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Abstract

This study assesses heatstroke risk in the near future (2031 – 2050) under RCP8.5 scenario. The developed model  
is based on a generalized linear model with the number of ambulance transport due to heatstroke (hereafter the 
patients with heatstroke) as the explained variable and the daily maximum temperature or wet bulb globe tem-
perature (WBGT) as the explanatory variable. With the model based on the daily maximum temperature, we 
performed the projection of the patients with heatstroke in case of considering only climate change (Case 1); 
climate change and population dynamics (Case 2); and climate change, population dynamics, and long-term heat 
acclimatization (Case 3). In Case 2, the number of patients with heatstroke in the near future will be 2.3 times 
higher than that in the baseline period (1981 – 2000) on average nationwide. The number of future patients with 
heatstroke in Case 2 is about 10 % larger than that in Case 1 on average nationwide despite population decline. 
This is due to the increase in the number of elderly people from the baseline period to the near future. However, 
in 20 prefectures, the number of patients in Case 2 is smaller compared to Case 1. Comparing the results from 
Cases 1 and 3 reveals that the number of patients with heatstroke could be reduced by about 60 % nationwide 
by acquiring heat tolerance and changing lifestyles. Notably, given the lifestyle changes represented by the wide-
spread use of air conditioners, the number of patients with heatstroke in the near future will be lower than that 
of the baseline period in some areas. In other words, lifestyle changes can be an important adaptation to the risk 
of heatstroke emergency. All of the above results were also confirmed in the prediction model with WBGT as the 
explanatory variable.
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1. Introduction

In recent years, the incidence of heatstroke in 
Japan has increased due to climate change, and this is 
becom ing a major social issue (e.g., Ando et al. 2004; 
Fujibe 2013). For example, from May to September 
2018, which was an abnormally hot summer across 
the country, the number of emergency patients with 
heatstroke was 95,137 nationwide, of which 32,496 
were hospitalized and 160 died (Fire and Disaster 
Management Agency 2019, https://www.fdma.go.jp/
disaster/heatstroke/item/heatstroke003_houdou01.
pdf). In 2018, the number of deaths due to heatstroke 
was 1,581. This number of deaths is far greater than 
the number of deaths caused by other weather-related 
disasters, such as floods and landslides (the number of 
deaths from the 2018 Japan floods, which were one of 
the most torrential in decades, was 225). Residents are 
concerned that heatstroke will become increasingly 
serious as climate change progresses. Therefore, it is 
important to assess all the risks associated with heat-
stroke in a future climate.

Extensive studies on the increase in heat-related 
excess mortality or deaths associated with future cli-
mate change have been conducted mainly in Europe, 
the United States, Japan, and China (e.g., Hayhoe 
et al. 2004; Knowlton et al. 2007; Doyon et al. 2008; 
Gosling et al. 2009; Jackson et al. 2010; Li et al. 
2013; Honda et al. 2014). Li et al. (2013) predicted 
that future heat-related excess deaths in New York, 
USA, under the Special Report on Emissions Scenar-
ios (SRES) A2 scenario, would increase by +22.2 % 
(2020s), +49.4 % (2050s), and +91.0 % (2080s), 
compared to levels in the 1980s. Doyon et al. (2008) 
predicted a 10 % increase in summer heat-related 
mortality in Montreal, Canada, in 2080, compared 
to that in 1981 – 1999 under the SRES A2 scenario. 
Similar studies have continued to be conducted after 
the release of the future climate projection datasets for 
the Representative Concentration Pathway (RCP) sce-
narios (Chen et al. 2017; Huber et al. 2020). In recent 
years, projections have also been conducted in devel-
oping countries, including those in Southeast Asia. 
Gasparrini et al. (2017) projected heat-related excess 
mortality rates of more than 5 % in Southeast Asia, 

Central and Southern Europe, and Latin America in 
the 2090s under the RCP8.5 scenario. Guo et al. (2018) 
predicted that heat-related deaths would increase by 
more than 700 % in some Southeast Asian and South 
American countries during the period of 2031 – 2080 
under the RCP8.5 scenario compared to the 1971 –  
2020 period. Thus, future projections of heatstroke 
risk have been dominated by studies that use heat- 
related excess mortality or deaths as indicators. In 
these studies, it is necessary to consider not only 
climate change but also social change. Social changes 
include demographic changes and long-term heat 
acclimatization over a span of several decades due to 
lifestyle changes. Among the previous studies, those 
that consider demographic changes include Gosling 
et al. (2009), Jackson et al. (2010), Honda et al. (2014), 
Chen et al. (2017), and Guo et al. (2018). Studies con-
sidering long-term heat acclimation include Hayhoe 
et al. (2004), Knowlton et al. (2007), Gosling et al. 
(2009), Li et al. (2013), and Guo et al. (2018).

Therefore, the main purpose of this study is to 
develop a statistical model and predict heatstroke 
risk (the number of ambulance transport due to heat-
stroke) in the near future (2031 – 2050) under RCP2.6 
and RCP8.5 scenarios all over Japan by prefecture. 
This statistical model is based on the generalized 
linear model, which uses maximum temperature or 
WBGT as explanatory variable and daily number of 
ambulance transport due to heatstroke as a predictor 
variable. When predicting the number of ambulance 
transport due to heatstroke by statistical model, it 
is known that there is a problem of underestimation 
in early summer and overestimation in late summer 
(Fuse et al. 2014; Sato et al. 2020; Ikeda and Kusaka 
2021). This error is due to short-term heat acclima-
tization (Ono 2013; Fujibe et al. 2018b). Therefore, 
our model takes this effect into account. The near 
future heatstroke risk is determined by three types of 
experiments, namely, (i) future projection considering 
only climate change, (ii) future projection considering 
climate change and population, and (iii) future projec-
tion considering climate change, population, and long-
term acclimatization. Section 3 describes the detailed 
information of experiments.

Keywords number of patients with heatstroke; near future projection; heat acclimatization; climate change ad-
aptation; generalized linear model
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2. Data

2.1 Number of heatstroke emergency patients
This study used a dataset on the number of ambu-

lance transport due to heatstroke for 2010 – 2018 pub-
lished by the Fire and Disaster Management Agency 
of the Ministry of Internal Affairs and Communica-
tions, Japan.

Heatstroke is defined as “a general term for any dis-
order that results from an imbalance of water and salt 
(e.g., sodium) in the body due to a breakdown in the 
body’s ability to regulate the temperature in a high- 
temperature environment” and includes sunstroke, 
heat cramps, and heat exhaustion (Fire and Disaster 
Management Agency 2021). Based on the above defi-
nition, a medical doctor determines whether the pa-
tient brought to the emergency room has a heatstroke. 
This study used the data on the number of emergency 
patients with heatstroke by a medical doctor’s initial 
diagnosis. There are three types of age-related data 
in this dataset: the number of heatstroke emergency 
patients per day by prefecture in all age groups, aged 
65 years and older, and under 64 years old (newborn 
babies, infants, juveniles, and adults combined). The 
number of ambulance transport due to heatstroke is 
simply called “the number of patients with heatstroke” 
and is used as an indicator of heatstroke risk in this 
study.

