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Abstract
The two-body stochastic dealer model is revisited to provide an exact solution to the average
order-book profile using the kinetic approach. The dealer model is a microscopic financial
model where individual traders make decisions on limit-order prices stochastically and then
reach agreements on transactions. In the literature, this model was solved for several cases:
an exact solution for two-body traders N = 2 and a mean-field solution for many traders
N � 1. Remarkably, while kinetic theory plays a significant role in the mean-field analysis
for N � 1, its role is still elusive for the case of N = 2. In this paper, we revisit the two-
body dealer model N = 2 to clarify the utility of the kinetic theory. We first derive the exact
master-Liouville equations for the two-body dealer model. We next illustrate the physical
picture of the master-Liouville equation from the viewpoint of the probability currents. The
master-Liouville equations are then solved exactly to derive the order-book profile and the
average transaction interval. Furthermore, we introduce a generalised two-body dealer model
by incorporating interaction between traders via the market midprice and exactly solve the
model within the kinetic framework. We finally confirm our exact solution by numerical
simulations. This work provides a systematic mathematical basis for the econophysics model
by developing better mathematical intuition.
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1 Introduction

Statistical physics is a powerful tool to understand the macroscopic behaviour of physical
systems from their microscopic dynamics [1], and one of the historical landmarks is the
kinetic theory for the Brownian motions [2]. For example, let us consider the dynamics
of a small particle in water. This particle experimentally exhibits random motions due to
molecular collisions, and such a physical picture is mathematically summarised within the
kinetic theory. Indeed, the Langevin equation can be derived from the microscopic physical
dynamics via the Liouville equation, Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy [3], Boltzmann equation, and the diffusive limit [4, 5].

Remarkably, the Brownian motions are ubiquitously observed in broad areas, such as in
financial markets [6]. For example, the price timeseries of stock and foreign exchange rate
exhibits random motions similar to the Brownian motion, which was historically pointed out
by Bachelier [7] earlier than Einstein’s kinetic theory [8]. Physicists curious about this simi-
larity have studied the financial-market microstructure in terms of statistical physics, hoping
to understand its macroscopic behaviour from its microscopic dynamics as a research activ-
ity of econophysics [9–12]. While there have been various econophysics models proposed,
in this report, we focus on a microscopic financial-market model called the dealer model
[13–17], which depicts the decision-making processes dynamics on the level of individual
traders.

The dealermodel is one of the earliestmicroscopicmodels that describe individual traders’
decision-making process in econophysics [13]. It was first introduced as a deterministic
dynamical model [13, 14] and was later extended for a stochastic model [15–17] for math-
ematical simplicity. The stochastic dealer model can be mathematically solved for several
cases: the two-body case (see Ref. [15] for N = 2) and the mean-field case (see Refs. [16,
17] for N � 1) with the total number of traders N . The two-body case N = 2 exactly
was solved in Ref. [15], where the dynamics are finally mapped into the first-hitting time
problem to obtain the exact transaction-interval statistics. The mean-field case N � 1 was
solved in Refs. [16, 17] by using the kinetic theory: i.e., the financial Boltzmann and Langevin
equations are derived by starting from the financial Liouville equation (i.e., the master equa-
tion for the many-body joint probability density function (PDF)) and the BBGKY hierarchy.
This method finally deduces the average order-book profile and transaction-interval statistics
within the mean-field approximation, which exhibits excellent numerical agreements. In this
sense, the dealer model is well-tractable in terms of statistical-physics theories.

However, the relationship between the previous two-body solution and the mean-field
solution is still elusive since their methodologies are formally different. While the formal
BBGKY hierarchy for the two-body case was briefly derived in the supplementary material
of Ref. [16] in a rather incomplete form, its solution was not thoroughly analyzed in Refs.
[16, 17] to understand the mathematical characters specific to the two-body case N = 2,
because the main focus of Refs. [16, 17] was to analyze the mean-field case N � 1.

In this report, we revisit the two-body stochastic dealer model to clarify the technical
and mathematical roles of the kinetic framework therein. By applying Novikov’s theorem
for the coloured noise, we first derive two exact master-Liouville (ML) equations (i.e., one
is a reduced form and the other is the complete form) for the two-body dealer model by
fully incorporating the “collision" mechanism. Before the technical derivation, we provide
a technical review of Novikov’s theorem [18, 19] and the Liouville equation for collisional
dynamics because they are advanced topics for non-Markovian stochastic processes and
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kinetic theory.1 We also illustrate the physical meaning of the ML equations from the view-
point of the probability current. The probability-current picture will help readers develop
better intuition and catch the sense of the specific mathematical forms of the ML equations.
Furthermore, the ML equation is exactly solved to obtain the average order-book profile
and the average transaction interval.To demonstrate the power of our kinetic framework, we
generalise the dealer model to incorporate market-midprice interaction, and solve the model
exactly. Finally, we have numerically confirmed the exact solution.

This report is organised as follows. We explain the mathematical model of the stochastic
dealer model for N = 2 in Sect. 2. In Sect. 3, we provide a technical review on Novikov’s
theorem and a manipulation technique of the δ-functions for collisional dynamics. In Sect. 4,
we derive a reducedMLequation exactly.We exactly solve the reducedMLequation in Sect. 5
to obtain the average order-book profile and the average transaction interval. In Sect. 6, we
derive the full ML equation and examine its physical meaning from the viewpoint of the
probability current. In addition, we examine the consistency between the reduced and full
ML equations. In Sect. 7, we consider a generalised dealer model by incorporating interaction
between traders via themarketmidprice and exactly solve the generalisedmodel in the kinetic
framework again. Finally, we show the numerical simulations to confirm the validity of the
exact solutions in Sect. 8. This report is concluded in Sect. 9 with some remarks. Eleven
appendices complement these sections.

2 Model

We formulate the stochastic dealer model based on the Markovian stochastic processes after
explaining our mathematical notation.

2.1 Mathematical Notation

Here we briefly explain our mathematical notation. In this report, any stochastic variable
accompanies the hat symbol, such as Â instead of A. In addition, the ensemble average
of any stochastic variable is denoted by 〈 Â(t)〉 at the continuous physical time t . All the
models are based on the continuous-time Markovian dynamics. Using this notation and the
δ function,2 the PDF of Â(t) is given by Pt (A) := 〈δ(A− Â(t))〉 by stressing the difference
between the stochastic variable Â(t) and the non-stochastic real number A. Inversely, the
ensemble average 〈 Â(t)〉 can be rewritten as

〈 Â(t)〉 =
∫

APt (A)d A. (1)

Weuse the square brackets for any functional argument, such as f [{x(s)}s∈R], to stress that
f is a functional but not a function, where R := (−∞,∞) is the set of the real numbers and
s ∈ R is a time point. We sometimes abbreviate the argument, such that f [x] := f [{x(s)}s]
if its meaning is obvious from the context. For any functional, the functional derivative is
written by (δ f [x])/(δx(s)).
1 Experts on these topics can skip this review section because the main-results sections are self-contained.
However, we believe such an introductory review section will be helpful for readers unfamiliar with mathemat-
ical technicalities since our kinetic theory for financial Brownian motion is very interdisciplinary, requiring
the background of econophysics, non-Markovian stochastic processes, and kinetic theory.
2 Readers unfamiliar with the δ functions are referred to Appendix A
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(b) Price formation & collision(a) Random walks (c) Resubmission & jump

Fig. 1 Schematic dynamics of the two-body stochastic dealermodel.a In the absence of transactions |ẑ1−ẑ2| <

L , both ẑ1 and ẑ2 exhibits random walks. b When the condition |ẑ1 − ẑ2| = L is met, a transaction happens
and thus, the transacted price is updated (i.e., the price formation). These dynamics are essentially similar
to the collisions in kinetic theory. c Just after the transaction, both traders resubmit their prices far from the
transacted price. This resubmission process is mathematically implemented as jumps of ẑ1 and ẑ2

