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1. Introduction

We consider verifying the t eigenvalues A;, counting multiplicity, in a prescribed interval 2 = [a,b] C R of the
generalized Hermitian eigenvalue problem

AX; = \;Bx;, XiECn\{O}, A <Ay <o S Ay, (1)

where A = A" € C™", B = B" € C"™" is positive semidefinite, and the matrix pencil zB—A (z € C) is regular, i.e, det(zB—A)
is not identically equal to zero for all z € C; otherwise, it is singular. We call A; an eigenvalue and x; the corresponding
eigenvector of the problem (1) or matrix pencil zB — A, z € C interchangeably and the pair(};, X;) an eigenpair. Here, the
verification of eigenvalues and eigenvectors is to produce rigorous error bounds of numerically computed eigenvalues
and eigenvectors, taking into account all possible errors, in particular rounding errors [1,2]. Throughout, we assume that
the number of eigenvalues in the interval £2 is known to be t and there do not exist eigenvalues of (1) at the end points
a, b € R. We also denote the eigenvalues of (1) outside 2 by A; (i = t + 1,t + 2,...,r), where r = rankB. Verified
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eigenvalue computations arise in applications, e.g., from the numerical verification of a priori error estimations for finite
element solutions [3,4], eigenvalues of elliptic operators [5], and electronic state calculations [6].

Previous studies of verified eigenvalue and eigenvector computations are classified into two categories: one is for the
verification of specific eigenpairs, and the other is for the verification of all the eigenpairs at once. This study focuses on
the former category.

We first review methods in the former category. Methods in the former have taken several different approaches
and typically use fixed-point iterations. An interval-arithmetic friendly formulation suitable for applying fixed-point
iterations can lead to rigorous error bounds. Yamamoto [7] and Rump [8] regard a given eigenvalue problem as a
system of nonlinear equations and use Newton-like iterations for solving the equations [9] to verify an eigenpair
for nonsymmetric standard and non-Hermitian generalized eigenvalue problems, respectively. Yamamoto [10] further
introduces a refinement procedure [11]. Behnke [12,13] uses Temple quotients, variational principles, and a generalization
of Lehmann’s method [14] for the inclusion of eigenvalues. An extension of Rump’s approach can deal with multiple
or nearly multiple eigenvalues and eigenvectors [15]. See [2, Section 13.4] for a substantial review along this line.
Yamamoto [16] uses the LDL" and Cholesky decompositions, its error estimation, and Sylvester’s law of inertia and
develops a method that can also deal with multiple eigenvalues or a cluster of eigenvalues of generalized symmetric
eigenvalue problems.

Next, we review methods in the latter category. Wilkinson [17] and Varah [18] use GerShgorin’s theorem [19] for non-
Hermitian matrices. Oishi [20] uses Bauer-Fike-type and Weyl-type perturbation theorems [21,22]. Maruyama et al. [23]
use GerShgorin’s theorem, regards a given eigenvalue problem as a matrix equation, and uses a componentwise error
bound [24] and efficient technique [25] for the matrix equation to verify all eigenvalues of generalized symmetric
eigenvalue problems. Miyajima et al. [26] combined techniques developed for symmetric matrices in [27-29] with Rump
and Wilkinson’s bounds to verify all eigenpairs of generalized symmetric eigenvalue problems. Miyajima [30] improves
his previous work for non-Hermitian A and nonsingular non-Hermitian positive definite B. Miyajima [31] uses Brouwer’s
fixed-point theorem for the enclosure of the eigenvalues and invariant subspaces of generalized non-Hermitian eigenvalue
problems.

Our previous study proposes a verification method using complex moments [32]. This method is based on an
eigensolver [33], which reduces a given generalized Hermitian eigenvalue problem into another generalized eigenvalue
problem with block Hankel matrices, and evaluates all the errors in the reduction for verification. We call this method
the Hankel matrix approach throughout. The errors are split into truncation errors in numerical quadrature and rounding
errors. To evaluate the truncation error, an interval arithmetic-friendly formula is derived. This method is feasible even
when B is singular. Also, we develop an efficient technique to validate the solutions of linear systems of equations
corresponding to each quadrature point.

This study improves its truncation error using the Rayleigh-Ritz procedure [34,35] and halves the number of quadrature
points required by the Hankel matrix approach to satisfy a prescribed quadrature error. This Rayleigh-Ritz procedure
approach inherits features of the Hankel matrix approach, such as the efficient error evaluation technique for linear
systems and the parameter tuning technique. This approach is also feasible for singular B when verifying eigenvalues
and enables verifying eigenvectors. Moreover, as this approach relies on the verification method for multiple and nearly
multiple eigenvalues [15], it can deal with those eigenvalues in the interval £2. Numerical experiments prove the feasibility
of this concept and show the efficiency and verification performance of the proposed method.

This paper is organized as follows. Section 2 presents the proposed method, derives computable error bounds for
complex moments to justify it, and discusses implementation issues. Section 3 presents experimental results to illustrate
the performance of the proposed method. Section 4 concludes the paper.

2. Rayleigh-Ritz procedure approach

The Rayleigh-Ritz procedure projects a given eigenvalue problem into an (approximated) eigenspace of interest. We
develop a verified computation method for generalized Hermitian eigenvalue problems using the Rayleigh-Ritz procedure.
To this end, we first review a projection method using the Rayleigh-Ritz procedure and complex moments [34,35].

Define the kth complex moment matrix by

1
Mkz—,yf(z—y)k(zB—A)”dz, k=0,1,2,...,m—1 2)
2ni Jp

on a positively oriented closed Jordan curve I through the end points of the interval 2 = [a, b], where i = v/—1 is the
imaginary unit, 7 is the circle ratio, and y € R is a shift parameter. Then, using the matrix

S =1[S0,S1,.--»Sm-11, Sk=MBV, k=0,1,2,...,m—1, (3)
where V € C™*! is a random matrix, we transform the eigenvalue problem (1) into a reduced eigenvalue problem

SY(A—yB)Sy = (»—y)S"BSy, x=Sy. yeC"\{0}. (4)

By solving the transformed generalized eigenvalue problem (4), we obtain the eigenvalues of interest under certain
conditions.
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We then show the identity between the Rayleigh-Ritz procedure approach and the Hankel matrix approach [33]. To
this end, we rewrite the coefficient matrices of (4) below. Recall the Weierstrass canonical form of the matrix pencil
zB — A 36, Proposition 7.8.3]. There exists a nonsingular matrix X € C"™" such that

XH(zB — AX = zI, — A,

where the ith column of X is the eigenvector x; corresponding to the eigenvalue A;, [, = I, # 0 € R™", and A =
diag(A1, A2, ..., Ar) @ I, € R™™ whose leading r diagonal entries are the eigenvalues of (1). Here, I; € R'** is the
identity matrix and & denotes the direct sum of matrices. With this canonical form and the eigendecomposition

(zB— A" = X(zl, — A)"'X"

.
= Z(Z — hi) ",
i1

Cauchy’s integral formula gives the kth order complex moment

r

1
M=) [271 fr(z — vz~ ki)’]dZ] xix;"

i=1

t

=Y (i — )
i=1

= Xo(Ag — y1)X

fork=0,1,...,m— 1, where Xo = [x1,X2,...,&] and A, = diag (A1, A2, ..., A¢). Hence, we rewrite the coefficient
matrices of (4) as