2.2 Current climate data
The temperature data were taken from hourly obser-

vations made by the Automated Meteorological Data 
Acquisition System (AMeDAS) operated by the Japan 
Meteorological Agency (JMA). AMeDAS stations 
are located at a density of approximately 20 km. We 
used the spatial average of all stations’ values within a 
prefecture to improve the spatial representativeness of 
the temperature value used for each prefecture. How-
ever, because the Tokyo’s climate differs markedly 
between the mainland and the islands, spatial averages 
of Tokyo are calculated by excluding data from obser-
vation stations on the islands (these islands account 
to 0.2 % of Tokyo’s total population). The daily max-
imum temperatures were determined from the hourly 
temperature values obtained from these averages.

WBGT was calculated using the formula of Yaglou 
and Minard (1957). The black globe temperatures 
there that are not measured by JMA were estimated by 
the method of Okada and Kusaka (2013). The daily 
maximum WBGT was calculated from the hourly 
values of WBGT. Supplement 1 describes the detailed 
methods for estimating the WBGT.

2.3 Climate scenario data
As the climate scenario data, we used the 1-km 

mesh statistical downscaling (DS) dataset provided by 
Institute for Agro-Environmental Sciences, National 
Agriculture and Food Research Organization (NARO) 
(Nishimori et al. 2019). This DS dataset were created 
from four GCMs outputs, i.e., MIROC5, MRI-CGCM3,  
GFDL-CM3, and HadGEM2-ES. These GCMs were 
carefully selected by SI-CAT, project for climate 
change adaptation in Japan. For the period of climate 
scenarios used in this study, the baseline period is set 
to 1981 – 2000, and the near future is set to 2031 – 2050.

Unfortunately, the NARO dataset stores only data 
for daily (mean, maximum, and minimum) and month-
ly mean values and not hourly values. Due to this  
limitation, it is impossible to calculate the daily 
maximum WBGT with only this dataset. In addition, 
it should be noted that the reliability of each meteo-
rological variable differs. In fact, it is reported that 
the reliability of air temperature and solar radiation is 
relatively high, while that of humidity and wind speed 
is relatively low (Nishimori et al. 2019).

In this study, a similar idea as the pseudo-global 
warming approach (Kimura and Kitoh 2007; Sato 
et al. 2007) was applied to estimate the future WBGT 
to overcome these problems. First, a time series of 
daily maximum temperature from June 1 to September 
30 is generated using the baseline period data from 
NARO’s dataset. Second, this time series is averaged 
over 15 days and then averaged over 10 years. Third, 
similar time series data is generated using the future 
climate scenario data of NARO’s dataset. From the 
difference between these two-time series, the climate 
change component data (ΔT ) was obtained. This ΔT is 
daily data of the amount of temperature increase from 
the present to the future, containing a gentle seasonal 
change. The pseudo-future dry bulb temperature is 
estimated from the actual temperature of the present 
climate T plus future temperature increase ΔT. The 
pseudo-future WBGT is estimated using pseudo-future  
dry bulb temperature (Td = T + ΔT ), wet bulb tem-
perature (Tw), and globe temperature (Tg). Here, the 
future Tw should be calculated from the future relative 
humidity and the pseudo-future temperature (T + ΔT ).  
However, in this study, the pseudo-future Tw is calcu-
lated from the current relative humidity and the pseudo- 
future temperature, considering the result of the previ-
ous study indicating that the relative humidity does not 
change significantly in Japan in the near future (Byrne 
and O’Gorman 2016). Similarly, the pseudo-future 
Tg is calculated from the current solar radiation, wind 
speed, and the pseudo-future temperature.
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2.4 Population data
As the current (baseline) population data by pre-

fecture, we used the data from the 1990 Population 
Census. As the future population data by prefecture, 
we used the “Future Population Estimates by Region 
for Japan” provided by the National Institute of Popu-
lation and Social Security Research (National Institute 
of Population and Social Security Research 2018). 
This dataset is a statistical future projection of the 
population by prefecture and municipality. This data 
is suitable for the purpose of this study because it is 
estimated by age group (0 – 14 years, 15 – 64 years, 65 
years and older, and 75 years and older).

Here, the population data is the nighttime pop-
ulation for both base and near future values. If the 
population of a prefecture is expressed using night-
time population, there will be an error in the risk of 
heatstroke if a person suffers from heatstroke during 
the daytime in a prefecture other than his or her home. 
However, this error is expected to have only a little 
effect on the predictions of this study for the following 
two reasons. The first reason is that the difference 
between the daytime and nighttime populations is 
small except in a few prefectures. According to the 
2005 census, the difference between the daytime and 
nighttime populations is about 20 % even in Tokyo, 
where the daytime population is much larger than the  
nighttime population, and about 12 % even in Saitama,  
where the daytime population is much smaller than 
the nighttime population. In other prefectures, the 
difference between the daytime and nighttime popu-
lations was less than 10 %. The second reason is that 
most people suffering from heatstroke are young chil-
dren and the elderly. Since the difference between the 
daytime and nighttime populations occurs mainly in 
the age group that commutes to work or school, these 
are different age groups from the young children and 
elderly.

3. Method

3.1 Model overview
In this study, the six models presented in Table 1 

were created and compared for accuracy. The char-
acteristics of the proposed models for the number of 
patients with heatstroke prediction are as follows:
(i) The model is based on generalized linear models 

(GLM, Nelder and Wedderburn 1972).
(ii) The predictor variable is the number of heat-

stroke emergency patients.
(iii) The default explanatory variable is the daily 

maximum temperature (but we can also use 
WBGT instead).

(iv) Differences in regional, seasonal (short-term heat 
acclimatization), and age of heatstroke risk were 
considered when identifying the model parame-
ters.

Regarding (i), the GLM equation is expressed as 
follows:

log ( y) = α  + βx , (1)

where x is the explanatory variable, y is the objective 
variable, and α  and β  are partial regression coeffi-
cients (parameters). Each parameter was identified by 
the maximum likelihood method, assuming a Poisson 
distribution. First, as a default model, we created a 
model with the estimated parameters using data from 
Tokyo and adapted the model to the entire country.

Regarding (ii), the results of this model will provide 
useful information for examining the requirements 
of the emergency medical system, considering the 
increase in the number of patients with heatstroke due 
to future climate change.

