + Ry
(
1 − exp

{
−ry(𝛼i

n + Δ𝛾p)
})
. (79)

Similarly, the isotropic hardening function for the memory surface is a function of hardening variable 𝛼

m that is
discretized as

𝜅m
[
Δ𝛾p

, Δ𝛾m]
= Lq

n+1
[
Δ𝛾m] (

𝛼

m
n + Δ𝛾p − Δ𝛾m)

, (80)

where we have used the relationships, 𝛼m
n+1 = 𝛼

m
n + Δ𝛼m, Δ𝛼m = Δ𝛾p − Δ𝛾m and Δq = Δ𝛾m, which correspond to the

discretized forms of Equations (40) and (74), respectively. Here, the evolution Equation (41) of the hardening modulus is
discretized in time as

Lq
n+1

[
Δ𝛾m]

= Lq
n + ΔLq [Δ𝛾m]

, (81)

where

ΔLq [Δ𝛾m]
=

{
m1(qn + Δ𝛾m)2 +m2(qn + Δ𝛾m) +m3

}
Δ𝛾m

, (82)

with qn+1 = qn + Δq = qn + Δ𝛾m.
On the other hand, the increment of each back stress of Equation (45) is approximated as

𝜷
(k)
n+1 − 𝜷

(k)
n =

√
3
2

a(k)Δ𝛾p 𝜼n+1
‖‖𝜼n+1

‖‖
− b(k)Δ𝛾p

𝜷
(k)
n+1 + Δ𝛀𝜷

(k)
n − 𝜷 (k)n Δ𝛀, (83)

which yields

𝜷
(k)
n+1 =

1
1 + b(k)Δ𝛾p

(
𝜷
(k)
n +

√
3
2

a(k)Δ𝛾p 𝜼n+1
‖‖𝜼n+1

‖‖
+ Δ𝛀𝜷(k)n − 𝜷(k)n Δ𝛀

)
. (84)

Then, the back stress in the Chaboche model (44) at Tn+1 is expressed as

𝜷n+1 =
Nkin∑

k=1
𝜷
(k)
n+1 = Bkin +

√
6AkinΔ𝛾p 𝜼n+1

‖‖𝜼n+1
‖‖
, (85)

where we have defined

Bkin ∶=
Nkin∑

k=1

𝜷
(k)
n + Δ𝛀𝜷 (k)n − 𝜷 (k)n Δ𝛀

1 + b(k)Δ𝛾p
Akin ∶= 1

2

Nkin∑

k=1

a(k)

1 + b(k)Δ𝛾p
. (86)

Accordingly, the substitution of Equations (78) and (85) into Equation (12) yields the following expression of the relative
stress:

𝜼n+1 = 𝝉d, n+1 − 𝜷n+1 = 𝝉 trial
d, n+1 − Bkin −

√
6
(

G + Akin)Δ𝛾p 𝜼n+1
‖‖𝜼n+1

‖‖
. (87)

Taking the norm of the 𝜼 on both side, we have

‖‖𝜼n+1
‖‖ =

‖‖‖𝝉
trial
d, n+1 − Bkin‖‖‖ −

√
6
(

G + Akin)Δ𝛾p
, (88)

from which Equation (11) yields the following return mapping equation:
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12 SHINTAKU et al.

r1
[
Δ𝛾p

, Δ𝛾m]
∶= 1

G
Φp = 1

G

{√
3
2
|||
|||𝝉

trial
d, n+1 − Bkin|||

||| − 3
(

G + Akin)Δ𝛾p − 𝜎y
[
Δ𝛾p

, Δ𝛾m]
}
= 0. (89)

Here, Equation (36) has been used along with Equations (79) and (80) to obtain

𝜎y
[
Δ𝛾p

, Δ𝛾m]
= 𝜎y0 + 𝜅y

[
Δ𝛾p] + 𝜅m

[
Δ𝛾p

, Δ𝛾m]
. (90)

