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LIST OF ABBREVIATIONS 

ABEC large artery 

aBEC arteriole 

advSC stromal cell at capsule adventitia 

AGT-SC AGT-positive stromal cell 

aHEV activated high endothelial venule  

APC  allophycocyanin 

ATF3hi SMC  smooth muscle cell with high ATF3 expression  

ATF3lo SMC  smooth muscle cell with low ATF3 expression  

BEC blood endothelial cell 

C7-SC C7-positive stromal cell  

caBEC arteries surrounding the lymph node capsule 

CAF cancer-associated fibroblast 

C-aHEV transitional blood endothelial cell between capillary blood 

  endothelial cell and activated high endothelial venule 

cBEC capillary blood endothelial cell 

cLEC ceiling lymphatic endothelial cell 

collectLEC collecting vessel lymphatic endothelial cell 

CXCL10-HEV CXCL10-positive high endothelial venule 

DEG differentially expressed gene 

DLBCL diffuse large B-cell lymphoma 

Down-valve lymphatic endothelial cell on the upstream side of valves 

ECM extracellular matrix 

FDC follicular dendritic cell 

FITC  fluorescein isothiocyanate 

FL follicular lymphoma 

fLEC floor lymphatic endothelial cell 

FSC follicular stromal cell 

GO  gene ontology 

HEV high endothelial venule 

hHEV homeostatic high endothelial venule 
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IF  immunofluorescence 

IFR interfollicular region 

LEC lymphatic endothelial cell 

LN lymph node 

LNNHC lymph node non-haematopoietic cell 

MAST  model-based analysis of single-cell transcriptomics 

MFLN  metastasis-free lymph node 

mLN mesenteric lymph node 

MRC marginal reticular cell 

msLEC medullary sinus lymphatic endothelial cell 

NESC non-endothelial stromal cell 

NHC non-haematopoietic cell 

PC pericyte 

PCA  principal component analysis 

PE  phycoerythrin 

PE-Cy7 phycoerythrin-cyanin 7 

PFA  paraformaldehyde 

pfsLEC  perifollicular sinus lymphatic endothelial cell 

pLN peripheral lymph node 

PvC perivascular cell 

PTCL  peripheral T-cell lymphoma 

SC stromal cell 

scRNA-seq single-cell RNA sequencing 

SCS  subcapsular sinus 

SFRP2-SC SFRP2-positive stromal cell 

SFRP4-SC SFRP4-positive stromal cell 

SMC smooth muscle cell 

tBEC tip cell 

tDLBCL diffuse large B-cell lymphoma transformed from follicular  

 lymphoma 

TME tumour microenvironment 
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TNF-SC stromal cell enriched for tumour necrosis factor signalling 

TRC T-zone reticular cell 

UMAP  Uniform Manifold Approximation and Projection 

Up-valve lymphatic endothelial cell on the upstream side of valves 

VBEC large vein 

 

  



 8 

1. Background 

1.1 Lymphoma 

Lymphomas are the most common haematologic malignancies that often develop from 

lymph nodes (LNs). It is seventh and eighth common cancer in western countries and in 

Japan, respectively, and the incidence is higher in the elderly and increasing worldwide 

according to the population aging. Although some clinical factors have been suggested 

to increase the risk of lymphoma development, little is known regarding the causes of 

most lymphoma subtypes. Based on the recent classification1, lymphoma is a highly 

heterogenous disease encompassing more than 80 subtypes with different pathological, 

genetical, and clinical features. Conventionally, they are categorized into Hodgkin and 

non-Hodgkin lymphoma and the latter is further roughly divided into B-cell and T/NK-

cell lymphomas. Hodgkin lymphoma comprises approximately 5–15% of all 

lymphomas, whereas non-Hodgkin lymphoma comprises >80%. In non-Hodgkin 

lymphoma, B-cell lymphomas account for >80%. The representatives of B-cell 

lymphomas include diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma 

(FL): the two subtypes account for more than half of non-Hodgkin lymphomas. 

From a clinical point of view, common symptoms of lymphomas include painless 

lymphadenopathy, persistent fatigue, fever, night sweat, and unexplained wight loss, 
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although a part of patients experience disease site-specific symptoms such as 

neurological signs, shortness of breath, and abdominal distention. Lymphoma diagnosis 

is usually made pathologically on biopsy specimens of the swollen lymph nodes. 

Imaging tests including computerized tomography scan, blood tests, and cytogenetic 

examinations of the samples are also performed to support the diagnosis and/or to 

determine the clinical stage of lymphoma. Treatment depends on the subtype and stage 

of lymphoma and patient factors including age, comorbidities, and general status. 

Multidrug chemotherapy is selected in most of the lymphoma cases aiming at disease 

remission. Prognosis also varies by cases, lymphoma subtypes, and clinical stages. 

Recently, molecular targeted drugs such as anti-CD20 antibody are frequently used in 

many cases, which have greatly improved the clinical outcomes of lymphoma. Despite 

considerable advances in chemotherapies during the last decades, most lymphoma 

subtypes remain incurable; a significant part of patients finally experience relapse and 

disease-associated death. Therefore, new therapeutic approaches, including those 

targeting not only cancer cells but also the tumour microenvironment (TME), are 

needed2,3. In lymphomas, as in solid cancers4,5, the activities of non-haematopoietic 

cells (NHCs), such as mesenchymal stromal cells (SCs) and endothelial cells, are 

thought to facilitate lymphomagenesis, and thus offer potential as therapeutic targets2,3. 
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Indeed, some lymphoma subtypes reportedly exhibit unique interactions with NHCs6-9, 

although lymphoma NHC research is far behind that of solid cancers10. 
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1.2 Follicular lymphoma 

FL is the second prevalent nodal non-Hodgkin lymphoma and the most common in 

indolent B-cell lymphomas. FL cells are considered to interact actively with NHCs to 

achieve emergence and expansion9,11,12. Notably, BCL2/IGH translocation, which has 

been considered a genetic hallmark of FL cells, is detected in blood cells of most 

healthy individuals at low levels, indicating that the translocation is insufficient for 

lymphoma development in itself and accumulation of secondary events are needed. 

Also, a waxing and waning disease course by spontaneous regression is relatively 

frequent in FL 1,13, emphasizing the supportive roles of TME. Indeed, specific 

mechanisms for supporting lymphomagenesis have been suggested in FL SCs. It has 

been found that SC-derived CXCL12 recruits FL cells in cooperation with CXCL13, 

which is produced by follicular dendritic cells (FDCs), contributing to follicular 

localization of tumor cells and their proliferation9,14. Other FDC-derived molecules, 

including BAFF, IL-15, and HGF, reportedly have anti-apoptotic effects on FL cells15-

17. Unfortunately, a complete understanding of temporal and spatial associations 

underlying these activities is hampered by NHC heterogeneity. In fact, definitive NHC 

classification has not yet been achieved in humans, even in normal LNs18,19. Thus, the 
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identification of alterations in LN NHC (LNNHC) heterogeneity in the context of 

lymphomas is barely underway. 
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1.3 Non-hematopoietic cells in lymph nodes 

LNs are characterized by the finely organized compartments that confers not only 

functional specificities but also optimal spatial relationships on LN niches. LNNHCs 

play crucial roles in maintaining LN compartments and in adapting LN structures for 

rapid and effective immune responses 20. Major subsets of NHCs in LNs, as determined 

by morphology and topological localization, include blood endothelial cells (BECs) 

including high endothelial venules (HEVs), lymphatic endothelial cells (LECs), and 

non-endothelial SCs (NESCs)19-21. Examples of NESCs include T-zone reticular cells 

(TRCs), medullary reticular cells, perivascular cells (PvCs), and follicular SCs (FSCs), 

such as FDCs and marginal reticular cells (MRCs)19-21. Although recent investigations 

of NHC heterogeneity have employed emerging single-cell RNA sequencing (scRNA-

seq) technology22-27, which allows us to determine gene expression profiles of every 

single cells and uncover heterogeneities in the tissues, human LN BECs and NESCs 

have not been comprehensively analysed at single-cell resolution. 
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2. Research objectives 

In this study, scRNA-seq was used to complete an atlas of human NHCs in LNs and 

lymphoma (Fig. 1). I aimed to identify previously unrecognized NHC heterogeneity in 

human LNs and dissect NHCs from lymphomas to define the global influences of 

lymphoma cells on the NHC niche. This approach can provide deep insights into 

lymphoma stromal biology and resources applicable to future studies on lymphomas, 

and also identify potential stroma-derived biomarkers that may serve as clinical 

indicators and/or therapeutic targets. 
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3. Materials and methods 

3.1 Human samples 

This study was approved by the Ethics Committee of the University of Tsukuba 

Hospital and the review boards of associated institutions that provided human samples 

(Kameda Medical Center, NTT Medical Center Tokyo, and Mito Medical Center) and 

conducted according to all relevant ethical regulations regarding human patients. 

Written informed consent was obtained from all participating patients. The participants 

were not compensated for their participation. For scRNA-seq, metastasis-free LN 

(MFLN) samples were prospectively collected from neoplasm-bearing patients (n = 9) 

who had undergone surgical LN dissection between January and June 2020. Non-

sentinel LNs without enlargement (<1 cm) were used. The collected LNs were verified 

as malignancy-free via flow cytometric analysis of pan-cytokeratin negativity. Nodal FL 

(n = 10), peripheral T-cell lymphoma (PTCL) (n = 5), and DLBCL transformed from 

FL (tDLBCL) (n = 3) samples were also prospectively collected between August 2019 

and May 2020. Furthermore, for functional experiments, additional nodal FL samples (n 

= 8) were collected between May 2020 and August 2021. Lymphoma diagnosis of 

tissue specimens was made pathologically, phenotypically, and/or referring to results of 
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cytogenetic examinations, including fluorescence in situ hybridization analysis by 

expert haematopathologists.  

 

3.2 Single-cell isolation of LNNHCs 

After collection, LN or lymphoma samples were immediately minced and digested for 1 

h with RPMI 1640 medium (Sigma-Aldrich, R8758) with 5% fetal bovine serum 

containing 0.2 mg/ml collagenase P (Sigma-Aldrich, 11213857001), 0.8 mg/ml dispase 

(Gibco, 17105041), and 0.1 mg/ml DNase Ⅰ (Worthington, LS002139), with continuous 

agitation. Cells were then filtered through a 70 μm mesh and red blood cells were lysed 

in 1% ammonium-chloride-potassium buffer. Thereafter, haematopoietic cells and 

contaminated red blood cells were depleted using human CD45 (130-045-801) and 

CD235a (130-050-501) microbeads according to the manufacturer’s instructions 

(Miltenyi Biotec). For MFLN samples, the remaining single-cell suspension was 

incubated with phycoerythrin (PE)-anti-CD45 (Biolegend; 1:500) in combination with 

Alexa Fluor 488-pan-cytokeratin (ThermoFisher Scientific; 1:500), allophycocyanin 

(APC)-anti-podoplanin (Biolegend; 1:500), and PE-cyanin 7 (PE-Cy7)-anti-CD31 

(Biolegend; 1:500). For lymphoma samples, PE-anti-CD45 was mixed with fluorescein 

isothiocyanate (FITC)-anti-CD31 (Biolegend; 1:500), APC-anti-podoplanin (Biolegend; 
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1:500), and PE-Cy7-anti-CD34 (Biolegend; 1:500). The samples were incubated for 20 

min, then 7-AAD Viability Staining Solution (ThermoFisher Scientific, 00-6993-50; 

1:1000) was added and incubated for 10 min in the dark on ice. CD45-negative live 

cells were sorted using FACSAria II or III (BD Bioscience) after removing doublets by 

gating with a FSC-H versus FCS-W plot and a SSC-H versus SSC-W plot. Flow 

cytometry data were analysed using FlowJo software (Tree Star Inc., v10.7.1). CD45-

positive cells were cryopreserved in fetal bovine serum plus 10% dimethyl sulfoxide in 

liquid nitrogen. 