SHA — yB)S; = V'BXo(Ag — y1)IX5(A — yB)Xo1(Ae — y1 YXBBV
= V"BXo(Ag — y1) T IXHBY

and
Si"BS; = V'BXo(Ag — v1) (Xo"BXo )(Aq — y1:YXoBV
= V"BXo(Ag — y1)HXoBV
fori,j = 0,1, ..., m — 1. Here, we used the identity Xo"BX, = I;, in which the eigenvectors X1, X3, ..., X are B-

orthonormal. Let M, = V"BM;BV be the reduced kth complex moment given in [32, equation (2)]. Then, the identities

SM(A — yB)S; = Migjp1,  Si"BS; = My, (5)
fori,j=0,1,...,m—1,or
M My - Mm Mo Mp -+ Mp
" My M3 Mm+1 " My M Mm
SYA—yB)S = . ) X , S"BS = ) . . (6)
Mm Mm+1 e M2m71 Mmfl Mm e IV|2n172

show that the Rayleigh-Ritz procedure and Hankel matrix approaches reduce the generalized eigenvalue problems (1)
into the same eigenvalue problem with block Hankel matrices. The left-hand sides of (5) form the transformed matrices
in the Rayleigh-Ritz procedure approach, whereas the right-hand sides of (5) form the transformed matrices in the Hankel
matrix approach. We call these two approaches the complex moment approaches. Further, the following theorem justifies
that these methods determine the eigenvalues and eigenvectors of (1).

Theorem 2.1 ([37, Theorem 7], [38, Theorem 3]). Let t be the number of eigenvalues of (1) in the region 2 and S € C™™
be defined as in (3), and assume rankS = t. Then, the eigenvalues of the regular part of the matrix pencil SH(A — zB)S are the
same as the eigenvalues A; of (1),i=1, 2, ..., t. Let u; be the eigenvector corresponding to the eigenvalue A; of SH(A — zB)S.
Then, x; = Su; is the eigenvector corresponding to the eigenvalue X\; of (1).

Note that this theorem holds even in the presence of multiple eigenvalues.

The difference between the Rayleigh-Ritz and Hankel matrix approaches arises when approximating the integral (2)
using numerical quadrature. Next, we evaluate the error in the Rayleigh-Ritz procedure approach, similarly to the previous
study for the Hankel matrix approach [32, sections 2,3].
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2.1. N-point quadrature rule

The complex moment (2) is approximated by using the N-point trapezoidal rule, taking a circle with center y and
radius p in the complex plane
b+a _b—a
2 T
as the domain of integration I'. It follows from the error analysis in [39] that the N-point trapezoidal rule with the
equi-distributed quadrature points

I'={zeClz=y + pexp(if),0 e R}, y =

. 2j—1 :
zi =y + pexp(ig;), 0; = N T = 1,2,...,N
approximates the complex moment M, as
~ MM = Z(x p )V xxtt,
where
! 1,2 t
1_(%.7)/ N s 2, L
P
dEN)= _( B )N (7)
Ai=y .
— i=t+1,t+2,...,1
- ()
i~V
The approximation M; ~ M,({N) is confirmed as dEN) — 1fori=1,2,...,tand dEN) —O0fori=t+1,t+2,...,r for
N — oo.

2.2. Effect of eigenvalues inside and outside £2

To see the effect of the eigenvalues inside and outside the interval £2 on the quadrature errors and for notational
convenience, we split the complex moment into two

M(N) k in -+ Mk out?
where
M = Xa(Ag — y1)D Xa",
Mo = Xac(Age — vl 'DGXoc" (8)
are associated with the eigenvalues inside and outside the interval 2, respectively, for k =0, 1, ..., m— 1. Here, we used

the notations

DY = diag(d™, d\", ..., d"™),

N) N (N
D) = diag(d"y),, d\Y), ..., d™),
Xoe = [Rey1, X1, - -5 X,

A_Qc = diag(ktﬂ, )\.t+2, ey )\.r).
With the above approximation M ~ M,EN ,k=0,1,...,2m — 1, we obtain the approximated transformation matrix

Se = sV = mBv

and split it into two S( S,({’\fn + Sk our Where
(N) N)
Sk in = Mk mBV (9)
(N) (N)
Sk out — Mk outBV (10)

are associated with the eigenvalues inside and outside the region §2, respectively. With this approximated transformation
matrix S,EN ). the reduced complex moment M, iS approximated as

o~
M1+j+1 — Mi+j+1

= (5" — yB)S™. (11)
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The approximated reduced complex moment is split into two

M)

Y
i1 =M

1+j+1 in + M1+]+1 out’ (12)
where

(N)
Mz+j+l in = (Sl m) (A VB)S] in?

(N)
Mi+j+1,0ut = (Sl out) (A VB)S] out (13)

are associated with the eigenvalues inside and outside the region 2, respectively, fori,j=0,1,...,m— 1.
Let H;; = SY(A — yB)S and H,, = S"'BS be the block Hankel matrices in (6). Note that the block (i, j) entries of H,; and
Hy, are M1 and My, respectively. Then, in the Rayleigh-Ritz procedure approach, they are approximated as

Hy ~ Hy ™ = (S™)(A — yB)s™),
Hp =~ HY = (S™)*Bs™),

where SV) = [S(()N), SgN), o S,(\:,Vll]. Here, the block (i, j) entries of Hy'™ and HY are M{""), , and M)

i1 iyj» respectively. For
convenience, we split the approximated block Hankel matrices into two

H;’(N) = H<’<(N) + Hr:,’gl\.{t)v HﬁnN) H(N + Hm out»

m,in m,in

where

H>W = (sMya — y st Hy ) = (SIOH(A — yB)S)

m,in in m,out —

and

N N N N) N N
H( ) = (S( ))H Sl(n)v Hr(n out _(S(()th)) Bséut)

m,in

are associated with the eigenvalues inside and outside the region £2, respectively, Here, the block (i, j) entries of H'

(N) 14(N) (N) (N) (N) (N) (N)
Hm out» Hm in’ and Hm out are€ Mi+j+1.in' Ml+]+l out’ Ml+j in’ and Ml+j out*

mln’

2.3. Verification of eigenvalues

To validate the eigenvalues of (4), it is straightforward to enclose the coefficient matrices of (4), i.e., (6). Nevertheless,
we exploit alternative quantities. To this end, we prepare the following lemma.

Lemma 2.1. Let D = D; ® D, € R™™" be a diagonal matrix with D; € R'** and the column vectors of X € C™" and
Xo € C™¢ be the eigenvectors X1, Xy, ..., X, and X1, X, . .., X; of (1), respectively. Then, we have

D1Xo'BX = Xo"BXD.

Proof. As Xo"BX = [I;, O] holds for the B-orthonormality of the eigenvectors, we have
D1Xe"BX = Dil;, O]
= [I;, 01D
=Xo"BXD. O

We now give a link between the coefficient matrices of (4) and their splittings.