Meanwhile, replacing Φm
𝜎

in Equation (75) by Φm
𝜀

whose specific form was provided in Equation (33), we discretize
the resulting equation as

r2
[
Δ𝛾p

, Δ𝛾m
, s2, n+1

]
∶= Φm

ε + s2
2, n+1 =

√
2
3
‖‖𝜺

p
n + Δ𝛾pNp‖‖ − (qn + Δ𝛾m) + s2

2, n+1 = 0. (91)

where the relationships 𝜺p
n+1 = 𝜺

p
n + Δ𝛾pNp and qn+1 = qn + Δ𝛾m have been used. Also, the time discretization of

Equation (76) is simply given as

r3
[
Δ𝛾m

, s2, n+1
]
∶= Δ𝛾ms2

2, n+1 − 𝜇2 = 0. (92)

Finally, Equations (89), (91), and (92) constitute a set of simultaneous nonlinear equations to be iteratively solved for
Δ𝛾p

, Δ𝛾m, and s2 by Newton method as

⎡
⎢
⎢
⎢
⎢⎣

𝜕r1
𝜕Δ𝛾p

𝜕r1
𝜕Δ𝛾m

𝜕r1
𝜕s2

𝜕r2
𝜕Δ𝛾p

𝜕r2
𝜕Δ𝛾m

𝜕r2
𝜕s2

𝜕r3

𝜕Δ𝛾p
𝜕r3

𝜕Δ𝛾m
𝜕r3

𝜕s2

⎤
⎥
⎥
⎥
⎥⎦

⎧
⎪
⎨
⎪⎩

𝛿Δ𝛾p

𝛿Δ𝛾m

𝛿s2

⎫
⎪
⎬
⎪⎭

= −
⎧
⎪
⎨
⎪⎩

r1

r2

r3

⎫
⎪
⎬
⎪⎭

, (93)

where 𝛿• is a corrector of •. Here, the nonzero components of the Jacobian matrix are given as

𝜕r1

𝜕Δ𝛾p = −
1
G

{
𝜕Bkin

𝜕Δ𝛾p ∶ Np + 3
(

G + Akin + Δ𝛾p 𝜕Akin

𝜕Δ𝛾p

)
+

𝜕𝜎y

𝜕Δ𝛾p

}
, (94)

𝜕r1

𝜕Δ𝛾m = 1
G

{
𝜕Lq

𝜕Δ𝛾m

(
Δ𝛾p − Δ𝛾m)

− Lq
}
, (95)

𝜕r2

𝜕Δ𝛾p =
√

2
3

N
m
∶
(

Np + Δ𝛾p 𝜕Np

𝜕Δ𝛾p

)
,

𝜕r2

𝜕Δ𝛾m = −1, 𝜕r2

𝜕s2
= 2s2, (96)

𝜕r3

𝜕Δ𝛾m = s2
2,

𝜕r3

𝜕s2
= 2s2Δ𝛾m

, (97)

where

𝜕Bkin

𝜕Δ𝛾p = −
Nkin∑

k=1

b(k)
(
𝜷
(k)
n + Δ𝛀𝜷(k)n − 𝜷(k)n Δ𝛀

)

(
1 + b(k)Δ𝛾p

)2 . (98)

𝜕Akin

𝜕Δ𝛾p = −
1
2

Nkin∑

k=1

a(k)b(k)
(
1 + b(k)Δ𝛾p

)2 . (99)

𝜕𝜎y

𝜕Δ𝛾p = Ly + Ryry exp
{
−ry(𝛼i

n + Δ𝛾p)
}
. (100)

𝜕Lq

𝜕Δ𝛾m = m3 +m2(qn + Δ𝛾m) +m1(qn + Δ𝛾m)2 + Δ𝛾m (
m2 + 2m1(qn + Δ𝛾m)

)
. (101)

𝜕Np

𝜕Δ𝛾p = −
√

3
2

1
‖‖‖𝝉

trial
d, n+1 − Bkin‖‖‖

𝜕Bkin

𝜕Δ𝛾p ∶
(

I ⊗ I −N
p
⊗ N

p)
. (102)
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SHINTAKU et al. 13

When Newton method is applied to solve the global equilibrium equation, the consistent tangent moduli are needed
to achieve preferable convergence performance, which can be expressed as

dΔ𝝉
dΔd

=C
e ∶

{
I − 𝜕Δ𝛾p

𝜕Δd
⊗

(
Np + Δ𝛾p 𝜕Np

𝜕Δ𝛾p

)}
, (103)

where I is the fourth-order identity tensor. Also, the partial differential of Δ𝛾p by Δd is represented as