 

3.3 Library preparation, sequencing, and data pre-processing 

Sorted CD45-negative cells were converted to barcoded scRNA-seq libraries using 

Chromium Single Cell 3’ Reagent kits (V3) (10X Genomics) according to manufacturer 

instructions (CG000183 Rev A), aiming for 5,000–8,000 cells per library. Library 

quality control and quantification were performed using a KAPA Library Quantification 

Kit for Illumina Platforms (Kapa Biosystems, KK4873) and a 2100 Bioanalyzer High 

Sensitivity DNA kit (Agilent, 5067-4626). Libraries were sequenced on an Illumina 

HiSeq X Ten system with an average depth of 31,439 reads per cell, then mapped to the 
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human genome (build GRCh38) and demultiplexed using CellRanger pipelines (10x 

Genomics, v3.1.0). 

 

3.4 Data processing and cell clustering of individual cases 

Pre-processed data from each sample were further processed and analysed individually 

using R package Seurat (v3.2.2) on RStudio (v3.5.0 or v4.0.2). After removing 

ribosomal genes, genes expressed in fewer than 3 cells, and cells expressing fewer than 

200 genes, I filtered out cells with less than 200 unique feature counts (low quality 

cells). Cells with unique feature counts greater than three times the median value 

(possible doublets) and/or cells with more than twice the median number of 

mitochondrial genes (possible apoptotic or lysed cells) were also removed. I then 

normalized data using the “NormalizeData” function and extracted highly variable 

features using the “FindVariableFeatures” function. Normalized data underwent a linear 

transformation (scaling) and principal component analysis (PCA) based on variable 

features using the “RunPCA” function. Graph-based clustering was then performed 

according to gene expression profiles using the “FindNeighbors” and “FindClusters” 

functions with default parameters and results were visualized using a non-linear 

dimensional reduction Uniform Manifold Approximation and Projection (UMAP) 
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technique running “RunUMAP” and “DimPlot” functions. Cell clusters were annotated 

based on expression of canonical markers, including PECAM1 and JAM2 for BECs, 

PECAM1 and PROX1 for LECs, ACTA2 for SMCs, CCL19 and CCL21 for TRCs, CR2 

for FDCs, DCN for other NESCs, PTPRC for contaminating lymphocytes, SDC1 for 

plasma cells, and CCR7 and CD83 (in cells weakly PTPRC-positive) for dendritic 

cells23,28,29. MKI67 and TOP2A expressions were used to identify clusters of an 

aggressively proliferative nature. In the FL sample 3, which came from a patient with 

intra-submandibular gland FL, any distinct clusters negative for all canonical markers 

and positive for keratin genes (indicating glandular tissue contamination) were 

removed. All other cases were confirmed to consist solely of these major clusters. I 

confirmed a negligible presence of ambient RNA contamination in single-cell NHC 

data, and found an imperceptible influence of potential RNA contamination on 

clustering results in all LN and lymphoma samples by using the DecontX (in the celda 

package, v1.6.1) and SoupX (v1.5.2) packages (data not shown)30,31.  

 

3.5 Data integration with batch effect collection 

I performed canonical correlation analysis32 to identify shared sources of variation 

across multiple datasets using the “FindIntegrationAnchors” function and integrated 
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them using anchors from the “IntegrateData” function with canonical correlation 

dimensions of 20. Integrated data were scaled and underwent PCA as performed in 

individual datasets. 

 

3.6 Supervised annotation and unsupervised clustering of LNNHCs 

I performed graph-based clustering of PCA-reduced integrated data and supervised 

annotation, as described in “Data processing and cell clustering of individual cases” 

above. Clusters characterized by extremely low unique feature counts (low quality cells) 

were removed. 

Next, I extracted the three major NHC components (BECs, LECs, and NESCs) in 

silico and performed scaling, PCA-based dimensional reduction, and unsupervised 

graph-based sub-clustering of each component. I removed subclusters considered 

possible doublets as characterized by high expressions of marker genes for different 

NHC components and incongruously high unique feature counts. In BEC sub-

clustering, I also performed supervised annotation for the identification of arterial, 

capillary, and venous BECs using canonical markers for each BEC component33-36. 

 

3.7 DEG analysis 



 21 

DEG analysis was performed using the “FindMarkers” or “FindAllMarkers” functions 

with a minimum of 20% of the gene-expressing cells, and a minimum log fold-change 

of 0.25 in gene expression between each cluster and other clusters. I primarily used the 

Wilcoxon Rank-Sum test for DEG detection. To confirm detected DEGs, I also used 

model-based analysis of single-cell transcriptomics (MAST) method37. DEGs were 

defined as genes confirmed to show an adjusted P value (based on the Bonferroni 

correction) of <0.05 by using both methods. Results of the Wilcoxon Rank-Sum test 

were used to construct DEG lists and volcano plots. Volcano plots were created using 

the R package EnhancedVolcano (v1.8.0). DEG analysis to compare corresponding 

clusters between mLN and pLN samples and between MFLN and FL samples was 

performed in a similar manner using the cut-off parameters described above. 

For DEG analyses between MFLN and FL NHC subclusters, I adopted a 

multistep approach. Several previous studies had indicated differences in gene and 

protein expression between mesenteric (mLNs) and peripheral (pLNs) LNs38-41. 

Therefore, I initially profiled DEGs between mLNs and pLNs among MFLNs at 

subcluster levels. Referring to this profile, I identified DEGs upregulated in FL by 

removing those detected between mLNs and pLNs. I also performed DEG analysis 
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between MFLN and FL NHC subclusters using only pLN samples (MFLN 7–9 and FL 

2–10) to support reliability of detected DEGs. 

Gene Ontology (GO) enrichment analysis of DEGs in particular clusters was 

performed using Metascape (http://metascape.org)42. 

 

3.8 Trajectory analysis 

I performed trajectory analysis using the Monocle 3 package (v0.2.3)43 in RStudio on 

integrated BEC, NESC, and LEC data constructed by Seurat. Data pre-processing was 

performed using the “preprocess_cds” function with the number of dimensions set at 

100. Dimensionality reduction and clustering were performed by the 

“reduce_dimension” and “cluster_cells” functions, respectively. I then fit a principal 

graph within each cluster using the “learn_graph” function and visualized the order of 

cells in pseudo-time by “plot_cells” or “plot_cells_3d” functions, as appropriate with 

the “pseudotime” colouring option. 

 

3.9 Single-cell analysis of FL haematopoietic cells 

I performed single-cell analysis of cryopreserved CD45-positive cells from nine FL 

samples (FL 2–10). After thawing, cell suspensions were filtered through a 70 μm mesh 
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and incubated with 7-AAD Viability Staining Solution for 10 min in the dark. The 7-

AAD-negative live cells were sorted using FACSAria II or III after removing doublets, 

then were converted to barcoded scRNA-seq libraries, as performed in CD45-negative 

cells. Library preparation, sequencing, and data processing were performed as for 

CD45-negative cells. Data quality control, processing, and graph-based clustering were 

performed in each individual case using the Seurat package with dimension and 

resolution parameters of 50 and 0.5, respectively. Thereafter, I identified malignant B-

cell populations by detecting restrictions of light chain kappa/lambda genes, as 

suggested by previous studies44,45. Briefly, I projected B-cell marker CD79A and light 

chain genes IGKC (for light chain kappa) and IGLC2 (for light chain lambda) to cell 

clusters on the UMAP plot of each sample. I then calculated the ratio of cells expressing 

IGLC2 and IGKC with expression levels of >1 and >2, respectively, in each B-cell 

cluster. I defined B-cell clusters with a ratio of >2.0 or <0.25 as malignant. 

 

3.10 Malignant B-cell signature analysis in FL B cells 

To support the reliability of malignant B-cell detection, I performed signature analysis 

on data from FL B cells. I developed a gene set that represents a malignant B-cell 

signature based on the recent single-cell analysis of FL B cells reported by Andor et 
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al44. I carefully selected genes that were described as significantly upregulated in 

malignant compared to non-malignant B cells in a uniform manner among different FL 

samples44. A malignant B-cell signature score was calculated in B cells of all nine FL 

samples using the GSVA package (v1.38.2)46 and depicted by the “FeaturePlot” and 

“VlnPlot” functions of Seurat. 

 

3.11 Intercellular ligand–receptor interaction analysis 

I investigated interactions between NHC subclusters and malignant B cells of nine FL 

samples (FL 2–10) using the CellPhoneDB package (v2.1.1)47 on Python (v3.6). Gene 

expression information relevant to each NHC subcluster in integrated FL NHCs was 

used for NHC data, while gene expression information relevant to malignant B-cell 

clusters in each FL sample was separately used for malignant B-cell data, since gene 

expression profiles of malignant B cells vary greatly among samples. I then performed 

pairwise comparisons between NHC subclusters and malignant B-cell clusters. Briefly, 

I derived potential ligand–receptor interactions based on expression of a receptor gene 

by one lineage subpopulation and a ligand gene by another. I filtered genes expressed in 

>20% of cells in any given subpopulation. I then permuted the cluster labels of all input 

cells 1,000 times and calculated the mean interaction score (the average receptor 
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expression level in a subpopulation multiplied by the average ligand expression level in 

the interacting subpopulation), generating a null distribution of the mean interaction 

score for each ligand–receptor pair in each pairwise comparison across subpopulations. 

Thereafter, I located observed mean interaction scores that were the same or higher than 

the actual mean score in the null distribution and calculated the proportion of the 

observed scores, conferring a P value for the likelihood of specificity of a given ligand–

receptor complex to a given cluster pair. To consider interactions between FL NHCs 

and FL malignant B cells, I selected only interactions with a P value of <0.05 in more 

than half of FL cases (>4 cases). Furthermore, to assess subcluster-specific 

lymphomagenesis mechanisms in FL stroma, I extracted interactions that included a 

molecule in which gene expression was significantly upregulated in at least one FL 

NHC subcluster compared with that in the corresponding MFLN subcluster. I integrated 

interaction scores and P values of interactions between pairs consisting of the same 

NHC subcluster and malignant B-cell clusters from different FL samples, as previously 

described45. Briefly, I calculated mean interaction scores for pairs that included the 

same NHC subcluster and malignant B-cell clusters from different FL samples, then 

normalized the mean interaction scores per interaction. I also combined P values of 

interactions for pairs that consisted of the same NHC subcluster and malignant B-cell 
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clusters from different FL samples using Fisher’s method. The P values were corrected 

using the Benjamini–Hochberg method.  

 

3.12 Immunofluorescence staining 

Human LN and lymphoma samples were immediately embedded in OCT compound 

(Sakura Finetek Japan Co., 45833) and frozen in hexane cooled with dry ice. Samples 

were sliced to 3-μm thickness with a cryostat at -20 ℃. Sections were dried for 1 h at 

20 ℃, fixed for 10 min in 4% paraformaldehyde (PFA), incubated for 10 min with 0.1% 

Triton X-100 (Sigma-Aldrich, T9284) for permeabilization, and then treated with 10% 

goat serum (Sigma-Aldrich, G9023) in PBS or serum-free protein blocking buffer 

(Dako, X0909) (when using non-goat-derived secondary antibodies) for 30 min of 

blocking. Sections were stained overnight at 4 ℃ with primary antibodies. After several 

TBS-T washes, sections were stained for 1 h with the combinations of the following 

secondary antibodies at 20 ℃: AF488-goat-anti-rat IgG (ThermoFisher Scientific), 

AF594-goat-anti-rabbit IgG (ThermoFisher Scientific), AF594-donkey-anti-goat IgG 

(ThermoFisher Scientific), and AF647-goat-anti-mouse IgG (ThermoFisher Scientific). 

The TrueVIEW Autofluorescence Quenching Kit (VECTOR, SP-8500) was used to 

decrease possible tissue autofluorescence, following manufacturer instructions. Sections 
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were then mounted in Mounting Medium with DAPI (VECTOR, H-1200). Stained 

samples were imaged using a Leica DMi8 S Platform with the THUNDER imaging 

system (3D Live Cell & 3D Cell Culture & 3D Assay). Analysed LNs were verified as 

malignancy-free by pan-cytokeratin staining. Quantitative analysis of acquired images 

was performed using ImageJ software (National Institute of Health, v2.1.0). Since LNs 

and FL carry localized structures, I randomly acquired at least five different regions of 

interest within each sample and used the median values for statistical analysis. 

