Construction of Substituted [4]Acene Frameworks Based on Double Cationic Cyclizations of Fluoroalkenes

Go Takao ${ }^{\text {a }}$
Tomohiro Hakozakia
Keisuke Miura ${ }^{\text {a }}$
Yusuke Urushibara Kohei Fuchibe ${ }^{{ }^{*}}$

Junji Ichikawa ${ }^{\text {a* }}$
${ }^{\text {a }}$ Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
kfuchibe@chem.tsukuba.ac.jp
junji@chem.tsukuba.ac.jp
Dedicated to Professor Ferenc Fülöp in Honor of His 70th Birthday.

Received: Accepted:
 Accepted: Published online
 Published online: DOI:

Abstract This study synthesized 5-substituted and 5,6-disubstituted [4]acenes based on the double cationic cyclization of fluoroalkenes. (a) After being treated with $\mathrm{Me}_{2} \mathrm{AlCl}$ (1.2 equiv), 2-trifluoromethyl-1-alkenes bearing two ary groups underwent domino Friedel-Crafts-type cyclization (two-ring construction) followed by dehydrogenation to synthesize 5-fluorinated [4]acenes. The same (trifluoromethyl)alkenes were treated with both $\mathrm{Me}_{2} \mathrm{AlC}$ (1.2 equiv) and $\mathrm{Me}_{3} \mathrm{Al}$ (1.0 equiv), resulting in selective one-ring construction and the creation of bicyclic 1,1-difluoro-1-alkenes. (b) When treated with triflic acid, the bicyclic difluoroalkenes underwent regioselective protonation to generate CF_{2} cations, whose Friedel-Crafts-type cyclization provided tetracyclic ketones. The obtained ketones act as an appropriate platform for the introduction of substituents at the 5-position of [4]acenes. (c) When treated with $\mathrm{DDQ} / \mathrm{H}^{+}$, the bicyclic difluoroalkenes underwent oxidative generation of allylic CF_{2} cations, whose Friedel-Crafts-type cyclization produced tetracyclic enones. The enones were subjected to the double addition of carbanions to facilitate the introduction of two substituents at the 5 - and 6-positions of the [4]acenes.

Key words acenes, cations, fluorine, cyclization, domino reactions

Polycyclic aromatic hydrocarbons (PAHs), particularly those comprising fused benzene rings in various configurations, ${ }^{1}$ have attracted considerable attention mainly because of their utility as materials for organic electronics. ${ }^{2}$ Among them, acenes, which have a linear benzene ring configuration, are of special importance and have long been used as base molecules for organic semiconducting materials (Figure 1). ${ }^{3}$ In particular,

[n]acenes

[4]acene (tetracene, naphthacene)

Figure 1 Structures of [n]acenes and [4]acene
substituted acenes, such as TIPS-pentacene ${ }^{4}$ and rubrene, ${ }^{5}$ have exhibited remarkable semiconducting properties. Therefore, the development of methods for synthesizing these compounds is highly desirable. ${ }^{6}$

Fluorine substituents stabilize carbocations at the α-position by donating its unshared electron pair to the vacant p orbital of the cationic center (Figure 2). ${ }^{7}$ Based on this effect, we have already reported $\mathrm{C}-\mathrm{C}$ bond formations in two types of fluoroalkenes (i.e. 2-trifluoromethyl-1-alkenes and 1,1-difluoro-1-alkenes) via stabilized CF_{2} cations. (i) The treatment of 2-trifluoromethyl-1alkenes with aluminium Lewis acids causes fluoride abstraction to generate allylic CF_{2} cations, which in turn undergo intermolecular Friedel-Crafts-type arylation to produce 1,1 difluoro-1-alkenes [$S_{N} 1$ ' reaction, Scheme 1 (i)]. ${ }^{8}$ (ii) When arylbearing 1,1-difluoro-1-alkenes are treated with a superacid ($\mathrm{FSO}_{3} \mathrm{H} \cdot \mathrm{SbF} 5$), regioselective protonation produces CF_{2} cations this facilitates intramolecular Friedel-Crafts-type arylation followed by dehydrofluorination and hydrolysis, which produce 1-tetralones [$S_{N} V$-type reaction, Scheme 1(ii)]. 9,10

Figure 2 The α-cation stabilizing effect of fluorine
To construct the substructure of [4]acene (tetracene), this study combined the two aforementioned cationic arylations of fluoroalkenes (Scheme 1). Thus, (trifluoromethyl)alkenes 1 bearing two aryl groups were subjected to aluminium Lewis acids. The generated allylic CF_{2} cations \mathbf{A} underwent intramolecular arylation to produce bicyclic 1,1-difluoroalkenes 2 (first ring construction). Subsequent Friedel-Crafts-type arylation (second ring construction) was promoted via other CF_{2}
(i) Allylic Fluorine: $S_{N}{ }^{1}$ 'Reaction by Fluoride Abstraction

(ii) Vinylic Fluorine: $S_{N} V$-type Reaction by Protonation

Scheme 1 Substitution for allylic and vinylic fluorines via CF_{2} cations

Scheme $2\left[S_{N} 1^{\prime}+S_{N} V\right.$-type] strategy and overview of substituted [4]acene synthesis
cations \mathbf{B} by the acid liberated during the construction of the first ring. This was followed by dehydrofluorination and dehydrogenation, which produced 5-fluorinated [4]acenes 3 (domino cyclization, Scheme 2[a]).

Stepwise cyclization is suitable for the introduction of carbon substituents. Specifically, the treatment of 1,1-difluoroalkenes 2 with an appropriate acid (e.g., $\mathrm{FSO}_{3} \mathrm{H} \cdot \mathrm{SbF}_{5}$) provides the corresponding tetralones $\mathbf{4}$, whose ketone moiety can be utilized for the introduction of substituents (R) at the 5-position (5, Scheme $2[\mathrm{~b}]$). In addition, the oxidative treatment of $1,1-$ difluoroalkenes 2 facilitates the introduction of two substituents, i.e., the removal of two electrons and a proton generates allylic CF_{2} cations \mathbf{C} (oxidative CF_{2} cation generation), whose Friedel-Crafts-type cyclization produces tetracyclic enones 6. The moiety of enones was used to introduce two substituents, R^{1} and R^{2}, leading to the synthesis of 5,6-disubstituted [4]acenes 7 (Scheme 2[c]).
The starting (trifluoromethyl)alkenes were prepared from malonic diesters and benzyl bromides (Scheme 3). ${ }^{11}$ Dimethyl malonate was dibenzylated with benzyl bromides under basic conditions. The formed diesters were decarboxylated and esterified again with methanol. Trifluoromethylation of the ester
moiety was performed using trimethyl(trifluoromethyl)silane (Ruppert's reagent) and CsF. ${ }^{12}$ The subsequent Wittig methylidenation of the resulting (trifluoromethyl)ketones 8 resulted in the desired (trifluoromethyl)alkenes 1.

The Lewis acid-promoted intramolecular arylation of the (trifluoromethyl)alkenes 1 was investigated (Scheme 2[a]) using substrate 1a with two phenyl groups as a model substrate (Table 1). (Trifluoromethyl)alkene 1a was treated with various aluminium Lewis acids (1.2 equiv) in dichloromethane at $-78^{\circ} \mathrm{C}$ before being warmed to room temperature. For the arylation, trimethylaluminium was less effective for providing bicyclic difluoroalkene 2a in an 11\% yield along with an 86\% recovery of the initial 1a (Entry 1).
Among the chlorinated aluminium Lewis acids investigated (Entries 2-4), dimethylaluminium chloride (Entry 2), which was effective for the previous arylation (Scheme $1[i]$), ${ }^{8 b}$ produced favorable results, with a 33% yield of the desired fluorinecontaining domino product 9a and a 46% yield of bicyclic difluoroalkene 2a. EtAlCl_{2} produced a 23% yield of 9 a and a 47%

Scheme 3 Preparation of 2-trifluoromethyl-1-alkenes 1
yield of 2a. Aluminium trichloride, which is insoluble in dichloromethane, was not suitable for both arylations (Entry 5) As above, the 5-fluorinated [4]acene derivative 9a was obtained from (trifluoromethyl)alkene 1a using $\mathrm{Me}_{2} \mathrm{AlCl}$ (Entry 2).

Table 1 Screening of Lewis acids (the first and second ring construction) ${ }^{\text {a }}$

$$
\begin{aligned}
& \xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2} \\
-78^{\circ} \mathrm{C} \text { to } \mathrm{RT}}]{\mathrm{LA} \text { (1.2 equiv) }} \\
& \text { 1a } \\
& \text { 2a }
\end{aligned}
$$

a ${ }^{19} \mathrm{~F}$ NMR yield based on an internal standard $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p\right.$ Me) $2 .{ }^{\mathrm{b}}$ Recovery. ${ }^{\mathrm{c}}-50$ to $-20^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}-50^{\circ} \mathrm{C}$.

The dehydrogenation of the obtained 9a was performed using 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ). The treatment of $9 \mathbf{a}$ with DDQ (2 equiv) in 1,4-dioxane produced the desired 5fluoro[4] acene (3a) in a 32\% yield (${ }^{19} \mathrm{~F}$ NMR yield based on PhCF_{3}, Scheme 4). ${ }^{13}$ Thus, the domino synthesis of 5-fluoro[4]acenes 3
became available from (trifluoromethyl)alkenes $\mathbf{1}$ via the domino cyclization/dehydrogenation sequence.

Scheme 4 Synthesis of 5-fluoro[4]acene 3a via dehydrogenation
As mentioned above, bicyclic difluoroalkene 2 a is a potential precursor for the preparation of tetracyclic ketone 4, allowing the introduction of substituents at the 5-position (Scheme $2[\mathrm{~b}]$). While being less effective, trimethylaluminium promoted arylation to provide $\mathbf{2 a}$ selectively, thereby suppressing the formation of domino product 9a (Table 1, Entry 1). Assuming that the methyl ligand of $\mathrm{Me}_{3} \mathrm{Al}$ behaves as a base to remove a proton liberated during the construction of the first ring (reaction $S_{N} 1$), the intramolecular arylation with trimethylaluminium chloride was examined in the presence of a stoichiometric amount of $\mathrm{Me}_{3} \mathrm{Al}$ (Scheme 5). The formation of domino product 9a was completely suppressed, and the expected bicyclic difluoroalkene 2a was obtained in a yield of 78\%.

Scheme 5 Selective synthesis of bicyclic difluoroalkene 2a (the first ring construction)

After the procedure to synthesize bicyclic difluoroalkenes 2 was established, the scope of the construction of the first ring was analyzed (Table 2). Unsubstituted 1a, methylated 1b, and phenylated 1c provided the corresponding products 2a-c in yields of $90 \%, 87 \%$, and 89%, respectively (Entries 1-3). However, these isolated products contained small amounts of minor products (10), which were detected by GC-MS analysis. The first ring construction (arylation) with electron-deficient less-nucleophilic aryl groups in $\mathbf{1 d}$ and $\mathbf{1 e}$ was promoted by zirconium tetrachloride in the presence of $\mathrm{Me}_{3} \mathrm{Al}$ to provide the corresponding products $\mathbf{2 d}$ and $\mathbf{2 e}$ in yields of 72% each (Entries 4 and 5). It is worth noting that there have been few reports of Friedel-Crafts-type reactions of electron-deficient arenes, such as halobenzenes. ${ }^{14}$

Acid-promoted $S_{N} V$-type arylation (second ring construction) was investigated (Table 3). At the outset, difluoroalkene 2 a was treated with 2 equiv of antimony pentafluoride in $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}$ (HFIP) $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$ at $0^{\circ} \mathrm{C}$ (Entry 1). ${ }^{15}$ After the temperature was raised to room temperature, the desired tetracyclic ketone 4a was obtained in a 48% yield as a diastereomeric mixture, the major isomer of which was determined to be cis (vide infra). An isolated mixture of 4a (diastereomer ratio $=79: 21$) was subjected to sodium methoxide in methanol at room temperature (Scheme 6). Ketone 4 a was recovered in a yield of 97%, and its diastereomer ratio was changed to 25:75. The latter was considered to be a thermodynamically more stable trans isomer. ${ }^{16}$ It is likely that the protonation of $\mathbf{2 a}$ was effected by

Table 2 Synthesis of tetracyclic ketones 4. ${ }^{\text {a }}$

Entry	1	R	First Ring Construction (Arylation)		Second Ring Construction (Arylation)	
			Lewis Acid (equiv)	2+10 (\%) ${ }^{\text {b }}$	4 (\%)	cis/trans ${ }^{\text {c }}$
1	1a	H	Me2AlCl (1.2)	2a+10a 90 (97:3)	4a $81{ }^{\text {d }}$	88:12
2	1b	Me	Me 2 AlCl (1.2)	2b+10b 87 e	4b 81	87:13
3	1c	Ph	Me $2 \mathrm{AlCl}(1.2)$	2c+10c 89 (93:7)	4c 81	83:17
4	1d	Cl	$\mathrm{ZrCl}_{4}(1.0)$	2d+10d 72 (76:24)	4d $62{ }^{\text {f }}$	75:25
5	1e	Br	$\mathrm{ZrCl}_{4}(1.0)$	$\mathbf{2 e + 1 0 e} 72(81: 19)$	4e $52^{\text {f }}$	77:23