Regarding (iii), it is expected that the use of the 
daily maximum temperature leads to a high practi-
cality in making future predictions. This is because 
the humidity, wind speed, and solar radiation used 
in the WBGT estimation have a tendency with lower 
availability and robustness of future climate scenario 
data, compared with temperature. On the other hand, 
WBGT is possibly more suitable for explanatory 
variables under current climate than temperature. 
These pros/cons are trade-off relationship for future 
projection; thus, we compare the accuracies between 
the two models: one uses temperature as the explana-
tory variable, and the other uses the WBGT. We then 
individually predict future heatstroke risk using the 
two models. The comparison of such models might 
be an important attempt to understand the uncertainty 
among prediction models.

Regarding (iv), it is expected that the proposed 
model will improve the accuracy of the future pro-

Table 1. List of models that were compared for accuracy.

Fitted Data
Period 

Division
Age 

GroupTokyo Each 
Prefecture

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

○
○

○
○
○
○

○
○

○

○

○
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jection of the number of emergency transport due to 
heatstroke by considering the factors not limited to the 
meteorological field. Sections 3.2 – 3.4 describe these 
factors in detail.

3.2  Consideration of regional dependency in the 
model

The degree of heat tolerance of people is known to 
vary among regions (Keatinge et al. 2000; Curriero 
2002; Gosling et al. 2007; Fujibe et al. 2018a). For ex-
ample, when exposed to the same temperature, people 
in the cooler regions of northern Japan have a higher 
risk of heatstroke that people in warmer regions (Fujibe 
et al. 2018a). To account for these regional differences 
in heat tolerance, a parameter estimation for each 
prefecture individually was performed.

3.3  Consideration of short-term heat acclimatization 
in the model

The predictions calculated from Eq. (1) are prob-
lematic in that they underestimate the predictions in 
the early summer and overestimate the predictions in 
the late summer. This is because the effect of short-
term acclimatization is not included when using a 
single equation as described before. Like Ikeda and 
Kusaka (2021), using an actual number of patients 
with heatstroke 1 day before and the cumulative days 
from the start of summer season as explanatory vari-

ables is an example of ways to consider the short-term 
acclimatization effect. However, the actual number 
of patients with heatstroke cannot be used under the 
future climate projection. Cumulative days might be a 
useful idea in the future projection because it indicates 
the number of hot days experienced in one summer. 
However, it cannot be applied to the model in this 
study because the timing of midsummer may change 
in the long term; in that case, simple cumulative days 
may not be able to represent this change.

In this study, we propose the method to divide the 
predicted period from June to September into three 
subperiods, i.e., early summer, midsummer, and late 
summer, based on the time series of daily maximum 
temperature (Fig. 1). The equations are respectively 
constructed for early summer and late summer using 
data in these subperiods (Eqs. 2, 3) to consider the 
effect of short-term acclimatization. These equations 
are respectively used in early summer and late 
summer instead of Eq. (1).

log ( yp1) = α p1 + β p1 x , (2)
log ( yp3) = α p3 + β p3 x . (3)

As mentioned above, if Eq. (1) is used for the entire 
summer, it will underestimate the number of emergen-
cy cases in early summer and overestimate the number 
of emergency cases in late summer. In this study, in 
order to mitigate these errors, we divided the period 

Fig. 1. An example of period division used in this study.
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into three parts, focusing on the temperature increase 
from early summer to midsummer and the temperature 
decrease from midsummer to late summer. The period 
division was carried out using the values of posterior 
5-day mean minus previous 5-day mean (hereafter 
referred to as the “5-day mean difference”). This five- 
day mean difference represents the trend of tempera-
ture change in about 10 days. When temperature rises 
over a span of about 10 days, the 5-day mean differ-
ence shows a positive value. The method of period 
division is presented. Figure 1 shows an example of 
this method.
• Start date of the early summer period: June 1.
• End date of the early summer period: 7 days after 

the last day when the value of the 5-day mean 
difference exceeded the threshold. This end date is 
selected in the period from June 1 to August 9. The 
thresholds are 50 – 95th percentile of the 5-day mean 
difference and set by prefectures. For example, at 
Fukuoka in 2018, the end date of the early summer 
period is set to August 9 (the end of the period 
shown in orange in Fig.1). If the date selected is on 
or after August 10, the end date of the early summer 
period is uniformly set to August 9. This is because 
the tendency to underestimate the prediction values 
generally finishes by early August in any year.

• Start date of the late summer period: The date when 
the value of the 5-day mean difference falls below 
the threshold for the first time during the period 
from August 10 to September 30. The thresholds 
are 5 – 50th percentile of the 5-day mean difference 
and set by prefectures. For example, at Fukuoka in 
2018, the start date of the late summer period is set 
to August 14 (the start of the period shown in blue 
in Fig. 1).

• End date of the late summer period: September 30.
• Midsummer period: From the day after the end of 

the early summer period to the day before the start 
of the late summer period (the period shown in 
green in Fig. 1). In midsummer period, the error in 
the predictions based on the non-division model is 
enough small, and there is no need to revise them.

3.4  Consideration of differences in patient’s age in 
the model

It is well known that the risk of heatstroke is higher 
in the elderly than in the young (Nakai et al. 1999; 
Smoyer et al. 2000a; McGeehin and Mirabelli 2001; 
Basu and Samet 2002; Flynn et al. 2005; Hajat et al. 
2007; Anderson and Bell 2009). Therefore, to account 
for these differences in heatstroke risk by age, we 
separately predicted the number of patients with heat-

stroke 65 and older and under 64 years of age (Fig. 2).

3.5 Factors not considered in the model
The following factors related to the heatstroke risk 

are not used in the prediction model: (i) sex (Semenza 
et al. 1996; Whitman et al. 1997; Havenith 2005; 
Vaidyanathan et al. 2020), (ii) use of air conditioners 
or air conditioner penetration rate (Semenza et al. 
1996; Basu and Samet 2002; Anderson and Bell 2009), 
(iii) socioeconomic status (Anderson and Bell 2009; 
Hondula et al. 2015; Fujibe et al. 2020), (iv) whether 
they are living in a nursing home or not (Kovats and 
Hajat 2008), (v) clinical or pathophysiological factors, 
(vi) urban heat islands (Kovats and Hajat 2008), and 
(vii) air pollution levels (Piver et al. 1999).
(i)  In this study, sex could not be considered because  

the dataset on the number of heatstroke emergen-
cy patients did not distinguish between men and 
women.

(ii)  In most prefectures, the penetration rate of air 
conditioners is around 90 %. The presence or ab-
sence of air conditioner use may have something 
to do with the presence or absence of heatstroke 
occurrence, but it is difficult to obtain such data 
at the national level. For this reason, this factor is 
not used in the prediction model.