𝜕Δ𝛾p

𝜕Δd
= −

(
𝜕r1

𝜕Δ𝛾p

)−1 dr1

dΔd
= −2G

(
𝜕r1

𝜕Δ𝛾p

)−1

Np
, (104)

which has been simplified because of dr2∕dΔd = dr3∕dΔd = 0. The partial differential of Np by Δ𝛾p in Equation (103)
has already provided as Equation (102). Here, it should be noted that the normal vector on the yield surface is expressed
as a function of Δ𝛾p:

Np [Δ𝛾p] =
√

3
2
𝜼n+1

‖‖𝜼n+1
‖‖
=

√
3
2

𝝉
trial
d, n+1 − Bkin [Δ𝛾p]

‖‖‖𝝉
trial
d, n+1 − Bkin [Δ𝛾p]‖‖‖

, (105)

which can be easily obtained from the substitution of Equation (88) into Equation (87).

4.2 Numerical algorithm

An efficient numerical algorithm by the combined use of the conventional return mapping method and PDIPM is
established as follows:

F I G U R E 2 Flowchart of hybrid implicit stress update algorithm combined between primal-dual interior point method and return
mapping algorithm for a hypoelastic-plastic model with memory surface
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14 SHINTAKU et al.

(I) Given the strain increment Δd, compute the trial stress 𝝉 trial
n+1 on the assumption that Δ𝛾p = 0.

(II) Judge loading or unloading state from Equation (89) with trial stress 𝝉 trial
n+1 being input. If the left-hand side of

Equation (89) is less than zero, skips to Step (VI). Otherwise, go to the next step.
(III) Set the duality gap 𝜇2 at the initial value of 𝜇(k)2 where k = 0.
(IV) Solve Equations (89), (91), and (92) for Δ𝛾p

, Δ𝛾m and s2 by Newton method.
(V) When the duality gap 𝜇(k)2 becomes smaller than tolerance 𝜖, go to the next step. Otherwise, setting the counter to

be k → k + 1, update 𝜇2 by the path-following method as

𝜇

(k+1)
2 = 𝜌2 𝜇

(k)
2 , (106)

where 𝜌2 is a constant value between 0 and 1. Then, go back to Step (IV).
(VI) Update the stress and all the internal state variables.

For more detail, the flowchart of hybrid implicit stress update algorithm is summarized in Figure 2.

5 NUMERICAL EXAMPLES

Several numerical examples are presented to demonstrate the capability of our hybrid implicit stress update algorithm.
After confirming the applicability of the PDIPM to elastic-plastic models with isotropic and/or kinematic hardening rules,
we verify the performance of the proposed hybrid algorithm in updating stress for the elastic-plastic model with memory
surface.

5.1 Numerical accuracy and convergence of the PDIPM

Before demonstrating the performance of the proposed hybrid algorithm for implicit stress update, we examine the
numerical accuracy and convergence property of the PDIPM applied to an elastic-plastic model with isotropic hardening.

An iso-error map31 is employed as a measure of accuracy in stress update. To obtain an iso-error map within time
interval [Tn,Tn+1], we first specify a certain state of stress 𝝉n satisfying the yield condition at time Tn and prepare various
states of trial stress 𝝉 trial

n+1 at time Tn+1 by giving various strain increments determined by eT and eN as

𝝉
trial
n+1 = 𝝉n +

Δ𝜏T

𝜏eq, n
eT +

Δ𝜏N

𝜏eq, n
eN, (107)

where e is the outward unit “vector” on the yield surface, •T and •N are the tangential and normal components of •,
respectively, and 𝜏eq, n is the von-Mises equivalent stress computed from 𝝉n. Then, a stress update method of interest is
applied to obtain the current stress state 𝝉num

≡ 𝝉n+1 and calculate the error by the following formula:

𝜖error =
||𝝉exact − 𝝉num||

||𝝉exact|| , (108)

where 𝝉exact is the reference solution incrementally obtained for sufficiently small increments of strain. In this study, each
small increment is equally set at one-thousandth of the given strain increment.

