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Detecting non-engagement test answering behavior is a crucial task in situations where the 
tests are low-stakes for the individuals but the scores are employed in decision-making. Nagy 
and Ulitzsch (2022) proposed four test engagement models, but their estimations were conducted 
using maximum likelihood estimation. This study applied the Bayesian estimation method to the 
test engagement models. Bayesian formulation of the test engagement models was introduced and 
estimation was conducted using ＂just another Gibbs sampler＂ language. Real data analysis was 
conducted and problems were discussed regarding the future orientation of the Bayesian framework 
in test answering behavior modeling.
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1. Introduction

Test scores may be considered as a compound of 
individual proficiencies, test items characteristics, 
and several uncontrivable error factors. Item 
response theory models (IRT; e.g., Embretson & 
Reise, 2000) are popular frameworks used to 
ana lyze  academic  tes t s .  Severa l  c l ass ica l 
unidimensional  IR T models only assume a 
continuous latent proficiency and item characteristic 
parameters such as difficulty, discrimination, and 
guessing parameters. Unidimensional IRT models 
have been employed in large scale assessments 

because of their simplicity. 
However, such simple IR T models idealize 

individual item responses, and so, their model 
assumptions may not uphold in all testing situation. 
For example, test takers do not seriously take a test 
if the results do not af fect their lives. In other 
words, test takers are not engaged in the test in 
low-stakes settings; for example, when a test is 
conducted to investigate current student learning 
states for deciding educational policies. In such 
cases, the test results are used by a government but 
do not directly affect individual test takers, and test 
takers have no incentive to seriously answer the 
items. Therefore, item responses are affected not 
only by academic proficiency, but also motivation for 
the test (e.g., Finn, 2015).

Without considering such disengaged responses 
and applying classical IR T models, the model 
parameters estimates may be biased because test 
taking motivation is a nuisance factor and it is 
neglected in the classical IRT models. If impactful 
policy decisions rely on such distorted results, it 
would be problematic because the results do not 
purely reflect actual individuals ＇ proficiency. 
Therefore, considering test engagement behaviors is 
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important to avoid misleading results. 
One issue of classical IRT models is that the item 

responses are dichotomous and have limited 
information; therefore, external variables are 
required to model test engagement behaviors. One 
well-studied information regarding this is response 
time, and De Boeck and Jeon (2019) provided a 
review on the use of response times. Response 
times can be easily gathered in computer-based 
tests without huge data collecting cost (Ferrando & 
L o r e n z o - S e v a ,  2007 )  a n d  P r o g r a m m e  f o r 
International Student Assessment (PISA) also 
recorded response time data (Organisation for 
Economic Co-operation and Development; OECD, 
n.d.). Fur ther, response times can be used in 
adaptive testing in which test items are selected 
according to participant＇s responses. Considering 
the response time and information per time unit, 
measurement time can be minimized. However, this 
research does not study this method, but instead, 
focused on response times for modeling tests 
engagement behavior. 

Response times and item responses were 
simultaneously modeled in the hierarchical Bayesian 
framework by van der Linden (2007). In addition, 
Ulitzsch et al. (2020) extended a joint modeling of 
item response and response times and modeled skip 
behavior. Pohl et al. (2019) employed a response 
time to model unreached responses. Ulitzsch et al. 
(2020) modeled missing responses due to low 
engagement with response times, and Ulitzsch, 
Penk, et al. (2021) provided a test-taking ef fort 
model using response times. Furthermore, Nagy 
and Ulitzsch (2022) formalized four types of test 
engagement models. While other variables, such as 
click streams (Ulitzsch, He, et al., 2021), may be 
used to provide another insight on test engagement 
behavior, we focused on response time in this study. 

Nagy and Ulitzsch＇s (2022) models were based on 
previous theoretical assumption of test engagement 
behaviors, making ever y par t of the model 
interpretable. The four models were classified 
according to dependency of engagement, latent 
variables, and assumption of latent continuous 
variables. Therefore, these models were called 1) 
dependent latent class IRT model with single-level 
relationships of response times (DLC-SL-IRT), 2) 
dependent latent class IRT model with two-level 

relationships of response times (DLC-TL-IRT), 3) 
independent latent class IRT model with a random 
effect of the latent class variable on response times 
(ILC-RE-IRT), and 4) independent latent class IRT 
model with a random intercept of response times 
(ILC-RI-IRT). They also provided estimation scripts 
with Mplus (Muthén & Muthén, 1998-2017). One 
common important feature of their models was the 
introduction of a latent engagement indicator 
variable; this allowed modeling of item responses 
and response times under engaged and disengaged 
cases. As a statistical model, their models were a 
mixture of latent variable model, and were flexible in 
understanding engaged behavior. However, these 
models required maximum likelihood estimation. 

Bayesian estimation has several benefits for Nagy 
and Ulitzsch＇s (2022) models. First, disengagement 
may be rare and estimating parameters under 
disengagement with maximum likelihood could 
become difficult. Bayesian estimation could easily 
incorporate domain knowledge as prior distributions 
(e.g., Lee & Wagenmakers, 2013). In addition, test 
engagement behaviors were modeled as hierarchical 
models with several random effects; therefore, the 
maximum likelihood estimation was unstable 
because of a multiple integration problem. Bayesian 
estimation is feasible even when multiple latent 
factors are contained. The original parameter 
estimation with Mplus in Nagy and Ulitzsch＇s (2022) 
models required special data structure and did not 
directly represent data generating str ucture. 
Bayesian estimation, with Markov chain Monte 
Carlo (MCMC) which was implemented in this 
s tudy,  d i rect ly  expressed data  generat ing 
mechanisms and was easily programmed with ＂just 
another Gibbs sampler＂ (JAGS; Plummer, 2003) 
language. This also allowed model extensions to 
include variables that could be another information 
source, but it might be dif ficult under current 
maximum likelihood estimation. Finally, Bayesian 
formulation provided several model check methods, 
such as posterior predictive model check or widely 
applicable information criterion (WAIC; Watanabe, 
2018) that have practically and theoretically sound.