 

3.13 Flow cytometric analysis of FL haematopoietic cells 

To analyse the expression of CD27 in malignant FL B cells and to perform 

binding/adhesion assays described below, I used additionally collected cryopreserved 

FL samples (FL 11–18). After thawing, cells were filtered through a 70 μm mesh, and 

incubated with PE-anti-CD27 (Biolegend; 1:500), FITC-anti-CD3 (Biolegend; 1:500), 

APC-anti-CD19 (Miltenyi Biotec; 1:500), and PE-Cy7-anti-CD10 (Biolegend; 1:500) 

antibodies for 20 min on ice. Cells were then incubated with 7-AAD Viability Staining 

Solution for 10 min in the dark and analysed using FACSAria II or III and FlowJo 

software. 
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3.14 Recombinant protein binding assay 

Recombinant Fc chimera CD70 (SinoBiological, 10780-H01H) or human IgG (R&D 

systems, 1-001-A) was incubated with a single-cell suspension of FL haematopoietic 

cells for 10 min at 4 ºC in RPMI with 10% FCS. To block CD70–CD27 binding, cells 

were incubated in the presence of anti-CD27 blocking antibody (R&D systems, 

MAB382) or isotype mouse IgG1 (R&D systems, MAB002) for 30 min at 4 ℃ before 

binding. After binding, the cells were washed, fixed by 4% PFA for 10 min at 20 ℃, 

incubated with PE-anti-human IgG Fc (R&D systems; 1:500), FITC-anti-CD3 (1:500), 

APC-anti-CD19 (1:500), and PE-Cy7-anti-CD10 (1:500) for 20 min at 4 ºC, and 

analysed using flow cytometry (FACSAria II or III) and FlowJo software. 

 

3.15 Ex vivo cell adhesion assay 

Frozen FL sections were sliced at 6-μm thickness immediately before the assay. For 

malignant B-cell isolation, I used FL samples in which >90% B cells were confirmed to 

be malignant by using flow cytometric analysis. B cells were isolated from the FL 

haematopoietic cell suspension using the EasySep Release Human CD19 Positive 

Selection Kit (STEMCELL Technologies, ST-17754). Cells were then treated with anti-

CD27 blocking antibody or isotype mouse IgG1 for 30 min at 4 ℃. Thereafter, 2 × 106 
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cells were applied on the sections and incubated with a 60-rpm rotation for 5 min, 

followed by incubation without rotation for 15 min. The incubation with and without 

rotation was repeated two more times. After incubation, the sections were gently 

washed with PBS, sealed with a cover glass, and imaged using a Keyence BZ-X710 

microscope (Keyence). Adherent cells were manually counted with ImageJ. 

 

3.16 Prognostic analysis of stroma-derived markers in FL 

To analyse prognostic potential of gene expression patterns of NHCs in FL patients, I 

used a bulk microarray dataset of 180 biopsied FL samples from independent, newly 

diagnosed cases48. To narrow candidates to stroma-specific genes, I initially selected 

DEGs upregulated in FL BEC and NESC subclusters relative to MFLN counterparts. 

These were narrowed down to those showing a log fold-change of >0.5 and a <0.1% of 

cells with an expression level higher than 0 in FL haematopoietic cells. I did not use 

genes upregulated in FL LEC subclusters, as the proportion of FL LECs was 

considerably decreased relative to MFLN LECs and the specificity of these genes to FL 

stroma was considered unlikely in analyses of bulk tissues. Next, I tested expression of 

all candidate genes by using the Kaplan–Meier method using a two-sided log-rank test. 

Cutoff expression values of each gene for the Kaplan–Meier survival curves was 
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determined using maximally selected rank statistics49. Since many putative stroma-

specific genes were upregulated in FL, it was possible that P value collection (e.g. the 

Bonferroni method) greatly reduced the number of candidate genes, considering that the 

sample size in the dataset was not particularly large. Therefore, I extracted genes with 

reliable prognostic impacts using another approach. I initially divided patients into three 

groups according to survival outcomes: a favourable group, including patients alive 10 

years post-diagnosis; an unfavourable group, including patients who died within 5 years 

of diagnosis; and an intermediate/indefinite group, including the remaining patients. I 

then compared the proportion of patients with higher expression of each candidate gene 

between favourable and unfavourable groups. Genes were considered prognostic when 

the proportion was significantly higher in the unfavourable group compared to that in 

the favourable group. These prognostic genes were further subjected to multivariate 

analysis. 

To evaluate the prognostic efficiency of FL TRC signature, I extracted the DEGs 

which were upregulated in FL TRCs in comparison to MFLN TRCs. I considered the 

DEGs with an expression level higher than 0 in <0.1% FL haematopoietic cells, <10% 

FL BECs, and <10% FL LECs and were detectable in the microarray dataset48. 
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3.17 Whole-exome sequencing 

Whole-exome sequencing was performed on genomic DNA extracted from nine FL 

samples (FL 2–10). Libraries were prepared using SureSelect Human All Exon v7 kits 

(Agilent Technologies, 5191-4004) according to the manufacturer’s instructions and 

sequenced using an Illumina HiSeq X Ten system with a 150-bp paired-end protocol. I 

used the Genomon2 pipeline (v2.6.2) for alignment of sequence and mutation calling. 

Somatic mutations with a Fisher’s exact P value of <0.01 and an empirical Bayesian 

call P value of <0.0001 were adopted. Thereafter, mutations of synonymous single 

nucleotide variants; variants only in unidirectional reads; variants in intergenic, intronic, 

untranslated regions, and noncoding RNA regions; and variants in repetitive genomic 

regions were excluded. Furthermore, known genetic alterations affecting at least 10% of 

FL11 were screened for additional mutations. Finally, mutations derived from mapping 

errors were excluded using the Integrative Genomics Viewer. 

 

3.18 Statistics and reproducibility 

Statistical analysis was performed using R on RStudio or GraphPad Prism 9 (GraphPad, 

v9.2.0). A two-sided P value of <0.05 was considered statistically significant.  
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4. Results 

4.1 Transcriptional features of major NHC components 

To profile NHCs in human LNs and lymphomas, I performed scRNA-seq and data 

integration of NHCs extracted from LN samples without tumour-cell infiltration 

(MFLNs) from nine neoplasm-bearing patients, and nodal FL samples from ten patients 

(Table 2). Graph-based clustering of integrated cells led to the identification of three 

major NHC components (BECs, LECs, and NESCs) and three contaminating 

haematopoietic cell components (lymphocytes, plasma cells, and dendritic cells) on the 

UMAP (Fig. 2a). Cell type annotation was performed based on expression analysis of 

canonical gene markers (Fig. 2b) and differentially expressed gene (DEG) analysis (Fig. 

2c). Clustered NHCs were uniformly distributed across patients, cohorts, sample 

collection sites, and patient ages (Fig. 2a,d,e). Notably, expression of the marker PDPN, 

which has been used for LEC isolation in recent scRNA-seq studies23-25, was either 

partially decreased or absent in LECs (Fig. 2f). Accordingly, the proportion of LECs 

among NHCs detected using flow cytometric analysis was slightly smaller than that 

determined using scRNA-seq, although I observed excellent concordance in the 

proportion of each NHC component between both methods (Fig. 2g). 
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To identify subclusters within each of these three major NHC components, I 

extracted each NHC component in silico and subjected it to re-clustering. Surprisingly, 

NHCs of MFLN and FL were similarly distributed (Fig. 2h), in contrast with 

observations in solid cancers50,51. Here, I first sought to construct a single-cell atlas of 

NHCs in MFLNs. 
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4.2 Human LN BECs: ten subclusters 

I identified arterial, capillary, and venous BECs (Fig. 3a). Venous BECs were most 

prevalent in MFLNs, followed by capillary and arterial BECs (Fig. 3b). For this 

annotation, I used known markers, including GJA4 for arterial, CA4 for capillary, and 

ACKR1 for venous BECs (Fig. 3c,d)33-35. 

Unsupervised clustering in BECs further revealed 10 transcriptionally distinct 

subclusters: large arteries (ABECs), arteries surrounding the LN capsule (caBECs), 

arterioles (aBECs), tip cells (tBECs), capillary BECs (cBECs), transitional BECs 

between capillary BECs and activated HEVs (C-aHEVs), activated HEVs (aHEVs), 

homeostatic HEVs (hHEVs), CXCL10-positive HEVs (CXCL10-HEVs), and large 

veins (VBECs) (Fig. 3e,f). Each exhibited over 100 DEGs that helped in clearly 

distinguishing the groups (Fig. 3g–k). 

ABECs, aBECs, tBECs, cBECs, and VBECs had reasonable counterparts with 

similar gene expression profiles in mouse tissues including LNs26,36 or in other human 

tissues51. ABECs are characterized by selective expression of GJA5 (Fig. 3h–j), defined 

as a marker of larger arteries in murine tissues, including LNs26,36. By contrast, caBECs 

specifically express SSUH2 (Fig. 3h–j), a marker of arteries of varying size in different 

mouse tissues36. aBECs are characterized by expression of INSR (Fig. 3j) and EDNRB 
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(Fig. 3i), both capillary markers in mouse livers, lungs, and colon36. tBECs belong to a 

small but highly distinct subcluster that selectively expresses PGF and LY6H (Fig. 3h–

j). PGF is described as an endothelial tip cell marker in human lung cancer51, whereas 

LY6H has not been shown to be a specific marker in mice or humans36. Other human tip 

cell markers, including CXCL451, were identified as DEGs in tBECs (Fig. 3h). cBECs 

are characterized by abundant PLVAP and CA4 expression (Fig. 3h–j), in agreement 

with mouse data describing them both as capillary markers in multiple tissues36. C-

aHEVs express DEGs of cBECs (including CA4) and aHEVs (Fig. 3h–j), indicative of 

the transitioning nature of C-aHEVs. Also, HES1, a capillary marker in several mouse 

tissues, was highly expressed in C-aHEVs (Fig. 3h)36. C-aHEVs and aHEVs express 

genes encoding heat shock proteins (HSPA1A, HSP90AA1, and HSPA1B), as well as 

those involved in NFkB (NFKBIA and NFKBIZ) and JNK (JUN, JUNB, JUND, FOS, 

and FOSB) activation. They also express genes associated with oscillatory shear stress 

(EGR1, ICAM1, MT2A, MT2X, and ADM) at higher levels than do cBECs and hHEVs 

(Fig. 3k)52. aHEVs, hHEVs, and CXCL10-HEVs all express genes specific to HEVs, 

including ACKR1, C7, and CH25H41 (data not shown). aHEVs were characterized by 

prominent expression of G0S2 (Fig. 3h), which is upregulated following induction of 

cell-cycle progression53, and SELE (Fig. 3h–j), which is upregulated by inflammation54. 
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In contrast, hHEVs expressed SELE at low levels (Fig. 3i). CXCL10-HEVs are unique 

in their expression of the chemokines CXCL9, CXCL10, and CXCL11 (Fig. 3h–j). 

VBECs are characterized by high expression of CPE and VCAM1 (Fig. 3h), which are 

markers of large veins26,36. 

I next performed trajectory analysis on integrated MFLN BEC data using the 

Monocle 3 pipeline43. I was able to identify all BEC subclusters in a Monocle 3-

generated cell object (Fig. 3l). Trajectory of the arterial component flowed from ABECs 

to aBECs and cBECs, finally reaching tBECs (Fig. 3m). Similarly, trajectory of the 

venous component initially traced HEV subclusters (aHEVs and hHEVs), then 

proceeded to capillary subclusters (C-aHEVs and cBECs) and finally to tBECs (Fig. 

3m). These findings support the idea that tBEC migration in LNs generates new 

capillary BECs55. 

Gene ontology (GO) analysis revealed that factors involved in blood vessel 

development were enriched in ABECs, caBECs, aBECs, and tBECs (Fig. 3n), in 

agreement with their arterial or tip cell nature. Leukocyte migration and cellular 

extravasation signatures were most enriched in aHEVs (Fig. 3n). Molecules associated 

with apoptosis were enriched in C-aHEVs and aHEVs (Fig. 3n). Also, as reported in 
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mice26, CXCL10-HEVs expressed molecules associated with interferon and cytokine 

signalling (Fig. 3n). 