${ }^{\text {a }}$ Isolated yield. ${ }^{\text {b }} \mathbf{2 / 1 0}$ ratio determined by ${ }^{19} \mathrm{~F}$ NMR analysis is shown in parentheses. ${ }^{\text {c }}$ Cis/trans ratio determined by ${ }^{1} \mathrm{H}$ NMR analysis is shown. ${ }^{\mathrm{d}}$ Table 3, Entry 5. e A trace amount of $\mathbf{1 0 b}$ was observed by ${ }^{19} \mathrm{~F}$ NMR analysis of the reaction mixture. ${ }^{\mathrm{f}}$ Reflux.
the acid generated from SbF_{5} in HFIP by entering from the other side of the benzyl moiety and that subsequent Friedel-Craftstype arylation predominantly provided cis-4a as a kinetic product.

$$
\mathbf{4 a}(\mathrm{dr}=79: 21)
$$

Scheme 6 Diastereomeric isomerization of ketone 4a
While trifluoroacetic acid did not afford $4 \mathbf{4 a}$ and resulted in a 53\% recovery of the unreacted difluoroalkene 2a (Table 3, Entry 2), triflic acid (TfOH) proved most effective for the synthesis of
ketone 4a. Thus, the use of TfOH in HFIP/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$ at room temperature increased the yield of $\mathbf{4 a}$ to 70% (cis/trans $=85: 15$, Entry 4). The use of 2 equiv of TfOH further improved the yield of 4a to 84% (cis/trans $=88: 12$, Entry 5). For all entries, tetracyclic difluoromethylene compound 11a was not observed by the ${ }^{19} \mathrm{~F}$ NMR analysis of the reaction mixture. ${ }^{17}$

TfOH was also used to synthesize other tetracyclic ketones 4 (Table 2). Difluoroalkenes 2a-c containing 10a-c were treated with 2 equiv of TfOH^{18} in $\mathrm{HFIP} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$ at $0^{\circ} \mathrm{C}$ (Entries 13). The desired ketones $\mathbf{4 a}-\mathbf{c}$ were afforded in an 81% yield each (cis/trans ratios of 83:17 to 88:12). The arylation with electrondeficient aryl groups in 2d and $\mathbf{2 e}$ proceeded at reflux; therefore, the corresponding $\mathbf{4 d}$ and $\mathbf{4 e}$ were obtained in yields of 62% (75:25) and 52\% (77:23), respectively (Entries 4 and 5).

Table 3 Screening of acids (the acidic second ring construction) a,b

Entry	Acid (equiv)	Solvent	Conditions	Yield (\%)	cis/trans
1	SbF_{5} (2.0)	$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$	$0^{\circ} \mathrm{C}$ to RT, 10 min	48	74:26
2	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(1.2)$	$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$	$0^{\circ} \mathrm{C}$ to RT, 2 h	- c	-
3	TfOH (2.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	56	64:36
4	TfOH (1.1)	$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$	RT, 18 h	70	85:15
5	TfOH (2.0)	$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1)$	$0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	84	88:12

[^0]For the introduction of substituents, the obtained tetracyclic ketones 4 were subjected to nucleophilic addition followed by dehydration (Scheme 7, method A). The treatment of ketone 4a with phenyllithium followed by sulfuric acid provided the corresponding cyclohexene 13a in an 87% yield via tertiary alcohol 12a.

13a 87\% (two steps)

Scheme 7 Synthesis of 5-substituted [4]acene $\mathbf{5 a}(\operatorname{method} A)$
Next, the dehydrogenation of 13a was investigated. However, the previously described procedure for partially saturated PAHs with $\mathrm{Pd} / \mathrm{C}^{10 \mathrm{~b}}$ was not satisfactory. When cyclohexene 13a was treated with $100 \mathrm{wt} \%$ of Pd / C in refluxing p-cymene (Table 4, Entry 1), the complete conversion of $\mathbf{1 3}$ a required a long reaction time (24 h), providing the desired 5-phenyl[4]acene $\mathbf{5 a}$ in a yield of only 59% (${ }^{1} \mathrm{H}$ NMR yields based on $\mathrm{Ph}_{3} \mathrm{CH}$). Other reagents, such as $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{Pt} / \mathrm{C}$, and PtO_{2}, provided low yields of $\mathbf{5 a}$ (Entries 2-4) along with partially dehydrogenated product(s) 14 and initial 13a (Entries 3 and 4). ${ }^{19}$ The use of $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ was also ineffective (Entry 5). Although the low mass balances (14+5a+ 13a, 13\%-59\% yields) and the long reaction times (5-24 h) for Entries 1-4 were improved by microwave irradiation, the issue of partial dehydrogenation (the formation of 14) remained unsolved (Entry 6). ${ }^{20}$ Finally, the dehydrogenation of 14 was completed by passing nitrogen gas through the reaction mixture during the reaction (Entry 7). The desired 5-phenyl[4]acene (5a) was obtained in a 90% yield (${ }^{1} \mathrm{H}$ NMR analysis) without the generation of 14, and it was isolated in a yield of 83% (Scheme 7). The nitrogen stream likely removed the hydrogen that had been liberated from the Pd surface, which drove the dehydrogenation reaction to completion. ${ }^{21}$

A Pd-catalyzed cross-coupling reaction also facilitated the introduction of substituents and expanded the scope of [4]acene synthesis (Table 5, method B). Tetracyclic ketones 4a-e were treated with trifluoromethanesulfonic anhydride (3.0 equiv) in the presence of 2,6-di(t-butyl)-4-methylpyridine (1.2 equiv, Entry 1) ${ }^{22}$ to produce the corresponding vinyl triflates 15a-e in 59\% to quantitative yields (Entries 1-7). Vinyl triflates 15a-d were subjected to Suzuki-Miyaura coupling with arylboronic acids to produce the desired 5-arylated cyclohexenes 13a-f in

Table 4 Dehydrogenation of cyclohexene 10a ${ }^{\text {a }}$

Entry	Reagent	Time (h)	Yield (\%)	
			14+5a ${ }^{\mathrm{b}}$	13a
1	$10 \% \mathrm{Pd} / \mathrm{C}$	24	59 (5a only)	-
2	$\mathrm{Pd}(\mathrm{OH})_{2}$	11	13 (5a only)	-
3	$5 \% \mathrm{Pt} / \mathrm{C}$	5	$26(62: 38)$	27
4	PtO_{2}	5	$16(44: 56)$	30
5	$5 \% \mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$	5	$4(\mathbf{1 4}$ only)	96
6 c	$10 \% \mathrm{Pd} / \mathrm{C}$	1	$85(44: 56)$	-
7	$10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{N}_{2}{ }^{\text {d }}$	14	$90(5 a$ only)	-

${ }^{a}{ }^{1} \mathrm{H}$ NMR yield based on an internal standard $\mathrm{Ph}_{3} \mathrm{CH}$. b $14 / 5 \mathrm{a}$ ratio is indicated in parentheses. c Microwave (130 W), $180^{\circ} \mathrm{C}$, closed. ${ }^{\text {d }} 60 \mathrm{~mL} / \mathrm{min}$ (bubbling through a glass filter).
yields of 61-94\% (Entries 1-6). In the case of bromine-bearing 15e, phenylation was achieved using triflate-selective Kumada coupling (70% yield, $\mathbf{1 3 g}$, Entry 7). ${ }^{23}$

Cyclohexenes 13a-e were finally dehydrogenated under the abovementioned conditions ($\mathrm{Pd} / \mathrm{C}, \mathrm{N}_{2}$ stream) to provide the desired 5-arylated [4]acenes 5a-e in 55\%-83\% yields. It is worth noting that chlorinated $\mathbf{1 3}$ and brominated $\mathbf{1 3 g}$ underwent hydrodehalogenation as well as dehydrogenation by Pd/C (not shown). ${ }^{24}$ Although p-chloranil (tetrachloro- p-benzoquinone) was not effective, triphenylmethylium tetrafluoroborate ($\mathrm{Ph}_{3} \mathrm{CBF}_{4}$), which was effective in our previous synthesis of angular PAHs, ${ }^{10}$ p provided $\mathbf{5 g}$ from $\mathbf{1 3 g}$ in a moderate yield. The yields of halogenated [4]acenes $\mathbf{5 f}$ and $\mathbf{5 g}$ were increased by the use of trityl cations, which were generated from triphenylmethyl alcohol in refluxing trifluoroacetic acid. Dichloro[4]acene $\mathbf{5 f}$ and dibromo[4]acene $\mathbf{5 g}$ were isolated in yields of 23% and $\mathbf{3 0 \%}$, respectively (Table 5, Entries 6 and 7).
The oxidative generation of CF_{2} cations \mathbf{C} from bicyclic difluoroalkenes was conducted to synthesize 5,6-disubstituted [4]acenes (Scheme 2c). While CF_{2} cations \mathbf{A} were generated by fluoride abstraction (- F^{-}) from (trifluoromethyl)alkenes (Scheme 2[a]) and CF_{2} cations B by the protonation $\left(+\mathrm{H}^{+}\right)$of difluoroalkenes (Scheme 2[b]) as described above, the generation of CF_{2} cations \mathbf{C} by the oxidation $\left(-\mathrm{e}^{-}\right)$of difluoroalkenes (Scheme $2[\mathrm{c}]$) provides a new option, which allows the introduction of two substituents to the frameworks of [4]acene.

Scheme 8 depicts an explanation of the oxidative generation of CF_{2} cations \mathbf{C}. One-electron oxidation occurs on the benzene ring in 2a to form a cation radical. Subsequent deprotonation followed by further one-electron oxidation generates \mathbf{C}, leading to the cyclization to enone $\mathbf{6 a}$.

Table 5 Synthesis of 5-substituted [4]acenes 5 (method B) a

5

Entry	R	4	Yield (\%) (Time)			
			15 (Triflation)	Ar	13 (Coupling)	5 (Dehydrogenation)
1	H	4a	15a 87 (4h)	Ph	13a 61 (2h)	5a 83 (14 h)
2	H	4a	15a 87 (4h)	p-Tolyl	13b 94 (5 h)	5b 55 (12 h)
3	H	4a	15a 87 (4h)	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	13c 86 (5 h)	5c 60 (18 h)
4	Me	4b	15b 77 (4h)	Ph	13d 93 (5 h)	5d 67 (12 h)
5	Ph	4c	15c Quant (4 h)	Ph	13e 80 (3h)	5e 83 (24 h)
6	Cl	4d	15d 59 (15 h)	Ph	13f 89 (3 h)	5f 23 (44) ${ }^{\text {b }}$ (12 h) ${ }^{\text {c }}$
7	Br	4e	15e 68 (1 h)	Ph	13g $70(14 \mathrm{~h})^{\text {d }}$	5g 30 (58) ${ }^{\text {b }}$ (12 h) ${ }^{\text {c }}$

${ }^{\text {a }}$ Isolated yield. ${ }^{1}{ }^{1} \mathrm{H}$ NMR yield based on an internal standard $\mathrm{CH}_{2} \mathrm{Br}_{2} .{ }^{\mathrm{c}} \mathrm{Ph}_{3} \mathrm{COH}$ (2.0 equiv), $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, reflux, dark. ${ }^{\mathrm{d}} 4 \mathrm{~mol} \%$ $\mathrm{PdCl}_{2}(\mathrm{dppp}), \mathrm{PhMgBr}$ (1.4 equiv), LiBr (1.0 equiv), $\mathrm{Et}_{2} \mathrm{O}$, reflux.

Scheme 8 Generation of CF_{2} cation \mathbf{C} under oxidative conditions The reaction conditions were examined using bicyclic difluoroalkene 2a as a model substrate (Table 6). Treatment with iodobenzene diacetate (Entry 1) or iodobenzene bis(trifluoroacetate) (Entry 2) in HFIP at $0^{\circ} \mathrm{C}$ caused 2a to undergo Friedel-Crafts-type cyclization to produce the desired tetracyclic enone $\mathbf{6 a}$ in 2% and 9% yields, respectively (the oxidative second ring construction). Enone 6a was not obtained using either $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}^{-}$(Entry 3) or DDQ at $60^{\circ} \mathrm{C}$ (Entry 4). To enhance the oxidizing power of DDQ , the effects of acids were investigated. When the reaction was conducted with DDQ in the presence of tert-butyldimethylsilyl chloride (TBSCl) or aluminium chloride, 6a was obtained in yields of 20% and 51%, respectively (Entries 5 and 6). However, oxidation in the presence of trifluoroacetic acid failed (Entry 7), while the use of TfOH at $0^{\circ} \mathrm{C}$ successfully provided $\mathbf{6 a}$ in an 87% yield (${ }^{1} \mathrm{H}$ NMR
yield, isolated in 83%, Entry 8). ${ }^{25}$ It should be noted that the treatment of ketone $\mathbf{4 a}$ (cis/trans $=85: 15$) with DDQ (1.0 equiv)/TfOH (1.0 equiv) did not produce enone $\mathbf{6 a}$ but instead resulted in the 63% recovery of $\mathbf{4 a}$ (cis/trans $=94: 6, \mathrm{HFIP}, 0^{\circ} \mathrm{C}, 3$ h, ${ }^{1} \mathrm{H}$ NMR yield). Thus, the pathway of the acid-mediated cyclization of $\mathbf{2 a}$ to $\mathbf{4 a}$ followed by dehydrogenation with DDQ can be ruled out for the formation of $\mathbf{6 a}$.