This study extends test engagement models 
developed by Nagy and Ulitzsch (2022) to Bayesian 
formulation and implements Bayesian estimation 
with JAGS language. The next section provides 
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Bayesian formulation of the four models. The four 
types of Bayesian models were applied to real data 
that was analyzed by Nagy and Ulitzsch (2022) and 
the four models ＇  parameter estimates were 
compared in the fourth section. The conclusion and 
further discussion are provided in the fifth section.

2. Model Formulation

2.1. Item Response Function
We borrowed basic notations from Nagy and 

Ulitzsch＇s (2022) models. The essential idea of the 
modeling framework of Nagy and Ulitzsch (2022) 
was to introduce a latent engagement indicator 
variable to represent the connection among the test 
engagement, response time, and item responses. 
Therefore, Nagy and Ulitzsch＇s (2022) models could 
be classified as mixture models. 

Let an item response variable of an individual i∈
{1,…,I}for an item j∈{1,…,J} be y ij. The correct item 
response is represented as y ij＝1 and wrong answer 
is y ij＝0. In addition, latent dichotomous variable, C ij, 
represents an engagement indicator; if the i  th 
individual was engaged for responding the j th item, 
then C ij＝1, otherwise C ij＝0. Engaged correct item 
response function was modeled as a two-parameter 
logistic IRT model:

P(y ij＝1 |θ i,a j,b j,C ij＝1)＝
exp(a j (θ i－b j))

――――――――
1 ＋exp(a j (θ i－b j))) 

, (1)

where θ i is an individual＇s latent proficiency, a j is an 
item discrimination parameter taking positive value, 
and b j is a dif ficulty parameter. In this study, 
probabil i ty mass and density functions are 
represented by the same notation, P(・), and are 
distinguished based on their arguments. We also use 
P(・) to define a distribution of its argument. The 
i tem response funct ion of  Equat ion (1)  is 
conditioned on latent engagement indicator. A 
disengaged response was modeled as random 
guessing:

 P(y ij＝1 |g j, C ij＝0)＝g j, (2)

where 0  ≤ g  j ≤0 .5 .  This means that the item 
response is not dependent on latent proficiency at all 
in disengaged cases and the value of g j should be 
sufficiently small. For simplicity, it is possible to 
think a common guessing: g j＝g,∀j. Combining 

Equations (1) and (2), the item response function is 
defined as follows:

P(y ij＝1 |θ i, a j, b j,  g, C ij)

　＝{ exp (a j(θ i－b j))
――――――――
1 ＋exp(a j(θ i－b j))

 }Cij 

g1－Cij. (3)

The complete data likelihood of an item response is 
expressed as follows:

P(yij|θi, aj, bj, g, Cij)  
　＝P(y ij＝1|θ i,a j,b j, g,C ij)

yij{1－P(y ij＝1|θ i,a j,b j, g,C ij)}1－yij. 
 (4)

Assuming random sampling of individuals and 
conditional independence (also known as local 
independence), the joint likelihood of item response 
matrix Y whose i  th row and j  th column is y ij is as 
follows:

P(Y|θ, a , b , g, C)＝∏
i
∏

j
 P(y ij|θ i, a j, b j, g, C ij), (5)

where θ, a , b , and C  are sets of latent variables and 
item parameters: {θ 1,…,θ  I}, {a  1,…,a J}, {b  1,…,b J}, and 
{C  11,…,C IJ}. In addition to the likelihood function, 
prior distributions should be specified for Bayesian 
estimation. In this study, the prior of item difficulty 
parameter, P(b j), is a normal distribution with mean 
μ  bj and variance σ  2

bj, denoted as N(μ  bj, σ  2
bj ). Here, 

subscr ip ts  on  hyper -parameters  represent 
corresponding model parameters. Similarly, the prior 
of item discrimination parameter, P(a  j), is a 
truncated normal distribution whose mean and 
variance are μ aj and σ 2

aj: N(μ aj,σ
 2
aj)I(a ij >0), where I(・) 

is an indicator function for restricting the support of 
a j as positive. The prior for guessing parameter is a 
truncated beta distribution: P(g)＝Beta(α,β)I(g＜ 
0.3), where Beta(α,β) is beta distribution with 
parameter α and β with the upper limit 0.3. This 
upper limit shows that the correct response under 
the disengaged condition should be small. Note that 
prior means and variances can set other values if 
there are suf ficient empirical knowledge. The 
differences among the models are assumption of the 
distributions of laten proficiency P(θ  i), the latent 
engagement indicator P(C ij), and modeling of the 
logarithm of item response time of an individual i 
for an item j, which is denoted by l ij.
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2.2. DLC-SL-IRT model
The DLC-SL-IR T model assumes that latent 

engagement is determined by response time. More 
formally, latent engagement probability is modeled 
as a logistic regression form: 

P(C ij＝1 |l ij,γ,τ j)＝
exp(γ(l ij－τ j))

―――――――
1＋exp(γ(l ij－τ j))

. (6)

The parameter γ is a common slope parameter over 
items and similar to a discrimination parameter in 
IRT models; therefore, the γ indicates engagement 
sensitively associated with the log item response 
time. τ  j is an item-specific threshold parameter, 
which is analog to the difficulty parameter in IRT 
models, determining difficulty of engagement. 