Immunofluorescence (IF) staining identified GJA5-, SSUH2-, and INSR-positive 

BECs as large arterial BECs in LNs (ABECs), arterial BECs outside of LNs (caBECs), 

and arterioles (aBECs), respectively (Fig. 3o–q). I also detected tBECs as LY6H- or 

PGF-positive cells in the tips of PLVAP-positive capillary BECs (cBECs) (Fig. 3r,s). 

Staining for PLVAP, HES1, and the HEV marker MECA-79 revealed that 

PLVAP+HES1+ capillary BECs (C-aHEVs) and MECA-79+HES1+ HEVs (aHEVs) 

(Fig. 3k) were localized near each other (Fig. 3t). HEVs strongly expressing SELE 

(aHEVs) were frequently observed in interfollicular regions (IFRs) (Fig. 3u), indicating 

that IFRs may serve as niches that play pivotal roles in promoting influx of immune 

cells into LNs. Notably, CXCL10-HEVs were frequently observed in IFRs and 

localized exclusively in the vicinity of aHEVs (Fig. 3v). These findings, together with 

GO analysis, suggest that rare CXCL10-HEVs may activate cellular trafficking of 

adjacent HEVs via cytokine signalling, resulting in the heterogeneity of human HEVs. 

I examined the expression of marker genes for mouse LN BEC subclusters26 in 

our human BEC data and summarized an assumed correspondence relationship between 

mouse and human LN (Fig. 3w,x). 
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In short, our single-cell atlas of LN BECs identified three, three, and four 

transcriptionally distinct subclusters in arterial, capillary, and venous BECs, 

respectively, showing unique heterogeneity in humans (Fig. 3y). 
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4.3 Human LN LECs: eight subclusters 

A human LEC atlas recently proposed the following six LEC subclusters: subcapsular 

sinus (SCS) ceiling LECs (cLECs; LEC I), SCS floor LECs (fLECs; LEC Ⅱ), particular 

SCS ceiling LECs that cover medullary regions (LEC Ⅲ), capillary LECs in 

surrounding tissues (LEC Ⅳ), valve LECs (LEC Ⅴ), and LECs of medullary and 

cortical sinuses (LEC Ⅵ)23,24. 

Accordingly, I performed unsupervised clustering of MFLN LECs, DEG and 

trajectory analyses, and IF staining to compare results across studies. Putative cLECs 

(LEC Ⅰ), particular SCS ceiling LECs that cover medullary regions (Ⅲ), capillary LECs 

in surrounding tissues (Ⅳ), and valve LECs (Ⅴ) were observed in our clustering, as 

suggested by Takeda et al and Xiang et al23,24, though I annotated LECs Ⅲ and Ⅳ as 

collecting vessel LECs (collectLECs) and medullary sinus LECs (msLECs), 

respectively (Fig. 4a,b). 

DEG analysis has revealed that the “fLEC and perifollicular sinus LEC 

(pfsLEC)” subcluster is unique in harbouring more than twice as many DEGs as other 

LEC subclusters (Fig. 4c–f). These DEGs include chemokine genes such as CXCL1, 

CXCL5, and CCL20 (Fig. 4c,d,f), and genes associated with immune cell adhesion, 

including ICAM1, VCAM1, and SELE, supporting the immunological function of fLECs 
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in cell trafficking and migration. Genes reportedly specific to pfsLECs (e.g. MARCO 

and CLEC4G24) were also detected as top DEGs for the “fLEC and pfsLEC” subcluster 

(Fig. 4d,f)23,24. ACKR4, MFAP4, CCL21, CLDN11, and GJA4 were also consistently 

identified as top DEGs for cLECs, collectLECs, msLEC, valve LECs (both Up- and 

Down-valves), and down-valves, respectively (Fig. 4c,d,f)23. 

To verify that a single “fLEC and pfsLEC” subcluster consists of both fLECs and 

pfsLECs, I applied unbiased sub-clustering analysis to the “fLEC and pfsLEC” 

subcluster. As expected, it comprised two transcriptionally distinct populations (Fig. 

4g). In agreement with the findings of Takeda et al, the proportion of pfsLECs was 

smaller than that of fLECs (Fig. 4h)23. Notably, in DEG analysis between fLECs and 

pfsLECs, genes described as specific to LEC Ⅱ and Ⅵ23 were separately detected as top 

DEGs for fLECs and pfsLECs, respectively (Fig. 4i). 

Next, I performed trajectory analysis on integrated LEC data. I identified all LEC 

subclusters in a Monocle 3-generated cell object (Fig. 4j). As expected, bLECs and 

collectLECs were adjacent to cLECs (Fig. 4k). Remarkably, a trajectory from fLEC and 

pfsLEC subclusters connected with remaining LEC subclusters in the middle region of 

bLECs and msLECs, and a direct trajectory connection was observed between pfsLECs 

and msLECs (Fig. 4k), supporting positional relationships inferred across these 
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subclusters24. Both Up- and Down-valves were connected to collectLECs (Fig. 4k), 

supporting the annotation of collectLECs. 

IF staining showed that PAI1- (encoded by SERPINE1) positive bLECs were 

exclusively embedded in the intermediate area of the SCS (Fig. 4l). PTX3-positive 

LECs (msLECs) were preferentially located at the medulla (Fig. 4m), although a small 

proportion of cLECs also showed PTX3 positivity (Fig. 4c). MARCO-positive LECs 

(pfsLECs) were preferentially situated at perifollicular sinuses (Fig. 4n), as shown in 

mice24. MFAP4-positive LECs (collectLECs) were observed only in afferent and 

efferent collecting vessels (Fig. 4o). 

Our analysis thus identified a total of eight LEC subclusters unifying data from 

recent reports (Fig. 4p,q)23-25.  
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4.4 Human LN NESCs: twelve subclusters 

NESCs were divided into 12 subclusters: SCs at capsule adventitia (advSCs), SFRP4-

positive SCs (SFRP4-SCs), SFRP2-positive SCs (SFRP2-SCs), SCs enriched for 

tumour necrosis factor (TNF)-signalling (TNF-SCs), C7-positive SCs (C7-SCs), AGT-

positive SCs (AGT-SCs), TRCs, pericytes (PCs), smooth muscle cells (SMCs) with 

high or low ATF3 expression (ATF3hi or ATF3lo SMCs), MRCs, and FDCs (Fig. 5a,b). 

TRCs, PCs, MRCs, and FDCs were annotated based on conventional taxonomy19. 

DEG analysis revealed that NESC subclusters exhibited over 100 DEGs each 

(Fig. 5c). advSCs showed the highest CD34 expression among NESCs (Fig. 5d) and are 

considered the human counterpart of mouse CD34+ SCs observed at adventitia of the 

LN capsule22. Both SFRP4-SCs and SFRP2-SCs shared SFRP2 expression, and were 

discriminated by higher SFRP4 expression in the former (Fig. 5d,e). SFRP4-SCs also 

showed relatively high INMT expression (data not shown), suggesting they are the 

counterpart of mouse Inmt+ SCs observed exclusively at medullary cords22. TNF-SCs 

were specifically characterized by PTX3 expression, and C7-SCs by abundant C7 

expression (Fig. 5d,e). AGT-SCs expressed AGT and high levels of the apolipoprotein 

genes APOE and APOC1 (Fig. 5d,e). TRCs were marked by high CCL19 and CCL21 

expression (Fig. 5d,e)19, and PCs by specific expression of NDUFA4L2 and HIGD1B 
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(Fig. 5d,e)56. ATF3hi and ATF3lo SMCs both expressed muscle-specific MYH11 and 

PLN (Fig. 5d,e) but differed in expression of genes associated with cellular responses to 

stress or mechanical stimuli (Fig. 5f). Approximately half of MRC DEGs were seen in 

FDC DEGs (data not shown), consistent with the idea that MRCs differentiate into 

FDCs21. FDC markers FDCSP, CR2, and FCER2 were correctly detected as FDC-

specific DEGs (Fig. 5d,e). Intriguingly, TNFSF13B, which encodes B cell-activating 

factor belonging to the TNF family (BAFF) and is thought to define FDCs21, was 

expressed by both MRCs and FDCs, but more highly by MRCs (Fig. 5d,e). 

All NESC subclusters were identified in Monocle 3-generated cell objects (Fig. 

5g,h). Trajectory analysis revealed that MRCs were connected to TNF-SCs and C7-SCs 

(Fig. 5i), indicating that the latter two subclusters might possibly differentiate into 

MRCs. Additional analysis showed a continuous trajectory from SMC subclusters to 

PCs, TRCs, MRCs, and finally to FDCs in human LNs (Fig. 5j), consistent with 

findings in mice of fibroblastic reticular cells in the splenic white pulp57. 

GO analysis revealed high expression in advSCs of genes functioning in 

formation of elastic fibres and extracellular matrix (ECM) (Fig. 5k)58. In agreement 

with the preferential localization of mouse Inmt+ SCs at the medulla22, their human 

counterparts, SFRP4-SCs, abundantly expressed genes involved in ECM formation 
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(Fig. 5k). TNF-SCs expressed genes associated with TNF signalling (IL6 and CCL2) 

(Fig. 5k), suggesting that they function in chemotaxis of CCR2-expressing T cells, 

monocytes, and dendritic cells to antigen sites59. C7-SCs expressed genes related to 

chemotaxis regulation (Fig. 5k), including CXCL12 (Fig. 5d), which supports 

transendothelial T-cell migration across HEVs60. Top DEGs for AGT-SCs included 

APOE, AGT, and LPL, which participate in remodelling of protein-lipid complexes and 

plasma lipoprotein particles (Fig. 5k), suggesting that AGT-SCs may participate in lipid 

metabolism or transport. TRCs were enriched with GOs related to leukocyte and 

dendritic cell migration (Fig. 5k), in accordance with their reported function in 

recruiting naive T cells and dendritic cells to the T-cell zone to facilitate interaction19. 

Genes associated with smooth muscle structure or contraction were enriched in PCs and 

in SMC subclusters, whereas PCs abundantly expressed genes associated with blood 

vessel development (Fig. 5k). MRCs and FDCs were highly enriched with GOs relevant 

to cytokine- and chemokine-mediated signalling and antigen processing and 

presentation (Fig. 5k), consistent with their role in positioning and presenting antigens 

to B cells19. Finally, FDCs expressed genes involved in immunoglobulin-mediated 

immune response and B-cell-mediated immunity (Fig. 5k)19. 
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IF staining was performed to identify the localization of each subcluster in the 

LNs (Fig. 5l–w). Fibroblasts positive for decorin (encoded as DCN), a strong marker of 

advSCs, SFRP4-SCs, SFRP2-SCs, TNF-SCs, and C7-SCs (Fig. 5l), were distributed 

widely in the adventitia, IFRs, and medulla (Fig. 5m). FBN1-positive SCs (advSCs) 

(Fig. 5d) were observed at the capsule adventitia, as observed in mice (Fig. 5n)22. 

SFRP2-positive SCs (SFRP2-SCs and SFRP4-SCs) were preferentially distributed in 

the medulla (Fig. 5o). PTX3-positive SCs (TNF-SCs) were observed in IFRs (Fig. 5p). 

C7-SCs were most frequent in the outer cortex, excluding follicles (Fig. 5q), consistent 

with their proposed role in facilitating immune cell migration. AGT-positive cells were 

found on outer regions of the IFRs, frequently situated between SCSs and HEVs (Fig. 

5r). SMCs were observed as α-smooth muscle actin (encoded by ACTA2)-, MYH11-, or 

PLN-positive cells (Fig. 5d) around not only arterial BECs, but some HEVs as well 

(Fig. 5s). ATF3 was positive in some SMCs around HEVs in the IFRs (aHEVs), as well 

as around arteries (Fig. 5t). In line with DEG analysis between SMC subclusters, ATF3-

positive SMCs were also marked by HSP70 (encoded by HSPA1A) expression (Fig. 5u), 

probably reflecting cell damage induced by blood flow61 and/or immune cell trafficking. 

HIGD1B-positive cells (PCs) were observed around BECs, including arteries and HEVs 

(Fig. 5v), and were more prevalent around HEVs in IFRs (aHEVs) than around hHEVs 
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(Fig. 5v), indicating that they may support lymphocyte recruitment and maintain 

endothelial cell integrity19. MRCs and FDCs were identified as BAFF- and CR2 (also 

known as CD21)-positive, respectively (Fig. 5w). 