In this report, we regard the derivative symbols ∂/∂x and δ/δx(t) as linear operators
acting on all subsequent terms. For example, the derivative ∂/∂x in the following formula is
interpreted as

∂

∂x
α(x)

∂

∂x
β(x)Pt (x) := ∂

∂x

[
α(x)

{
∂

∂x
(β(x)Pt (x))

}]
. (2)

2.2 Model Dynamics

We consider a market composed of two traders, always quoting both bid and ask prices
simultaneously. In this report, b̂i (t) and âi (t) denotes the bid and ask prices of the i th trader
for i = 1, 2 at the continuous physical time t ∈ R. The difference between the ask and bid
prices L̂i := âi − b̂i > 0 is called the spread of the i th trader. We assume that the traders’
spreads are the same constant, such that L̂i = L = const. > 0 for i = 1, 2 (see Fig. 1a). We
also define the midprices of the trader i as ẑi := (âi + b̂i )/2. The transaction condition (see
Fig. 1b) is given by

a1 = b2 or a2 = b1 �⇒ |z1 − z2| = L. (3)

In this report, we analyze the simplest case based on the model 1 in Ref. [15] and its
generalisation in Sect. 7. The dynamics of the midprices {ẑi }i=1,2 obey the simple Brownian
motion in the absence of transactions |ẑ1 − ẑ2| < L (see Fig. 1a):

dẑi
dt

= σ ξ̂Gi (4a)

with the white Gaussian noise ξ̂Gi (t) and a positive constant σ > 0. The white Gaussian noise

is formally defined as the derivative of the Wiener process Ŵi (t) as ξ̂Gi (t) := dŴi (t)/dt and
satisfies

〈ξ̂Gi (t)〉 = 0, 〈ξ̂Gi (t1)ξ̂
G
j (t2)〉 = δ(t1 − t2). (4b)

We note that the higher-order cumulants are absent due to the Gaussian nature.3 In the pres-
ence of transactions, we assume that both traders requote their prices far from the transaction

3 Formally, the nth cumulant of any stochastic variable Â(t) is defined by (see Ref. [1] for example)

〈 Â(t1) . . . Â(tn)〉c := δn

δζ(t1) . . . δζ(tn)
logΨ [ζ ], Ψ [ζ ] :=

〈
exp

[
i
∫ t

0
dsζ(s) Âs

]〉
.

For any Gaussian noise, the higher-order cumulants are absent: 〈 Â(t1) . . . Â(tn)〉c = 0 for n ≥ 3.
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(a)

(c)

(b)

Fig. 2 Useful representation based on the centre of mass ẑcm and the relative price r̂ . a The original dynamics
based on (ẑ1, ẑ2) is equivalent to those based on (ẑcm, r̂). bThe centre of mass ẑcm exhibits the simple random
walks (6a), irrelevantly to transactions (b). c The relative price r̂ shows random walks confined in the regime
r̂ ∈ (−L/2, L/2). At the boundaries r = ±L/2, the relative price goes back to the origin as described by
Eq. (6b) due to transactions. Here we assume L = 2

price to avoid immediate transactions, according to the following equation (see Fig. 1b and
c)

ai (t) = b j (t) �⇒ ai (t + dt) = ai (t) + L

2
, b j (t + dt) = b j (t) − L

2
(4c)

for an infinitesimal positive dt > 0, or equivalently

|z1(t) − z2(t)| = L �⇒ z1(t + dt) = z2(t + dt) = z1(t) − L

2
sgn(z1(t) − z2(t)) (4d)

with the sign function (i.e., sgn(x) = +1 for x > 0, sgn(x) = 0 for x = 0, and sgn(x) = −1
for x < 0). Remarkably, this transaction rule does not change the centre of mass.

We note that this model is the most basic model; we can introduce additional elements,
such as trend-following strategies (see Refs. [15–17] for examples). However, since our
motivation is to reveal the mathematical characters of the dealer model from the kinetic
viewpoint, we start the model as simple as possible and then consider its generalisation in
Sect. 7.

2.3 Review of the Previous Solution Based on the First-Hitting Time Problem in Ref.
[15]

Here we review the previous solution to this model based on Ref. [15] to clarify the
difference to our approach. In Ref. [15], this model was mapped into the first-hitting time
problem of the one-dimensional Brownian motion. Specifically, by introducing the centre of
mass ẑcm, the relative price r̂ (see Fig. 2), and the noise variance for the centre of mass σcm,
defined by

ẑcm := ẑ1 + ẑ2
2

, r̂ := ẑ1 − ẑcm = ẑ1 − ẑ2
2

, σcm := σ√
2
, (5)

we obtain
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� �

ẑcm(t + dt) = ẑcm(t) + dtσcmχ̂(t), (6a)

r̂(t + dt) =
{
r̂(t) + dtσcmη̂(t) (|r̂(t)| < L/2)

0 (|r̂(t)| = L/2)
(6b)

� �
for an infinitesimal positive timestep dt > 0. Here the two white noises are introduced as

χ̂(t) := 1√
2

(
ξ̂1(t) + ξ̂2(t)

)
, η̂(t) := 1√

2

(
ξ̂1(t) − ξ̂2(t)

)
, (6c)

which satisfy
〈χ̂(t)〉 = 0, 〈η̂(t)〉 = 0 (6d)

〈χ̂(t1)χ̂(t2)〉 = δ(t1 − t2), 〈η̂(t1)η̂(t2)〉 = δ(t1 − t2), 〈χ̂(t1)η̂(t2)〉 = 0. (6e)

We thus find that

1. the centre of mass ẑcm obeys the random walk irrelevantly to the transactions because
the centre of mass does not move during transactions;

2. the relative price r̂ obeys the random walk and returns back to the origin if it hits the
boundaries at r̂ = ±L/2.

These facts imply that the dynamics of the two-body dealer model is equivalent to the first-
hitting time problem at the boundaries r̂ = ±L/2. Based on these characters, the authors
of Ref. [15] solved this first-hitting time problem to obtain the transaction-interval statistics.
For example, the mean transaction interval is given by

〈τ̂ 〉 = L2

2σ 2 (7)

with the transaction interval τ̂ . Based on such analytic formulas on the transaction-interval
statistics, the authors of Ref. [15] derived the statistical properties of various versions of the
dealer model.

In addition, the diffusion constant of the centre of mass is exactly given by

D(N = 2) := σ 2
cm(N = 2)

2
, σ 2

cm(N = 2) := σ 2

2
. (8)

This means that the diffusive speed of the centre of mass is slower than that of a single trader.
According to the mean-field theory [17], in general, the diffusion constant of the centre of
mass is given by the scaling

D(N ) := σ 2
cm(N )

2
, σ 2

cm(N ) ∝ σ 2

N
, (9)

suggesting that the centre of mass is “heavier” for large N . In this sense, σcm(N = 2) can be
regarded as the renormalized diffusion constants as the result of the many-body interaction.

2.4 Goal of This Report: Reformulation Based on Kinetic Theory

While the previous derivation is powerful in understanding the two-body dealer model, its
relationship is not clear to the mean-field solution proposed in Refs. [16, 17]. The mean-field
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solution for N � 1 in Refs. [16, 17] is based on kinetic theory: the microscopic dynamics
described by the high-dimensional stochastic differential equations are mapped onto the
financial Liouville equation (i.e., an ML equation for the joint PDF), which is reduced to
the Boltzmann and Langevin equations via the BBGKY hierarchy. This methodology is very
different from the previous first-passage-problem approach, at least superficially.

