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Abstract

Land use/land cover (LULC) information is essential for environmental studies toward
sustainable development. However, a profound understanding of change processes,
patterns, and rates is challenging due to the lack of comprehensive and consistent LULC
data/maps. To improve the quality of LULC maps, remote sensing and artificial intelli-
gence techniques have recently been utilized increasingly, but there are still limitations
such as low accuracy or resolutions, and the shortage of reliable reference datasets in
a long-term period. Therefore, a comprehensive framework of LULC monitoring is
fundamental for future land assessment. This study aims to develop such a framework
for long-term time-series monitoring of land use/land cover change (LULCC) on the
Vietnam-wide scale. Four major tasks were done as follows.

First, this dissertation estimated the uncertainties of currently existing LULC prod-
ucts in Vietnam. To this end, high-resolution LULC maps were first generated for
LULCC hot spots at a sub-national scale. Reliable data sets of reference samples were
also established through extensive field surveys across the country (in 2015, 2016, 2018,
2019, and 2020), statistical inventory data, and visual interpretation from high-spatial-
resolution images in Google Earth. Then, a synthesis was conducted for LULC maps
in Vietnam. Results showed that few products of LULC have been produced at the
Vietnam-wide scale while most of them focus on specific LULC types such as forests
and croplands. Global LULC databases are available on a national scale. They, how-
ever, contain uncertainties and inconsistencies such as low accuracy (< 78%), various
spatial resolution (10 – 1,000 m), and differences between the definitions of the LULC
categories. These products seldom meet the prime requirement of projects’ objectives.
Hence, the improvement of LULC mapping is in urgent need, providing reliable data
for further environmental research.

Given the above-mentioned importance, the second section aimed at proposing
a novel approach (Ensemble Learning Updating Classifier/ELUC), which could be
applied with various classification algorithms and datasets to simplistically generate
new classifications or renew existing classifications with a remarkable accuracy im-
provement. Applying miscellaneous features of Landsat-8 images, the ELUC of a
random-forest-based algorithm produced sequences of single-time classifications with
a mean overall accuracy of 84%. Through the study period, these sequences were
subsequently joined to achieve a final classification that reached an overall accuracy
of 94%. Also, the ELUC of the random-forest-based algorithm outperformed that of
Kernel-Density-Estimation with a 5% overall accuracy higher. These outcomes confirm
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the effectiveness of the ELUC for a remarkably consistent land use/cover estimation in
a data-rich environment.

The third chapter was to develop a comprehensive framework for the automatic
production of the first Vietnam-wide annual land use/land cover datasets (VLUCDs)
from 1990 to 2020. Specifically, after comprehensively assembling and preprocessing
on the GEE platform, various data sources were integrated, including the informative
Landsat TM, ETM+ and OLI, Sentinel SAR GRD and MSI images, and ground-truth
data. Together with the ELUC, an automatic training migration model (ATMM) was
adopted to monitor Vietnam LULC. The obtained VLUCDs had overall accuracy rang-
ing from 85.7 ± 1.3% to 92.0 ± 1.2% with the ten primary dominant LULC and 77.6
± 1.2% to 84.7 ± 1.1% with the eighteen secondary dominant LULC over the study
period. This confirms the potential of the proposed framework for the systematically
long-term monitoring of LULC in Vietnam. Also, the dynamic process of major LULC
changes was estimated across mainland Vietnam. The most dominant LULC type was
forests, accounting for approximately half of the entire country, followed by croplands
(16.3%), rice fields (14.2%), and open water (including parts of saltwater, 8.1%). Grass-
land and scrubland occupied a relatively similar proportion (2.8%) while the smallest
LULC was residential areas (1.3%). Over the study period, major LULC changes fre-
quently occurred in forests, agriculture, aquaculture, wetlands, and residential land.
Specifically, despite slight recoveries in 2000 and 2010, the net loss of forests (19,940
km2) mainly transformed into croplands over 30 years. Some productive croplands
were converted to urban areas, which increased approximately ten times. A threefold
increase in aquaculture caused a major loss of wetlands (1,914 km2). Changes varied
according to region, but the most dynamic regions were the western north, the south-
ern center, and the south. These findings can provide evidence-based information on
formulating and implementing clear land management policies. The explicitly spatio-
temporal VLUCDs can be benchmarks for regional and global LULC validation and
utilized for a variety of applications in the research of environmental changes toward
the Sustainable Development Goals.

The remaining part of the dissertation was to quantify the socioeconomic and bio-
physical drivers of LULCC with a focus on forests. Utilizing the VLUCDs, the dynamic
changes in forest land were quantified from 1990 to 2020. To decide the major drivers
of changes, a synthesis of previous articles focusing on forest transition studies in
Vietnam at various spatial-scale levels was conducted. Subsequently, a machine learn-
ing technique was utilized to measure the drivers of the forest changes. Our results
indicated that although the forest area increased from 2005 to 2010, it underwent a
decrease over the whole study period. There was a dramatic conversion between forest
and agricultural land, especially in the northwest and central highland areas. This
conversion was mainly driven by agricultural and plantation expansion/shifting, ac-
cessibility/infrastructure, population growth/migration, and distance to systems such
as irrigation, drainage, and mining/industry. The identification of the drivers is likely
to help to enhance the accuracy of the land use/land cover change prediction. Also,
these findings provide scientific evidence about the dynamics and drivers of forest
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changes at the nationwide and decadal scales and thus can support informing the core
policies of forest management in Vietnam.
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Chapter 1

Introduction

1.1 Background of the research problem
Land use/land cover (LULC) information has a pivotal role in the sustainable devel-
opment of society. Land cover is what people observe on the Earth’s surface such as
vegetation, bare soil, building, etc. Land use is the use of the land which is managed
for specific purposes (e.g., cultivation and recreation). A plot of land might simulta-
neously be utilized for different purposes. LULC may change differently according
to time and space. A change in land cover means the alteration of land cover types
(e.g., forest to cropland) or characteristics (e.g., degradation and structure). A change
in land use is characterized by changes in management practices, intensification, etc.
A LULC change (LULCC), which is caused by both anthropogenic and natural factors,
can lead to alterations in, for example, global energy and biogeochemical cycles [2],
services of ecosystems [3], climate [4], biodiversity (e.g., pollinator) [5], carbon seques-
tration [6], and sea-level rise [7]. Therefore, LULCC data provide land policymakers
with scientific evidence-based information to understand the fundamental alterations
of land dynamic conditions. In other words, the data support to manage sustainably
the environment.

Even the recognition of its importance, a proper understanding of LULCCs at a large
scale is challenging due to the shortage of accurate and consistent LULC maps or data
[8]. Most of the existing LULC data lack fine temporal or spatial information (available
a very few times or at a coarse spatial resolution) and differences in LULC classification
schemes [9]. Particularly, remote-sensing-based data may have a fine spatial resolution
but they are available for a single or few times. Existing long-term LULC data are usually
observed for a single land type such as cropland [10] or a predefined LULC class system
(the term "class" is used to describe a LULC type/category in this study), which may
not meet the requirement of most projects [11]. Many of these time-series data have
not been completely checked the accuracy in terms of time and space, owing to the lack
of coherent reference data [12]. On the contrary, statistical and inventory data have
been conducted for a long period, but they are mainly constrained by small (at village,
district, and province scales) or developed regions, fragmentation, or focusing only on
land use. These inventory data may not be publicly opened to all users, especially in
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the developing world. Meanwhile, recent evidence suggests that the LULCC has been
more dynamic in the developing regions such as Southeast Asia but likely decreased
in the other regions and on the global scale [13]. These high dynamic changes of
LULC have caused difficulties in effectively monitoring LULC in such a developing
region. It is also noted that most developing countries are located in subtropical or
tropical climate regions, which are frequently covered by dense clouds, challenging the
accurate assessment of LULC from space. Other difficulties in consistently estimating
LULC in the developing world are the lack of coherent reference data and the high
degree of uncertainties in the current LULC reconstruction data [14]. These challenges
are certainly true in the case of Vietnam.

As a developing country, Vietnam has increasingly experienced a considerable
change in LULC. However, available LULC products mainly focus on small administra-
tive areas or have few predefined times [15]. Recently, there are several inter-provincial
LULC data sets such as the central and southern LULC maps of the years 2007 and
2017, and the northern maps of the years 2007 and 2015 [16]. Truong et al. has mapped
annual land cover between 2015 and 2019 [17] with a focus on forest types. How-
ever, the accuracy of non-forest categories is low and might not be utilized for other
primary purposes. As such, although the report of the Ministry of Agricultural and
Rural Development (MARD, 2016) has shown a continuous net forest gain, Hensen et
al., with a systematically comprehensive review, has reported forest loss in Vietnam
[18]. It means that the rates, patterns, and processes of the change in forests on the
national scale have not been fully understood. Case studies over the past two decades
have provided important information on LULCC in Vietnam. Typical examples are
the expansion of urban areas [19] and a boom in the local aqua-cultural industry [20].
Hence, timely, accurate, and comprehensive LULC products at the national scale can
provide a better profound understanding of the rate, pattern, and change processes
of LULC in Vietnam. This information can support policymakers in forming crucial
decisions on sustainable development and resource management. The LULC products
and generated ground-truth reference data can be benchmarks for validating regional
and global land cover databases.

Given the above-mentioned motivation, an important objective of this study is to
annually produce a comprehensive LULC database across mainland Vietnam from 1990
to 2020. To this end, a general methods was established to overcome current paramount
concerns, including the lack of reference data, cloud cover problems, and the limitations
of existing classification methods. First, a full standard set of extensive reference
data was established for training and validating a proposed classification method.
Specifically, nationwide on-site detailed surveys have been conducted annually from
2015 to 2020. This work was supported by the locals and remote sensing experts.
Along with these data, further reference information from statistics, inventory, existing
fragmented maps, and high-spatial-resolution satellite images in Google Earth were
extracted carefully. To minimize labor, cost, and time for obtaining further reference
data, a potential training migration method/model (in this study, "model" is a simple
description of a system or process that can be used in calculations or predictions of what
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might happen) was applied to acquire training data from 1990 to 2014. Secondly, in
order to overcome data shortage and cloud cover problems, an innovative classification
method was proposed to take advantage of all the available remote sensing data,
including Landsat, Sentinel, and ALOS sensors. Specifically, a systematic review was
conducted to find out the most suitable classification algorithm ("algorithm" is a set
of mathematical instructions or rules that, especially if given to a computer, will help
to calculate an answer to a problem). Previous research has reported that although
a large number of advanced classification methods have been developed, there is not
the best one for all. Each method has its own advantages and disadvantages, and
thus may only perform effectively with the case studies [21]. Then, experiments were
conducted to test the effectiveness of the best-recommended methods and found that
a random forest is the most effective one. This also accords with earlier observations,
which showed that the random forest shows the out-performance of its rivals such as
fuzzy adaptive resonance theory-supervised predictive mapping (Fuzzy ARTMAP),
support vector machine (SVM), artificial neural network (ANN), Mahalanobis distance
(MD), and spectral angle mapper (SAM) [22]. Subsequently, a new random-forest-
based method was developed in this study. Unlike the common use of single-time
classification, time-series images were first classified independently. The second step
in this process was to develop an approach for optimizing post-classification results.
The proposed method achieved an outstanding performance according to a benchmark
established by Truong et al. [23]. It enables the generation of an explicit annual LULC
database at a Vietnam-wide scale. This can be utilized for a tremendous variety of
applications in the research of environmental changes in Vietnam. The method is
expected to deploy elsewhere at a broader scale, even the global LULC quantification
towards the Sustainable Development Goals.

1.2 Research aims and objectives
The essential aim of this dissertation is to create a new comprehensive approach to
estimate the long-time dynamics of land use/land cover changes in mainland Vietnam.
The approach is effective and efficient by utilizing the public availability of multiple
remotely sensed sources and ground-based data. Connecting the analyzed changes to
socioeconomic and biophysical variables, the determinants of the changes are discov-
ered to provide policymakers with evidence-based information for land and resource
management. To this end, specifically principal objectives are as follows.

• To build a common dataset of ground-truth data for LULC classification and
valuation across mainland Vietnam.

• To reveal the degree of uncertainties and inconsistencies of the currently existing
LULC databases in mainland Vietnam.

• To develop an effective method for mapping accurately LULC in tropical cloudy
regions, including mainland Vietnam.
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• To establish a comprehensive framework to quantify annual LULC from 1990 to
2020 across mainland Vietnam.

• To connect the LULCC to socioeconomic and biophysical variables for determin-
ing the drivers of the changes.

1.3 Dissertation structure
My thesis is composed of eight themed chapters. The first chapter of this thesis provides
a brief introduction of the background of the research problem, research objectives,
and thesis organization. The second chapter conducts a comprehensive literature
review. This includes the importance of land use/land cover (LULC) assessment, the
LULC databases at global, national, and Vietnam-wide scales, remote-sensing-based
approaches for LULC analyses, and the challenges and opportunities for improving
LULC monitoring at national or above scales. The third chapter is concerned with
the study area and materials deployed in this study. The main issues addressed in
this thesis are chapters 4, 5, 6, and 7. Chapter four analyses the uncertainties and
consistencies of some global LULC databases at the Vietnam-wide scale. In chapter
5, a practical approach has been developed for accurate LULC assessment in tropical
cloudy regions, including Vietnam. The sixth chapter presents a coherent framework
for comprehensive quantification of annual LULC from 1990 to 2020 across mainland
Vietnam. Chapter seven provides an estimation of LULC changes and drivers over the
recent three decades in Vietnam. The remaining part of the thesis proceeds as follows:
a conclusion of the study findings, the limitations, and recommendations for future
work.
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Chapter 2

Literature review

2.1 The importance of land use/land cover information
updating

The literature on environmental studies has highlighted the importance of LULC in-
formation. For example, the significant loss of forests impacts carbon-cycle balances,
which can cause changes in climate system [24]. Such changes are expected to alter
natural habitats, which may be a major driver of biodiversity losses [25]. LULC in-
formation is the main indicator in mapping natural hazards such as landslides, debris
flow, and flash floods [26, 27]. Comprehensive assessment of LULCC is an important
debate topic in international associations such as the Paris Agreement [28]. Meanwhile,
LULC changes constantly and global LULCC are much more considerable than pre-
vious assessment [13]. Most publicly available LULC databases have limitations, for
example, a limited number of predefined LULC classes or a coarse spatial-temporal
resolution. Hence, more regularly updating and detailed LULC information is in great
need. Such information can provide a profound understanding of spatial-temporal
dynamic changes in LULC and evidence-based information for various environmen-
tal studies, including planning and policy makers towards socio-economic sustainable
development.

2.2 Land use/land cover studies

2.2.1 A global scale

Given the above-mentioned essence, numerous projects have been recently developed
into creating global LULC databases. Reliably applicable databases include the USGS
EROS Archive - Land Cover Products - Global Land Cover Characterization [29], Global
Land Cover Facility [30], Global Land Cover 2000 [31], GlobCover 2009 [32], CCI Global
Land Cover [33], MCD12Q21 MODIS [34], GLCNMO [35], FROM-GLC [36], GLC-
GCS30 [37], CGLS-LC100 [38], and Esri 10-Meter Land Cover [39]. Among these
databases, the most state-of-the-art products are described in detail in Appendix A.1.

5



As shown in Appendix A.1, there is considerable improvement of the global LULC
databases. The spatial resolution of the data have currently reached 10 m in comparison
to 1,000 m in the 1990s. There is also a remarkable increase in the overall accuracy from
67% to 86%. Several data have a high temporal resolution, for example, the MODIS
LC and CCI, which have observed yearly since the 2000s. However, the global LULC
data have limitations. These data used different land cover classification systems and
the number of classes varies according to the individual databases, ranging from 10 to
32 classes. The reference data (see Section 3.3.1 for the detailed definition of "reference
data" in this study) of several databases are different. For example, the GLCNMO has
904 training sites while the ESRI-LC10 has 23,693,961 training sites. In addition, these
LULC databaes utilize different input data and classification methods. This might cause
inconsistencies among these data and hard to find which data is the most reliable and
applicable.

2.2.2 A regional and national scale

There is a growing body of literature that recognises a need of continental/national-
scale LULC to obtain more detail information at a smaller scale. One of the first
continental scale databases is the land-cover database created for sub-saharan Africa
(1982 - 1991). They were created using remote-sensing-based spectral bands and in-
dices, for example, vegetation and surface temperature. The database, however, has a
coarse spatial resolution (1,000 m) and shortage of representative reference data [40].
To increase the detail of mapping, L. Durieux use the fusion of the Global Boreal Forest
Mapping radar and the Medium resolution imaging spectrometer images to map the
vegetation of Siberia region at a spatial resolution of 300 m [41]. Several attempts have
established more reliable LULC databases such a cropland mapping at the African
continental scale [42] and a LULC change over the continental US [43]. Recent work has
tried to monitor LULC at finer spatial resolution (30 m or 10 m) and higher classifica-
tion accuracy. An example is the 30-m spatial resolution wall-to-wall LULC of Australia
(1985 - 2015) [44], and the Land Cover Mapping at 10 m resolution over Europe [45].

The pioneers in LULC surveys at a national scale were in developed nations such as
the USA, Japan, and Australia. Then, developing countries such as India, Nepal, Saudi
Arabia, and Iran had programmes on LULC surveys [46]. Particularly, in the 2000s,
several attempts created nationwide maps, such as LULC monitoring in Spain [47], in
Netherlands [48], in the USA [49], and in Portugal [50]. Recently, several countries have
been updated their national LULC databases, for examples, a land cover database to
circa 2001 and 2011, a update of nationwide LULC database of China in 2010. Numerous
countries have nationwide LULC product but very few countries have multi-date LULC
products. For example, the US has released the National Land Cover Database 2016
with 7 products dates including 2001, 2004, 2006, 2008, 2011, 2016, and 2016 [51].
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2.2.3 Land use/land cover in Vietnam

To understand LULC in Vietnam, a synthesis is conducted, focusing the studies from
1990 to 2020. There have been approximately 300 publications on LULC studies. In
particular, from all databases in Web of Science, an advance search with the query
expression “TI = (Determinants OR drivers OR causes OR dynamics AND land*) AND
TS = (Vietnam OR “Viet Nam” AND land*) AND TS = (agricul* OR crop* OR *fores*
OR defor* OR refor* OR degrad* OR aquacul* OR cropland*)” is carefully conducted.
Also, an advanced search in Google Scholar is employed, though there are duplicates.
After the duplicates removed, 545 publications are selected in total, of which 297 studies
focused on LULC in Vietnam. Going through the titles and abstracts, 48 publications
work qualitatively or quantitatively on the determinants of driving changes in LULC,
especially forests, agriculture, or/and aquaculture. These are the most dynamic LULC
types in Vietnam. After the careful reading of the full articles, the study topics (e.g.,
forest loss and forest gain), key determinants, study area locations, study periods,
and methods used by the selected articles were recorded correctly. Major determinants
were decided based on the selected publications if they noted such a major determinant.
Similar determinants were merged to generalize the determinants. They are described
in more detail in Appendix A.6.

In Vietnam, satellite-based methods have been employed to generated numerous
LULC products, but most focus on small-scale regions or have few predefined times
[15]. Several attempts have been made to create inter-provincial LULC databases such as
the seven-category LULC maps for the central and southern Vietnam in 2007 and 2017,
and the northern Vietnam in 2007 and 2015 [16]. Recently, Vietnam-wide maps were
produced to map annual forest cover from 2015 to 2019 with the primary focus on forest
monitoring [52]. As such, the accuracy of non-forest LULC classes might be insufficient
for other objectives. Meanwhile, there has been a highly dynamic LUCC which varies
among different regions in Vietnam. Despite the report of continuous net forest gain
by the Ministry of Agricultural and Rural Development (MARD, 2016) a systematically
comprehensive review has reported forest loss in Vietname [18]. The rates and patterns
of changes at the nation scale may not be fully understood. Hence, timely, accurate,
and comprehensive LULC products can provide a profound understanding of LUCC
patterns and processes. This information can supports policymakers in forming crucial
decisions on sustainable development and resource management. The maps may be
benchmarks for quantifying regional and global land cover products.

2.3 Remote-sensing-based analyses of land use/land cover

2.3.1 Remotely sensed data

Remote sensing data are fundamental for the LULC monitoring and assessment. They
provide valuable information at multiple scales in time and space. There are also
multiple spectra (e.g., Red, Blue, and Green), indices (e.g., Normalized Difference
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Vegetation Index), hyper-spectral data (e.g., Earth Observing One – Hyperion), multiple
angular data (e.g., Multiangle Imaging Spectroradiometer), night-time light data (e.g.,
Visible Infrared Imaging Radiometer Suite), microwave data (e.g., ALOS data), and
lidar data (e.g., Digital Surface Model). The data have been advanced in terms of
resolutions and access. For example, Landsat had a 16-day repeat orbit in the past but
it has an 8-day repeat orbit currently. Recently, a 5-day repeat coverage of Sentinel-1 and
-2 images with a 10-m spatial resolution has been available in public. Medium spatial
resolution satellite data are easily obtained from different archives, for example, the
USGS EarthExplorer, Landviewer, and Copernicus Open Access Hub. Fine resolution
data are also available with orders. In summary, various remotely sensed data have
been effectively utilized for the analysis of LULC changes.

2.3.2 The usage of geospatial software for image processing

Different geospatial software tools were used for remotely sensed image processing.
Basic tools are ArcGIS, ENVI, Quantum GIS, ERDAS Imagine, and IDRISI. Recently,
open-source software has been used more frequently such as Google Earth Engine,
Python, Matlab, and Rstudio. The open-source software has advantages for geospatial
analysts due to its flexible, available, and simple modification with regularly updated
effective plug-ins. Popular software is described in Appendix A.2

2.3.3 Image pre-processing techniques

Remote sensing data may contain noise and errors, which can be removed and/or
corrected by using effective pre-processing techniques. They include radiometric cor-
rections (atmospheric and topographic corrections), geometric corrections (orthorecti-
fication and registration), and image enhancement [53]. In addition, for different data
sources, coordinate re-projection and resampling steps are critical needs. Data with a
UTM projection were warped to the WGS84 latitude-longitude projection. Although
various resampling methods have been developed, widely used methods are nearest
neighbourhood, bilinear interpolation, cubic convolution, Lanczos, and mode methods.

2.3.4 Land cover classification system

Defining a standard land cover classification system (LCCS) is a crucial step in the practi-
cal land cover assessment. It should be delineated precisely depending on the objectives
of users and the availability of mapping resources. Most LULC maps employ the theory
and framework of the International Geosphere-Biosphere Programme (IGBP) [54], the
Land Cover Classification System (LCCS; https://www.fao.org/3/x0596e/x0596e00.htm),
and the Coastal Change Analysis Program (C-CAP) Land Cover Classifications [55].
However, some categories in these LCCSs do not fully reflect at local or national scales.
Taking Vietnam as an typical example, where snow and ice do not exist, while one
cropland category does not represent the diverse croplands in Vietnam. Although
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detailed classifications of high and low developed built-up areas play a fundamental
role in urban planning and management for the rapid urbanization of Vietnam, they
are not include in the previous LULC products. Therefore, a new LULC classification
system was developed by remaining the appropriate categories of the above-mentioned
LCCSs and adding new proper categories based on the local biophysical environment
and end-users’ recommendations.

2.3.5 LULC classification methods

Various approaches have been applied in the classification of remote sensing data for
LULC analyses. Early approaches were visual interpretation and pattern recognition,
which were mostly developed in the 1970s and 1980s [56]. The following decades wit-
nessed the effective utilization of computer-based and knowledge-based approaches,
including pixel-based, object-based, and hybrid methods [57]. Specifically, widely used
algorithms are Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MP), Ar-
tificial Neural Network (ANN), K-nearest Neighbours Algorithm (k-NN), and Support
Vector Machine (SVM). Among these algorithms, extensive research has shown that the
RF properly outperforms the others [57, 22]. Object-based methods likely outperformed
the others in the classification of specific land types such as forest, agriculture, and wet-
lands; they, however, required a careful selection of optimal segmentation scales, which
challenges most analysts.

Thanks to the advancement of remote sensing technologies and computational
sciences, deep learning (DL) has been successfully employed in LULC analyses. DL
models were developed from neural networks. In the beginning, there were supervised
models such as convolutional neural networks (CNN) and recurrent neural networks
(RNN). The supervised models required a large number of training data, which are
costly and time-consuming for comprehensively collecting. To overcome such a train-
ing collection issue, analysts developed unsupervised models, for example, deep belief
networks (DBN), generative adversarial networks (GAN), and autoencoders (AE). Sev-
eral attempts have been made to review the application of deep learning in remote
sensing, especially LULC classification [58, 59].

2.3.6 Accuracy assessment

Assessing the accuracy of LULC maps and area of changes is important to quantify
the quality of provided information. It also helps to understand the uncertainty of the
data. Although several approaches have been well-developed, there is not the best one
[60, 61, 62]. Recently, a "good practice" has been recommended by Pontus Olofsson et
al. The detail of this approach is rigorously described in [63]. In general, there are
three main steps, namely sampling design, feedback design, and analysis. It is noted
that the accuracy validation and area assessment are done after checking and removing
clear errors in the classified maps. A sampling method is essential to minimize the cost
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of accuracy assessment. It is prohibitive to collect a large number of reference data.
Another consideration is that data utilized for accuracy validation must be independent
of the samples utilized for creating the classified maps.

2.3.7 Change analysis
The analysis of changes in land cover starts from comparison between old and new
LULC maps. We are particularly interested in the characteristics of the changes, namely,
location, extent, timing and speed. Extensive research has shown that the principal
methods of change analyses can be pre-classification and post-classification compari-
son; the post-classification technique is more effectively utilized in LULC change anal-
yses [64]. The post-classification comparison can minimize negative effects due to the
differences between sensors, climate, and environmental conditions; it provides with
more detailed information about LULC and thus is widely used to quantify the magni-
tude and speed of dynamic changes in LULC. In practice, change indicators including
the area of net annual change (𝑎 (km2.year−1); Eq. (2.1)), the percentage of net annual
change (𝑝 (year−1); Eq. (2.2)), and the speed of net annual change (𝑟 (year−1); Eq. (2.3))
are commonly used [65].

𝑎 =
𝐴𝑡2 − 𝐴𝑡1
𝑡2 − 𝑡1

(2.1)

𝑝 =

(
𝐴𝑡2 − 𝐴𝑡1
𝐴𝑡1(𝑡2 − 𝑡1)

)
∗ 100 (2.2)

𝑟 =

(
1

𝑡2 − 𝑡1

)
∗ ln

(
𝐴𝑡2
𝐴𝑡1

)
(2.3)

where 𝐴𝑡1 and 𝐴𝑡2 (km2) are the area of the land cover type in the observation years 𝑡1
and 𝑡2 respectively (𝑡1 < 𝑡2).

2.4 Challenges and opportunities for improved land use/cover
monitoring at a national or broader scale

Although LULC databases have been increasingly well-established, there are limita-
tions and challenges. First, the detailed information of the existing large-scale LULC
databases is sometimes unclear. Most of the existing LULC databases have been con-
ducted at a global scale, which frequently has a coarse spatio-temporal resolution and
low accuracy. Specifically, the accuracy of the databases varies according to local and
national locations, where have different levels of landscape or LULC heterogeneity.
Such heterogeneity challenges the accurate assessment of LULC. To overcome this chal-
lenge, several attempts have been made to create LULC databases at a national scale,
mainly in developed countries. Developing countries, however, experience a shortage
of informative LULC data. These data may be established by governmental projects,
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but they are rarely shared publicly. Second, statistical and ground-based reference
data are rarely collected or not openly available at large scales. Unfortunately, the
LULC community has focused on creating classification algorithms or models rather
than creating standard reference data. Numerous models have developed, but there
is not the best one. Selecting the best model depends on specific study cases. Last
but not least, the existing large-scale LULC databases have high uncertainties and in-
consistencies regarding the definition of map categories and the accuracy validation
[66]. Recent evidence has shown that there is a profound difference in the area of a
single LULC class derived from disparate remotely sensed data [13]. Although multiple
LULC databases have been developed recently, it is still not known which database is
the most comprehensive one. Therefore, to build a comprehensive one is a critical need
for understanding and quantifying large-scale LULC dynamics.

Recently, the advances in remotely sensed technologies and computational capac-
ities have provided potential chances for LULC assessment. New models have been
increasingly developed with more stability, generalizability, and reliability, but low
computational cost. These models are deployed with powerful computing systems
or public cyberinfrastructures such as Google Earth Engine (GGE) and Amazon Web
Service (AWS). In these systems, various software and numerous satellite data are com-
patible, integrated, or built-in, allowing users to conveniently achieve their goals. To
utilize these potential opportunities, the LULC community is expected to challenge the
following tasks. First, a comprehensive assessment of publicly existing LULC databases
is a crucial task, which provides the uncertainties and inconsistencies of the data in de-
tail. Another challenging task is to standardize, harmonize, and combine multiple data
sources to establish accurate and consistent LULC databases. These databases then
should be shared publicly with systematic platforms and protocols. To this end, one of
the important objectives is to create a great volume of ground-truth data for reference
data, which are effectively utilized to train and validate models.
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Chapter 3

Study area and materials

3.1 Study area

The study area is mainland Vietnam (Fig. 3.1). The country has approximately 97
million population (2018; Fig. 3.2) and covers a land area of over 300,000 km2. It
includes the Red River Delta and the Mekong River Delta which is the third-largest
delta in the world. The country has diverse topography with over 75% of the total
area being hills and mountains, covering mainly by tropical rain-forests. Climate
is changeable according to different regions (six climate regions) but dominated by a
tropical monsoon type with the mean annual humidity of 84%; the mean annual rainfall
between 1,200 and 3,000 mm and the mean annual temperature from 21 – 27 𝑜C (Fig.
3.3) [67]. Its diverse climate and topography form the rich biodiversity and landscape
heterogeneity of Vietnam’s LULC. However, there are the identifying characteristics
of LULC in different climatic regions. While the southern part is mainly covered by
rice, aquaculture, and orchards, the northern part is primarily occupied by forests and
plantations, except for the Red River Delta. In the northern centre, the dominant lands
are evergreen broadleaf forests and annual croplands whereas woody crops, deciduous
broadleaf forests, and evergreen needle-leaf forests are dominant lands in the southern
centre.

3.2 Data acquisition and pre-processing

3.2.1 Remote sensing data

Multiple sources of remote sensing data are utilized in this work. First, Landsat TM,
ETM+, and OLI Surface Reflectance Tier 1 with a 30-m spatial resolution, Sentinel MSI
Level-2A and SAR GRD with a 10-m spatial resolution were collected properly. The
Landsat provided by the USGS while the Sentinel provided by the ESA are publicly
available in Google Earth Engine with several preprocessing steps being done. For
example, the Landsat and the Sentinel MSI have been atmospherically corrected while
the Sentinel SAR GRD has gone through thermal noise removal, radiometric calibration,
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Figure 3.1: Study area; the location of Vietnam in the world and seven main zones of
climate.

terrain correction using Sentinel-1 Toolbox and Shuttle Radar Topography Mission
(SRTM) data. Regarding geometric correction, over 99% of the datasets from the GEE
archive have high geometric accuracy with the error being less than half a pixel. Images
with the geometric error greater than half a pixel are removed from this study. Further
processing is done to support time-series analyses. To reduce illumination impacts from
elevation, aspect and slope, the topographic correction is performed using the Modified
Sun-Canopy-Sensor Topographic Correction algorithm for the Landsat and Sentinel
MSI. The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) is
applied to perform atmospheric correction for Landsat TM and ETM+, and the Land
Surface Reflectance Code (LaSRC) is adopted for Landsat OLI. All Landsat images
are masked and removed clouds, cloud shadows and saturation pixels utilizing the
Function of Mask (CFMASK). Sen2Cor is adopted to correct atmospheric issues and to
mask clouds for Sentinel MSI. Finally, because of the different solar and view angles
of the Landsat OLI and the Sentinel MSI, normalizing the bidirectional reflectance
distribution function (BRDF) is applied for the data. For the Sentinel SAR GRD data,
a further process was speckle filtering. The filtering was done using Lee filter, which
is superior due to its capacity of maintaining point targets, edge, linear spaces and
texture information. The mosaic images of ALOS AVNIR-2, ALOS PALSAR, and ALOS-
2 PALSAR-2 mosaic were also utilized effectively. These data are derived from the Japan
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Figure 3.2: Trends and projections of Vietnam population; Annual growth rate (‰)
and urban population (% of total population) from 1955 to 2020 with 5 year interval
projections until 2050. The data are derived from the Population and Houses census,
the General Statistics Office of Vietnam.