I examined the expression of key genes for mouse LN NESC subclusters22 in our 

human NESC data and assumed a correspondence relationship between mouse and 

human LNs (Fig. 5x,y). 

To summarize, I identified 12 NESC subclusters, showing unanticipated 

heterogeneity, linked to the distribution of other NHC subsets and LN niches (Fig. 5z).  

I thus accomplished a single-cell atlas of NHC components in human LNs (Fig. 

5z). 
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4.5 Additional basic information of the single-cell LNNHC atlas 

All subclusters identified in the single-cell LNNHC atlas included cells from all MFLN 

samples with some variations in cell proportion (Fig. 6a). Notably, NHCs from a patient 

with a benign tumour (MFLN 8) were distributed uniformly among NHCs from all 

MFLN samples (Fig. 6b). Furthermore, in NHC subclusters harbouring at least 50 cells 

from the sample MFLN 8, 80–100% of the top DEGs for all MFLN sample subclusters 

matched MFLN 8 DEGs (Fig. 6c).  

I also profiled DEGs between mLN and pLN NHC subclusters using MFLN data 

(Fig. 7a,b). In this dataset, I observed markedly higher expression of MADCAM1 in 

mLN HEV subclusters (aHEVs and hHEVs) compared with pLN counterparts (Fig. 7a). 

Consistently, GO analysis of DEGs between mLN and pLN subclusters showed that 

mLN HEV subclusters were enriched with MADCAM1-containing GO terms associated 

with cell adhesion and interactions with integrin (Fig. 7b). I also found that multiple 

mLN NHC subclusters (particularly, NESC subclusters) highly expressed genes 

associated with inflammatory response including PTX3, CCL2, and TNFAIP6 relative to 

pLN counterparts (Fig. 7a,b). GO terms associated with inflammatory response, TNF-

signalling, and response to molecules of bacterial origin were enriched in mLN LEC 

and NESC subclusters (Fig. 7b). Additionally, pLN LEC and NESC subclusters 
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abundantly expressed genes associated with the maintenance of LN homeostasis and 

structures (Fig. 7a,b). 
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4.6 Remodelling of non-haematopoietic cell proportions in FL 

Using this atlas, I next sought to explore alterations in FL NHCs at subcluster levels by 

comparing with MFLN counterparts (Fig. 8a,b). Overall, the proportion of BECs 

markedly increased in FL relative to MFLNs, while the proportion of LECs decreased 

(Fig. 8b). Moreover, the proportion of arterial subclusters increased in FL BECs (Fig. 

8b). In FL NESCs, the proportion of FDCs greatly increased (Fig. 8b). Notably, MRCs 

also dramatically increased in FL, whereas advSCs, SFRP4-SCs, SFRP2-SCs, and TNF-

SCs decreased (Fig. 8b). 
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4.7 Subcluster-specific transcriptional changes in FL stroma 

I next performed multistep DEG analyses in NHC subclusters of MFLN and FL by 

monitoring differences in gene expression between mLNs and pLNs (Fig. 7a,b). I 

observed the greatest differences in MRCs, followed by TRCs, SMC subclusters, PCs, 

and FDCs (Fig. 9a). Fig. 9b exhibits the expressions of the top three DEGs upregulated 

in FL NHC subclusters in comparison with their MFLN counterparts. In MRCs, 

CXCL13 was most remarkably upregulated and GO related to lymphocyte migration 

was enriched (Fig. 9b–d), suggesting that MRCs, in addition to FDCs, function in 

accumulation of malignant B cells9,14. Expression of TNFSF13B was significantly 

enhanced in FL NESCs subclusters including SFRP4-SCs and AGT-SCs (Fig. 9c). IL15 

and HGF expressions also tended to be elevated in some FL NESC subclusters, 

although this finding was not statistically significant (Fig. 9c). Notably, in some NESC 

subclusters, I observed marked upregulation of genes relevant to solid cancers but 

previously not associated with lymphomagenesis including POSTN, EGFL6, and FAP 

(Fig. 9c). 

In FL BECs, GJA4 was upregulated in arterial subclusters, ABECs and aBECs 

(Fig. 9b), reflective of arterial vessel development33. Other genes involved in blood 

vessel development or ECM organization were upregulated in almost all subclusters 

(Fig. 9d). FL HEV subclusters showed high SELE expression (Fig. 9b), suggestive of 
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inflammation and HEV activation62,63. Indeed, FL HEV subclusters expressed genes 

regulating cellular adhesion and migration (Fig. 9d). Intriguingly, expression of the tip 

cell markers LY6H, PXDN, PGF, and LOX was remarkably upregulated in FL tBECs 

(Fig. 9b), suggesting acceleration of angiogenesis. The significant decrease of the 

proportion of LECs in FL suggests widespread lymphatic damage. IF staining 

confirmed that LEC density was lower in FL compared with that in MFLNs (Fig. 9e,f). 

Many FL LEC subclusters also showed upregulation of heat shock genes as well as 

CD74, which reportedly functions in wound healing64 (Fig. 9b). CD74 overexpression 

was confirmed in FL LECs by IF staining (Fig. 9g,h). 
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4.8 Landscape of intercellular interactions in FL stroma 

To assess the NHC/malignant B-cell crosstalk underlying FL growth, I performed 

scRNA-seq of cryopreserved CD45-positive cells from nine FL samples (FL 2–10) and 

extracted gene expression profiles of malignant B-cell clusters in silico from each (Fig. 

10a–d). 

I then performed intercellular ligand-receptor interaction analyses between FL 

NHC subclusters and malignant B cells using CellPhoneDB47. Thereafter, I extracted 

significant interactions that were considered upregulated in FL NHC subclusters relative 

to the corresponding MFLN subclusters. 

I identified a total of 58 interactions, including some previously uncharacterized 

in FL (Fig. 11). In BECs, I noted that overexpression of JAG1, which is reportedly 

observed in B-cell lymphoma BECs and associated with aggressive lymphoma 

phenotypes65, was limited to only larger arterial BEC subclusters (ABECs and caBECs) 

(Fig. 11). Interactions mediated through adhesion molecules, including SELE–CD44 

interaction66,67, were activated mainly in HEV subclusters (C-aHEVs, aHEVs, and 

hHEVs) (Fig. 11), suggestive of possible contributions of these HEV subclusters to 

haematogenous expansion of FL cells66,68. Interactions promoting cancer cell death and 

mediated by TNFSF10 were markedly upregulated in several LEC subclusters (Fig. 
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11)69, suggesting LECs may antagonize lymphoma development. In NESCs, 

interactions associated with TNF signalling, cell adhesion, PDGF signalling, and 

chemokine signalling were differentially activated among subclusters (Fig. 11). 

Notably, overexpression of CXCL12, which reportedly supports FL cell migration, 

adhesion, and activation70, was observed in advSCs (Fig. 11). Additionally, interactions 

via BAFF were upregulated, even in medullary SCs (SFRP4-SCs), suggesting stromal 

remodelling in FL that support extra-follicular expansion of malignant B cells71. In 

advSCs and medullary SC subclusters, interactions mediated by stroma-derived CD70 

were enhanced (Fig. 11). Interactions mediated through PDGFRB, which promotes cell 

migration and angiogenesis72, were enhanced in TRCs and PCs (Fig. 11), suggesting 

that during FL expansion mechanisms other than CCR7–CCL19/CCL21 signalling may 

drive homing of malignant B cells to the T-cell zone73. Instead, the CCR7–CCL19 

interaction was extended to non-TRC SCs (TNF-SCs and PCs) (Fig. 11). Consistent 

with the DEG analyses of MFLN and FL, the CXCL13–CXCR5 axis9,14 was activated 

in MRCs and FDCs (Fig. 11). 
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4.9 Enhanced CD70–CD27 interaction across FL stroma 

Based on the above interactome analysis results, I next sought to explore an interaction 

that can potentially be targeted in lymphoma research. I carefully surveyed candidate 

interactions from the perspective of novelty in the field. Finally, I noted that the CD70–

CD27 interaction in solid and haematologic cancers has attracted increasing attention74-

77, whereas interactions mediated by stroma-derived CD70 have rarely been 

investigated. Accordingly, I focused on the CD70–CD27 interaction for functional 

validation to verify the usefulness of our atlas-based analyses and to propose a potential 

mechanism in the stroma relevant to FL progression. Initially, I confirmed an 

overexpression of CD70 in FL medullary and adventitial SCs by IF staining (Fig. 

12a,b). I next examined the gene and protein expressions of the CD70 ligand, CD27, in 

the B cells of FL samples. Single-cell transcriptomic analysis of FL B cells showed that 

CD27 was significantly upregulated in malignant B cells compared with non-malignant 

B cells (Fig. 12c). Consistent with these results, flow cytometric analysis of FL 

haematopoietic cells showed that the CD19+CD10+ cell population (malignant B-cell 

enriched fraction) in five (62.5%) out of eight biologically independent samples was 

positive for CD27, and its expression was also significantly higher in the CD19+CD10+ 

population than in the CD19+CD10- population (non-malignant B-cell fraction) (Fig. 
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12d,e). Among the five CD27-positive FL samples, four (80.0%) showed unequivocal 

binding to recombinant human CD70-Fc protein (Fig. 12f). The binding of malignant B-

enriched cells to CD70-Fc protein was significantly inhibited by the treatment of the 

cells with an anti-CD27 function-blocking antibody in all four cases (Fig. 12f,g). Next, I 

performed ex vivo cell adhesion assays using FL frozen sections and malignant B-

enriched cells. I found that the number of malignant B-enriched cells adhered to the 

medullary regions was significantly decreased following treatment with the anti-CD27 

antibody (Fig. 12h,i). 
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4.10 Prognostic implications of stroma-derived markers in FL 

Next, I tested the applicability of our single-cell analysis of NHCs in searching for 

clinically relevant factors. To correlate niche- or subcluster-specific alterations in NHCs 

with FL patient survival, I utilised a bulk microarray dataset of 180 biopsied FL 

samples from newly diagnosed patients with available survival information48. 

I narrowed down multivariate analysis candidates to seven genes (LY6H, LOX, 

PTGIS, TDO2, REM1, PIEZO2, and CHI3L1) expressed at minimal levels in FL 

haematopoietic cells but at high levels in FL BEC or NESC subclusters compared with 

MFLN counterparts. I hypothesized that they likely were associated with unfavourable 

prognosis (Fig. 13a–e).  

In multivariate analysis, elevated expression of the tip cell markers LY6H and 

LOX, as well as TDO2 and REM1, were shown to have unfavourable prognostic impact, 

even after adjustment for International Prognostic Index (Fig. 14a,b)78. I tested the 

prognostic value of the markers proposed in my analyses (LY6H, LOX, TDO2, and 

REM1) in the intermediate prognosis group of FL. Notably, I found that elevated LOX 

and TDO2 expressions were prognostic even in the intermediate prognosis group, while 

the prognostic efficiency of LY6H expression was slightly not significant and that of 

REM1 expression was not prognostic (Fig. 14c). 
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For each of the four genes, I performed IF staining in MFLN and FL samples. 

Cells expressing LY6H, LOX, TDO2, or REM1 were increased in FL compared with 

those in MFLNs (Fig. 14d). 

Since these prognostic markers were derived primarily from TRCs or tBECs, I 

developed a FL TRC signature and evaluated its prognostic proficiency. However, I 

could not extract sufficient number of genes for developing a FL tBEC signature. As a 

result, I observed no significant difference in the overall survival of patients with high 

and low FL TRC signature (data not shown).  

The upregulation of tip cell markers (LY6H and LOX) was prognostic in FL (Fig. 

14a,b), suggesting that enhanced tumour angiogenesis might affect FL prognosis, hence 

I also examined the prognostic impact of conventional pan-BEC markers, PECAM1 and 

CDH579. However, I did not detect any adverse prognostic impact of these markers in 

the microarray dataset48 (Fig. 14e). 
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4.11 Observation of NHC subclusters across lymphomas 

Finally, I examined whether our single-cell atlas was applicable to different lymphoma 

subtypes. I also aimed to observe a more aggressive FL stromal remodelling phenotype. 

To this end, I performed scRNA-seq of stroma-enriched cells from five and three nodal 

PTCL and tDLBCL samples, respectively (Table 3; Fig. 1).  