Theorem 2.2. Let B be a Hermitian positive semidefinite matrix and S be defined as in (3) and

(N) N) o(N) (N)
5! :[s SMs ] (14)

in 0,in’ ’“m—1,in

where s,(f{; is as defined in (9). Assume rankS = t. Then, the matrix pencils S*(A — zB)S and (Si(f WH(A — zB)Si(r'lV ) have the same
eigenvalues.

Proof. Let D™ = diag(d!",d)", ..., d\)) with d") € C defined in (7) and X € C™" be defined as in Lemma 2.1.
Denote the jth column vector of V = XC € C™¢ and V™) = XDV)C € C™¢ by v; = Y1 cj&; and o™ = 31, ¢;dVx;,
respectively, i.e., an expansion of the jth column of V by the eigenvectors, for j = 1, 2, ..., £, where C = (¢;) € C™*.

Then, we have
(STNH(A — yBIS) = VMBXo D (A — 21, ) DY X BY
= (VWMBXo(Ag — 21, X HBY ™Y
5
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fori,j =0,1,...,m— 1. From (3) and Sg.in = Xo(Ag — v )¥Xe"BVY, it follows that we have the identity rank(S) =
rank(Si([’:’)) = t. Because Theorem 2.1 holds even replacing V by V™, (1) and (Si(r’:’)) (A— zB) M) have the same eigenvalues.
Therefore, the assertion holds. O

Thanks to the relationships (13) and M, +] n = (S,“:’J)HBS]’Q and Theorem 2.2, we enclose M,( . instead of M for
k=0,1,...,2m — 1. From the splitting (12), i’?’gut can be regarded as the truncated error for quadrature. Denote the

quantity obtained by numerically computing MiN ) by ME{N ). Hereafter, we denote a numerically computed quantity that
may suffer from rounding errors with a tilde.

Theorem 2.3. Denote the interval matrix with radius R € Rﬁxe and center at C € R**¢ by (C, R). Then, the enclosure of Mk in
is given by

(N) (N)
Mk,in € (Mk ’ Mk out >
(N N) N) N
© (. |0, [+ [ — ) (15)

fork=0,1,...,2m— 1.

Proof. The first enclosure of M( ) is obtained by the equality M — Mgin = MM for k = 0,1, ,2m — 1. The second

k,out
enclosure is obtained by using thlS equality and the inequality
~(N) (N) (N) (N)
‘Mkm Mk ‘ ‘Mkm_Mk ‘+’Mk _Mk )

‘M(N)

k,out

~5{N)—M§<N)’, k=0,1,....2m—1. O

Theorem 2.3 implies that to enclose ME(NIL we can use |M§:'gut| and the truncated complex moment ME(N ) computed by

using standard verification methods using interval arithmetic to obtain an enclosure of the truncation error |M§{N) — I\7I§(N )|.
Theorem 2.3 readily gives the following enclosure:

el (R ] +

mm

,(N
‘H< Hn<1()

(N) T
)’ Hm.in c (Hr(n ’

N) (N N
Hi| + [0 = HOY)).
An enclosure of |Mk Ollt| is obtained as follows.

Theorem 24. Let B be a Hermitian posmve semldef inite definite matrix. Assume 2m — 1 < N and that A eR satisfies
[A — | = mini—¢q1,¢42,...r |Ai — ¥ |. Then, IM,< ) | in (8) is bounded by

(M)ZNW
-()

Proof. Let V; = V"Bx;x'BV. Then, applying the triangular inequality, we have

. k
<(r-0fi-7|

Mo = |viBv |, (16)

fork=0,1,...,2m—1.

;
‘Mk out| — Z ()‘i - V)kdizvi
i=t+1
r
< Y i—yld Wil
i=t+1
fork=0,1,...,2m — 1. Noting the geometric series and applying the triangular inequality, we obtain
[e%e] JjN
di? =
j=1
P 2jN
<
- Z )w -V

j=1
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fori=t+1,t+2,...,r. Multiplied by the factor |A; — y|¥, we obtain

|)\‘ _y|kd2 <Zp2]N |)\‘ _y| —(2jN—k)

o0
Z ]Nl)\ —(2jN—k)

fori=t+1,t+2,...,rand k =0,1,...,2m — 1. Here, the assumption 2m — 1 < N ensures k < N. Noting that the
last expression is independent of the index i, we have

(=) -

1_(0) i=t+1

The bound [Vj| < ||[V"BV | follows from the latter half of the proof of [32, Theorem 3.3]. Therefore, we obtain (16). O

<B—yl

‘Mk out

Remark 2.1. The bound (16) for the proposed Rayleigh-Ritz procedure approach is twice sharper than the one for the
Hankel matrix approach [32, Theorem 3.3], i.e., the proposed method requires half the number of quadrature points
required by the Hankel matrix approach to allow the same amount of truncation errors. This observation is demonstrated
in Section 3.

2.4. Verification of eigenvectors

To verify the eigenvectors x; of (1) via the Rayleigh- thz procedure approach as well as the Hankel matrix approach,
we show the identity of the eigenvectors given by S and S

Theorem 2.5. Assume that B is a Hermitian and positive definite matrix. Let S and S'F
) N )

respectively, such that rank(S) =t andy € (C“” be an eigenvector of (S(N) )HAS(N y =
of (1), then Sff )y is also an eigenvector of (1

be defined as in (3) and (14),
HBS(N y. If Sy is an eigenvector

Proof. Let V() = XDV)C, where X and D™V are defined in Lemma 2.1 and the proof of Theorem 2.2, respectively, and
C e C™*. Then, from Lemma 2.1, it follows that

SN = Xa(Ag — y1) DY Xo "BV

= Xo(Ag — y1)Xe"BV™.

k,i m

Because each eigencomponent of each column vector of V() is a scalar multiple of that of V, we have the identity R(S;) =
RS k=0,1,....M—1. O

Motivated by this theorem, we focus on verifying s™ instead of S.

in °’

Theorem 2.6. Let
SN = (s st st (17)

0,out’ ~'1,out’ “m—1,out

Then, we have the following enclosure of the approximated transformation matrix:
s e (s, st

c <§(N),

(N)
out

’s s<N>‘>. (18)

Proof. The proof is given similarly to that of Theorem 2.3. O

7



A. Imakura, K. Morikuni and A. Takayasu Journal of Computational and Applied Mathematics 424 (2023) 114994

Theorem 2.7. Assume that B is a Hermitian and positive definite matrix. Assume 2m — 1 < N and that A eRr satisfies
A — y| = MiNizry1,042....r |Ai — ¥ |- Then, S,i{i)ut defined in (10) is bounded as

y‘k (Afrl)N ;
- (x”ﬂ)

Proof. Similarly to the proof of Theorem 2.4, we have

_ 1/2
(1B~ VBV ) (19)

k,out

‘ M)

s(n—t)‘i—

fork=01...,m—1.