The conventional elastic-plastic model with the isotropic hardening rule is employed for the sake of simplicity, while
kinematic hardening is not considered. The material parameters are given in Table 1. A unidirectional loading is applied,
and the specified stress 𝝉n satisfying the yield condition at time Tn is when the von-Mises stress reaches 350 MPa. In
this particular example, the duality gap is initially set at a sufficiently small value 1.0 × 10−8 so that its update in the
path-following method needs not be made. Figure 3 shows the obtained iso-error maps for the conventional return map-
ping algorithm and the PDIPM presented in Section 3.1. As can be seen from this figure, the maximum value of numerical
error of the PDIPM is equivalent to that of the return mapping algorithm, and the distributions of numerical errors appear
identical to each other.

Figure 4 shows the number of Newton’s iterations of the return mapping algorithm and the PDIPM when the above
iso-error maps are obtained. As can be seen from Figure 4A, the maximum number of Newton’s iterations was at most
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SHINTAKU et al. 15

T A B L E 1 Material constants to obtain iso-error maps

Young’s modulus Poisson’s ratio Initial yield stress Isotropic hardening

E (GPa) 𝝂 𝝈y0 (MPa) Ly (MPa) Ry (MPa) ry

206.0 0.3 300.0 1000.0 500.0 20.0

(A) (B)

F I G U R E 3 Iso-error maps obtained by return mapping algorithm and primal-dual interior method. (A) Return mapping algorithm;
(B) Primal-dual interior point method

(A) (B)

F I G U R E 4 Number of Newton’s iterations to obtain iso-error maps by return mapping algorithm and primal-dual interior method.
(A) Return mapping algorithm; (B) Primal-dual interior point method

four times for the return mapping algorithm, although the color levels are not well identified. On the other hand, from
Figure 4B, the maximum number of iteration was 33 times for the PDIPM, since Equations (56) and (57) were simulta-
neously solved by Newton method. Thus, as pointed out in Section 3.2, the convergence property of the PDIPM tends to
be inferior to that of the conventional return mapping algorithm. However, as will be demonstrated later, when a class of
elastic-plastic models with memory surface is adopted, the standard implicit stress update often does not work, and the
combination of the return mapping algorithm and the PDIPM must be effective.

5.2 Round bar with notch under cyclic loading with different ranges of plastic strain

Targeting a notched round steel bar under cyclic loading with different amplitudes, we verify the performance of the pro-
posed hybrid stress update scheme for a hypoelastic-plastic constitutive law with memory surface. The specimen used in
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16 SHINTAKU et al.

this numerical simulation is schematized in Figure 5 with the spatial dimensions. Figure 6 shows the FE model generated
with eight-node quadrilateral axisymmetric elements in consideration of the geometry and the schematized boundary
condition. The material constants are provided in Table 2. The number of divided back stresses is set at Nkin = 2. The ini-
tial value for the following-path method are set at 𝜇(0)2 = 1.0 × 10−5 with 𝜌2 = 1.0 × 10−1, and the tolerance to judge the
convergence is set at 𝜖 = 1.0 × 10−8.

First, the convergence properties of the proposed hybrid algorithm and the conventional return mapping method are
compared at the onset of plastic deformation in the notched round bar under tensile loading. Figure 7 shows the change
of residual errors in the Newton iterative process evaluated at the Gauss quadrature point closest to the center of the
specimen, which is indicated by 1© in Figure 6. Here, the vertical axis is the natural logarithmic scale. As can be seen
from Figure 7, the return mapping algorithm does not attain convergence. More specifically, after the residual error of
the return mapping algorithm decreases to a certain value, it does not get any smaller. This is because the residual error
oscillates between positive and negative values in the Newton’s iteration due to the branch condition associated with the
inequality constraint for the memory surface. On the other hand, the proposed hybrid algorithm can obtain the converged

F I G U R E 5 Geometry of a notched round bar with notch

F I G U R E 6 Finite element model of a notched round bar with notch and boundary conditions
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SHINTAKU et al. 17