The latent proficiency parameter θ in the DLC-SL-
IRT model only affects item response and does not 
relate to engagement. Therefore, prior latent 
proficiency in the DLC-SL-IRT model is the standard 
normal distribution for model identification: P(θ i)＝
N(0,1). In addition, individual engagement tendency 
is not assumed in the DLC-SL-IRT model; therefore, 
all the information of an individual to determine 
engagement is contained in a single item response 
time. Similar to item response function, priors for γ 
and τ  j are assumed to be a truncated normal 
distribution and a normal distribution, respectively: 
P(γ)＝N(μ γ ,σ γ

2) I(γ>0) and P(τ j)＝N(μ τj,σ
 2
τj) . 

We can marginalize latent class indicator in the 
DLC-SL-IRT model because latent engagement 
indicator C ij is defined for a single item response. 
This  marginal izat ion helps to  improve the 
convergence of MCMC iterations. Then, the 
marginalized correct item response probability can 
be written as follows:

P(y ij＝1 |l ij, θ i, a j, b j, g, γ, τ j)

　＝
1

∑ 
cij＝0

P(y ij＝1 |θ i,a j, b j,g,C ij＝c ij)P(C ij＝c ij|l ij, γ,τ j)

　＝P(y ij＝1 |θ i, a j, b j, C ij＝1)P(C ij＝1 |l ij, γ, τ j)
　　＋P(y ij＝1 |g, C ij＝0)P(C ij＝0 |l ij, γ, τ j),

　＝{ exp(a j(θ i－b j))
――――――――
1 ＋exp(a j(θ i－b j)) }{ exp(γ(l ij－τ j))

――――――――
1 ＋exp(γ(l ij－τ j)) }

　　＋g{1－ exp(γ(l ij－τ j))
―――――――
1 ＋exp(γ(l ij－τ j)) }. (7)

In the MCMC procedure, latent engagement 
indicators can be gained as generated quantities if 

they are required.
Fina l ly,  the  fu l l  condi t ional  poster ior  is 

proportional to a product of the complete likelihood 
and priors:

P(θ, a , b , g, γ, τ|Y, L)∝
　　P(Y|L,θ,a ,b , g, γ,τ)P(θ)P(a)P(b)P(g)P(γ)P(τ)

＝{∏i
∏

j
P(y ij|l ij, θ i, a j, b j, g, γ, τ j)}{∏i

P(θ i)}
　　×{∏j

P(a j)P(b j)P(τ j)}P(g)P(γ), (8)

where τ is a set of threshold parameter {τ  1,…,τ  J}, 
and L is a log item response time matrix whose 
element of the i th row and j th column is l ij. 

2.3. DLC-TL-IRT model 
To relax the DLC-SL-IRT model assumptions, the 

DLC-TL-IR T model introduces the individual 
engagement difficulty parameter ζ  i in Equation (6) 
and the engagement probability is defined as 
follows:

P(C ij＝1 |l ij,γ,τ j,ζ i)＝
exp(γ[l ij－(τ j＋ζ i)])

――――――――――
1 ＋exp(γ[l ij－(τ j＋ζ i)])

. (9)

In this model, the individual engagement difficulty 
parameter ζ  i represents an engagement difference 
among individuals and is treated as a random effect. 
Small ζ  i indicates that the i  th individual tends to 
engage in test items easily. In addition, the ζ is 
connected to latent proficiency θ via a multivariate 
normal distribution: 

P（θ i, ζ i|μ θζ＝[ μ θ
μ ζ ], Σ θζ＝[  1 　 ρ  θ ζ σ  ζ　

ρ θζσ ζ　　σ 2
ζ ]）

　＝MVN(μ θζ, Σ θζ), (10)

where mean vector of latent variable μ θζ is set to the 
zero-vector for identifiability. Covariance matrix of 
person parameters is denoted as Σ θζ. Elements of the 
covariance matrix are the variance parameter σ  ζ

2, 
representing deviation of engagement tendency, and 
the correlation parameter ρ θζ between θ and ζ which 
may be negative in this case because a high-
proficiency person tends to easily engage in test 
items. In addition, the variance of θ needs to be fixed 
at one for the model identification. 

In a traditional setting, an inverse Wishar t 
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distribution is assumed for a prior covariance 
matrix, but the variance of θ needs to be fixed in this 
model. Therefore, the inverse Wishart distribution 
is not appropriate. Instead, the covariance matrix is 
decomposed in two lower-triangle matrices, called 
Cholesky decomposition (Zhan et al., 2019):

 Σ θζ＝Δ θζ Δ ⊤
 θζ, (11)

 Δ θζ＝[ 1　0ϕ　ψ ], (12)

where, priors are set for ϕ and ψ, and so, P(ϕ)＝
N(0,1)I(ϕ＜0) and P(ψ)＝Gamma(1,1) are assumed 
priors, and where Gamma(α ,β) is a gamma 
distribution with shape α and rate β.