Table 6 Screening of oxidizing agents (the oxidative second ring construction) ${ }^{a}$

$2 a$
$6 \mathbf{a}$

Entry	Reagent(s) (equiv)	Conditions	6 a (\%) ${ }^{\text {b }}$
1	$\mathrm{PhI}(\mathrm{OAc})_{2}(1.0)$	$0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	2
2	$\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}(1.0)$	$0^{\circ} \mathrm{C}, 4 \mathrm{~h}$	9
3	$\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}{ }^{-}$(1.0)	$60^{\circ} \mathrm{C}, 3 \mathrm{~h}$	-
4	DDQ (1.0)	$60^{\circ} \mathrm{C}, 1 \mathrm{~h}$	-
5	DDQ (1.0), TBSCl (1.0)	$0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	20
6	DDQ (1.0), $\mathrm{AlCl}_{3}(1.7)$	$0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	51
7	DDQ (1.0), $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (1.0)	$0^{\circ} \mathrm{C}, 5 \mathrm{~h}$	-
8	DDQ (1.0), TfOH (1.0)	$0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$	87 (83) c

a ${ }^{1} \mathrm{H}$ NMR yield based on an internal standard $\mathrm{CH}_{2} \mathrm{Br}_{2}$. ${ }^{\text {b }}$ 2a was consumed completely in all Entries. ${ }^{c}$ Isolated yield. $\mathrm{TBS}=\mathrm{Si}(t-$ $\mathrm{Bu}) \mathrm{Me}_{2}$.

Therefore, the obtained tetracyclic enones 6a are suitable intermediates for the double introduction of substituents (Scheme 9). First, the introduction of R^{1} was conducted by the conjugate addition of organocuprates. When enone 6a was treated with organocuprates ($\mathrm{R}^{1}=\mathrm{Me}$ and Ph), the desired conjugate addition products (tetracyclic ketones) 16a and 16b were obtained in yields of 86% ($\mathrm{dr}=78: 22$) and 65% ($\mathrm{dr}=93: 7$), respectively. Second, the introduction of R^{2} to $16 a$ and $16 b$ was performed in a similar way to $\mathbf{4 a}$ (Scheme 7). Ketones 16a and 16b were treated with $\operatorname{MeMgBr}\left(\mathrm{R}^{2}=\mathrm{Me}\right)$ or $\mathrm{PhLi}\left(\mathrm{R}^{2}=\mathrm{Ph}\right)$ followed by dehydration with $\mathrm{H}_{2} \mathrm{SO}_{4}$ to realize disubstituted tetrahydro[4]acenes 17a-c in yields of $64 \%-74 \%$. Finally, the dehydrogenation of $\mathbf{1 7 a - c}$ with Pd / C under an N_{2} stream provided 5,6-disubstituted dihydro[4]acenes 18a-c in yields of $76 \%-77 \% .{ }^{26}$

6a
sintermediates for the synthesis of [4]acenes bearing two substituents at the 5 - and 6-positions.

Tetrahydrofuran (THF), dichloromethane, and toluene were dried by passing through a column of activated alumina followed by a column of Q5 scavenger (Engelhard). p-Cymene was distilled with azeotropic removal of water and stored over molecular sieves 4A. Methanol was distilled from $\mathrm{Mg}(\mathrm{OMe})_{2}$ and stored under MS 4A. $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}$ (HFIP) can be purchased from commercial suppliers such as Merck KGaA.
$\mathrm{CF}_{3} \mathrm{SiMe}_{3}$ (Ruppert's reagent) were supplied from TOSOH FINECHEM CORPORATION and used as received. TfOH and $\mathrm{Tf}_{2} \mathrm{O}$ were supplied from Central Glass Co., Ltd. and used as received. These compounds can be purchased from commercial suppliers such as TOKYO CHEMICAL INDUSTRY CO., LTD.
2,6-Di-tert-butyl-4-methylpyridine (DTBMP) was purchased from TOKYO CHEMICAL INDUSTRY CO., LTD. and used as received.
1,1,1,3,3,3-Hexafluoro-2,2-di(4-methylphenyl)propane $\quad\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p\right.\right.$ $\mathrm{Me})_{2}$] as an internal standard for determination of ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ NMR yields was purchased from TOKYO CHEMICAL INDUSTRY CO., LTD. and used as received. $\mathrm{PH}_{3} \mathrm{CH}$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standards for determination of ${ }^{1} \mathrm{H}$ NMR yields was purchased from TOKYO CHEMICAL INDUSTRY CO., LTD. and used as received.

Column chromatography was conducted on silica gel (Silica Gel 60 N , Kanto Chemical Co., Inc. for column chromatography). Purification was also performed by preparative HPLC (GPC), using a JAI LC-908 instrument (Jaigel-2H, CHCl_{3}).

IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR method). NMR spectra were recorded on Bruker Avance 500 or Jeol JNM ECS-400 spectrometers in CDCl_{3} at 500 or $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR $)$, at 126 or $101 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR), and at 470 or 376 $\mathrm{MHz}\left({ }^{19} \mathrm{~F}\right.$ NMR). Chemical shifts were given in ppm relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H}$ NMR: $\delta=0.00$), CDCl_{3} (for ${ }^{13} \mathrm{C}$ NMR: $\delta=77.0$) and $\mathrm{C}_{6} \mathrm{~F}_{6}$ (for ${ }^{19} \mathrm{~F}$ NMR: $\delta=0.0 ; \mathrm{C}_{6} \mathrm{~F}_{6}$ exhibits a ${ }^{19} \mathrm{~F}$ NMR signal at -162.9 ppm vs. CFCl_{3}). High-resolution mass spectroscopy (HRMS) was conducted with Jeol JMST100GCV (EI/TOF) and JMS-T100CS (APCI/TOF) spectrometers. Elemental analysis (EA) was performed with a Yanako MT-3 CHN Corder apparatus.

Procedures and spectral data of compounds

Preparation of (trifluoromethyl)ketones 8. Preparation of (trifluoromethyl)ketone 8a is described as a typical procedure. To a THF solution (45 mL) of methyl 2-benzyl-3-phenylpropionate (24.1 g , 91.6 mmol) and cesium fluoride ($3.04 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added $\mathrm{CF}_{3} \mathrm{SiMe}_{3}(16.5$ $\mathrm{mL}, 112 \mathrm{mmol}$) dropwise over 2 h at $-5^{\circ} \mathrm{C}$. After being stirred for 12 h , phosphate buffer (pH 7) was added to quench the reaction. Organic materials were extracted with AcOEt three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane/AcOEt $=20: 1$) to give (trifluoromethyl)ketone 8a ($21.7 \mathrm{~g}, 81 \%$ yield) as a colorless liquid.
Preparation of (trifluoromethyl)alkenes 1. Preparation of (trifluoromethyl)alkene 1a is described as a typical procedure. To a THF solution (110 mL) of $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{I}(10.7 \mathrm{~g}, 26.5 \mathrm{mmol})$ was added $\mathrm{KOt} \mathrm{Bu}(2.9$ $\mathrm{g}, 26 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring for 10 min , (trifluoromethyl)ketone $8 \mathbf{a}(6.4 \mathrm{~g}, 22 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$. After being stirred at room temperature for 12 h , sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. Organic materials were extracted with AcOEt three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane) to give (trifluoromethyl)alkene $\mathbf{1 a}$ ($5.4 \mathrm{~g}, 87 \%$ yield) as a colorless liquid.
Synthesis of 5-fluoro[4]acenes 3. Synthesis of 5-fluoro[4]acene 3a via 5 -fluoro(dihydro)[4]acene $\mathbf{9 a}$ is described. To a dichloromethane solution (10 mL) of (trifluoromethyl)alkene 1a ($361 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added a hexane solution of $\mathrm{AlMe}_{2} \mathrm{Cl}(1.00 \mathrm{~mL}, 1.0 \mathrm{M}, 1.0 \mathrm{mmol})$ at $-50^{\circ} \mathrm{C}$. After being gradually warmed to room temperature over 13 h , phosphate buffer
(pH 7) was added to quench the reaction. Organic materials were extracted with dichloromethane three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by GPC to give 5-fluoro(dihydro)[4]acene 9a ($111 \mathrm{mg}, 36 \%$ yield) as a colorless liquid. To a 1,4-dioxane solution (6 mL) of DDQ $(136 \mathrm{mg}, 0.60 \mathrm{mmol})$ was added a 1,4-dioxane solution $(4 \mathrm{~mL})$ containing 0.30 mmol of fluoro(dihydro)[4]acene 9a at room temperature. After being stirred for 4 h , phosphate buffer (pH 7) was added to quench the reaction. Organic materials were extracted with CHCl_{3} three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. ${ }^{19} \mathrm{~F}$ NMR analysis of the sample indicated that fluoro[4]acene 3a was formed in 32% yield.
Synthesis of tetracyclic ketones 4. Synthesis of tetracyclic ketone 4a through bicyclic difluoroalkene $\mathbf{2 a}$ intermediate is described as a typical procedure. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (13 mL) of (trifluoromethyl)alkene 1a $(1.90 \mathrm{~g}, 6.54 \mathrm{mmol})$ were added a hexane solution of $\mathrm{AlMe}_{3}(6.00 \mathrm{~mL}, 1.09$ $\mathrm{M}, 6.54 \mathrm{mmol})$ and a hexane solution of $\mathrm{AlMe}_{2} \mathrm{Cl}(7.30 \mathrm{~mL}, 1.07 \mathrm{M}, 7.81$ mmol) at $-78 \mathrm{C}^{\circ}$. The reaction mixture was warmed to room temperature. After being stirred for 1 h , phosphate buffer (pH 7) was added to quench the reaction. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane) as quickly as possible to give a mixture of bicyclic difluoroalkene $\mathbf{2 a}$ and a small amount of $\mathbf{1 0 a}\left(1.58 \mathrm{~g}, 90 \%\right.$ yield, $\mathbf{2 a}: \mathbf{1 0 a}=97: 3$). To a $\mathrm{HFIP} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (11 $\mathrm{mL}, 10: 1$) of the obtained bicyclic difluoroalkene $\mathbf{2 a}(1.58 \mathrm{~g}, 6.36 \mathrm{mmol}$, 2a:10a $=97: 3$) was added $\mathrm{TfOH}(1.1 \mathrm{~mL}, 12 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 3 h , phosphate buffer (pH 7) was added to quench the reaction. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by recrystallization (hexane/AcOEt $=10: 1$) to give tetracyclic ketone $4 \mathbf{4 a}$ $(1.28 \mathrm{~g}, 81 \%$ yield based on $\mathbf{2 a + 1 0 a}$, cis/trans $=88: 12)$ as a yellow solid.
Synthesis of 5 -substituted [4]acenes 5 via nucleophilic addition (method A). Synthesis of 5-substituted [4]acene 5a through nucleophilic addition of organolithiums is described as a typical procedure. To a THF solution (10 mL) of PhLi , prepared from $\mathrm{PhBr}(0.32 \mathrm{~mL}, 3.0 \mathrm{mmol})$ and $n-$ BuLi (1.6 M in hexane, $2.00 \mathrm{~mL}, 3.2 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, was added tetracyclic ketone 4a ($495 \mathrm{mg}, 2.00 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature. After being stirred for 15 h , phosphate buffer (pH 7) was added to quench the reaction. Organic materials, containing tertiary alcohol 12a, were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, AcOH (1 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL})$ were added at room temperature. After being stirred for 20 min , water was added to quench the reaction. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane) to give cyclohexene 13a ($504 \mathrm{mg}, 82 \%$ yield) as a yellow solid.

To a p-cymene solution (5 mL) of cyclohexene 13a ($51 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg}, 100 \mathrm{wt} \%$). After being refluxed for 14 h with passing nitrogen ($60 \mathrm{~mL} / \mathrm{min}$) through a glass filter in the dark, the mixture was filtered through SiO_{2} using CHCl_{3} as an eluent. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane) to give 5-substituted [4]acene 5a (41 $\mathrm{mg}, 83 \%$ yield) as a red solid.

Synthesis of 5-substituted [4]acenes 5 via cross coupling (method B). Synthesis of 5 -substituted [4]acene $\mathbf{5 b}$ through cross coupling is described as a typical procedure. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 mL) of tetracyclic ketone 4a ($245 \mathrm{mg}, 0.987 \mathrm{mmol}$) and DTBMP ($241 \mathrm{mg}, 1.17 \mathrm{mmol}$) was added $\mathrm{Tf}_{2} \mathrm{O}(0.50 \mathrm{~mL}, 3.0 \mathrm{mmol})$ at room temperature. After being refluxed for 4 h , hexane was added and filtered through celite. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane/toluene $=10: 1$) to give triflate $\mathbf{1 5 a}$ (335 $\mathrm{mg}, 89 \%$ yield) as a yellow liquid.

