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This paper holds twofold purposes,
1. firstly to unfurl a theory of presentations and colimits of enriched monads for subcategories of arities
with sufficient generality to accommodate, in case that V is locally bounded, the Φ-accessible V-
monads [S. Lack and J. Rosický, Appl. Categ. Struct. 19, No. 1, 363–391 (2011; Zbl 1242.18007)]
as well as the J -ary V-monads for a small and eleutheric system of arities J ↪→ C [R. B. B.
Lucyshyn-Wright, Theory Appl. Categ. 31, 101–137 (2016; Zbl 1337.18002)], and

2. secondly to ensure that the resulting of presentation and algebraic colimits covers in full generality
such specific settings as the strongly finitary V-monads of G. M. Kelly and S. Lack [Appl. Categ.
Struct. 1, No. 1, 85–94 (1993; Zbl 0787.18007)], in case that V is a complete and cocomplete
cartesian closed category or, more generally, a π-category in the sense of F. Borceux and B. Day [J.
Pure Appl. Algebra 16, 133–147 (1980; Zbl 0426.18004)], and Wolff’s presentations of V-categories
by generators and relations for an arbitrary complete and cocomplete V [H. Wolff, J. Pure Appl.
Algebra 4, 123–135 (1974; Zbl 0282.18010)].

The authors accomplish these objectives by working with enriched monads for a suitable subcategory of
arities j : J ↪→ C in a V-category C, where V is a complete and cocomplete symmetric monoidal closed
category that need not be locally presentable. The results apply when C is a locally bounded V-category
over a locally bounded closed category V, and in some cases even without these assumptions.
To get these results, the authors make some modest completeness and cocompleteness assumptions on
the V-category C as well as two main assumptions on the subcategory of arities j : J ↪→ C.
1. First, the authors generally assume that j : J ↪→ C is small and eleutheric [R. B. B. Lucyshyn-
Wright, Theory Appl. Categ. 31, 101–137 (2016; Zbl 1337.18002)], which is a certain exactness
condition guaranteeing that the V-endofunctor on C that are left Kan extensions along j are precisely
those preserving left Kan extensions along j. They are called J -ary V-endofunctors.

2. The authors also assume that j : J ↪→ C abides by a mild boundedness condition, which is defined in
terms of certain notions from Kelly’s classical paper [G. M. Kelly, Seminarber. Fachbereich Math.,
Fernuniv. 6, 5–82 (1980; Zbl 0437.18003); Bull. Aust. Math. Soc. 22, 1–83 (1980; Zbl 0437.18004)]
on transfinite constructions in category theory.

The main results on free J -ary monads, algebraic colimits of J -ary monads, and presentations of J -ary
monads then hold for any bounded and eleutheric subcategory of arities j : J ↪→ C in a V-category C
abiding by mild assumptions.
The synopsis of the paper goes as follows.

§2 and §3 defines the notion of an eleuthetic subcategory of arities j : J ↪→ C in a V-category C after reviewing
some notation and background

§4 defines the notions of J -ary V-endofunctor and J -ary V-monad on C.
§5 unfurls the theory of algebraically free monads in the enriched context, generalizing [G. M. Kelly,
Seminarber. Fachbereich Math., Fernuniv. 6, 5–82 (1980; Zbl 0437.18003); Bull. Aust. Math. Soc.
22, 1–83 (1980; Zbl 0437.18004)].

§6 defines the notion of a bounded subcategory of arities, showing in 6.2.5 and 6.2.6 that if j : J ↪→ C
is a bounded subcategory of arities in a cocomplete and cotensored V-category C, then the forgetful
functor

W : MndJ (C) → EndJ (C)

from J -ary V-monads on C to J -ary V-endfunctors on C is monadic, and that the free J -ary
V-monad on a J -ary V-endfunctor is algebraically free. These are the first main results in this
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paper.
§7 defines the notion of a Σ-algebra for a -signature Σ in C, relative to a subcategory of arities j : J ↪→

C, showing in 7.7 under certain assumptions that the forgetful functor

EndJ (C) → SigJ (C)

from J -ary V-endfunctors on C to J -signatures in C is monadic. It is then shown in 7.9 that the
forgetful functor

U : MndJ (C) → SigJ (C)

has a left adjoint, and that the V-category of algebras for the free J -ary V-monad on a J -signature
Σ is isomorphic to the V-category Σ -Alg of Σ-algebras.

§8 establishes by use of S. Lack [J. Pure Appl. Algebra 140, No. 1, 65–73 (1999; Zbl 0974.18005)] in
8.2 that the forgetful functor

U : MndJ (C) → SigJ (C)

is actually monadic.
§9 is concerned with algebraic colimits of J -ary V-monads, being divided into three subsections. §9.1
proves some results about limits and colimits in limit V-categories. §9.2 studies the notion of an
algebraic colimi of V-monads. §9.3 defines the notion of an algebraic colimit of J -ary V-monads,
demonstrating in 9.3.8 that if j : J ↪→ C is bounded, then the category MndJ (C) of J -ary
V-monads on C has small algebraic colimits.

§10 defines the notion of a J -presentation P = (Σ, E) for a subcategory of arities j : J ↪→ C consisting
of J -signature morphisms from a J -signature Γ (the signature of equations) to the underlying J -
signature of the free J -ary V-monad TΣ on Σ. It is shown in 10.1.8 that every J -presentation P
presents a J -ary V-monad TP , whose V-category of algebras turns out in 10.1.8 to be isomorphic to
the V-category P -Alg of P -algebras for the J -presentations P = (Σ, E). It is also shown in 10.1.10
that every J -ary V-monad has a J -presentation.

§11 addresses some specimens of J -presentations, firstly showing that presentations of V-categories
by generators and relations are recovered when J consists of the representables in a power of V,
while secondly discussing presentations of strongly finitary V-monads in cartesian closed topolog-
ical categories over Set, dealing with internal modules and affine spaces over internal rings (i.e.
semirings).

§12 summarizes the main results in this paper.
Reviewer: Hirokazu Nishimura (Tsukuba)
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