This report aims to fill this technical gap mathematically: we derive the Liouville equation
for the two-body dealer model exactly. Furthermore, the ML equation is solved exactly to
obtain the average order-book profile and the mean transaction interval. In addition, we
examine the mathematical consistency between these different approaches to develop our
better intuition.

3 Technical Review

Here we review Novikov’s theorem [18, 19] and the collision problem together with related
manipulation technique of the δ functions. These technical methods are relevant to the deriva-
tion of the ML equations.

This section aims to provide a technical background for the general audience unfamiliar
with non-Markovian stochastic processes and kinetic theories as an elementary review. Since
the main contents are self-contained without needing to refer to this section, professional
readers can skip this section and proceed with the main results from Sect. 4. However, we
believe that such a preliminary review will be helpful for the general audience because the
kinetic framework for the dealer model is based on multidisciplinary mathematical back-
grounds.

3.1 Stochastic Calculus for Coloured Noise: Novikov’s Theorem

3.1.1 Setup

We first review Novikov’s theorem [18, 19], a useful theorem for stochastic calculus for
coloured noise. This technique will be used for the stochastic dealer model in Sect. 4.1, and
we provide its elementary introduction for a simple case here.
Ornstein-Uhlenbeck coloured noise. Let us first consider an Ornstein-Uhlenbeck (OU) pro-
cess with a non-zero correlation time ε > 0:

dη̂ε

dt
= − η̂ε

ε
+ ξ̂G (10)

with the standard white Gaussian noise ξ̂G, satisfying 〈ξ̂G(t)〉 = 0 and 〈ξ̂G(t1)ξ̂G(t2)〉 =
δ(t1 − t2). This OU process can be regarded as a specific implementation of the coloured
noise because it satisfies

〈η̂ε(t)〉 = 0, 〈η̂ε(t1)η̂ε(t2)〉 = 1

2ε
e−|t1−t2|/ε, (11)

showing the exponential decay of the correlation with the short characteristic timescale ε.
We therefore call η̂ε theOU coloured noise and we use the OU coloured noise for a technical
calculation of kinetic theory. We note that the OU coloured noise converges to the white
noise for the small ε limit, such that

lim
ε↓0〈η̂ε(t1)η̂ε(t2)〉 = δ(t1 − t2). (12)
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In addition, the OU coloured noise belongs to the Gaussian noise, which can be proved
as follows. It is known that any superposition of Gaussian random variables also obeys
the Gaussian statistics [1]. Because the OU coloured noise can be represented as the linear
superposition of the white Gaussian noise,

η̂ε(t) = η̂ε(0) +
∫ t

0
e−(t−s)/ε ξ̂G(s)ds, (13)

the OU coloured noise also belongs to the Gaussian noise.
Technical advantage of the OU coloured noise. One of the technical advantages to introduce
the coloured noise is to remove the singularity of the white noise. Indeed, the white noise is an
unbounded and discontinuous function of time, which causes various delicate mathematical
issues, such as the Itô-Stratonovich dilemma [20]. On the other hand, theOUcoloured noise is
a bounded and continuous function of time, and various delicate issues disappear for nonzero
ε > 0. Therefore, in our formulation, we first consider the coloured noise to avoid delicate
issues, proceed with calculations for nonzero ε > 0, and, finally, take the white-noise limit
ε ↓ 0.
Stochastic dynamics under coloured noise. Next, let us consider the stochastic dynamics of
a stochastic variable x̂(t) driven by the OU coloured noise:

dx̂

dt
= −α(x̂) + β(x̂)η̂ε (14)

with smooth functions α(x̂) and β(x̂). Assuming that the state space is one-dimensional, this
system can be regarded as non-Markovian since theOU coloured noise has a finite correlation
time. In this sense, the standard mathematical method for theMarkovian stochastic processes
is not directly available for analytical calculations.

3.1.2 Prescription 1: Markov Embedding

Becausemany natural phenomena obey non-Markovian dynamics, various technicalmethods
have been developed in statistical physics for such non-Markovian systems. One established
method is based on the Markov embedding technique. This technique is based on converting
the original non-Markovian onto an auxiliary higher-dimensional Markovian system by suf-
ficiently adding many auxiliary variables. For example, let us reconsider the non-Markovian
dynamics (14) from the viewpoint of the Markov embedding. While the dynamics (14) is
non-Markovian in the one-dimensional space x̂(t), it can be interpreted as a two-dimensional
Markovian dynamics specified by the two-dimensional state vector Γ̂ (t) := (x̂(t), η̂ε(t)).
Indeed, Γ̂ (t) obeys the two-dimensional simultaneous SDEs (10) and (14) that are Marko-
vian, and thus we can derive the Fokker-Planck equation for the two-dimensional joint
PDF Pt (x, ηε). In this sense, some non-Markovian processes can be converted onto high-
dimensional Markovian dynamics by the Markov embedding (e.g., see also Refs. [21–23]
for the generalised Langevin equations and Refs. [23–25] for the Hawkes processes).

3.1.3 Prescription 2: Functional Calculus and Novikov’s Theorem

One of the other famous methods is based on the functional calculus for non-Markovian
stochastic paths, towhichNovikov’s theorem [18] belongs.Novikov’s theorem is available for
coloured Gaussian noises to evaluate ensemble averages (see Ref. [19] for its generalisation
for non-Gaussian coloured noises). This theorem states that an identity
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Fig. 3 Schematic of a single-particle collision. The rigid particle collides against the rigid wall placed at
x = x∗. Here the particle is regarded as a mass point by ignoring the particle size. After the collision, the
particle velocity is inverted as v̂ = −v0. The initial condition is given by (x̂(0), v̂(0)) = (x0, v0) satisfying
x0 < x∗ and v0 > 0

� �

〈η̂ε(t)g[η̂ε; t]〉 =
∫ t

0
ds〈η̂ε(t)η̂ε(s)〉

〈
δg[η̂ε; t]
δη̂ε(s)

〉
(15a)

� �
holds for any functional g[η̂ε; t] := g[{η̂ε(s)}0≤s≤t ] dependent on the path of the coloured
Gaussian noise {η̂ε(s)}0≤s≤t (see Appendix B for the derivation). Particularly, for the special
case where g is a function of x̂(t), we obtain

〈η̂ε(t)g(x̂(t))〉 =
∫ t

0
ds〈η̂ε(t)η̂ε(s)〉

〈
δx̂(t)

δη̂ε(s)

∂g(x̂(t))

∂ x̂

〉
. (15b)

Readers unfamilar with the functional derivative δ/δη̂ε(s) are referred to Appendix C.
Novikov’s theorem is helpful to analyse non-Markovian stochastic processes, in particular

for the white-noise limit ε ↓ 0. Assuming the SDE driven by the OU coloured noise (14),
let us derive the Fokker-Planck equation for the white-noise limit [19]. We finally derive the
Stratonovich-type Fokker-Planck equation

∂

∂t
Pt (x) =

[
∂

∂x
α(x) + 1

2

∂

∂x
β(x)

∂

∂x
β(x)

]
Pt (x) (16)

for the white-noise limit ε ↓ 0 (see Appendix D for the derivation).
The resulting Stratonovich-type Fokker-Planck equation (16) is consistent with the fact

that any SDE driven by a coloured Gaussian noise reduces to the Stratonovich-type SDE
in the white-noise limit [26, 27]. We also note that this result can be confirmed via the
Markov embedding approach (i.e., by directly addressing the Fokker-Planck equation for the
two-dimensional joint PDF Pt (x, ηε)) using the projection operators (see Chapter 8 in Ref.
[6]).

3.2 Collision Problem andManipulation Technique of ı-Functions

We next review a collision problem and a related technique for the δ functions, which will be
used for theML equation for the dealer model in Sect. 4. Interested readers in the technicality
are referred to textbooks on kinetic theory, such as Chapter 13 of Ref. [28] and Chapter 3 of
Ref. [29].