Figure 3.3: Annual average temperature and rainfall from 1900 to 2020 in Vietnam. The
data are derived and computed from the Administrative unit, Lands and Climate, the
General Statistics Office of Vietnam.

Aerospace Exploration Agency (JAXA). They are preprocessed with basic atmospheric
corrections, cloud masking, geometric corrections, and speckle filtering. All the data
are re-projected to Universal Transverse Mercator (UTM) projection (Zone 47-49 N and
WGS-84 datum) and resambled into a designated spatial resolution using a bicubic
interpolation method. All the processing steps are automatically completed using
the Geospatial Data Abstraction Library (GDAL), the Geographic Resources Analysis
Support System, and Python programming in Ubuntu 18.04.5 LTS.
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3.2.2 Proxy data of the biophysical and socio-economic determinants

Major biophysical and socio-economic determinants were selected based on the evi-
dence of the case-study synthesis of LULCC drivers. They are provided in Appendix
A.7 with reference sources. Most data were annually collected at a commune-level scale
from the General Statistics Office of Vietnam (mainly from 1995 to 2019; household sur-
veys). Also several data were created such as distance from roads, rivers and irrigation
systems. All of these data were originally arranged in different formats, including
vector, raster and tabular data. The data had different spatial resolution but finer than
the commune level. Henceforth, an enormous effort was performed to organize, clean,
and check the data quality before they was utilized for further analysis. While keeping
the original spatial resolution of the commune-level scale data (e.g., paddy yield and
agriculture expansion), mean values were calculated at the commune-level scale for the
finer spatial resolution data (e.g., distance to drainage and soil types). At the commune-
level scale, mean, rate of change and standard deviation values were computed over the
study period for time-series data (e.g., annual precipitation from 1990 to 2020) while
mean values were calculated for the constant data such as elevation and slope, which
do not significantly alter over time or are not available for multiple periods.

3.2.3 Ancillary data

Recent evidence suggests that ancillary information can help increase the accuracy of
LULC mapping [52, 16, 17]. Herein, various ancillary data including elevation, slope,
and aspect are used. These data are derived from ALOS Global Digital Surface Model
or “ALOS World 3D-30m (AW2D30)" [68]. Transport systems, buildings, distance to
rivers, coastlines, and soil classes are also added as covariates. Whereas the transport
systems and buildings are derived from the OpenStreetMap, river networks and soil
classes are derived from the OpenDevelopmentMekong.

3.3 Field surveys and reference data

3.3.1 Reference data extracted from field surveys

Reference data is an essential key in mapping LULC. The term "Reference data" refers to
data that are used for training and validating a LULC classification model. In other
words, ambiguous reference data cause confusion to the classification model. Then,
a misclassification map is produced. To overcome such a misclassification, references
must be ground-truth data, which are extracted from field surveys. However, LULC
field surveys are costly and time-consuming, especially at a nationwide scale and in
the past. Hence, apart from field survey data, it is necessary to make use of available
reliable data, including the statistical inventory data and high-resolution images in
Google Earth. Before creating reference data, a eighteen-class LULC system (Appendix
A.4) was first designed based on the standard Land Cover Classification System, the
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local biophysical environment, and end-users recommendations in Vietnam. Visual
interpretations with high-resolution images in Google Earth were utilized to properly
identify LULC types at the nationwide scale. At a local scale, unsure areas were noted
for double check with detailed field surveys. Surveys in 2015, 2016, 2018, 2019, and 2020
were properly conducted across the country. During these surveys, GPS photos were
taken using CASIO H20G, GoPro HERO 6, and GoPro HERO 7. In-depth interviews
are also conducted with the locals and local experts. Based on the local knowledge,
reference photos, and high-resolution images from Google Earth, then approximately
130,000 reference sites were designed carefully. A reference site was an area of a
homogeneous land type, which covered an area of a circle with a radius of 75 m. A
size of the circle was selected because it must cover at least nine pixel of the largest-
spatial-resolution satellite image used. This confirmed that the reference was defined
explicitly and properly in the site. Subsequently, the reference sites were divided in
two individual parts for training and validating (80% against 20%) the classification
models. The visualization of the reference data is briefly shown in Fig. 3.4.

3.3.2 Details of the field surveys

Introduction

The accuracy of a LULC map is not properly evaluated without ground-truth data. It
demonstrates the importance of the ground-truth data which are only acquired from
field surveys. However, a field survey for large-scale LULC studies are expensive and
time-consuming. An excellent design for such a survey is essential to collect compre-
hensively and effectively ground-truth data. Herein, the currently available informative
LULC data such as previous LULC maps, inventory data, and high-resolution images
from Google Earth were used in this study. Based on these data, a map of high and low
confidence areas of LULC types was created. A high confidence area meant all the data
used had the same LULC type in the area. A low confidence area meant the disagree-
ment between the different data used in terms of LULC types. Using this map, the
sites of the surveys were carefully selected; of which, 70% sites were the high confident
areas and the others were the low confidence areas. Then, the surveys were planned
within five years. Each year, some members were assigned to conduct the surveys. In
2015 and 2016, Hoang Thanh Tung and Nasahara Nishida Kenlo conducted a survey
for the northern part of Vietnam (see [69] for more details). Ta Hoang Trung and I care-
fully designed for a survey through the northern to southern parts of Vietnam in 2018.
However, I could not go to the fields since I got a problem with my health. Truong Van
Thinh, Ta Hoang Trung, and Nasahara Nishida Kenlo conducted the survey. Truong
Van Thinh, Hoang Thanh Tung, and Nasahara Nishida Kenlo made another survey in
2019. In 2020, Hoang Thanh Tung and I did the final survey from Hanoi to the most
southern part of Vietnam. The detailed routes of each year and the number of survey
sites are presented in figure 3.4.
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Figure 3.4: Distribution of the field survey routes and reference data of LULC in
Vietnam. The field surveys were conducted in the year 2015, 2016, 2018, 2019, and
2020. Herein, the reference data are displayed for the year 2020, including training and
validating sets, which are independent to each other.
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Description of activities

Main activities during the surveys:

1. Taking GPS photos of the target sites. The location of the photos were published
on Google Map (see Appendix A.3 for more details).

2. Conducting in-depth interviews with the locals and local experts in LULC. I
recorded the interviews in the Vietnamese language. The data were stored in our
server and shared upon requests.

3. Locating the target sites in Google Earth (see Appendix A.3 for more details).

4. Measuring and estimating the tree height, perimeter, and diameter.

5. Recognizing the different LULC types and their conditions.

Field surveys in central and southern Vietnam in 2020

Overview of the trip

1. Main participants: Hoang Thanh Tung and Phan Cao Duong.

2. Date: from Feb 17 to Mar 4, 2020.

3. Equipment: a memory card reader, a CASIO H20G, GoPro HERO 6, and their
accessories (Fig. 3.5).

4. Purpose: The purpose of this survey is to collect empirical reference data and
conduct actively individual interviews. The reference data are “ground truth”
data which is vital for testing and validating LULC predicted map products what
I am doing.

5. Summary: I (Phan Cao Duong) conducted an intensive survey through Vietnam
namely (1) a round trip between Hanoi city and Ha Tinh province; (2) one-way
trip in the Central Highlands from Dak Lak to Phu Yen, Khanh Hoa, Lam Dong
and Binh Thuan (5 provinces); and (3) one-way trip in the Lower Mekong River
Delta (LMRD) from Ho Chi Minh City to Dong Thap, Long An, Tien Giang, Vinh
Long, Tra Vinh, Soc Trang, Bac Lieu, Hau Giang provinces and Can Tho city
(Fig. 3.6). We, however, could not visit from the corner to corner of these places
due to the limitation of resources. In fact, I visited planned places where I had
not been sure about the LULC facts. During the trip, I used rental cars or/and
public transportation services and took approximately 30,000 GPS photos. I
also conducted 20 in-depth personal interviews with records in the Vietnamese
language. These data contain tremendously useful information that saved on our
laboratory server for further careful analyses. Although large numbers of the
task have been accomplished, I would like to brief key activities and significantly
surprising findings as follows.
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Figure 3.5: Main equipment: a memory card reader, a CASIO H20G, GoPro HERO 6,
and their accessories.

Figure 3.6: The main survey routes: the red symbol is a final destination of a trip and
the other end of the blue line is a starting place.

A round trip between Hanoi city and Ha Tinh province

I took a round-way bus between Hanoi city and Ha Tinh provinces. During the
trip, I observed and took pictures of LULC at the target areas. I conducted interviews
with locals whenever I met them. In Ha Tinh province, detailed survey and in-depth
interviews were conducted in Xuan Loc, My Loc, Dong Loc, Trung Loc and Khanh
Loc communes with local guides. Specifically, the population density was low in these
areas and their main income earned from agricultural products. However, farming
jobs have been recently less attractive to the young generation. They preferred educa-
tional advancement. As a result, most of them have been moving to crowded cities for
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earning a better life. The most dominant LULC types of the visited areas are orchards,
rice paddies, crops, and forests. Rice paddies are cultivated two times a year, i.e., in
winter-spring season starting in December and harvesting in April, and in summer
season starting from May to September (Fig. 3.7c). Three remaining months are not
cultivated but for soil improvement. The area of rice paddies has been almost un-
changed for 40 years. In contract, crops have been converted between corn, cassava,
bean, peanut and sesame with two seasons per year (Fig. 3.7a and b). The conversion
depended on the recommendation of authorities or/and policies. Although orchards
are less dominant than rice and crops, they are mainly planted surrounding foothills
or hills (Fig. 3.8b). Regarding plantation forests, I visited Khe Tho area (Fig. 3.8a).
There is a big reservoir with acacia plantation surrounding and forest hills nearby
and next to mixture natural forests (Fig. 3.8c). The acacia forests were planted on
rental land from the government. These forests are harvested after 5 to 10 years after
plantation, depending on the regions. The forests then are reproduced for a new season.

Figure 3.7: Croplands in Dong Loc commune (Can Loc district, Ha Tinh province): a
cassava field (a), a corn field (b), and a rice field (c).

Figure 3.8: Other land types in Dong Loc commune (Can Loc district, Ha Tinh province):
Khe Tho reservoir (a), grapefruit (b), and a plantation acacia forest (c).

Surveys in the Central Highlands
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In the Central Highlands, Tung and I visited five provinces, i.e., Dak Lak, Phu Yen,
Khanh Hoa, Lam Dong, and Binh Thuan. Dak Lak and Lam Dong provinces were
highlands with the dominant LULC types being agricultural crops or perennial crops,
orchards, and forests. To be specific, Dak Lak was famous for perennial crops namely
cassava, pepper, coffee (mainly Robusta, Arabica, and Liberica) and sweet potato (Fig.
3.9). Regarding the plantation process, coffee, pepper, and rubber took from three to
five years to have the first full harvest while cassava and sweet potato were usually
planted two seasons per year. Also, there were vast fields of forests both plantation and
nature (Fig. 3.10). The main plantation forests were acacia and rubber. Rubber could
reach mature trees after three years and be harvested latex lasting for 40 years whereas
acacia was normally harvested and reproduced within five or ten years. Remaining
natural forests were national parks such as Yok Don and Yang Sin managed by the
Vietnamese government. These forests were mixed forests of deciduous and evergreen
broad-leaf forests. There were similar characteristics of LULC in Lam Dong province.
However, it had vast areas of natural evergreen needle leaf forest and agricultural lands
such as flower and vegetation as the observation and interview with local people (Fig.
3.11).

Figure 3.9: Croplands in Dak Lak province: a cassava field (a), mixture of pepper and
coffee (b), a pepper field (c) and a rubber field (d).

Figure 3.10: Plantation in Dak Lak province: a acacia plantation forest (a), a rubber
plantation forest (b), a deciduous broad leaf forest (c) and evergreen broad leaf forest
(d).
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Figure 3.11: Surveys in Lam Dong province: a pine forest area (a), a sweet potato crop
field (b), interviews with the local people (c) and (d).

In the visited areas, most local people came from different places in Vietnam. They
have come and lived here since the 1990s. Their annual income was mainly earned from
crops. However, some of the crop products were very cheap in the season of price drops
which could sometimes take years. They sold only 5,000 VND ( 0.2 USD) per kilogram
of fresh coffee seed but they had spent half of the money for harvest and the other half
for fertilizer and initial investment. It meant they did not have profit from their crops.
Due to the price fluctuation of the market economy in agricultural products, several
local people abandoned or sold their croplands and went to big cities for earning a
better living, especially the young generation. Others have been willing to change to
other crops with a risky and significantly initial investment. More importantly, local
people rarely recognized climate change and its impacts on their crops. I also visited
Khanh Hoa and Binh Thuan provinces which are coastal areas. Over the visited areas,
crops were mainly dragon fruit which were cultivated inland plain regions. There were
subtropical shrub-land areas for coastline protection. There were still many bare lands
and sand dune along the coastline (Fig. 3.12). Weather in these areas was quite hot and
dry.

Figure 3.12: Surveys in Khanh Hoa and Binh Thuan provinces: dragon fruit (a), sub-
tropical shrubland (b) and sand dune over visited survey (c).

22



Surveys in The Vietnamese Mekong River Delta

The last region of the surveys was the Vietnamese Mekong River Delta (VMD) in
southern Vietnam. The delta is a vast land of rivers, swamps and islands. It is the third
largest delta in the world and recognized as one of the most important zone for agricul-
tural production and biodiversity. Currently, its dominant LULC is mainly agricultural
land (e.g., rice paddies, potato, pineapple, chilly and cassava), aquaculture land (e.g.,
shrimp, crab and fish), wetland (marsh, melaleuca and mangrove) and orchard land
(Fig. 3.13). To understand the dynamics of LUCC in the region, I conducted a completed
survey through 10 provinces namely Dong Thap, Long An, Tien Giang, Vinh Long, Tra
Vinh, Soc Trang, Bac Lieu, Ca Mau, Hau Giang and Can Tho. Each province had its
special characteristics of LULC. For example, Dong Thap was well known for lotus,
rice paddies and mango while Long An was home to pineapple and potato. During
the trips, I interviewed local people, in particular the elderly (maximum 85 years old).
Some of them were first comers and contributed significantly to the development of the
region in 1980s. I then visited their farm land (Fig. 3.14). As a result of the interviews, I
understood that the Vietnamese Mekong River Delta had been a huge zone of wetland
(mainly marsh) and seasonal rice paddies inland, and mangrove forests distributing
along coastline before the starting of World War II. During the World War II, many
of mangrove forests were destroyed by dioxin scattered by U.S. army to exterminate
Vietnamese army sheltering in these areas, particularly in Ca Mau. Approximately
twenty percent of the mangrove forest were destroyed. Gained independence in the
year 1975s, Vietnamese government had harvested the remaining mangrove forest for
sake of profit before distributing widely contaminated land, marsh land, and harvested
land to local citizens. The land then had encouragingly planted mangrove forest with
the free supply of seedling from the government since 1980s. Subsequently, seasonal
rice had been expanded beginning in riparian zones. Seasonal rice was a natural breed
of rice with their height of from 100 to 300 cm, depending on the fluctuation of the
tide in the cultivation zones. Interestingly, based on these seasonal rice, the special
characteristics of a region could be estimated such as the maximum inundation of the
areas.

The data from surveys and interviews have shown that the LULC in the VMD has
changed rapidly since the year 1990s. In 1986, a new reform known as “doi moi”
(renovation) was implemented causing the initial expansion and intensification of agri-
cultural land, especially rice paddies and aquaculture, followed by the rapid transfor-
mation of land use between mangrove forest, agriculture and aquaculture. Recently,
the process of land conversion has been occurring significantly. The main reasons were
owing to the fluctuation of domestic market economy and farming conditions such as
water supply and saltwater intrusion. This was in agreement with the current analy-
sis ([1, 20]). The current landscapes in the VMD are coastal mangrove forests, inland
wetland of marsh-mangrove mixture, aquaculture, crops, and orchards. The Mekong
Delta is currently a hot spot and has faced serious problems such as drought and salt
intrusion since 2016. Other issues such as loss of mangrove forests and coastline erosion
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Figure 3.13: Surveys in the Vietnamese Mekong River Delta: a pineapple field (a),
shrimp and crab aquaculture farming (b), marsh and melaleuca wetland (c), and co-
conut orchard (d).

Figure 3.14: Surveys and interviews in Dong Thap province: interview with the elderly
and experienced locals (a), a rice paddy (b) and wetland (c).

have mentioned in various recent studies without the comprehensive analysis of causes
and driving forces. For example, a severe drought and increasing saltwater intrusion
significantly impacted on rice paddies and domestic water supplies in a few places such
as Ben Tre and Tra Vinh. As my observations, rice fields were planned to the region
of potential saltwater intrusion while saltwater aquaculture was farmed in the area of
freshwater zones. The main reason of the severe drought could be a poor strategic plan-
ning. The poor strategic planning means the construction of large numbers of dikes
and sluice gates along rivers’ embankment. Even though these dikes and sluice gates
might protect flooding during rainy season, be actively regulated water supplies and
improving soil contaminated by metal, some of them could result in major issues such
as the prevention of deposition process of suspended sediment into farm land, causing
the lowering of the ground. Also, although water flow into the VMD decreased due to
the increasing number of dam constructions in the upstream, water could be easy taken
from rivers. Water from rivers, however, was restrictively used due to pollution. The
pollution was normally due to different sources, but one of mainly observed sources
was untreated wastewater from industrial fishery farms. I found that small producers
could not use river water for their aquaculture and farming lands in Ca Mau province.
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One of the most interesting activities was serious and detailed discussions with JDS
alumni, friends and colleagues, particularly with leading experts from universities of
Can Tho and Dong Thap. These experts were prof. Duong Van Ni, prof. Nguyen Thi
Hong Diep, prof. Le Anh Tuan and Ms. Nguyen Ho. They are studying on different
topics and using LULC products. They therefore have special interest in my research
topics. Also, they gave us invaluable feedback and comments as well as showed us
environmentally growing concerns in the VMD.

Remark and conclusion of the surveys

During the trip, I acquired a great number of lessons. I were safely back and the
survey went smoothly with surprising results and findings. My survey was cooperated
with nice weather, friends, colleagues, and local experts.

Regarding negatives, before the survey, I had asked help from my colleague who
worked on LULC in the VMD. When I were in the Central Highlands, he said that he
had got a serious sick and he could not gone with us. Surprisingly, he felt better several
days later and could guide us somewhere nearby. He then asked his friends guided
us the other places. These friends were essential to my survey. They introduced local
knowledge and helped us approach local citizens much easier. For this lesson, I would
recommend that I need a fallback plan when I conduct a field survey. In other words,
it should have been better to contact as many as my friends as possible.

Secondly, as can be seen from my schedule, I did a 14-day intensive survey without
a day off. I often woke up at 5 AM and got home at 11 PM. Unfortunately, on the
way to Can Tho airport back to Hanoi city, I got the shortness of breath. I worried
about the prehistoric pathology of my lung or maybe COVID-19. My friends took
me to a clinic but they did not have a specialized doctor rather than a nurse on duty
because it was Sunday. After a quick check, the nurse recommended us going to a
local hospital nearby. I then went and took several measurements. A doctor requested
standard measurements with X-ray, ECG, and others. Fortunately, everything was
not a big problem. The doctor said that I might get tired due to be hard-working.
He recommended me to take a rest. I therefore missed my flight and had to stay an
extended night in Can Tho. This lesson taught me that I should not have set a long-term
tough schedule.

Finally, I regretted not having visited several hotspots. Thanks to interviews with
local people and experts, I found out some places where has been facing issues such as
the shortage of clean freshwater, subsidence and landslides (Figure 13).

In summary, although this was a very tough trip, I greatly enjoyed it. I not only
obtained a large number of reference data which were vital to my current research, but
also discovered significant and surprising findings. I built a vast network with leading
experts who helped us to understand how important land use/land cover information
was. I must have had more tasks like this and will discover more about local knowledge
of the regions. Importantly, this awesome task could not be successful without the
considerable support from JICE/JICA, help from my supervisor, colleagues, friends
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and local people. I valued and appreciated their help.
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Chapter 4

Inadequate reflection of regional and
global land cover datasets in mainland
Vietnam

Abstract: Robust remote monitoring of land cover changes is essential for a range of
studies such as climate modeling, ecosystems, and environmental protection. However,
since each satellite data has its own effective features, it is difficult to obtain high accu-
racy land cover products derived from a single satellite’s data, perhaps because of cloud
cover, suboptimal acquisition schedules, and the restriction of data accessibility. In this
study, I integrated Landsat 5, 7, and 8, Sentinel-2, Advanced Land Observing Satel-
lite Advanced Visual, and Near Infrared Radiometer type 2 (ALOS/AVNIR-2), ALOS
Phased Array L-band Synthetic Aperture Radar (PALSAR) Mosaic, ALOS-2/PALSAR-2
Mosaic, Shuttle Radar Topography Mission (SRTM), and ancillary data, using kernel
density estimation to map and analyze land use/cover change (LUCC) over Central
Vietnam from 2007 to 2017. The region was classified into nine categories, i.e., water,
urban, rice paddy, upland crops, grassland, orchard, forest, mangrove, and bare land
by an automatic model which was trained and tested by 98,000 reference data collected
from field surveys and visual interpretations. Results were the 2007 and 2017 classified
maps with the same spatial resolutions of 10 m and the overall accuracies of 90.5%
and 90.6%, respectively. They indicated that Central Vietnam experienced an extensive
change in land cover (33 ± 18% of the total area) during the study period. Gross gains
in forests (2,680 km2) and water bodies (570 km2) were primarily from conversion of
orchards, paddy fields, and crops. Total losses in bare land (495 km2) and paddy (485
km2) were largely to due transformation to croplands and urban & other infrastructure
lands. In addition, the results demonstrated that using global land cover products for
specific applications is impaired because of uncertainties and inconsistencies. These
findings are essential for the development of resource management strategy and envi-
ronmental studies.
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4.1 Introduction

Land use/cover change (LUCC) is increasingly impacting on the Earth’s surface bio-
physics, biogeochemistry, and biogeography at any rate or scale such as ecosystem
services [70, 71, 72], water balance [73], climate [74], biodiversity conservation [75],
and agriculture [76]. It means land use/cover information is important for natural
resources planning and management [77]. In Central Vietnam, the land cover has sub-
stantially altered as a result of rapid socio-economic development activities over recent
years [78, 79]. Future changes are also anticipated to occur [80], since the region has an
economic growth rate of approximately 10% a year, which is higher than the average
of Vietnam. The fast-growing economy has rapidly converted forest and agricultural
lands into industrial or service zones [81]. The development also increases the region’s
energy requirement, followed by the mass development of hydro-power plants because
of Central Vietnam’s suitable geography, topography, and hydrological regime for the
hydropower plants. These plants are changing the land cover around them [82]. On the
other hand, natural disasters such as drought, floods, and typhoons are also causing
land cover changes [83].

This change has negatively affected a variety of resources such as biodiversity, carbon
sequestration [78, 81], and food security [67] over the region. Specifically, a decline in
rice yields (by 30%), carbon storage (by 15%), and sequestration (by 12%) due to the
expansion of infrastructure lands are predicted until 2100 [84]. The reduction of rice
yields results in concern for food security; Vietnam is the second-largest exporter of rice
[67]. The expansion of built-up land is projected to have influenced urban heat islands
in several cities (e.g., Hanoi). Not only does the LUCC insignificantly boost the peak
mean air temperature, but the number of hot spots is also growing, particularly in the
new infrastructure zones [85]. In addition, Vietnam has seen a gain in forest cover that
is estimated at 1696 million hectares [86], while Central Vietnam has seen a dramatic
decrease in the forest due to conversion into agricultural land, resulting in the increasing
emission of carbon dioxide [87]. The conversions of the forest into agriculture also have
led to an increase of about 30% in surface runoff and approximately 55% in sediment
yield from 2000 to 2008 in Dong Nai province [88, 89]. Hence, monitoring of the LUCC
is necessary for the sustainable management of natural resources and the environment
in the region and the achievement of Sustainable Development Goals (SDGs), especially
the goal of Life On Land (Goal 15): “Protect, restore, and promote sustainable use of
terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and
reverse land degradation and halt biodiversity loss.”

However, it is not easy to detect the land cover of a region with existing maps, i.e.,
global land cover maps. They seem to suffer from low accuracy and coarse spatial res-
olution. Specifically, Global Land Cover 2000 (GLC2000) [90], GlobCover 2009 [91], the
International Geosphere-Biosphere Program Data and Information System’s (IGBP)
DISCover land cover [92], and the Moderate Resolution Imaging Spectroradiometer
land cover (MCD12Q1) [93] have an overall accuracy of 68.6% (22 categories), 67.5% (22
categories), 66.9% (17 categories), and 78.3% (17 categories) respectively. These maps

28



have a spatial resolution of 300 m to 1,000 m. Even with the Finer Resolution Obser-
vation and Monitoring—Global Land Cover (FROM-GLC) [94] has a spatial resolution
of 30 m — it suffers from a lower overall accuracy (67.1%). This means that global
land cover maps designed for particular global purposes are likely to be uncertain and
inconsistent for specific local, subnational, or national applications while most counties
lack national scale land cover mappings. Mapping land cover for a specific nation with
the assistance of users in that nation is designed to meet particular user requirements.
This is also the ongoing project of JAXA EORC Ecosystem Research Group, which is
producing country-by-country global land cover maps. The major problem of remotely
sensed mappings can be because of insufficient satellite imagery available for land cover
mappings, particularly due to suboptimal receiving agendas, limited data accessibility,
and cloud cover. Cloud covers 65% of the global surface and 70% of the tropical surface
in a year [95]. In addition, Landsat 5, 7, and 8 were designed to acquire data with a
16-day cycle but most areas have not been constantly imaged every 16 days due to the
effects of seasonality, solar zenith angle, cloud cover, and because priority is given to
the continental US [96]. The temporal resolution of Landsat 7, apart from the broken
scan-line corrector (SLC-off; from 31/05/2003), is frequently longer than 16 days [97].
Before 2010, data accessibility is also a serious problem, even though Landsat data are
freely available via the Earth Resources Observation and Science (EROS) Center, users
cannot acquire this data without a brief project description that must be approved [98].
To close these gaps, a fusion of multiple remote sensing data with ancillary data is one
of the best solutions.

The fusion of optical and radar satellite images (e.g., Landsat and L-band SAR) has
recently been proven to be an advancement for monitoring land cover [99] and forests
[100] in tropical areas. With the development of the recent European Space Agency
Sentinel-1, -2, and -3 with high spatial resolution, the fusion of multiple sensors is more
prevalent and effective. These new data have been effectively combined with Landsat
for urban mapping [101] with the mosaics of Advanced Land Observing Satellite-2
Phased Arrayed L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2) for mangrove
and forest monitoring [102]. Integration of multiple optical and radar sensors with
different electromagnetic spectra can recognize various land cover features better than
a single sensor [103]. However, most studies have integrated multiple sensors to map
land cover in a certain time instead of temporal land cover changes; or to map a specific
land cover type [104]. Fewer studies have estimated the advancement of data fusion
among various land cover types, or used high-resolution data fusion, e.g., Advanced
Land Observing Satellite Advanced Visible and Near Infrared Radiometer type 2 (ALOS
AVNIR-2), for mapping temporal changes in land cover.

This study aimed to generate land cover maps over Central Vietnam from 2007
to 2017, using a kernel density estimation and remotely sensed data from multiple
sensors. This research shows the potential of combining multiple remotely sensed
data and ancillary data for mapping large land cover dynamics. Results improve the
understanding of land cover dynamics over Central Vietnam and can contribute to
resource management and policy-maker decisions. The results also demonstrate the
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uncertainties of global land cover products.

4.2 Materials and methods

4.2.1 Study area
The research site is over Central Vietnam (13𝑜00’ – 20𝑜00’ N, 105𝑜50’ – 109𝑜12’ E; Fig.
4.1a) surrounded by the ocean to the east, Laos, and Cambodia to the west, Thanh
Hoa province in the north, and Phu Yen and Dak Lak provinces in the south. Its total
area is approximately 95,000 km2 with three main areas: North Central Coast, South
Central Coast, and Central Highlands (with the highest elevation at 3142 m above sea
level). They have a variety of landscapes from deltas, hill lands, mountainous regions,
or highlands, to coastal zones with a diverse climate from humid subtropical, monsoon
to tropical savanna climates. The region experiences four seasons: spring (February
to April), summer (May to July), fall (August to October), and winter (November
to January). The mean annual rainfall is 700–5000 mm [105] and the mean annual
temperature is 23.9–25.9 𝑜C, which significantly controls the crop seasons over the
region [67]. The diverse climate, complex topography, and various ethnicities lead to
complex geography and landscape with the dominant land cover types of rice paddy,
crops, grassland, wetland, urban, forest, bare land, and mangrove.

Figure 4.1: (a) Study area in Central Vietnam; (b and c) distribution of reference data
for the year 2007 and 2017 respectively.

4.2.2 Classification scheme and reference data design
A land cover and land use category system was established to identify the dominant
land cover types for certain purposes in the study region [106, 107]. Based on the local
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knowledge and the Land Cover Classification System, this research used nine land
cover types including water or open water, urban & built-up or residential land, rice
paddy, orchards or woody crops, other crops, grassland, barren, forest, and mangrove
A.4; I also referred to a past paper [108] to produce a consistent land cover map for
larger scales.

I found that imbalanced stratified random sampling obtains higher accuracy than
balanced sampling, which has in agreement with a past study [109]. This study,
therefore, employed an imbalanced stratified random sampling to design reference
data for training and testing the classifier. Approximately 3,000 reference data were
collected from the field survey and about 95,000 were extracted from Google Street View,
Degree Confluence Project, Mapillary, and Google Earth by using a visual interpretation
(Figs. 4.1b and 4.1c). About 65% of the data was used to train the classification model,
while the others were used for accuracy assessment. To achieve strict training sample
standards, every extracted reference data must cover a homogeneous land cover type
region with a diameter greater than 20 m. The data contains geo-location, land cover
category, observation time, and the GPS photo if available.