The same marginalization in the DLC-SL-IRT 
model is applied for the item response probability in 
the DLC-TL-IR T model and we get a correct 
response probability without latent engagement 
indicator which is represented as follows:

P(y ij＝1 |l ij, θ i, ζ i, a j, b j, g, γ, τ j)

＝
1

∑ 
cij＝0

P(y ij＝1|θ i, a j,b j, g,C ij＝c ij)P(C ij＝c ij|l ij, ζ i,γ,τ j) 

 (13)
Finally, the joint posterior probability of the 
parameters and latent variables is expressed as 
follows:

P(θ, ζ, a , b , g, γ, τ|Y, L)∝P(Y|L, θ, ζ, a , b , g , γ, τ)
　×P(θ, ζ)P(a)P(b)P(g)P(γ)P(τ)

＝{∏i
∏

j
P(y ij|l ij, θ i, ζ i, a j, b j, g, γ, τ j)}{∏i

P(θ i, ζ i)}
　×{∏j

P(a j)P(b j)P(τ j)}P(g)P(γ)P(ϕ)P(ψ), (14)

where ζ is a set of individual engagement difficulty 
parameters; {ζ 1,…,ζ I}.

2.4. ILC-RE-IRT model
The DLC-IR T models assume that  latent 

engagement indicators are dependent on response 
times. In the ILC-IRT models, latent engagement 
indicators are not directly dependent on response 
times but connected through individual latent 
variables. One latent variable, η i, that is represented 
as an individual engagement tendency and an item 
engagement difficulty parameter, κ  j, define latent 
engagement probability with one parameter logistic 
IRT model:

P(C ij＝1 |η i,κ j)＝
exp(η i－κ j)

―――――――
1 ＋exp(η  i－κ j)

. (15)

Similar to IRT difficulty parameters, the prior for κ j 
is a normal distribution denoted as P(κ j)＝N(μ κj,σ

 2
 κ j). 

Prior for ηi is defined for later.
The latent engagement status determines not only 

different item responses but also different response 
times. In this case, two different one-factor analysis 
models are assumed for the response times. In 
other words, we assume a mixture distribution of 
two normal distributions for response times:

{ P(l ij|ν̃ j, λ̃ j, σ
 2
ϵ̃j, C ij＝0)＝N(ν̃ j＋λ̃jξ i, σ

 2
ϵ̃j), 

 P(l ij|ν  j, λ j, σ
 2
ϵj, C ij＝1)＝N(νj＋λ j ξ i, σ

 2
ϵj), 

 (16)

where ν j and λ j are an intercept and a factor loading 
parameter for engaged status, and ν̃ j and λ̃j are an 
intercept and a factor loading parameter for 
disengaged status. The unique factor variance 
parameters for engaged and disengaged statuses are 
σ 2

 ϵj and σ 2
ϵ̃j. A factor score ξ i, which can be thought of 

as a basic individual response speed, is common in 
both engaged and disengaged statuses.

In a regression formulation, Equation (16) is 
rewritten as follows:

l ij＝C ij (ν j＋λ j ξ i＋ϵ ij)＋(1－C ij)(ν̃ j＋λ̃ j ξ i＋ϵ ̃ ij), (17)

where two sets of residual terms {ϵ ₁j,…,ϵ Ij} and {ϵ ̃ ₁j,
…,ϵ ̃ Ij} are independently and identically distributed 
random variables followed dif ferent normal 
distributions: N(0,σ  2

ϵj) and N(0,σ2
ϵ̃j). Here, residual 

variances can be different among items. Priors are 
P(ν  j)＝N(μ  νj, σ  2

ν j), P(ν̃j)＝N(μ  ν̃ j, σ  2
ν̃j), P(λ  j)＝N(μλ  j, σ  2

λ j)
I(λ  j > 0),  P(λ̃ j)＝N(μ  λ̃

 
j,  σ  2

λ̃ j )I( λ̃ j > 0), P(σ  2
ϵ j)＝

Gamma(α  j, β  j), and P(σ  2
ϵ̃ j)＝Gamma(α̃ j,β̃ j). The 

gamma distributions here can be replaced by an 
inverse gamma distribution with shape α and rate β, 
which may be another standard choice. In this 
study, the hyper parameters of  the gamma 
distributions are set as the same value, α  j＝β j＝α̃ j＝
β̃ j＝1/2. This gamma distribution is equivariant to χ  2 
distribution with one degree of freedom. 

An important point of the ILC-IRT models is that 
three types of individual parameters, θ i, η i, and ξ i, are 
related each other. The major distribution that 
represents a connection among three continuous 
random variables  is  a  mult ivar iate  nor mal 
distribution is as follows:
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P（θ i, η i, ξ i|μ θηξ＝[ μ θ

μ η

μ ξ
], Σ θηξ＝[  1　ρ θη　ρ θξ

ρ θη　 1 ρ ηξ

ρ θξ　ρ ηξ　 1 ]）
＝MVN(μ θηξ, Σ θηξ), (18)

where μ  θηξ is a mean vector and Σ  θηξ is a 3×3 
positive definite covariance matrix. Again, μ θ, μ η, and 
μ  ξ are zero and diagonal elements of Σ  θηξ that are 
variances of three latent factors are set to one to 
identify the model. Therefore, Σ  θηξ is a correlation 
matrix rather than a covariance matrix here. Off-
diagonal elements of Σ θηξ are correlation parameters 
among three latent variables that are denoted as ρ θη, 
ρ  θξ,   and ρ  ηξ,  whose  subscr ip ts  represent  a 
combination of variables to be considered. Priors of 
correlation parameters are directly specified and are 
uniform distributions: P(ρ θη)＝Uniform(0,1), P(ρ θξ)＝
Uniform(－1,1), and P(ρ  ηξ)＝Uniform(0,1). We 
assumed positive correlations between θ and η, and 
η and ξ; however, no-strong assumption was 
assumed between θ and ξ. Note that label switching 
problem need to be prevented for the general ILC-
IRT models to put ordered constraints on intercepts 
or factor loadings. 