3.2.1 Equation of Motion with a Deterministic Collision

This review subsection aims to provide an illustrative example of a deterministic collision
based on Ref. [29] and then derive the Liouville equation. Let us consider a particle of motion
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characterised by its position x̂(t) and velocity v̂(t). We place a rigid wall at x = x∗ at which
the particle’s velocity is inverted due to collision (see Fig. 3). The dynamics are given by

dx̂

dt
= v̂ (17a)

d v̂

dt
= −2v̂(t)δ(t − t∗) (17b)

with the collision time t∗. The collision time t∗ is determined by

x̂(t∗) = x0 + t∗v0 = x∗ �⇒ t∗ := x∗ − x0
v∗ , (18)

where the initial condition is given by x̂(0) = x0 and v̂(0) = v0 satisfying x0 < x∗ and
v0 > 0. Here the multiplication between v̂(t) and the δ function is interpreted in the Itô
sense: v̂(t)δ(t − t∗) = limh↓0 v̂(t∗ − h)δ(t − t∗). The δ function represents the impulsive
force due to the collision consistently with the invertion. Indeed, this time-evolution equation
consistently deduces

v̂(t∗ +h)= v̂(t∗ −h)+
∫ t∗+h

t∗−h
dt

d v̂(t)

dt
= v̂(t∗ −h)+

∫ t∗+h

t∗−h
dt

{−2v̂(t)δ(t − t∗)
}=−v̂(t∗ −h) (19)

for infinitesimal positive h > 0.

3.2.2 Liouville Equation

From Eq. (17), we derive the Liouville equation,4 a time-evolution equation for the two-
dimensional joint PDF Pt (x, v) := 〈δ(x − x̂(t))δ(v − v̂(t))〉 (see Appendix E for the
derivation):

∂Pt (x, v)

∂t
= −v

∂Pt (x, v)

∂x
+ [Θ(v)Pt (x, v) − Θ(−v)Pt (x,−v)] |v|δ(x − x∗) (20)

with the Heaviside function Θ(x), defined by

Θ(x) :=

⎧⎪⎨
⎪⎩
1 (x > 0)

1/2 (x = 0)

0 (x < 0)

. (21)

It is straightforward to generalise this formulation for multi-body particle dynamics in
principle by assuming the rigid spheres without contact friction, finally leading to the Liou-
ville equation for many-body dynamics. In the standard program of the kinetic theory, the
Boltzmann equation is finally deduced by integrating the Liouville equation with the assump-
tion of molecular chaos.

The key technique for the derivation is the decomposition of the δ function. In general,
the following identity holds for the δ-functions for an arbitrary function g(t):

4 Technically, this is called the pseudo-Liouville equation [28, 29]. While the conventional Liouville equation
is local (i.e., a partial differential equation without jump terms) in classical mechanics, the pseudo-Liouville
equation involves non-local jumps due to collisions.
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� �

δ(g(t)) =
∑
i

1

|g′(ti )|δ(t − ti ) (22)

� �
with the i th zero point ti , by assuming g′(ti ) �= 0. This technique is straightforwardly applied
for the derivation of the ML equation for the dealer model in Sect. 4.1.2. Readers unfamiliar
with the δ function are referred to Appendix A.

4 Result 1: A ReducedMaster-Liouville Equation

We have provided enough preliminary review on Novikov’s theorem and kinetic theory in
Sect. 3. This section derives the master-Liouville equations for the two-body dealer model
(4) or equivalently (6) using kinetic theory as the main results.

In this section, in particular, we focus on the ML equation for the relative price r̂ obeying
Eq. (6b). Finally, we will obtain a reduced ML equation as follows:
� �

The time-evolution equation of the reduced PDF Pt (r) is given by

∂Pt (r)

∂t
= σ 2

cm

2

∂2

∂r2
Pt (r) +

∑
s=±1

[Jt;s(r + sL/2) − Jt;s(r)], (23a)

Jt;s(r) := −s
σ 2
cm

2
∂−s Pt (sL/2)δ(r − sL/2) = σ 2

cm

2
|∂−s Pt (sL/2)| δ(r − sL/2) ≥ 0

(23b)

for the one-dimensional PDF Pt (r) := 〈δ(r−r̂(t))〉. The positive term Jt;s(r) represents
the probability current due to collisions, as will be discussed in detail in Sect. 4.2.

� �

Here we have introduced the left (s = −1) and right (s = +1) derivatives, defined by

∂s f (r) := lim
h↓0

f (r + sh) − f (r)

sh
. (24)

Since the original dynamics (4) is two-dimensional specified by the full PDF Pt (z1, z2) :=
〈δ(z1 − ẑ1(t))δ(z2 − ẑ2(t))〉, the one-dimensional PDF Pt (r) := 〈δ(r − r̂(t))〉 can be called
a reduced PDF. Correspondingly, we call Eq. (22) a reduced master-Liouville equation or
just a reduced ML equation.5

Here we provide two independent derivations on the reduced ML equation (22): one is
based on (i) Novikov’s theorem for coloured noise [18, 19] and (ii) continuous limit from
one-dimensional randomwalks on a regular lattice.While allmethods deduce the same result,
we believe that presenting various derivation methods will help the reader better understand
our methodology.

5 The time-evolution equation of PDFs is regularly called the master equation, the differential form of the
Chapman-Kolmogorov equation orKolmogorov’s forward equation. Here we call such an equation themaster-
Liouville equation because it corresponds to the Liouville equation in the standard program of kinetic theory.
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Fig. 4 The dynamics of the relative price r̂(t) can be regarded as a mechanical system where the particle
diffuses and goes back to the origin after colliding against the boundaries at r = ±L/2

4.1 Derivation Based on Novikov’s Theorem for Coloured Noise

Here we derive the ML equation (22) using Novikov’s theorem [18, 19] for the SDE (6b)
for the relative price r̂(t). Interestingly, the SDE (6b) can be regarded as a Brownian motion
confined in the boundaries at r = ±L/2, at which the particle goes back to the origin (see
Fig. 4). By regarding the particle arrivals at the boudaries r = ±L/2 as “collisions", this
system can be regarded as a mechanical system with collisions and jumps at the boundaries.
This is the basic idea to apply the kinetic formulation to this dealer model.

This physical picture based on collisional jumps is very similar to the conventional kinetic
formulation, and derivation of the ML equation should work well in the parallel method
presented in Sect. 3.2. However, if we naively follow the same formal calculation as that in
Sect. 3.2, we will encounter delicate mathematical issues originating from the δ singularity
of the white noise. To solve this problem via kinetic theory, we reformulate the SDE (6b) by
introducing three tricks:

1. replacement of the white noise η̂(t) with the OU coloured noise η̂ε(t) with nonzero
correlation time ε > 0;

2. manipulation of the δ functions to represent the boundary condition;
3. the white-noise limit ε ↓ 0 to keep the consistency with the original model.

Here theOU coloured noise is introduced to avoid technical delicate issues on thewhite noise.
The OU coloured noise has the advantages that it is a bounded and continuous function of
time and that the ordinary calculus is available for formal calculations by assuming non-zero
ε > 0. In the final stage of the calculation, we take the white-noise limit ε ↓ 0. Let us explain
this procedure one by one as follow.