As for (iii) and (iv), in Japan there is almost no 
gap between the rich and the poor, and social security 
and medical insurance are almost well provided for 
all citizens. Thus, air conditioners are considered to 
be sufficiently widespread for nursing care facilities. 
Regarding (v), predicting what will happen to the 
number of people with diseases related to heatstroke 
risk in the future (whether it will increase or decrease) 
is highly uncertain and unrealistic. Regarding (vi), 
Japan’s cities are already mature, and it is unlikely 
that further urbanization will enhance the heat island 
effect (Adachi et al. 2012; Kusaka et al. 2016). 
Regarding (vii), the effect of air pollutants on heat-
stroke is smaller than the effect of temperature (e.g.,  
Shumway et al. 1988; Smoyer et al. 2000b; Rainham 
and Smoyer-Tomic 2003). The impact of air pollutants 
on heatstroke in Toronto in 1980 – 1996 was small 
(Rainham and Smoyer-Tomic 2003). During that 
period, the NO2 concentration in Toronto was 0.0238 
ppm, while the NO2 concentration in Tokyo in 2018 
was 0.015 ppm. In addition, air pollutants in Tokyo 
have been decreasing in recent years and are expected 
to continue to decrease in the future (Morikawa et al. 
2021). Therefore, air pollutants are not considered in 
this study.

In addition, this study did not consider the geospa-
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tial population density pattern within a prefecture. 
However, if it is considered, the risk of heatstroke can 
be assessed in more spatial detail. This will be useful 
information for the optimal allocation of medical 
facilities.

3.6 Changing explanatory variables in the model
The thermal indices, WBGT (Yaglou and Minard 

1957) and Universal Thermal Climate Index (UTCI; 
Fiala et al. 2012), are widely used to measure heat-
stroke risk in the world. In Japan, WBGT is the most 
widely used and recognized as an effective guideline 
for work and exercise environments. Moreover, 
WBGT has been standardized internationally by the 
International Organization for Standardization. The 
UTCI is often used worldwide, but its application to 
Japanese people is considered questionable as it is 
based on the physiological responses of Caucasian 

human models. In this study, we used the daily maxi-
mum WBGT as explanatory variable as well as daily 
maximum temperature and investigated the effect of 
different explanatory variables on the prediction accu-
racy.

3.7 Verification of model accuracy
Cross-validation was performed with any 1 year of 

data from 2010 to 2018 as test data and the remaining 
8 years as training data. The predictive accuracy of the 
models was assessed by mean absolute error (MAE) 
and root mean square error (RMSE). Models with 
small values of each of these parameters were consid-
ered to have higher predictive accuracy.

3.8 Design of baseline and near future projection
First, we will estimate the number of patients with 

heatstroke in the baseline period (1981 – 2000) using 

Fig. 2. Scatterplot showing the relationship between the daily maximum temperature and the number of patients in 
Fukuoka Prefecture in 2018. Red, green, and blue plots indicate early summer, midsummer, and late summer peri-
ods, respectively. The lines denote prediction equations fitted from the data indicated by the plots. The scatterplot (a) 
shows the number of patients who are under 65 years of age. The scatterplot (b) shows the number of patients who 
are 65 years of age or older. The scatterplot (c) shows the number of patients who are all ages.
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statistical models developed in Chapter 3 by prefec-
ture. Second, we will perform the future projection of 
heatstroke risk in Japan by prefecture. In this study, 
heatstroke risk means the number of patients with 
heatstroke, as described in Section 1. We use Model 
6 in Table 1 for future projection of the number of 
patients with heatstroke. We perform two sensitivity 
experiments (Cases 2, 3) in addition to control ex-
periment (Case 1) to discuss the uncertainty of future 
projection results. Table 2 summarizes the future pro-
jection experiments.
• Case 1: Future projection considering neither near 

future demographics nor long-term acclimatization 
into account.

• Case 2: Future prediction considering only the near 
future demography.

• Case 3: Future prediction considering both near 
future demography and long-term acclimatization.
Case 1 is an experiment to evaluate the increase in 

the risk of heatstroke due solely to the increase in tem-
perature caused by climate change. In this experiment, 
the number of patients with heatstroke in the entire 
region is used as the risk indicator, but it is assumed 
that the demographics will not change between now 
and the future. In other words, the increase in risk in 
this experiment is the same as the increase in the risk 
of heatstroke for each individual resident.

Case 2 is an experiment to evaluate the variation in 
the risk of heatstroke by considering the temperature 
increase due to climate change and demographic 
change from the baseline period to the near future. In 
this experiment, we can obtain the projected number 
of patients with heatstroke for the entire region at 
each time point in the baseline period and near future. 
Thus, this future projection can assess the risks related 
to the burden on the emergency medical system asso-
ciated with an increase in the number of patients with 
heatstroke. The burden on the emergency medical 
system refers specifically to the shortage of emergency 
transport systems and inpatient beds, as indicated in 
Chapter 1. Therefore, the results of this future projec-

tion are expected to be very useful for the government 
to formulate adaptation measures to climate change.

Heat acclimatization is known to occur over a long 
period of time, apart from short-term acclimatization 
throughout the single summer. Petkova et al. (2014) 
noted that the excess mortality observed between 1973 
and 2006 was much lower than that observed between 
1900 and 1948, indicating that people have become 
acclimatized to heat during this period. They conclud-
ed that this acclimatization is due to the improvement 
of the living environment and the widespread use of 
air conditioners. Therefore, in this study, experiments 
(a) and (b) are conducted to evaluate long-term heat 
acclimatization from the baseline to the near future. 
In both Cases 3a and 3b, population dynamics were 
considered.
(a)  An experiment in which individuals are assumed 

to have heat tolerance equivalent to late summer 
throughout one summer season (Case 3a).

(b)  An experiment using a climate analog to account 
for lifestyle changes in a cold region with particu-
larly low air-conditioning penetration (Case 3b).

In the prediction experiment of Case 3a, we partic-
ularly examine the effect of long-term acclimatization 
due to the acquisition of heat tolerance. Equation (3) 
for late summer, described in Section 3.3, is used to 
predict the number of patients with heatstroke in near 
future over the entire summer period, including early 
and midsummer. This is based on the assumption 
that the government and individuals will have heat 
tolerance equivalent to that of late summer throughout 
the entire summer period by taking all kinds of heat 
countermeasures.

In the prediction experiment of Case 3b, we exam-
ined the effects of long-term acclimatization due to 
the acquisition of heat tolerance and lifestyle changes. 
In this experiment, the target areas are Hokkaido, 
Aomori, Iwate, Miyagi, Akita, Yamagata, Fukushima, 
Nagano, and Yamanashi. These areas have low per-
centages of households with air-conditioning during 
the baseline period. We first looked for three prefec-
tures with a current daily maximum temperature that 
is close to the near future daily maximum temperature 
of a target prefecture. Using the prediction models of 
the selected three prefectures, the near future projec-
tions were then made for the target prefecture. This 
procedure was finally conducted for nine target prefec-
tures with low air conditioner penetration rate today. 
This method is a kind of climate analog approach (e.g., 
Ishizaki et al. 2012). This near future prediction is 
based on the assumption that the inhabitants of the re-
gions with low air conditioner penetration rates in the 

Table 2. List of future projection experiments and featured 
factor.

