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1,1-Difluoroallenes have two fluorine substituents, which are located on 

the cumulated diene substructure to decisively affect their reactivities. In 
addition to the reactions compiled in our previous review,2 synthetic 
reactions of 1,1-difluoroallenes have been continuously investigated since the 
authors' publication in Org. Synth. that described difluoroallene production 
by difluorovinylidenation of aldehydes and ketones.3 As a result, the fluorine 
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substituents allow bond-forming reactions of 1,1-difluoroallenes to proceed 
in a-, b-, or g-selective fashions, all of which are illustrated below. 

 
 

Bond Forming Reactions on the a-Carbon 
 

As discussed in the original article,3 an In(III) catalyst facilitates the 
domino Friedel–Crafts-type cyclization/ring expansion sequence of 1,1-
difluoroallenes 1. Subsequent one-pot dehydrogenation leads to pinpoint-
fluorinated polycyclic aromatic hydrocarbons 2 (F-PAHs, Scheme 1).4 The 
domino reaction allows two carbon–carbon bond formations, first at the 
position a to the fluorine substituents and subsequently at the g-position. 

 

Scheme 1. In(III)-catalyzed synthesis of F-PAHs 

Three applications were developed using the above domino reaction to 
construct extended p systems, namely, (i) tandem benzene ring construction,5 
(ii) p-extended aryne generation,6 and (iii) benzene ring extension.7 These 
applications resulted in the successful generation of difluorinated, 
monofluorinated, and fluorine-free p-extended molecular systems. 

The first application of the domino cyclization/ring expansion sequence 
involves tandem benzene ring construction (Figure 1).5  Bis(1,1-
difluoroallene) 3 (a) and 4 (b), prepared from m- and p-xylenes via the 
corresponding dialdehydes, underwent the domino reaction in a tandem 
fashion to afford pinpoint-difluorinated dibenzoanthracene 5 and picene 6 in 
76% and 75% yields, respectively. The physicochemical features of the 
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synthesized F-PAHs were examined, specifically their solubility in organic 
solvents8 and their potential as materials for electronic devices.5 

 

Figure 1. Synthesis of pinpoint-difluorinated PAHs (F-PAHs) 

Secondly, the synthesis of “half HBCs” was facilitated by p-extended 
aryne generation from 1,1-difluoroallenes (Scheme 2).6 The structure of half 
HBCs is a half section of HBCs (hexabenzocoronenes), which are promising 
as materials for photovoltaic cells.  o-Bromo- or o-iodofluoroarenes 7 were 
prepared by the In(III)-catalyzed domino reaction of 1,1-difluoroallenes 
involving halogenation of the C–In bond with N-bromosuccinimide (NBS) or 
N-iodosuccinimide (NIS).4a Compounds 7 served as precursors for  
p-extended arynes 8 upon treatment with butyllithium, while  
6-fluoro[4]helicene (not shown) also served as an aryne precursor via 
dehydrofluorination upon treatment with Me2(TMP)ZnLi (TMP, 
tetramethylpiperidino).9 The produced arynes were subjected to the Diels–
Alder reaction with diarylated isobenzofurans,10 yielding cycloadducts (81–
89% yields, not shown), which were easily transformed to half HBCs 9 by 
deoxygenative aromatization followed by aryl–aryl coupling in 78–96% 
yields (2 steps).  
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Scheme 2. Synthesis of half HBCs 

 

Third, benzene ring extension was accomplished through the attachment 
of a fluorobenzo moiety to existing fluoroarenes.7 Under microwave (MW) 
irradiation, commercially available 1-fluoronaphthalene was effectively 
cyanoethylated by aromatic nucleophilic substitution for fluorine (Figure 2). 
The half reduction of the nitrile gave aldehyde 10, whose 
difluorovinylidenation afforded the corresponding 1,1-difluoroallene 11. 
Next, 11 underwent Friedel–Crafts-type cyclization followed by 
dehydrofluorination to provide the benzene ring-extended 
fluorophenanthrene 12 in 94% yield (the first cycle). Application of second 
and third cycles similarly extended the p system until it eventually afforded 
pinpoint-fluorinated [5]phenacene (picene) 13 (Scheme 3). In addition to 
phenacenes with zig-zag benzene rings, such as 13, triphenylene 14 with a 
trigonal structure was produced by applying the benzene ring extension 
cycle to internally fluorinated arenes (Scheme 4). 
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Figure 2. Benzene ring extension cycle 

 

 
Scheme 3. Synthesis of fluorinated phenacenes 
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Scheme 4. Synthesis of fluorinated triphenylenes 

Apart from cyclizations, 1,1-difluoroallenes also undergo a-selective 
addition of oxygen nucleophiles, such as phenols, carboxylic acids, and 
sulfonic acids, in the presence of an Au(I) or an Au(III) catalyst (Scheme 5).11 
Thus, using the aurated allylic CF2 cations, the hard O-nucleophiles were 
regioselectively introduced to 1,1-difluoroallenes, yielding 1,1-difluoroallylic 
ethers and esters 15 in 74%–92% yields. In contrast, soft sulfur and nitrogen 
nucleophiles underwent g-selective addition (vide infra: Scheme 9). 