T A B L E 2 Material constants of a notched round bar with notch

Young’s modulus Poisson’s ratio Initial yield stress Isotropic hardening

E (GPa) 𝝂 𝝈y0 (MPa) Ly (MPa) Ry (MPa) ry

206.0 0.3 300.0 0.0 80.0 5.0

Kinematic hardening Additional hardening with memory surface

a1 b1 a2 b2 m1 (MPa) m2 (MPa) m3 (MPa)

10,000.0 100.0 290.0 0.01 8663.5 −27.5 0.0

(l
og

)

F I G U R E 7 Change of residual error by iterative computation of proposed hybrid algorithm and return mapping algorithm

(A) (B) (C)

(–) (–)

(M
Pa

)

(M
Pa

)

(M
Pa

)

F I G U R E 8 Relationship between stress and strain obtained by hypoelastic-plastic model with memory surface using proposed hybrid
algorithm. (A) Δ𝜖p = 0.05; (B) Δ𝜖p = 0.08; (C) Δ𝜖p = 0.126

solution in each Newton’s iterative process with different duality gaps, although the residual error temporarily increases
right after the duality gap update in the path-following scheme for the PDIPM. As a result, the proposed hybrid algorithm
is able to realize that the residual error finally becomes smaller than 𝜖 = 1.0 × 10−8.

Second, we consider cyclic loading with different plastic strain amplitudes: Δ𝜀p
a = 0.05, 0.08 and 0.126. Figure 8

shows the stress-strain curves obtained by the finite element analysis with the proposed stress update scheme. In
this figure, the experimental results,12 which were obtained by the experiments conducted in accordance with Japan
Welding Engineering Society Standard WES-162, are also included. Here, the true stress and strain are defined as,
respectively,
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18 SHINTAKU et al.

𝜎a =
P
𝜋r2 , (109)

𝜀a = −2 ln r
r0
, (110)

where P is the axial load calculated as the summation of nodal forces at the top surface of the specimen, r is the radius of the
minimum cross-section and r0 is its initial value. It can be confirmed from these figures that the simulated curves obtained
with the hypoelastic-plastic model with memory surface are qualitatively in close agreement with the experimental ones.
It should be noted here that the application of the conventional return mapping method did not work for this problem.

As a reference, the stress-strain curves obtained with the standard hypoelastic-plastic model without memory surface
are shown in Figure 9, for which the material constants in Table 2 have been used. As can be seen from Figure 9A,
the simulated stress-strain curve for plastic strain range Δ𝜀p

a = 0.05 fairly fits with the experimental one. However, as
shown in Figure 9B,C, the other two curves for plastic strain ranges Δ𝜀p

a = 0.08 and 0.126 deviate from the experimental
ones. This discrepancy is due to the fact that the standard model is incapable of representing the change of hardening
behavior with the increase in plastic strain ranges and as a result underestimates the stress responses as compared to the
experimental results. Therefore, the hypoelastic-plastic model with the hardening rule depending on the memory surface
enables us to properly simulate the mechanical behavior of a notched round bar under cyclic loading with different plastic

(A) (B) (C)

(M
Pa

)

(M
Pa

)

(–) (–) (–)

F I G U R E 9 Relationship between stress and strain obtained by hypoelastic-plastic model without memory surface using return
mapping algorithm. (A) Δ𝜖p = 0.05; (B) Δ𝜖p = 0.08; (C) Δ𝜖p = 0.126

24,256

F I G U R E 10 Finite element model of steel bridge with spatial dimensions and boundary conditions
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SHINTAKU et al. 19

strain ranges. Thanks to the extension of the hybrid stress update method to the framework of finite strain theory, the
stress-strain curves are better predicted than those obtained in our previous study.29 Yet, because of the proposed hybrid
stress update method, the calculations could have been stably and efficiently performed.

5.3 Steel bridge subjected to seismic loading

The last example targets a steel bridge subjected to a seismic load during earthquake, which inevitably necessitates
the hardening rule with memory surface. Indeed, the ex-post yield strength in regions which exhibit severe plastic
deformation must be elaborately predicted to estimate the residual load bearing ability of the bridge after the earthquake.