To a toluene/MeOH/water solution (10 mL, 5/2/3) of triflate 15a (533 $\mathrm{mg}, 1.40 \mathrm{mmol}$) were added 4-methylphenyl boronic acid ($255 \mathrm{mg}, 1.88$ mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(80 \mathrm{mg}, 0.071 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(445 \mathrm{mg}, 4.20 \mathrm{mmol})$ at room temperature. After being refluxed for 5 h , phosphate buffer (pH 7) was added to quench the reaction. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane) to give cyclohexene $\mathbf{1 3 b}$ ($425 \mathrm{mg}, 94 \%$ yield) as a yellow solid.

Treatment of cyclohexene $\mathbf{1 3 b}$ ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) under the conditions similar to 13a gave 5 -substituted [4] acene $\mathbf{5 b}$ ($28 \mathrm{mg}, 55 \%$ yield) as a red solid.

Synthesis of tetracyclic enones 6. Synthesis of tetracyclic enone $\mathbf{6 a}$ is described as a typical procedure. To an HFIP solution (50 mL) of DDQ (1.2 g, 5.3 mmol) and TfOH ($0.47 \mathrm{~mL}, 5.3 \mathrm{mmol}$) was added an HFIP solution (3 mL) of bicyclic difluoroalkene $\mathbf{2 a}(1.4 \mathrm{~g}, 5.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 3 h , phosphate buffer (pH 7) was added to quench the reaction. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane/ $\mathrm{AcOEt}=20: 1$) to give tetracyclic enone $6 \mathbf{a}$ ($1.1 \mathrm{~g}, 83 \%$ yield) as a yellow solid.

Synthesis of 5,6-disubstituted dihydro[4]acenes 18 via conjugate addition. Synthesis of 5,6-disubstituted dihydro[4]acene 18a through conjugate addition of organocuprates is described as a typical procedure. To an $\mathrm{Et}_{2} \mathrm{O}$ solution (5 mL) of $\mathrm{CuI}(384 \mathrm{mg}, 2.02 \mathrm{mmol})$ was added an $\mathrm{Et}_{2} \mathrm{O}$ solution of methyllithium ($1.2 \mathrm{M}, 3.5 \mathrm{~mL}, 4.1 \mathrm{mmol}$) at $-5^{\circ} \mathrm{C}$. After being stirred for 1 h , a THF solution (5 mL) of enone $\mathbf{6 a}$ ($244 \mathrm{mg}, 0.991 \mathrm{mmol}$) was added at $-5^{\circ} \mathrm{C}$. After being stirred for 2 h , sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on SiO_{2} (hexane/AcOEt $=20: 1$) to give conjugate addition product $16 \mathbf{a}(225 \mathrm{mg}$, $\mathrm{dr}=78: 22,86 \%$ yield) as a yellow solid. Thus-obtained tetracyclic ketone $16 \mathbf{a}$ was subjected to the conditions described for tetracyclic ketone $4 \mathbf{a}$ (method A) to give cyclohexene $\mathbf{1 7 a}$ ($149 \mathrm{mg}, 71 \%$ yield) as a yellow solid. Cyclohexene 17a was subjected to the conditions described for 13a to give disubstituted dihydro[4] acene 18a ($292 \mathrm{mg}, 77 \%$ yield) as a yellow solid.

3-Benzyl-4-phenyl-2-(trifluoromethyl)but-1-ene (1a)
5.4 g, 87\% yield.

IR (neat): $3028,1757,1496,1119,752,698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.79$ (dd, $J=13.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.85 (dd, $J=13.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.96(\mathrm{tt}, J=7.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $=\mathrm{CH}_{2}$), $5.75\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.27 (dd, $J=7.6,7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=40.1\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{CH}), 119.5\left(\mathrm{q}, J_{\mathrm{CF}}=6 \mathrm{~Hz}\right.$, $\left.=\mathrm{CH}_{2}\right), 123.9\left(\mathrm{q}, J_{\mathrm{CF}}=275 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.2(\mathrm{Ar}), 128.2(\mathrm{Ar}), 129.2(\mathrm{Ar}), 139.2$ (Ar), $140.0\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=28 \mathrm{~Hz},=\mathrm{C}\right)$.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=94.3\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3}$: 290.1282; found: 290.1273.
4-(4-Methylphenyl)-3-(4-methylphenyl)methyl-2-
(trifluoromethyl)but-1-ene (1b)
$1.5 \mathrm{~g}, 79 \%$ yield.
IR (neat): 2925, 1516, 1163, 1117, $804 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.72(\mathrm{dd}, J=13.9,7.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.78 (dd, $J=13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.92(\mathrm{tt}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 5.21\left(\right.$ br s, $\left.1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.72\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{ArH}$), 7.06 (d, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=21.0\left(\mathrm{CH}_{3}\right), 39.6\left(\mathrm{CH}_{2}\right), 42.8(\mathrm{CH}), 119.3(\mathrm{q}$, $\left.J_{\mathrm{CF}}=6 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 123.9\left(\mathrm{q}, J_{\mathrm{CF}}=275 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 128.9(\mathrm{Ar}), 129.1(\mathrm{Ar}), 135.6$ (Ar), $136.1(\mathrm{Ar}), 140.2\left(\mathrm{q}, J_{\mathrm{cF}}=28 \mathrm{~Hz},=\mathrm{C}\right)$.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=94.3\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3}$: 318.1595; found: 318.1598.
4-(4-Phenylphenyl)-3-(4-phenylphenyl)methyl-2-(trifluoromethyl)but-1-ene (1c)

1.7 g, 65\% yield.

IR (neat): 3028, 1487, 1165, 1117, 912, $735 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.85\left(\mathrm{dd}, J=13.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.92$ (dd, $\left.J=13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.04(\mathrm{tt}, J=7.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $=\mathrm{CH}_{2}$), $5.79\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{tt}, J=7.4$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.42 (dd, $J=8.3,7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.50 (d, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), $7.58(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=39.7\left(\mathrm{CH}_{2}\right), 42.7(\mathrm{CH}), 119.6\left(\mathrm{q}, J_{\mathrm{CF}}=6 \mathrm{~Hz}\right.$, $\left.=\mathrm{CH}_{2}\right), 123.9\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=275 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 127.0(\mathrm{Ar}), 127.1(\mathrm{Ar}), 128.7(\mathrm{Ar}), 129.6$ (Ar), 138.3 (Ar), 139.1 (Ar), 140.1 (q, $\left.J_{\mathrm{CF}}=28 \mathrm{~Hz},=\mathrm{C}\right), 140.9$ (Ar).
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=94.4\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~F}_{3}$: 442.1908; found: 442.1907.
4-(4-Chlorophenyl)-3-(4-chlorophenyl)methyl-2-
(trifluoromethyl)but-1-ene (1d)
4.3 g, 92\% yield.

IR (neat): 2935, 1493, 1163, 1117, 1014, $808 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.73$ (dd, $J=13.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.79 (dd, $\left.J=13.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.87(\mathrm{tt}, J=7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 5.76\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 4H, ArH).
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=39.4\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{CH}), 132.2(\mathrm{Ar}), 119.9(\mathrm{q}$, $\left.J_{\mathrm{CF}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 123.7\left(\mathrm{q}, J_{\mathrm{CF}}=275 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 128.5(\mathrm{Ar}), 130.5(\mathrm{Ar}), 137.4$ (Ar), 139.5 (q, JCF $=29 \mathrm{~Hz},=C$).
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=94.3\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~F}_{3}$: 358.0503; found: 358.0505
4-(4-Bromophenyl)-3-(4-bromophenyl)methyl-2-
(trifluoromethyl)but-1-ene (1e)
9.2 g, 69\% yield.

IR (neat): $3026,1487,1163,1113,1072,1011 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~} \delta=2.71$ (dd, $J=13.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.78 (dd, $J=13.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.87(\mathrm{tt}, J=7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 5.75\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 4H, ArH).
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=39.5\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{CH}), 131.5(\mathrm{Ar}), 119.9(\mathrm{q}$, $\left.J_{\mathrm{CF}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 120.3(\mathrm{Ar}), 123.7\left(\mathrm{q}, J_{\mathrm{CF}}=275 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 130.9(\mathrm{Ar}), 137.9$ (Ar), 139.7 (q, JcF $=28 \mathrm{~Hz},=C$).
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=94.3\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~F}_{3}$: 447.9472; found: 447.9478 .
2-Benzyl-3-difluoromethylidene-1,2,3,4-tetrahydronaphthalene (2a)
$1.58 \mathrm{~g}, 90 \%(\mathbf{2 a}+\mathbf{1 0 a}$ mixture, $97: 3)$.
IR (neat): 3026, 1749, 1225, 995, 741, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.49\left(\mathrm{dd}, J=13.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60$ (ddd, $J=15.6,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.65\left(\mathrm{dd}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.77 (dd, $J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.04-3.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$), 3.38 (ddd, $J=18.8$, $3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.46 (dd, $J=18.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 7.03 (d, $J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.10-7.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.25 (dd, $J=7.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=25.3\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{~d}, J_{\mathrm{CF}}=2 \mathrm{~Hz}\right.$, CH), 38.7 (dd, $J_{\mathrm{CF}}=2,2 \mathrm{~Hz}, \mathrm{CH}_{2}$), 87.8 (dd, $\left.J_{\mathrm{CF}}=17,17 \mathrm{~Hz},=\mathrm{C}\right), 126.2(\mathrm{Ar})$, 126.3 (Ar), 126.4 (Ar), 128.2 (Ar), 128.4 (Ar), 129.1 (Ar), 129.4(Ar), $134.0(\mathrm{Ar}), 135.2(\mathrm{Ar}), 139.8(\mathrm{Ar}), 152.0\left(\mathrm{dd}, J_{\mathrm{CF}}=284,284 \mathrm{~Hz},=\mathrm{CF}_{2}\right)$.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=66.5$ (br dd, $\left.J=56 \mathrm{~Hz}, J \mathrm{FH}=3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{CF}_{2}\right)$, 67.9 (d, $J=56 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{CF}_{2}$).

HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2}$: 270.1220; found: 270.1224 .

5-Fluoro[4]acene (3a)

32% yield (${ }^{19} \mathrm{~F}$ NMR yield based on PhCF_{3}).
${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 500 \mathrm{MHz}$): $\delta=7.39-7.45(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.96-8.01(\mathrm{~m}, 2 \mathrm{H}$, ArH), 8.02-8.05 (m, 1H, ArH), 8.26 (d, J=6.0 Hz, 1H, ArH), $8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=154.0$ (d, $\left.\mathrm{J}_{\mathrm{CF}}=261 \mathrm{~Hz}, \mathrm{CF}\right)$ (selected peak). ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=32.0$ (s).

HRMS (EI): m / z [M] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}: 246.0845$; found: 246.0839 .
6,11,11a,12-Tetrahydrotetracen-5(5aH)-one (4a, cis/trans $=88: 12$)
Colorless crystals, Mp. $109.8-110.7^{\circ} \mathrm{C}, 1.0 \mathrm{~g}, 81 \%$ yield.
IR (neat): 2897, 1680, 1601, 1284, $742 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~} \delta=2.33-2.42\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.12\right), 2.61$ (ddd, $J=12.6$, $12.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.12$), 2.75 (dd, $J=16.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{CH}_{2}$), 2.81-2.97 $\left(\mathrm{m}, 1 \mathrm{H}^{*} 0.88+3 \mathrm{H}^{*} 0.12\right), 2.93\left(\mathrm{brd}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88\right), 2.96(\mathrm{br} \mathrm{d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}^{*} 0.88$), 3.01 (dd, $J=16.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{CH}_{2}$), 3.08 (ddd, $J=6.7$, $6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88$), 3.09 (dd, $J=16.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.12, \mathrm{CH}_{2}$), 3.13 (dd, $J=$ $16.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.12, \mathrm{CH}_{2}$), $3.14\left(\mathrm{dd}, J=16.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{CH}_{2}\right.$), 3.33 (dd, $J=16.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{CH}_{2}$), 3.49 (ddd, $J=10.8,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.12$) 7.03 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{ArH}$), $7.07-7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.20-7.24(\mathrm{~m}$, $1 \mathrm{H}^{*} 0.12, \mathrm{ArH}$), $7.25\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{ArH}\right.$), 7.28 (br d, $J=7.5 \mathrm{~Hz}, J=$ $1 \mathrm{H}^{*} 0.12, \mathrm{ArH}$), 7.31 (dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{ArH}$), 7.35 (dd, $J=7.5,7.5$ $\mathrm{Hz}, 1 \mathrm{H}^{*} 0.12, \mathrm{ArH}$), 7.49 (dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{ArH}$), 7.51 (dd, $J=7.5$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.12, \mathrm{ArH}$), $8.04\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.88, \mathrm{ArH}\right), 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}^{*} 0.12, \mathrm{ArH}$).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=27.4$ (cis), 29.7 (trans), 32.1 (cis), 32.6 (cis), 32.9 (cis), 36.1 (trans), 36.5 (trans), 37.2 (trans), 45.9 (cis), 48.0 (trans), 125.85 (trans, Ar), 125.85 (cis, Ar), 125.88 (cis, Ar), 126.0 (trans, Ar), 126.7 (cis, Ar), 126.8 (trans, Ar), 127.41 (cis, Ar), 127.42 (trans, Ar), 128.4 (trans, Ar), 128.5 (trans, Ar), 129.1 (cis, Ar), 129.3 (trans, Ar), 129.27 (cis, Ar), 129.30 (cis, Ar), 131.2 (cis, Ar), 132.1 (trans, Ar), 133.5 (trans, Ar), 133.5 (cis, Ar), 134.1 (cis, Ar), 134.3 (cis, Ar), 134.6 (trans, Ar), 135.3 (trans, Ar), 142.3 (cis, Ar), 142.9 (trans, Ar), 199.2 (trans, C=0), 199.2 (cis, C=0).

HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$: 248.1201; found: 248.1210 (cis), 248.1207 (trans).

3,8-Dimethyl-6,11,11a,12-tetrahydrotetracen-5(5aH)-one (4b, cis/trans $=87: 13$)
0.56 g, 81\% yield.

IR (neat): 2916, 1680, 1496, 1284, $814 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.27\left(\mathrm{~s}, 3 \mathrm{H}^{*} 0.87, \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}^{*} 0.13\right.$, CH_{3}), 2.35 ($\mathrm{s}, 3 \mathrm{H}^{*} 0.87, \mathrm{CH}_{3}$), 2.38 ($\mathrm{s}, 3 \mathrm{H}^{*} 0.13, \mathrm{CH}_{3}$), 2.57 (ddd, $J=12.7,11.4$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.13, \mathrm{CH}_{2}$), $2.69\left(\mathrm{dd}, J=16.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.87, \mathrm{CH}_{2}\right.$), 2.73-2.99 (m, 4H), 3.00-3.11 (m, 2H), 3.25 (dd, $\left.J=16.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.87, \mathrm{CH}_{2}\right), 3.44$ (dd, $J=17.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.13, \mathrm{CH}_{2}$), $6.90\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.87, \mathrm{ArH}\right.$), 6.92 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.87, \mathrm{ArH}$), $6.96\left(\mathrm{~s}, 1 \mathrm{H}^{*} 0.87, \mathrm{ArH}\right.$), 6.83-6.96 (m 2H* 0.13 , ArH), 7.03 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.13, \mathrm{ArH}$), $7.13\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.87, \mathrm{ArH}\right.$), 7.17 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.13, \mathrm{ArH}$), 7.28 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.87, \mathrm{ArH}$), 7.30 (d, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.13, \mathrm{ArH}\right), 7.84\left(\mathrm{~s}, 1 \mathrm{H}^{*} 0.87, \mathrm{ArH}\right), 7.89\left(\mathrm{~s}, 1 \mathrm{H}^{*} 0.13, \mathrm{ArH}\right)$.
${ }^{13}{ }^{13}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=20.97$ (cis, CH_{3}), 20.99 (trans, CH_{3}), 27.4 (cis, CH_{3}), 29.8 (trans, CH_{3}), 31.8 (cis), 32.2 (cis), 33.1 (cis), 36.2 (trans), 36.4 (trans), 36.9 (trans), 46.0 (cis), 48.2 (trans), 126.7 (trans, Ar), 126.8 (cis, Ar), 127.5 (cis, Ar), 128.3 (trans, Ar), 128.5 (trans, Ar), 129.2 (cis, Ar), 129.3 (cis, Ar), 129.6 (cis, Ar), 129.8 (trans, Ar), 131.0 (cis, Ar), 131.1 (cis, Ar), 131.6 (trans, Ar), 131.9 (trans, Ar), 134.2 (cis, Ar), 134.5 (cis, Ar), 135.2 (trans, Ar), 135.3 (cis, Ar), 135.6 (trans, Ar), 136.3 (cis, Ar), 136.5 (trans, Ar), 139.6 (cis, Ar), 140.2 (trans, Ar), 199.6 (trans, C=0), 199.7 (cis, $\mathrm{C}=0$).
HRMS (EI): m / z [M] ${ }^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}$: 276.1514 ; found: 276.1517 (cis), 276.1512 (trans).

3,8-Diphenyl-6,11,11a,12-tetrahydrotetracen-5(5aH)-one
(4c, cis/trans $=83: 17$)
$0.63 \mathrm{~g}, 81 \%$ yield.

IR (neat): 2910, 1680, 1481, 758, $696 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.40-2.49\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.17\right), 2.64-2.72(\mathrm{~m}$, $1 \mathrm{H}^{*} 0.17$), 2.82 (dd, $J=16.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.83, \mathrm{CH}_{2}$), $2.85-3.11$ (m, $4 \mathrm{H}^{*} 0.83+3 \mathrm{H}^{*} 0.17$), $3.12-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.43\left(\mathrm{dd}, J=17.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.83\right.$, CH_{2}), 3.59 (dd, $J=17.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.17, \mathrm{CH}_{2}$), $7.12\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.83\right.$, ArH), 7.21 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.17, \mathrm{ArH}\right), 7.30-7.48(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 7.53-7.65$ (m, $4 \mathrm{H}^{*} 0.17, \mathrm{ArH}$), 7.56 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}^{*} 0.83, \mathrm{ArH}$), $7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}^{*} 0.83, \mathrm{ArH}$), 7.74 (dd, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.83, \mathrm{ArH}$), $7.75-7.78$ (m, $1 \mathrm{H}^{*} 0.17, \mathrm{ArH}$), 8.29 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.83, \mathrm{ArH}$), 8.32 ($\mathrm{s}, 1 \mathrm{H}^{*} 0.17, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=27.7$ (cis), 29.9 (trans), 33.0 (cis), 31.9 (cis), 32.5 (cis), 36.2 (trans), 36.3 (trans), 37.0 (trans), 46.1 (cis), 48.2 (trans), 124.6 (trans, Ar), 124.8 (trans, Ar), 124.9 (cis, Ar), 125.8 (cis, Ar), 126.96 (cis, Ar), 126.99 (cis, Ar), 127.03 (cis, Ar), 127.1 (trans, Ar), 127.57 (cis, Ar), 127.61 (trans, Ar), 127.8 (cis, Ar), 128.0 (trans, Ar), 128.67 (cis, Ar), 128.74 (trans, Ar), 128.8 (cis, Ar), 128.9 (trans, Ar), 129.2 (trans, Ar), 129.8 (cis, Ar), 130.0 (cis, Ar), 131.5 (cis, Ar), 132.2 (cis, Ar), 132.4 (trans, Ar), 133.4 (cis, Ar), 133.8 (trans, Ar), 134.7 (cis, Ar), 135.7 (trans, Ar), 139.0 (cis, Ar), 139.2 (trans, Ar), 139.8 (cis, Ar), 139.98 (trans, Ar), 140.00 (cis, Ar), 141.00 (trans, Ar), 141.9 (trans, Ar), 141.02 (cis, Ar), 141.2 (cis, Ar), 199.1 (trans, C=0), 199.2 (cis, C=0).
HRMS (APCI^{+}): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{O}: 401.1905$; found: 401.1906.
3,8-Dichloro-6,11,11a,12-tetrahydrotetracen-5(5aH)-one (4d, cis/trans = 75:25)
$0.83 \mathrm{~g}, 62 \%$ yield.
IR (neat): 2918, 1685, 1477, 1410, $1234 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.28-2.38\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.25\right), 2.55-2.71(\mathrm{~m}$, $1 \mathrm{H}^{*} 0.75+1 \mathrm{H}^{*} 0.25$), $2.75-3.00\left(\mathrm{~m}, 4 \mathrm{H}^{*} 0.75+3 \mathrm{H}^{*} 0.25\right), 3.03-3.13(\mathrm{~m}$, $1 \mathrm{H}^{*} 0.75+2 \mathrm{H}^{*} 0.25$), 3.17 (dd, $J=17.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.75, \mathrm{CH}_{2}$), 3.34 (dd, $J=$ $17.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.75, \mathrm{CH}_{2}$), 3.44 (dd, $J=17.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.25, \mathrm{CH}_{2}$), 6.93 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.75, \mathrm{ArH}$), $7.05-7.07\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.75+1 \mathrm{H}^{*} 0.25, \mathrm{ArH}\right), 7.11$ (d, $\left.J=8.2 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.25, \mathrm{ArH}\right), 7.13-7.16\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.75, \mathrm{ArH}\right), 7.18-7.25(\mathrm{~m}$, $1 \mathrm{H}^{*} 0.75+2 \mathrm{H}^{*} 0.25, \mathrm{ArH}$), 7.45 (dd, $J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.75, \mathrm{ArH}$), 7.47 (dd, $J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.25, \mathrm{ArH}$), 7.98 ($\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.75, \mathrm{ArH}$), 8.04 (d, J $\left.=2.3 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.25, \mathrm{ArH}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=27.4$ (cis), 29.5 (trans), 31.2 (cis), 32.4 (cis), 32.8 (cis), 35.8 (trans), 35.9 (trans), 36.5 (trans), 45.4 (cis), 47.5 (trans), 126.19 (trans, Ar), 126.24 (cis, Ar), 127.2 (cis, Ar), 127.3 (trans, Ar), 128.9 (cis, Ar), 129.0 (trans, Ar), 129.7 (trans, Ar), 130.2 (trans, Ar), 130.5 (cis, Ar), 131.0 (cis, Ar), 131.5 (cis, Ar), 131.7 (trans, Ar), 132.4 (cis, Ar), 132.5 (cis, Ar), 132.8 (trans, Ar), 133.1 (cis, Ar), 133.17 (trans, Ar), 133.21 (trans, Ar), 133.56 (trans, Ar), 133.61 (cis, Ar), 135.9 (cis, Ar), 136.9 (trans, Ar), 140.2 (cis, Ar), 141.0 (trans, Ar), 197.5 (cis, C=0), 197.7 (trans, C=0).

HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}: 316.0422$; found 316.0422.
3,8-Dibromo-6,11,11a,12-tetrahydrotetracen-5(5aH)-one
(4e, cis/trans $=83: 17$)
$0.30 \mathrm{~g}, 52 \%$ yield.
IR (neat): 2916, 1685, 1475, 1234, 798, $756 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.57\left(\mathrm{dd}, J=17.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.17, \mathrm{CH}_{2}\right.$), $2.64\left(\mathrm{dd}, J=17.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.83, \mathrm{CH}_{2}\right), 2.72-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.95(\mathrm{~m}$, $2 \mathrm{H}), 3.01-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=17.2,11.0 \mathrm{~Hz}$, $1 \mathrm{H}^{*} 0.83, \mathrm{CH}_{2}$), $3.43\left(\mathrm{dd}, J=17.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.17, \mathrm{CH}_{2}\right), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{*} 0.83, \mathrm{ArH}\right), 6.98\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.17, \mathrm{ArH}\right), 7.12-7.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.17-7.22 (m, 1H, ArH), 7.30 (s, $1 \mathrm{H}^{*} 0.83, \operatorname{ArH}$), 7.35 (s, $1 \mathrm{H}^{*} 0.17$, ArH), $7.57-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.13\left(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.83, \mathrm{ArH}\right), 8.19(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}^{*} 0.17$, ArH).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=27.3$ (cis), 29.4 (trans), 31.2 (cis), 32.4 (cis), 32.6 (cis), 35.7 (trans), 35.9 (trans), 36.6 (trans), 45.5 (cis), 47.5 (trans), 119.6 (cis), 119.7 (trans), 120.9 (cis) 121.0 (trans), 129.08 (trans), 129.12 (cis), 130.0 (trans), 130.2 (cis), 130.3 (trans), 130.4 (trans), 130.9 (cis), 131.3 (cis), 131.8 (cis), 131.9 (trans), 132.7, 133.0, 133.3 (trans), 133.4 (trans), 136.3, 136.4 (trans), 136.5 (cis), 137.3 (trans), 140.6 (cis), 141.4 (trans), 197.3 (cis), 197.5 (trans).

HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}: 405.9391$; found 405.9395 (cis), 405.9411 (trans).

Spectral data of 5-phenyl[4]acene 5a met complete agreement with those in literature. ${ }^{27}$

5-(4-Methylphenyl)[4]acene (5b)

$28 \mathrm{mg}, 55 \%$ yield.
IR (neat): 3043, 3020, 1672, 1217, $893 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.58$ (s, 3H, CH3), 7.27-7.48 (m, 8H, ArH), $7.68(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 8.03 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.70 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=21.4\left(\mathrm{CH}_{3}\right), 124.8$ (Ar), 124.9 (Ar), 125.0 (Ar), 125.2 (Ar), 125.7 (Ar), 126.3 (Ar), 126.5 (Ar), 126.9 (Ar), 127.9 (Ar), 128.5 (Ar), 128.7 (Ar), 129.2 (Ar), 129.5 (Ar), 129.7 (Ar), 130.0 (Ar), 131.1 (Ar), 131.2 (Ar), 131.29 (Ar), 131.32 (Ar), 135.9 (Ar), 137.0 (Ar), 137.1 (Ar).
HRMS (APCl^{+}): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19}$: 319.1487; found: 319.1486.