4.2.3 Data and image preprocessing

This study used a variety of multi-temporal satellite imagery from multiple sensors
(Table 4.1). For the 2007 reference year, I used the mosaic images of ALOS AVNIR-2
and ALOS PALSAR of the Japan Aerospace Exploration Agency (JAXA); the calibrated
top-of-atmosphere (TOA) reflectance products of Landsat 5 Thematic Mapper (TM)
and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) of the United States Geolog-
ical Survey (USGS). For the year 2017, I used the Sentinel-2 Multi-spectral Instrument
(MSI), Landsat 8 Operational Land Imager (OLI), and ALOS-2 PALSAR-2 mosaic. All
the data were divided into 24 small square tiles with each of them having a magnitude
of one degree by one degree in longitude and latitude degrees or less. Data with a
UTM projection were warped to the WGS84 latitude-longitude projection. A bilinear
interpolation resampling to World Geodetic System (WGS84) latitude-longitude coor-
dinates with 18.94 s× 18.94 s resolution (about 10× 10 m2) was performed for individual
data. For optical data, I preprocessed basic atmospheric corrections, cloud masking,
and geometric corrections if the data had not been corrected by producers or errors
were found, while the radar data were masked slope effects and filtered speckle; both
image types were used for classification.

For geometric correction, while most of the Landsat L1T and Sentinel-2 products
had geometric accuracy of within ± 1 pixel and ± 0.3 pixels, respectively, a few images
were less accurate. The less accurate images were checked and removed based on
control points derived from the Global Land Survey (GLS) 2000 data [110]. The ALOS
AVNIR-2 level 1B2 product has been geometrically corrected by JAXA.

For clouds and cloud shadow masking, I used the function of a mask (Fmask) for
Landsat images. Fmask employed temperature bands to identify clouds at various
altitudes [111, 112]. The elevation of the cloud was later applied in shadow detection.
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Table 4.1: Dataset organization, layer composition for each sensor type in each dataset,
and the total number of images for each position.

Sensor Type Year of
Acquisition

Images
per site

Spatial
Resolutions

(m)

Temporal
Resolution

Sentinel-2 2017 10 10 and 60 10 days
Landsat 8 OLI 2017 8 30 16 days

ALOS AVNIR-2 2007 5 10 46 days
Landsat 7 ETM+ 2007 5 30 16 days

Landsat 5 TM 2007 5 30 16 days
ALOS PALSAR

Mosaic 2007 1 25 1 year

ALOS-2 PALSAR-2
Mosaic 2017 1 - -

SRTM 1 Arc-Second
Global 2000 1 30 - -

Open street map - 1 - -

The shadow was identified thanks to the cloud projection and additional determination
of shadow pixels. The Sentinel-2 and ALOS AVNIR-2 images, however, did not have
such thermal bands, which were used to mask clouds and cloud shadows. They faced
difficulty with clouds and cloud shadows masking [112]. Hence, RGB and NIR (and
SWIR for Sentinel-2) bands were used to detect clouds; the ratio of blue and green
reflectance was employed to identify shadow [113]. Although the method did not use
thermal bands, its performance reached similar accuracies to the VIIRS Cloud Mask
[114, 115] and VIIRS I-band Cloud Mask [116] methods which used thermal bands.

To enhance the accuracy of the optical images, I calculated optical indices that were
primarily served to identify different land types in this research. While the Enhanced
Built-Up and Bareness Index (EBBI [117]), the Normalized Difference Built-Up Index
(NDBI [118]), the Urban Index (UI [119]), and the Normalized Different Bareness Index
(NDBaI [120] were employed for distinguishing built-up and bare land. The Normal-
ized Difference Vegetation Index (NDVI [121]), Enhanced Vegetation Index (EVI [122]),
Soil Adjusted Vegetation Index (SAVI [123]), and Normalized Difference Water Index
(NDWI [124]) can be used for the sake of promptly monitoring vegetated regions in
complex heterogeneous landscapes to discriminate water, croplands, plantations, and
forests [125, 126].

The ALOS PALSAR and ALOS-2 PALSAR-2 Mosaic included dual-polarized (HH
and HV) channels. To increase the effectiveness of land cover classification [127],
each channel was filtered speckle using a Refined Lee filter with the European Space
Agency Sentinel Application Platform Toolbox v.6.0.0 (ESA SNAP; available online:
http://step.esa.int/main/toolboxes/snap/). The digital number (𝐷𝑁) of HH and HV
channels were converted into sigma naught values in decibel units (dB) using the
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Table 4.2: The reference of spectral band information Landsat 5, 7 and 8, Sentinel-2,
and ALOS AVNIR-2 used for the calculation of optical indices.

Data Channel Spectral range
(𝜇m) Electromagnetic Region

Landsat 8

Band 1 0.435–0.451 Coastal Aerosol
Band 2 0.452–0.512 Visual Blue (VBlue)
Band 3 0.533–0.590 Visible Green (VGreen)
Band 4 0.636–0.673 Visible Red (VRed)
Band 5 0.851–0.879 Near Infrared (NIR)
Band 6 1.566–1.651 Short Wave Infrared (SWIR1)
Band 7 2.107–2.294 Short Wave Infrared (SWIR2)
Band 10 10.60–11.19 Thermal Infrared (TIR)

Landsat 5
and 7

Band 1 0.45–0.52 Visual Blue (VBlue)
Band 2 0.52–0.60 Visible Green (VGreen)
Band 3 0.63–0.69 Visible Red (VRed)
Band 4 0.77–0.90 Near Infrared (NIR)
Band 5 1.55–1.75 Short Wave Infrared (SWIR1)
Band 6 10.40–12.50 Thermal Infrared (TIR)
Band 7 2.09–2.35 Short Wave Infrared (SWIR2)

Sentinel-2

Band 1 0.433–0.453 Coastal Aerosol
Band 2 0.458–0.522 Visual Blue (VBlue)
Band 3 0.543–0.578 Visible Green (VGreen)
Band 4 0.650–0.680 Visible Red (VRed)
Band 8 0.785–0.899 Near Infrared (NIR)

ALOS
AVNIR-2

Band 1 0.42–0.50 Visual Blue (VBlue)
Band 2 0.52–0.60 Visible Green (VGreen)
Band 3 0.61–0.69 Visible Red (VRed)
Band 4 0.76–0.89 Near Infrared (NIR)

following Eq. (4.1).

𝜎0 = 10. log10(𝐷𝑁2) + 𝐶𝐹 (4.1)

where 𝜎0 is the radar backscatter per unit area, and 𝐶𝐹 is the calibration factor (𝐶𝐹 =
83.0 dB) [128].

For anthropogenic activity detection, I took advantage of SRTM 1 Arc-Second Global
and OpenStreetMap (OSM) data collected from the National Aeronautics and Space
Administration (NASA) and OpenStreetMap Foundation (OSMF), respectively. The
SRTM 1 Arc-Second Global data were used to extract topography information, such
as slope, whereas the level of human activity was identified by extracting a rasterized
distance map to the road network using the OSM.

All the preprocessing steps were automatically completed by employing C++ and
python with the support of the Geospatial Data Abstraction Library (GDAL), Ge-
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ographic Resources Analysis Support System, Geographic Information System v.7.2
(GRASS—GIS), and Quantum Geographic Information System v.2.18 (QGIS).

4.2.4 Classification method
The overall flowchart included three main stages: image preprocessing, image classifi-
cation and accuracy assessment, and change analysis (Fig. 4.2). Following a previously
described method [129], this study employed Bayesian logic together with a kernel
density estimation (KDE) [130]. More specifically, I estimated the probability density
function of features (such as vegetation indices, band reflectance, etc.) for each category
by generating small Gaussian functions around training data (which is KDE) in the fea-
ture space, and combined them to generate posterior probability using Bayes’ theorem.
After the computation of the posterior probability of every land cover category for
each image, I generated the joint posterior probability from all the overlapped images
acquired from different periods and sensors. The final choice of the category was based
on the highest joint probability among all land cover categories. This method is suit-
able for detecting the seasonal change of land surface (phenology) as a classification
key in a large area due to its fully-automatic robustness. More importantly, this KDE
approach is more accurate than support vector machines and the maximum likelihood
classification. I offer a detailed description of the processes as follows.

Figure 4.2: Overall flowchart of land cover/use change monitoring and analysis in this
study.

The posterior probability of a category was computed based on a D-dimensional
vector of input data x, i.e., spectral bands of reference and two-dimensional values
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representing observation date [𝑡1, 𝑡2] (Eq. (4.2)).

[𝑡1, 𝑡2] =
[
cos

(
2𝜋 𝐷𝑂𝑌

𝐷𝑂𝑌max

)
, sin

(
2𝜋 𝐷𝑂𝑌

𝐷𝑂𝑌max

)]
(4.2)

where 𝐷𝑂𝑌 is the date of the observation year (Julian day), and 𝐷𝑂𝑌𝑚𝑎𝑥 (=365.25) is
the average maximum day of the years.

For every image, the posterior probability of a category 𝐶𝑘 (𝑘 = 1, 2, . . . , 𝑀; 𝑀 is the
number of land cover categories; 𝑀 = 9) was determined by using the Bayesian rule
based on the input data 𝑥 (Eq. (4.3)).

𝑝(𝐶𝑘 |𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥 |𝐶𝑘)

𝑝(𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥 |𝐶𝑘)∑𝑀
𝑘=1 𝑝(𝐶𝑘)𝑝(𝑥 |𝐶𝑘)

(4.3)

where 𝑝(𝐶𝑘) is the prior probability of 𝐶𝑘 (which is assumed to be a uniform distri-
bution), and 𝑝(𝑥 |𝐶𝑘) is a category-conditional probability of 𝑥; 𝑝(𝑥 |𝐶𝑘) was estimated
based on the training data using kernel density estimation (KDE). KDE is used to com-
pute the probability distribution of data as the sum of kernel functions that are of the
same form and centered on each training data, by using the Gaussian kernel (Eq. (4.4))
and Scott’s rule of thumb (Eq. (4.5)) as follows.

𝑝(𝑥 |𝐶𝑘) =
1
𝑁𝑘

𝑁𝑘∑
𝑛=1

{
𝐷∏
𝑑=1

1
ℎ𝑑
𝐾(𝑥𝑑 − 𝑥𝑛,𝑑

ℎ𝑑
)
}

(4.4)

𝐾(𝑢) = 1√
2𝜋

exp
(
−𝑢2

2

)
(4.5)

ℎ𝑑 = 𝑁
−1
𝐷+4 .𝜎𝑑 (4.6)

where, 𝑁𝑘 is the number of training data of a category 𝐶𝑘 , ℎ𝑑 is a bandwidth parameter
estimated by Eq. (4.6), 𝑁 is the total number of training data (𝑁 = 𝑁1 + 𝑁2 + ...
+ 𝑁𝑀), and 𝜎𝑑 denotes the standard deviation of 𝑑-th dimension of training data
{𝑥𝑛,𝑑 |1 ≤ 𝑛 ≤ 𝑁}.

In the next step, at each pixel for each category, I integrated the posterior probability
of all overlapped images by multiplying the posterior probability of all images. In
general, the higher the joint posterior probability of a category, 𝐶𝑘 , the more possible
the land cover category 𝐶𝑘 is. However, in reality, even if the true land cover is category
𝐶𝑘 , the 𝑝(𝐶𝑘 |𝑥) of one image sometimes might be close to or equal to zero due to noise,
cloud, or insufficient training data. If it occurs, it would make the joint of the posterior
probability of category 𝐶𝑘 also close to or equal to zero, because multiplying by zero
always gives zero. This means that even if the 𝑝(𝐶𝑘 |𝑥) of the most overlapped images
are as high as 1, the final prediction of the land cover cannot be in the category 𝐶𝑘 . To
overcome this issue, the posterior probability of each image should not be too close to
zero. To realize it, I used Eq. (4.7) ([131]. The final probability of a category 𝐶𝑘 , 𝑝

′(𝐶𝑘)
was estimated by Eq. (4.8).
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𝑝′(𝐶𝑘 |𝑥) = 𝑎𝑝(𝐶𝑘 |𝑥) +
1 − 𝑎
𝑀

(4.7)

𝑝
′(𝐶𝑘) =

𝑆∏
𝑖=1

𝑝
′
𝑖(𝐶𝑘 |𝑥𝑖) (4.8)

where 𝑎 is a constant value (𝑎 = 0.7), and 𝑆 is the number of images.
The final choice of a category is the category with the highest joint probability

among all land cover categories. Supposedly, at a pixel 𝑟 of a classified land cover map
with two categories, i.e., water and urban, has the joint probability of water: 𝑝′(𝐶𝑤𝑎𝑡𝑒𝑟)
= 0.6 and the joint probability of urban: 𝑝′(𝐶𝑢𝑟𝑏𝑎𝑛) = 0.4. The highest joint probability
of pixel 𝑟 is 0.6 and the land cover of pixel 𝑟 is water. To shorten data processing and
complex landscapes, I extracted imagery data into 24 small square tiles, each of them
having a magnitude of 1𝑜 # 1𝑜 longitude and latitude degrees or lesser (Fig. 4.2). The
classification process was performed independently for each tile using Saclass Software
version 1.7 developed by the University of Tsukuba and JAXA [132, 129].

4.2.5 Accuracy assessment
Assessment of classification accuracy of 2007 and 2017 maps was the most important
part to determine the quality of these maps. While there was a large number of accuracy
measures used to estimate algorithm performance, it is crucial to carry out accuracy
estimation for any category if the classification results are valuable for changing detec-
tion [133]. We, therefore, chose a confusion matrix [134] because it is one of the most
general methods that is easy to understanding and has useful values. An imbalanced
stratified random approach was used to extract approximately 27,000 reference data
from ground truth data and visual interpretations. These reference data represented
all the designed land cover categories of the region. In addition, a Kappa coefficient of
agreement was used to measure the range of single classification accuracy [135]. It is
presented by the following formula (Eq. (4.9)).

𝐾 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

(4.9)

where 𝑝𝑜 is the observed proportional agreement between actual and predicted cate-
gories defined as 𝑝𝑜 = 1

𝑛

∑𝑀
𝑖=1 𝑓𝑖𝑖 and 𝑝𝑒 is the expected agreement by chance defined as

𝑝𝑜 =
1
𝑛2
∑𝑀
𝑖=1 𝑓𝑖+ 𝑓+𝑖 , where 𝑀 is the number of land cover categories, 𝑓𝑖+ is the total for

the 𝑖th row and 𝑓+𝑖 is the total for the 𝑖th column in the confusion matrix.

4.3 Results
The classified maps and areas of land cover change within the 10 years are shown in Fig.
4.3 and their accuracy assessments (confusion matrix) are shown in Tables 4 and 5 of
this paper [16]. The overall accuracies of the maps for 2007 and 2017 are 90.5% (kappa
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coefficient of 90%) and 90.6% (kappa coefficient of 90%), respectively. Most categories
have accuracy for users and producers greater than or close to 90%, except for grass and
orchards. Water, bare land, paddy, and forest have the highest accuracies that are over
or close to 95%, followed by urban and crops that account for approximately 91% and
90%, respectively. Orchards and grassland have the lowest accuracies (< 85%) in the
two maps. The reason for misinterpreted classification of orchard and grassland may
be the correspondent spectral characteristics between orchards, grass, and the other
categories.

Figure 4.3: Land cover maps in (a) 2007, (b) 2017, (c) areas of land cover change within
the 10-year period over Central Vietnam, and A, B, and C are the selected sites for change
analysis in Thua Thien Hue, Quang Nam, and Thanh Hoa provinces, respectively.

Central Vietnam experienced an extensive change in land cover from 2007 to 2017
(Figure 4.3c). A total of 31,380 ± 16,920 km2 (33 ± 18% of total area) changed with
the major changes occurring in orchards, forests, and croplands in the coastal areas
and central highlands. In 2007, central Vietnam covered an estimated area of about
94,000 km2 with 93% of the total area being vegetated areas and the other being water
bodies, bare land, and urban & built-up. The vegetated area included dense tree cover,
i.e., forest (about 51,000 km2) and mangrove (1,000 km2), and dynamic land cover, i.e.,
paddy fields (6,500 km2), grassland (2,800 km2), cropland (9,900 km2), and orchards
(15,500 km2). Over the recent decade, water, urban & built-up, cropland, grassland,
forest, and mangrove areas increased by approximately 560, 40, 1,100, 2,680, and 930
km2, respectively, while bare land and paddy fields decreased the similar amount of
about 500 km2. Surprisingly, the period witnessed a sharp decline in orchards (4,600
km2).

4.4 Discussion
It is not easy to create an accurate map for a cloudy area such as Central Vietnam, a
tropical region, where clouds cover 70% of the area over the year [95]. The methods
were customized to Vietnam’s unique conditions by integrating a variety of satellite
images from multiple sensors with ancillary data. This is an effective approach for
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land cover mapping for cloudy and large regions as the result of the availability of
free satellite images and the development of image processing and computational
power. For instance, by using an automated image preprocessing approach, with
an automated classification method, and the support of servers, I could produce a
10 m spatial resolution land cover map over Central Vietnam (94,000 km2) within
approximately 3 days. Much more effort was frequently required for the careful work of
data organization, field survey, and land cover change estimation. Further effectiveness
and efficiency of this approach can be explained as follows.

The research showed the potential of combining multi-sensor remote sensing data
for land cover classification and change detection in tropical areas. The outperforming
of data fusion (e.g., Landsat and L-band SAR) over individual sensors for improving
overall accuracy has been used for land cover monitoring in tropical regions such as
Indonesia [136, 137] and West Africa [138], which obtained similar overall classification
accuracies. Nevertheless, these researches mapped land cover for smaller areas (< 900
km2) compared with the current study (94,000 km2). Note that this study corroborated
the research by Hoang et al. [108], which used the combination of multisensor data
(i.e., Landsat 5 and 8 and ASTER-VA version) for analyzing land cover in Northern
Vietnam that demonstrated the potential of the fusion of multiple sensors for mapping
heterogeneous landscapes. However, my maps are better than their maps in terms of
the overall accuracy and spatial resolution (90.5% and 10 m vs. 81.0% and 15 m). These
two maps have the same number of LULC categories (nine categories). A possible
explanation for this might be that I used finer spatial resolution images (10 m against
15 m), more reference data (98,000 against 65,000), and the improvement of posterior
probability integration (Eq. (4.7)). Another explanation is that, instead of using 4
bands (Blue, Green, Red, and Infrared), I used the best combination of bands and a set
of spectral indices.

Surprisingly, while most categories have users’ accuracy (UA) and producers’ ac-
curacy (PA) higher than 90%, a few limitations can be found in the accuracy of grass,
crops, and orchard categories (Table 4 and 5 [16]). Specifically, grass and orchard have
the lowest UA while misclassification between grass, crop, and orchard has occurred in
both years. A possible explanation for this might be that orchard and crop categories
include a large variety of orchard and crop types leading to a significant variance in
spectral reflectance patterns. Another probable reason may be that several grasslands
for raising cattle are cultivated as croplands (temporary crops followed by harvest and
a bare soil period), confusing whether they are grassland or cropland. The misclassifi-
cation between crop, orchard, and urban may be due to the specialty of the traditional
Vietnamese farm, a form of domestic agriculture in which food gardening, fish rearing,
and animal husbandry are wholly combined [139, 140]. However, these systems are
frequently used in small complex areas of mixed land cover/land use, causing difficulty
in distinguishing land cover. To overcome the misclassification, it may be worth con-
sidering the use of very high-resolution remotely sensed data (e.g., Ikonos, QuickBird,
and Kompsat-2) [141, 142] or classifying these categories into different subcategories
before integrating them into a single one. The issue of the misclassification between the
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mixed and complex land covers is an intriguing one that could be explored in further
research.

4.4.1 Uncertainties of global land cover maps over central Vietnam
With a spatial resolution of 10 m and accuracy of 90.5% (Kappa coefficient: 0.9), my
maps are better than the existing maps which are considered to be of coarse spatial
resolution (30 – 1,000 m) and low accuracy (< 80%; Fig. 4.4). Fig. 4.5 compares my
maps with (a) Climate change initiative (CCI) 300-m land cover V2 for the year 2015
released by the European Space Agency (ESA), (b) the GlobeLand30 map for the year
2015 published by the National Geomatics Center of China, (c) the MCD1Q1 0.5 km
MODIS-based global land cover climatology for the year 2001–2010 published by the
USGS, (d) the Global PALSAR-2 25-m Forest/Non-forest map for the year 2017, and (e)
the Global PALSAR 25-m Forest/Non-forest map for the year 2007 from JAXA based
on visual interpretation.

Figure 4.4: A comparison of my maps and previous global land cover maps in the
spatial resolution (a) and in the overall accuracy (b) over Central Vietnam.

Results show that global land cover maps seem to be uncertain and inconsistent. To
be specific, the CCI map tended to misclassify most inland water, whereas underesti-
mated urban & built-up areas and overestimated croplands (Fig. 4.5a). Although the
GlobeLand30 could detect well inland water, it was likely to underestimate urban &
other infrastructure lands and overestimate grassland (Fig. 4.5b). These issues may be
the result of using coarse spatial resolution satellite images, cloud cover, or reference
data shortcomings. The MCD1Q1 0.5 km MODIS-based global land cover climatology
tended to misinterpret most inland water as wetland regions and overestimate crop-
land (Fig. 4.5c), perhaps because of the difference in land cover type definition or the
use of very coarse spatial satellite imagery (500 m). For forest estimation, based on
Google Earth view and the 2017 forest map in this research, I found that FNF maps
probably misclassified some forest areas and could not accurately detect inland water,
since a large number of reservoirs disappeared on the map (Figs. 4.5d and 4.5e). These
problems may be the result of using only SAR images (ALOS PALSAR or ALOS-2
PALSAR-2). Although the SAR images are not blocked by clouds or cloud shadows,
it often suffers from speckle which can be reduced by using noise reduction filters,
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Figure 4.5: A comparison of current maps and the existing global land cover maps
over Central Vietnam, using visual interpretations: (a) Climate change initiative (CCI)
300-m land cover V2 for the year 2015 released by ESA; (b) GlobeLand30 map for the
year 2015 published by the National Geomatics Center of China; (c) MCD1Q1 0.5 km
MODIS-based global land cover climatology for the years 2001–2010 published by the
USGS; (d) Global PALSAR-2 25-m Forest/Non-forest map for the year 2007, and (e)
Global PALSAR 25-m Forest/Non-forest map for the year 2007 from JAXA.
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however, still constraining classification accuracy [143]. In summary, global land cover
maps contain large uncertainties for environmental studies.

4.4.2 Ten-year land cover change over Central Vietnam

Central Vietnam has a heterogeneous landscape that experienced rapid and extensive
changes from 2007 to 2017. To observe the mass conversion of land use in Central
Vietnam due to recent socioeconomic transformation [144, 145], three testing locations
were chosen to detect qualitative changes between 2007 and 2017. The testing locations
are sites A, B, and C in Thua Thien Hue, Quang Nam, and Thanh Hoa provinces,
respectively (Fig. 4.6). In site A, many reservoirs have been constructed, which is
a common phenomenon over Central Vietnam. These reservoirs converted orchard
to water surface while many neighboring forests changed to crops. This finding is
in agreement with other satellite analysis [146, 147] and can explain why orchards
decreased while croplands increased over the recent decade. Site B illustrated a shift
from croplands to forests, probably the result of recent government policy to reforest
some parts of Vietnam by providing financial and technical resources [148, 149]. This
forest gain also agrees with other satellite analysis [150] and demographic statistics
[151] showing the forest area increased by 1.696 million hectares on the national scale
from 2005 to 2015. Site C presents the change of paddy to crops or urban & built-up
areas. This could explain the decrease of paddy fields and the increase of croplands
in the region. Another reason for the decrease of paddy fields can be from conversion
to aquaculture because of decreasing rice productivity as the result of the intrusion of
saltwater [82].

The region has been experiencing extensive changes, particularly in the decrease of
paddy fields and the increase of inland water surface that can be detected easily based
on this study. These changes may have generated unprecedented new ecosystems that
impact environmental sustainability and food security. Results show that more than
21 huge dams have been constructed at upstream rivers (e.g., Huong, Vu Gia—Thu
Bon, Dong Nai, and Sre Pok) and many more are now planned. These dams can
block suspended sediment from upstream areas, which may cause large-scale shoreline
erosion and land loss. Also, the construction of upstream dams restricts downstream
river flow leading to a decrease in water level at estuaries, while the sea water level is
expected to rise [151, 152]. This can also result in severe erosion and intense saltwater
intrusion in lowland areas, followed by the expansion of salinity effects on plant growth
and yield such as rice [153, 154], and the conversion of rice to aquaculture or other lands
leading to the decrease of rice productivity. Because Vietnam is the second largest
exporter of rice, domestic food production and international rice trade are likely to be
at risk unless a sustainable development strategy is considered shortly.
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Figure 4.6: The selected sites for land cover change detection for the period 2007 to 2017
over Central Vietnam; Site A, B, and C are in Thua Thien Hue, Quang Nam, and Thanh
Hoa provinces, respectively.

4.4.3 Potential application and future work

This study significantly emphasizes the importance of data fusion in remote sensing
field that has been applied in recent LULC mapping studies [136, 138]. As in the above
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discussions, Central Vietnam, a cloudy area, has been a challenging area for mapping
with LULC, especially with high spatial resolution, due to the scarcity of data avail-
ability, which can be customized by my approach. Such high spatial resolution maps
of the heterogeneous and large-scale areas have rarely been carried out, particularly in
the year before 2015 (when Sentinel-2 was launched). This study made use of ALOS
AVNIR-2 to generate a past-time 10-m LULC map, which may serve as a baseline map
to compare observed changes or critical data for local or national long-term land use
planning.

The findings and maps presented in this research can be used for multipurpose ap-
plications. First, the construction of hydroelectric reservoirs can result in problems such
as shoreline erosion, salinity intrusion, extreme water level variations, and sediment
delivery issues, which have been occurring in the region. Also, the region is sensi-
tive and vulnerable to the influences of climate change and consequent sea level rise.
These problems link to land cover/land use changes. While several mapping projects
have been using coarse resolution satellite imagery for land cover change detection,
they may not be effective for a complex and fragmented landscapes such as Central
Vietnam [155], and my maps seem to be more suitable for land cover change analysis
over Central Vietnam, and can provide the policy-makers and scientific associations
with input data for the further discussion of environmental management, in particu-
lar water balance, sediment estimation, and food security. In addition, the maps can
be a critical data for managing ecosystems and biodiversity such as for Global Forest
Resources Assessment (FRA) of FAO. They may also serve as baseline maps for other
land cover/land use projects such as the “Land Use Status, Change, and Impacts in
Vietnam, Cambodia, and Laos” of NASA. Although my maps achieved a certain level
of overall accuracy, they may be insufficient for a quantitative analysis of changes with a
certain level of statistical significance. To improve the accuracy, new satellite data (e.g.,
Sentinel-1), or full polarimetric SAR data should be considered for next steps. On the
other hand, the combination of this approach with others may be necessary. Finally,
due to the uncertainties of global land cover products, it may be better to create indi-
vidual national-scale maps and combine them into a global map instead of generating
a whole global map.

4.5 Conclusions
Based on the kernel density estimation, I produced land cover maps of the over Central
Vietnam between 2007 and 2017 using high-resolution remotely sensed data from
multiple sensors. These maps (nine categories) have a spatial resolution of 10 m and an
overall accuracy of 90.6% (kappa coefficient 0.9). This accuracy and spatial resolution
are higher than that of existing land cover maps which tend to have a coarse resolution
(30 m to 1,000 m) and low accuracy (< 80%), causing uncertainties for users. This study
indicates the potential of multisensor fusion for monitoring land cover dynamics in a
cloud and large area.

Results of this study show that although global land cover products are fundamen-
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tal variable for global specific applications, there remains a considerable amount of
uncertainties and inconsistencies for particular applications at local and national scales
which could be solved by using products in this study.

Anthropogenic pressures on the land cover system over Central Vietnam are grow-
ing because of the rapid socioeconomic development process. Over the recent decade,
forest areas have significantly expanded due to government efforts to reforest by chang-
ing policy and providing technical resources. However, the quality of forest in Central
Vietnam remains a mystery, and a major concern in ensuring forest management in
Vietnam or the Sustainable Development Goal (SDG) 15.1.1. Urban & other infrastruc-
ture areas have expanded around crowded cities such as Thanh Hoa, Vinh, Hue, and
Da Nang due to population growth and the movement of citizens from rural areas to
urban regions. Population growth is also accompanied by an increasing demand for
water, domestic and industrial irrigation, and hydropower, resulting in the expansion of
inland water surface. These changes may damage environmental sustainability, partic-
ularly by shoreline erosion, land loss, and salinity intrusion. The findings of land cover
dynamics together with an interpretation of driving factors can provide policy-makers
and scientific associations with appropriate input data for the further discussion of
land environment management.
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Chapter 5

Ensemble learning updating classifier
for accurate land cover assessment in
tropical cloudy areas

Abstract: Land use/cover information is fundamental for the sustainable management
of resources. Notwithstanding the advancement of remote sensing, analysts daunt to
generate sufficient-quality land use/cover products due to dense-cloud-contaminated
and/or technical issues. This study proposes a novel approach (Ensemble Learning Up-
dating Classifier/ELUC), which can be applied with various classification algorithms
and data sets to simplistically generate new classifications or renew existing classifica-
tions with a remarkable accuracy improvement. Applying miscellaneous features of
Landsat-8 images, the ELUC of a random-forest-based algorithm produces sequences
of single-time classifications with a mean overall accuracy of 84%. Through the study
period, these sequences of individual classifications were then joined to achieve a
final classification that reaches an overall accuracy of 94%. Also, the ELUC of the
random-forest-based algorithm outperforms that of Kernel-Density-Estimation with a
5% overall accuracy higher. These outcomes confirm the effectiveness of the ELUC for
a remarkably consistent land use/cover estimation in a data-rich environment.

5.1 Introduction

Information on land use/land cover (LULC) dynamics is a key to the sustainable man-
agement of natural resources. The opening of data archives such as Landsat (Land
Satellite) [156] and Sentinel-1, -2, -3 and -5P [157, 158, 159] provides a data-rich resource
of remotely sensed imagery. The following is a considerable amount of studies on in-
tegrating multi-data sources both optical and Synthetic Aperture Radar (SAR) images
such as Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat, Sentinel,
and Advanced Land Observing Satellite (ALOS) [160, 161, 16]. New algorithms have
been developed for monitoring land surface changes, e.g., Spatial Temporal Adaptive
Algorithm [162], Apply Change-vector Analysis in Posterior Probability Space (CVAPS)
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[163], Continuous Change Detection and Classification (CCDC) [164], and Automatic
Land Cover Classification Method (ALCC) [165]. Together with the development of
new techniques, special programs have been designed. For example, Kempeneers et
al. used a combination approach of spatio-temporal remote images to monitor the
dynamics of global forests [166]. Hansen et al. produced a 12-year global forest cover
assessment using millions of satellite images and complex algorithms [18]. The al-
gorithms were applied to perform challenging tasks, for example, data integration,
cloud and cloud-shadow masking, and atmospheric correction. In addition, numerous
projects have been applied for broad-scale multi-category land cover assessments. At
10-m resolution, several attempts have been made to publish the 13-land-cover-category
maps of Europe using a great set of Sentinel-2 images [167, 168] and the 10-m resolution
global land cover map [169]. For a coarser spatial resolution (30 m), there are noticeable
multi-class land cover products including the National Databases of the United States
[170, 171, 155, 172] and the GlobeLand 30 global product with ten dominant land cover
categories [173].

These products are essential to various environmental studies, but they may not
meet the major requirement of numerous potential users. First, predefined land cover
maps do not always meet the specific objectives of current projects. For instance, a
classification of orchards can be significant to some scientific communities while it is
not a distinguishing class in most existing land cover products. Also, the low consis-
tency and frequency of the regional and global maps cannot accurately reflect local
regions [16, 17]. Users, therefore, may wait for, or create and update more consistent
land cover products for their interests [174, 175, 176]. As mentioned in the previous
paragraph, such tasks require various advanced stages from careful image selections to
appropriate reference sampling designs, proper image-processing technique selections,
and specialized approaches to change detection, which might daunt potential analysts.