)
‘s,ﬁfi]ut = > (ni—y)diB V2B xx'BY
i=t+1
N
- (Mp \)
i~V _
< Y iyl == [B7V| B2 ['BY?| B2V |
j— Y R
=t 1 IM*V\)
r o0 p pN 5
< IB7212lB"?Via Y =y <ﬁ> 1B"?%>
i=t+1 p=1 i~V
r o0
—1141/2 1/2 _ _
= B2 IVEBV L2 3 Y PN — N
i=t+1 p=1
1/2 d > (pN—k)
_ ~ —(pN—k
< (BT 120VFBVIZ) = Y > " pMNIA -y
i=t+1 p=1
N
()
_ 1/2 N k -
= min F - 4 - N
(hmin(B) M IVFBVIIE) " (r — 01 — v s
1= (32)
A=yl
fori=t+1,t+2,...,r. Here, we used the B-orthonormality of the eigenvectors ||Bl/2>\:,'||22 =x"Bx;=1. O

Remark 2.2. The evaluations (18), (19) can also be used for the Hankel matrix approach [32] for the evaluation of
eigenvectors.

Remark 2.3. In Theorem 2.7, a Hermitian matrix B is required to be positive definite for the verification of eigenvectors,
contrarily to the verification of eigenvalues, cf. Theorem 2.4.

The evaluation of the numerical error [S™ — S™)| in (18), i.e., |§,(<N) — S,EN)l foreachk =0, 1, ..., m — 1, involves the
error evaluation of the solution
Y; = (zB — A)"'BV (20)
of the linear system of equations with multiple right-hand sides (z;B — A)Y; = BV associated with
1N
(N) :
S =5 XEexp((k + 1)6;i)Y; (21)
Jj=
for k =0, 1, ..., m — 1. The enclosure of Y; can be obtained by using standard verification methods, e.g. [40,41]. For

efficiency, the technique based on [32, Theorem 4.1] can be also used.
2.5. Implementation

We present implementation issues of the proposed method. We assume that the numbers of £ and m satisfy £m = t.
Also, the proposed method needs to determine the number of the parameter N. Each quadrature point z; gives rise to a
linear system (z;B — A)Y; = BV to solve. The evaluation of a solution for each linear system is the most expensive part,
whereas the quadrature errors |M§,’§2| and |Sf,ﬁ’t) | reduce as the number of quadrature points N increases (see Theorems 2.4
and 2.7). To achieve efficient verification, it is favorable to evaluate solutions of the linear systems as few as possible.
Hence, there is a trade-off between the computational cost and quadrature error. The number of quadrature points N

8
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has been heuristically determined in the complex moment eivensolvers for numerical computations. For numerical
verification, a reasonable number N can be determined according to the quadrature error. The error bounds (16) and
(19) can be used to determine a reasonable number of quadrature points. The least number of N such that

1
F) .
(log W)} log (m) for eigenvalues, (a)

N = (22)
6 .
(log - ) log (m) for eigenvectors (b)

yields a quadrature error less than §, i.e., ’Mk out < &, respectively, at the least cost, where

< é and ’Sk out

o =V*BVr max [A-yl
k=0,1 2m—1

_ 1/2 A k
= (B |%4:1% max A= .
2= (IB~"[121l llF) o N
We summarize the above procedures in Algorithm 1. Here we denote interval quantities with square brackets [-] and the
quantity in the right-hand sides of (16) and (19) by /,Lk Out and ok'\(’))ut, respectively. The computation of line 3 of Algorithm
1 can be performed as follows [32, p. 7]:

1. Compute a numerical approximation A of A such that A — y| > p, defined in Theorems 2.4 and 2.7.

2. Set ¢ € (0, 1) such that p < c|x — y|.

3. Verify regularity of the interval matrices A — [y + p, ¥ +c|A — y|IBand A — [y —c|x — y|, y — p]B, e.g., by using
the INTLAB function isregular.

4. Adopt c|A — y| as a lower bound of |)AL -yl

To choose a possible large value of c, Steps 2-3 can be performed by using a bisection method.

Algorithm 1 Rayleigh-Ritz procedure approach.

Input: A C™",Be C™", ¢, m e N, such that t = ¢m, V e C™¢, y, p € R, and § > 0.
Output Al (%], i=1,2,.

: Determine N by using (22)( ) or (22)(b).

: Compute [6;] = [(2j — 1)z /N], [z]] = [y + pexp(i[6i])].j=1,2,...,N

: Rigorously compute a lower bound of |): — Y| = miMg=tt1.¢42,.r Ak — V.

: Compute [[M o [] from [u{n, ] k=0,1,...,2m — 1.

: Compute [Y;]in (20),j=1,2,...,N.

: Compute [S,EN)] = <§,(<N), |§,((N) - S,(CN)|> using (21), k=0,1,...,m— 1.

OﬁU’lAUJN.—I

7: Compute [M{")] = (M(’” M - ME}V)|> using (11, k=0,1,...,2m— 1.

8: Compute [Mk m] using (15), k=0,1,...,2m — 1.

o: From [Hy, "], [HY) ] from M{ s, k=0, 1,...,2m — 1.

10: Compute the elgenvalue [A;i] and eigenvector Ly] of the generalized eigenvalue problem [Hm n ]y, = AI[H; fr’l\”]yi,
i=1,2,.

11: ngorously compute an upper bound of |S,< OLIt| using ak Out, k=01, -1

12: Form |S{})| using (17), S™ = s\ ,55”),..., S 1, and [SMN) — () |.

13: Compute [Si(rllv)] using (18).

14: Compute [%,] = [SMy,].

3. Numerical experiments

Numerical experiments show that the proposed method is superior to previous methods in terms of efficiency, while
maintaining verification performance. The efficiency is evaluated in terms of CPU time. The performance of verification is
evaluated in terms of the radii of the intervals of the verified eigenvalue and entries of the eigenvectors.

All computations are performed on a computer with an Intel Xeon Platinum 8176M 2.10 GHz central processing
unit (CPU), 3 TB of random-access memory (RAM), and the Ubuntu 18.04.5 LTS operating system. All programs are
implemented and run in MATLAB Version 9.6.0.1335978 (R2019a) Update 8 for double precision floating-point arithmetic
with unit roundoff u = 273 ~ 1.1 . 10716, We use INTLAB version 11 [42] for interval arithmetic. The compared
methods are the combination of the MATLAB built-in function eigs for the solution of the eigenvalue problem and
INTLAB function verifyeig for verification, which is denoted by eigs+verifyeig, and the Hankel matrix approaches
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Fig. 1. CPU time for each method versus the size n of the test problems with (23).

in [32]. The matrix V e R"*¢ are generated by using the built-in MATLAB function randn. The tolerance of quadrature
error § is set to 10~'>. The number of quadrature points N for the complex moment approaches is determined according
to the criteria [32, (12)] and (22)(a) for the verification of eigenvalues and (22)(b) for the verification of eigenvectors.
The eigenvalues and eigenvectors of [anl(:] )]y = A[H,Ef i)n]y in line 9 of Algorithm 1 are verified by using the INTLAB
function verifyeig. Here, verifyeig can deal with multiple and nearly multiple eigenvalues [15]. Note again that the
number of eigenvalues in the interval §2 is assumed to be given in advance.

3.1. Efficiency

To show an advantage of the proposed method in efficiency in terms of the CPU time, we test on the problem with
matrices

A = tridiag(—1, 2, —1) ¢ R™", B = diag(by, b,, ..., b,) € R™" (23)

with size n = 2%, s = 5,6, ..., 16, where tridiag(-, -, -) denotes the tridiagonal Toeplitz matrix consisting of a triplet
and the value of b; normally distributes with mean 1 and variance 10~7. The eigenvalue problem with the coefficient
matrices (23) models an one-dimensional harmonic oscillator consisting of n mass points and n + 1 springs. See
[32, section 5] for details.