Under conditional independence assumptions, the 
conditional distribution of model parameters of the 
general  ILC-IR T models  is  represented as 
assembling the likelihood functions, individual 
parameters, and priors as follows:

P(θ, η, ξ, C , a , b , g, κ, ν, ν̃, λ, λ̃, σ ϵ
2, σ2

 ϵ̃
 , ρ θη, ρ θξ, ρ ηξ|Y, L)

∝P(Y|θ, a , b , g, C)P(L|ξ, ν, ν̃, λ, λ̃, σ   ϵ
2, σ 

2
 ϵ̃

 , C)
　　×P(C |η,κ)P(θ,η,ξ)
×P(a)P(b)P(κ)P(ν)P(ν̃)P(λ)P(λ̃)P(σ ϵ

2)P(σ 
2
 ϵ̃

 )
　　×P(g)P(ρ θη)P(ρ θξ)P(ρ ηξ),

＝{∏i
∏

j
P(y ij|θ i, aj, bj, g, C ij)P(l ij|ξ i, ν j, ν̃ j, λ j, λ̃ j σ ϵ

2
j, σ

2
ϵ̃

 
j, C ij)

　　P(C ij|η i, κ j)}
×{∏i

P(θ i, η i, ζ i)}{∏j
P(a j)P(b j)P(τ j)P(κ j)P(ν j)P(ν̃j) 

　　P(λ j)P(λ̃ j)P(σ ϵ
2

j)P(σ2
ϵ̃

 
j)}

×P(g)P(ρ θη)P(ρ θξ)P(ρ ηξ), (19)

where η, ξ, κ, ν, ν̃, λ, λ̃, σ   ϵ
2, and σ 

2
 ϵ̃

  are parameter sets 
corresponding to individuals＇ and item parameters. 

C ij is a conditional variable on both y ij and l ij, and so 
marginalization of engagement indicator will 
generate dependency between y ij and l ij. Therefore, 
C ij remains in the likelihood functions of the general 
ILC-IRT model. The general ILC-IRT model has two 
likelihood functions: one from item responses and 
the other from response times, which is different 
from the DLC-IRT models.

The general ILC-IRT model is over-parameterized 
and loses meaning of the parameters. One simple 
constraint is to add a disengagement situation in 
which set factor loadings are 0 and residual variance 
are the same across items:

	 λ̃j＝0,∀j, 
 σ2

ϵ̃
 
j＝σ2

ϵ̃
 
j,∀j. (20)

This constraint means that the disengaged response 
times are not affected by individual response speed 
because a disengage response is a quick response 
and does not different across items. This constraint 
prove response times equation as follows:

l ij＝ν̃ j＋C ij (δ j＋λ j ξ i)＋C ij ϵ ij＋(1－C ij)ϵ ̃ ij, (21)

where δ j＝ν j－ν̃j. The second term in Equation (21) 
represents the ef fect of engagement on a log 
response time and contains the random effect ξ. The 
third and fourth terms are residual corresponding 
engagement and disengagement situations. In other 
representation, conditional distributions of log 
response time given the engagement status are as 
follows:

{ P(l ij|C ij＝0, ν̃ j, σ2
ϵ̃)＝N(ν̃ j, σ2

ϵ̃), 
 P(l ij|C ij＝1, ν̃ j, δ j, λ j, ξ j σ ϵ

2
j)＝N(ν̃ j＋δ j＋λ jξ i, σ ϵ

2
j). (22)

The ILC-RE-IRT model assumes that an engaged 
response time takes longer than a disengaged 
response. 

Finally, posterior distribution of the ILC-RE-IRT 
model is slightly simplified version of Equation (19):

P(θ, η, ξ, C, a , b , g, κ, δ, ν̃, λ, σ ϵ
 2, σ2

ϵ̃, ρ θη, ρ θξ, ρηξ|Y, L)
∝P(Y|θ, a , b , g, C)P(L|ξ, δ, ν̃, λ, σ ϵ

 2, σ2
ϵ̃, C)

　　×P(C |η, κ)P(θ, η, ξ)
×P(a)P(b)P(κ)P(δ)P(ν̃)P(λ)P(σ ϵ

2)P(g)P(σ2
ϵ̃)

　　×P(ρ θη)P(ρ θξ)P(ρ ηξ)
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＝{∏i
∏

j
P(y ij|θ i, a j, b j, g, C ij)P(l ij|δ j, ν̃ j, λ jσ ϵ

2
j, σ

2
ϵ̃, C ij)

　　P(C ij|η i, κ j)}
×{∏i

P(θ i, η i, ζ i)}{∏j
P(a j)P(b j)P(τ j)P(κ j)P(δ j)P(ν̃ j) 

　　P(λ j)P(σ ϵ
2

j)}
×P(g)P(σ2

ϵ̃)P(ρ θη)P(ρ θξ)P(ρ ηξ), (23)

where δ＝{δ 1,…,δ J}.