To date, there has been little agreement on what is the most appropriate approach
to comprehensively mapping and monitoring land cover in a cloudy large area. A
variety of deep neural networks with high performance has been proposed, but they
are possibly not for large-scale land cover estimates. It is possible that deep learning
requires a huge number of annotated information, which is normally restricted in the
field of large-scale multi-class land cover assessments [177]. That is, deep learning
is mainly applied for a single classification such as urban mapping [178], crop-type
detection [179], and forest assessment [180]. Few studies have focused on a compre-
hensive land cover classification [175, 181]. Meanwhile, the blend of multiple data
extracted from time-series information demonstrates its superiority over a single-time
analysis [16, 17]. Time-series information can detect various temporal phenology to
be fruitful for complex multi-class land cover analyses [182]. However, time-series
approaches significantly suffer from dense cloud cover, especially in tropical cyclone
climate regions.

A much-debated question is whether a method can be tolerant of dense cloud-
contaminated problems, and thus considerably increase the data density. I, therefore,
propose such an approach for less specialized users to map, update, and evaluate
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land use/cover dynamics at a regional scale. I seek to examine the performance of
an ensemble learning method, based on random forest (RF) theory that has played
a significant function in the remotely sensed history [183]. This approach is named
“Ensemble Learning Updating Classifier” (ELUC). Unlike the direct evolvement of various
time-series data into a single-classification process, I used Landsat 8 OLI images to
independently develop a stack of initial probabilities, before they are continuously
updated to achieve another stack of posterior probabilities, and thus robustly increase
the classification accuracy. The independent classification allows the ELUC to handle
various spatio-temporal data sources while decreasing the serious impact of feature
differences among the various data sources. The ELUC can also ingest images, which
may be most contaminated by clouds but there is still valuable information, to critically
increase the density of data availability over the assessment period. Also, the stack of
probabilities is expected to be exploited for several applications. They can be utilized
to estimate the classification confidence of a pixel in each classification step or to create
a sequence of time-series classifications that may be applied for a rapid response to
changes in land use/cover such as tracking fire areas.

The specific objective of this study was to lay out a detailed application of such an
approach for a hotspot in the Vietnamese Mekong Delta (VMD). The main tasks are: (1)
creating and updating a sequence of time-series classifications over the study period, (2)
comparing the performance of the proposed approach based on the RF algorithm with
the Kernel Density Estimation algorithm; (3) detecting land use/cover types over the
study area, providing a typical and standard method for dealing with other operations;
I also apply this method for the whole VMD to consistently compare our classification
results and the previous land cover products, and also illustrate the potential of this
method for a broader-scale application.

5.2 Materials and methods

5.2.1 Overview of the ELUC
Ensemble Learning Updating Classifier (ELUC) is developed for the continuous update
of land cover categorizations over time, based on a RF algorithm (Fig. 5.1). For
each pixel in a step, the ELUC generates an independent stack of prior probabilities
corresponding to each of the land cover classes. If there is only one classification (here
termed a “moment classification”), the highest prior probability of a matching land cover
is utilized to label for that specified land cover at that pixel. Likewise, if there are
many images in the study period, a time-series sequence of the prior probabilities is
joined to produce another stack of posterior probabilities. Then, the highest posterior
probability in the stack determines the corresponding land cover class. Finally, an
ELUC classification is generated.

To begin this process, I present an example of continuous 10-moment integration in
detail, demonstrating the potential accuracy improvement of the ELUC over time. Then,
a comparison between the performance of the ELUC using the RF and Kernel Density
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Figure 5.1: Overview flowchart of the ELUC approach. A moment 𝑖 (𝑖 = 1, 2, . . . , and
10) is a single-time classification. The ELUC classification 𝑖 is a constant integration
classification of the moments 1, 2, . . . , and 𝑖.

Estimation (KDE) algorithms is conducted. Following this step, I produce a whole
square-tile classification of 1° x 1° longitude and latitude, using all the informative
Landsat 8 OLI images over the study period.

5.2.2 Study area
The study area spreads between N 9𝑜0’ - 10𝑜0’ and E 105𝑜0’- 106𝑜0’ (Fig. 5.2), including
parts of Soc Trang, Bac Lieu, Ca Mau, Kien Giang, and Hau Giang provinces, five of 13
provinces in the VMD known as the third largest delta in the world. The area has low
altitude and flat topography with higher in the North West and lower in the South East.
Due to the East Sea being nearby, the area has a favorable subtropical climate condition
with a rainy season from May to July and a dry season from August to April. Thanks
to this perfectly natural environment, the region has become a biological treasure trove
and the most productive area in agricultural and aquaculture production in Vietnam,
resulting in a high dynamic change in LULC. In the North East, there is a huge area
of paddy fields while most aquaculture farms are located in the South West close to
the coastal areas. The following major land cover types are orchards alongside rivers
whereas there are fragmented regions of inland wetlands and mangrove forests in the
South. In summary, this region is dominated by agriculture, wetlands, orchards, built-
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up areas, aquaculture, open water, and mangrove forests (See Appendix A.4 for further
details). Recently, this area has suffered from serious problems associated with climate
change, such as the inland expansions of saltwater intrusion due to sea-level rise and
subsidence. There is a clear link between these issues and land use/cover changes in the
region [184, 185]. However, the consistent assessment of the land use/cover dynamics
is challenging due to several reasons, for example, dense cloud contamination, and
dynamic, complex, and fragmented landscapes.

Figure 5.2: The location of Vietnam in the world (a); the location of study area within the
boundary of Vietnam (b); the zoomed area and provincial boundaries in the Vietnamese
Mekong Delta (c.

5.2.3 Image preprocessing

This seaside location has a dense cloud cover throughout a year, causing impossible to
select a single-occasion cloud-free satellite image covering the entire area. I, therefore,
collected all informative Landsat 8 OLI Level 1 products over the study period (Table
5.1). After collection, minimal preprocessing was applied, which aims to examine the
limitations of the ELUC in this study. In other words, selected images were quickly
handled for registration accuracy and atmospheric correction, but left solar-angle cor-
rection and topographic radiometric correction unprocessed. The following task is the
simplistic masking of clouds and cloud shadows based on the Quality Assessment Band
of Landsat 8 OLI Level 1 and the cloud-contaminated pixels were eliminated or masked
as ‘No data’. Then, the images were re-projected to the Universal Transverse Mercator
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(UTM) projection (Zone 48, WGS-84 datum) and a band stack was constructed from the
original bands of each Landsat 8 image, except for Band 8 – Panchromatic and Band
9 – Cirrus. Eleven spectral indices were produced to enhance the ability to classify
and build data-rich information. All data were automatically processed by using open
source libraries (e.g., GDAL) and python programming.

Table 5.1: Landsat 8 OLI imagery, its original band stacks and spectral index
stacks.

Sensor Acquisition data
(yyyymmdd) Moment Data stack

Landsat 8 OLI

20181031 1 Band
2 Index

20181202 3 Band
4 Index

20190204 5 Band
6 Index

20190308 7 Band
8 Index

20190409 9 Band
10 Index

The band includes: Band 1 – Coastal aerosol, Band 2 – Blue, Band 3 – Green, Band 4
– Red, Band 5 – Near Infrared, Band 6 – SWIR 1, Band 7 – SWIR 2, Band 10 – Thermal
Infrared, and Band 11 – Thermal Infrared 2.
The index includes: NDVI [186], SAVI [123], NDBI [118], NDBaI [120], NDWI [187],
UI [119], EVI [188], EBBI [117], WRI [189], NDTI [190], and NDPI [191].

5.2.4 Prior probability calculation for each land cover

The ELUC was developed based on a random-forest-based method using a multitude
of decision trees [192]. For each pixel, prior probability values belonging to each of
the land cover categories were calculated for each satellite image. The input data were
an 𝑛-dimensional vector of spectral bands or spectral indices. Specifically, the ELUC
algorithm employed a bootstrap aggregation technique. It used a random subset of 𝑛
samples from 𝑚 samples of the total training data set (𝑛 < 𝑚) and a random subset
of feature variables to train a decision tree to become a classifier. Each classifier then
voted for a category label based on given training information while the RF algorithm
had multiple classifiers. Subsequently, the number of votes was converted into prior
probability values and the majority of votes or the highest prior probability value
decided the category label for this step.

The most common parameters to run the RF includes the determination of the
number of feature variables and the number of decision trees [193, 194, 195, 196]. Base
on the high recommendation in extensive studies [197, 22], 100 tree classifiers are used
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in this study.
To examine the performance of ELUC, the Kernel-Density-Estimation-based algo-

rithm was also employed to estimate the prior probability values with the same ap-
proach and input data. The KDE [130] is one of the most effective procedures for
monitoring multi-class land cover at a large scale [198, 16]. The detailed presentation
of the KDE can refer to [130].

5.2.5 Updating moments

Unlike using only single-time classification, a practical method was used to automat-
ically create time-series classifications. This approach took advantage of imperfect
classifications and overcame missing data issues to improve classification performance.
For each pixel, the ELUC estimated posterior probability values belonging to each of
the particular land cover categories by multiplying the prior probability values of mo-
ment classifications over the given period (see Section 5.2.4. Then, the highest value of
the posterior probability corresponding to a specified land cover category was used to
label the predicted category at that time step. In order to minimize misclassification,
an post-classification optimization was used. Specifically, the estimated prior proba-
bility of a land cover category, say 𝑝(𝐶𝑘), might achieve almost zero or zero due to
poor-quality data or ‘No data’ of the pixel at that moment. If it happens, the posterior
probability of that land cover category will be equal to zero or close to zero. In other
words, even though the prior probability of most moments equals 100% voting for the
specified category, the updating probability product of this pixel might be zero, causing
a misclassification. To handle this issue, the prior probability of a particular land cover
category must not be extremely small. To this end, a careful experiment was involved
to modulate prior probability values as Eq. (5.1) [131]while posterior probability values
were calculated as Eq. (5.2).

𝑝 , (𝐶𝑘) = 𝑎 ∗ 𝑝 (𝐶𝑘) +
1 − 𝑎
𝐿

(5.1)

𝑝𝑝 (𝐶𝑘) =
𝑀∏
𝑖=1

𝑝 ,
𝑖
(𝐶𝑘) (5.2)

where 𝑝′(𝐶𝑘) is the modification of prior probability value of land cover 𝐶𝑘 ; 𝑎 is a
constant value (𝑎 = 0.7) which was evaluated by numerous experiments; 𝐿 is the total
number of land cover categories (𝐿 = 7); 𝑝𝑝(𝐶𝑘) is the posterior probability value of
category 𝐶𝑘 ; and 𝑀 is the number of moments (𝑀max = 10).

5.2.6 Accuracy assessment

Accuracy assessment was estimated following good guidance [63]. On-site intensive
surveys with local and remote sensing experienced experts were conducted to complete
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a definitive accuracy estimation for the individual classifications and time-series classi-
fications. First, reference data were randomly obtained for each land cover class. I then
used the spatiotemporal high-resolution images in Google Earth to interpret quickly
land cover types. Finally, I confirmed the true land cover types by on-site surveys.
However, the positions, that were removed due to the cover of clouds, cloud shad-
ows, and other noise, were not estimated for that moment’s classification. A confusion
matrix was employed to estimate the performance of the classifications with different
metrics, including user’s accuracy, producer’s accuracy, overall accuracy, standard error
of the mean, and Kappa coefficient [199].

5.3 Results

5.3.1 Time series individual pixel

At each moment, a set of probability values was estimated for each pixel. In other
words, a pixel reflected seven probability values corresponding to seven land cover
categories. The highest probability of the set determined the land cover category to
that moment. For visualization purposes, I introduced seven series of probability stacks
corresponding to the seven ground-truth land types (Fig. 5.3). Results of the moment
and ELUC classification are presented in Fig. 5.4.

As shown in Fig. 5.3, the probability values were subject to considerable fluctuations,
ranging from zero to almost 100% over the moments. A zero value illustrated a ‘No
data’ or a data gap at that moment (e.g., moments 7 and 8 in Fig. 5.3a) while a high
value (e.g., moments 10 in Fig. 5.3a) indicated the full confidence of the model to vote
for the corresponding land cover. The data gap could be a result of the clouds, cloud
shadows, and haze masking removals. Despite the same location, the model could
either effectively perform or fail to detect the ground-truth land type, depending on the
moment. For example, from Fig. 5.3c It can be seen that the model successfully detected
orchard land in moment 1, but it failed to distinguish orchard from the other lands in
moments 7 and 8. Likewise, the model showed more frequent signs of confusion in
Figs. 5.3e and f. On the contrary, the outstanding performance of the model can be seen
in Fig. 5.3b with a perfect classification of wetland from other lands over the period.
The confusion might be caused by a low-quality pixel of that moment due to cloud-
contaminated issues, whereas a cloud-free pixel allowed the model to immediately
recognize the true land cover class.

5.3.2 Accuracy over time of the ElUC with RF algorithm

The results of moment and ELUC classification maps can be compared in Fig. 5.4.
What stands out in the figure is the constant increase of the ELUC classifications
over time. Although some moment classifications (e.g., moments 3 and 4) severely
suffered from cloud contamination, they did not dilute the ELUC performance. Rather,
the ELUC achieved noise-free classifications, especially the final map (ELUC 10). To
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Figure 5.3: Probability assessments (%) of 10 moment classifications in seven given
ground-truth sites corresponding to each land cover. The horizontal axis represents
the order of moments which are classifications of given inputs, either band stacks (1, 3,
5, 7, and 9) or spectral index stacks (2, 4, 6, 8, and 10). These stacks are produced from
Landsat 8 OLI images. The below are ground-truth land cover, the results of moment
classifications and ELUC classifications, using RF algorithm.

quantify the improvement, I estimated the overall accuracy of both moment and ELUC
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Figure 5.4: A sequence of ten moment classifications and ten ELUC classifications
derived from Landsat 8 OLI images over a dry season (8/2018 – 4/2019) in a test area
of the Vietnamese Mekong Delta.

classifications and provided the results in Fig. 5.5. The overall accuracy of the moment
classifications fluctuated between 80% to 87% while a substantial increase from 87% to
94% was seen in the overall accuracy of ELUC classifications. It shows a rapid increase
when a better moment was integrated, but a nearly steady trend when a worse moment
was incorporated. Across ten-moment classifications, the ELUC achieved an average
accuracy 5% higher than that of the moments in this research (90% compared with
85%).

5.3.3 Comparison between Random Forest and Kernel Density Esti-
mate algorithms

To illustrate the outstanding of RF, I compared the performance of the Random Forest
(RF) and Kernel Density Estimate (KDE) with the same approach. The results of these
methods are shown in Fig. 5.6. Interestingly, the RF achievement was significantly
better than the KDE algorithm with an average accuracy of 9% higher (85% compared
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Figure 5.5: Comparison between the overall accuracy of moment classifications and
ELUC classifications with RF algorithm over the study period. The moment is a single
classification while the ELUC is a continuous update of all up-to-the-moment classifi-
cations. The horizontal axis represents the order of moment and ELUC classifications.

with 76%). What stands out in the figure is that spectral indices (moments 2, 4, 6, 8,
and 10) played major importance in the KDE classification, but they were not likely
important for the RF. For the KDE, the overall classification accuracy of the band stack
obtained only 75% in moment 1, but that of spectral indices derived from the same
image reached 82% in moment 2. In contrast, the RF obtained an accuracy of 87% and
85% in moments 1 and 2, respectively. This opposite result can be seen in the other
index-band pairs.

5.3.4 Land cover classifications
Herein, I provide a classification of an entire square tile of 1° x 1° longitude and
latitude from an update of 10-moment classifications, using both the RF-ELUC and
KDE-ELUC. I present the preliminary classification of the first step in Fig. 5.7 and the
final results in Fig. 5.8. The maps are clear and noise-free. Overall accuracy, user’s
accuracy, producer’s accuracy, and Kappa coefficient are presented in Tables 5.2 and
5.3. Both the KDE-ELUC and RF-ELUC algorithms performed well and achieved an
overall accuracy of 88% and 94%, respectively. In Table 5.2, the KDE-ELUC could
perfectly classify mangrove and agriculture from other land classes (100% and 98% in
user’s accuracy), but it showed a high degree of misclassification in some land types,
especially perennial crop/orchard (75% in user’s accuracy). However, the RF-ELUC
achieved a user’s accuracy of over 90% with all classes.

As mentioned in the literature review, it is challenging to monitor land cover for a
large-scale cloudy region, using remotely sensed data. I, therefore, applied the ELUC
for the entire VMD to consistently compare our findings and the existing literature. It
also illustrated the potential of the ELUC for a broader-scale application. The result of
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Figure 5.6: A comparison between the performance of the Random Forest and Kernel
Density Estimate through moment classifications. The horizontal axis represents the
order of moments which are classifications of given inputs, either original band stacks
(1, 3, 5, 7, and 9) or spectral index stacks (2, 4, 6, 8, and 10). These stacks were produced
from Landsat 8 OLI images.

Figure 5.7: The preliminary classification of 4 moments extracted from the intersection
of four Landsat 8 OLI images (a), (b), (c), and (d) within the study area square, and the
mosaic classification of the four moments (e).

the VMD land cover product and the comparison of this product with the most updated
land cover products in the VMD were presented in Text S1. I also compared this study
with national statistical survey data. Interestingly, this study was relatively outstanding
in comparison to the previous land cover products (with an overall accuracy of 95%
compared to approximately 94%, 85%, and 79%). It was the fittest product to the
national survey data (See Text S1 [20] for further details).
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Figure 5.8: The final classification of ten-stage integration in the study area square
using the Random Forest in the left and the Kernel Density Estimate in the right. These
results were created from Landsat 8 OLI images.

Table 5.2: Accuracy estimate of the KDE-ELUC land cover classification
using a confusion matrix.

Land cover map
AG WL PC BA AQ OW MA Total

Reference data

AG 322 10 5 6 9 0 0 352
WL 2 252 14 0 9 0 0 277
PC 3 26 69 0 0 0 0 98
BA 1 1 1 92 2 1 0 98
AQ 3 2 0 7 302 24 0 338
OW 0 2 1 6 18 113 0 140
MA 0 18 2 0 0 0 77 97
Total 331 311 92 111 340 138 77 1400
UA (%) 98 81 75 83 89 82 100
PA (%) 92 91 71 94 89 81 79
SE (%) 0.8 2.2 4.5 3.6 1.7 3.3 0.0

UA: Users’ accuracy (%); PA: Producers’ accuracy (%); KC: Kappa coefficient (0.85);
SE: Standard error of the mean of users’ accuracy (%); OA: Overall accuracy (88%);
S (OA): Standard error of the mean of overall accuracy (0.9%); AG: Agriculture;
WL: Wetland; PC: Perennial crop/orchard; BA: Built-up area; OW: Open water;
MA: Mangrove forest.
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Table 5.3: Accuracy estimate of the RF-ELUC land cover classification using
a confusion matrix.

Land cover map
AG WL PC BA AQ OW MA Total

Reference data

AG 341 2 2 1 6 0 0 352
WL 2 268 0 0 4 0 3 277
PC 3 17 78 0 0 0 0 98
BA 5 1 4 86 1 1 0 98
AQ 2 0 0 0 329 7 0 338
OW 4 0 1 8 11 115 1 140
MA 0 1 0 0 0 0 96 97
Total 357 289 85 95 351 123 100 1400
UA (%) 96 93 92 91 94 94 96
PA (%) 97 97 80 88 97 82 99
SE (%) 1.0 1.5 3.0 3.0 1.3 2.2 2.0

UA: Users’ accuracy (%); PA: Producers’ accuracy (%); KC: Kappa coefficient (0.92);
SE: Standard error of the mean of users’ accuracy %); OA: Overall accuracy (94%);
S (OA): Standard error of the mean of overall accuracy (0.1%); AG: Agriculture;
WL: Wetland; PC: Perennial crop/orchard; BA: Built-up area; OW: Open water;
MA: Mangrove forest.

5.4 Discussion

5.4.1 Moment classifications and classification probability
Moment classifications may be used for a rapid response to changes in land cover
whereas the sequence of classification probability over time could be useful informa-
tion for several applications. That is, high-quality images without cloud-contaminated
pixels and missing data can aid to acquire highly accurate moment classifications. These
results may effectively present the accelerated land cover change such as tracking fire
areas and fluctuations in the water level of a reservoir. The sequence of classification
probabilities supports understanding a given ELUC classification. It means the proba-
bility values are able to generate confident thresholds, whether a low or high confident
one. High-confident pixels might be considered as reference data for the next moment.
Low-confident pixels might be misclassified and need further handling.

5.4.2 Minimizing misclassification
The ELUC can automatically minimize misclassification due to the noise problems of
low-quality images. Although the ELUC obtained correct estimates at any moment
for a clear and stable area (Fig. 5.3b), it misclassified in a few moments in other areas
(Fig. 5.3a). Such moment misclassification does probably not impact the final ELUC
classification since the algorithm joins the major votes or probabilities throughout time.
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In Fig. 5.3e, the aquaculture area has confused the ELUC; that is, it was classified as
open water or agriculture according to moments. A possible explanation for this might
be that agriculture, aquaculture, and open water are likely to have similar spectral
reflectance and geographical characteristics. In this research region, there are several
mixed areas of rice and aquatic farming [200].

5.4.3 Reduction of data preprocessing

The ELUC reduces demands for the initial processing of satellite images in some man-
ners. Firstly, because each moment is classified independently, the pixel values of
different images are not necessary to be comparable to each other in the preparation
steps. Thanks to this, the algorithm is not seriously impacted by the problems of dif-
ference in haze and sun angle, which are normally calibrated by various complicated
methods [164]. In addition, clouds and cloud shadows are a tough challenge for any
land cover classification algorithms because non-flagged clouds may be classified as
false land cover categories or false changes [180]. The ELUC may be no exception when
producing classifications for individual moments. The preliminary result owing to
cloud-contaminated issues is presented in Fig. 5.5. Hence, masking clouds and their
shadows, a time-consuming and difficult task, is an essential preprocessing stage to
exclude them, if analysts desire to use moment classification for a time-series change
detection analysis. Interestingly, the final classification of the ELUC by updating new
information over time is tolerant of cloud contamination. Such results are somewhat
counter-intuitive as shown in Fig. 5.8.

In this research, I minimized preprocessing steps and kept the variety of classifi-
cation issues to demonstrate the limitations of ELUC. The common standard of initial
processing, includes georeferencing and co-registration, atmospheric correction, radi-
ance conversion, relative correction, and topographic correction [172]. Herein, I only
masked clouds and their shadows based on the availability of the Quality Assessment
Band (BQA) of Landsat 8 OLI Level 1. However, in our experience, the classifications
of ELUC can be much improved when obvious inaccuracy is removed. Importantly,
when the sequence of moment classifications is applied for rapid change tracking, it is
highly recommended to employ a full preprocessing step.

5.4.4 Adaptable and flexible applications

The ELUC can widely work together with any data and algorithms. First, the ELUC
can update classified images that are produced from different approaches, various
seasons, and at any spatio-temporal scale. For instance, changes in the water surface of
a reservoir between a dry and rainy season may be identified by ELUC classifications
with a data-rich environment. The change information might be of special interest
to various scientists or practitioners in sustainable water resources management [201].
In addition, it is straightforward to build moments from different inputs such as a
stack of bands or spectral indices. With the agreement of previous studies, I found
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that spectral indices of the same image play a beneficial role for multiple land-cover
classifications [174]. It can be seen from the data in Fig. 5.6 that the moment created
from spectral indices obtained more accurately than the moment produced from the
band stack for the KDE algorithm. In addition, experts can employ distinct algorithms
to establish accurate moment classifications. Different algorithms are likely to contain
unique characteristics, which may benefit the ELUC since it joins the major probabilities
throughout time.

Alongside this diversity of classification approaches, the ELUC can operate a large
combination of various data sets, both optical and radar sensors such as Landsat,
ALOS/AVNIR-2, ALOS-2/PALSAR-2, SRTM, SPOT, and Sentinel. Such a great stack
of images has been used successfully by the KDE algorithm [16, 17]. Multi-resource
incorporation should be examined while assembly algorithms are essential in the field
of land-cover change detection analysis [166, 161].

5.4.5 Potential of ELUC for large-scale use

Several attempts have been made to monitor land cover in the entire VMD, which is
covered by clouds up to 93% in peak seasons [202, 203, 204]. Truong et al. and Hoang et
al. have successfully quantified comprehensive land cover in the delta, using the fusion
of multiple remotely sensed sources [17, 52]. However, these results contain relatively
a few misclassifications among non-forest classes such as barren land and open water.
This inconsistency may be due to clouds and cloud shadows [205]. Another great effort
has been performed by Liu et al., which obtained an overall accuracy of 93.5% [206].
Although most of the land cover measures of this product are close to the national
statistical data (the most accurate data), there are a few gaps in the area of built-up land
and forest. This discrepancy might be attributed to the different definitions of land
cover classification systems. Another possible explanation for this is that the product
was validated using visual interpretation from Google Earth images. This process
may not avoid errors, although they have carefully selected the validation data [174].
The result of this study, however, comparatively outperforms its rivals for the VMD.
It may be that my approach can be tolerant of the cloud-contaminated issues, which
may be the most challenging in this region. That is, the ELUC can take advantage
of the informative pixel, even though the image is mostly contaminated by clouds
and cloud shadows. Thin clouds or haze may be impossible to handle and thus lead
to misclassifications, but the ELUC can continuously update with the new moment
classification to deal with this gap. Further details about the comparison of my results
with the most updated findings are presented in Text S1. It is worth noting that our
approach may not outperform the state-of-the-art deep learning models, which require
more training data sets. The present method is, however, outstandingly applied for the
broader-scale region with simple preprocessing.
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5.4.6 Limitations and future work
The ELUC seems to face a challenge in a data-poor environment when moments are
used for tracking rapid changes. The results of this study show that many pixels
across the study area were missing data or ‘No data’ (Fig. 5.7e), causing uncertainty in
moment classifications. Also, the accuracy estimation of all moments throughout time
may be complex, time-consuming, and incomparable between them. Because of the
data gaps at cloud-contaminated pixels, it is impossible to collect random samples of
ground reference data for the accuracy assessment of the moment. I, therefore, used all
usable reference data to validate moments in this research. Since the present research
was designed to accurately estimate land cover categories throughout the entire study
area instead of rapid change tracking, developing a full picture of accuracy assessment
was not solved here. However, it is an important issue for future studies. Also, the
combination of different data sources should be explored to recognize the full potential
of the ELUC for accurate multi-land-cover assessment at a regional or global scale. It
might also be possible to use a different theory in which the probability of a pixel is
more accurately estimated for each land cover category.

5.5 Conclusions
This study set out to develop a novel approach (ELUC) to estimate large-scale land
use/cover for a dense cloud-contaminated area with minimal preprocessing. Although
the proposed ELUC is based on the random forest classifier, it can be operated with
various algorithms to increase the performance of the model. In this work, the model
leverages the information of time-series classifications to enhance the classification
accuracy, say 5% improvement compared with the single-time application. In addi-
tion, this study was designed for the continuous update for more accurate land cover
mapping, but the ELUC can be used to track land use/cover dynamics via moment
classifications over the study periods. Meanwhile, the sequence of classification prob-
abilities over time is expected to be useful information for several applications such
as the estimate of a confident threshold for further studies. Finally, the ELUC can
be tolerant of dense cloud-contaminated issues, thus significantly increasing the data
density.

More importantly, this approach permits general users to simply create more con-
sistent land use/cover products, instead of using a predefined land cover map, which
may not match their specific goals. Also, this algorithm may be of interest to scien-
tists, analysts, and others in the Earth-observing community, providing them a deeper
insight into the value of a rich-data environment. With the rapid development of the
current technology and remote sensing data, this study lays the groundwork for future
research into Earth’s surface exploration.
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Chapter 6

First comprehensive quantification of
annual land use/cover from 1990 to 2020
across mainland Vietnam

Abstract: Extensive studies have highlighted a need for frequently consistent land
cover information for interdisciplinary studies. This Chapter proposes a comprehen-
sive framework for the automatic production of the first Vietnam-wide annual land
use/land cover (LULC) data sets (VLUCDs) from 1990 to 2020, using available re-
motely sensed and inventory data. Classification accuracy ranged from 85.7 ± 1.3%
to 92.0 ± 1.2% with the primary dominant LULC and 77.6 ± 1.2% to 84.7 ± 1.1%
with the secondary dominant LULC. This confirmed the potential of the proposed
framework for systematically long-term monitoring LULC in Vietnam. Results reveal
that despite slight recoveries in 2000 and 2010, the net loss of forests (19,940 km2)
mainly transformed into croplands over 30 years. Meanwhile, productive croplands
were converted to urban areas, which increased approximately ten times. A threefold
increase in aquaculture was a major driver of the wetland loss (1,914 km2). The spa-
tial–temporal changes varied, but the most dynamic regions were the western north,
the southern center, and the south. These findings can provide evidence-based infor-
mation on formulating and implementing coherent land management policies. The
explicitly spatio-temporal VLUCDs can be benchmarks for global LULC validation and
utilized for a variety of applications in the research of environmental changes toward
the Sustainable Development Goals.

6.1 Introduction

Information about land use/land cover (LULC) and its dynamic changes are funda-
mental to a variety of studies on environmental issues [207] such as climate change
[208], drought and food [209], and carbon emissions [87]. That is, frequently updated
accurate LULC products provide policymakers with a profound understanding of the
complex interplay between land use/land cover change (LULCC) and its risk, which
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helps to inform coherent policies for the sustainable management of land resources
[210, 211, 212].

The ready availability of remote sensing data and computing technologies opens
a great era in cost-effective mapping LULC at a broad scale. Numerous algorithms
have been developed to improve LULC classification, e.g. Spatial Temporal Adap-
tive Algorithm [162], Automatic Land Cover Classification Method [165], and Apply
Change-vector Analysis in Posterior Probability Space [213]. Together with the devel-
opment of these complex algorithms, special projects have been designed for large-scale
land cover assessment. For example, at the 10-m spatial resolution, several attempts
have been made to publish 13-category LULC maps of Europe [167] and global LULC
maps [169] using a great set of Sentinel MSI images. For a coarser spatial resolution (30
m), there are quality multi-category LULC products, including the National Databases
of the United States [170, 171, 155, 172], and the GlobeLand30 global product of 10-
category LULC [173]. Nonetheless, owing to the computational restriction and the
limitations of representative reference data to train and test classifiers, these products
have not reflected consistently and frequently the detailed patterns and characteristics
of LULC at local or national scales [52, 16]. Also, due to the predefined research periods
and differences in the land cover classification systems (LCCSs), these products seldom
meet the prime requirement of projects’ specific objectives.

Recently, a remarkable performance in cloud computing has advanced LULC ob-
servation sciences. For example, the National Aeronautics and Space Administration
Earth Exchange (NASA-NEX) and Amazon Web Service (AWS) allow analysts to access
and process the NASA Earth Observation (EO) data on the cloud [214]. More impor-
tantly, Google Earth Engine (GEE) provides an outstanding cloud computing platform
with open access to a variety of EO data. Thanks to the potential of big data processing
of these platforms, researchers have completed extensive studies to a greater extent, for
example, on urban change monitoring [215], cultivated land mapping [216], and forest
disturbance detection [213]. Multi-category land cover products were also produced
such as a 13-category land cover map of Southeast Asia covering 11 nations [217]. Al-
though the overall accuracy of such products reaches up to 86%, the authors identify
limitations regarding the insufficiency of high-quality reference data for time-series
analyses [218]. Therefore, very few studies have been conducted for multi-temporal
LULC mapping at a broad scale.