We compute and verify the four eigenvalues closest to two on the real axis so that we set the numbers of
parameters £ = m = 2, i.e.,, {m = 4, and the contour I" to a circle with center 2 on the real axis. Perturbation theory of
generalized Hermitian eigenvalue problems [43, Theorem 8.3] gives the following bound between an eigenvalue A; of (1)
and an eigenvalue A;(A) of A:

[1i(A) = Al < [A(A)I1ABII2 1B~ 2,

where AB =1 — B. Thus, a lower bound of |)AL — y| and radius p of I" are derived to enclose the four eigenvalues.

Fig. 1 shows the elapsed CPU time for the proposed and compared methods versus the size of matrix pencils (23). The
Hankel matrix and Rayleigh-Ritz procedure approaches are tested when they use and do not use the technique based
on [32, Theorem 4.1] for efficiently verifying the linear solve (20). The input arguments of eigs are set to compute the four
eigenvalues closest to two on the real axis. This figure shows that this technique substantially improves the efficiencies
of these approaches in terms of the CPU time. These approaches become faster than eigs+verifyeig for large cases
with s > 10 and this is pronounced, as the matrix becomes large. Further, the Rayleigh-Ritz procedure approach is nearly
twice faster than the Hankel matrix approach.

To make a detailed observation, Fig. 2 shows the breakdown of the CPU times for the Hankel matrix and Rayleigh-Ritz
procedure approaches using technique based on [32, Theorem 4.1] for the problem with (23) for n = 216, The linear
solve stands for the CPU time required to evaluate the linear solves with respect to the quadrature points, e.g., step 5 of
Algorithm 1 for the Rayleigh-Ritz procedure approach. The misc stands for the CPU time required for the other procedures.
This figure shows that the linear solve took more than half of the total CPU time and the Rayleigh-Ritz procedure
approach results in twice faster CPU time than the Hankel matrix approach. Since the N linear solves can be evaluated
independently, these approach can reduce the CPU time for the linear solves nearly to 1/N when implemented in parallel.
Evaluations of these performances in a parallel computer are left for future work.

Table 1 gives the infimum and supremum of the verified eigenvalues for each number of s for each method. Here,
the Hankel matrix and Rayleigh-Ritz procedure approaches employ the technique using [32, Theorem 4.1] for efficiently
verifying the solution of the linear systems (20). Each row shows for each number of s, the infimum and supremum of the
verified eigenvalues 11 < A, < A3 < A4. In each subtable, each row gives digits that are the same as those of the exact
eigenvalues in a single line and digits that mean the supremum and infimum of the exact eigenvalues in double lines.

10
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Table 1

Infimum and supremum of the verified four eigenvalues near 2 for the test problems with (23).
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(a) eigs+verifyeig.

s A A2 A3 A4
5 1.71537033235013; 1.90483618825803¢ 2.095163853542021 2.284629688395713
6 1.855130417880838 1.951672558144470 2.04832754149673] 2.144869621371123
7 1.926955964866003 1.97564720057065% 2.02435286052257 2.07304405792919)
8 1.963329774559972 1.98777597272563 2.012224012272002 2.036670240562327
9 1.98162836857217} 1.99387604508410% 2.006123950507255 2.01837162549658%
10 1.990805123444199 1.99693503831713] 2.00306497281993% 2.00919486928309;
11 1.995400307005953 1.99846676513378} 2.001533229107965 2.004599691729645
12 1.997699587981058 1.99923320155742) 2.000766807895803 2.002300406076608
13 1.998849656510987 1.999616555784293 2.000383452559825 2.00115034672183
14 1.999424794537495 1.999808263420749 2.000191735211724 2.000575209898055
15 1.999712387424833 1.999904128280850 2.00009587002768] 2.00028761266374%
16 1.999856191688560 1.999952062997465 2.000047935333775 2.00014380869740]

(b) Hankel matrix approach.

s N by A2 A3 Aa
5 76 1.715370332332343 1.904836188255055 2.0951638535333%2 2.284629688393%:2
6 78 1.855130417882159 1.951672558)53524 2.0483275415933¢ 2.14486962133352)
7 78 1.92695596487%773 1.975647200553577 2.0243528603301% 2.073044057570314
8 80 1.963329774553552 1.98777597273082 2.012224012283552 2.036670240818:59
9 82 1.981628368512754 1.99387604508442 2.006123950344571 2.01837162532%%
10 82 1.9908051234778%7 1.996935035714281 2.003064972331428 2.0091948693322%¢
11 84 1.995400307354922 1.99846676303004 2.001533229)32923 2.0045996921%543
12 86 1.997699553273343 1.999233202313250 2.000766805755252 2.0023004033%4352
13 88 1.998849655293559 1.99961655,479215 2.000383435458023 2.00115033339237
14 88 1.999424750558257 1.999808265227 1 2.0001917353231% 2.000575243559043
15 90 1.99971238%323953 1.999904133118553 2.0000958%3343737 2.000287615527982
16 92 1.9998562157 19113 1.999952065724293 2.0000479333148%9 2.0001438}3323321
(c) Rayleigh-Ritz procedure approach.

s N M Ao A3 Ag

5 38 1.715370332334539 1.90483618827331¢ 2.095163853533314 2.284629688314223
6 40 1.8551304178%333; 1.951672558%5333¢ 2.048327541535%24 2.144869621555518
7 40 1.92695596485,57 1.975647200572757 2.02435286055593¢ 2.073044055929423
8 40 1.963329774558297 1.9877759725595%2 2.01222401231%30% 2.03667024291919
9 42 1.981628365355%52 1.9938760450 33204 2.0061239505¢8133 2.0183716253320%)
10 2 1.990805124303 424 1.99693504323%815 2.003064975261953 2.0091948752055¢0
11 42 1.99540030553525 1.998466765581815 2.001533233022822 2.004599792417157
12 44 19976993210 1.999233253097% 2.0007663395%282 2.0023008838530%
13 4 1998849%RI 1.9996 16353453553 2000383737378 2.0011399731525%
4 a4 1o00agmEne 1.9998083917210%0 2.00019173238%3 2.0005753555823%
15 46 19997125 1.9999035502723¢ 2.000095%485227¢ 2.000287331531%%8
16 46 19908uin0ne 1.999957338823688 2.000043450158579 2.00014533415%%

The number of quadrature points N for the complex moment approaches is given in the second column. These tables
show that as s increases, the number of correct digits tends to decrease and the required number of quadrature points
tends to increase for the complex moment approaches. The Hankel matrix approach tend to give more correct digits than
the Rayleigh-Ritz approach. Even as s increases, eigs+verifyeig gives almost fully correct digits. The Rayleigh-Ritz
procedure approach requires half the number of quadrature points for the Hankel matrix approach.

Table 2 gives the maximum of the verified radii of the entries of the eigenvectors corresponding to the eigenvalues
near 2 for the test problems with (23). Here, the Hankel matrix and Rayleigh-Ritz procedure approaches employ the
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Fig. 2. Breakdown of the CPU times for the Hankel matrix and Rayleigh-Ritz procedure approaches for the problem with (23) for n = 216,

Table 2
Maximum radii of the entries of the verified eigenvectors corresponding to the
eigenvalues near 2 for the test problems with (23).