The finite element model of the steel bridge is shown in Figure 10 with the representative sizes. Loading and support
conditions are also roughly depicted. Here, the symmetry condition is considered in the x-y plane, and the bottom of each
bridge pier is fixed in all directions. As shown in Figure 11, different colors are used to indicate the material models for the
bridge pier, floor slab, and the others, in which the adopted constitutive models with material constants are also provided.
In the attached table, “Memory surface” is the same material model and parameters used in the previous example, and
“Noe-Hookean” implies that the material is assumed to follow the standard neo-Hookean hyperelastic model and not to
deform plastically. A simple acceleration wave is assumed to be caused by an earthquake as shown in Figure 12. Here,
the amplitude of the wave increases for 1 s from the beginning and then remains constant for 2 s, and the frequency is set
at 8.93 Hz.

Figure 13 shows the distributions of accumulated plastic strain at 1.0, 2.0 and 3.0 s. It can be seen from these figures that
the plastic deformation concentrates around the corners of intersection and the bottom side of each bridge pier, and the
accumulated plastic strain gradually increases with time even after 1 s, reflecting the assumed hardening characteristics.
Also, to investigate differences in material behavior by location, we choose Points 2© and 3© indicated in Figure 13C and

F I G U R E 11 Material models and mass densities corresponding to different colored parts of steel bridge

20,000

–20,000

Time (s)

)
(

F I G U R E 12 Acceleration wave caused by earthquake
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20 SHINTAKU et al.

(C)

(B)

(A)

(-
)

(-
)

(-
)

F I G U R E 13 Variation of accumulated plastic strains with time. (A) 1.0 s; (B) 2.0 s; (C) 3.0 s

compare the corresponding stress-plastic strain curves as shown in Figure 14. Here, each of the xy shear components has
been selected as a representative. As can be seen from these graphs, the plastic ranges are different by location reflecting
the difference in stress concentration. It is, however, more pertinent to note that the slope of the hardening curve for
Point 3© is greater than that of 2©. This manifests the characteristics of the memory surface that determine the degree of
hardening. Thus, the hypoelastic-plastic model with the hardening rule depending on the memory surface is inevitable
to properly predict the structural behavior of this kind of engineering structures subjected to cyclic loading. Considering
the fact that the standard return mapping algorithm is useless for this material model, we conclude that the proposed
hybrid algorithm is essential for reliable and stable stress update in an efficient manner.
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SHINTAKU et al. 21

(A) (B)

(–) (–)

(M
Pa

)

(M
Pa

)

F I G U R E 14 Relationship between shear stress and plastic strain at different locations. (A) Point 2©; (B) Point 3©

6 CONCLUSIONS

To perform the implicit stress update for a class of hypoelastic-plastic models with the hardening rule depending on
the memory surface, we have proposed a hybrid strategy by the blend of the standard return mapping algorithm and
the PDIPM. Since the PDIPM requires an additional iterative procedure to perform stress update by the application of
the path following method, there is no room for this method when only a single constraint condition is involved in the
optimization problem relevant to a conventional elastic-plastic model. In fact, as demonstrated in the first numerical
example, the convergence property of the PDIPM for the J2 plasticity frequently used for its simplicity is of no utility
to that of the return mapping algorithm, although their numerical accuracies are almost identical. However, when we
are concerned with advanced elastic-plastic constitutive laws such as a class of hypoelastic-plastic models with memory
surface, the conventional return mapping algorithm is useless, and the PDIPM comes into its own. That is, the proposed
hybrid algorithm enables us to smoothly and stably obtain the set of solutions of a minimization problem with coupled
inequality constraints associated with yield and memory surfaces as demonstrated in the second and third numerical
examples. In conclusion, the combination of the return mapping algorithm and the PDIPM could be an effective tool for
advanced elastic-plastic models.

However, we should mention that the formulation presented in this study is not free from flaws. Indeed, the corre-
spondence between the hypoelastic-plastic model with memory surface and the relevant optimization problem has not
been rigorously assured, because the transformation of the memory surface in the stress space into that in the strain space
is not trivial. A similar argument is made for the nonassociative hardening rule such as the Chaboche model that may
deviate from the principle of maximum dissipation. Nevertheless, the somewhat heuristic derivation of the numerical
algorithm presented in this study has worked well in the implicit stress update for the adopted advanced elastic-plastic
model.
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