The quantity and quality of training data play an essential role in the production of
LULC maps. Yet, collecting sufficient and precise training data requires considerable
effort, especially at large scales and multiple periods [219]. Several attempts have been
proposed methods that allow for to collection of cost-effectively high-quality training
data. Bagan et al. (2019) extracted training data from a previous land cover map and
utilized them for mapping new LULC products [220]. While the authors applied a
bi-temporal spectral measurement to decrease the bias of extracted training data, the
accuracy of these data may not be ensured due to the inherent classification errors of the
previous maps [221]. To enhance the effectiveness of training data collection, Huang
et al. (2020) used spectral similarity and distance indicators to detect the changed and
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unchanged training sites, and thus kept the unchanged ones as migrated training data
[219]. The measurement was applied for the availability of Landsat TM images. Results
showed that the accuracy of the migrated training data obtained over 92.98% and the
classification map which used the migrated training data had a similar overall accuracy
of 71.42% to that used ground-truth data in 2010. Nevertheless, these results were
validated by outdated maps, namely the ESA global CCI land cover data sets, which
may contain inherent classification errors. In addition, using the Sentinel MSI images,
Ghorbanian et al. (2020) employed the same approach to migrate Iran-wide training
data from 2017 to 2019 [218]. The classified map that utilized the migrated training data
obtained a great accuracy of 91.35%. Despite the potential of the automatic training
migration method, it is still not known whether this method can be applied for multi-
sensor data sources such as the different Landsat sensors or the harmonized Landsat
and Sentinel images [219]. Therefore, an exploration of the potential training migration
method for multi-sensor remote sensing data is integral for a time-series assessment of
multi-category LULC dynamics at a large scale.

Given the ideas, this research aim is to explore the potential training migration
method for multi-sensor remote sensing data and then produce the first Vietnam-wide
annual land use/cover data sets (VLUCDs) from 1990 to 2020 as a case study. In
Vietnam, remotely sensed data have been utilized to produce quality LULC products,
but most products cover a small area of the country or a few predefined periods
[15, 222, 223]. The previous inter-provincial LULC data sets were seven-category LULC
maps for central and southern Vietnam in 2007 and 2017, and northern Vietnam in
2007 and 2015 [16]. More recently, Vietnam-wide maps were produced to map annual
forest cover from 2015 to 2019 [52, 224]. Despite the potential of these products, due to
the primary focus on forest monitoring, the classification accuracy of non-forest LULC
categories may be insufficient for other applications. Meanwhile, there has been a highly
dynamic LULCC which varies among different regions in Vietnam. Despite the report
of continuous net forest gain by the Ministry of Agricultural and Rural Development
(MARD), a systematically comprehensive review has reported forest loss in Vietnam
[225, 18]. The rates and patterns of changes on the national scale may remain unknown
completely. Hence, timely, accurate, and comprehensive LULC products can provide
a profound understanding of LULCC patterns and processes. This information can
support policymakers in forming crucial decisions on sustainable development and
resource management. The maps may be benchmarks for quantifying regional and
global land cover products.

The central novelty of this paper is to propose a new framework for the automatic
nationwide annual LULC monitoring and provide the results of the first VLUCDs and
LULCC over the recent three decades. There are major tasks: (1) Data preparation; (2)
Design a proper LCCS and reference data; (2) Proposing a consistent framework for the
automatic production of the VLUCDs; (3) Creating and validating the VLUCDs, and;
(4) Detecting profound changes in LULC since 1990. I developed a new random-forest-
based classification approach to classify the wide availability of Landsat Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager
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(OLI), and Sentinel C-band Synthetic Aperture Radar Ground Range Detected (SAR
GRD) and MultiSpectral Instrument (MSI) time-series images over the study period.
The implementation is described fully in the method section.

6.2 Materials and methods
The overall method is presented in Fig. 6.1 with major steps: (1) Data preparation;
(2) Defining a proper LULC classification system and reference data; (3) Proposing a
consistent framework for the automatic production of Vietnam-wide annual LULC data
sets from 1990 to 2020; (4) Creating and validating the VLUCDs, and; (5) Generating
major change pattern and processes of LULC over the past three decades.

6.2.1 Study area
The study area is mainland Vietnam with a population of 97 million people (2018; Fig.
6.2). The country covers an area of over 300,000 km2 including the Red River Delta, and
the Mekong River Delta which is the third-largest delta in the world. The topography
of Vietnam is diverse (up to 3,300 m altitude) with over 75% of the total area being
hills and mountains. These areas are covered by mainly tropical rainforests. Climate
is changeable but dominated by a tropical monsoon type with mean annual humidity
of 84%, mean annual rainfall from 1,200 to 3,000 mm, and mean annual temperature
from 21 to 27 °C [226]. The complex patterns of climate and topography create the rich
biodiversity and landscape heterogeneity of Vietnam’s LULC. Nonetheless, there are
identifying characteristics of LULC in different regions. While the southern region is
principally occupied with rice, orchards, and aquaculture lands, the northern region is
primarily covered by forests and plantations, except for the Red River Delta. Dominant
LULC types in the northern center are evergreen broadleaf forests and annual croplands
whereas woody crops, deciduous broadleaf forests, and evergreen needle-leaf forests
dominate the southern center. In this study, to reduce the complexity of the landscape
information, I divided the whole country into five main regions and separately classified
each region. These regions are presented in Fig. 6.2.

6.2.2 Land cover classification system
Defining a standard land cover classification system (LCCS) is a crucial step in the
practical land cover assessment. It should be delineated precisely depending on the
objectives of users and the availability of mapping resources. Most LULC maps employ
the theory and framework of the International Geosphere-Biosphere Programme (IGBP)
[54], the Land Cover Classification System (LCCS), and the Coastal Change Analysis
Program (C-CAP) Land Cover Classifications [55]. Meanwhile, the most updated
LCCS of previous LULC products, covering the entire Vietnam, includes 18 land cover
categories [227]. However, some categories are inappropriate for Vietnam’s LULC. For
example, snow and ice do not exist, while one cropland category does not represent

65



Figure 6.1: The overall workflow for automatic Vietnam-wide annual land use/cover
mapping and monitoring, using Landsat TM, ETM+ and OLI, and Sentinel SAR GRD
and MSI images with the random-forest-based algorithm. This figure is generated
using yEd Graph Editor.

the diverse croplands in Vietnam. Although detailed classifications of high and low
developed built-up areas play a fundamental role in urban planning and management
for the rapid urbanization of Vietnam, they are not in the previous LULC products. In
this study, therefore, a new LULC classification system or topology was developed by
remaining the appropriate categories of the Food and Agriculture Organization (FAO)
LCCS and adding new proper categories based on the local biophysical environment
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Figure 6.2: Location of mainland Vietnam in the world: major division zones (bold
lines), distribution of validation data points across the country. These points are in-
dependent from the training data. This figure is generated using QGIS 3.18.0-Zurich
while the country boundary is extracted from the GADM.

and end-users recommendations in Vietnam. First, I classified a 10-category system
of primary dominant land use/cover (PDLC/Level-1). The PDLC was then separated
into more detailed land types to generate an 18-category system of secondary dominant
land use/cover (SDLC/Level-2). I found that this system is appropriate for practically
mapping and applications. The categories and descriptions of the system are presented
in Table A.4.

6.2.3 Remote sensing data
Multi-sensor remote sensing data were used in this study. The data were preprocessed
and derived from the GEE. Te data were re-projected to Universal Transverse Mercator
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(UTM) projection (Zone 47-49 N and WGS-84 datum) and then resembled into a 30-m
spatial resolution using a bi-cubic interpolation method [228]. The Geospatial Data
Abstraction Library (GDAL), the Geographic Resources Analysis Support System, and
Python were utilized for these processing tasks. Specifically, the data included the
United States Geological Survey (USGS) Landsat TM, ETM+, and OLI Surface Reluc-
tance Tier 1 with a 30-m spatial resolution, Sentinel MSI Level-2A, and SAR GRD with
a 10-m spatial resolution. The Landsat and Sentinel MSI have been atmospherically
corrected while each scene of Sentinel SAR GRD was preprocessed using Sentinel-
1 Toolbox for thermal noise removal, radiometric calibration, and terrain correction
using the Shuttle Radar Topography Mission (SRTM) [229], and then converting to
decibels. Landsat ETM+ images, after the Scan Line Corrector failure in 2003, were
removed from this study since the failure may result in inconsistently time-series com-
parison. Over 99% of the data sets from the GEE archive are reported to have high
geometric accuracy with the error being less than half a pixel [219]. Otherwise, the
images were eliminated from the image collection to reduce the obvious bias of further
analysis.

For reliable and consistent time-series analysis, further processing is essential. For
the optical data, to reduce illumination impacts from elevation, aspect and slope, the
topographic correction was performed using the Modified Sun-Canopy-Sensor Topo-
graphic Correction algorithm [230]. While the Landsat Ecosystem Disturbance Adap-
tive Processing System (LEDAPS) [231] was applied to perform atmospheric correction
for Landsat TM and ETM+, the Land Surface Reflectance Code (LaSRC) [232] was
adopted for Landsat OLI. All Landsat images were masked and removed clouds, cloud
shadows and saturation pixels utilizing the Function of Mask (CFMASK) [233]. Sen2Cor
was adopted to correct atmospheric issues and mask clouds for Sentinel MSI [234]. Fi-
nally, because of the different solar and view angles of Landsat OLI and Sentinel MSI,
normalizing the bidirectional reflectance distribution function (BRDF) was applied for
the data. Although numerous approaches have developed for BRDF correction, the
recent technique generated by Roy et al. [235] is frequently utilized due to its reliabil-
ity and effective implementation [236]. This method, therefore, was employed for the
BRDF correction of all selected optical images in this study. For the Sentinel SAR GRD
data, a further process was speckle filtering. The filtering was done using Lee filter,
which is superior due to its capacity of maintaining point targets, edge, linear spaces
and texture information [237].

To increase the availability of cloud-free composite data, the harmonization of dif-
ferent Landsat satellite sensor images, and the Landsat OLI with Sentinel MSI into a
congruent time series was desirable for a cloudy region such as Vietnam. The har-
monization allows to accurately compare across all years and to measure the spectral
similarity and spectral distance between different years. The measurement of spec-
tral similarity and spectral distance was applied for an automatic training migration
model, which was described in the following sections. A linear transformation with
band-respective coefficients was applied for the harmonization of Landsat TM and
ETM+ spectral feature to OLI spectral feature [238]. In the meantime, the harmonized
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Landsat OLI and Sentinel MSI images were processed by employing a method devel-
oped by Claverie et al. [239]. The band-respective coefficients with slope and intercept
image constants are presented in Table 6.1. After that, I generated composites of seven
bands including blue, green, red, nir, swir 1, swir 2, and thermal bands for two seasons,
the dry season from April to September and the wet season from October to March of
the following year. These composites were adopted to measure a variety of covariates,
which are represented in the following paragraphs. In addition, seasonal composites
of VV and VH polarization in ascending and descending orbits of Sentinel SAR GRD
were handled in this research.

6.2.4 Satellite-based covariate calculation
In this section, a series of covariates were calculated from the band composites. For the
optical data, I calculated the medoid [62] and the standard deviation for the six bands.
Following the successful application of numerous features extracted from original satel-
lite image bands, this study also added the medoid of the 20th and 80th percentile [227]
of the six bands into the seasonal composites to detect the seasonal changes in the
biophysical environment. The ratios between spectral bands were calculated; they
are blue/green, red/blue, red/green, red/nir, and nir/(red*swir 1). Besides, a great
number of spectral indices were also measured from Landsat TM, ETM+, OLI, and
Sentinel MSI images (Eq.(6.1) - Eq.(6.17)). harmonization of these satellite data was
created (Table 6.1). In addition, I calculated the seasonal mean of VH, VV, and the
normalized difference between VH and VV polarization from the Sentinel SAR GRD
images. Finally, I generated seasonal composite collections of covariates.

Table 6.1: Band-respective coefficients are defined with slope and intercept image
constants and used for the harmonized Landsat OLI and Sentinel MSI images.

Respective bands Blue Green Red NIR SWIR1 SWIR2
Landsat TM, Intercept 0.0003 0.0088 0.0061 0.0412 0.0254 0.0172
ETM+ & OLI Slope 0.8474 0.8483 0.9047 0.8462 0.8937 0.9071

Landsat OLI & Intercept -0.0107 0.0026 -0.0015 0.0033 0.0065 0.0046
Sentinel MSI Slope 1.0946 1.0043 1.0524 0.8954 1.0049 1.0002

Atmospherically Resistant Vegetation Index (ARVI) [240].

𝐴𝑅𝑉𝐼 =
𝐵nir − 2𝐵red + 𝐵blue
𝐵nir + 2𝐵red + 𝐵blue

(6.1)

Difference Vegetation Index (DVI) [241].

𝐷𝑉𝐼 = 𝐵nir − 𝐵red (6.2)

Enhanced Built-Up and Bareness Index (EBBI) [117].

𝐸𝐵𝐵𝐼 =
𝐵swir − 𝐵nir

10
√
𝐵swir − 𝐵nir

(6.3)
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Enhanced Vegetation Index (EVI) [242].

𝐸𝑉𝐼 = 2.5 𝐵nir − 𝐵red
𝐵nir + 6𝐵red − 7.5𝐵blue + 1 (6.4)

Green Chlorophyll Index (GCI) [243].

𝐺𝐶𝐼 =
𝐵nir
𝐵green

− 1 (6.5)

Mangrove Vegetation Index (MVI) [244].

𝑀𝑉𝐼 =
𝐵nir − 𝐵green

𝐵swir − 𝐵green
(6.6)

Normalized Burn Ratio (NBR) [245].

𝑁𝐵𝑅 =
𝐵nir − 𝐵swir
𝐵nir + 𝐵swir

(6.7)

Normalized Different Bareness Index (NDBaI) [120].

𝑁𝐷𝐵𝑎𝐼 =
𝐵swir − 𝐵tir
𝐵swir + 𝐵tir

(6.8)

Normalized Difference Built-Up Index (NDBI) [118].

𝑁𝐷𝐵𝐼 =
𝐵swir − 𝐵nir
𝐵swir + 𝐵nir

(6.9)

Normalised Difference Pond Index (NDPI) [246].

𝑁𝐷𝑃𝐼 =
𝐵green − 𝐵swir

𝐵green + 𝐵swir
(6.10)

Normalized Difference Turbidity Index (NDTI) [246].

𝑁𝐷𝑇𝐼 =
𝐵green − 𝐵swir

𝐵green + 𝐵swir
(6.11)

Normalized Difference Vegetation Index (NDVI) [121].

𝑁𝐷𝑉𝐼 =
𝐵nir − 𝐵red
𝐵nir + 𝐵red

(6.12)

Normalized Difference Water Index (NDWI) [187].

𝑁𝐷𝑊𝐼 =
𝐵green − 𝐵nir

𝐵green + 𝐵nir
(6.13)

Soil Adjusted Vegetation Index (SAVI) [123].

𝑆𝐴𝑉𝐼 = 1.5 𝐵nir − 𝐵red
𝐵nir + 𝐵red + 0.5 (6.14)
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Structure Insensitive Pigment Index (SIPI) [247].

𝑆𝐼𝑃𝐼 =
𝐵nir − 𝐵blue
𝐵nir − 𝐵red

(6.15)

Urban Index (UI) [119].

𝑈𝐼 =
𝐵swir − 𝐵nir
𝐵swir + 𝐵nir

(6.16)

Water Ratio Index (WRI) [248].

𝑊𝑅𝐼 =
𝐵green − 𝐵red + 𝐵nir

𝐵blue
(6.17)

6.2.5 Ancillary data sets
Extensive research has shown that ancillary information can improve the accurate per-
formance of LULC classifications [16, 249, 250]. In this study, I first added terrain
indices including slope, aspect, and elevation. These indices were computed from
ALOS Global Digital Surface Model or “ALOS World 3D-30 m (AW2D30)” [68]. Also,
distance to rivers, coastlines, transport systems and buildings, and soil types were in-
cluded in the covariate collections. The buildings and transport systems were generated
from the OpenStreetMap, while soil types and river networks were extracted from the
OpenDevelopmentMekong.

6.2.6 Reference data
Reference data of 18 LULC categories (see Appendix A.4 for further details) was created
from field surveys, provincial LULC statistics, and visual interpretations. I conducted
nationwide comprehensive surveys in 2015, 2016, 2018, 2019, and 2020 to collect 3,078;
2,659; 10,550; 41,986; and 32,853 reference samples, respectively. Along with these
ground-observed data, previous outdated LULC maps [52, 16, 17], provincial LULC
statistics and high-resolution satellite images available on Google Earth were also con-
sidered. Herein, I generated approximately 9,360 polygons of single homogeneous
LULC types (Fig. 11) throughout the country for each year from 2015 to 2020. From
these polygons, I extracted up to 120,000 reference pixels (points) for each of the years.
Meanwhile, due to the non-availability of ground-truth data, reference data from 1990
to 2014 were collected using provincial LULC statistics, the natural-color images of
Landsat TM, ETM+ and OLI, Sentinel MSI, and high-resolution satellite images avail-
able on Google Earth. For each year, I randomly extracted 1,050 points per LULC
category for validating the classification models and the others were used for training
the classification model. The reference data for the year 2020 were utilized not only for
creating and validating the LULC map of the year 2020 but also for implementing the
automatic training migration model from this reference year to any target years. The
migration model is described in more detail in the following section.
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6.2.7 Automatic training migration model
Training data is tremendously essential in mapping LULC; however, collecting suffi-
ciently accurate training samples is challenging, especially for large-scale areas, long-
term history analyses, and data-scarce environments such as Vietnam [14]. If training
data are not collected consistently, it can result in misclassification or low accuracies
[251]. Thus, it is paramount to propose a practical approach for training data collec-
tions. In this study, I utilized an automatic model to migrate from the reference data of
a reference year to target years. The method had three essential steps. First, I created
a set of training data from a reference year (2020). Then, for each pixel, I computed its
surface reflectance values from its corresponding Landsat TM, ETM+, and OLI images
of the reference year and target years. The surface reflectance values of six bands (Table
6.1) were utilized for the measurement of Euclidean distance (ED) [252] and spectral
angle distance (SAD) [253]. Finally, with the ED (Eq. 18) and SAD (Eq. 19), I dis-
tinguished changed pixels and unchanged pixels by running a trial and error model
to determine thresholds. Although the thresholds can be estimated by analysts, the
experimented thresholds of ED and SAD in this study were 0.05 and 0.95, respectively.
These thresholds were successfully applied to migrate the training data of the year 2020
to the target years. The unchanged pixels were preserved and utilized as training data
for the target years.

𝐸𝐷 =

√√√
𝑁∑
𝑖=1

(𝑋𝑖 − 𝑌𝑖)2 (6.18)

𝑆𝐴𝐷 = 𝑎𝑟𝑐𝑐𝑜𝑠
©­­«

∑𝑁
𝑖=1 𝑋𝑖𝑌𝑖√∑𝑁

𝑖=1 (𝑋𝑖)
2 ∑𝑁

𝑖=1 (𝑌𝑖)
2

ª®®¬ (6.19)

where X is spectral signature vector of an image pixel in the reference year; Y is spectral
signature vector of an image pixel in the target year; N is the number of image bands
(N = 6).

6.2.8 Machine learning modelling
After completing the data preprocessing task, I generated covariate collections, includ-
ing (1) optical-image-based covariates in dry seasons and (2) in wet seasons, and (3)
SAR-based covariates in dry seasons and (4) in wet seasons. The ancillary information
was also added to these covariate collections. It is worth noting that some of these
covariates or features may not significantly contribute to the enhancement of classifi-
cation performance while overabundant features can affect the performance speed or
run out of the computing capacity of the classification model. Hence, random forest
algorithm [192] was employed to estimate important features. I removed some less
important features and kept essential features which were represented in Table A.5.
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For classification, I applied a random forest algorithm for several reasons. First, it has
previously been observed that the random forest algorithm can handle principal draw-
backs that a single-tree-based method may face such as an over-fitting and non-optimal
solution [254]. Also, the random forest shows the out-performance of its rivals such
as fuzzy adaptive resonance theory-supervised predictive mapping (Fuzzy ARTMAP),
support vector machine (SVM), artificial neural network (ANN), Mahalanobis distance
(MD), and spectral angle mapper (SAM) [22].

A new random-forest-based approach was developed in this study. Unlike the
common use of single-time classification, for each pixel, I independently estimated
prior probability values belonging to each of the specified land covers for each of
the covariate collections. These prior probability values were then joined to create
a set of posterior probability values. The largest value of the posterior probabilities
corresponding to a specific land cover was utilized to label the predicted land cover.
However, the predicted prior probability of a pixel, for example, p(𝐶𝑘), might reach
almost zero or zero because of ‘No data’ of that pixel at that covariate collection. If
this occurs, the posterior probability of that pixel will be nearly zero or zero. That
is, although the prior probability of most other collections equals 100% voting for a
specified land cover, the probability product of this pixel might be almost zero, causing
misclassification. Hence, the prior probability of a pixel corresponding to a particular
land cover must not be extremely tiny. To this end, Eq. 6.20 was developed to adjust
the prior probability values while posterior probability values were calculated as Eq.
6.21.

𝑝 , (𝐶𝑘) = 𝑐 ∗ 𝑝 (𝐶𝑘) +
1 − 𝑐
𝑁

(6.20)

𝑝𝑐 (𝐶𝑘) =
𝐼∏
𝑖=1

𝑝 ,
𝑖
(𝐶𝑘) (6.21)

where 𝑝′(𝐶𝑘) is the adjustment of prior probability value of a land cover 𝐶𝑘 ; 𝑐 is a
constant value (𝑐 = 0.7) which was evaluated by trial and error experiments in this
study; 𝑁 is the number of land cover categories (𝑁 = 18); 𝑝𝑐(𝐶𝑘) is the posterior
probability value of category 𝐶𝑘 ; and 𝐼 is the number of covariate collections (𝐼 = 4).

The random-forest-based model was performed using Scikit-Learn 0.22 and Python
3.8.5. Since the input data of multi-sensor image bands and covariates dramatically
varied over the 30 years, it could not be optimized all the parameters of the random
forest algorithm. The number of trees (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) in the forest and the size of the
random subsets of features (𝑚𝑎𝑥 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠), however, are highly recommended to be
adjusted [192]. Using RandomizedSearchCV in the Scikit-Learn, I found that 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠
= 200 (trees) and 𝑚𝑎𝑥 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 8 were optimal in this work. The other parameters were
set as the default values.
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6.2.9 Accuracy assessment

Following the wide-ranging recommendations of instruction manuals [63, 255] a statistic-
based testing data set (Section 6.2.6) was independently generated to estimate the ac-
curacy of final LULC products. I utilized a stratified sampling (1,050 points/LULC
category) method and a confusion matrix to assess Vietnam-wide annual LULC prod-
ucts from 1990 to 2020. The matrix produced profound accuracy metrics, namely overall
accuracy (OA), user accuracy (UA), standard error (SE), and kappa coefficient (KC). The
uncertainty of accuracy was measured with a 95% confidence interval. These metrics
are fully described in Tables 6.2 and 6.3.

6.2.10 Change analysis

The analysis of changes in LULC is to measure the differences including spatio-temporal
dynamic patterns, the magnitude, and rate of variations observed over the study period.
First, I estimated the diversity of LULC within each 30-m pixel width by counting the
number of times that LULC changes over 30 years (Fig. 6.3c). I then estimated the area
of each LULC within a five-year interval from 1990 to 2020 to observe the trend of LULC
change (Fig. 6.7). I also computed the percentage of net change (Eq. 6.22) and then
rescaled the percentage to a rank between 0 and 100% to monitor the most dynamic
LULC (Fig. 6.8). Finally, I employed a Sankey diagram to emphasize the major transfers
of LULC [256].

𝑝 =

(
𝐴𝑡2 − 𝐴𝑡1

𝐴𝑡1 ∗ (𝑡2 − 𝑡1)

)
∗ 100 (6.22)

where 𝑝 (year−1) is the percentage of net change; and 𝐴𝑡1 and 𝐴𝑡2 (km2) are the area of
the LULC type in the observation years 𝑡1 and 𝑡2, respectively (𝑡1 < 𝑡2).

6.3 Results

6.3.1 The accuracy of the first VLUCDs

Utilizing ground-based data and all the freely available remotely sensed images, I have
provided a coherent method and the results of the first VLUCDs. The proposed method
generated consistently spatio-temporal LULC maps, using a definitive LCCS designed
regarding end users’ recommendations and a standard LCCS. For a visual presentation,
level-1 VLUCDs of the year 1990 and 2020 are presented in Fig. 6.3. The 5-year-interval
maps (1990, 1995, 2000, 2005, 2010, 2015, and 2020) of level-2 VLUCDs are presented in
Fig. 6.4. The level-1 and level-2 VLUCDs included ten categories of primary dominant
land use/cover (PDLC) and eighteen categories of secondary dominant land use/cover
(SDLC), respectively (see detail in Appendix A.4).

The reliability of the VLUCDs was evaluated by using both visual interpretations
and statistical approaches. Based on high-resolution satellite images in Google Earth,
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Figure 6.3: (a and b) show the level-1 Vietnam-wide LULC maps in 1990 and 2020
produced from a fusion of Landsat TM, ETM+ and OLI, and Sentinel SAR GRD and
MSI images with the random-forest-based algorithm. (c) presents a spatial–temporal
dynamic change in LULC from 1990 to 2020 in Vietnam.

I found that the VLUCDs were clear and noise-free. A confusion matrix method with
stratified random sampling (1,050 points/LULC category) was utilized to indepen-
dently validate classification accuracy. Statistical metrics were measured, namely pro-
ducer accuracy (PA), user accuracy (UA), F1 score, overall accuracy (OA), standard error
(SE), and kappa coefficient (KC). These metrics of the level-1 and level-2 LULC maps of
the year 2020 are fully described in Tables 6.2 to 6.4. Meanwhile, overall obtained OA,
KC, and uncertainty of the level-1 and level-2 VLUCDs are presented briefly in Figs. 6.5
and 6.6. Uncertainty of measurement was estimated with a 95% confidence interval.
Specifically, the OA of the level-1 and level-2 LULC maps ranged from 85.7±1.3% to
92.0±1.2% and 77.6±1.2% to 84.7±1.1% over the study period, respectively.

With the numerous LULC types and long-term observation, these results constituted
an outstanding achievement [23]. For the detailed LULC products (Level 2), open water
and mangrove had the highest levels of accuracy, accounting for over 96% in both the
PA and UA. This successful classification may be explained by the benefits of using
multiple spectral indices (Section 6.2.4) such as the NDWI, WRI, and NDPI, which could
distinguish open water from land, aquaculture ponds, and others, whereas mangrove
can be accurately identified with the MVI [22]. This was followed by rice paddies,
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Figure 6.4: The level-2 Vietnam-wide LULC maps in 1990, 1995, 2000, 2005, 2010, 2015
and 2020 produced from a fusion of Landsat TM, ETM+ and OLI, and Sentinel SAR
GRD and MSI images with the random-forest-based algorithm.

which had an accuracy of above 90%. It seems possible that rice is frequently cultivated
in flat terrain, where is not be affected by topographic problems such as the shadows of
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Figure 6.5: The overall accuracy (OA) and kappa coefficient (KC) of the level-1 Vietnam-
wide annual LULC maps produced from the all freely available Landsat TM, ETM+ and
OLI, and Sentinel SAR GRD and MSI images with the random-forest-based algorithm.
The OA and KC are obtained by using a confusion matrix and a stratified validation
method with independent samples (1,050 points/LULC category). The bars indicate
uncertainties of OA measured with a 95% confidence interval.

Figure 6.6: The overall accuracy (OA) and kappa coefficient (KC) of the level-2 Vietnam-
wide annual LULC maps produced from the all freely available Landsat TM, ETM+ and
OLI, and Sentinel SAR GRD and MSI images with the random-forest-based algorithm.
The OA and KC are obtained by using a confusion matrix and a stratified validation
method with independent samples (1,050 points/LULC category). The bars indicate
uncertainties of OA measured with a 95% confidence interval.

mountainsides. The spectral reflectance of rice is also stable [257]. Although the model
could separate forests from others, it tended to misclassify different forests. Another
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Table 6.2: Confusion matrix of the 2020 Vietnam-wide land use/cover map (Level 1)
created from the integration of Landsat OLI, Sentinel SAR GRD and MSI satellite images
with the random-forest-based algorithm. PA: Producer accuracy (%); PA: Producer
accuracy (%); UA: User accuracy (%); SEM: Standard error of the mean for UA; F1: F1
score; Overall accuracy: 91.6%, and Kappa coefficient: 90.7%. RL: Residence; RP: Rice
paddies; CL: Cropland; GL: Grassland; BL: Barren land; SL: Scrubland; FL: Forest land;
WL: Wetland; OW: Open water; AC: Aquaculture.

Land cover map
RL RP CL GL BL SL FL WL OW AC

Reference data

RL 988 3 21 1 6 4 0 2 0 2
RP 1 988 26 1 4 1 8 0 0 1
CL 27 18 772 1 28 38 17 1 0 0
GL 1 15 57 990 15 8 64 0 0 0
BL 25 8 14 44 980 11 11 0 0 1
SL 0 4 23 13 17 986 44 1 0 3
FL 1 2 14 0 0 2 853 0 0 0
WL 3 2 119 0 0 0 53 1040 0 44
OW 0 3 0 0 0 0 0 1 1031 4
AC 4 7 4 0 0 0 0 5 19 995
PA 96.2 95.9 85.6 86.1 89.6 90.4 97.8 82.5 99.2 96.2
UA 94.1 94.1 73.5 94.3 93.3 93.9 81.2 99.0 98.2 94.8

SEM 0.7 0.7 1.4 0.7 0.8 0.7 1.2 0.3 0.4 0.7
F1 0.95 0.95 0.79 0.90 0.91 0.92 0.89 0.90 0.99 0.96

limitation is to classify plantation forests from woody crops, which is also found by
numerous studies [258, 259]. Likewise, the model could not entirely divide the different
types of residential areas, but it showed a clear separation of the residential areas from
others. To increase the accuracy of the maps for further analyses, I combined these
mixed categories. This combination obtained an increase in accuracy of approximately
6% with a few losses of detail in LULC types.

6.3.2 Distribution and trend of land use/land cover changes

Change detection was conducted to comprehend LULCC patterns and processes. To
this end, the level-1 (PDLC) Vietnam-wide annual LULC data sets (L1-VLUCDs) were
utilized for further analysis in this study. Although the annual maps are integral to
obtaining the process of LULC dynamic changes in Vietnam, the five-year-interval
land cover products in 1990, 1995, 2000, 2005, 2010, 2015, and 2020 were utilized to
acquire a more profound change visualization. A post-classification analysis method
was employed to measure the spatio-temporal LULCC and the percentage of changes.