Climate 
Change 

Scenarios
Population Long-term 

Acclimatization

Case 1 
Case 2 
Case 3a
Case 3b

RCP 8.5
RCP 8.5
RCP 8.5
RCP 8.5

1990
2040
2040
2040

―
―

Late summer equation
Climate analog
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baseline period will acquire the same heat tolerance or 
change their lifestyles as those of other regions with 
similar climates in the near future.

The targeted nine prefectures (Hokkaido, Aomori, 
Iwate, Miyagi, Akita, Yamagata, Fukushima, Nagano, 
and Yamanashi) had particularly low air conditioner 
penetration rates in 1999 (9.3 % in Hokkaido, 30.2 % 
in Aomori, 35.6 % in Iwate, 59.1 % in Miyagi, 56.7 % 
in Akita, 67.8 % in Yamagata, 58.4 % in Fukushima, 
44.8 % in Nagano, and 72.0 % in Yamanashi). The 
air conditioner penetration rates in the other prefec-
tures are all above 80 % (based on the 1999 National 
Survey of Actual Consumption, https://www.e-stat.
go.jp/dbview?sid=0000111013).

The future projections are carried out using daily 
maximum WBGT instead of daily maximum tem-
perature as an explanatory variable. Section 2.3 and 
Supplement 1 describe the method of calculating the 
daily maximum WBGT in baseline and near future.

4.  Accuracy of the proposed statistical models 
under the current climate

4.1  Improvement in model accuracy by considering 
regional and short-term heat acclimatization and  
age

First, we developed a model to predict the number 
of heatstroke emergency patients using the daily 
maximum temperature data for Tokyo and conducted 
prediction experiments and accuracy verification 
(cross-validation) for each prefecture (Model 1). The 
prediction errors of the Model 1 were 5.5 (MAE) and 
10.6 (RMSE), on average, across the country.

Second, we performed prediction with Model 3 
and compared the results between Models 1 and 3. As 
a result, it was confirmed that the MAE could be re-
duced by about −19 % (−46 % to −3 % in each prefec-
ture) and the RMSE by about −25 % (−48 % to −0 % 
in each prefecture) on average, across the country by 
considering regional characteristics (Fig. 3).

Third, we performed prediction with Model 5 and 
compared the results between Models 3 and 5. From 
the results, we found that considering the short-term 
heat acclimatization (i.e., effect of Model 5) reduced 
the MAE by about 12 % (−22 % to −3 % in each pre-
fecture) and the RMSE by about 12 % (−20 % to −4 %  
in each prefecture) on average, across the country.

Last, we compared errors between the odd-numbered  
model group (Models 1, 3, and 5) with the even- 
numbered model group (Models 2, 4, and 6), indicat-
ing that the prediction accuracy on average, across the 
country, remained almost unchanged when differences 
in risk by age were considered.

We explicitly show the effect of improving the accu-
racy after considering the period division (i.e., Model 
5 effect) using data for 2018 Fukuoka Prefecture (one 
of the major prefectures in Japan) as an example from 
the cross-validation results. In 2018, a severe heat 
wave was experienced across Japan. Thus, predicting 
the number of patients with heatstroke in 2018 using 
climate data from 2010 to 2017 is a good example 
for a prediction experiment for a warmer future using 
standard summer data. The results showed that the 
early summer period is characterized by having a 
relatively high number of patients with heatstroke, 
and the late summer period is characterized as having 
relatively fewer patients (Fig. 4). The same was also 
confirmed in many prefectures other than Fukuoka. 
Figure 4 shows the time series of daytime predictions 
obtained from the model with and without period di-
vision and benchmark model (i.e., Models 1, 3, vs. 5). 
It can be seen that the model without period division 
(Model 3) significantly underestimates the peak in the 
number of patients from early July to early August. 
It also tends to overestimate the peak in mid to late 
August. On the other hand, these tendencies of under-

Fig. 3. (a) MAE and (b) RMSE of the number of 
patients in 2018 predicted using each model. Box 
whiskers represent the range in values obtained 
for 46 regions. To remove the effect of population 
size, MAE and RMSE were plotted as normal-
ized values per 10,000 people.

https://www.e-stat.go.jp/dbview?sid=0000111013
https://www.e-stat.go.jp/dbview?sid=0000111013
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estimation and overestimation are greatly improved 
in the model with period division (Model 5) (32 % 
reduction in MAE and 29 % reduction in RMSE).

4.2  Effect of different explanatory variables on  
prediction accuracy

The explanatory variables with the highest predic-
tion accuracy for each region were investigated for 
the predictions obtained using Model 6. From the per-
spective of MAE (Fig. 5), the daily maximum WBGT 
would be selected as the best explanatory variable in 
27 of the 46 regions. From the perspective of RMSE 
(Fig. 6), the daily maximum WBGT would be select-
ed as the best explanatory variable in 31 of the 46 
regions. These results suggest that WBGT is a better 
explanatory variable than daily maximum temperature 
in predicting the number of patients with heatstroke. 
This is consistent with studies that have shown that 
humidity is an important explanatory variable for 
heatstroke risk (Zhang et al. 2014; Sherwood 2018). 
However, in the majority of prefectures, the difference 
in the error between the temperature models and 
WBGT models was less than 10 %, with a maximum 
of 20 % (MAE) and 25 % (RMSE).

5.  Future projection of the number of patients 
with heatstroke

5.1 Baseline
Figure 7 shows the estimated total number of 

patients with heatstroke per summer (averaged for 20 
years × 4 GCMs) for the baseline period. The figure 
shows that the average total number of patients with 
heatstroke in all prefectures is 3.8/10,000 per summer, 
with a spread from a maximum of 6.3/10,000 (Kago-
shima) to a minimum of 1.6/10,000 (Hokkaido) by 

prefecture. This spread reflects the regionality of both 
the temperature spread and tolerance to the heat.

5.2  Result of near future projection-only effect of 
climate change: Case 1

Figure 8a shows a map of future changes in the risk 
of heatstroke (for Case 1). The figure indicates that 
the average total number of patients with heatstroke 
in all prefectures is 8.9/10,000 per summer, with a 
large spread from the maximum value of 18.6/10,000 
(Kago shima) to the minimum value of 5.2/10,000 
(Tokyo) by prefecture.