Unsupervised clustering analysis of integrated MFLN and lymphoma NHC data 

detected almost all NHC subclusters in both PTCL and tDLBCL (Fig. 15a–d). 

Furthermore, I found that BECs and LECs in these lymphomas consistently increased 

and decreased, respectively, as observed in FL (Fig. 15b,d). tDLBCL BECs contained 

abundant arterial subclusters and CXCL10-HEVs (Fig. 15d), suggesting accelerated 

angiogenesis and elevated HEV activities. Furthermore, I observed considerable 

alterations in the tDLBCL NESC proportions compared with the MFLN counterparts: 

the proportion of advSCs, medullary SCs, TNF-SCs, C7-SCs, AGT-SCs, and TRCs 

decreased considerably, whereas that of FSCs (MRCs and FDCs) increased drastically 

in tDLBCL, and the perivascular cell subcluster compositions remained relatively 

comparable (Fig. 15d). Representative DEGs upregulated in FL subclusters, including 

LY6H and LOX at tBECs, SELE at HEV subclusters, and VCAM1 at FSCs, were also 

observed in tDLBCL stroma (Fig. 15e). Some key DEGs were, however, not validated, 
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probably because of the small sample size of tDLBCL cohort. In line with the findings 

of analyses on MFLN and FL NESCs, trajectories in tDLBCL NESCs indicated that 

non-FSC subclusters had differentiated into FSCs (Fig. 15f–h). 
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5. Discussion 

Here, I present a human LNNHC map at single-cell resolution that was useful for 

exploring changes in lymphoma NHCs. 

Our work sheds light on differences in mouse and human LNNHC heterogeneity. 

Overall, our findings suggest that human LNs harbour unique NHC subpopulations 

which have not been detected in murine LNs, emphasizing the need for further human 

studies. Although mice exhibit one HEV cluster in LNs26, human LN HEVs were 

comprised of three subclusters (aHEVs, hHEVs, and CXCL10-HEVs). aHEVs 

expressed stress-related genes, including those associated with heat shock proteins, 

NFkB activation, JNK activation, and shear stress, suggesting a response to active cell 

deformation or damage. Some suggest that a subset of HEVs express CXCL10, which 

facilitates trafficking of activated T cells and monocytes across HEVs40,80, though 

others have not detected CXCL10 mRNA in HEVs81. Therefore, the CXCL10 function 

in HEVs remains unclear82. Mouse LNs have a BEC subpopulation with highly similar 

phenotypes to CXCL10-HEVs that exhibit a prominent interferon signalling signature, 

although they were classified as capillary BECs26. Although some degree of correlation 

was detected between mouse and human LN NESCs, I observed more complicated 
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heterogeneity in human LN NESCs than in mouse LNs and found that mouse NESC 

markers were not necessarily specific to human NESC counterparts.  

I also observed several differences in LEC atlases between our analysis and 

previous analyses23,24. First, our analysis detected a subcluster in which gene expression 

patterns matched those seen in bLECs, a cell type proposed by Xiang et al (e.g. 

intermediate BMP2 expression between cLECs and fLECs)24, although bLECs were not 

detected by Takeda et al23. Second, I initially could not identify fLECs and pfsLECs as 

distinct subclusters23,24. Lastly, two valve LEC subclusters (Up- and Down-valves) were 

identified as distinct, in contrast to a previous study that identified them after applying 

sub-clustering analysis to an initially-identified valve cluster (LEC Ⅴ)23. I speculate that 

these inconsistencies are due to the fact that previous studies collected LEC-enriched 

cells based on PDPN positivity in flow cytometric analysis, and thus LECs with 

relatively low PDPN expression may have been overlooked. Indeed, PDPN expression 

was particularly low in bLECs and down-valves.  

As in the previous studies that required fresh human LN samples23,27, I used 

MFLNs from tumour-bearing patients for atlas construction. Notably, detailed analysis 

of LNNHCs from a patient with a benign tumour indicated that the clustering was 

comparable between samples from benign tumour- and malignancy-bearing patients. 
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This observation suggests minimal or negligible influence of malignancy-derived 

factors on our atlas. I also profiled DEGs between mLN and pLN NHC subclusters 

using MFLN data. Our data were consistent with MADCAM1-dependent manners of 

lymphocyte homing in mLN HEVs40 and the constant exposure of mLNs LEC and 

NESC subclusters to enterobacteria-derived factors. 

Multistep DEG analyses revealed subcluster-specific changes in FL, including 

those with a previously unknown function in lymphoma. POSTN encodes periostin, a 

protein secreted by cancer-associated fibroblasts (CAFs) that promotes formation of 

cancer stem cell, perivascular, and premetastatic niches83. EGFL6 encodes EGFL6, a 

member of the EGF-like superfamily that reportedly promotes tumour cell growth by 

stimulating angiogenesis84,85. These mechanisms may function in lymphoma stroma. 

CAFs positive for fibroblast activation protein are associated with an 

immunosuppressive environment, which hampers immunotherapy86-88. Intriguingly, 

FAP was most upregulated in FSCs (MRCs and FDCs), indicating that in FL FSCs may 

create an immunological environment favouring malignant cells. 

Remarkably, I found that upregulation of some known intercellular interactions 

across FL NHCs and malignant B cells was extended to unanticipated NHC subclusters 

and, conversely, other interactions were enhanced in limited NHC subclusters. These 
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observations largely increase the resolution of our understating of stromal remodelling 

in lymphoma. Additionally, these findings may be of clinical importance, suggesting 

potential stroma-derived prognostic factors. Notably, two tip cell markers were 

upregulated in FL and could potentially serve as prognostic factors. LOX enzymatic 

activity reportedly drives tumour angiogenesis by activating PDGFRβ signalling in 

vascular SMCs, consistent with our findings in DEG analysis that FL SMCs highly 

expressed PDGFRB89. Meanwhile, our observation of LY6H expression in tip cells has 

not previously been described in mouse or human endothelial cells. I also identified 

TDO2 as a prognostic predictor of FL. TDO2 may function to attract regulatory T cells, 

antagonize CD8+ T cell activity, and accelerate myeloid cell tolerogenicity90. REM1 

overexpression in TRCs and PCs was also associated with unfavourable FL outcomes. 

Thus, further analysis of this gene, which has been scarcely explored, and its relevance 

to the lymphoma stroma is warranted. Since the enrichment of FL TRC signature per se 

was not prognostic, qualitative rather than quantitative alterations in certain NHC 

subpopulations may affect the chemoresistance and prognosis of FL more precisely. 

Besides these prognostic factors, many upregulated genes with or without a known pro-

tumorigenic function were included in our dataset, making our atlas a powerful 

discovery tool for additional therapeutic targets. 
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Third, I found that the CD70–CD27 interaction via stroma-derived CD70 was 

enhanced in FL. Although the role of CD70 has increasingly been investigated in the 

context of interplays across various immune cells and cancer cells76,77, lymphoma SCs 

have not been explored as a source of CD70. A recent report suggested that CD70 

expressed by CAFs supports tumour progression in solid cancers by facilitating cancer 

cell migration91. Consistent with these findings, I confirmed binding between CD70 and 

malignant B cells that could be blocked by an antagonist against CD70 ligand, CD27. 

CD70 was upregulated in extrafollicular FL SCs, suggesting that CD70 may facilitate 

infiltration of lymphoma cells into extrafollicular regions during tumour progression. 

Our analysis thus proposed stroma-derived CD70 as a potential biomarker and 

therapeutic target of FL. 

Lastly, I found that NHC heterogeneities in LNs were detectable even in 

aggressive lymphomas, confirming the usefulness of our NHC atlas in characterizing 

stroma of various lymphoma subtypes. Particularly, alterations in tDLBCL stroma 

harmonized with those in FL, supporting the findings in analysis of FL stroma. 

Furthermore, our findings indicate that extra-follicular SCs, including TRCs and 

medullary SCs, not only promote extra-follicular infiltration of FL cells, but 

simultaneously differentiate into FSCs and finally are replaced by FSCs in more 
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advanced phenotypes, reflecting an unique stromal transition corresponding to the FSC-

dependent growth manner of FL92. 

Limitations of this study include the quantity of samples, which may not be 

sufficient to identify all NHC subpopulations or to precisely determine the correlation 

between the NHC heterogeneities in the transcriptome data and patient characteristics, 

such as the genomic alterations. Second, I cannot completely exclude the possibility that 

our atlas is somewhat influenced by unknown factors from distant malignancy. Third, 

our study was not designed to analyse other lymphoma subtypes or non-lymphoma 

diseases. Finally, further functional validation is required to confirm our findings 

relevant to each NHC subcluster. 
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6. Conclusion 

Here, I developed and validated a single-cell atlas of NHCs in human LNs and 

lymphoma.The atlas is of great value to lymphoma researchers, as it largely updates the 

NHC taxonomy in human LNs in the context of lymphoma research. This study 

provides a platform for future research aiming at deeper understanding of LN or 

lymphoma biology and at improving lymphoma management. 
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7. Figures 

 

Figure 1. 

Study overview showing experimental and analytical workflows. DEG, differentially expressed 

gene; FACS, fluorescence-activated cell sorting; IF, immunofluorescence; MACS, magnetic-

activated cell sorting; MFLN, metastasis-free lymph node; PTCL, peripheral T-cell lymphoma; 

tDLBCL, diffuse large B-cell lymphoma transformed from FL. 
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Figure 2. 

a, UMAP plots of stroma-enriched cells from nine human MFLN and ten FL samples, coloured by 

cell type (top panel). Major non-haematopoietic cell (NHC) components from MFLN and FL 

samples are shown separately (bottom left and bottom right, respectively). BEC, blood 

endothelial cell; LEC, lymphatic endothelial cell; NESC, non-endothelial stromal cell. 
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b, Expression of marker genes used to identify cell types. Red arrowheads show cells expressing 

indicated marker genes. 

c, Heatmap showing expression of top-ranking marker genes for each major NHC component. 

Key genes are indicated on the left. 

d, UMAP plots of NHCs, colour coded by patients (top left), sites of sample collection (top right), 

and patient age (bottom), according to patient cohorts. 

e, Proportion of each major NHC component between MFLN (left) and FL (right) cohorts. 

f, PDPN expression in stroma-enriched cells from MFLN samples. High magnification image 

indicates heterogeneous PDPN expression levels among LECs. 

g, Correlation of proportions of BECs (top), LECs (middle), and NESCs (bottom) among stroma-

enriched cells, as evaluated using flow cytometric (FCM) analysis and scRNA-seq; coloured 

according to patient cohort. Circles indicate biologically independent samples (MFLN; n = 9, 

FL; n = 10). ρ denotes Spearman’s rank correlation coefficient. ***P = 4.0 × 10-6 (BEC), ***P 

= 8.0 × 10-6 (LEC), ***P = 2.5 × 10-6 (NESC) (two-sided Spearman’s rank correlation test). 

h, UMAP plots of LN BECs (left), LECs (middle), and NESCs (right) after re-clustering analysis 

shown according to patient cohort (MFLN or FL cohort in left or right panel in each 

component, respectively). 
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Figure 3. 

a, UMAP plot of MFLN BECs, coloured according to classification of arterial, capillary, and 

venous BECs. 
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b, Proportions of arterial, capillary, and venous BECs in MFLN samples. 

c, Expression of arterial, capillary, and venous BEC marker genes. 

d, Heatmap showing expression of top-ranking marker genes of arterial, capillary, and venous 

BECs. Key genes are indicated on the left. 

e, UMAP plot of 10 MFLN BEC subclusters identified by unsupervised clustering. 

f, Prevalence of each BEC subcluster in MFLN samples. 

g, Number of DEGs per BEC subcluster. 

h, Heatmap showing expression of top-ranking marker genes for each BEC subcluster. Key genes 

are indicated on left. 

i, Violin plots representing expression of top marker genes for each BEC subcluster. 

j, Expression of marker genes for each BEC subcluster. Red arrowheads show cells expressing 

indicated marker genes. 

k, Volcano plots of up- or down-regulated genes between cBECs and C-aHEVs (left) or between 

aHEVs and hHEVs (right). Significance was determined as an adjusted P value of <0.05 (two-

sided Wilcoxon Rank-Sum test with Bonferroni correction) (blue-coloured dots) and log2 fold-

change of ≥1 (red-coloured dots). Larger dots indicate log2 fold-change of ≥2. Key genes are 

labelled. 

l, Expression of marker genes for each BEC subcluster in a single-cell BEC object, generated by 
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Monocle 3. 

m, Single-cell BECs ordered according to pseudo-time developmental stages. Dark winding lines 

in the cell object indicate putative developmental trajectories. Cell regions are assigned to BEC 

subclusters based on subcluster-defining gene expressions. 

n, GO enrichment analysis of DEGs for each BEC subcluster. 

o, IF staining of MECA-79 (green) and GJA5 (white) shows large arterial BECs (ABECs) (white 

arrowheads). 

p, CD31 (white) and SSUH2 (red) identify arteries surrounding LN capsule (caBECs) (red 

arrowhead). 

q, MECA-79 (green), INSR (white), and CD31 (red) identify arterioles (aBECs). 

r, PLVAP (white) and LY6H (red) (top left) to identify tBECs. 

s, MECA-79 (green), PLVAP (white), and PGF (red). High magnification image is presented in 

3D identifying tip cells (tBECs). 

t, MECA-79 (green), PLVAP (white), and HES1 (red) show activated HEVs (aHEVs) (red 

arrowheads) and transitional BECs between capillary BECs and aHEVs (C-aHEVs) (white 

arrowheads). 

u, MECA-79 (green), SELE (white), and CXCL10 (red) to identify CXCL10-HEVs.  

v, MECA-79 (green), SELE (white), and CXCL10 (red) to discriminate aHEVs from hHEVs and 
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to identify CXCL10-HEVs. 