(a) eigstverifyeig.

N X1 X X3 X4

5 4.17e—16 5.56e—16 8.61e—16 6.11e—16
6 6.11e—16 8.89e—16 1.28e—15 8.89e—16
7 7.50e—16 1.10e—15 1.67e—15 1.66e—15
8 1.18e—15 1.75e—15 2.56e—15 1.71e—15
9 1.47e—15 2.18e—15 3.31e—15 2.23e—15
10 2.34e—15 3.50e—15 5.10e—15 3.41e—15
11 2.91e—15 4.36e—15 6.62e—15 6.62e—15
12 4.66e—15 6.98e—15 1.02e—14 1.02e—14
13 5.81e—15 8.71e—15 1.33e—14 1.33e—14
14 1.40e—14 1.40e—14 2.04e—14 1.36e—14
15 1.75e—14 1.75e—14 2.65e—14 1.77e—14
16 2.80e—14 2.80e—14 4.08e—14 2.72e—14
(b) Hankel matrix approach.

N X1 X X3 X4

5 1.17e—11 8.44e—12 1.07e—11 1.40e—11
6 2.81e—10 1.15e—10 1.09e—10 2.48e—10
7 7.56e—10 9.67e—11 1.57e—10 1.21e—09
8 7.79e—11 6.47e—10 1.44e—-10 2.27e—10
9 6.37e—10 8.14e—10 2.68e—09 3.95e—10
10 3.89e—08 1.15e—08 2.00e—08 2.39e—08
11 2.60e—08 4.63e—08 3.81e—08 2.33e—08
12 1.44e—06 4.28e—07 5.01e—07 1.01e—06
13 2.44e—06 1.37e—06 1.07e—06 1.96e—06
14 2.00e—06 1.88e—06 3.75e—06 2.94e—06
15 2.66e—05 1.72e—06 1.03e—05 1.71e—05
16 2.44e—05 6.38e—05 3.14e—-05 3.17e—05

(c) Rayleigh-Ritz procedure approach.

S X1 X X3 X4

5 1.32e—11 9.41e—12 1.19e—11 1.55e—11
6 3.18e—10 1.30e—10 1.24e—-10 2.82e—10
7 8.53e—10 1.11e—-10 1.81e—10 1.38e—09
8 8.69e—11 7.22e—10 1.62e—10 2.54e—-10
9 6.76e—10 8.24e—10 2.86e—09 3.96e—10
10 4.07e—08 1.20e—-08 2.09e—-08 2.50e—08
11 2.56e—08 4.45e—08 3.63e—08 2.23e—08
12 1.08e—06 3.23e—07 3.97e—-07 8.05e—07
13 1.84e—06 1.03e—-06 7.99e—07 1.48e—06
14 1.38e—06 1.28e—06 2.56e—06 2.06e—06
15 1.60e—05 1.16e—06 6.61e—06 9.84e—06
16 1.35e—05 3.61e—05 1.71e—05 1.76e—05
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Table 3
Interval radii of the verified eigenvalues for the test problems with (24) with multiple eigenvalues.
s True eigenvalue
1 1 1+e¢ 2 2 2

1 1.06e—10 1.06e—10 7.86e—13 2.83e—11 1.30e—11 5.03e—12
2 1.05e—10 1.05e—10 7.33e—13 2.81e—11 1.37e—11 5.03e—12
3 1.05e—10 1.06e—10 7.30e—13 2.82e—11 1.38e—11 5.04e—12
4 1.08e—10 1.08e—10 7.29e—13 2.81e—11 1.38e—11 5.03e—12
5 1.05e—10 1.05e—10 7.29e—13 2.81le—11 1.38e—11 5.02e—12
6 1.08e—10 1.08e—10 7.29e—13 2.81e—11 1.38e—11 5.03e—12
7 1.06e—10 1.06e—10 7.32e—13 2.82e—11 1.38e—11 5.03e—12
8 1.11e—10 1.11e—10 7.69e—13 2.82e—11 1.38e—11 5.03e—12
9 6.67e—10 6.67e—10 6.67e—10 2.80e—11 1.37e—11 5.02e—12
10 1.38e—10 1.38e—10 1.38e—10 2.80e—11 1.37e—11 5.04e—12
11 1.08e—10 1.08e—10 1.08e—10 2.79e—11 1.37e—11 5.01e—12
12 1.09e—10 1.09e—10 1.09e—10 2.80e—11 1.37e—11 5.02e—12
13 1.09e—10 1.09e—10 1.09e—10 2.79e—11 1.37e—11 5.01e—12
14 1.04e—-10 1.04e—-10 1.04e—-10 2.80e—11 1.37e—11 5.02e—12
15 1.06e—10 1.06e—10 1.06e—10 2.79e—11 1.37e—11 5.00e—12
16 1.05e—10 1.05e—10 1.05e—10 2.79e—11 1.37e—11 5.01e—12

technique using [32, Theorem 4.1] for efficiently verifying the solution of the linear systems (20). In each subtable, each
column shows for each number of s, the radius of the eigenvectors X1, X5, X3, and x4 corresponding to A1, A3, A3, and A4.
These tables show that as the size n = 2° of the problem increases, the maximum interval radius tends to increase.

Remark 3.1. In the above observations, the Rayleigh-Ritz procedure approach tends to glve larger interval radii than the
others. A reason for this deterioration is that the enclosure of M,( i 1s obtained from |M, | due to (15). The latter

is computed by (1 1) Wthh suffers rounding errors occurring in the solution Y;. The enclosures of both S(N and §(N) affect
the enclosure of M\ i +1 This leads to increases of the interval radii of the coefficient matrices of the reduced elgenvalue
problem [H <’,(N)]y = A[H(N? ]y and the interval radii of the verified eigenpairs, as a by-product. A remedy for improving

m,in m,in
the accuracy of the solution is to use iterative refinements [44]. Meanwhile, the Hankel matrix approach suffers rounding
errors in the computation of single complex moments. Note that the truncation errors of quadrature for both complex

moment approaches are in the same order in this experiment.
3.2. Multiple eigenvalue

To show the verification performance of the proposed method in the presence of multiple eigenvalues, we test on the
problem with matrices

A =diag(0,0,...,0,1,1,14¢,2,3,4) e R™", B=1I, e=10"° s=1,2,..., n=100, (24)

which has eigenvalues 0 with multiplicity n — 6, 1 with multiplicity 2, 1 + ¢ with multiplicity 1 for ¢ # 0, and simple
eigenvalues 2, 3, and 4. The verified eigenvalues of interest are located in a circle with center 2.5 and radius 2, i.e., six
eigenvalues exist in the circle. Hence, we set the values of parameters £ = 3 and m = 2, i.e., ¢m = 6. A rigorous bound of
the quantity | — y| required in line 3 of Algorithm 1 is computed by using the INTLAB function isregular hereafter.
The solutions of linear systems (z;B — A)Y; = BV,j = 1,2, ..., N, are rigorously evaluated in line 4 of Algorithm 1 by
using MATLAB function mldivide hereafter.