Figure 9 shows the rate of increase in the number 
of patients with heatstroke from the baseline period 
(1981 – 2000) to the near future (for Case 1) on aver-
age nationwide. This figure indicates that the number 
of patients with heatstroke in the near future will be 
1.2 – 2.9 times (2.1 times in the ensemble average of 
4 GCMs) in the case of RCP2.6 scenario and 1.4 – 3.3 
times (2.2 times in the ensemble average of 4 GCMs) 
in the case of RCP8.5 compared to the baseline 
period. This range of values is due to the uncertainty 
of the GCMs. Since no significant difference in the 
prediction results is found between the RCP2.6 and 
RCP8.5 scenarios due to near future projection, we 
will only discuss the prediction results for RCP8.5 
from now on. The regions with the highest increase 
in the heatstroke risk from the baseline period to the 
near future are Hokkaido, northern Tohoku, southern 
Kanto, Tokai, and Kyushu (Fig. 10a) (see Fig. S1 in 
Supplement 2 for the names of Japanese prefectures 
and regional categories). The prefecture with the high-
est rate of increase was Hokkaido, with 313.6 %. One 
reason may be that Hokkaido has experienced a larger 
increase in temperature due to climate change (about 

Fig. 4. Time series of the daily maximum temperature and actual and predicted number of patients in Fukuoka Pre-
fecture in 2018. The black line is the daily maximum temperature, the gray bar is the observed number of patients, 
the blue line is the number of patients predicted by the benchmark model (Model 1), the green line is the number 
of patients predicted by the model that fitted with data for each prefecture (Model 3), and the orange line is the 
number of patients predicted by the model that considered short-term heat acclimatization (Model 5).
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Fig. 5. Better explanatory variables (daily maximum temperature or daily maximum WBGT) for prediction. MAE 
is used as an evaluation criterion for prediction accuracy. Model 6 was used. Green: Prefectures where the daily 
maximum temperature model produces higher prediction accuracy. Blue: Prefectures where the daily maximum 
WBGT model produces higher prediction accuracy. White: Prefectures where the difference in the prediction 
between the daily maximum temperature model and the daily maximum WBGT model is 4 % or less. The color 
shading represents [1-(MAE of the model with high accuracy)/(MAE of the model with low accuracy)*100 (%)].

Fig. 6. Better explanatory variables (daily maximum temperature or daily maximum WBGT) for prediction. RMSE 
is used as an evaluation criterion for prediction accuracy. Model 6 was used. Green: Prefectures where the daily 
maximum temperature model produces higher prediction accuracy. Blue: Prefectures where the daily maximum 
WBGT model produces higher prediction accuracy. White: Prefectures where the difference in the prediction 
between the daily maximum temperature model and the daily maximum WBGT model is 4 % or less. The color 
shading represents [1-(RMSE of the model with high accuracy)/(RMSE of the model with low accuracy)*100 (%)].

Fig. 7. The number of patients with heat-
stroke per 10,000 people (average per 
summer) during the baseline period 
(1981 – 2000) estimated by the prediction 
model.
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2.2°C increase) than other regions (see Figs. S2a, b in 
Supplement 3).

5.3  Result of future projection with population  
dynamics: Case 2

Figure 8b shows the risk map of patients with 

heat stroke in the near future (2031 – 2050) obtained 
from the future prediction experiment of Case 2. The 
figure indicates that the total number of patients with 
heatstroke nationwide is 9.6/10,000 per summer, 
with a large spread from a maximum of 20.4/10,000 
(Kagoshima) to a minimum of 5.7/10,000 (Tokyo) by 
prefecture.

Figure 10b shows a map of the increase rate in the 
number of patients with heatstroke from baseline to 
the near future (under RCP8.5 scenario) for each pre-
fecture of Case 2. On average nationwide, the increase 
rate in the number of patients with heatstroke from 
baseline period to the near future obtained from Case 
2 is 234.4 % in the ensemble mean of four GCMs. 
This increase rate on the average nationwide is about 
10 % larger than that in Case 1. The reason must come 
from the differences between Cases 1 and 2, i.e., (i) 
the increase in total population from the baseline to 
the near future, (ii) the increase in the elderly popula-
tion, or (iii) both. Let us now consider which of these 
three factors was dominant. The population of Japan 
in the baseline (1990) is about 120 million, while the 
population in the near future (2040) will be about 110 
million. Therefore, if the experiment only considers 
the increase or decrease in population, the number of 
patients with heatstroke in Case 2 should be smaller 
than in Case 1. This means that the reason for the 

Fig. 8. Predicted number of patients with heatstroke (per 10,000 population) under the RCP8.5 scenario of the near 
future climate, using daily maximum temperature as the explanatory variable. (a) Prediction without population 
dynamics (Case 1), (b) prediction with population dynamics (Case 2), (c) prediction using the late summer equa-
tion (Case 3a), and (d) prediction using the climate analog (Case 3b). The areas shaded by gray color are outside of 
analysis target.

Fig. 9. The rate of increase in the number of pa-
tients with heatstroke in Japan from the baseline 
to the near future. The relative value when the 
number of patients with heatstroke during the 
baseline period is set to 1.
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increase in the number of patients with heatstroke 
is the increase in the elderly population. In fact, the 
proportion of elderly people in the total population has 
almost tripled from 12.0 % to 35.3 % from baseline 
to near future. In all prefectures, the increase rate was 
higher than 100 %. We can see that the increase rate 
is high in prefectures with large population, including 
the Tokyo metropolitan area and other major urban 
areas. Among these prefectures, the difference in the 
prediction between Case 1 and Case 2 is largest in 
Tokyo, where the rate of future increase is 360.0 % 
in Case 2 but 239.3 % in Case 1. The population of 
Tokyo as a whole increases by 16.6 % from baseline 
to the near future, and the aging rate also increases by 
18.6 % from the baseline to the near future. In other 
words, in Tokyo, the risk of heatstroke in Case 2 was 
particularly high compared to Case 1 due to two ef-
fects, i.e., total population increase and increase in the 
aging rate from the baseline period to the near future, 
in addition to climate change.

The demographic changes from the baseline to the 
near future can be classified into the following four 
patterns for each prefecture.
(1)  The population of the prefecture increases, and the 

proportion of elderly people in the total population 
also increases (Tokyo type).

(2)  The population of the prefecture increases, but the 

proportion of elderly people in the total population 
decreases.

(3)  The population of the prefecture decreases, but the 
proportion of elderly people in the total population 
increases.

(4)  The population of the prefecture decreases, and the 
proportion of elderly people in the total population 
decreases.

In type (1), the number of patients with heatstroke 
is definitely higher in Case 2 than in Case 1 where 
only the temperature increases considering climate 
change. However, in the case of type (3), the results of 
future projections will depend on whether the decline 
in population or the increase in the aging rate is dom-
inant. No prefectures corresponded to types (2) and 
(4) (i.e., prefectures where the population aging rate 
decreases from the baseline to the near future).