 

 
Scheme 5. Synthesis of 1,1-difluoroallylic ethers and esters 

 
 

Bond Forming Reactions on the b-Carbon 
 

Bond-forming reactions at the position b to the fluorine substituents were 
facilitated by a palladium catalyst involving p-allylpalladium(II) formation.12 
Difluoroallene 16 with a bromophenyl moiety was intramolecularly 
carbopalladated to form the p-allylpalladium(II) species with a six-
membered ring structure, which in turn underwent b-hydrogen elimination, 
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followed by isomerization to yield difluoromethylated naphthalene 17 in 60% 
yield (Scheme 6). The difluoromethyl group is a bioisostere of a hydroxy 
group and is attracting attention in the field of pharmaceuticals and 
agrochemicals as a hydrogen donor for hydrogen bonding while 
simultaneously exhibiting hydrophobicity. 

 

Scheme 6. Synthesis of difluoromethylated naphthalenes 

The intramolecular b-selective carbometallation was followed by 
intermolecular fluorometallation (cat. Pd(0)/PhI/AgF, Scheme 7),13 where 
the generation of vinylsilver(I) was proposed to participate in Pd(0)-
catalyzed coupling, leading to (trifluoromethyl)alkene 18 in 65% yield. A 
rhodium(I) catalyst bearing a nitrogen ligand facilitated C–S bond formation 
in a b-selective fashion (Scheme 8), while Rh(I) with a phosphine ligand 
promoted g-addition (vide infra: Scheme 10).14 

 

Scheme 7. Synthesis of arylated (trifluoromethyl)alkenes 
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Scheme 8. Synthesis of sulfanylated (difluoromethyl)alkenes 

 
 

Bond Forming Reactions on the g-Carbon 
 

Organocopper(I) reagents promote g-selective bond-forming reactions in 
almost all cases.15 3-Monosubstituted 1,1-difluoroallene 19 reacted with 
ethylcopper(I) to afford the corresponding addition product, g-branched 1,1-
difluoro-1-alkene 20 (E = H), in 95% yield via protonolysis of the 2,2-
difluorovinylcopper(I) intermediate (Figure 3).16 When quenched by 
electrophiles, such as halogenating agents and halostannanes, b-
functionalized 1,1-difluoro-1-alkenes 21 and 22, respectively (66%–84% 
yields). The 2,2-difluorovinylcopper(I) intermediates enabled Pd(0)-
catalyzed coupling with iodobenzene, yielding a three-component coupling 
product 23 in 90% yield. 

 
Figure 3. Synthesis of g-branched 1,1-difluoro-1-alkenes 
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B2pin2 and PhMe2SiBpin with a Cu(I)-catalyst promoted g-selective 
borylation and silylation of 1,1-difluoroallenes, which afforded 3,3-
difluoroallylboronate 24 and silane 25 in 86% yields, respectively (Figure 4).17 
The formed difluoroallylboronates reacted with aldehydes to provide 2,2-
difluorohomoallylic alcohols (not shown). 

 
Figure 4. Synthesis of 3,3-difluoroallylic boronates and silanes 

As well as undergoing alkylation, borylation, and silylation reactions, 
1,1-difluoroallenes underwent the g-selective addition of benzamide and 
thiophenol in the presence of an Au(I) [or an Au(III)] catalyst through cationic 
intermediates (Scheme 9, see also: Scheme 5).11 3,3-Difluoroallylic amine 26 
and thioether 27 were synthesized in 81% and 72% yields, respectively. The 
use of a Rh(I) catalyst with a chiral phosphine ligand aided in the synthesis 
of chiral 3,3-difluoroallylic thioether 28 via g-selective C–S bond formation 
(Scheme 10, see also: Scheme 8).14 
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Scheme 10. Synthesis of chiral 3,3-difluoroallylic thioethers  

The related monofluoroallenes underwent g-selective intramolecular C–
O and C–N bond formations in the presence of an Ag(I) catalyst (Scheme 11). 
Ring-fluorinated heterocycles, dihydropyran 29, and tetrahydropyridine 30, 
were obtained in 54% and 52% yields, respectively.18 

 

Scheme 11. Synthesis of heterocyclic fluoroalkenes 

In summary, since our report on the synthesis of 1,1-difluoroallenes by 
carbonyl difluorovinylidenation, the reactions of 1,1-difluoroallenes have 
been steadily investigated and their unique reactivities have been revealed. 
Now, regioselective bond-forming reactions in 1,1-difluoroallenes can be 
successfully effected at each of the three, a-, b-, and g-positions with the aid 
of metals, such as In(III), Au(I), Au(III), Pd(0), Cu(I), and Ag(I), which enables 
the synthesis of fluorinated and fluorine-free cyclic and acyclic molecules. As 
a result, 1,1-difluoroallenes are extremely adaptable synthetic building 
blocks. Despite these advances in ionic reactions, further research on their 
behavior under radical conditions and in electrocyclization processes is still 
required.19 
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