Table 3 gives the interval radii of the verified eigenvalues for the test problem with (24) fors = 1, 2, ..., 8. Table 4 gives
the maximum interval radii of the entries of the verified eigenvectors for the test problem with (24) fors =1, 2, ..., 8.
These tables show that the proposed method works and is robust even in the presence of multiple and nearly multiple
eigenvalues. As the number of s increases, the interval radii of the verified eigenpairs tend to increase. Even when the
number of s is large, the interval radii do not deteriorate. The proposed method gives verified multiple eigenvalues 1 and
2 whose interval radii are of order up to 10~'° and the corresponding verified eigenvectors whose entries have maximum
interval radii of order up to 10'°, Similar trends are observed for the Hankel matrix approach.

3.3. Effect of the condition number of B

To show the verification performance of the proposed method for varying the condition number of B, we test on the
test matrix pencil zB — A with matrices
A = pentadiag(1, 2, 3,2, 1) e R19*190 B — diag(1,1,..., 1, bygo) € R1%0¥1%0, (25)

where pentadiag(-, -, -) denotes the pentadiagonal Toeplitz matrix consisting of a pentuple. To see the effect of the
condition number of B on verification performance, the value of an entry byoy varies among 0, 10716, 10713, ..., 10°,

13
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Table 4
Maximum radii of the entries of the verified eigenvectors for the test problems with (24) with multiple eigenvalues.
s True eigenvalue
1 1 1+e 2 2 2
1 7.51le—11 8.94e—11 9.60e—10 1.68e—10 1.99e—10 6.26e—11
2 1.33e—10 4.03e—11 1.53e—11 1.64e—10 2.02e—10 6.21e—11
3 1.15e—10 2.81le—11 1.07e—11 1.64e—10 2.02e—10 6.19e—11
4 1.08e—10 3.82e—11 1.04e—11 1.64e—10 2.02e—10 6.21e—11
5 8.09e—11 8.13e—11 1.03e—11 1.64e—10 2.02e—10 6.20e—11
6 9.31e—11 6.74e—11 1.04e—11 1.64e—10 2.03e—10 6.22e—11
7 1.12e—-10 2.92e—11 1.04e—11 1.64e—10 2.02e—10 6.20e—11
8 1.13e—10 2.64e—11 1.03e—11 1.64e—10 2.01e—10 6.17e—11
9 5.66e—11 9.96e—11 1.03e—11 1.64e—10 2.01e—10 6.19e—11
10 1.14e—-10 2.26be—11 1.03e—11 1.64e—10 2.02e—10 6.20e—11
11 5.02e—11 1.04e—10 1.04e—11 1.64e—10 2.02e—10 6.22e—11
12 1.12e—-10 2.96e—11 1.03e—11 1.64e—10 2.02e—10 6.20e—11
13 1.12e—10 3.05e—11 1.01le—11 1.64e—10 2.02e—10 6.20e—11
14 1.12e—-10 2.91e—11 1.12e—11 1.64e—10 2.02e—10 6.21e—11
15 1.08e—10 5.13e—12 3.74e—11 1.64e—10 2.02e—10 6.19e—11
16 1.12e—-10 3.01le—11 7.65e—12 1.64e—10 2.02e—10 6.20e—11
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< _g [ —m— ] < 9L ]
E i:x —— E
g —10 [ ] Z_1) e—e—e—90—0—0-—90-90-0-0-0-0-0-0 00
£-ng 4 R L e e e &
_;; b ] _;.; 1 7—x—x—x—x—x—x—xfxfx—x—x—x—x—x—x §/
£ -3 L 4 S -13 L 4
el bl Al —x—
sl 1 e 1
E —15 ARk —h it [, B Y S E —15 AM ]
/Y\V_V ? J ¢ _ﬁ'& v . _VM s A | | ! ! | |
—oo-16 -14 -12 -10 -8 -6 -4 -2 0 —co-16 -14 -12 -1 -8 -6 -4 -2 0
log,g of bigo log,y of bigo
(a) eigs+verifyeig. (b) Hankel matrix approach.

P

|
©

|
-
IS

| | |
— = e
[SCHN R -
m T T
L L

|
=

Radius of the verified eigenvalue \;

[ il L L il il il L L
—o0—16 —-14 —-12  —10 -8 —6 — -2 0
log, of bioo
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Fig. 3. Radii of the verified eigenvalues for the test problems with (25) with ill-conditioned or semidefinite B. Each symbol represents an eigenvalue
with the same index.

i.e., the condition number of B associated with the Euclidean norm is 1, 10'¢, 10", ..., 1, respectively. There exist exactly
six eigenvalues in the interval [0.95, 1.05] on the real axis and we compute and verify these eigenvalues so that we set
the numbers of parameters £ = 3, m = 2 and the interval 2 = [0.95, 1.05]. The input arguments of eigs are set to
compute the six eigenvalues closest to one on the real axis.

Fig. 3 shows the radius of the verified inclusion of each eigenvalue versus the value of b1gg. We determine the smallest N
that satisfies (22)(a). This figure shows that eigs+verifyeig gives the smallest radius, while the Rayleigh-Ritz procedure
approach gives the largest radius. The interval radii slightly increase for bigo = 1072 and 1.

Fig. 4 shows the maximum interval radius of the entries of the verified eigenvector versus the value of bigy. We
determine the smallest N that satisfies (22)(b). This figure shows that eigstverifyeig gives the smallest radius, while
the Rayleigh-Ritz procedure approach gives the largest radius, similarly to the case of verifying eigenvalues. The maximum
interval radii slightly increase for bygo = 1072 and 1. These results show that the complex moment approaches work when
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Fig. 4. Maximum radius of the entries of the verified eigenvectors for the test problems with (25) with ill-conditioned or semidefinite B. Each
symbol represents an eigenvector corresponding to an eigenvalue with the same index.

the matrix B is ill-conditioned and even semidefinite. Note that the horizontal axes in the above figures use the logarithmic
scale so that the plots for bigp = 0 are presented for log,, b1gp = —oo for convenience.

3.4. Nearly singular matrix pencils

To show the verification performance of the proposed method when applied to nearly singular pencils, we test on the
problem with

A=diag(0,1,2,...,n—1) e R™, B=¢e¢®Il,_;, n=100, (26)

which form a nearly singular pencil zB — A for a small value of ¢ > 0, as det(zB — A) = ¢ ]_[:':_01(2 — i). Suppose
that the eigenvalues of interest are located in a circle with center 3 and radius 3. Hence, there exist exactly six
eigenvalue 1,2,...,6 in the circle and we compute and verify these eigenvalues so that we set the numbers of
parameters £ = 3 and m = 2.

Table 5 gives the interval radii of the verified eigenvalues for the test problem with (26) fore = 10~°%,s =1, 2, ..., 16.
Table 6 gives the maximum interval radii of the entries of the verified eigenvectors for the test problem with (24) for
e =10"% s =1,2,..., 16. These tables show that the proposed method works and is robust even for nearly singular
pencils. Similar trends are observed for the Hankel matrix approach.