4.1.1 Reformulation of the SDE for the Relative Price r̂(t)

To follow to these recipes, let us first replace the white noise η̂ in Eq. (6b) with the OU
coloured noise η̂ε defined by

dη̂ε(t)

dt
= − η̂ε(t)

ε
+ ξ̂G(t) (25)

with a nonzero positive constant ε > 0 and a white Gaussian noise ξ̂G(t). This OU noise
satisfies

〈η̂ε(t)〉 = 0, 〈η̂ε(t1)η̂ε(t2)〉 = 1

2ε
e−|t1−t2|/ε, (26)

which reduces to the white noise for ε ↓ 0:

lim
ε↓0〈η̂ε(t1)η̂ε(t2)〉 = δ(t1 − t2). (27)
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We then rewrite Eq. (6b) as

dr̂(t) =
{
dtσcmη̂ε(t) (without collisions: τ̂s;i /∈ [t, t + dt))

−sL/2 (with a collision: τ̂s;i ∈ [t, t + dt))
, (28)

with dr̂(t) := r̂(t +dt)− r̂(t) for an infinitesimal positive dt > 0. Here τ̂s;i is the i th arrival
time of the particle at r̂(τs;i ) = sL/2 for s = ±1. Using the δ function, this is equivalent to

dr̂(t)

dt
= σcmη̂ε(t) +

∑
s=±1

∑
i=1

−sL

2
δ(t − τ̂s;i ). (29)

Considering the collison directions, we note that the velocity must be positive (negative) at
the arrival time at r = +L/2 (r = −L/2):

lim
h↓0

dr̂(τ̂+1;i − h)

dt
= σcm lim

h↓0 η̂ε (τ̂+1;i − h) > 0, lim
h↓0

dr̂(τ̂−1;i − h)

dt
= σcm lim

h↓0 η̂ε (τ̂−1;i − h) < 0.

(30)
In other words,

s lim
h↓0

dr̂(τ̂s;i − h)

dt
= sσcm lim

h↓0 η̂ε(τ̂s;i − h) > 0. (31)

for both s = ±1. Remarkably, this mathematical structure is essentially similar to the con-
ventional kinetic theory for collision (see Eq. (153) in Appendix E, which is based on Eq. (22)
in Sect. 3.2). This technical issue is important in removing the absolute operators of the OU
coloured noises as shown in Sect. 4.1.2.

4.1.2 Dynamics of an Arbitrary Function f (r̂(t))

We also consider the dynamics of an arbitrary function f (r)

d f (r̂) =
⎧⎨
⎩

σcm
d f (r̂)

dr
η̂εdt (without collisions: τ̂s;i /∈ [t, t + dt))

f (r̂ − sL/2) − f (r̂) (with a collision: τ̂s;i ∈ [t, t + dt))
(32)

with d f (r(t)) := f (r(t +dt))− f (r(t)). Using the δ-function, this relation can be rewritten
as

d f (r̂)

dt
= σcm

d f (r̂)

dr
η̂ε︸ ︷︷ ︸

without collisions during [t,t+dt)

+
∑
s=±1

∑
i=1

[
f (r̂ − sL/2) − f (r̂)

]
δ(t − τ̂s;i )︸ ︷︷ ︸

with collisions

. (33)

Here we use a decomposition formula for the δ functions:

δ(g(t)) =
∑
i

1

|g′(t)|δ(t − ti ) �⇒ h(t)|g′(t)|δ(g(ti )) =
∑
i

h(t)δ(t − ti ) (34)

for an arbitrary functions g(t) and h(t), where ti is the i th zero point of g(t), defined by
g(ti ) = 0 and ti < ti+1. Using this formula, we obtain

d f (r̂)

dt
= σcm

d f (r̂)

dr
η̂ε + σcm

∑
s=±1

[
f (r̂ − sL/2) − f (r̂)

] ∣∣∣∣dr̂dt
∣∣∣∣ δ(r̂ − sL/2)

= σcm
d f (r̂)

dr
η̂ε + σcm

∑
s=±1

[
f (r̂ − sL/2) − f (r̂)

] |η̂ε |δ(r̂ − sL/2). (35)
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By considering the physical picture that the velocity dr̂/dt must be positive (negative) when
the particle hits the boundary r̂ = L/2 (r̂ = −L/2) as summarised in Eq. (31), we can
remove the absolue operator6 in Eq. (35) such that |η̂ε |δ(r̂ − sL/2) = sη̂εδ(r̂ − sL/2),
leading to

d f (r̂)

dt
= σcm

d f (r̂)

dr
η̂ε + σcm

∑
s=±1

s
[
f (r̂ − sL/2) − f (r̂)

]
η̂εδ(r̂ − sL/2). (36)

4.1.3 Ensemble Average and Novikov’s Theorem for the White-Noise Limit

Let us take the ensemble average:
〈
d f (r̂)

dt

〉
=

〈
σcm

d f (r̂)

dr̂
η̂ε + σcm

∑
s=±1

s [ f (0) − f (sL/2)] η̂εδ(r̂ − sL/2)

〉
. (37)

Let us evaluate the diffusive term 〈(d f (r̂)/dr̂)η̂ε〉 and the collision term 〈η̂εδ(r̂ − sL/2)〉
one by one.
Novikov’s theorem for short-time interval. To evaluate the ensemble averages, we use
Novikov’s theorem that is valid for an arbitrary coloured Gaussian noise [18, 19]:

〈η̂ε(t)g(r̂(t))〉 =
∫ t

0
dt ′〈η̂ε(t)η̂ε(t

′)〉
〈
δg(r̂(t))

δη̂ε(t ′)

〉
. (38)

Since the correlation time ε is finally set infinitesimal, we evaluate this ensemble average
by dropping minor correction terms disappearing for the white noise limit ε ↓ 0. Here we
remark a useful identity identity for integrals with short memory:

lim
ε↓0

∫ t

0
dt ′ e

−(t−t ′)/ε

2ε
f (t ′) = lim

ε↓0

∫ t

tini(ε)
dt ′ e

−(t−t ′)/ε

2ε
f (t ′) = f (t), tini(ε) := t−ε1/2 (39)

for any function f (t) that decays sufficiently rapidly for t → ∞. This relation holds because

lim
ε↓0

∫ t

0
dt ′ f (t ′)e

−(t−t ′)/ε

2ε
= lim

ε↓0

∫ ∞

0
dt̃ f (t − ε t̃)e−t̃/2 = f (t) (40)

and

lim
ε↓0

∫ t

tini(ε)
dt ′ f (t ′)e

−(t−t ′)/ε

2ε
= lim

ε↓0

∫ ε−1/2

0
dt̃ f (t − ε t̃)e−t̃/2 = f (t) (41)

with the variable transformation t̃ := (t − t ′)/ε. This result is intuitively reasonable because
the integral interval t − tini(ε) = ε1/2 is much larger than the correlation time ε: ε1/2 � ε

for ε ↓ 0.
Considering this relationship, it is sufficient to consider the contribution of the path

{r̂(t ′′)}t ′′∈[tini(ε),t) with sufficiently short-time interval t − tini(ε) = ε1/2:

lim
ε↓0〈η̂ε(t)g(r̂(t))〉 = lim

ε↓0

∫ t

tini(ε)
dt ′〈η̂ε(t)η̂ε(t

′)〉
〈
δg(r̂(t))

δη̂ε(t ′)

〉
. (42)

6 The introduction of the OU coloured noise η̂ε with nonzero ε > 0 plays a technically important role here.
If we assumed the white noise from the beginning, there appeared the absolute values of the white noise |ξ̂G|,
which is mathematically ill-defined. In addition, the collisional velocities (31) should have diverged for the
white noise. To avoid these delicate issues, we proceed with the calculation for nonzero ε > 0 and finally take
the white-noise ε ↓ 0.
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(b)

(a)

Fig. 5 The unsigned timeseries {T̂k }k is introduced as the rearrangement of the signed timeseries {τ̂s;k }s=±1;k

This formula implies that only short-time information on the path {r̂(t ′′)}t ′′∈[tini(ε),t) is nec-
essary in evaluating the ensemble average for the white-noise limit.
Rearranged collision timeseries.