2.₅. ILC-RI-IRT model
Different constraints posed on the general ILC-

IRT model provide a different ICL-IRM model. For 
example, equality constraints on factor loadings 
between engagement and disengagement conditions 
(i.e., λ j＝λ̃ j,∀j) are possible. This provides following 
regression formulation of a log response time:

l ij＝ν̃ j＋λ j ξ i＋C ij δ j＋C ijϵ ij＋(1－C ij)ϵ ̃ ij, (24)

In this formula, the random effect ξ is outside of 
the regression coef ficient and thought of as a 
random intercept. In the ILC-RI-IRT model, the 
individual response speed has an effect even in the 
disengagement situation. The effect of engagement 
δ  j is a fixed ef fect and does not var y among 
individuals. Conditional distributions given the latent 
engagement indicator are normal distributions 
whose means and variances are different:

{ P(l ij|C ij＝0, ν̃j, λ j, ξ j, σ
2
ϵ̃)＝N(ν̃j＋λ j ξ i, σ

2
ϵ̃), 

 P(l ij|C ij＝1,ν̃ j,δ j, λ j,ξ j,σ ϵ
2

j)＝N(ν̃ j＋δ j＋λ j ξ i,σ ϵ
2

j). (25)

Priors are the same as in ILC-RE-IRT model. 
Conditional posterior distribution is a representation 
of Equation (23) but with Equation (25) for 
corresponding terms.

3. Application to Real Data

3.1. Data Analysis Setup
Example data analyzed in Nagy and Ulitzsch 

(2022) were gained from the Programme for the 
International Assessment of Adult Competencies 
(PIAAC), which is an international large-scale 
assessment for adults. More detailed explanations 
were shown in Nagy and Ulitzsch (2022). The 
sample size was 637, and 20 item responses and log-

response times were included the data set. The 
items used open response format and the correct 
item response probability in disengagement was 
expected to be close to zero. Log response times 
were standardized in this study.

The MCMC estimation code was written in JAGS 
language. Normal priors replaced the standard 
normal distribution. Correct response probability in 
disengagement prior parameters was α＝1 and β＝4 
and the upper limit was set to 0.3 to represent low 
correct response probability. Additional constraints 
to the ν̃ parameters were negative and the δ 
parameters were constrained as positive. The ν̃ 
parameters were average log response time in the 
disengagement situation and the log response times 
were standardized in this study so we assumed the 
responses were faster than general average that was 
zero. This assumption provided previous negative 
constraints on the ν̃ parameters. Similarly, the δ 
parameters were the effects of engagement on the 
log response times and the engagement ought to 
take several times. This consideration generated 
that he δ parameters were positive. The number of 
chains were three, total MCMC iterations were 
40,000, burn-in period was the first 10,000 samples, 
and thinning number was five. Convergence 
criterion was Gelman-Rubin index (R̂ ; Gelman & 
Rubin, 1992) lower   than 1.10. WAIC and posterior 
predictive p-value (PPP) were employed for model 
comparisons. Employed data, JAGS model, and 
estimation codes are available from Open Science 
Framework page: https://osf.io/v4zk3/.

3.2. Results
The R̂ s of the model parameters were less than 
1.10, and so MCMC iterations were judged to be 
converged. The DLC-TL-IR T model (WAIC＝
11430.940, SE＝118.911, PPP＝.652) indicated a 
lower WAIC value than the DLC-SL-IRT model 
(WAIC＝11504.543, SE＝117.988, PPP＝.697). In 
addition, the PPP of the DLC-TL-IRT model was 
closer to. 5 than in the DLC-SL-IRT model. These 
results suggest that the DLC-TL-IRT model was 
better than the DLC-SL-IRT model. WAIC of the 
ILC-RI-IRT (WAIC＝36037.783, SE＝246.879, PPP for 
item response＝.579, PPP for log response time
＝.524) was smaller than that of the ILC-RE-IRT 
model (WAIC＝36375.162, SE＝241.876, PPP for 
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item response＝.586, PPP for log response time
＝.519), and the PPP values of the ILC-RI-IRT and 
ILC-RE-IRT models were almost the same. These 
results were consistent with Nagy and Ulitzsch 
(2022)＇s findings.

Table 1 shows the posterior means of response 
times thresholds τ  in the DLC-IR T models, 
engagement difficulties κ in the ILC-IRT models, and 
averages of the posterior means of engagement 
probability over individuals. The absolute values of 
response time thresholds τ estimates between Table 
1 in this study and Table 4 in Nagy and Ulitzsch 
(2022) were similar. However, Nagy and Ulitzsch 
(2022, Table 4) reported several extremes in κ 
estimates (e.g., absolute values greater than 5) but 
the results shown in Table 1 are quite moderate 
because priors prevented extreme estimates. 

Engaged response results were also similar between 
the current and Nagy and Ulitzsch (2022)＇s study. 
However, the values of current estimates were 
smaller. This means our Bayesian estimation 
showed that the individuals were less engaged than 
the maximum likelihood estimates in Nagy and 
Ulitzsch (2022).

The correct response probability for disengaged 
status in the DLC-SL-IRT and DLC-TL-IRT models 
was the same [g＝.002 (SD＝.002)] but that of the 
ILC-RE-IRT and ILC-RI-IRT models were g＝.025 
(SD＝.008) and g＝.010 (SD＝.005), respectively, 
making the values larger than the DLC-IRT models. 
The latent class discrimination parameters γ of the 
DLC-SL-IRT and DLC-TL-IRT models were γ＝5.376 
(SD＝0.432) and γ＝4.663 (SD＝0.430), respectively, 
providing congr uent results. The correlation 

Table 1
Posterior means of engagement-related parameters and engagement probabilities in the four engagement models

Item

Response time 
thresholds 

(τ parameters) 　
　

Engagement 
difficulties

(κ parameters) 　
　