The spatial distributions and the patterns of Vietnam LULC are shown in Fig. 6.3.
The temporal distribution of the net changes in LULC from 1990 to 2020 is presented
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Table 6.3: Confusion matrix of the 2020 Vietnam-wide LULC map (Level 2) created from
the integration of Landsat OLI, and Sentinel SAR GRD and MSI satellite images with
the random-forest-based algorithm. PA: Producer accuracy (%); UA: User accuracy
(%); SEM: Standard error of the mean for UA; F1: F1 score; Overall accuracy: 84.7%,
and Kappa coefficient: 83.8%. R1: Residence 1; R2: Residence 2; RP: Rice paddies;
WC: Woody crops; OC: Other crops; IC: In-house crops; GL: Grassland; BL: Barren
land; SL: Scrubland; DBF: Deciduous broadleaf forest; EBR: Evergreen broadleaf forest;
ENF: Evergreen needleleaf forest; PL: Plantation land; MF: Mangrove forest; IW: Inland
wetland; OW: Open water; AC: Aquaculture; BA: Bamboo areas (to be continued on
Table 6.4).

Land cover map
R1 R2 RP WC OC IC GL BL SL

Reference data

R1 804 137 3 0 10 0 2 6 1
R2 212 848 4 17 12 3 1 7 8
RP 0 1 932 5 27 1 3 5 0
WC 0 2 12 674 45 0 6 3 6
OC 0 2 27 26 801 2 1 5 11
IC 15 34 9 15 26 1044 0 26 84
GL 0 0 14 39 45 0 975 17 9
BL 16 14 11 8 12 0 40 960 10
SL 0 1 3 13 8 0 17 16 898

DBF 1 0 1 21 5 0 0 2 17
EBF 0 0 1 8 1 0 2 1 1
ENF 0 0 0 37 0 0 0 0 5
PL 0 0 12 12 16 0 1 1 0
MF 0 6 2 7 2 0 0 1 0
IW 0 3 7 160 35 0 0 0 0
OW 1 0 2 0 0 0 0 0 0
AC 1 2 10 0 3 0 0 0 0
BA 0 0 0 8 2 0 2 0 0
PA 83.2 76.1 95.0 84.6 89.4 82.9 83.4 88.2 88.4
UA 76.6 80.8 88.8 64.2 76.3 99.4 92.9 91.4 85.5

SEM 1.3 1.2 1.0 1.5 1.3 0.2 0.8 0.9 1.1
F1 0.80 0.78 0.92 0.73 0.82 0.90 0.88 0.90 0.87

in Fig. 6.7. The most dominant LULC was forest, accounting for an approximately half
area of the entire country. This was followed by croplands (16.3%), rice fields (14.2%),
and open water (including parts of saltwater, 8.1%). Grassland and scrubland occupied
a relatively similar proportion (2.8%) while the smallest LULC was residential areas
(1.3%).
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Table 6.4: (– continued from Table 6.3). Confusion matrix of the 2020 Vietnam-wide
LULC map (Level 2) created from the integration of Landsat OLI, and Sentinel SAR
GRD and MSI satellite images with the random-forest-based algorithm. PA: Producer
accuracy (%); UA: User accuracy (%); SEM: Standard error of the mean for UA; F1: F1
score; Overall accuracy: 84.7%, and Kappa coefficient: 83.8%. R1: Residence 1; R2:
Residence 2; RP: Rice paddies; WC: Woody crops; OC: Other crops; IC: In-house crops;
GL: Grassland; BL: Barren land; SL: Scrubland; DBF: Deciduous broadleaf forest; EBR:
Evergreen broadleaf forest; ENF: Evergreen needleleaf forest; PL: Plantation land; MF:
Mangrove forest; IW: Inland wetland; OW: Open water; AC: Aquaculture; BA: Bamboo
areas.

Land cover map
DBF EBF ENF PL MF IW OW AC BA

Reference data

R1 0 0 0 0 0 0 0 3 0
R2 0 0 0 0 0 2 0 1 0
RP 2 0 0 5 0 0 0 0 0
WC 5 7 0 35 2 0 0 0 0
OC 3 2 0 15 0 1 0 0 0
IC 6 0 0 0 0 0 0 0 0
GL 2 24 0 43 0 0 0 0 1
BL 6 1 0 5 0 0 1 4 0
SL 33 12 0 13 0 0 0 2 0

DBF 980 30 4 35 0 0 0 0 0
EBF 2 355 1 41 0 0 0 0 6
ENF 9 202 1045 19 0 0 0 0 0
PL 2 39 0 603 2 3 0 0 0
MF 0 2 0 17 1036 1 1 3 0
IW 0 0 0 100 2 1042 0 95 0
OW 0 0 0 0 1 0 1028 3 0
AC 0 0 0 0 6 1 20 939 0
BA 0 376 0 119 1 0 0 0 1043
PA 89.4 84.7 79.3 87.3 96.1 72.2 99.3 95.6 67.2
UA 93.3 33.8 99.5 57.4 98.7 99.2 97.9 89.4 99.3

SEM 0.8 1.5 0.2 1.5 0.4 0.3 0.4 0.9 0.3
F1 0.91 0.48 0.88 0.69 0.97 0.84 0.99 0.92 0.80

What can be clearly seen in Fig. 6.7 is the steady decline of forest area from 170,458
km2 in 1990 to 150,517 km2 in 2020. The area of wetlands experienced a slight increase
from 4,404 km2 in 1900 to 5,138 km2 in 1995, followed by a continual decrease to
2,490 km2 in 2020. In contrast, there was a sharp increase in the area of aquaculture
and residential land, accounting for approximately three and ten times over the three
decades. The area of open water showed a slight rise while there was a small fluctuation
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Figure 6.7: Temporal distribution of LULC across Vietnam extracted from the level-1
Vietnam-wide annual LULC data sets. The data labels represent the area of each LULC
category (km2) in the year 1990, 1995, 2000, 2010, 2015, and 2020.

in the area of the other land types.
Meanwhile, Fig. 6.8 reveals the highly dynamic change in LULC in Vietnam. The

most considerable change was the area of urban land, which increased by about 50%
over each five-year interval. Interestingly, the graph shows substantially opposite trends
between aquaculture and wetlands. The area of aquaculture decreased 8% whereas the
wetlands expanded 17% from 1990 to 1995, followed by a 50% increase in aquaculture
but a 22% decrease in wetlands by 2000. Forest cover had undergone an up-and-down
variation by 2015, but it has presented a remarkable drop until now. It is noticed that
the percentage of change in the forest cover was insignificant, but its dynamic areas
were remarkable (Fig. 6.9).

6.3.3 Major spatio-temporal land use/land cover dynamics

Vietnam’s LULC has experienced a considerable change over the past 30 years. Fig.
6.3c shows the spatio-temporal dynamic changes. The north and south were the most
dynamic areas, especially the western north and the south. The dynamic conversions
among different LULC can be seen in Fig. 6.9. There was a fundamentally dynamic
conversion between forests and croplands. Forest areas remarkably reduced while
residential and aquaculture land significantly increased. To easily visualize the LULC
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Figure 6.8: Temporal dynamics of net changes in LULC across Vietnam, extracted from
the level-1 Vietnam-wide annual LULC data sets in the years 1990, 1995, 2000, 2010,
2015, and 2020. The data labels represent the percentage of changes (%) within five-
year intervals. The positive and negative values indicate an increase and a decrease,
respectively.

transformation, I created additional data in Figs. 6.10 and 6.11. It is noticed that a
considerable proportion of forests was converted into croplands while a major driver
of wetland loss resulted in the expansion of aquaculture. Residential lands mainly
expanded on the areas of rice, croplands, and barren lands, which are located nearby
coastlines. To acquire a more detailed visualization of change patterns, a few hotspot
regions were extracted throughout the country to discuss the change pattern and pro-
cesses.

6.4 Discussion

Large-scale annual LULC information is integral for understanding the land dynamic
process, thus supporting the strategies of land management. In reviewing the literature,
little consistent multi-spatio-temporal LULC data was found on a national or regional
scale. In this study, a comprehensive framework is developed to produce consistently
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Figure 6.9: LULC gain/loss and conversions between 1990 and 2020; “+” means gain
and “-” means loss in area (km2).

Figure 6.10: Transitions among different land types in Vietnam between 1990 and 2010.
The numbers indicate the areas of forests, which is the most dominant land in Vietnam
(km2).

Vietnam-wide annual LULC data sets, using remote sensing and ground-based data.
Results show that surface reflectance images can provide a coherent time-series data
set as long as they are atmospherically corrected. Surprisingly, although all available
Landsat images of the entire year are utilized, there are data gaps due to cloud and
shadow masking areas. These gaps might affect the accuracy of classified maps even
though gaps have been filled by ancillary data such as terrain indices. This issue may be
explained by the fact that Vietnam is one of the cloudiest countries in the world [207].
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Figure 6.11: Transitions among different land types in Vietnam between 2010 and 2020.
The numbers indicate the areas of forests, which is the most dominant land in Vietnam
(km2).

However, the harmonious blend of Landsat OLI, Sentinel SAR GRD and MSI has filled
such missing-data gaps since 2015, which can also improve the accuracy of mapping
(Figs. 6.5 and 6.6). Besides, the training migration model significantly reduced the cost
and efforts in collecting training data.

Regarding change patterns, the rapid development of urbanization is considered an
essential interest in Vietnam. The expansion of urban areas has frequently occurred in
the capital and regional capitals, namely Hanoi, Hai Phong, Da Nang, Ho Chi Minh
(HCM), and Can Tho cities. Herein, I analyse the process of change in HCM as a typical
example. As shown in Fig. 6.12a, the growth of urban land has remarkably increased
since the 1990s. This may be explained by the fact that the introduction of new policies
known as “Renovation” (1986), which has promoted the development of socio-economic
factors, followed by a massive population migration to cities [260]. The urbanization
has primarily taken place on croplands, which agrees with the findings of previous
studies [15, 260, 261]. The development is predicted to accelerate over developing
regions, which causes the loss of croplands, and thus may threaten sustainability and
livelihoods [262].

Another considerable change is the uncontrolled development of agricultural and
aquaculture land, especially in the Vietnamese Mekong Delta (VMD). As part of the
third-largest basin in the world, the VMD plays an integral role in the contribution of
agricultural products, due to its favorable natural condition of 700 km coastline and
a dense network of rivers. Rice and shrimp have contributed to a vital position in
Vietnam’s economic development for decades [263, 224]. However, the intensification
of uncontrolled aquatic farming has caused significant changes in LULC across the
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Figure 6.12: Spatial–temporal dynamics (left) and change pattern (right) of LULC in (a)
residential land, (b) aquaculture land, and (c) forests land in Vietnam. This figure is
generated using QGIS 3.18.0-Zurich while the country boundary is extracted from the
GADM.

region, especially along coastal zones since 2000 (Fig. 6.12b). There are several possible
explanations for this finding. In 2000 and 2001, the Vietnamese government proposed
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resolutions 09/ND-CP and 1116, which replaced low-value (e.g. rice) to high-value
(e.g. shrimp and fruit) agricultural production, encouraging farmers to transform
certain coastal areas into aquatic production. Also, due to the high profits of shrimp
(200,000 VND/kg) in comparison to traditional crops such as rice (5,000 VND/kg) [15],
numerous inland areas were converted into aquatic farming. Local people illegally
cut mangrove forests to expand aquaculture in several coastal regions. Since 2010,
there was not only an increase in aquaculture, but also a significant conversion of other
croplands into rice paddies (Fig. 6.12b). These changes resulted in the formulation of
another policy aiming at the increase of intensive rice and fish farming in 2012 [264, 265].
These findings indicate that the development of socio-economic policies is considered
the primary reason driving LULCC. Land policies, therefore, should be formed and
implemented in serious consideration of regional socio-economic and environmental
development.

Contrary to the expectations, this study indicates a net area loss of forests instead
of the constant increase reported by the Vietnamese Ministry of Agriculture and Rural
Development (MARD). Despite the net forest regrowth in 2000 and 2010, the forest cover
has undergone a decrease in recent years. Also, the area of forests in this study is greater
than the data reported by the MARD. These inconsistencies are due to several reasons,
especially the difference in forest definitions. The MARD excluded agricultural (e.g.,
rubber), aqua-cultural ecosystems, scattered trees, bamboos, palms, etc. from forests34.
These non-forest lands, covering a relatively large area of the country (e.g., 10 km2 of
rubber only; 2017), were highly dynamic [52] but not fully reported by the MARD. In
2008, the revised definition of forests set a minimum of 10% tree cover as forests, instead
of 30% tree cover in the previous definition. Since 2016, they started to include certain
agricultural lands managed by the Vietnam Administration of Forestry in the forest
lands but without forest covering [265]. These revisions likely increased the reporting
data of forests. Furthermore, the results show that deforestation occurred in numerous
regions. Fig. 6.12c presents a representative example of forest loss in the central
highlands. There has been a constant decrease in forest cover due to the expansion of
rice paddies, barren lands, and croplands. This finding of forest loss corroborates the
discoveries of a great deal of previous work in LULC observation covering Vietnam
[266, 267].

Regarding limitations of this study, I could not estimate the benefit of the individual
sensor’s characteristics although the harmonious blend of the Landsat OLI, Sentinel
SAR GRD and MSI images can fill data gaps and improve the accuracy of mapping
classification. Moreover, instead of using ground-truth data, I validated the annual
maps of the year 1990 to 2014 with the data collected by visual interpretation. Although
great and careful efforts were applied in the collection procedure, errors might not be
inevitable due to the restricted high-resolution images in Google Earth, especially
before 2000. In addition, I have utilized the random forest algorithm to eliminate the
less important input features, but there are relatively numerous remaining features,
resulting in a high computational cost. Herein, the nationwide annual multi-category
LULC maps and overall change detection were successfully developed, but the drivers
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of LULC changes should be measured in details for individual land cover. Finally, deep
learning neural networks are expected to be applied for large-scale LULC mapping.

Figure 6.13: Geographic distribution of worldwide users of the JAXA HRLULC Map
Products of Vietnam.

Figure 6.14: Purposes of worldwide users of the JAXA HRLULC Map Products of
Vietnam.

Notwithstanding the above-mentioned limitations, the national database of annual
LULC from 1990 to 2020 in Vietnam is essential for various applications. The database
has recently published (Sep. 2021) for free use on the website of JAXA as a part
of High-Resolution Land Use and Land Cover (HRLULC) Map Products, including
several versions; my present database is HRLULC 30m resolution map of Vietnam
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[1990-2020, each year] (ver.21.09:10 & 18 categories).Herein, some statistical information
of the HRLULC Map Products is provided. Figure 6.13 shows geographic distribution
(nations) of the users and figure 6.14 shows the purposes of the users from Mar. 2018
to Mar 2022. Among the purposes the majority are LULCC analyses, drought and
flooding studies, climate change and adaptation, water resources, and natural resource
management. This fact indicates the utility and importance of the free high resolution
time-series land use/land cover maps.

6.5 Conclusions
Regularly updated and accurate LULC information is fundamental to interdisciplinary
studies. The recent advancement of remote sensing and computational science has im-
proved the mapping capacity of LULC. This study set out to develop a new framework
for automatically monitoring nationwide annual LULC and provide the first VLUCDs
over the past 30 years. To this end, I utilized ground-based data, the informative Land-
sat TM, ETM+ and OLI, and Sentinel SAR GRD and MSI images, after comprehensively
assembling and preprocessing on the GEE platform. Then, I developed a new random-
forest-based method and an automatic training migration model (ATMM) to map Viet-
nam LULC. The obtained VLUCDs had overall accuracies ranging from 85.7±1.3% to
92.0±1.2% with the ten primary dominant land use/cover and 77.6±1.2% to 84.7±1.1%
with the eighteen secondary dominant land use/cover. This confirms the potential
of the proposed framework for the systematically long-term monitoring of LULC in
Vietnam. Results reveal that there was a decrease in the area of forests (19,940 km2)
and wetlands (1,914 km2) whereas the area of aquaculture and urban increased approx-
imately three and ten times over the three decades, respectively. The deforestation was
mainly due to the expansion of croplands, which were in return replaced by numerous
built-up areas. The rapid growth of aquaculture was considered the main driver of wet-
land loss. The explicit spatio-temporal benchmark of the VLUCDs can be utilized for
a tremendous variety of applications in the research of environmental changes toward
the Sustainable Development Goals. In addition, the ATMM allows analysts to remark-
ably save time, cost, and labor for collecting sufficient and representative training data.
This proposed method is possible to apply for a multi-temporal LULC assessment at a
broader scale.
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Chapter 7

Connecting geospatial to local
socio-economic and biophysical
variables for quantifying the dynamics
and determinants of forests changes
across Vietnam over recent three
decades.

Abstract:In the recent few decades, Vietnam has experienced a considerable change
in land use/land cover (LULC), especially forest land. However, there is not a com-
prehensive analysis of the dynamics and drivers at the nationwide spatial scale over
a long-term period. In this research, the socioeconomic and biophysical drivers of
forest changes at the commune scale were estimated reliably. Utilizing the results of
the Vietnam-wide annual LULC database available in the Japan Aerospace Exploration
Agency (JAXA), the dynamic changes in forest land from 1990 to 2020 were first esti-
mated reliably. To decide the major drivers of the changes, a synthesis of case studies
working on the analysis of the forest changes in Vietnam at various spatial levels was
conducted successfully. Subsequently, a machine learning technique was adopted to
measure the drivers of the forest changes. The results indicate that although the forest
area has increased from 2005 to 2010, it has undergone a decrease over the full study
period. There is a dramatic conversion between forest and agricultural land, especially
in the North-West and Central Highlands. This conversion is mainly driven by agri-
cultural expansion/shifting, topographic position index, accessibility/infrastructure,
population growth/migration, and distance to systems such as irrigation, drainage,
and mining/industry. The identification of the drivers in this study is likely to help
enhance the accuracy of the land use/land cover change prediction. These findings
provide coherent evidence-based information about the dynamics and drivers of forest
changes at the nationwide spatial and decadal temporal scales and thus can support
informing land policies in Vietnam.
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7.1 Introduction

A change in land cover refers to the alteration of the biophysical surface of the Earth
while land-use changes can be defined as variations in the way of using and manag-
ing a specific land area. Due to a direct connection between these two terms, land
use/land cover change (LULCC) is generally used in the literature. One of the greatest
changes in LULC is forest transition, especially forest degradation and deforestation.
The unexpected change of forests impacts adversely on regional climate extremes [268],
biodiversity [269], and ecosystem services [270]. As a result, proper estimations of for-
est changes and drivers is a central topic in international discussions and projects such
as Paris Agreement and Reducing Emissions from Deforestation and Forest Degra-
dation (REDD+) [13]. Long-term monitoring and interpreting of forest changes and
drivers at a large scale and a fine spatial level provide evidence-based information for
these discussions and projects. This information is also essential to making decisions
in informing policy, planning, and managing forest resources.

Despite its importance, the detailed long-term estimation of forest transition is chal-
lenging, especially in developing regions, which frequently have a lack of information
about the accurate datasets of forests for a long period. Recent evidence suggests
that many developing countries are short of professional competence to generate fine
spatiotemporal and accurate forest mapping resources [14]. For example, a careful
synthesis of over 200 case studies focusing on forest and agricultural land in South
and Southeast Asia shows that although numerous studies have been conducted in
certain countries such as India and Indonesia, few studies have been done in the other
countries of the regions such as Cambodia, Laos, and Vietnam [225].

Vietnam has a major resource of tropical forests, but it has undergone highly dy-
namic changes over the recent three decades [271, 1]. These changes are affecting
adversely the long-term balance of ecosystem services [272] and climate [273]. Unfor-
tunately, very few accurate and consistent datasets of forests have been conducted for
a long-term period across the country. According to the report of the general statistics
office on forest management, available five-year-interval national-scale forest maps are
frequently utilized by local policymakers. These maps are not always meet the require-
ment of all users and are not frequently published to various institutes, organizations,
and analysts. Up to date, some data sources have developed, but their differences,
for example, production methods, producers, and input data usage result in incon-
sistencies in the resultant data products [14]. Likewise, regional and global products
have limitations when they are applied for analyses at a local-level scale. They cannot
reflect accurately at a local and a national scale due to their coarse spatial resolution
and low accuracy [274, 1, 18]. These limitations challenge the effective usage of the
existing forest data sets to provide scientific information for decision-makers to inform
coherent policies, do long-term strategic planning, and offer corporate management.

Recently, a database for the Vietnam-wide annual land use/cover data sets (VNLCD)
have been first created from 1990 to 2020 [20]. Although the database does not focus
only on forests, it is beneficial for the estimations of forest changes and drivers. First,
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the accuracy of the forest class is high. The database contains variously different LULC,
which allows for measuring the transition between forests and other land types.

Although there is a manuscript talking details about how the database has been
conducted [20], a brief summary of the generated process is provided herein for a
general understanding of the LULC data. Specifically, a state-of-the-art framework
was established utilizing various ground-based and satellite-based data sources, in-
cluding Landsat and Sentinel sensors. The framework contained an automatic training
migration model and an optimal approach for post classification optimization. The
established approach could address issues such as cloud-contaminated problems by
employing the availability of multiple spatiotemporal data, thus improving the accu-
racy of mapping. The satellite data were separated into wet seasons (May – November)
and dry seasons (December to the next April) to identify the changes in LULC phenol-
ogy, including forest and agriculture. The automatic training migration model offered
a practical mode for collecting reference data over the recent three decades. Regarding
the land cover classification system (LCCS), I applied the standard land cover scheme,
viz. Land Cover Classification System with necessary modifications according to the
local biophysical environment and end-users’ suggestions in Vietnam. That is, ten land
cover types (Fig. 7.4) were decided. Applying a benchmark [63], the quality of the
VNLCD was statistically validated with ground-based reference data derived from ex-
tensive field surveys (from 2015 to 2020) and inventory data over the country. Different
metrics were provided, including overall accuracy, kappa coefficients, and standard
error of the mean. The VNLCD was published on the Japan Aerospace Exploration
Agency website.

This paper aims to explore the dynamics and drivers of forest changes across main-
land Vietnam. To this end, I first analyze the forest change from 1990 to 2020 over
the study area, utilizing the VNLCD. I then conduct a synthesis of the case studies to
identify major drivers of the forest changes before deciding the selected major drivers
for this study. The remaining main part of the paper is to quantify the drivers using a
logistic regression model. This is the first study to undertake a longitudinal analysis of
the long-term dynamics and drivers of the forest changes in Vietnam. It provides an
important opportunity to advance the understanding of the pattern, rate, and process
of forest changes at a commune level, which can provide insights into informing more
coherent policy to enhance the management of forest in Vietnam and expecting to apply
in other tropical regions.

7.2 Materials and methods

7.2.1 Forest
Forests provide with different valuable services such as soil erosion protection, habitat
provision for animals and humans. In the field of ecology, various definitions of forests
are found. In this study, I adopted the definition of forests provided by the Food and
Agriculture Organization of the United Nation (FAO). Herein, forest is defined as “land
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spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of
more than 10 percent, or trees able to reach these thresholds in situ. It does not include
land that is predominantly under agricultural or urban land use”. Also, mangrove is
not defined as forests in this study.

7.2.2 Forest diversity and change quantification
I first estimated and removed possible errors in the VNLCD. Although the VNLCD
had a high level of accuracy, there might be misclassifications due to the effects of
different climate situations and changes in plant phenology. The misclassifications
would happen a few times in the time-series maps. To eliminate the errors, I created
occurrence maps derived from the 1990 - 2020 time-series maps with arbitrary quantiles,
including the first quartile, third quartile, and ninetieth percentile. For each land type,
I overlaid the occurrence map on the fine-resolution images in Google Earth to identify
misclassifications. With a trial-and-error technique, I found that the third quartile was
the best threshold to eliminate possible misclassifications. Subsequently, I quantified
the dynamics of forestland, including gain, loss, and major conversion from 1990 to
2020. I also estimate the diversity of forest changes by computing the number of changes
between forest and non-forest land at a commune scale over the recent three decades
(Fig. 7.2).

7.2.3 Hot spot analyses
Changes in LULC are interests, but the change might not be statistically significant,
biasing the estimation of main drivers. To increase the reliability of the estimation, I
employed a hot spot analysis to identify the statistically significant changes. Although
several approaches have been established to estimate hot spots, Getis-Ord Gi∗ [275]
has been practically applied in the geographic research [276]. Hence, I employed the
Getis-Ord Gi∗ method to compute 𝑧-score and 𝑝-value for each region of interest (ROI).
An ROI that has a high 𝑧-score and a small 𝑝-value is a significant hot spot while a cold
spot has a low negative 𝑧-score and a small 𝑝-value. Herein, the ROI that has a 𝑧-score
greater than three was defined as a hot spot. The hot spot analysis was performed at
the commune level known as the ROI. I computed Getis-Ord Gi* values as follows (Eq.
(7.1); Eq. (7.2); Eq. (7.3)). The Getis-Ord local statistic is given as:
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where 𝐺∗
𝑖

is Getis-Ord local statistics; 𝑥 𝑗 is the attribute value for feature 𝑗; 𝑤𝑖 , 𝑗 is the
spatial weight between feature 𝑖 and 𝑗; and 𝑛 is equal to the total number of features.

The hot spot analysis was done by using ArcGIS Desktop 10.8.2. First, all the
proxy driver data were projected to WGS 84/UTM zone 48N, using Data Management
Tools. Then, the Incremental Spatial Autocorrelation tool was utilized to select an
appropriate distance threshold. The Incremental Spatial Autocorrelation tool measured
spatial autocorrelation for a series of distance increments and reported each distance
increment. Finally, Hot Spot Analysis (Getis-Ord Gi∗) tool was employed to identify
the statistically significant spatial cluster of high values (hot spots) and low values
(cold spots). The tool created a new output feature class with 𝑧−scores, 𝑝−values, and
confident level bins of Getis-Ord Gi∗. How Hot Spot Analysis (Getis-Ord Gi*) works
can be referred from ArcGIS Pro Tool Reference (here).

7.2.4 Case-study synthesis

I conducted a review of 47 publications to detect the drivers of spatio-temporal changes
in forest land in Vietnam. I used the query expression “TI = (drivers OR drivers OR
causes OR dynamics AND land*) AND TS = (Vietnam OR “Viet Nam” AND land*)
AND TS = (*fores* OR defor* OR refor* OR degrad*)” to search the publications in
Web of Science and Google Scholar databases. Then, I eliminated duplicates before
gathering 456 publications in total, of which about 357 publications worked on LULC,
including forests. Reading the titles and abstracts of the 357 publications, I eliminated
189 publications, which did not discuss forest topics. Among 168 publications re-
mained, the third-fourth mainly worked on the general LULC and LULCC assessment.
Finally, I selected 47 publications, which worked on estimating the drivers of forest
changes. After the careful scanning of the full publications, I noted study topics, main
drivers, research places, research periods, and approaches applied by the selected pub-
lications. If a major driver was noted in the publications, I defined it as a major driver.
Otherwise, the mentioned drivers in the publications could be seen as the main drivers.
Similar drivers were merged to generalize the drivers. They are presented in Table A.6.

7.2.5 Proxy data drivers

The main biophysical and socio-economic drivers (Section 7.2.4 were derived from
different sources. Most of the data were extracted annually from the General Statistics
Office of Vietnam (1990 - 2020; household surveys). They were originally presented
in various formats including vector, tabular, and raster formats with different spatial
resolutions. After that, considerable efforts were made to interpret the data before they
were used for the coming analysis. Since the data had different spatial resolution, I
kept the original spatial resolution and computed mean values at the commune scale.
Then, for the time-series data (e.g., climate) I computed mean, rate of change, and
standard deviation values over the study period (1990 - 2020). For the constant data
(e.g., elevation and slope) which were insignificantly alter over the study period, I
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computed mean values in the area of interest. Details about the proxy drivers are
presented in Table A.7.

7.2.6 Handling the multicollinearity of the driver proxy data and
modelling selection

Multicollinearity causes the inaccurate assessment of the regression coefficients. Herein,
I first detected the high level of multicollinearity between the driver variables by com-
puting the variance inflation factors (VIF) in Python (version 3.8.5), using the vari-
ance_inflation_factor() function from the statsmodels (version 0.12.0) library. I then
excluded the driver proxy variables which have a high level of multicollinearity or
VIF > 10 A.1 [277]. I acknowledged this limitation to reduce the analysis bias of the
regression model.

It is noted that even though several models have been established to estimate the
drivers of LULCC, there is not the best model. The performance of a model varies
according to certain research cases. When a model is selected, it should be considered
major factors, including reliability, generalizability, computational cost, and stability
[278]. Recently, a logistic regression model has been commonly applied for identifying
the drivers of LULCC, due to its clear understanding and impressive performance [225].
A logistic regression model, therefore, was applied in this study. The logistic regression
model was developed in Python (version 3.8.5) and scikit-learn (version 0.23.2) library.

7.3 Results and discussion

7.3.1 Synthesis of the case study

The detailed drivers of the forest gain and loss from the synthesis of 47 case studies
are presented in Table A.6. Only eight studies worked on a national scale (including a
regional scale covering Vietnam) while the others were conducted at smaller areas from
a village to provincial scale. Most studies quantified the drivers utilizing quantitative
methods such as logistic regression, multiple correlation analysis, and linear regres-
sion whereas ten studies interpret the drivers based on interviews, fieldwork surveys,
and historical data. There was a larger number of work on the drivers of forest loss
(deforestation) in comparison to forest gain (reforestation/afforestation). The frequent
distribution of the main drivers is presented in Fig. 7.1. They include socioeconomic
drivers such as policy and income, and biophysical drivers such as climate and to-
pography. As can be seen from the figure, the socioeconomic drivers were mentioned
more frequently than the biophysical drivers (47 against 33, respectively). Regarding
the forest loss, frequently mentioned drivers were agricultural expansion/shifting, pol-
icy/tenure, and accessibility/infrastructure. Meanwhile, policy/tenure and plantation
were the most common drivers of deforestation. The most interesting aspect of this
table is that tenure/policy decisions were involved actively in both the forest gain and
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loss. In contrast, plantation solely contributed to reforestation/afforestation while fuel-
wood/logging/charcoal, land size, climate, urbanization, etc. were only mentioned in
the deforestation studies.

Figure 7.1: Frequency distribution of the main drivers extracted from the synthesis of
case studies in Vietnam. More details about specific drivers can be found in Supple-
mentary Text S1.

7.3.2 Land use/land cover and forest dynamic changes
The conversion of different land use/land cover types between 1990 and 2020 is pre-
sented in Fig. 7.2. As can be seen from the figure, major LULC changes were forests,
residential areas, and aquaculture land. While the residential and aquaculture land
experienced increased trends, the area of forest significantly shrank over the study pe-
riod. This finding was also reported by Hansen et al. and Leinenkugel et al. [18, 279].
This result is, however, likely contrary to that of Meyfroidt et al., Jadin et al., and the
report of the Vietnamese Ministry of Agriculture and Rural Development (MARD) who
found that the area of forests increased [150, 280]. These differences are due to several
rationales. First, Meyfroidt et al. and Jadin et al. only estimated within a shorter period
from 1990 to 2010. Over this period, our previous results also showed an increase in
forests in Vietnam [20]. Second, there was a slight difference in the definition of forests
provided by this study and the MARD who did not consider rubber, scattered trees,
etc. as forests. These LULC types changed dynamically but were not fully included in
the report of forests by the MARD [52]. Interestingly, the MARD included certain areas
administrated by the forestry division into the forest land although there may be no
forests on the land [266].
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Figure 7.2: Gross losses, gross gains, and net change in land use/cover at Vietnam-
wide scale between 1990 and 2020. Land use/cover types are showed in different
colors. Areas are measured in square kilometre. The left represents losses while the
right represents gains. Black bars present the net changes (gross gains - gross losses)
of different land use/cover types.