Here we reformulate the mathematical notation of the collision times. We have already
introduced the signed collision timeseries {τ̂s;i }i for both s = ±1. To define the unsigned
collision timeseries {T̂i }i , let us rearrange these collision timeseries in the ascending order
without considering the sign s = ±1 (see Fig. 5):

for any i = 1, 2, ..., there exists k and s, such that T̂i = τ̂s;k, satisfying T̂i < T̂i+1. (43)

We also assume T̂0 = 0. Using this notation, the presense of collision at time t can be written
as the condition t = T̂i for some i , whereas the absense of collision can be written as t �= T̂i
for any i .

Notably, if there is a collision at time t (i.e., t = T̂i for some i), the collision term
[ f (0)− f (sL/2)]δ(r̂−sL/2) is muchmore dominant than the diffusive term σcm(d f /dr̂)η̂ε

in Eq. (37), such that |σcm(d f /dr̂)η̂ε | � |[ f (0) − f (sL/2)]δ(r̂ − sL/2)|, due to the δ

singularity. Therefore, at time t , we can assume

– the absense of collisions (i.e., t �= T̂i for any i) in evaluating 〈σcm(d f /dr̂)η̂ε〉, and
– the presense of a collision (i.e., t = T̂i for some i) in evaluating 〈[ f (0)− f (sL/2)]δ(r̂ −

sL/2)〉.
This means that the dominant term is switched whether there is a collision at the time t or
not.

We also estimate the probability of a collision during a infinitesimal-time interval [t, t +
dt). The probability pcol(t, t + dt) should be proportional to dt , such that

pcol(t, t + dt) = λcol(t)dt + o(dt) (44)

with intensity λcol(t). Indeed, if pcol(t, t + dt) ∝ dtm with m < 1, the expected number of
collisions N̂ (T ) during [0, T ) is estimated as

〈N̂ (T )〉 ∝ T

dt
dtm = Tdtm−1, (45)

which diverges to infinity for dt ↓ 0.
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Evaluation of the diffusive term. Based on Novikov’s theorem (42) for short-time interval
t − tini(ε), we evaluate the diffusive term 〈σcm(d f (r̂)/dr̂)η̂ε〉 as

lim
ε↓0

〈
σcm

d f (r̂(t))

dr̂
η̂ε

〉
= lim

ε↓0

∫ t

tini(ε)
dt ′ e

−(t−t ′)/ε

2ε

〈
σcm

δr̂(t)

δη̂ε(t ′)
∂

∂ r̂(t)

(
d f (r̂(t))

dr̂(t)

)〉
. (46)

We then evaluate the functional derivative of the path δr̂(t)/δη̂ε(t ′), by assuming t �= T̂i for
any i . Since the integral interval t − tini(ε) = ε1/2 is to be set infinitesimal, we can assume
the absense of collisions during [tini(ε), t), such that T̂i−1 < tini(ε) < t < T̂i .

This assumption can be quantitatively discussed by considering the statistical number of
collisions during [tini(ε), t). Let us introduce pk(tini(ε), t) and 〈. . .〉k;[tini(ε),t) as the probabil-
ity of k-times collisions during [tini(ε), t) and the ensemble average conditional on k-times
collisions, respectively. The ensemble average can be written as

〈
σcm

δr̂(t)

δη̂ε(t ′)
∂

∂ r̂(t)

(
d f (r̂(t))

dr̂(t)

)〉
=

∞∑
k=0

pk(tini(ε), t)

〈
σcm

δr̂(t)

δη̂ε(t ′)
∂

∂ r̂(t)

(
d f (r̂(t))

dr̂(t)

)〉
k;[tini(ε),t)

.

(47)
Since the interval is proportional short t− tini(ε) = ε1/2, the probability of k-times collisions
during [tini(ε), t) is estimated to be [λcol(t)(t − tini(ε))]k ∝ εk/2. For ε ↓ 0, it is sufficient to
consider the case k = 0 as the leading-order contribution.

Therefore, by assuming the absense of collisions (i.e., k = 0), the path is given by

r̂(t) = r̂(tini(ε)) +
∫ t

tini(ε)
dt ′σcmη̂ε(t

′), (48)

as the formal solution of the SDE (29). This implies the functional-derivative relationship

δr̂(t)

δη̂ε(t ′)
= σcm, (49)

leading to

lim
ε↓0

〈
σcm

d f (r̂(t))

dr̂
η̂ε(t)

〉
= lim

ε↓0

∫ t

tini(ε)
dt ′ e

−(t−t ′)/ε

2ε

〈
σ 2
cm

∂

∂ r̂

(
d f (r̂)

dr̂

)〉
= σ 2

cm

2

〈
d2 f (r̂)

dr̂2

〉
.

(50)
Evaluation of the collision term.We next evaluate the collisional term 〈η̂ε(t)δ(r̂(t)−sL/2)〉,
by assuming t = T̂i for some i . Using Novikov’s theorem (42) for short-time interval, we
obtain

lim
ε↓0〈η̂ε(t)δ(r̂(t) − sL/2)〉 = lim

ε↓0

∫ t

tini(ε)
dt ′ e

−(t−t ′)/ε

2ε

〈
δr̂(t)

δη̂ε(t ′)
∂

∂ r̂(t)
δ(r̂(t) − sL/2)

〉
.

(51)

Since the integral interval t − tini(ε) = ε1/2 is to be set infinitesimal, we can assume the
absense of collisions during [tini(ε), t), such that T̂i−1 < tini(ε) < t = T̂i , similarly to the
diffusive term. Therefore, the formal solution of the SDE (29) and its functional derivative
are given by

r̂(t) = r̂(tini(ε)) +
∫ t

tini(ε)
dt ′σcmη̂ε(t

′) �⇒ δr̂(t)

δη̂ε(t ′)
= σcm. (52)

We then obtain

lim
ε↓0〈η̂ε(t)δ(r̂(t) − sL/2)〉 = lim

ε↓0

∫ t

tini(ε)
dt ′ e

−(t−t ′)/ε

2ε

〈
σcm

∂

∂ r̂(t)
δ(r̂(t) − sL/2)

〉
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Right derivative Left derivative

Fig. 6 Technically, the derivatives ∂Pt (L/2)/∂r and ∂Pt (−L/2)/∂r should be regarded as left and right
derivatives, respectively. Indeed, considering the obvious character Pt (r) = 0 for r > L/2, ∂+1Pt (L/2) = 0
and ∂−1Pt (−L/2) = 0. In addition, the signs of the derivatives are given by ∂−1Pt (L/2) ≤ 0 and
∂+1Pt (−L/2) ≥ 0

= σcm

2

〈
∂

∂ r̂(t)
δ(r̂(t) − sL/2)

〉

= −σcm

2

∂

∂r
Pt (sL/2). (53)

Obtaining the ML equation. In summary, we obtain
∫ ∞

−∞
dr ′ ∂

∂t
Pt (r

′) f (r ′) =
∫ ∞

−∞
dr ′

{
Pt (r

′) σ 2
cm

2

d2

dr ′2 f (r ′)
}
−σ 2

cm

2

∑
s=±1

s [ f (0) − f (sL/2)]
∂

∂r
Pt (sL/2).

(54)
By substituting f (r ′) = δ(r ′ − r) and performing the partial integration, we obtain

∂

∂t
Pt (r) = σ 2

cm

2

∂2

∂r2
Pt (r) − σ 2

cm

2

∑
s=±1

s [δ(r) − δ(r − sL/2)]
∂

∂r
Pt (sL/2)

= σ 2
cm

2

∂2

∂r2
Pt (r) +

∑
s=±1

[
Jt;s(r + sL/2) − Jt;s(r)

]
(55a)

with the probability current due to collisions

Jt;s(r) := −s
σ 2
cm

2

∂Pt (sL/2)

∂r
δ(r − sL/2). (55b)

While this is a valid time-evolution equation of the PDF Pt (r), we next rewrite Eq. (55a) to
a more intuitve form by examining several technical issues.