Average of posterior means of engagement 
probability

DLC-SL-
IRT

DLC-TL-
IRT

ILC-RE-
IRT

ILC-RI-
IRT

DLC-SL-
IRT

DLC-TL-
IRT

ILC-RE-
IRT

ILC-RI-
IRT

1 －2.429 －2.673 －3.283 －3.517 .986 .985 .938 .944
2 －2.551 －2.807 －3.329 －3.268 .989 .988 .939 .932
3 －1.583 －1.875 －3.232 －3.561 .961 .954 .935 .946
4 －2.186 －2.233 －2.676 －2.482 .978 .971 .900 .882
5 －1.331 －1.150 －1.869 －1.347 .904 .840 .825 .757
6 －1.581 －1.554 －3.010 －2.540 .943 .929 .923 .886
7 －0.572 －0.448 －1.989 －1.488 .811 .753 .839 .777
8 －1.814 －1.667 －3.032 －2.314 .956 .930 .924 .867
9 －1.452 －1.265 －2.635 －1.807 .930 .886 .897 .815
10 －1.885 －1.812 －2.705 －1.887 .957 .939 .902 .824
11 －1.902 －1.927 －2.370 －1.662 .956 .948 .876 .799
12 －1.872 －1.652 －2.819 －2.610 .946 .914 .911 .892
13 －1.637 －1.606 －2.952 －2.202 .941 .924 .919 .857
14 －1.269 －1.175 －2.582 －2.064 .905 .872 .894 .844
15 －1.421 －1.486 －2.603 －2.073 .909 .886 .895 .845
16 －0.761 －0.655 －1.588 －1.173 .809 .757 .791 .732
17 －1.034 －0.748 －1.561 －1.142 .828 .752 .787 .728
18 －0.688 －0.572 －1.543 －1.082 .812 .741 .785 .718
19 －1.469 －1.264 －2.272 －1.719 .918 .867 .867 .805
20 －1.606 －1.369 　 －2.612 －2.184 　 .929 .879 .896 .855

Note. The four models are the dependent latent class IRT model with single-level relationships of response times 
(DLC-SL-IRT), dependent latent class IRT model with two-level relationships of response times (DLC-TL-IRT), 
independent latent class IRT model with a random effect of the latent class variable on response times model (ILC-
RE-IRT), and independent latent class IRT model with a random intercept of response times (ILC-RI-IRT) model.
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between θ and ζ of the DLC-TL-IRT model was ρ θζ

＝－.971  (SD＝.036),  implying that the high 
proficiency individuals could easily engage in the 
test items. The variance of individual engagement 
dif ficulty was σ  ζ

2＝0.234 (SD＝0.073); there were 
individual dif ferences of engagement dif ficulty. 
Correlation among three latent variables in the ILC-
RE-IRT model were ρ θη＝.483 (SD＝.050), ρ θξ＝.341 
(SD＝.044), and ρ ηξ＝.131 (SD＝.045), showing that 
the latent proficiency and engagement tendency, and 
the engagement tendency and response speed were 
correlated. The correlations in the ILC-RI-IRT model 
were ρ θη＝.676 (SD＝.050), ρ θξ＝.008 (SD＝.058), and 

ρ  ηξ＝.414 (SD＝.040). Both ILC-RE-IRT and ILC-RI-
IRT models showed correlations that were greater 
than .45  between the latent proficiency and 
engagement tendency. However, the other two 
correlation results were not consistent with each 
other. The correlation between latent proficiency 
and response speed ρ θξ in the ILC-RI-IRT model was 
approximately zero, but it was positive for one in the 
ILC-RE-IRT model. The test engagement tendency 
and response speed ρ ηξ in the ILC-RI-IRT model was 
larger than in the ILC-RI-IRT model.

Figure 1  indicates scatter plots for latent 
proficiency θ between the DLC-SL-IRT and DLC-TL-
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  Figure 1 

Scatter plots of latent individual parameters (θ, η, and ξ) in the four engagement models 

Note. The four models are the dependent latent class IRT model with single-level relationships of 

response times (DLC-SL-IRT), dependent latent class IRT model with two-level relationships of 

response times (DLC-TL-IRT), independent latent class IRT model with a random effect of the latent 

class variable on response times model (ILC-RE-IRT), and independent latent class IRT model with a 

random intercept of response times (ILD-RI-IRT) model. 

Note. The four models are the dependent latent class IRT model with single-level relationships 
of response times (DLC-SL-IRT), dependent latent class IRT model with two-level relationships 
of response times (DLC-TL-IRT), independent latent class IRT model with a random effect of 
the latent class variable on response times model (ILC-RE-IRT), and independent latent class 
IRT model with a random intercept of response times (ILC-RI-IRT) model.

Figure 1.　Scatter plots of latent individual parameters (θ,η, and ξ) in the four engagement 
models
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IR T models  (upper  le f t  panel) ,  and three 
proficiencies (θ,η, and ξ) between the ILC-RE-IRT 
and ILC-RI-IRT models (upper right, lower left, and 
lower right panels, respectively). The latent 
proficiency between the DLC-SL-IRT and DLC-TL-
IRT models was consistent and provided similar 
results. Comparison of the θ between the ILC-RE-
IRT and ILC-RI-IRT models indicated that lower 
proficiency (less than －2) in the ILC-RE-IRT model 
was slightly highly estimated in the ILC-RI-IRT 
model. The range of latent engagement tendency η 
in the ILC-RI-IRT model was wider than that in the 
ILC-RE-IRT model. This implies that the ILC-RI-IRT 
model could capture detailed individual engagement 
tendency. Some individuals who took －1 to 0 values 
in the ILC-RE-IRT model were much smaller values 
(less than －3) in the ILC-RI-IRT model. The lower 
values (less than －2) in the response speed factor 
ξ in the ILC-RE-IRT model took higher values in the 
ILC-RI-IRT model. 