Spatial distributions and dynamics of forests in 1990 and 2020 across mainland
Vietnam are presented in Fig. 7.3a and Fig. 7.3b, respectively. As can be seen from the
figures, forests are mainly distributed in the northern and west-center regions that had
high altitudes/elevation. It is apparent from Fig. 7.3a and Fig. 7.3b that very few areas
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of forests were detected in delta areas, especially the Red River Delta and Vietnamese
Mekong Delta/the South. Fig. 7.4a and Fig. 7.4b present apparently the fractional
distribution of forest losses and gains at the commune-level scale. Meanwhile, the hot
spots and cold spots of forest gains and losses are shown in Fig. 7.4c and Fig. 7.4d.
What stands out in the figures is the most dynamics and losses of forests in the Central
Highlands and the North-West. This finding was also reported by Imai et al., and
Kissinger et al. [281, 282]. This result may be explained by several reasons. As can
be seen in Fig. 7.2, there is a major conversion between forests and agricultural land.
The central Highlands provide for commercial agriculture with reasonable conditions
such as adequate precipitation, moderate temperatures, and good soils. In this region,
dominant commercial agriculture lands are rubber and coffee, which have significantly
expanded between 2005 and 2015 [282] .

Figure 7.3: Spatial distribution of forests in mainland Vietnam in 1990 (a), in 2020
(b), and the dynamic change of forests over recent three decades (c). The red color
represents a gain while blue color represents a loss over the study period. The data
were analysed using the Vietnam-wide annual land use/cover data sets [1]

7.3.3 Measurement of the major drivers

Standardized coefficients are used to compare the relative effect of each individual
driver variable to the forest change area. Specifically, before running the multiple least
squares model, I standardized the driver variables to 𝑧-scores. Herein, the coefficients
that I obtain from the model are standardized coefficients, which have standard de-
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Figure 7.4: Spatial pattern of forest change in mainland Vietnam between 1990 and
2020. (a) the fraction of forest gain (%) and (b) the fraction of forest loss (%). (c)
presents hot spot analysis of forest gain and (d) shows hot spot analysis of forest loss.
Red color represents hot spots while blue color represents cold spots.

viations as their units. This means the driver variables can be precisely compared to
each other, although they are measured on different units and scales. The higher the
absolute value of the coefficient, the stronger the impact. A positive value of the coeffi-
cient means that a higher value of a driver variable causes a greater change in the forest
area. In contrast, a negative value of the coefficient means a higher value of a driver
variable has a lower change in the forest area. Herein, the standardized coefficients are
presented in Fig. 7.5.

Forest gain

Fourteen major drivers significantly relate to the forest gain, of which a half is biophys-
ical drivers and the others are socioeconomic drivers (Fig. 7.5a and Table A.8). Eight
major drivers have positive relationships with the forest gain; of which the most im-
portant driver is agricultural shifting. This result can be explained by several possible
reasons. As can be seen from Fig 7.2, there is a considerable conversion between forests
and agricultural land. In other words, agricultural shifting can significantly cause
changes in forest areas. This result also corroborates the findings of a great deal of the
previous work on forest transition in Vietnam, which are described in detail in section
7.3.1. For example, Ashraf et al. has identified a net increase of forests in certain areas
of Vietnam due to the major shrinkage of agricultural land [283]. What is surprising is
that the topographic position index (TPI) and slope positively have substantial impacts
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(a) Forest gain (b) Forest loss

Figure 7.5: Most prominent drivers of forest changes: Forest gain (left) and forest loss
(right). Square dots indicate the coefficients while the bars indicate the uncertainties at
the 95% confidence interval.

on the forest gain, although my synthesis shows few studies that have mentioned these
drivers. A possible explanation for this might be that forests are mainly located in
mountainous areas that have high values of slope and TPI indexes [150, 284]. Other
positive relationships between the forest gain and the driver variables are distance to
the city, distance to drainage, deviation of population growth rate, poultry, and soil
types. Among these drivers, the distance to drainage is the strongest factor correlating
to the forest gain. This finding was also reported by Nguyen et al. [284]. It seems
possible that drainage systems are frequently constructed in flat regions such as cities
and densely populated residential areas that are non-forest land [285]. In terms of
negative relationships, there are six major drivers, of which distance to the sea is the
most considerable driver. This means forest gains occur in regions close to the sea.
This result may be explained by the fact that planting forests are considered an effective
solution to prevent natural hazards and disasters. Several reports have shown that
forests are planted in coastal areas for protecting erosion and typhoons [286, 287].

Forest loss

Standardized coefficients corresponding to forest loss are shown in Fig 7.5b and Table
A.9 with seven positive relationships and four negative relationships. The most inter-
esting finding was that the topographic position index (TPI) also has the most positive
relationship with forest loss, indicating that forest loss frequently occurs in regions that
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have high values of the TPI. However, I have not found studies that identify the rela-
tionship between deforestation and TPI while slope has been utilized instead [222, 78].
In this study, the slope has a strong positive correlation with forest loss.

It is not surprising that agricultural shifting was found to cause a significant loss
of forests. This finding broadly supports the work of other studies in this area linking
agricultural expansion/shifting and deforestation [281, 266, 280, 288]. There are several
types of agricultural expansion/shifting. For example, in the Central Highlands (e.g.
Dak Lak, Dak Nong, and Binh Phuoc), a large number of forests areas have been con-
verted into coffee and rubber since the 1990s [267]. Specifically, Dak Lak has relatively
high elevation, fertile soil, and cool weather which offer a suited environment to coffee
crops, especially Robusta coffee [289]. In contrast, with a lower elevation and a higher
temperature, Binh Phuoc offers a favorable condition to rubber plantations [290]. Also,
the quickly growing global demand for coffee and rubber resulted in the expansion of
these crops. It is also supported by governmental policy to convert poor forests into
coffee and rubber plantations [267, 290].

Other major positive drivers correlating to forest loss are accessibility/infrastructure
and increasing rate of precipitation. These results support evidence from previous
observation [291, 288, 292, 222]. Particularly, Nguyen et al. found that forest loss occurs
more frequently in remote access areas, for example, far from roads, drainage, and
a densely populated residence [284]. Meanwhile, the positive relationship between
deforestation and the increasing rate of precipitation indicates that wetter areas are
favorable conditions for forest transition. A possible explanation for this might be that
increasing rate of precipitation might introduce extreme climate conditions, such as
typhoons and floods, which may reduce forest productivity and degradation, and thus
may cause deforestation [67, 225]. Another possible explanation for this is that the
major degradation or loss of forests results in changes in precipitation [293, 294, 295].
The literature also reported an increase in extreme climate events, especially in the
Central Highlands which is a hot spot of deforestation [296, 297].

Regarding the negative relationships between drivers and forest loss, there are four
major drivers, namely distance to irrigation, distance to rivers, deviation of population
growth, and mining/industry. It means that the loss of forest frequently happens
in regions closer to rivers, irrigation systems, mining/industry zones, and diffusely
populated areas. Although these drivers have not been mentioned in my synthesis
of case studies on forest transition in Vietnam, these results match those observed in
earlier studies in other regions [195, 298].

7.3.4 Significance of field surveys to land use/land cover changes and
the influencing drivers

Data from a five-year survey is fundamental to the results of this study. First, it pro-
vided ground-truth sites to ensure the quality of my LULC maps produced from the
remote sensing data. It had a pivotal role in validating maps from 1990 to 2014. In
this period, although I could not conduct surveys, I could interpret historical somehow
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LULC in the fields by local knowledge and perception. Specifically, during the recent
surveys, I had first observed the LULC and then conducted interviews with the elderly
and key land management informants. They gave us the convincing historical stories
of how LULCC in the regions. Without these stories, I could not ensure the accuracy
of my maps, the change of LULC, and the drivers. Take the Vietnamese Mekong Delta
as a typical example. I have a separate paper discussing the transformation of rural
landscapes between 1990 and 2019 in details [299]. Herein, I brief local knowledge and
perception on land changes in specific regions that I have conducted the surveys. For
example, in the coastal zones such as Ca Mau province, the considerable expansion
of agriculture and aquaculture was mainly due to local and national policy imple-
mentation. Specifically, high demands on timber and charcoal products had caused a
significant loss of mangrove forests since 1975. Then, the introduction of new irrigation
systems and increase in the price market of aquaculture resulted in the substantial
conversion wetlands/mangrove forests into fishery farming practices in 1980. From
the 1990s, the government introduced a co-system cultivation allowing the locals to
convert (20 - 40%) mangrove forests to other land types. However, some locals con-
verted more than 40% of mangrove forests to other lands. For economic development,
the government introduced policies (i.e., Resolution 09/NQ-CP (2000) and Resolution
1116/QÐ-CTUB (2001)) allowing locals to convert rice to aquaculture (e.g., shrimp)
which had a higher economic value. Recently, due to adapt climate change impacts,
new policies have informed, which accelerating the complexities of LULC change in
the region. This interesting information is only a few stories that I have learned for my
field surveys. It means field surveys are essential for understanding the influencing
drivers of LULCC, which may not accurately measure, such as policy.

7.3.5 Limitations and future work

The generalisability of these results is subject to certain limitations. First, although I
have collected the most essential drivers mentioned in my synthesis of the case studies
and added new drivers, I could not quantify some important drivers such as for-
est management policy/tenure, globalization, disasters, and economy/market/price.
These drivers may have profound effect the transition of forests [284, 300, 206, 150, 222].
In this study, the data of these drivers are not available at a proper spatiotemporal scale;
or some have high multicollinearity, causing difficulties in the precise measurement of
the impact of individual drivers; we, therefore, have excluded them from the analy-
sis model. The lack of these drivers might impact the quantitative results. Secondly,
the spatiotemporal difference of some collected drivers may cause uncertainties in the
analysis of the drivers. Specifically, most of the drivers are derived from the General
Statistics Office of Vietnam, which have been calibrated by the office; some are extracted
from the WorldClim 2 database [301] or the satellite-based information (e.g. SRTM)
[302]. These data may have relatively low quality and added further uncertainties in
this work. However, the current shortage of the properly available data does not permit
us to overcome this limitation. This would be a fruitful area for further work.
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7.4 Conclusion
The present research aimed to analyze the changes and drivers of the land use/land
cover changes (LULCC) focusing on forests in mainland Vietnam. To our best knowl-
edge, this is the first work on the analysis of inter-annual dynamics of forests at the
national scale from 1990 to 2020. Results have shown that Vietnam experiences a
considerable change in LULC over the recent three decades. There is a significant
transition between forests land and other lands, especially agriculture, grassland, and
shrub-land. One of the more significant findings to emerge from this research is that
the forest change has occurred in differences in space and time. The North-West and
Central Highlands are the most dynamic change areas, which are considered hot spots.
The study has also shown that although a net gain of forests has been reported in a
short period (e.g. 2005 - 2010), Vietnam has undergone a net loss of forests from 1990
to 2020. The drivers of forest changes are various. The synthesis of case studies on
forest transition has indicated that previous studies mainly focused on socioeconomic
drivers. However, my results show that biophysical drivers also have significantly con-
tributed to forest changes. In general, both biophysical and socioeconomic drivers are
highlighted in this study. The development of the economy requires more food and
agricultural products, forcing the extensive conversion of forests into other land types
if biophysical conditions are reasonable for production. The second major contribution
of my synthesis was that it broadens a more general knowledge of the drivers of the
forest changes. These findings have significant implications for the understanding of
how effectively to manage forest resources in Vietnam. They may be of interest to other
countries. The identification of socioeconomic and biophysical drivers in this study is
likely to help enhance the accuracy of the land use/land cover change prediction.
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Chapter 8

Conclusions and Remarks

8.1 Summary of key findings and conclusions
The purpose of the current research was to analyze the dynamic changes of LULC
in mainland Vietnam. To this end, I first built a national dataset of reference data
derived from multiple sources, including intensive surveys over five year period (2015-
2020), statistical inventory data, and super-high-resolution images from Google Earth.
Together with our systematic literature review, this dataset played a critical role in
revealing the limitations of the previously available LULC databases in mainland Viet-
nam. The review has shown that very few studies have conducted a comprehensive
analysis of LULCC on a Vietnam-wide scale. Some focus on specific LULC types such
as forests, urbanization, and croplands. The widely available LULC maps covering
the whole country are regional or global products. These products have limitations
such as low spatiotemporal resolution, differences in LULC schemes, and low accu-
racy/without complete accuracy assessment. As a result, these products do not reflect
accurately at the local and national scales. Let’s take a typical example, a classification
of orchards can be significant for scientific communities in developing world while it
is not a distinguishing class in the existing land cover products, which are widely used
currently.

To overcome the above-mentioned major limitations, one of the more significant
outcomes to emerge from this study is that an innovative comprehensive framework
was established for an accurate LULC analysis across mainland Vietnam. First, based
on the previously popular LCCSs and indigenous knowledge obtained from the in-
tensive surveys, a new classification scheme was introduced for the case of Vietnam,
which may match the major demand on the basic project requirement of the LULC
end-users and map suitability. Second, a new classification approach (named "ELUC")
was successfully developed to map accurately pilot areas in Vietnam. This approach
can be applied with various classification algorithms and data sets to simplistically gen-
erate new classifications or renew existing classifications with a remarkable accuracy
improvement. Specifically, applying miscellaneous features of Landsat-8 images, the
ELUC of a random-forest-based algorithm produced a sequence of single-time classifi-
cations with a mean overall accuracy of 84%. Through the study period, this sequence
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was then joined to achieve a final classification that reached an overall accuracy of
94%. In compared with an previous approach, which used Kernel-Density-Estimation
method, I found that the ELUC of the random-forest-based algorithm had a 5% overall
accuracy higher. These outcomes confirm the effectiveness of the ELUC for a remarkably
consistent land use/cover estimation in a data-rich environment. Third, incorporating
the ELUC, multiple geospatial data sources, and an automatic training migration model
(ATMM), I quantified annual LULC for the whole country over the recent three decades.
Obtained LULC maps had overall accuracy ranging from 85.7±1.3% to 92.0±1.2% with
the 10-class primary dominant land use/cover and 77.6±1.2% to 84.7±1.1% with the
18-class secondary dominant land use/cover. These results demonstrated the poten-
tial of the proposed framework for the systematically long-term monitoring of LULC
in Vietnam. Particularly, it successfully offered an explicit spatiotemporal database
(named "VLUCDs") of LULC in Vietnam, which may be utilized for a tremendous va-
riety of applications in the research of environmental changes toward the Sustainable
Development Goals. In addition, the ATMM allows analysts to remarkably save time,
cost, and labor for collecting sufficient and representative training data.

This study has also identified the patterns and processes of LULCC in Vietnam.
The most dominant LULC was forest, accounting for an approximately half area of
the entire country. This was followed by croplands (16.3%), rice fields (14.2%), and
open water (including parts of saltwater, 8.1%). Grassland and scrubland occupied
a relatively similar proportion (2.8%) while the smallest LULC was residential areas
(1.3%). Interestingly, there was a steady decline in forest areas from 170,458 km2 in 1990
to 150,517 km2 in 2020. The area of wetlands experienced a slight increase from 4,404
km2 in 1990 to 5,138 km2 in 1995, followed by a continual decrease to 2,490 km2 in 2020.
In contrast, there was a sharp increase in the area of aquaculture and residential land,
accounting for approximately three and ten times over the three decades. The area of
open water showed a slight rise while there was a small fluctuation in the area of the
other land types. Interestingly, LULCC in Vietnam varied according to time, space,
and land types. Regarding spatial dynamic changes, the western North, the Central
Highlands, and South were the most dynamic areas. There was a fundamentally
dynamic conversion between different land types.

The most obvious finding to emerge from this study is that I quantified changes and
drivers of the major land use/land cover changes (LULCC) with a focus on forests. To
our best knowledge, this is the first work on the analysis of inter-annual dynamics of
forests at the national scale from 1990 to 2020. Results have shown that there was a
considerable conversion between forest lands and other lands, especially agriculture,
grassland, and shrub-land. The forest change varied according to space and time. The
western North and Central Highlands are the most dynamic change areas, which are
considered hot spots. Although a net gain of forests had been reported in a short
period (e.g. 2005 - 2010), Vietnam underwent a net loss of forests from 1990 to 2020.
The drivers of forest changes were various. Our synthesis of case studies on forest
transition drivers indicated that previous research primarily focused on socioeconomic
drivers. Our results, however, showed that biophysical drivers also have significantly
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contributed to forest changes. In general, both biophysical and socioeconomic drivers
were emphasized in this study. Our synthesis broadens a more general knowledge of
the drivers of the forest changes. The development of the economy are required more
food and agricultural products, forcing the extensive conversion of forests into other
land types if biophysical conditions are reasonable for production. These findings may
have significant implications for the understanding of how effectively to manage forest
resources in Vietnam.

8.2 Limitations and recommendation for further research
work

The generalisability of results is subject to certain limitations in this study. For instance,
the ELUC approach seems to face a challenge in a data-poor environment if it is applied
for tracking rapid changes. A data-poor environment means the existence of data gaps
due to reasons such as cloud masks or non-available data. These gaps may cause
uncertainty in single-time classifications. Because of these gaps, it is impossible to
collect random samples for the accuracy assessment of the single-time classifications.
However, since the present research was designed to accurately estimate land cover
categories yearly instead of tracking a rapid change within a year, developing a full
approach of accuracy assessment for single-time classifications was not solved here. It
is an important issue for future studies. A further consideration is that a combination
of other data sources should be explored to recognize the full potential of the ELUC for
a more accurate assessment of multiple LULC types at a regional or global scale. Also,
the ELUC have been tested with two classification algorithms, it should examine the
potential of the ELUC with other algorithms.

Another limitation of this study is that the benefit of the individual sensor’s charac-
teristics could not been estimated accurately although various data sources have been
used, including Landsat OLI, Sentinel SAR GRD, and MSI images. Regarding reference
data, the annual maps of the year 1990 to 2014 were validated with the data collected
by visual interpretation instead of utilizing ground-truth data. Although great and
careful efforts were applied in the collection procedure, errors might not be inevitable
due to the limit of super-high-resolution images in Google Earth, especially before the
2000s. A more detailed validation with a more comprehensive set of ground-truth ref-
erence data should be considered for additional work. Also, to improve dramatically
the accuracy of mapping, deep learning neural networks are expected to be applied for
large-scale LULC mapping projects.

Regarding the quantification of the drivers of forest changes, this study accepted
disadvantages. First, although the major drivers mentioned in our synthesis of the
case studies have been collected and new drivers were added, some drivers were not
measured quantitatively, such as forest management policy/tenure, globalization, dis-
asters, and economy/market/price. These drivers may have a profound effect on the
transition of forests. Nevertheless, they are not available at a proper spatiotemporal
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scale; or some have high multicollinearity, causing difficulties in the precise measure-
ment of the impact of individual drivers; we, therefore, have excluded them from the
analysis model. The lack of these drivers might impact our quantitative results. Also,
the spatiotemporal difference of some collected drivers may cause uncertainties in the
analysis of the drivers. Most of the drivers were derived from the General Statis-
tics Office of Vietnam, which were calibrated by the office; some were extracted from
the WorldClim-2 database or the satellite-based information (e.g. SRTM). These data
might have relatively low quality and added further uncertainties. However, the cur-
rent shortage of properly available data does not permit us to overcome this limitation.
This would be a fruitful area for further work. Further research should be undertaken
to investigate the drivers of other major LULCCs in more details such as urbanization,
agriculture, aquaculture, and wetland.

8.3 Significance and contribution of the current study

Developing an innovative approach to achieving timely, accurate, consistent, and large-
scale data sets for assessing the rate, patterns, and processes of LULCC is highlighted
as beneficial to sustainable development goals. This study certainly adds to our under-
standing of dynamic LULCC, which is linked to a range of fields including ecosystem
and climate change. Herein, a new mapping framework and quantitatively estimating
national-scale LULCC trends in the recent three decades is clearly established through-
out the paper. In particular, I produced an annual LULC database of 31 maps. To our
best knowledge, this is one of the initial comprehensive national databases on three-
decade annual LULC monitoring in the developing world. The database has recently
published (Sep. 2021) for free use on the website of JAXA as a part of High-Resolution
Land Use and Land Cover Map Products. The products have been used by a variety
of users for various purposes. Among the purposes the majority are LULCC analyses,
drought and flooding studies, climate change and adaptation, water resources, and
natural resource management. This fact indicates the utility and importance of the free
high resolution time-series land use/land cover maps.

Our approach can be replicated in other regions with similar biophysical charac-
teristics and environmental conditions. It is noted that it is benefited from a rich-data
environment, which is in line with current trends in remote sensing development.
Hence, it might be promising for estimating LULCC on a broader scale such as regional
and global levels. Regarding the quantification of forest changes, previous studies
mainly focused on socioeconomic drivers. However, I emphasized the importance
of both biophysical and socioeconomic drivers in this study. They may have signifi-
cant implications for the understanding of how effectively to manage forest resources.
Also, they may enhance the accuracy of the land use/land cover change prediction in
Vietnam. Other countries, especially the developing world, may be of interest to our
findings.
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8.4 A proposal for my future work

We intend to estimate the relationship between the time-series dynamic change of
LULC and flash flood in Vietnam, using machine learning techniques, remote sensing,
and field survey data.

8.4.1 Research context

One of the most devastating natural disasters is flooding, especially flash floods. By
the end of the twentieth century, it was globally estimated a loss of approximately 400
billion USD due to flash flooding damage [303]. The most considerable loss occurred
in the tropical cyclone climate zones of the Southeast Asia, which accounted for almost
a half of the global amount from 1995 to 2015 [304]. Recently, losses associated with
flash floods have been more serious owing to an increase in level and intensity of
flooding influencing factors such as the higher frequency of extreme rain events and
unsustainable land change [297, 105]. It is predicted that the loss may reach one trillion
USA by 2050 [305]. Hence, to mitigate damage associated with flash floods is highly
paid attention by many governments in the world.

One of the important factors influencing the occurrence of floods is LULC informa-
tion. Numerous studies of flood susceptibility mapping show the importance of the
LULC factor [306, 307]. A much-debated question is whether the time-series change of
LULC significantly contributes to a flash flood occurrence. To our best knowledge, no
studies have taken into account the long-term annual change of LULC as an important
factor in flood susceptibility mapping. It might be the lack of reliable LULC data in
a long history. Recently, an annual time-series LULC database (1990 - 2020) has been
published on the JAXA web page. The data were comprehensively validated by numer-
ous field survey sites, which confirmed certainly the reliability of the LULC products
[20]. It is time to examine the impact of long-term annual LULCC on the occurrence of
flash floods.

Detecting susceptible areas of floods are fundamental for flooding mitigation and
minimizing the loss of flooding damage. However, it is challenging the accurate esti-
mation of flood susceptible areas due to the sophisticated interaction between a flood
occurrence and its influencing factors, which are various. A considerable amount of
literature has been worked on flood susceptibility prediction. Numerical models have
been traditionally utilized. However, they face considerable challenges due to the
requirement of various input parameters, which are frequently inadequate in the de-
veloping world. Recently, alternative approaches have developed, including multiple
criteria decision-making models, statistical analyses, and machine learning techniques
incorporating geospatial data. These approaches, however, have their advantages and
disadvantages [308]. To make use of the advantages of the different approaches, an
ensemble modeling technique may be essential for flood susceptibility prediction [309].
Also, deep learning with a deeper structure of algorithms may provide analysts with
more detailed information to understand the occurrence mechanisms of foods [310].

107



Currently, although a large number of models have been adopted or flood susceptibility
prediction, there is not a principal recommendation on selecting a proper model.

8.4.2 Research questions
The essential aim of proposal is to develop an effective method to improve the accuracy
of flood susceptibility prediction in Vietnam, with an integration of machine learning
techniques, remote sensing, geospatial, and field survey data. Also, we will examine the
relationship between flood susceptibility areas and its influencing factors with a focus
on the annual time-series LULCC. To this end, we are going to answer the following
questions.

1. What have most effective machine learning methods been used for flood suscep-
tibility mapping?

2. What are the advantages and disadvantages of these methods?

3. Can we develop a new method making use the advantages of the existing meth-
ods?

4. Are the time-series information of influencing factors more important than single-
time ones in mapping flood susceptibility areas?

8.4.3 Significance of the proposed research
Although it is challenging to completely control floods, the cost of flood damage can
be mitigated by successfully predicting flood susceptibility areas and their influential
factors. Herein, we intend to develop a new method for improving flood susceptibility
mapping with an integration of machine learning techniques, remote sensing and field
survey data. Specifically, we will investigate the influential input factors, which help
to better understand the mechanism of flood occurrence. This is the first attempt to
estimate the influence of long-term time-series input variables with a focus on LULCC.
Also, in line of the current remote sensing and computational science development era,
we expect to accurately and timely forecast the area that is susceptible to floods in this
study. It can be a promising method supporting for different applications such as flood
risk controlling and flood hazard mitigation in the world, especially the developing
nations which are frequently facing the lack of reliable data for flood forecasting.
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Appendix A

A

Table A.1: The fundamental characteristics of global land cover databases.

Database IGBP UMD GLC

Producer USGS, UNL,
and JRC UMD JRC

Sensor AVHRR AVHRR
SPOT

VEGETATION-
1

Input Data Primary
Input Monthly NDVI

41 metrics from
bands and

NDVI

4 bands and
NDVI

Collection
Date 4/1992-3/1993 4/1992-3/1993 11/1999-

12/2000

Ancillary
Data

DEM Atlases of
ecoregion, soils,
vegetation, and

Land cover
maps

Landsat MSS
Radar DMSP
and Elevation

Data (ETOPO5)

Spatial
Resolution 1000 m 1000 m 1000 m

Processing Projection
Goode

Homolosine
Equal Area

Goode
Homolosine
Equal Area

Lat-Lon (WGS)

Geometric
Correction

Geo-registered
to Goode

Homolosine
Equal Area

Geo-registered
to Goode

Homolosine
Equal Area

Ortho-
rectification

with ETOPO5,
resampled by

bi-cubic
convolution

Continued on next page

142



Table A.1 – continued from previous page

Atmospheric
Correction

Reduction of
contamination
and off-nadir

viewing effects
by NDVI

Correct Ozone,
Rayleigh

scattering and
solar zenith

angle

Cloud
screening and

Reduce Abrupt
signal drops

Classification No.
Classes 17 14 22

Training
Site N/A 37294 N/A

Classification
Scheme IGBP IGBP LCCS

Classification
Method

Unsupervised
clustering with

post-
classification
refinement

Supervised
Decision Tree

Unsupervised
classification

with ISODATA
algorithm

Processing
Sequence

Continent-by-
continent Global Region by

region

Accuracy
Assessment

Validation
Method

Statistical
validation None Statistical

validation

Sampling
Method

Stratified
random

sampling by
classes

Unknown

Two-stage
stratified
clustered
sampling

Reference
Data

Landsat TM
and Spot
images

Unknown
Landsat TM

and Spot
images

Overall
Accuracy 66.90% Unknown 68.60%

Sources
(Availability) 1992 1992 2000

Continued
Database GlobCover CCI MODIS LC
Producer ESA ESA USGS

Sensor ENVISAT
MERIS

AVHRR,
SPOT-VGT

MERIS, and
PROBA-V

MODIS

Continued on next page
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Table A.1 – continued from previous page

Input Data Primary
Input

13 bands and
NDVI

Bands and
NDVI

Spectro-
temporal

features and
EVI

Collection
Date 1/2009-12/2009 1992-2018 2001-2019

Ancillary
Data

Altimeter
Corrected
Elevation

(Getasse 30)

Unknown DEM, LST, and
Texture.

Spatial
Resolution 300 m 300 m 500/1000 m

Processing Projection Lat-Lon (WGS) Lat-Lon (WGS) Lat-Lon (WGS)

Geometric
Correction

Level 1B data
corrected into

Level 3 Mosaics
using

AMORGOS
tool

Orthorectified
images-so

called MERIS
FSG products

from MERIS FR
products

Sub-pixel
geometric

registration

Atmospheric
Correction

Cloud
screening
Rayleigh

scattering &
Aerosol

correction

Relies on a
neural network
derived from

MOMO model

A simple SACA
algorithm

Classification No.
Classes 22 22 17

Training
Site Unknown 3167 1860

Classification
Scheme LCCS LCCS

IGBP, UMD,
LAI, BGC, PFT,

and LCCS.

Classification
Method

Per-pixel
supervised
(urban and

wetland) and
unsupervised

Supervised and
per-pixel

unsupervised
classification

Supervised
Decision Tree

Processing
Sequence Global Region by

region Global

Continued on next page
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Table A.1 – continued from previous page

Accuracy
Assessment

Validation
Method

Statistical
validation

Statistical
validation

Cross-
validation
analysis

Sampling
Method

Stratified
random

sampling by
classes

Stratified
random

sampling by
classes

Random
sampling

Reference
Data

Reference
dataset from

multiple
sources

Reference
dataset from

multiple
sources

Training site
database

Overall
Accuracy 67.50% 73.40% 74.80%

Sources
(Availability) 2009 1992-2018 2001-2019

Continued
Database GLCNMO FROM-GLC Globeland30

Producer Chiba
University

National
Geomatics

Center of China
China

Sensor
MODIS,

Landsat, and
DMSP-OLS

Landsat TM,
ETM+, and OLI

Landsat TM,
ETM+ and HJ-1

Input Data Primary
Input 7-bands Spectral bands

Spectral bands
and spectral

indexes
Collection

Date 2008 1981-2011 2000/2010

Ancillary
Data

Previous land
cover data

MODIS EVI.
DEM

DEM and
ecological

zones.
Spatial

Resolution 500 m 30 m 30 m

Processing Projection Lat-Lon (WGS) Lat-Lon (WGS) Lat-Lon (WGS)

Geometric
Correction

A root mean
square error

(RMSE)

A root mean
square error

(RMSE)

Satisfactorily
geo-referenced
and collinearity
equations and

Lagrange
interpolation

Continued on next page
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Table A.1 – continued from previous page

Atmospheric
Correction

Filled cloud-
contaminated

pixels by
time-series

linear
interpolation

Fast
Line-of-Sight
Atmospheric
Analysis of

Spectral
Hypercubes
(FLAASH)
algorithm

MODerate
resolution

atmospheric
TRANsmission
(MODTRAN)

Classification] No.
Classes 20 18 10

Training
Site 904 36,630 150,000

Classification
Scheme LCCS LCCS and IGBP LCCS and IGBP

Classification
Method

Supervised
Decision Tree

Support Vector
Machine

Pixel-Object-
Knowledge-

based
(POK-based)

method
Processing
Sequence Class-by-class Global Tile by tile (5o x

5o)

Accuracy
Assessment

Validation
Method

A confusion
matrix

A confusion
matrix

A confusion
matrix

Sampling
Method

Stratified
random

sampling

Unaligned
sampling
strategy

Stratified
random

sampling by
classes

Reference
Data

Reference
dataset

Reference
dataset from

multiple
sources

Reference
dataset from

multiple
sources

Overall
Accuracy 77.90% 64.90% 83.50%

Sources
(Availability) 2003/2008 2015/2017 2000/2010/2020

Continued
Database GLC_FCS30 CGLS-LC100 ESRI-LC10

Producer
Chinese

academy of
sciences

Copernicus
Global Land

Service
ESRI

Continued on next page
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Table A.1 – continued from previous page

Sensor Landsat OLI PROBA-V and
Sentinel-2 Sentinel-2

Input Data Primary
Input

Six optical
bands 183 metrics Spectral bands

Collection
Date

2014-2016;
2019-2020 2015-2019 2020

Ancillary
Data

DEM terrain
elevation data

Height, slope,
aspect, and

purity
N/A

Spatial
Resolution 30 m 100 m 10 m

Processing Projection Lat-Lon (WGS) Lat-Lon (WGS)

Universal
Transverse
Mercator
(UTM)

Geometric
Correction Unknown

Ortho-
rectification
and spatial

registration on
a global

reference
system

Sen2Cor for
Sentinel-2

Atmospheric
Correction

Landsat Surface
Reflectance

Code (LaSRC)
and CFMask.