5-[4-(Trifluoromethyl)phenyl][4]acene (5c)

$31 \mathrm{mg}, 60 \%$ yield.
IR (neat): 2925, 1321, 1122, 1065, $744 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=7.30$ (dd, $J=8.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.34 (dd, $J=8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.36-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.63 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.81 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.91(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 8.16 (s, 1H, ArH), 8.70 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.75 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=122.3\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.9(\mathrm{Ar})$, 125.3 (Ar), 125.50 (Ar), 125.53 (q, JcF $=4 \mathrm{~Hz}, \mathrm{Ar}$), 125.7 (Ar), 126.2 (Ar), 126.7 (Ar), 127.4 (Ar), 128.0 (Ar), 128.62 (Ar), 128.64 (Ar), 129.0 (Ar), 129.5 (Ar), 129.8 (Ar), 129.9 (q, JcF = $32 \mathrm{~Hz}, \mathrm{Ar}$), 131.0 (Ar), 131.2 (Ar), 131.6 (Ar), 131.9 (Ar), 134.9 (Ar), 143.0 (Ar).
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=99.4\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{~F}_{3}$: 372.1126; found: 372.1122.

2,9-Dimethyl-11-phenyl[4]acene (5d)

$0.16 \mathrm{~g}, 67 \%$ yield.
IR (neat): 2914, 1626, $895,731,700 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20(\mathrm{br}$ $\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.47-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.56$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), $7.53-7.66(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.92(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$.
${ }^{13}{ }^{13}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=21.9\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 124.1(\mathrm{Ar}), 124.5$ (Ar), 126.1 (Ar), 126.5 (Ar), 126.6 (Ar), 127.4 (Ar), 127.68 (Ar), 127.75 (Ar), 128.2 (Ar), 128.38 (Ar), 128.45 (Ar), 129.4 (Ar), 129.81 (Ar), 129.84 (Ar), 131.5 (Ar), 131.7 (Ar), 134.4 (Ar), 134.6 (Ar), 135.4 (Ar), 139.4 (Ar). HRMS (APCI ${ }^{+}$): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21}$: 333.1643; found: 333.1642.

2,9,11-Triphenyl[4]acene (5e)

$0.13 \mathrm{~g}, 83 \%$ yield.
IR (neat): $1466,899,756,694 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=7.33(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.36$ (dd, $J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.42(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.46(\mathrm{dd}, J=7.5$, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.55 (d, J = $6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.58-7.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.64$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.85 (s, 1H, ArH), 8.02 (s, 1H, ArH), 8.06 (dd, $J=8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.11(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 8.73 (d, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=124.3$ (Ar), 125.2 (Ar), 125.6 (Ar), 126.0 (Ar), 126.1 (Ar), 126.3 (Ar), 126.5 (Ar), 127.1 (Ar), 127.28 (Ar), 127.33 (Ar), 127.4 (Ar), 127.7 (Ar), 128.6 (Ar), 128.79 (Ar), 128.81 (Ar), 129.2 (Ar), 129.9 (Ar), 130.0 (Ar), 130.2 (Ar), 130.37 (Ar), 130.42 (Ar), 131.5 (Ar), 131.6 (Ar), 137.2 (Ar), 137.3 (Ar), 137.4 (Ar), 138.9 (Ar), 140.8 (Ar), 141.2 (Ar).

HRMS (APCI^{+}): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{~F}_{3}$: 457.1956; found: 457.1957.

2,9-Dichloro-11-phenyl[4]acene (5f)

$11 \mathrm{mg}, 23 \%$ yield
IR (neat): 1608, 1456, 912, $742 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=7.30(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{dd}$ $J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.61-7.68(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.93(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.97 (d, J = $9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.14 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.66 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.68 (s , $1 \mathrm{H}, \mathrm{ArH}$)
${ }^{13} \mathrm{C}^{1}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=124.9$ (Ar), 125.0 (Ar), 126.5 (Ar), 126.8 (Ar), 126.9 (Ar), 127.1 (Ar), 127.2 (Ar), 128.0 (Ar), 128.7 (Ar), 129.3 (Ar), 129.4 (Ar), 129.7 (Ar), 129.8 (Ar), 130.0 (Ar), 130.1 (Ar), 130.3 (Ar), 131.1 (Ar), 131.2 (Ar), 131.4 (Ar), 131.6 (Ar), 136.4 (Ar), 138.0 (Ar).
HRMS (APCI^{+}): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{Cl}_{2}$: 372.1126; found: 372.1122.

2,9-Dibromo-11-phenyl[4]acene (5g)

7 mg , 30\% yield.
IR (neat): 1593, 914, 887, $742,702 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=7.39-7.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.59-7.68(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{ArH}), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 8.00 (s, 1H, ArH), 8.14 (s, 1H, ArH), 8.63 (s, 1H, ArH), 8.66 (s, 1H, ArH)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=119.6(\mathrm{Ar}), 120.1(\mathrm{Ar}), 125.0(\mathrm{Ar}), 127.1$ (Ar), 127.3 (Ar), 128.0 (Ar), 128.5 (Ar), 128.70 (Ar), 128.74 (Ar), 129.1 (Ar), 129.3 (Ar), 129.4 (Ar), 129.6 (Ar), 129.8 (Ar), 129.9 (Ar), 130.2 (Ar), 130.3 (Ar), 130.6 (Ar), 131.2 (Ar), 132.2 (Ar), 136.4 (Ar), 137.9 (Ar).

HRMS (APCI^{+}): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{Br}_{2}$: 462.9520; found: 462.9525.

11a,12-Dihydro[4]acen-5(11H)-one (6a)

$1.1 \mathrm{~g}, 83 \%$ yield.
IR (neat): $1655,1560,1458,1281,760,669 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.89-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.18(\mathrm{~m}, 3 \mathrm{H}), 7.21-$ $7.33(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.52$ (dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.86 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.11 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=32.3,34.9,35.8,127.1,127.2,127.4,127.9$, 128.1, 129.4, 129.8, 132.8, 133.2, 133.8, 134.7, 135.3, 136.4, 142.0, 186.1 (C=0).
HRMS (APCI^{+}): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}: 246.1045$; found: 246.1039.

3-Benzyl-1,1,1-trifluoro-4-phenylbutan-2-one (8a)

$22 \mathrm{~g}, 81 \%$ yield.
IR (neat): 3030, 1757, 1496, 1147, 912, $742 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.77$ (dd, $J=13.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.06 (dd, $\left.J=13.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.56(\mathrm{tt}, J=7.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.11(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArH}$), $7.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.30(\mathrm{dd}, J=7.2,7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=37.2\left(\mathrm{CH}_{2}\right), 50.7(\mathrm{CH}), 115.3\left(\mathrm{q}, J_{\mathrm{cF}}=294\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 126.9 (Ar), 128.7 (Ar), 128.9 (Ar), $137.6(\mathrm{Ar}), 194.1$ ($\mathrm{q}, J_{\mathrm{CF}}=35$ $\mathrm{Hz}, \mathrm{C}=0$).
${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=82.8\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}$: 292.1075; found: 292.1065.

4-(4-Methylphenyl)-3-(4-methylphenyl)methyl-1,1,1-trifluorobutan-2-one (8b)

$1.9 \mathrm{~g}, 47 \%$ yield.
IR (neat): 2925, 1757, 1516, 1211, 1147, $808 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71(\mathrm{dd}, J=13.8,6.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.00\left(\mathrm{dd}, J=13.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.51(\mathrm{tt}, J=7.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH), $6.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=21.0\left(\mathrm{CH}_{3}\right), 36.7\left(\mathrm{CH}_{2}\right), 50.7(\mathrm{CH}), 115.4(\mathrm{q}$, $J_{\mathrm{CF}}=294 \mathrm{~Hz}, \mathrm{CF}_{3}$), 128.8 (Ar), 129.3 (Ar), 134.5 (Ar), 136.4 (Ar), 194.3 (q , $J_{\text {CF }}=35 \mathrm{~Hz}, \mathrm{C}=0$).
${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=82.6\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}$: 320.1388; found: 320.1389 .
4-(4-Phenylphenyl)-3-(4-phenylphenyl)methyl-1,1,1-trifluorobutan-2-one (8c)
$2.7 \mathrm{~g}, 90 \%$ yield.
IR (neat): $3032,1753,1487,1167,1153,764 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.84$ (dd, $J=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.13 (dd, $\left.J=13.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.63(\mathrm{tt}, J=7.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.20(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArH}$), $7.34(\mathrm{tt}, J=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.43(\mathrm{dd}, J=8.1,7.4 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 7.52 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.57 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=36.7\left(\mathrm{CH}_{2}\right), 50.5(\mathrm{CH}), 115.4\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=293\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 127.0 (Ar), 127.3 (Ar), 127.4 (Ar), 128.8 (Ar), $129.4(\mathrm{Ar}), 136.6$ (Ar), 139.8 (Ar), 140.6 (Ar), 194.1 (q, JCF $=35 \mathrm{~Hz}, \mathrm{C}=0$).
${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=82.8\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}$: 444.1701; found: 444.1704.
4-(4-Chlorophenyl)-3-(4-chlorophenyl)methyl-1,1,1-
trifluorobutan-2-one (8d)
$16 \mathrm{~g}, 98 \%$ yield
IR (neat): 2931, 1759, 1493, 1217, 1149, $1093 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.72\left(\mathrm{dd}, J=13.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.02(\mathrm{dd}$, $\left.J=13.8,7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.47(\mathrm{tt}, J=7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.03(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.26 (d, J = $8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=36.4\left(\mathrm{CH}_{2}\right), 50.4$ (CH), 115.3 (q, JCF $=293$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 128.9 (ArH), $130.3(\mathrm{ArH}), 133.0(\mathrm{ArH}), 135.7(\mathrm{ArH}), 193.6\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}\right.$ $=35 \mathrm{~Hz}, \mathrm{C}=0$).
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 476 \mathrm{MHz}\right): \delta=83.7\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~F}_{3}$: 360.0296; found: 360.0295.
4-(4-Bromophenyl)-3-(4-bromophenyl)methyl-1,1,1-
trifluorobutan-2-one (8e)
$14 \mathrm{~g}, 78 \%$ yield.
IR (neat): $3026,1487,1163,1113,1072,1011 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.70\left(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.00 (dd , $\left.J=13.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.47(\mathrm{tt}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.97(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=36.5\left(\mathrm{CH}_{2}\right), 50.2(\mathrm{CH}), 115.3\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=293\right.$
$\mathrm{Hz}, \mathrm{CF}_{3}$), 121.1 (Ar), $130.6(\mathrm{Ar}), 131.9(\mathrm{Ar}), 136.3(\mathrm{Ar}), 193.5\left(\mathrm{q}, \mathrm{JcF}_{\mathrm{cF}}=35\right.$ $\mathrm{Hz}, \mathrm{C}=0$).
${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=82.6\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~F}_{3}$: 447.9267; found: 447.9265 .

6-Fluoro-5,12-dihydro[4]acene (9a)

$111 \mathrm{mg}, 36 \%$ yield.
IR (neat): 3024, 1373, 1327, 1279, $1034 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=4.08$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.19-$ 7.25 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 7.35 (m, 1H, ArH), 7.35-7.38 (m, 1H, ArH), 7.43-7.48 (m, 2H, ArH), 7.52 (s, 1H, ArH), 7.75-7.79 (m, 1H, ArH), 8.03-8.07 (m, 1H, ArH).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=28.4\left(\mathrm{~d}, J_{\mathrm{CF}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 36.4\left(\mathrm{~d}, J_{\mathrm{CF}}=2 \mathrm{~Hz}\right.$, CH_{2}), $119.0\left(\mathrm{~d}, J_{\mathrm{CF}}=17 \mathrm{~Hz}, \mathrm{Ar}\right), 120.2\left(\mathrm{~d}, J_{\mathrm{CF}}=5 \mathrm{~Hz}, \mathrm{Ar}\right), 120.4\left(\mathrm{~d}, J_{\mathrm{CF}}=4 \mathrm{~Hz}\right.$, Ar), 122.1 (d, JcF = $17 \mathrm{~Hz}, \mathrm{Ar}$), 125.4 (Ar), 126.1 (Ar), 126.4 (d, $J_{\mathrm{CF}}=1 \mathrm{~Hz}$, $\mathrm{Ar}), 126.9$ ($\mathrm{d}, \mathrm{J}_{\mathrm{CF}}=3 \mathrm{~Hz}, \mathrm{Ar}$), 127.4 (Ar), 127.7 (Ar), 133.1 ($\mathrm{d}, J_{\mathrm{CF}}=5 \mathrm{~Hz}, \mathrm{Ar}$), 135.5 (Ar), 136.4 (Ar), 136.49 (Ar), 136.52 (Ar), 154.8 (d, JcF $=250 \mathrm{~Hz}$, ArF),
${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=32.7$ (s, ArF).
HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}$: 248.1001; found: 248. 0999.

12-Phenyl-5,5a,6,11-tetrahydro[4]acene (13a)

$41 \mathrm{mg}, 83 \%$ yield.
IR (neat): 3018, 2927, 1483, 750, $702 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.72-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.00$ (dd, $J=13.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.41\left(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.46(\mathrm{~d}, J=18.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.02$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.07 (ddd, $J=7.4,7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.10-7.26$ (m, 6H, ArH), 7.38 (dddd, $J=7.4,7.4,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.43-7.49 (m, $2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=34.1,35.6,35.8,36.0,125.3,126.0,126.1$, $126.29,126.34,126.8,127.1,127.3,128.7,130.0,133.2,134.8,137.0$, 137.6, 138.1, 139.7.

HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{20}$: 308.1565; found: 308.1560.
12-(4-Methylphenyl)-5,5a,6,11-tetrahydro[4]acene (13b)
$0.43 \mathrm{~g}, 94 \%$ yield.
IR (neat): 3018, 2924, 1483, 910, 766, $729 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.85-$ $2.92(\mathrm{~m}, 2 \mathrm{H}), 2.98\left(\mathrm{dd}, J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.41(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.47 ($\mathrm{d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $6.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.03-7.19(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH})$, $7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=21.3,34.1,35.6,35.9,36.0,125.3,125.96$, $126.04,126.26,126.31,127.0,127.3,129.4,129.9,133.1,134.9,136.3$, 136.6, 137.06, 137.14, 137.4, 138.1.

HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{22}$: 322.1722; found: 322.1726.
12-[4-(Trifluoromethyl)phenyl]-5,5a,6,11-tetrahydro[4]acene (13c) $0.43 \mathrm{~g}, 86 \%$ yield.
IR (neat): 2931, 1323, 1122, 1066, $739 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.75\left(\mathrm{dd}, J=13.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.78-$ $2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.87\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.93(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 3.01 (dd, $J=13.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.37\left(\mathrm{~d}, J=19.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.41\left(\mathrm{~d}, J=19.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 6.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.02 (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.09 (ddd, $J=7.4,7.4,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.21(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.27-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.72(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=34.1,35.4,35.6,36.0,124.3\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=273 \mathrm{~Hz}\right.$, CF_{3}), 125.1, 125.7 ($\mathrm{q}, \mathrm{J}_{\mathrm{cF}}=2 \mathrm{~Hz}, \mathrm{Ar}$),126.2, 126.4, 126.47, 126.50, 127.3, $127.4,129.1$ (q, JcF $=32 \mathrm{~Hz}, \mathrm{Ar}), 130.5,132.1,134.8,136.3,136.5,137.9$, 138.5, 143.6.
${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=99.4\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3}$: 376.1439; found: 376.1438.
2,9-Dimethyl-12-phenyl-5,5a,6,11-tetrahydro[4]acene (13d)
$0.24 \mathrm{~g}, 93 \%$ yield.
IR (neat): 2922, 1491, 1441, 908, $810 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67-$ $2.80(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.94\left(\mathrm{dd}, J=13.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.38$ (br s, 2H), 6.43 (s, 1H, ArH), $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.11-7.29(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.38 (dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=21.0,21.2,34.1,35.3,35.4,36.3,126.0$, 126.6, 126.7, 126.9, 127.2, 128.1, 128.6, 130.0, 131.9, 133.2, 135.0, 135.7, 135.8, 136.8, 137.8, 139.8.

HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{24}$: 336.1878; found: 336.1878.

2,9,12-Triphenyl-5,5a,6,11-tetrahydro[4]acene (13e)

$0.19 \mathrm{~g}, 80 \%$ yield.
IR (neat): 3028, 1481, 908, 760, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.81\left(\mathrm{dd}, J=13.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.83-$ $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.93\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.98(\mathrm{dd}, J=14.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $3.06\left(\mathrm{dd}, J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.55$ (d, $J=19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 6.87 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.20-7.28(\mathrm{~m}, 6 \mathrm{H}$, ArH), 7.28-7.34 (m, 4H, ArH), 7.35-7.42 (m, 6H, ArH), 7.43-7.49 (m, 2H, ArH), 7.54 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=34.4,35.3,35.6,36.1,124.2,124.8,124.9$, $126.2,126.8,126.96,127.00,127.5,127.8,128.55,128.65,128.8,130.0$, 133.4, 134.0, 137.2, 137.3, 137.9, 139.39, 139.43, 139.5, 141.1, 141.4.

HRMS (APCI ${ }^{+}$): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{29}$: 461.2269; found: 461.2269.
2,9-Dichloro-12-phenyl-5,5a,6,11-tetrahydro[4]acene (13f)
$0.23 \mathrm{~g}, 89 \%$ yield.
IR (neat): 2931, 1477, 904, $727,700 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.68\left(\mathrm{dd}, J=13.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.71-$ $2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80\left(\mathrm{dd}, J=13.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.88(\mathrm{dd}, J=13.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 2.96 (dd, $\left.J=13.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35\left(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.40\left(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 6.59(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.04 (dd, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.06-7.23 (m, 5H, ArH), 7.40 (dd, $J=7.1$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.44-7.53 (m, 2H, ArH).
${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=34.0,34.8,35.0,35.8,125.3,126.0,126.1$, $127.3,128.2,128.6,129.0,129.8,131.8,132.1,133.0,136.2,138.1,138.4$, 138.48, 138.52.

HRMS (APCI ${ }^{+}$): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2}$: 377.0864; found: 377.0867.

2,9-Dibromo-12-phenyl-5,5a,6,11-tetrahydro[4]acene (13g)
$0.14 \mathrm{~g}, 70 \%$ yield.
IR (neat): 2929, 1473, 1074, 806, $702 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.65(\mathrm{dd}, J=13.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2), 2.69-$ $2.81(\mathrm{~m}, 2 \mathrm{H}), 2.85\left(\mathrm{dd}, J=13.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.93(\mathrm{dd}, J=13.8,4.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $3.34\left(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 6.73$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.02 ($\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.03(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.08-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.19(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.26 (dd, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.40 (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.43-7.51 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=34.0,34.9,35.1,35.7,119.9,120.2,127.3$, $128.1,128.6,128.9,129.0,129.05,129.07,129.8,130.2,132.9,133.5$, 136.7, 138.1, 138.5, 138.8, 138.9.

HRMS (APCI ${ }^{+}$): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Br}_{2}$: 466.9833; found: 466.9831.

6,11,11a,12-Tetrahydrotetracen-5-yl trifluoromethanesulfonate (15a)
$0.11 \mathrm{~g}, 87 \%$ yield.
IR (neat): 2935, 1415, 1207, 1138, 972, $744 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.72-2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.85-2.96(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2}+\mathrm{CH}\right), 3.83\left(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.14-$ $7.28(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=30.6,34.2,34.9,37.0,118.5\left(\mathrm{q}, J_{\mathrm{CF}}=321 \mathrm{~Hz}\right.$, CF_{3}), 121.1, 126.6, 126.9, 127.0, 127.4, 127.5, 127.9, 128.3, 129.7, 133.2, 133.8, 134.9, 137.1, 139.8.
${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 476 \mathrm{MHz}$): $\delta=88.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
HRMS (EI): m/z [M-SO2 $\left.\mathrm{CF}_{3}\right]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}$: 247.1123; found: 247.1120.

6-Methyl-6,11,11a,12-tetrahydro[4]acen-5(5aH)-one (16a, dr = 78:22)
$0.23 \mathrm{~g}, 86 \%$ yield.
IR (neat): 2922, 1680, 1603, 1282, $744 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.48\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}^{*} 0.78, \mathrm{CH}_{3}\right), 1.54(\mathrm{~d}, J$ $\left.=7.4 \mathrm{~Hz}, 3 \mathrm{H}^{*} 0.22, \mathrm{CH}_{3}\right), 2.18-2.28\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.78\right), 2.35(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}^{*} 0.78, \mathrm{CH}_{2}$), 2.78-2.90 (m, 3H*0.22), 2.77-2.89 (m, 2H*0.78), 2.91-2.98 (m, 1H* 0.78), 3.00 (dd, $J=6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.22$), $3.08(\mathrm{dd}, J=4.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}^{*} 0.22$), 3.13 (dd, $J=16.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.78, \mathrm{CH}_{2}$), $3.24-3.31\left(\mathrm{~m}, 2 \mathrm{H}^{*} 0.22\right.$), $3.65\left(\mathrm{qd}, J=7.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.78, \mathrm{CH}\right), 6.99\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.22\right), 7.07-$ $7.12\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.22, \mathrm{ArH}\right), 7.10\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}^{*} 0.78, \mathrm{ArH}\right), 7.14-7.23(\mathrm{~m}$, $\left.2 \mathrm{H}^{*} 0.22, \mathrm{ArH}\right), 7.18-7.22\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.78, \mathrm{ArH}\right), 7.24-7.28\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.22\right.$, ArH$)$, $7.25\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.78, \mathrm{ArH}\right), 7.29-7.34\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.22, \mathrm{ArH}\right), 7.31(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.78, \mathrm{ArH}$), 7.33 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.78, \mathrm{ArH}$), $7.46-7.50(\mathrm{~m}$,
$1 \mathrm{H}^{*} 0.22, \mathrm{ArH}$), 7.48 (ddd, $J=7.8,7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.78$, ArH), 7.94 (d, $J=7.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{*} 0.22, \mathrm{ArH}\right), 8.06\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.78, \mathrm{ArH}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=19.2$ (minor, CH_{3}), 26.5 (major, CH_{3}), 32.2 (major), 32.5 (minor), 34.5 (minor), 34.6 (minor), 35.6 (minor), 37.1 (major), 37.4 (major), 37.8 (major), 51.0 (minor), 57.2 (major), 125.3 (major, Ar), 125.8 (minor, Ar), 126.1 (minor, Ar), 126.6 (major, Ar), 126.6 (minor, Ar), 126.7 (major, Ar), 126.7 (minor, Ar), 126.9 (minor, Ar), 127.4 (major, Ar), 128.0 (major, Ar), 128.5 (major, Ar), 128.6 (major, Ar), 128.9 (minor, Ar), 129.3 (minor, Ar), 132.6 (minor, Ar), 133.3 (major, Ar), 133.9 (minor, Ar), 134.8 (major, Ar), 140.2 (minor, Ar), 141.5 (major, Ar), 141.7 (minor, Ar), 142.7 (major, Ar), 198.9 (major, C=0), 199.7 (minor, C=0).

HRMS (APCI ${ }^{+}$): $m / z[M]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}: 262.1358$; found: 262.1365.
6-Phenyl-6,11,11a,12-tetrahydro[4]acen-5(5aH)-one (16b, dr = 93:7)
$0.42 \mathrm{~g}, 65 \%$ yield.
IR (neat): 2906, 1684, 1601, 1284, $750 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 2.37-2.47\left(\mathrm{~m}, 1 \mathrm{H}^{*} 0.07\right), 2.86-3.04(\mathrm{~m}, 4 \mathrm{H})$, $3.12-3.19$ (m, 1H*0.93), 3.21 ($\mathrm{d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.07$), 3.37 (dd, $J=6.1,4.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{*} 0.93\right), 4.72\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.93, \mathrm{CH}\right), 4.94\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.07\right)$, 6.97-7.05 (m, 4H*0.93, ArH), 6.97-7.05 (m, 3H*0.07, ArH), 7.08-7.23 (m, $5 \mathrm{H}^{*} 0.07, \mathrm{ArH}$), $7.10\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}^{*} 0.93, \mathrm{ArH}\right.$), $7.12-7.21\left(\mathrm{~m}, 5 \mathrm{H}^{*} 0.93\right.$, ArH), 7.28 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.07, \mathrm{ArH}$), $7.29-7.33\left(\mathrm{~m}, 2 \mathrm{H}^{*} 0.07, \mathrm{ArH}\right), 7.31$ $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.93, \mathrm{ArH}\right), 7.47\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.07, \mathrm{ArH}\right), 7.80(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.93, \mathrm{ArH}$), 7.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{*} 0.07, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=33.3$ (major), 33.4 (major), 33.8 (major), 37.3 (minor), 37.80 (minor), 37.83 (minor), 43.8 (minor), 46.7 (major), 51.5 (major), 58.2 (minor), 125.7 (minor, Ar), 125.8 (minor, Ar), 126.0 (major, Ar), 126.3 (major, Ar), 126.7 (major, Ar), 126.7 (minor, Ar), 126.8 (minor, Ar), 127.0 (major, Ar), 127.5 (major, Ar), 127.9 (minor, Ar), 128.4 (minor, Ar), 128.5 (major, Ar), 128.5 (minor, Ar), 129.0 (minor, Ar), 129.1 (major, Ar), 129.6 (major, Ar), 130.4 (major, Ar), 130.7 (minor, Ar), 133.0 (major, Ar), 133.3 (minor, Ar), 135.3 (major, Ar), 137.9 (major, Ar), 139.6 (minor, Ar), 141.8 (major, Ar), 142.2 (major, Ar), 142.4 (minor, Ar), 148.8 (minor, Ar), 198.3 (minor, C=0), 199.9 (major, C=0).
HRMS (APCI^{+}): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}$: 324.1514; found: 324.1514.

11,12-Dimethyl-5,5a,6,11-tetrahydro[4]acene (17a)

$0.15 \mathrm{~g}, 71 \%$ yield.
IR (neat): 2922, 1485, 1450, 756, $729 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (CDCl $3,500 \mathrm{MHz}$): $\delta=1.36\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.16(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.43-2.53(m,1H), $2.70(\mathrm{dd}, J=14.7,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.84(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.10(\mathrm{dd}, J=$ 7.2, 1.2 Hz, 1H, ArH), 7.12-7.17 (m, 4H, ArH), 7.17-7.22 (m, 2H, ArH), 7.29 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 24.5,34.7,36.7,36.9,38.5$, $122.6,125.2,125.8,126.0,126.4,126.7,126.8,127.4,127.6,135.7,137.2$, 137.5, 141.1, 142.1.

HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20}$: 260.1565 ; found 260.1566

11-Methyl-12-phenyl-5,5a,6,11-tetrahydro[4]acene (17b)

A yellow solid, Mp. $134.9-135.9^{\circ} \mathrm{C}, 0.13 \mathrm{~g}, 74 \%$ yield.
IR (neat): 2924, 1483, 1458, 766, 750, $702 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=1.12\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69-2.78(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}$), 2.85-2.95 (m, 4H), $3.80(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 6.98-7.02$ (m, 2H, ArH), 7.08 (dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.10-$ 7.23 (m, 5H, ArH), 7.23-7.29 (m, 1H, ArH), 7.39 (dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.41-7.50 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=24.4\left(\mathrm{CH}_{3}\right), 34.6,36.79,36.81,38.4,125.5$, 126.1, 126.3, 126.77, 126.79, 126.82, 127.2, 127.7, 128.6, 130.3, 130.5, 133.9, 135.3, 137.0, 137.8, 139.7, 141.9, 142.7.

HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{22}$: 322.1722; found 322.1734.
11,12-Diphenyl-5,5a,6,11-tetrahydro[4]acene (17c)
Colorless crystals, Mp. 211.7-212.5 ${ }^{\circ} \mathrm{C}, 0.12$ g, 64% yield.

IR (neat): 3020, 1491, 908, 729, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.57\left(\mathrm{dd}, J=13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76$ (dd, $J=13.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.82 (dd, $J=12.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.91 (dd, $J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10\left(\mathrm{dd}, J=15.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.63 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.98 (br s, 1H, ArH), 7.01-7.06 (m, 2H, ArH), 7.10 (dd, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.12-7.17$ (m, 4H, ArH), 7.19 (ddd, $J=$ 7.1, 7.1, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.21-7.33$ (m, 6H, ArH), 7.43 (br s, 1H, ArH).
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=34.3,35.9,37.3,48.6$ (CH), 125.7, 126.1, $126.4,126.5,126.6,126.7,126.8,127.0,127.78,127.83,128.4,130.1$, 136.1, 136.3, 137.6, 138.3, 139.1, 139.3, 139.8, 143.5.

HRMS (EI): $m / z[M]+$ calcd for $\mathrm{C}_{30} \mathrm{H}_{24}$: 384.1878; found 384.1890.

5,6-Dimethyl-5,12-dihydro[4]acene (18a)

$38 \mathrm{mg}, 77 \%$ yield.
IR (neat): 2960, 1450, 1020, 874, $744 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=1.38\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.01\left(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.29\left(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.56(\mathrm{q}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.17-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.32$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.38-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.
${ }^{13}{ }^{13}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=13.9\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 36.0,39.0,124.0$ (Ar), 124.3 (Ar), 124.9 (Ar), 125.1 (Ar), 126.2 (Ar), 126.5 (Ar), 127.35 (Ar), 127.42 (Ar), 127.9 (Ar), 129.5 (Ar), 131.8 (Ar), 132.2 (Ar), 134.4 (Ar), 136.0 (Ar), 137.9 (Ar), 142.2 (Ar).

HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18}$: 258.1409; found 258.1404.
5-Methyl-6-phenyl-5,12-dihydro[4]acene (18b)
Colorless crystals, Mp. $136.5-137.1^{\circ} \mathrm{C}, 22 \mathrm{mg}, 77 \%$ yield.
IR (neat): 2964, 2925, 1506, 1030, $750 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (CDCl $3,500 \mathrm{MHz}$): $\delta=1.23\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.07(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.11\left(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.38\left(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.11 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.25-7.29 (m, 2H, ArH), 7.33 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.38-7.41$ (m, $1 \mathrm{H}, \mathrm{ArH}), 7.43$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r H), 7.47-7.57$ (m, 3H, ArH), 7.80 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=22.4\left(\mathrm{CH}_{3}\right), 36.1,39.3,125.12(\mathrm{Ar}), 125.15$ (Ar), 125.7 (Ar), 126.1 (Ar), 126.4 (Ar), 126.5 (Ar), 127.0 (Ar), 127.16 (Ar), $127.20(\mathrm{Ar}), 127.5(\mathrm{Ar}), 128.2(\mathrm{Ar}), 128.5(\mathrm{Ar}), 130.1(\mathrm{Ar}), 130.6(\mathrm{Ar})$, 132.0 (Ar), 132.1 (Ar), 134.6 (Ar), 136.0 (Ar), 136.9 (Ar), 138.1 (Ar), 139.3 (Ar), 142.4 (Ar).

HRMS (EI): $m / z[M]+$ calcd for $\mathrm{C}_{25} \mathrm{H}_{20}$: 320.1565; found 320.1549.
5,6-Diphenyl-5,12-dihydro[4]acene (18c)
Colorless crystals, Mp. 202.7-203.2 ${ }^{\circ} \mathrm{C}, 40 \mathrm{mg}, 76 \%$ yield.
IR (neat): 3057, 1502, 1261, 1030, $731 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=3.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.86(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.03-7.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.15-7.22 (m, 2H, ArH), 7.23-7.34 (m, 5H, ArH), 7.37-7.46 (m, 3H, ArH), 7.48 (dd, $J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.86(\mathrm{~s}, 1 \mathrm{H}$, ArH).
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=36.9\left(\mathrm{CH}_{2}\right), 49.4(\mathrm{CH}), 125.3(\mathrm{Ar}), 125.5$ (Ar), 125.76 (Ar), 125.83 (Ar), 126.3 (Ar), 126.5 (Ar), 126.7 (Ar), 127.27 (Ar), 127.30 (Ar), 127.57 (Ar), 127.60 (Ar), 127.9 (Ar), 128.0 (Ar), 128.1 (Ar), 128.3 (Ar), 130.1 (Ar), 130.3 (Ar), 131.9 (Ar), 132.4 (Ar), 135.5 (Ar), 136.1 (Ar), 137.3 (Ar), 138.2 (Ar), 138.8 (Ar), 140.9 (Ar), 142.4 (Ar).

HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{22}$: 382.1722; found 382.1732.

Funding Information

This research was financially supported by JSPS KAKENHI Grant Number JP19H02707 (J.I.) in Grant-in-Aid for Scientific Research (B), JSPS KAKENHI Grant Number 20K21186 (J.I.) in Grant-in-Aid for Challenging Research (Exploratory), and JSPS KAKENHI Grant Number 20K05486 (K.F.) in Grant-in-Aid for Scientific Research (C).

Acknowledgment

TOSOH FINECHEM CORPORATION is acknowledged for the generous gift of Ruppert's reagent. Central Glass Co., Ltd. is acknowledged for the generous gifts of HFIP, TfOH, and $\mathrm{Tf}_{2} \mathrm{O}$. We thank Ms. K. Kudo for the collection of spectral data of compounds.

Supporting Information

YES

Primary Data

NO

References

(1) For general reviews on PAHs, see: (a) Laarhoven, W. H.; Prinsen, W. J. C. Top. Curr. Chem. 1984, 125 63. (b) R. G. Harvey, Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity, Cambridge University Press, New York, 1991. (c) R. G. Harvey, Polycyclic Aromatic Hydrocarbons, Wiley-VCH, New York, 1997. (d) J. C. Fetzer, Large ($C>=24$) Polycyclic Aromatic Hydrocarbons: Chemistry and Analysis, Wiley-Interscience, New York, 2000. For reviews on the synthesis of PAHs, see: (e) Hagen, S.; Hopf, H. Top. Curr. Chem. 1998, 196, 45. (f) Mallory, F. B.; Mallory, C. W. Org. React. 2004, 30, 1. (g) Jørgensen, K. B. Molecules 2010, 15, 4334. (h) Stara, I. G.; Stary, I. Sci. Synth. 2010, 45b, 885. (i) Zade, S. S.; Bendikov, M. Angew. Chem. Int. Ed. 2010, 49, 4012. (j) Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463.
(2) (a) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (b) Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452. (c) Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 024313. (d) Operamolla, A.; Farinola, G. M. Eur. J. Org. Chem. 2011, 2011, 423.
(3) (a) Gundlach, D. J.; Lin, Y. Y.; Jackson, T. N.; Nelson, S. F.; Schlom, D. G. IEEE Electron Device Lett. 1997, 18, 87. (b) Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. IEEE Electron Device Lett. 1997, 18, 606.
(4) (a) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123, 9482 . (b) Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E. Adv. Mater. 2003, 15, 2009.
(5) Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644.
(6) For a review on the synthesis of acenes, see: Hagui, W.; Doucet, H.; Soulé, J.-F. Chemistry 2019, 5, 2006.
(7) (a) Smart, B. E., Organofluorine Chemistry, Principles and Commercial Applications, Plenum Press, New York, 1994. (b) Uneyama, K., Organofluorine Chemistry, Blackwell Publishing, Oxford, 2006. (c) Bégué, J.-P.; Bonnet-Delpon, D., Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008.
(8) (a) Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Angew. Chem. Int. Ed. 2017, 56, 5890. See also: (b) Fuchibe, K.; Oki, R.; Hatta, H.; Ichikawa, J. Chem. Eur.J. 2018, 24, 17932. (c) Fuchibe, K.; Fushihara, T.; Ichikawa, J. Org. Lett. 2020, 22, 2201.
(9) Ichikawa, J.; Jyono, H.; Kudo, T.; Fujiwara, M.; Yokota, M. Synthesis 2005, 200539.
(10) (a) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem. Int. Ed. 2008, 47, 4870. (b) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem. Eur. J. 2011, 17, 12175. (c) Fuchibe, K.; Takao, G.; Takahashi, H.; Ijima, S.; Ichikawa, J. Bull. Chem. Soc. Jpn. 2019, 92, 2019.
(11) For another example of our methylarene-based synthesis of PAHs, see ref 10 c .
(12) (a) Walter, M. W.; Adlington, R. M.; Baldwin, J. E.; Chuhan, J.; Schofield, C. J. Tetrahedron Lett. 1995, 36, 7761. (b) Wiedemann, J.; Heiner, T.; Mloston, G.; Prakash, G. K. S.; Olah, G. A. Angew. Chem. Int. Ed. 1998, 37, 820.
(13) 5-Fluoro[4]acene 3a was not isolated in pure form.
(14) For reviews on the Friedel-Crafts alkykation, see: (a) Price, C. C. Org. React. 1946, 3, 1. (b) Rueping, M.; Nachtsheim, B. J. Beilstein J. Org. Chem. 2010, 6, 6.
(15) (a) Ichikawa, J.; Miyazaki, S.; Fujiwara, M.; Minami, T. J. Org. Chem. 1995, 60, 2320. (b) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 2004, 18. (c) Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2007, 2925. (d) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Nat. Rev. Chem. 2017, 1, 0088. (e) Takahashi, I.; Fujita, T.; Shoji, N.; Ichikawa, J. Chem. Commun. 2019, 55, 9267.
(16) DFT calculations indicated that trans-4a is more stable than cis-4a by $1.7 \mathrm{kcal} / \mathrm{mol}$.
(17) Generation of ketones from difluoromethylene compounds can be explained by substitution of OTf for F followed by O-S and C-F bond cleavage. However, this mechanism is unlikely in our case, because SbF_{5} did not afford difluoromethylene compound 11a but ketone 4a. See: Kethe, A.; Tracy, A. F.; Klumpp, D. A. Org. Biomol. Chem. 2011, 9, 4545.
(18) Two equivalents of TfOH with regard to 2 were used based on the 2/10 ratio determined by ${ }^{19} \mathrm{~F}$ NMR analysis.
(19) Partially saturated structures were proposed for $\mathbf{1 4}$ based on GCMS analysis, while their saturated positions were not determined.
(20) Under microwave irradiation, partial dehydrogenation products 14 were obtained as a mixture of two isomers.
(21) Using a cannular in place of a glass filter resulted in the formation of 14. Rapid gas flow ($120 \mathrm{~mL} / \mathrm{min}$) shortened the reaction time but solvent tended to be lost.
(22) Stang, P. J.; Treptow, W. Synthesis 1980, 283.
(23) Espino, G.; Kurbangalieva, A.; Brown, J. M. Chem. Commun. 2007, 1742.
(24) House, H. O.; Bashe, R. W. J. Org. Chem. 1967, 32, 784.
(25) Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474.
(26) Complete dehydrogenation was not observed presumably because of steric congestion of the two substituents.
(27) Chen, M.; Chen, Y.; Liu, Y. Chem. Commun. 2012, 48, 12189.

[^0]: ${ }^{a}{ }^{1} \mathrm{H}$ NMR yield based on an internal standard $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{Me}\right)_{2}$. ${ }^{\mathrm{b}} \mathbf{2 a} / \mathbf{1 0 a}=95: 5$ to 97:3. ${ }^{\mathrm{c}} \mathbf{2 a}$ was recovered in 53% yield.