3.5. Practical problem

To show the verification performance of the proposed method, we test on a practical problem PPE354 obtained
from [45], whose size is of 354 and coefficient matrix B is not diagonal. Note that the preceding experiments are
performed only on diagonal matrices B. The problem arises in an organic polymer poly-(phenylene-ethynylene) (PPE)
in the para (linear-chain) structure with ten monomers or 120 atoms. There exist exactly ten eigenvalues in the
interval [2.281, 2.428], and we compute and verify these eigenvalues so that we set the numbers of parameters £ = 5
and m = 2. The input arguments of eigs are set to compute the ten eigenvalues closest to 2.3545 on the real axis.

Table 7 gives the interval radii of the verified eigenvalues for PPE354. Table 8 gives the maximum interval radii of the
entries of the verified eigenvectors for PPE354. All the methods succeed in the verification. These figures show that the
Rayleigh-Ritz procedure approach gives slightly larger interval radii than the Hankel matrix approach.
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Table 5

Interval radii of the verified eigenvalues for the test problems with nearly singular matrix pencils (26).
s True eigenvalue

1 2 3 4 5 6

1 1.64e—11 2.61e—11 3.8%e—11 5.84e—10 1.44e—11 1.27e—10
2 1.64e—11 2.61e—11 3.89%e—11 5.84e—10 1.44e—11 1.27e—10
3 1.64e—11 2.61le—11 3.89e—11 5.84e—10 1.44e—11 1.27e—10
4 1.64e—11 2.61le—11 3.89e—11 5.84e—10 1.44e—-11 1.27e—10
5 1.64e—11 2.61e—11 3.89%e—11 5.84e—10 1.44e—11 1.27e—10
6 1.64e—11 2.61le—11 3.89%e—11 5.84e—10 1.44e—-11 1.27e—10
7 1.64e—11 2.61le—11 3.89e—11 5.84e—10 1.44e—-11 1.27e—10
8 1.64e—11 2.61e—11 3.89%e—11 5.84e—10 1.44e—11 1.27e—10
9 1.64e—11 2.61e—11 3.89%—11 5.84e—10 1.44e—-11 1.27e—10
10 1.64e—11 2.61le—11 3.89e—11 5.84e—10 1.44e—-11 1.27e—10
11 1.64e—11 2.61le—11 3.8%e—11 5.84e—10 1.44e—11 1.27e—10
12 1.64e—11 2.61e—11 3.89%—11 5.84e—10 1.44e—11 1.27e—10
13 1.64e—11 2.61le—11 3.89%e—11 5.84e—10 1.44e—11 1.27e—10
14 1.64e—11 2.61le—11 3.89e—11 5.84e—10 1.44e—11 1.27e—10
15 1.64e—11 2.61e—11 3.89%e—11 5.84e—10 1.44e—11 1.27e—10
16 1.64e—11 2.61e—11 3.89e—11 5.84e—10 1.44e—11 1.27e—10

Table 6

Maximum interval radii of the entries of the verified eigenvectors for the test problems with nearly singular matrix
pencils (26).

s 1 2 3 4 5 6
1 6.17e—11 2.33e—10 4.85e—10 2.13e—10 3.70e—10 4.50e—10
2 5.81le—11 2.18e—10 4.54e—10 1.99e—10 3.45e—10 4.18e—10
3 6.37e—11 2.41e—10 5.01e—10 2.20e—10 3.82e—10 4.64e—10
4 6.05e—11 2.28e—10 4.73e—10 2.08e—10 3.60e—10 4.36e—10
5 6.58e—11 2.48e—10 5.17e—10 2.27e—10 3.94e—-10 4.78e—10
6 6.68e—11 2.52e—10 5.25e—10 2.31e—10 4.01e—10 4.86e—10
7 6.73e—11 2.54e—10 5.30e—10 2.33e—10 4.05e—10 4.89e—10
8 6.34e—11 2.38e—10 4.96e—10 2.17e—10 3.76e—10 4.56e—10
9 7.00e—11 2.64e—10 5.48e—10 2.41e—10 4.16e—10 5.06e—10
10 6.74e—11 2.53e—10 5.25e—10 2.30e—10 3.98e—10 4.82e—10
11 7.23e—11 2.73e—10 5.65e—10 2.48e—10 4.28e—10 5.21e—10
12 7.32e—11 2.76e—10 5.71e—10 2.50e—10 4.32e—10 5.26e—10
13 7.51e—11 2.82e—10 5.84e—10 2.56e—10 4.42e—10 5.38e—10
14 7.62e—11 2.86e—10 5.91e—10 2.59e—10 4.47e—10 5.44e—10
15 7.72e—11 2.90e—10 5.99e—10 2.62e—10 4.53e—10 5.51e—10
16 7.42e—11 2.78e—10 5.73e—10 2.50e—10 4.32e—10 5.24e—10
Table 7
Interval radii of the verified eigenvalues for the practical problem PPE354.
Method P8 A2 A3 ha As r6 A g Ao o
eigst+verifyeig 1.9le—14 1.9le—14 1.91e—14 1.96e—14 1.78e—14 1.91e—14 1.96e—14 2.14e—14 1.96e—14 2.05e—14
Hankel 4.96e—10  1.39e—09  4.88e—09 1.21e—09  7.40e—10 1.53e—08 1.25e—09 6.73e—09 9.85e—10  5.30e—10
Rayleigh-Ritz 6.66e—09  8.94e—09  3.63e—08 9.02e—09 5.85e—09  1.49e—07 1.50e—08 7.95e—08 7.32e—09 6.15e—09
Table 8
Maximum interval radii of the entries of the verified eigenvectors for the practical problem PPE354.
Method i ha A3 ha s A6 A g o o
eigst+verifyeig 3.85e—13 6.29e—13 1.13e—13 4.0le—13 5.04e—13 b5.59e—13 1.27e—13 2.92e—13 1.21e—13 1.37e—13
Hankel 6.36e—07  3.16e—06 1.14e—06 1.85e—06 2.90e—06 6.11e—07 6.87e—07  2.82e—07  1.94e—07  4.39e—07
Rayleigh-Ritz 1.67e—05 1.35e—04 7.79e—05 1.20e—04 1.17e—04 8.14e—05 4.48¢—05 4.38e—05 7.80e—06 1.31e—05

4. Conclusions

We proposed a verified computation method using the Rayleigh-Ritz procedure and complex moments for eigenvalues
in a region and the corresponding eigenvectors of generalized Hermitian eigenvalue problems. We split the error in the
approximated complex moment into the truncation error of the quadrature and rounding errors and evaluate each. The
proposed method uses the Rayleigh-Ritz procedure to project a given eigenvalue problem into a reduced one and can
use half the number of quadrature points for our previous Hankel matrix approach to reduce truncation errors to the
same order. Moreover, the transformation matrix for the Rayleigh-Ritz procedure enables verification of the eigenvectors.
Numerical experiments showed that the proposed method is faster than previous methods while maintaining verification
performance and works even for nearly singular matrix pencils and in the presence of multiple and nearly multiple
eigenvalues. The Rayleigh-Ritz procedures approach inherits several features from the Hankel matrix approach, such as
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an efficient technique to evaluate the solutions of linear systems and a parameter tuning technique for the number of
quadrature points. The proposed method will be potentially efficient when implemented in parallel.
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