Landsat
Ecosystem

Disturbance
Adaptive

Processing
System

(LEDAPS)
Surface

Reflectance
Algorithm

Sen2Cor for
Sentinel-2

Classification No.
Classes 10 23 10

Training
Site 44,043 21,700 23,693,961

Classification
Scheme LCCS LCCS LCCS

Classification
Method

Random Forest
Algorithm

Supervised
classification

and regression
Deep learning

Continued on next page
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Table A.1 – continued from previous page
Processing
Sequence Tile by tile Region by

region N/A

Accuracy
Assessment

Validation
Method

A confusion
matrix

A confusion
matrix N/A

Sampling
Method

Stratified
random

sampling by
classes

Stratified
random

sampling by
classes

N/A

Reference
Data

Reference
dataset from

multiple
sources

In-situ data N/A

Overall
Accuracy 82.50% 80.60% 85.96%

Sources
(Availability) 2015/2020 2015-2019 2020

Table A.2: Common software was used recently for land use/land cover analyses.

Software Source Key functions Advantage

ArcGIS

ESRI
(Environ-

mental
Systems
Research
Institute)

Geospatial reference,
pan-sharpening, mosaicking,
spatio-temporal processing,

supervised and unsupervised
classification,

post-classification, accuracy
validation, and change
detection and analysis.

This tool can efficiently
process with

multispectral and
hyper-spectral remote

sensing images.

ENVI
Harris

Geospatial
Solutions

Radiometric correction,
topographic correction, image

sharpening, anomaly detection,
geometric correction, feature

extraction, mosaicking,
supervised and unsupervised

classification,
post-classification, accuracy

validation, and spatio-temporal
change assessment.

This tool can effectively
handle with

multispectral and
hyper-spectral remote

sensing datasets.

Continued on next page
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Table A.2 – continued from previous page
Software Source Key functions Advantage

QGIS
QGIS De-
velopers

Team

Preprocessing, post-processing,
supervised and unsupervised
classification, projection, and

calibrating the terrain features.

This tool can be easily
to add in newly

effective plugins.

ERDAS
Imag-

ine

Hexagon
Geospatial

Pan-sharpening, geometric
calibration, radiometric
processing, sub-pixel,

supervised and unsupervised
classification, and change

analysis.

This software can
practically process with

multispectral and
hyper-spectral image

data.

IDRISI Clark Labs

Preprocessing, clustering,
modelling dependent and

independent variables,
classification, and LULC change

analysis.

IDRISI allows to deal
effectively with

different remote sensing
sources, especially

hyper-spectral imagery
data.

GEE Google

Pre-processing, data fusion and
harmonization, classification,
clustering and LU/LC change

detection.

GEE can effectively
process with time-series
images and large-scale

analyses.

Python Python
Software

Feature extraction, mosaicking,
supervised and unsupervised

classification,
post-classification, accuracy

validation, and spatio-temporal
change assessment.

Python provides with
various geospatial

libraries, which can
handle effectively

different tasks.

Matlab Math
Works

Importing and exporting the
geographic data, and vector

data representation. It can also
deal with projections,

coordinate transformations,
terrain processing, and web

mapping.

Matlab is an
open-source, which is
flexibly to handle with

new processes.

Rstudio RStudio

Reading, writing and plotting
spatial data, time-series

analysis, and supervised and
unsupervised classification.

Rstudio can deal
efficiently with

time-series analysis.
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Table A.3: A list of location notices of different land use/land cover types (LULCT) in
Google Map and GPS photos were taken from our field surveys in 2020.

Land types Access: url Land types Access: url
Rice paddy here Coffee here

Coffee here Pipeapple here
Constructions here Melaleuca here
Aquaculture here Wet grass here
Mangrove here Urban forest here
Coconut here Burned forest here

Grassland here Natural forest here
Cropland here Shrub-land here

Lotus here Cashew here
Cane here Dry forest here

Potato here Evergreen
neddleleaf forest here

Orchard here Pepper here
Bamboo here House here
Dragon here Acacia here
Longan here Sand dune here
Mango here Cassava here
Flower here Rubber here
Chilly here Corn here

Banana here Field survey
photos here

Table A.4: The description of land use/cover classification system.

Primary
dominant
land cover

Code
Secondary
dominant
land cover

Description

Residential
land

R1
High

developed
areas

Land covered by buildings and other man-
made structures > 50% of constructed cover
and < 20% vegetation.

R2
Low

developed
areas

Land covered by buildings and other man-
made structures < 50% of constructed cover
and < 20% vegetation.

Rice paddies RP Rice paddies Rice fields have a area of greater than 30 x 30
m

Continued on next page
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https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sRPUXS2CP9oSM8yuP716K_9wGF44QPQ!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sqeRFpASDpERuYGEiYxM95LX_J5PsUw!3e3?shorturl=1
https://www.google.com/maps/@11.8682447,108.4695528,10z/data=!3m1!4b1!4m3!11m2!2sq_AvZjGC9qV0kLNWc3ttL4nMnOcMDQ!3e3
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2su7TyaBfTQL4SqOF_Gca7wLN4IdHnCA!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2s9n_UrH-LQ3e4jarWinZ_2VFX62mgwQ!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sYxd-16E7EOeDLQ0WmWDSSUX2hvv-Xw!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2scOtWVYu0bH1L29YYI1HuLVEodQ3PKg!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2soW38taLOBKOPWnAJ4qFsw2lZK-CeUQ!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sFxR423_3bJ46UpCj_DORu0LMyvy8MQ!3e3?shorturl=1
https://www.google.com/maps/@10.6986685,106.5958115,17z/data=!3m1!4b1!4m3!11m2!2sgUa3ToiF3WMi2Q2d8bhO0S5qVlMSQw!3e3
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sH0Cn3ntPnrnrxHfGt-lQepN6EqVhIA!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sC9ppdk9LBlQcTPp2vxZSr1SzwLgAtQ!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sv3Fj8V_COnzHDXGj8M-iSZC1bQaU5A!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sOPqe2wecPpHqBKnQIJdmGifwkAMQMw!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2s4H3uXPspV__mi6AaSRXjw1AGtIjx5g!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sQ7A4GKCLoMyYFyB7F3rEz9vZ-o79rA!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2scpLvKYoqzZ1MkDhfHE-68rtvX6zbCg!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sfSEkovhg1CYqqcN88jQqeXZ-3rWFtw!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2skVc1CFnyw-Q1Dn3VpSuWnCWv9vUpCg!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sW3WPRg5He01GFemFcKS7ECEtQFYcJg!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sqeRFpASDpERuYGEiYxM95LX_J5PsUw!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sN8Nu4A9sJaG7BXK9692DeOoYQKU7Ug!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sc0L8KJdCj7qCvo-oDKMpwKIN-oTpPw!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sUC0zcjciex_TdpEzVAW3C21h8byByA!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2s2BW3vjn-loKL3kWjyAi7z1czMvFmXg!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sCPyre3cH4YpWe0JSPtWk94dWFhgV5A!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sjluCVXe1knEZ_-2tdwEUX-VMwX-mtA!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sZFnhPWpnqJcco7Z6qP3WPGo1flqUAA!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sxOObf0yXlYdv_y8hd9IpW-2RlzCCZQ!3e3?shorturl=1
https://www.google.com/maps/@12.771587,109.3612805,14z/data=!3m1!4b1!4m3!11m2!2s0ZfIe7K137lvwHCd2w4zKKYype8hDw!3e3
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sOsvFWhpPElt70eYTsgx-8qdQ2XhDoQ!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sPHen7avLWAwCSwFuJsIVB2Gh3qeN8g!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2s191WvuaSIoFlhuKNXkV0n_oxXvEDBg!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2saxC7P7pNVisTLrgIhWOgg_iTXhA5tg!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2s5lykQNQdSwKwSJ_nt-tuNBcJlsGbiQ!3e3?shorturl=1
https://www.google.com/maps/@/data=!3m1!4b1!4m3!11m2!2sUZwmyoEqc0UoNZcdlWN8QIWFvEknRg!3e3?shorturl=1
https://photos.google.com/share/AF1QipMmS9vNmh0ymLkhh-XuDCQpf7ONf0AJsEIQ_ZROlAc9H7SF6-9QC01_UQTVtq9ipA?key=NlZ2TTJHNGd2YmF5Q3A4eUFITUY4Tk1uVy1UdTF3


Table A.4 – continued from previous page
Primary

dominant
land cover

Code
Secondary
dominant
land cover

Description

Cropland

WC Woody crops Perennial woody crops such coffee, tea,
woody orchards, and so on.

IC In-house
crops

Crops are planted in agricultural plastic
houses, which have an area go larger than
30 m by 30 m.

OC Other
croplands

Lands covered with temporary crops fol-
lowed by harvest and a bare soil period (e.g.,
single and multiple cropping systems). It
is noted that perennial woody crops will be
classified as the woody crops or the appro-
priate forest or shrub land cover type.

Grassland GL
Grassland/
Herbaceous
vegetation

> 80 % of herbaceous land; not intensive
management but can be utilized for grazing.
Tree and shrub cover is less than 10%

Barren land BL Barren land
Lands with exposed soil, sand, rocks, or
snow and never have more than 10% veg-
etated cover during any time of the year.

Scrub land SL Scrub/Shrub

Areas are dominated by shrubs less than 5%
of 5 meter tall. Shrub canopy is typically
greater than 10% of total vegetation. This
category includes tree shrubs, young trees in
an early successional stage, or trees stunted
from environmental conditions.

Forest land DBF
Deciduous
broadleaf

forest

Lands dominated by woody vegetation with
a percent cover> 60% and height exceeding 5
m. Consisting of broadleaf tree communities
with an annual cycle of leaf-on and leaf-off
periods.

EBF
Evergreen
broadleaf

forest

Lands dominated by broadleaf woody vege-
tation with a percent cover > 60% and height
exceeding 5 m. Almost all trees remain green
year round. Canopy is never without green
foliage.

ENF
Evergreen
needleleaf

forest

Lands dominated by needle-leaf woody veg-
etation with a percent cover > 60% and
height exceeding 5 m. Almost all trees re-
main green all year. Canopy is never with-
out green foliage.

Continued on next page
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Table A.4 – continued from previous page
Primary

dominant
land cover

Code
Secondary
dominant
land cover

Description

PL Plantation
land

Lands dominated by plantation trees with a
percent cover > 60% and height exceeding 5
m.

BA Bamboo area Lands dominated by bamboo with a percent
cover > 60%.

Wetland
IW Inland

wetland

Include tidal and non-tidal wetlands domi-
nated by vegetation. Note that mangrove is
classified as the mangrove forests.

MF Mangrove
Lands dominated by mangrove trees with a
percent cover > 60% and height exceeding 5
m.

Open water OW Open water Oceans, seas, lakes, reservoirs, and rivers
which can be either fresh or saltwater bodies.

Aquaculture AC Aquaculture
Contains areas dominated by aquatic organ-
ism and plant farming, including artificial
ponds and temporarily flooded areas.

Table A.5: Bands, indices, and ancillary data were used to create annual land use/cover
maps of Vietnam from 1990 to 2020.

Data source Order Covariates Resolution (m)
1990-2014 2015-2020

Landsat TM,
ETM+ and OLI,

and Sentinel MSI

1 blue 30 10
2 green 30 10
3 red 30 10
4 nir 30 10
5 swir1 30 10
6 swir2 30 10
7 thermal 30 10
8 p20_green 30 10
9 p20_nir 30 10
10 p20_blue 30 10
11 p20_red 30 10
12 p20_swir1 30 10
13 p20_swir2 30 10
14 p80_green 30 10

Continued on next page
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Table A.5 – continued from previous page
Data source Order Covariates Resolution (m)

1990-2014 2015-2020
15 p80_nir 30 10
16 p80_blue 30 10
17 p80_red 30 10
18 p80_swir1 30 10
19 p80_swir2 30 10
20 blue_stdDev 30 10
21 red_stdDev 30 10
22 green_stdDev 30 10
23 nir_stdDev 30 10
24 swir1_stdDev 30 10
25 swir2_stdDev 30 10
26 ND_green_swir1_stdDev 30 10
27 ND_nir_red_stdDev 30 10
28 ND_nir_swir2_stdDev 30 10
29 blue/green 30 10
30 red/blue 30 10
31 red/green 30 10
32 red/nir 30 10
33 nir/(redswir1) 30 10
34 ARVI 30 10
35 DVI 30 10
36 EBBI 30 10
37 EVI 30 10
38 GCI 30 10
39 MVI 30 10
40 NBR 30 10
41 NDBaI 30 10
42 NDBI 30 10
43 NDPI 30 10
44 NDTI 30 10
45 MDVI 30 10
46 NDWI 30 10
47 SAVI 30 10
48 SIPI 30 10
49 UI 30 10
50 WRI 30 10

Sentinel SAR GRD 51 VV 10
52 VH 10
53 ND_VV_VH - 10

Continued on next page
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Table A.5 – continued from previous page
Data source Order Covariates Resolution (m)

1990-2014 2015-2020

AW2D30
54 elevation 30 10
55 slope 30 10
56 aspect 30 10

OpenStreetMap 57 distRoad 30 10
58 distBuilding 30 10

OpenDevelopment
Mekong

59 distCoast 30 10
60 distRiver 30 10
61 soilType 30 10

Table A.6: Synthesis of the case studies on changes in forests in Vietnam.

Study# LULCC Key results
(Drivers) Details Methods Reference

1 Deforestation
Rubber and

coffee
production

Location:
Central

Highlands
Study period:

2005 - 2015

Multi-level-
factor analysis

framework.
[282]

2

Land
use/land

cover
change

Economic
development;

and Land
policy

Location:
Mekong Delta
Study period:

1979 - 2015

Descriptive
statistics [206]

3

Reforestation
(Man-
grove
gain)

National
programs of
mangrove

rehabilitation

Location:
Thanh Hoa

province Study
period: 2005 -

2018

Descriptive
statistics [311]

4 Agriculture
expansion National policy

Location:
Mekong Delta
Study period:

1990 - 2020

Institutional
analyses [312]

Continued on next page
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Table A.6 – continued from previous page

Study# LULCC Key results
(Drivers) Details Methods Reference

5 Reforestation

Income; Market
influence; Close

proximity to
forest; Technical

training;
Number of

labours; and
Understanding

of forestry
economic
policies.

Location:
Central

Vietnam Study
period: 2010 -

2015

Combining
logistic and

tobit methods
[313]

6
Agricultural

shifting
(Rice)

Salinity
intrusion

Location:
Mekong Delta
Study period:

1989 - 2018

Landsat
imagery

classification
and a spatial
regression

[314]

7

Deforestation
(Non-
timber

forest con-
sumption)

Indigeneity;
Education;

Labour; Fuel
wood; Family
size; and The
area of land.

Location: Bu
Gia Map

National Park
Study period:

2015

Interview
analysis [315]

8

Deforestation
and refor-
estation
(forest

regrowth,
and

plantation
expan-
sion).

Accessibility;
Livelihood; Key

policies; and
Local economic
development

Location: Hoa
Binh province
Study period:

2005 - 2017

Multiple
Logistic

Regression
[284]

9 Agriculture
expansion

Policy
intervention;

Market
influence; and

Salinity
intrusion.

Location:
Mekong Delta
Study period:
2015 – 2016

The lens of
complex
adaptive

system theory

[316]

Continued on next page
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Table A.6 – continued from previous page

Study# LULCC Key results
(Drivers) Details Methods Reference

10 Agriculture
expansion

Dam
construction

Location:
Vietnam-wide
Study period:
2011 – 2012

Boosted
Regression Tree [317]

11 Deforestation

Initial forest
cover; Per

capital income;
Agriculture
production;
Population

growth; and
Poverty.

Location:
Vietnam-wide
Study period:

2000 - 2010

A structural
regression

model and a
regression tree

model.

[266]

12

Agricultural
increase

(Intensifi-
cation of
agricul-

ture)

Hydrological
regime changes

Location:
Mekong Delta
Study period:
2001 – 2012

Time-series
imagery

interpretation
and descriptive

analysis.

[265]

13
Deforestation

(Man-
grove)

Expansion of
aquaculture

production and
urbanization

Location: Ca
Mau province
Study period:
2004 – 2013

SPOT satellite
imagery

interpretation.
[318]

14

Forest
change
(Planta-

tion
expan-
sion,

deforesta-
tion and
afforesta-

tion)

Deforestation
due to cash

crop expansion,
and migration
and population

growth; and
Reforestation

due to policies
intervention
and effects of

forest
management.

Location:
Vietnam-wide
Study period:
1993 – 2013

Review and
analysis. [319]

Continued on next page
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Study# LULCC Key results
(Drivers) Details Methods Reference

15

Deforestation
(Wetland
conver-
sion)

Food supply;
Improving

income; and
Unclear land

tenure.

Location: Kien
Giang province
Study period:

2004 - 2014

A system
thinking
approach

[320]

16

Agriculture
increase

(intensifi-
cation)

Agricultural
system

increase; and
Technical and

economic
factors

Location: Hai
Duong

province Study
period: 1980 -

2010

A systematic
analysis of
agricultural

systems

[19]

17 Reforestation

Agricultural
reduction; and

Urban
population.

Location:
Vietnam-wide
Study period:
1962 – 2011

Discriminant
analysis [283]

18 Agriculture
change

Weather;
Accessibility;

and Livelihood

Location:
Vietnam-wide
Study period:
2007 – 2013

A sustainable
livelihood
framework

[321]

19

Agriculture
increase

(Rice
intensifi-
cation)

Irrigation
construction

and operation
(dyke and

sluice).

Location: An
Giang province
Study period:

2005 - 2015

A system
dynamics
method

[322]

20 Crop
transition

Policy; and
Land tenure.

Location:
Vietnam-wide
Study period:

Since 1986

Review and
descriptive

method
[323]

21 Reforestation Plantation
expansion

Location: Lai
Chau, Lao Cai,
and Ha Giang

provinces
Study period:
2000 – 2009

Remote sensing
image and
fieldwork

interpretation.

[324]

Continued on next page
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Table A.6 – continued from previous page

Study# LULCC Key results
(Drivers) Details Methods Reference

22 Deforestation

Easy access
ability; and

Lack of
conservation

policies

Location:
Vietnam-wide
Study period:

since 1990s

Review and
analysis [325]

23
Deforestation

(Man-
grove loss)

Aquaculture
and agricultural

expansion.

Location: Kien
Giang province
Study period:
1995 – 2009

Generalized
linear

mixed-effects
models.

[326]

24

Agricultural
decline

(agricul-
ture

conver-
sion into
aquacul-

ture)

Expansion of
aquaculture

and
urbanization;

Location: Ca
Mau province
Study period:
1973 – 2011

SPOT imagery
interpretation. [15]

25 Deforestation

Forest
clearance; and
Agricultural
expansion

Location:
Mekong Delta
Study period:
2001 – 2011

MODIS
imagery

interpretation
[279]

26

Deforestation
Agricul-

tural
decline

(rice
decrease)

Climate change

Location:
Vietnam-wide
Study period:

since 1990s

Global-to-local
modelling [67]

27 Deforestation

Agricultural
expansion; and

Population
growth

Location:
Vietnam-wide
Study period:
2000 – 2010

Multi-linear
regression and
binary logistic

regression.

[327]

28
Deforestation
and refor-
estation.

Expansion of
agriculture and

plantation.

Location: Lao
Cai province
Study period:

since 1990s

Review and
statistical
analysis

[280]

Continued on next page
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Study# LULCC Key results
(Drivers) Details Methods Reference

29 Agriculture
increase

Rainfall and
temperature

differences; and
Population

density

Location:
Quang Tri and

Dak Lak
provinces

Study period:
2010 – 2013

Sample
collection and

statistical
analysis.

[328]

30
Reforestation
(Afforesta-

tion)

Wood-
processing
industry
demand;

Distance to
highways; and

Population
density.

Location:
Northern

Vietnam Study
period: 1993 –

2000

Geographically
weighted
regression

[329]

31
Deforestation

(Man-
grove)

Defoliated; and
Boom

Location: Ca
Mau province
Study period:
1961 – 1975

Remote sensing
imagery

interpretation
[330]

32 Reforestation

Plantation
expansion;

Policy
introduction;
and Decline

cultivation of
crops

Location:
Vietnam-wide
Study period:

since 1990s

Spatial lag
regression

model
[150]

33 Deforestation
Expansion of
aquaculture
and crops

Location:
Mekong Delta
Study period:
1993 – 1997

Review and
history data

analysis.
[331]

34 Forest
change Policy

Location: Dac
Nong province
Study period:
1975 – 2004

Linear
regression

model
[300]

35

Deforestation
and agri-
cultural
expan-
sion.

Change in
benefit of crops;

and Income.

Location: An
Giang province
Study period:
2000 – 2005

Descriptive
method based
on historical

data

[332]

Continued on next page

159



Table A.6 – continued from previous page

Study# LULCC Key results
(Drivers) Details Methods Reference

36 Land use
change

Accessibility to
market

Location: Bac
Can province
Study period:

2000

GIS distance
analysis [291]

37

Land
cover (de-
forestation
and agri-
culture
expan-
sion)

Expansion of
agriculture;
Increasing

accessibility;
Increase

irrigated areas;
Policy

introduction;
Rainfall;

Topography;
and Soil types

Location:
Central

Highlands
Study period:
1975 – 2000

Multinomial
logit model [288]

38

Agriculture
conver-
sion to
forest

Increasing
accessibility of

agricultural
output market;

and
Application of

new technology
for agriculture

Location:
Northwest

Study period:
1954 – 2000

Review and
historical data

analysis
[292]

39 Agriculture
change

Altitude/elevation;
and Distance to

villages

Location: Cho
Don district, Ba
Kan province.
Study period:

1990 - 2001

Rule-based
CLUE-s model [333]

40 Reforestation

Wood
imports;and

Policies
restricting

forest
exploitation.

Location:
Vietnam-wide
Study period:

1987 - 2006

Literature
review and

analysis.
[334]
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Study# LULCC Key results
(Drivers) Details Methods Reference

41 Deforestation

Floods; Shifting
cultivation of
agriculture;

Forest
transitions;

Policies; Slope,
logging and

fire.

Location: four
villages in Cho
Don district,

Bac Kan
province. Study
period: 1975 -

2007

Statistical
analysis of

feedbacks from
field surveys,

including
interviews,

group
discussions,

and secondary
sources.

[78]

42 Reforestation
Policies; and
Plantation
expansion.

Location: three
villages,

including Dong
Cao, Dong Dau,
and Que Vai, in

Tien Xuan
commune,
Luong Son

district, Hoa
Binh province.
Study period:
1960s - 2005

The
Institutional
Analysis and
Development

framework
based on focus

group, key
informant, and

household
interviews.

[267]

43
Deforestation
(Wetland

loss)

Economic
development

policies;
Population
growth and

urbanization,
resettlement or
infrastructure
development;
Agriculture

expansion; and
Forest

exploitation.

Location:
Mekong delta
Study period:

1816 - 2015

Case study
analysis

framework.
[335]
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Study# LULCC Key results
(Drivers) Details Methods Reference

44 Land
transitions

Culture; Market
economy;

Accessibility
and

infrastructure;
Distance to
roads and

settlement; and
Elevation,

slope, and soil
type.

Location: Suoi
Muoi river in

Son La
province. Study
period: 1973 -

2008

Multiple
logistic

regression; and
Multiple

corresponding
analysis on

household and
key informant

interviews.

[222]

45 Reforestation
Elevation; and

Labour
availability.

Location:
Muong Do

commune in
Phu Yen

district, Son La
province. Study
period: 2000 –

2013.

Regression
model analysis
from interviews

[223]

46 Agriculture
expansion

Population
growth;

Poverty; and
Infrastructure
development.

Location:
Mekong delta;
Study period:

1990 - 2005

[336]

47 Deforestation

Agriculture
expansion (food

production);
Population

increase; Low
food

production;
and Market of

export and
import wood

products.

Location:
regional study

covering
Vietnam. Study
period: 1980 –

2010.

Multiple
correlation

analysis from
field survey

data.

[281]
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Table A.7: Description and characteristics of the biophysical and socio-economic drivers.

Class Name Main drivers Unit Tem.Res Spa.Res. Code and variable metric Source

C1 Climate

Precipitation mm/y

Yearly
(1990–2020) 1 km

B1

Mean, RoC, and SD of
annual values Source 1

B2
B3

Temperature oC
B4
B5
B6

Water vapour kPa
B7
B8
B9

C2 Terrain and soil

Elevation m

Constant 0.09 km

B10

Mean of the AOI Source 2
Slope rad B11

Aspect rad B12
Topographic

Position index B13

Terrain
Ruggedness index B14

Soil types class 1 km B15 Source 3

C3 Demographic
data

Population
density pp/km2 Yearly

(2000–2019) 1 km
S16

Mean, RoC, and SD of
annual values Source 4

S17
S18

Urban change % Yearly
(1990–2020) 100 m

S19
S20
S21

Continued on next page
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Class Name Main drivers Unit Tem.Res Spa.Res. Code and variable metric Source

Built-settlement
growth

Yearly
(2000–2020)

S22
S23
S24

Net-migration
rate

Yearly
(2005-2019) S25 SD of annual values Source 5

Percentage of
graduates

Yearly
(2001-2017) Commune S26

C4 Accessibility

To main rivers

m Constant 100 m

B27

Mean of the AOI

Source 6To main
transportation S28

To the sea B29
To drainage S30

Source 3To embankment
of water bodies S31

To irrigation
systems S32

To canal S33

C5 Agriculture and
forestry

Paddy yield

kg/km2 Yearly
(1995-2019)

Commune

S34

SD of annual values Source 5

Paddy
production S35

Cereal
production S36

Fuel wood
(logging and

charcoal)
S37

Continued on next page
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Class Name Main drivers Unit Tem.Res Spa.Res. Code and variable metric Source

Agriculture
expansion km2 Yearly

(1990-2019)

S38

Shifting
agriculture S39

Aquaculture S40

C6 Livestock

Poultry
head/km2 Yearly

(1990-2019) Commune

S41

SD of annual values Source 5Cattle S42
Pig S43

Industrial
production index Yearly

(2012-2019) S44

C7 Economy

Income VND/headYearly
(2006-2018) Commune

S45
SD of annual values Source 5Income

dependency on
agriculture

S46

Poverty rate % S47
Market

accessibility index Constant S48 Mean of the AOI

Note
Source 1: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas.
Source 2: The USGS EROS Archive – Digital Elevation – Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global;
Source 3: The Ministry of Agriculture and Rural Development of the Socialist Republic of Vietnam.
Source 4: Gridded Population of the World, Version 3 (GPWv3): Land and Geographic Unit Area Grids; and
NASA Socioeconomic Data and Applications Center (SEDAC).
Source 5: The General Statistics Office (GSO) of Viet Nam; https://www.gso.gov.vn/en/about-gso/.
Source 6:The Open Development Vietnam (ODV); https://vietnam.opendevelopmentmekong.net/

Continued on next page
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Table A.7 – continued from previous page
Class Name Main drivers Unit Tem.Res Spa.Res. Code and variable metric Source
Further explanation

RoC: Rate of change; SD: Standard deviation the of mean;
The area of interest (AOI) is a boundary area of a community;
Soil was class based on chemical, depth, drainage, fertility and texture;
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Figure A.1: The measurement of variance inflation factors (VIF) of driver proxies. This
figure presents selected driver proxies. The measurement of the VIF is conducted by
using Python Version 3.9.10 in Ubuntu Version 20.04.4.
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Table A.8: Results from the multiple least square regression model: analyses of the forest gain. The model is conducted by using
the main statsmodels API (statsmodels.api) with support of Python Version 3.9.10 in Ubuntu Version 20.04.4.

Log-Likelihood: 177.42 R-squared: 0.901
AIC: -318.8 Adj. R-squared: 0.895
BIC: -252.7 F-statistic: 146.8
Df Model: 17 Prob (F-statistic): 2.05E-126
Drivers Coefficients Std err t P>|t| [0.025 0.975]
Constant 0.2268 0.008 28.494 0 0.211 0.242
TPI index 0.1691 0.004 44.294 0 0.162 0.177
Distance to city 0.0392 0.005 7.141 0 0.028 0.05
Distance to drainage 0.0805 0.006 13.394 0 0.069 0.092
Distance to irrigation systems -0.0618 0.006 -9.697 0 -0.074 -0.049
Distance to rivers -0.039 0.007 -5.266 0 -0.054 -0.024
Accessibility/infrastructure -0.0117 0.008 -1.5 0.135 -0.027 0.004
Deviation of population growth 0.0439 0.008 5.387 0 0.028 0.06
Increasing rate of precipitation -0.0275 0.008 -3.24 0.001 -0.044 -0.011
Increasing rate of temperature -0.0014 0.01 -0.136 0.892 -0.021 0.018
Poultry 0.0382 0.011 3.632 0 0.018 0.059
Migration change -0.0397 0.011 -3.556 0 -0.062 -0.018
Mining/industry 0.0189 0.013 1.473 0.142 -0.006 0.044
Cattle -0.0423 0.014 -3.122 0.002 -0.069 -0.016
Soil types 0.0465 0.014 3.211 0.001 0.018 0.075
Distance to sea -0.0666 0.017 -3.89 0 -0.1 -0.033
Agriculture shifting 0.1777 0.021 8.431 0 0.136 0.219
Slope 0.0532 0.024 2.179 0.03 0.005 0.101
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Table A.9: Results from the multiple least square regression model: analyses of the forest loss. The model is conducted by using
the main statsmodels API (statsmodels.api) with support of Python Version 3.9.10 in Ubuntu Version 20.04.4.

Log-Likelihood: 114.89 R-squared: 0.854
AIC: -193.8 Adj. R-squared: 0.845
BIC: -126.9 F-statistic: 98.09
Df Model: 17 Prob (F-statistic): 3.12E-108
Drivers Coefficients Std err t P>|t| [0.025 0.975]
Constant 0.2508 0.01 25.568 0 0.232 0.27
TPI index 0.1837 0.005 36.44 0 0.174 0.194
Distance to city -0.0101 0.007 -1.528 0.128 -0.023 0.003
Distance to drainage 0.0848 0.008 11.303 0 0.07 0.1
Distance to irrigation systems -0.0684 0.008 -8.401 0 -0.084 -0.052
Distance to rivers -0.0508 0.009 -5.776 0 -0.068 -0.034
Accessibility/infrastructure 0.0253 0.009 2.714 0.007 0.007 0.044
Deviation of population growth -0.0367 0.01 -3.773 0 -0.056 -0.018
Increasing rate of precipitation 0.0532 0.011 4.909 0 0.032 0.075
Increasing rate of temperature 0.0069 0.011 0.632 0.528 -0.015 0.028
Poultry -0.0005 0.012 -0.036 0.971 -0.025 0.024
Migration change 0.0061 0.013 0.454 0.65 -0.02 0.032
Mining/industry -0.0562 0.015 -3.757 0 -0.086 -0.027
Cattle 0.0299 0.016 1.84 0.067 -0.002 0.062
Soil types 0.0341 0.017 2.023 0.044 0.001 0.067
Distance to sea -0.0044 0.019 -0.228 0.82 -0.043 0.034
Agriculture shifting 0.1443 0.026 5.596 0 0.094 0.195
Slope 0.066 0.026 2.543 0.012 0.015 0.117
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