4.1.4 Technical Issue on the Left and Right Derivatives

Technically, the derivative ∂Pt (sL/2)/∂r in the reduced ML equation (55a) should be
interpreted as the left (right) derivatives for positive (negative) s (see Fig. 6), such that

∂Pt (sL/2)

∂r
→ ∂−s Pt (sL/2), ∂s f (r) := lim

h↓0
f (r + sh) − f (r)

sh
, (56)

because the probability must be exactly zero beyond the boundary

Pt (r) = 0 (for |r | ≥ L/2) . (57)

In other words, the particle must come from left (right) when it collides against the right
(left) boundary r = L/2 (r = −L/2), which is reflected for the selection of the derivative
direction. This technical issue is more evident in another derivation based on a lattice model
in the continuous limit (see Appendix F).
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(a) (b)

Fig. 7 Interpretation of the ML equation (61b) based on the probability current jt (r) defined by Eq. (61a).
a jt (r) represents the probability current because the probability conservation relation is written as
(d/dt)

∫ b
a dr Pt (r) = − jt (b) + jt (a) for a, b ∈ (0, L/2). b The δ contributions from the term Jt;s (r)

represents the collisional inflow at r = ±L/2 because the probability conservation relation is written as
(d/dt)

∫ h
−h dr Pt (r) = − jt (h) + jt (−h) + | jt (−L/2)| + | jt (L/2)|. These schematic illustrates the intuitive

meaning of the δ contributions in Jt;s (r)

4.1.5 Sign of Derivatives

We further examine the sign of the derivatives in rewriting Eq. (55a). Since Pt (r) = 0 for
|r | ≥ L/2, we obtain the signs of the left and right derivative (see Fig. 6) as

∂−1Pt (+L/2) ≤ 0, ∂+1Pt (−L/2) ≥ 0 ⇐⇒ s∂−s Pt (sL/2) = −|∂−s Pt (sL/2)|. (58)

Indeed, since Pt (r) = 0 for |r | ≥ L/2 and Pt (r) ≥ 0 for |r | < L/2, we can show

∂−1Pt (L/2) = lim
h↓0

Pt (L/2 − h) − Pt (L/2)

−h
= − lim

h↓0
Pt (L/2 − h)

h
≤ 0, (59a)

∂+1Pt (L/2) = lim
h↓0

Pt (L/2 + h) − Pt (L/2)

h
= + lim

h↓0
Pt (L/2 + h)

h
≥ 0. (59b)

This means that the probability current Jt;s(r) defined by Eq. (55b) can be rewritten as an
explicitly positive form

Jt;s(r) := σ 2
cm

2
|∂−s Pt (sL/2)|δ(r − sL/2) ≥ 0. (60)

This is equivalent to the reduced ML equation (22), which is a more intuitive form than
Eq. (55a) because the direction of the probability current is clear as discussed in Sect. 4.2.

4.2 Intuitive Interpretation of the ReducedMaster-Liouville Equation (22)

Here we provide an intuitive interpretation of the master-Louville equation (22) from the
viewpoint of the probability inflow and outflow relevant to the probability conservation.
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By introducing the probability current [6] defined by

jt (r) := −σ 2
cm

2

∂Pt (r)

∂r
, (61a)

the reduced ML equation (22) can be rewritten as

∂Pt (r)

∂t
=− ∂

∂r
jt (r)+

∑
s=±1

[Jt;s(r+sL/2) − Jt;s(r)], Jt;s(r) :=| jt (r)|δ(r−sL/2)≥0.

(61b)

� �

Here we have abbreviated the technical minor symbol on the left and right derivatives.
The term jt (r) is called the probability current because the probability-conservation relation

d

dt

∫ b

a
dr Pt (r) =

∫ b

a

[
− ∂

∂r
jt (r)

]
= − jt (b)︸︷︷︸

outflow

+ jt (a)︸︷︷︸
inflow

(62)

implies that the total probability within the interval (a, b) is determined by the balance of
the probability outflow jt (b) and inflow jt (a) (see Fig. 7a for a schematic), where (a, b)
is any interval which does not include the singular points r = 0 and r = ±L/2, such that
0 < a < b < L/2 or −L/2 < a < b < 0.

Considering the meaning of the probability current jt (r), the δ-type contribution can be
interpreted as follows: let us consider the probability conservation near r = 0 by integrating
the ML equation (61b) over (−h, h) as

d

dt

∫ h

−h
dr Pt (r) = − jt (h) + jt (−h)︸ ︷︷ ︸

diffusive flow

+ | jt (+L/2)| + | jt (−L/2)|︸ ︷︷ ︸
collisional inflow

(63)

with infinitesimal positive h > 0. This means that the δ-contribution from Jt;s(r) is to
transfer the collisional probability current at r = ±L/2 to the origin r = 0 (see Fig. 7b for
a schematic). This picture illustrates the balance of the probability currents described by the
ML equation (61b), consistently with the physical dynamics where the particle returns back
to the origin after collision.

In addition, let us consider the probability conservation near the wall at r = L/2, by
integrating the ML equation (61b) over (L/2 − h, L/2 + h) as

d

dt

∫ L/2+h

L/2−h
dr Pt (r) = − jt (L/2 + h) + jt (L/2 − h) − | jt (L/2)| = 0

+ jt (L/2 − h)︸ ︷︷ ︸
diffusive inflow

− jt (L/2)︸ ︷︷ ︸
collisional outflow

, (64)

where we have used jt (L/2+h) = 0 and jt (L/2) > 0.We thus find that the total probability
within the interval (L/2 − h, L/2 + h) is determined by the balance between the diffusive
inflow jt (L/2 − h) and the collisional outflow jt (L/2).
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Volume

Midprice Ask price
(a) (b)

Fig. 8 a The average PDF φ(r) := limt→∞ Pt (r) in the steady state is given by the tent function (65). b φ(r)
is directly related to the average order-book profile (66), where the depth r is measured from the centre of
mass ẑcm

5 Result 2: Exact Solution to the ReducedMaster-Liouville
Equation (22)

The ML equation (22) can be solved exactly in the steady state. We finally obtain the tent
function as the exact steady solution (see Fig. 8a and Appendix G.1)

φ(r) = max

{
0,

L/2 − |r |
L2/4

}
. (65)

5.1 Average Order-Book Profile

The solution (65) is directly related to the normalised average order-book profile f A(r)
(see Fig. 8b) as

fA(r) :=
〈
1

2

∑
i=1,2

δ
(
âi − ẑcm − r

)〉 = φ(r − L/2) = max

{
0,

L/2 − |r − L/2|
L2/4

}
, (66)

where the depth r is measured from the centre of mass ẑcm, or equivalently from the market
midprice for the special case of N = 2.

5.2 Average Transaction Interval

We also discuss the average transaction interval. The average transaction interval can be
evaluated by considering the physical meaning of the steady probability current jss(r) :=
limt→∞ jt (r). Indeed, since the absolute value of the steady probability current | jss(r)| at the
walls r = ±L/2 represents the transaction probability per unit time, the average transaction
interval 〈τ 〉 is given by

〈τ 〉 = lim
h↓0

1

| jss(−L/2 + h)| + | jss(L/2 − h)| = L2

4σ 2
cm

= L2

2σ 2 . (67)

This is exactly equal to the formula (7) derived in Ref. [15]. We thus rederive the statistics
of the transaction interval via the kinetic theory.