Scale bars, 50 μm (grey), 200 μm (white). 

w, Expression of marker genes for key mouse LN BEC subclusters (proposed by Brulois et al26) in 

our human data. 

x, Comparison of BEC subclusters identified here with those characterized in mice26. Bar heights 

of the mouse study are adjusted to the cell numbers (belonging to each subcluster) identified in 

this study. Key markers for mouse BEC subclusters26 are listed on right. 

y, LN schematic depicting topological localization of 10 BEC subclusters. 
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Figure 4. 

a, UMAP plot of MFLN LEC subclusters identified by unsupervised clustering. 

b, Prevalence of each LEC subcluster in MFLN samples. 

c, Expression of marker genes for each LEC subcluster. 
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d, Violin plots showing expression of top marker genes for each LEC subcluster. 

e, Number of DEGs per LEC subcluster. 

f, Heatmap showing expression of top-ranking marker genes for each LEC subcluster. Key genes 

are indicated on the left. 

g, UMAP plot of fLECs and pfsLECs discriminated by unsupervised sub-clustering of a single 

“fLEC and pfsLEC” subcluster. 

h, Composition of fLECs and pfsLECs in the “fLEC and pfsLEC” subcluster. 

i, Volcano plot of up- or down-regulated genes in fLECs and pfsLECs. Significance was 

determined as an adjusted P value of <0.05 (two-sided Wilcoxon Rank-Sum test with 

Bonferroni correction) (blue-coloured dots) and log2 fold-change of ≥1 (red-coloured dots). 

Key genes are labelled. 

j, Expression of marker genes for each LEC subcluster in a single-cell LEC object, generated by 

Monocle 3. 

k, Single-cell LECs, ordered according to pseudo-time developmental stages. Dark winding lines 

indicate putative developmental trajectories. Cell regions are assigned to LEC subclusters based 

on marker gene expression. 
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l, IF staining of PAI1 (green) and PROX1 (red) to identify bridge LECs (bLECs). Scale bars, 500 

μm (left panel), 200 μm (magnification panels).  

m, PTX3 (green) and PROX1 (red) to identify medullary sinus LECs (msLECs). High 

magnification image at right corresponds to boxed area at left. Scale bars, 200 μm. 

n, MARCO (red) for identification of perifollicular sinus LECs (pfsLECs). High magnification 

image at right shows staining of CD31 (white) and MARCO (red). Dashed lines indicate 

boundaries between the LN cortex and medullary regions (left) or follicles (right). Scale bars, 

200 μm. 

o, MFAP4 (white) and PROX1 (red) to identify collecting vessel LECs (arrowheads). High 

magnification images show afferent (ⅰ and ⅱ) or efferent (ⅲ) collecting vessels. Scale bars, 200 

μm (l). 

p, Schematic showing topological localization of eight LEC subclusters in the LN. 

q, Comparison of subclusters identified here with those previously characterized23-25. Bar heights 

of the previous studies are adjusted to cell numbers (belonging to each subcluster) identified in 

this study. 
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Figure 5. 

a, UMAP plot of MFLN NESC subclusters identified by unsupervised clustering. 

b, Prevalence of each NESC subcluster in MFLN samples. 

c, Number of DEGs per NESC subcluster. 
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d, Heatmap showing expression of top-ranking marker genes for each NESC subcluster. Key 

genes are indicated on the left. 

e, Violin plots representing top marker genes for each NESC subcluster. 

f, Volcano plot of up- or down-regulated genes between ATF3hi and ATF3lo SMCs. Significance 

was determined as an adjusted P value of <0.05 (two-sided Wilcoxon Rank-Sum test with 

Bonferroni correction) (blue-coloured dots) and log2 fold-change of ≥1 (red-coloured dots). 

Larger dots indicate log2 fold-change of ≥2. Key genes are labelled. 

g, Marker gene expressions in a NESC object shown in Fig. 5i. 

h, Marker gene expressions in a NESC object shown in Fig. 5j. 

i, Pseudo-time developmental stages of single cells in advSCs, SFRP4-SCs, SFRP2-SCs, TNF-

SCs, C7-SCs, MRCs, and FDCs. 

j, Pseudo-time developmental stages of single cells in SMC subclusters, PCs, TRCs, AGT-SCs, 

MRCs, and FDCs. 

k, GO enrichment analysis of DEGs for each NESC subcluster. 

l, DCN expression in MFLN advSCs, SFRP4-SCs, SFRP2-SCs, TNF-SCs, and C7-SCs. 

m, IF staining of DCN showing DCN-positive fibroblasts.  

n, FBN1 (white) and DCN (red) to identify SCs in the capsule adventitia (advSC) (arrowheads). 

o, MECA-79 (green), NR4A1 (a marker of LN fibroblastic reticular cells; white)22, and SFRP2 
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(red) to identify SFRP2-SCs. 

p, PTX3 (green), CD31 (white), and DCN (red) to identify TNF-SCs (green arrowheads). 

q, C7 (white) and DCN (red) to identify C7-SCs. 

r, MECA-79 (green), α-smooth muscle actin (αSMA, white), and AGT (red) to identify AGT-SCs. 

s, MECA-79 (green), αSMA (white), and CD31 (red) to identify SMCs. White arrowheads 

indicate SMCs around arteries. 

t, MECA-79 (green) and PLN (white) identifying SMCs around HEVs (filled arrowheads) and 

arteries (empty arrowheads) (left); MECA-79 (green), αSMA (white), and ATF3 (red) 

identifying ATF3hi SMCs around HEVs (middle); and MYH11 (white) and ATF3 (red) showing 

ATF3hi and ATF3lo SMCs around arteries. 

u, HSP70 (green), αSMA (white), and ATF3 (red) on SMCs. 

v, MECA-79 (green), CD31 (white), and HIGD1B (red) identifying PCs around arteries (empty 

arrowheads) and HEVs (filled arrowheads). 

w, BAFF (green) and CD21 (white) identifying MRCs (green arrowheads) and FDCs (white 

arrowheads), respectively.  

Scale bars, 50 μm (grey),200 μm (white).  

x, Expression of marker genes for key mouse LN NESC subclusters22 in our human data. 

y, Comparison of NESC subclusters identified here with those characterized in mice22. 
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z, LN schematic depicting NESC subclusters excluding perivascular SCs (left) and an overlay 

image of all BEC, LEC, and NESC subclusters (right). 
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Figure 6. 

a, Proportion of each NHC subcluster based on patients in the MFLN and FL cohorts. 

b, UMAP plot of major NHC components from MFLN samples, highlighting NHCs from a patient 
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with a benign tumour (MFLN 8) (red dots).  

c, Proportions of top DEGs detected using all MFLN data and validated by DEGs in MFLN 8 

according to NHC subclusters. Top DEGs were defined as the top 10% of DEGs of each NHC 

subcluster, calculated using all MFLN data. Bars of subclusters with >50 cells in MFLN 8 were 

highlighted by ochre colouring. Dashed line indicates 80% validation. 
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Figure 7. 

a, Violin plots comparing expressions of key genes between mLN (red) and pLN (blue) samples 

according to NHC subclusters. *P < 0.05, **P < 0.01, ***P < 0.001 (two-sided Wilcoxon 

Rank-Sum test with Bonferroni correction). NS, not significant. 

b, Key gene ontologies of DEGs upregulated in mLN (red) or pLN (blue) compared with the other 

LN type according to representative NHC subclusters. 
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Figure 8. 

a, UMAP plots of FL BEC (left), LEC (middle), and NESC (right) subclusters. 

b, Differences between MFLN and FL NHC compositions based on major NHC components, 

BEC, LEC, and NESC subclusters (from left to right). *P = 0.010 (two-sided chi-squared test). 

NS, not significant. 
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Figure 9. 
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a, Number of DEGs upregulated in FL NHC subclusters compared to MFLN counterparts. 

b, Violin plots of top three DEGs upregulated in FL NHC subclusters compared to MFLN 

counterparts. **P < 0.01, ***P < 0.001 (two-sided Wilcoxon Rank-Sum test with Bonferroni 

correction). 

c, Violin plots comparing expressions of key genes between MFLN (orange) and FL (blue) 

samples, according to NHC subclusters. ***P < 0.001 (two-sided Wilcoxon Rank-Sum test 

with Bonferroni correction). NS, not significant. 

d, Gene ontology changes in FL NHC subclusters. GO enrichment analysis of DEGs upregulated 

in FL BEC (top left), LEC (top right), or NESC (bottom left) subclusters relative to MFLN 

counterpart subclusters. 

e, IF staining of PROX1 (red) showing LEC distribution in representative MFLN (left) and FL 

(right) samples. Scale bars, 200 μm. 

f, Number of PROX1-positive LECs per mm2, detected by IF staining in biologically independent 

MFLN (n = 5) and FL (n = 4) samples. The box plots show the interquartile range (box limits), 

median (centre line), minimum to max values (whiskers), and samples (circles). **P = 0.0025 

(two-sided unpaired t-test). 

g, IF staining of CD74 (green) and PROX1 (red) showing CD74-positive LECs in representative 
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MFLN (left) and FL (right) samples. Scale bars, 200 μm. 

h, Proportions of CD74-positive LECs among PROX1-positive LECs (%) detected by IF staining 

in biologically independent MFLN (n = 4) and FL (n = 4) samples. The box plots show the 

interquartile range (box limits), median (centre line), minimum to max values (whiskers), and 

samples (circles). *P = 0.033 (two-sided unpaired t-test). 

  



 93 

 

 

Figure 10. 

a, Strategies used to identify malignant B-cell components in FL samples in silico. Shown are 

representative cases with light chain kappa (FL 4; top) or lambda (FL 8; bottom) restrictions 

confirmed by flow cytometric analysis (data not shown). After identifying B-cell components 

by detecting CD79A expression, I assessed expression of IGKC (for light chain kappa) and 

IGLC2 (for light chain lambda). Clusters with cells expressing IGKC and those expressing 
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IGLC2 were considered non-malignant B cells, while clusters with cells expressing only one of 

these genes were considered malignant B cells. 

b, Scatter plot showing clear discrimination of malignant (filled circles) from non-malignant 

(empty circles) B-cell clusters in each FL sample, based on the ratio of cells expressing IGLC2 

(expression level >1; y-axis) to those expressing IGKC (expression level >2; x-axis,). Red-

shaded areas indicate regions in which the ratio was >2.0 or <0.25. 

c, Representative UMAP plots showing B cells from FL 4 according to B-cell types (beige; non-

malignant, red; malignant) (left panel) or malignant B-cell signature score (right panel). 

d, Violin plots showing malignant B-cell signature score in extracted non-malignant and 

malignant B cells, according to different FL samples (FL 2–10). ***P = 1.1 × 10-204 (FL 2), 

***P = 0 (FL 3), ***P = 3.3 × 10-176 (FL 4), ***P = 0 (FL 5), ***P = 4.2 × 10-122 (FL 6), ***P 

= 0 (FL 7), ***P = 4.2 × 10-161 (FL 8), ***P = 3.7 × 10-256 (FL 9), ***P = 2.5 × 10-81 (FL 10) 

(two-sided Wilcoxon Rank-Sum test with Bonferroni correction). 
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Figure 11. 