As a result of comparing Cases 2 and 1, we found 
that the number of patients with heatstroke was 
higher in Case 2 in 26 out of 46 prefectures. Of the 26 
prefectures, 6 prefectures, including Tokyo, were clas-
sified as type 1 (Tokyo type). In these prefectures, the 
number of patients with heatstroke will increase due 
to the following three factors: (1) climate change, (2) 
population growth, and (3) increase in the aging pop-
ulation. The remaining 20 prefectures were classified 
as type 3. In these prefectures, the number of patients 

Fig. 10. The rate of increase in the patients with heatstroke from the baseline period to the near future (RCP8.5 
scenario) using daily maximum temperature as the explanatory variable. (a) Prediction without population dynam-
ics (Case 1), (b) prediction with population dynamics (Case 2), (c) prediction using the late summer equation (Case 
3a), and (d) prediction using the climate analog (Case 3b). The areas shaded by gray color are outside of analysis 
target.
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with heatstroke will increase due to climate change 
and an increase in the aging population. Among 
these 20 prefectures, Fukuoka will have the highest 
increase rate. In Fukuoka Prefecture, the increase in 
the number of patients with heatstroke from the base-
line to the near future in Case 2 was estimated to be 
289.8 % (compared to 236.5 % in Case 1).

In contrast to the prefectures belonging to type 1 or 
type3 (e.g., Tokyo and Fukuoka), 20 of the 46 prefec-
tures had a lower number of patients with heatstroke 
in Case 2 than in Case 1. The largest difference in the 
prediction between Cases 1 and 2 was observed in 
Akita Prefecture, where the increase in Case 2 was 
only 174.8 % but 235.9 % in Case 1. In other words, 
the risk in Case 2 is 61.1 % lower than in Case 1. 
Focusing on demographic changes in Akita, the total 
population will decrease by 45.2 % from the baseline 
period to the near future, while the population aging 
rate will increase by 31.9 %. This situation has both a 
restraining effect on the number of patients with heat-
stroke (population decline) and an increasing effect on 
the number of patients with heatstroke (aging of the 
population). In the case of Akita, this restraining effect 
was dominant, which may have resulted in a lower 
number of patients with heatstroke in Case 2 than in 
Case 1. Thus, demographic changes have the effect of 
increasing or decreasing the number of patients with 
heatstroke, which is an important consideration for 
future projections (Table 3).

5.4  Result of near future projection with consideration  
of long-term acclimatization: Case 3

Figure 8c shows the map of the near future projec-
tion for Case 3a. The figure shows that the average 
total number of patients with heatstroke for all pre-
fectures is 7.3 per summer, with a wide range from a 
maximum of 14.7 per 10,000 people (Kagoshima) to a 
minimum of 3.9 per 10,000 people (Tokyo) by prefec-

ture.
Figure 10c shows a map of the average increase 

rate in the number of patients with heatstroke in each 
prefecture in Case 3a. The average increase rate on 
average nationwide is 164.5 %. This is about 60 % 
smaller than Case 1, where considers only the effect of 
temperature increase due to climate change. In Hokkai-
do, where the increase in the number of patients with 
heatstroke from the baseline to the near future was the 
highest in Case 1, the value in Case 3a was reduced by 
about 100 % compared to Case 1.

Figure 8d shows the map of the near future projec-
tion for Case 3b. The figure shows that the average 
total number of patients with heatstroke in the nine 
prefectures is 5.3 people per summer, with a spread 
from a maximum of 10.1 people/10,000 people (Yama-
nashi) to a minimum of 1.4 people/10,000 people 
(Hokkaido) by prefecture. Figure 10d shows a map of 
the increase rate in the number of patients with heat-
stroke from the baseline period to the near future for 
Case 3b. The average value for the nine prefectures is 
119.7 %. In four of the nine prefectures, the number 
of emergency heatstroke cases decreased compared 
to the current climate (Hokkaido, 66.0 %; Miyagi, 
85.3 %; Yamagata, 77.0 %; and Fukushima, 92.6 %, 
assuming the value of baseline to be 100 %).

5.5  Near future projections with explanatory 
variables changed to daily maximum WBGT 
(with population dynamics)

Figure 11 shows the map of the number of patients 
with heatstroke when the same assumptions as in 
Cases 1, 2, 3a, and 3b are made, and the explanatory 
variable is changed to the daily maximum WBGT to 
predict the number of patients with heatstroke in the 
near future. Taking Case 2 (experiment considering 
demographics) as an example, the total number of 
patients with heatstroke is 10.4/10,000 per summer 
nationwide, with a large spread from the maximum 
value of 18.2/10,000 (Saga) to the minimum value of 
5.1/10,000 (Hokkaido). The difference in the predic-
tion between the model with daily maximum WBGT 
and the model with daily maximum temperature is 
only about 9 %. This result suggests that there is no 
significant difference in the prediction results of the 
two models when we focus on the number of patients 
with heatstroke nationwide. However, looking at 
each prefecture, there are some prefectures where the 
results of near future prediction between the daily 
maximum temperature model and the daily maximum 
WBGT model are largely different (Tables S1a, b in 
Supplement 4).

Table 3. Patterns of change in population and increase/
decrease in risk of heatstroke emergencies from the base-
line period to the near future.

The proportion of elderly people 
in the total population
Increase Decrease

Population

Increase Prefectures at 
increased risk: 6 ―

Decrease

Prefectures at 
increased risk: 20 ―Prefectures at 
decreased risk: 20
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6. Conclusions

The main aim of this study was to estimate the 
number of ambulance transport due to heatstroke under  
the current and near future climates with a newly de-
veloped statistical model. The model proposed in this 
study has the following three characteristics:
(1)  The dependent variable (predictor) was set as the 

number of heatstroke emergency patients. Directly 
predicting the number of emergency patients 
allows us to assess not only the risk of heatstroke 
incidence among people but also the burden on the 
emergency medical system.

(2)  The daily maximum temperature, which is readily 
available from future climate prediction datasets, 
was selected as an explanatory variable.

(3)  The seasonality of heatstroke risk (short-term heat 
acclimatization) was considered by dividing the 
summer period into three subperiods, namely, early  
summer, midsummer, and late summer, with para-
meter identification appropriate for each period.

The proposed model considers not only temperature 
but also three main factors, i.e., region, short-term 
heat acclimatization, and age, which that are consid-
ered to affect the prediction accuracy. The results of 
cross-validation showed that the prediction error was 
reduced by about 22 % and 12 %, respectively, due 
to considering regional characteristics and short-term 

heat acclimatization. On the other hand, age did not 
contribute much to the model accuracy.