Figure 2 presents the IRT discrimination and 
dif ficulty parameters (left and right panels, 
respectively) estimates with four engagement 
models. Four models did not show significant 

differences in difficulty parameters. Discrimination 
parameters indicated slightly dif ferent estimates 
across several items (e.g., item 1, 4, 7, 13, 16, and 
18) but systematic tendency was not shown. Figure 
3 depicts response time model parameters (ν̃ 
parameter: upper left; δ parameter: upper right; λ 
parameter: lower left; σ  ϵ

2 parameter: lower right) 
estimates with two engagement models. The ν̃ 
parameters showed a different tendency in the ILC-
RI-IRT model, which showed larger values than the 
ILC-RE-IRT model except for items 3 and 12. The δ 
parameters showed the opposite tendency: the ILC-
RI-IRT model showed lower estimates than the ILC-
RE-IRT model except for items 3 and 12. The λ 
parameters of the ILC-RE-IRT model were greater 
than the ILC-RI-IRT model＇s. The σ  ϵ

2 parameter 
estimates were almost the same between the two 
ILC-IRT models. Finally, the residual variance in the 
discontinuous parameters of the ILC-RE-IRT model 
was σ2

ϵ̃
 ＝54.663 (SD＝0.430), which was much larger 

than that of the ILC-RI-IRT model [σ2
ϵ̃

 ＝1.319 (SD＝
0.052)].
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Figure 2 
IRT discrimination parameters (left panel) and difficulty parameters (right panel) estimates with the 
four engagement models 

Note. The four models are the dependent latent class IRT model with single-level relationships of 

response times (DLC-SL-IRT), dependent latent class IRT model with two-level relationships of 

response times (DLC-TL-IRT), independent latent class IRT model with a random effect of the latent 

class variable on response times model (ILC-RE-IRT), and independent latent class IRT model with a 

random intercept of response times (ILD-RI-IRT) model. 

Note. The four models are the dependent latent class IRT model with single-level relationships of response 
times (DLC-SL-IRT), dependent latent class IRT model with two-level relationships of response times (DLC-
TL-IRT), independent latent class IRT model with a random effect of the latent class variable on response 
times model (ILC-RE-IRT), and independent latent class IRT model with a random intercept of response 
times (ILC-RI-IRT) model.

Figure 2.　IRT discrimination parameters (left panel) and difficulty parameters (right panel) estimates with 
the four engagement models
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4. Conclusion and Discussion

This study provided Bayesian formulation of four 
test engagement models and their likelihood 
funct ions with expl ic i t ly  descr ibed pr iors . 
Furthermore, Bayesians estimation method with 
JAGS language was applied to PIAAC data. The real 
data example showed that the parameter estimates 
did not have extreme values and showed stable 

estimates. Parameter estimates similarity and 
differences among the models were shown. 

Maximum likelihood estimation is difficult if the 
parameters are close to the boundaries. In such 
cases, maximum likelihood estimation procedure 
may provide unreasonable solutions. In the context 
of test engagement behavior, correct response 
probabilities in dis-engagement situation and 
engagement probabilism can be close to zero or 
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Figure 3 
Response time model parameters (ν� parameter: upper left, δ parameter: upper right, λ parameter: 
lower left, σ�� parameter: lower right) estimates with the independent latent class IRT model with a 
random effect of the latent class variable on response times (ILC-RE-IRT), and independent latent 
class IRT model with a random intercept of response times (ILD-RI-IRT) models 

Figure 3.　Response time model parameters (ν̃ parameter: upper left, δ parameter: upper right, λ parameter: 
lower left, σϵ

2 parameter: lower right) estimates with the independent latent class IRT model with a random effect 
of the latent class variable on response times (ILC-RE-IRT), and independent latent class IRT model with a 
random intercept of response times (ILC-RI-IRT) models
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one, and it is possible for the maximum likelihood 
estimation to not work well. In addition, test 
engagement models considered in this study 
combined multilevel and mixture models, which are 
known as difficult models to estimate. Sample size 
of lower-stakes tests may not be large, which would 
make parameter estimation harder. 

The Bayesian MCMC method can handle these 
problems. Even if the parameters are close to their 
b o u n d a r i e s ,  M C M C  p r o v i d e s  a p p r o p r i a t e 
approximated posteriors.  In addit ion,  prior 
distributions work as regularization terms and 
prevent irregular solution. These benefits are 
especially important in cases with small sample 
sizes. Additionally, JAGS codes for estimation are 
simple and naturally represent data generating 
functions, making model extension and parameter 
restriction easy. For adaptive testing, posterior 
distribution rather than point estimates was 
proposed (Chang & Ying, 1996). When researchers 
can specify engagement or disengagement, they can 
consider  the  s topping r u le  (when to  s top 
measurement) more precisely because observations 
with disengagement have l i t t le information 
regarding proficiency. 

One disadvantage of the MCMC procedure is that 
it takes a longer time for parameter estimation and 
requires powerful computers that was pointed out 
by Nagy and Ulitzsch (2022). The estimation times 
of the real data example were several hours in the 
authors＇ computational environment. If the number 
of individuals and test items increased, Bayesian 
MCMC procedure will not be a good choice. 
Another approximation technique,  such as 
variational Bayesian inference (Nakajima et al., 
2019), will be required for larger datasets.
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