Enhanced interactions across FL NHC subclusters and malignant B cells (Bmalignant). Circle size 

indicates the negative log10 of adjusted P values (see the Methods section). Circles are coloured 

when gene expression for the indicated stroma-derived factor is upregulated in relevant FL 

subclusters compared to that in the MFLN counterparts (log fold-change >0 and adjusted P value 

<0.05). 
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Figure 12. 

a, IF staining of MECA-79 (cyan), DCN (red), and CD70 (green) using MFLN (top) and FL 

(bottom) samples. Scale bars, 200 μm. Representative images from one of three independent 

experiments are shown. 

b, Proportions of CD70-positive area in medullary and adventitia regions of MFLN (n = 3) and FL 
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(n = 3) samples. Circles represent biologically independent samples. Bars indicate median. **P 

= 0.0095 (two-sided unpaired t-test).  

c, Violin plots showing the expression of CD27 in non-malignant and malignant B cells. ***P = 0 

(two-sided Wilcoxon Rank-Sum test with Bonferroni correction). 

d, Comparison of CD27 mean fluorescence intensity (MFI) between FL CD19+CD10- (non-

malignant B-cell fraction) and CD19+CD10+ (malignant B-cell fraction) cells. Circles represent 

biologically independent samples (n = 8; FL 11–18). *P = 0.039 (two-sided Wilcoxon matched-

pairs signed rank test). 

e, Flow cytometric analysis of CD27 expression on CD19+CD10- and CD19+CD10+ cells of a 

representative FL sample (FL 14). 

f, Binding of FL CD19+CD10+ cells to CD70-Fc protein with an anti-CD27 blocking antibody or 

isotype human IgG. The histograms represent three independent experiments (FL 13). 

g, Blocking of FL CD19+CD10+ cell binding to CD70-Fc protein after treating cells with an anti-

CD27 blocking antibody (n = 3) or isotype mouse IgG1 (n = 3) in CD27-positive FL cases (FL 

11–14). Proportions of cells bound to CD70-Fc protein were adjusted by subtracting non-

specific binding observed with human IgG. CD70-Fc protein binding to cells treated with 

isotype mouse IgG1 was set to 100% in each experiment. Circles represent independent 
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experiments. Bars indicate median. **P = 0.0022, ***P = 7.3 × 10-4 (FL 11), ***P = 2.2 × 10-4 

(FL 12), ***P = 7.6 × 10-4 (FL 13) (two-sided paired t-test). 

h, Representative malignant B-enriched cell (FL14) adhesion to medullary regions of FL in the 

presence of an isotype mouse IgG1 (top) or anti-CD27 antibody (bottom). Orange dots indicate 

adherent cells. Yellow dashed lines indicate medullary regions. Scale bars, 200 μm.  

i, Blocking of malignant B-enriched cell (FL 11,13,14) adhesion to FL medullary regions (per 

mm2) after treating cells with an anti-CD27 blocking antibody (n = 3) or isotype mouse IgG1 (n 

= 3). Adhesion of cells treated with isotype mouse IgG1 was set to 100% in each experiment. 

Circles represent independent experiments. Bars indicate median. *P = 0.041 (FL 11), *P = 

0.027 (FL 14), **P = 0.0050 (two-sided paired t-test). 
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Figure 13. 

a, Scheme of stepwise survival analysis using public data from FL patients48 to identify stroma-

derived prognostic markers. 

b, Genes with unfavourable prognostic impact, as revealed by survival analysis using Kaplan–

Meier methods with the two-sided log-rank test (Step 2). Representative NHC subcluster 

denotes subclusters in which indicated gene expression is most greatly upregulated. FC, fold-

change; HR, hazard ratio. 

c, Strategies used to confirm prognostic impact of candidate genes identified in Step 2 (Step 3). 
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OS, overall survival. 

d, Results of analysis performed in Step 3. Shown is the proportion of patients whose samples 

highly expressed indicated genes in favourable or unfavourable prognostic groups. *P = 0.034 

(LY6H), *P = 0.017 (LOX), *P = 0.024 (PTGIS), *P = 0.014 (PIEZO2), *P = 0.027 (CHI3L1), 

**P = 0.0077 (TDO2), **P = 0.0092 (REM1) (two-sided Fisher’s exact test). NS, not 

significant. 
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Figure 14. 

a, Kaplan–Meier curves showing overall survival of newly diagnosed FL patients (n = 180) based 
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on expression of LY6H (top left), LOX (top right), TDO2 (bottom left), and REM1 (bottom 

right). Statistical analysis was performed using the two-sided log-rank test. HR, hazard ratio. 

b, Univariate and multivariate Cox regression analysis predicting overall survival (n = 180). 

Statistical analysis was performed using the two-sided Cox proportional-hazards analysis. 

Significant gene expression in multivariate analysis is indicated using red-highlighted text. 

Representative NHC subcluster denotes subclusters in which indicated gene expression is most 

greatly upregulated in FL. CI, confidence interval. 

c, Estimation of overall survival based on expression of LY6H, LOX, TDO2, and REM1 in the FL 

patients of the intermediate prognosis group (n = 64, two-sided log-rank test). 

d, IF staining of LY6H (red, top left), LOX (red, top right), TDO2 (red, bottom left), and REM1 

(red, bottom right) in representative MFLN and FL samples (left and right panels, respectively). 

Scale bars, 200 μm. The box plots show the interquartile range (box limits), median (centre 

line), minimum to max values (whiskers), and biologically independent samples (circles) for 

quantification of cell number (for LY6H, LOX, and TDO2) or area (for REM1) positive for 

each protein in MFLN and FL samples (MFLN, n = 8, 5, 4, and 6; FL, n = 7, 9, 4, and 4 for 

LY6H, LOX, TDO2, and REM1, respectively). *P = 0.029 (LY6H), *P = 0.010 (LOX), *P = 

0.029 (TDO2), *P = 0.038 (REM1) (two-sided Mann–Whitney U-test). 

e, Estimation of overall survival based on expression of PECAM1 and CDH5. 
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Figure 15. 
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a, UMAP plots of PTCL BEC (left), LEC (middle), and NESC (right) subclusters. 

b, Compositional differences between PTCL and MFLN NHCs based on major NHC components, 

BEC subclusters, LEC subclusters, and NESC subclusters (from left to right). **P = 0.0076, 

***P = 2.7 × 10-4 (two-sided chi-squared test). NS, not significant. 

c, UMAP plots of tDLBCL BEC (left), LEC (middle), and NESC (right) subclusters. 

d, Compositional differences between tDLBCL and MFLN NHCs based on major NHC 

components, BEC subclusters, LEC subclusters, and NESC subclusters (from left to right). *P 

= 0.030, ***P = 3.4 × 10-6 (Major NHC components), ***P = 6.3 × 10-16 (LEC), ***P = 1.1 

× 10-23 (NESC) (two-sided chi-squared test). 

e, Violin plots comparing expressions of key genes between MFLN (orange) and tDLBCL (green) 

samples according to selected NHC subclusters. *P = 0.015, **P = 0.0039 (LY6H), **P = 

0.0090 (LOX), **P = 0.0075 (VCAM1), ***P = 8.0 × 10-111 (two-sided Wilcoxon Rank-Sum 

test with Bonferroni correction). NS, not significant. 

f, Expression of TNFSF13B (left) and CR2 (right) in tDLBCL follicular stromal cells identifying 

MRCs and FDCs, respectively. 

g,h, Pseudo-time developmental stages in tDLBCL advSCs, SFRP2-SCs, TNF-SCs, C7-SCs, 

MRCs, and FDCs (g) or in tDLBCL SMC subclusters, PCs, TRCs, AGT-SCs, MRCs, and FDCs 
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(h). Dark winding lines in the cell objects indicate putative developmental trajectories. 
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8. Tables 

Table 1.  
Previous reports regarding LNNHC heterogeneity analyzed by scRNA-seq. 

Species 
LN 
status 

BEC LEC NESC 

Human  

Normal 
LN 

yet Takeda et al.23 yet 

Disease yet yet yet 

Mouse 

Normal 
LN 

Brulois et al.26 Xiang et al.24 Rodda et al.22 

Disease 
Brulois et al.26 
(inflammation) 

Xiang et al.24 
(inflammation) 

Rodda et al.22 
(inflammation) 
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Table 2.  
Characteristics of patients in the MFLN (top) and FL (middle) cohorts and 
comparison of patient cohorts (bottom).  

Representative somatic mutations of FL (reference 11) are listed.  

Statistical analysis was performed using the two-sided Mann–Whitney U-test and 
two-sided Fisher’s exact test for age and sex comparison, respectively. 
F, female; IQR, interquartile range; M, male; NA, not available; ND, newly 
diagnosed; R, relapsed. 
 

MFLN cohort 

No. Age Sex Disease Sample site 

Number of 

analysed 

NHCs 

1 66 M Sigmoid colon and rectal cancer Mesenteric 6,152 

2 70 M Rectal cancer Mesenteric 4,014 

3 59 F Sigmoid colon cancer  Mesenteric 11,815 

4 72 M Sigmoid colon cancer  Mesenteric 9,552 

5 50 F Descending colon cancer Mesenteric 5,328 

6 75 F Descending colon cancer Mesenteric 10,995 

7 39 F Breast cancer Axillary 8,366 

8 39 F Thyroid follicular tumor Cervical 7,371 

9 76 F Breast cancer Axillary 4,718 

            

FL cohort 

No. Age Sex ND or R Grade 

Recurrent 

somatic 

mutations of FL 

Sample site 

Number of 

analysed 

NHCs 

1 54 F R 2 NA Intraperitoneal 1,264 

2 70 M R 2 
KMT2D, BCL2, 

EZH2 
Axillary 6,555 

3 72 M ND 2 

CREBBP, 

STAT6, 

KMT2D, 

TNFRSF14 

Submandibular 3,347 

4 54 F ND 2 CREBBP Cervical 9,311 

5 48 M ND 2 – Cervical 6,220 
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6 56 F R 1 CREBBP Cervical 11,364 

7 39 F ND 1 

CREBBP, 

STAT6, 

KMT2D, 

HIST1H1D 

Cervical 5,060 

8 72 M ND 2 

CREBBP, 

STAT6, BCL2, 

EZH2 

Cervical 8,086 

9 71 M ND 3a 

CREBBP, 

STAT6, BCL2, 

TNFRSF14, 

HIST1H1D 

Inguinal 7,035 

10 62 F R 2 
CREBBP, 

KMT2D 
Cervical 8,679 

    

Cohort comparison 

  Cohort   

Factors MFLN FL P value 

  (n = 9) (n = 10)   

Age, years [median (IQR)] 66 (50, 72) 59 (54, 70) 0.71 

Sex, female (%) 6 (66.7)  5 (50.0)  0.65 
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Table 3.  
Clinical characteristics of patients in PTCL (top) and tDLBCL (bottom) cohorts. 
F, female; M, male; ND, newly diagnosed; R, relapsed. 
 

PTCL cohort 

No. Age Sex ND or R PTCL subtype 
Sample 

site 

1 71 M ND 
ALK-positive anaplastic large 

cell lymphoma 
Cervical 

2 77 M ND Follicular T-cell lymphoma Cervical 

3 78 F ND 
Peripheral T-cell lymphoma, 

not otherwise specified 
Cervical 

4 79 M ND 
Angioimmunoblastic T-cell 

lymphoma (+ myelodysplastic 
syndrome) 

Cervical 

5 87 M ND 
Peripheral T-cell lymphoma, 

not otherwise specified 
Cervical 

            

tDLBCL cohort   

No. Age Sex ND or R Sample site   
1 67 M ND Intraperitoneal   
2 74 F R Cervical   
3 83 F R Cervical   
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