In order to confirm the practicality and validity 
of the proposed model, we compared its accuracy 
with models in which the explanatory variables were 
changed from the maximum temperature to WBGT. 
The model with WBGT was the most accurate in the 
majority of prefectures. However, the difference in the 
prediction error between the model with temperature 
and the model with WBGT was less than 10 % in the 
majority of prefectures. Therefore, we conclude that 
models using maximum temperatures instead of the 
WBGT as the explanatory variable can be used in 
practical situations by considering regional differences 
and short-term heat acclimatization.

With the statistical model developed, three near 
future projections of the heatstroke risk were made: 
one considering only temperature increase due to 
climate change (Case 1), one considering temperature 
increase due to climate change and demographic 
change (Case 2), and one considering temperature 
increase due to climate change, demographic change, 
lifestyle change, and long-term heat acclimatization 
(Cases 3a, b). In Case 1, the risk of heatstroke from 
the perspective of residents increases by about 2.2 
times from the baseline to the near future on average 
nationwide (the ensemble means of four GCMs under 
the RCP8.5 scenario). The increase in risk was par-

Fig. 11. Predicted number of patients with heatstroke (per 10,000 population) under the RCP8.5 scenario of near future  
climate with daily maximum WBGT as explanatory variable. (a) Prediction without population dynamics (Case 1), 
(b) prediction with population dynamics (Case 2), (c) prediction using the late summer equation (Case 3a), and (d) 
prediction using the climate analog (Case 3b). The areas shaded by gray color are outside of analysis target.
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ticularly pronounced in Hokkaido, where the risk of 
heatstroke increase was greater than three times. The 
risk of heatstroke from the perspective of the gov-
ernment in Case 2 increased by a factor of 2.3 from 
the baseline to the near future on average nationwide. 
This result suggests that the burden of heatstroke 
emergency cases on the emergency medical system in 
the near future cannot be ignored. The heatstroke risk 
in the near future in Case 2 is greater than that in Case 
1 on average nationwide. However, in some prefec-
tures, such as Akita, the effect of population decline 
on risk reduction is more dominant than the climate 
change on risk increase. Whether demographic change 
increases or decreases risk is not uniquely determined. 
From the prediction of Case 3a, it is found that the 
risk of emergency heatstroke can be reduced by about 
30 % on average nationwide by acquiring heat toler-
ance and changing lifestyles.

Lifestyle changes mean various changes for the 
adaptation to the worse thermal environment, as rep-
resented by the widespread use of air conditioners (see 
Section 3.8 for details). Case 3b shows that the risk of 
emergency heatstroke in the near future is lower than 
that in the baseline in some regions, such as Hokkaido. 
In other words, the results suggest that there is much 
room for risk control in cold regions by promoting the 
acquisition of heat tolerance and lifestyle changes.

Finally, in order to confirm the uncertainty of the 
explanatory variables, a comparison experiment was 
conducted using the daily maximum WBGT as an ex-
planatory variable. As a result, the difference between 
the prediction result of the number of patients with 
heatstroke by the daily maximum temperature model 
and that by the daily maximum temperature WBGT 
model was about 9 % on average nationwide.

Data Availability Statement

• The number of ambulance transport datasets ana-
lyzed in this study are available at [https://www.
fdma.go.jp/disaster/heatstroke/post3.html].

• The current climate data (AMeDAS) analyzed in 
this study are available at [https://www.data.jma.go. 
jp/gmd/risk/obsdl].

• The statistical downscaling datasets (Nishimori 
et al. 2019) analyzed in this study are available at 
[doi:10.20783/DIAS.568].

• The population datasets analyzed in this study are 
available at [Baseline (1990); https://www.e-stat.
go.jp/dbview?sid=0000031399] and [Near future 
(2040); https://www.ipss.go.jp/pp-shicyoson/j/shi 
cyoson18/t-page.asp].

Supplements

Supplement 1: How to calculate the maximum daily 
WBGT

In this study, the following equation was used to 
calculate WBGT (Yaglou and Minard 1957). Day and 
night were discriminated based on the value of hor-
izontal-plane insolation; a positive horizontal-plane 
insolation value was judged to be daytime and zero 
was judged to be nighttime.

WBGT = 0.7Tw + 0.2Tg + 0.1Td (daytime),
WBGT = 0.7Tw + 0.3Td (nighttime).

The dry-bulb and wet-bulb temperatures were 
based on the aforementioned values. The black-bulb 
temperature (Tg) was estimated using the equation by 
Okada and Kusaka (2013). When using this equation, 
the values of wind speed and solar radiation are also 
required. The wind speed was the spatial average of 
AMeDAS observations, as well as the temperature. 
Solar radiation was measured by the meteorological 
observatory. However, some meteorological obser-
vatories do not observe insolation. In such cases, the 
values were estimated from the time series of sunshine 
duration using the equation by Kondo (1994) and 
Kondo and Xu (1997). The daily maximum WBGT 
was obtained from the hourly values of WBGT ob-
tained using this method.

Supplement 2: Regional Classification of Japan
Figure S1: Regional classifications and names of 

major prefectures in Japan. Based on the forecast cat-
egories used in the JMA’s regional seasonal forecasts. 
Note that this classification is slightly different from 
the standard classification by the government.

Supplement 3: Increase in daily maximum temperature 
and daily maximum WBGT from the baseline period 
to the near future period

Figure S2: Increase in (a) daily minimum tempera-
ture and (b) daily maximum WBGT (°C) from the  
baseline period to the near future period for each 
prefecture. Daily maximum temperature and daily 
maximum WBGT were ensemble averages from four 
GCMs, GFDL-CM3, HadGEM2-ES, MIROC5, and 
MRI-CGCM3 (RCP8.5).

Supplement 4: The number of people transported to 
emergency rooms for heat stroke in each experiment 
(Beseline, Cases1, 2, 3a, 3b) and the days with high 
risk of heat stroke

Table S1: The number of heatstroke emergency pa-

https://www.fdma.go.jp/disaster/heatstroke/post3.html
https://www.fdma.go.jp/disaster/heatstroke/post3.html
https://www.data.jma.go.jp/gmd/risk/obsdl
https://www.data.jma.go.jp/gmd/risk/obsdl
https://www.e-stat.go.jp/dbview?sid=0000031399
https://www.e-stat.go.jp/dbview?sid=0000031399
https://www.ipss.go.jp/pp-shicyoson/j/shicyoson18/t-page.asp
https://www.ipss.go.jp/pp-shicyoson/j/shicyoson18/t-page.asp
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tients in summer and days with high risk of heat stroke 
in each prefecture predicted in this study. (a) explana-
tory variable is daily maximum temperature, (b) daily 
maximum temperature is daily maximum WBGT. The 
days with high risk of heat stroke are (a) extremely 
hot days (daily maximum temperature ³ 35℃) and (b) 
dangerous days (daily maximum WBGT ³ 31℃).
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