6 Result 3: The Full Master-Liouville Equation

We have derived the reduced ML equation to exactly obtain the average order-book profile
and the average transaction interval. In this section, we derive the full ML equation for the
two-body dealer model (4) via Novikov’s theorem in the parallel calculation to Sect. 4.1:
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The full PDF Pt (z1, z2) := 〈δ(z1 − ẑ1)δ(z2 − ẑ2)〉 obeys the full ML equation defined
by

∂Pt (z1, z2)

∂t
=

∑
i=1,2

σ 2

2

∂2Pt (z1, z2)

∂z2i
+

∑
s=±1

[
Jt;s(z1+sL/2, z2 − sL/2) − Jt;s(z1, z2)

]

(68a)

with the probability current Jt;s(z1, z2) defined by

Jt;s(z1, z2) := −sσ 2

2
δ(z1 − z2 − sL)∂̃12;s Pt (z1, z2) (68b)

= σ 2

2
δ(z1 − z2 − sL)

∣∣∣∂̃12;s
∣∣∣ Pt (z1, z2) ≥ 0.

� �
Here we have introduced the left (s = −1) and right (s = +1) derivatives defined by

∂1;s f (z1, z2) := lim
h↓0

f (z1 + sh, z2) − f (z1, z2)

sh
, ∂2;s f (z1, z2) := lim

h↓0
f (z1, z2 + sh) − f (z1, z2)

sh
,

(69)
and

∂̃12;s f (z1, z2) := ∂1;−s f (z1, z2) − ∂2;s f (z1, z2), (70)∣∣∣∂̃12;s
∣∣∣ f (z1, z2) := ∣∣∂1;−s f (z1, z2)

∣∣ + ∣∣∂2;s f (z1, z2)∣∣ ≥ 0. (71)

The consistency between the full and reduced ML equations (68) and (22) can be confirmed
as shown in Appendix H.

6.1 Reformulation Based on the OU Coloured Noise

First, we reformulate the SDE (4) using the OU coloured noise:

ẑ1(t + dt) = ẑ1(t) +

⎧⎪⎨
⎪⎩

σ η̂1;ε(t)dt if |ẑ1(t) − ẑ2(t)| < L

−L/2 if ẑ1(t) − ẑ2(t) = +L

+L/2 if ẑ1(t) − ẑ2(t) = −L

(72a)

ẑ2(t + dt) = ẑ2(t) +

⎧⎪⎨
⎪⎩

σ η̂2;ε(t)dt if |ẑ1(t) − ẑ2(t)| < L

+L/2 if ẑ1(t) − ẑ2(t) = +L

−L/2 if ẑ1(t) − ẑ2(t) = −L

, (72b)

where the OU coloured noises η̂1;ε and η̂2;ε are defined by
dη̂1;ε
dt

= −1

ε
η̂1;ε + ξ̂G1 ,

dη̂2;ε
dt

= −1

ε
η̂2;ε + ξ̂G2 , (72c)

where ξ̂G1 and ξ̂G2 are the standard independent white Gaussian noises (i.e., 〈ξ̂Gi 〉 = 0 and
〈ξ̂Gi (tk)ξ̂Gj (tl)〉 = δi, jδ(tk − tl)). We finally take the white-noise limit ε ↓ 0 to keep the
consistency with the original model (4).

Equations (72) can be rewritten by the δ functions as follows: let us introduce the trans-
action time τ̂s;i as the i th transaction time with sign s = ±1 satisfying

ẑ1(τ̂s;i ) − ẑ2(τ̂s;i ) = sL, τ̂s;i < τ̂s;i+1, s ∈ {−1,+1}. (73a)
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Using the δ functions, we can rewrite Eq. (72) as

dẑ1
dt

= σ η̂1;ε(t)dt −
∑
s=±1

∑
i

sL

2
δ(t − τ̂s;i ), (73b)

dẑ2
dt

= σ η̂2;ε(t)dt +
∑
s=±1

∑
i

sL

2
δ(t − τ̂s;i ). (73c)

We note that, for the collision ẑ1(τ̂s;i )− ẑ2(τ̂s;i ) = sL , the relative velocity d(ẑ1 − ẑ2)/dt
must be positive for s = 1 and negative for s = −1, respectively. In otherwords, the following
relation holds,

s lim
h↓0

d

dt

{
ẑ1(τ̂s;i − h) − ẑ2(τ̂s;i − h)

} = sσ lim
h↓0

{
η̂1;ε(τ̂s;i − h) − η̂2;ε(τ̂s;i − h)

}
> 0.

(74)

6.2 Dynamics of an Arbitrary Function f(ẑ1, ẑ2)

We next consider the dynamics of an arbitrary function f (ẑ1, ẑ2):

d f (ẑ1, ẑ2)

dt
=σ η̂1;ε

∂ f (ẑ1, ẑ2)

∂ ẑ1
+ σ η̂2;ε

∂ f (ẑ1, ẑ2)

∂ ẑ2

+
∑
s=±1

∑
i

[
f (ẑ1 − sL/2, ẑ2 + sL/2) − f (ẑ1, ẑ2)

]
δ(t − τ̂s;i ). (75)

By theway, since τ̂s;i is the solution of ẑ1(τ̂s;i )− ẑ2(τ̂s;i ) = sL , the δ function δ(ẑ1− ẑ2−sL)

can be decomposed as follows:

δ(ẑ1−ẑ2−sL) =
∑
i

∣∣∣∣ ddt
(
ẑ1 − ẑ2 − sL

)∣∣∣∣
−1

δ(t−τ̂s;i ) =
∑
i

σ−1
∣∣η̂1;ε − η̂2;ε

∣∣−1
δ(t−τ̂s;i ).

(76)
By considering the sign of the relative velocity (equivalently, the direction of collisions) given
by Eq. (74), we obtain

sσ g(ẑ1, ẑ2)(η̂1;ε − η̂2;ε)δ(ẑ1 − ẑ2 − sL) =
∑
i

sg(ẑ1, ẑ2)δ(t − τ̂s;i ) (77)

for an arbitrary function g(ẑ1, ẑ2). Equation (75) then can be rewritten as

d f (ẑ1, ẑ2)

dt
=σ η̂1;ε

∂ f (ẑ1, ẑ2)

∂ ẑ1
+ σ η̂2;ε

∂ f (ẑ1, ẑ2)

∂ ẑ2

+
∑
s=±1

sσ(η̂1;ε − η̂2;ε)
[
f (ẑ1 − sL/2, ẑ2 + sL/2) − f (ẑ1, ẑ2)

]
δ(ẑ1 − ẑ2 − sL).

(78)

We then take the ensemble average of both sides as
〈
d f (ẑ1, ẑ2)

dt

〉
=

〈
σ η̂1;ε

∂ f (ẑ1, ẑ2)

∂ ẑ1
+ σ η̂2;ε

∂ f (ẑ1, ẑ2)

∂ ẑ2

〉

+
∑
s=±1

sσ
〈
(η̂1;ε − η̂2;ε)

[
f (ẑ1 − sL/2, ẑ2 + sL/2) − f (ẑ1, ẑ2)

]
δ(ẑ1 − ẑ2 − sL)

〉
.

(79)
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6.3 Application of Novikov’s Theorem

To proceed the calculation further, we have to calculate the correlation terms of the form
〈η̂i;ε(t)g(ẑ1, ẑ2)〉. Such a correlation term can be calculated via Novikov’s theorem,

〈η̂i;ε(t)g(ẑ1, ẑ2)〉 =
∫ t

0
dt ′〈η̂i;ε(t)η̂i;ε(t ′)〉

〈
δg(ẑ1, ẑ2)

δη̂i;ε

〉

=
∫ t

0
dt ′ e

−(t−t ′)/ε

2ε

〈{
δẑ1(t)

δη̂i;ε(t ′)
∂

∂ ẑ1
+ δẑ2(t)

δη̂i;ε(t ′)
∂

∂ ẑ2

}
g(ẑ1, ẑ2)

〉
, (80)

which implies

lim
ε↓0〈η̂i;ε(t)g(ẑ1, ẑ2)〉 = lim

t ′↑t
1

2

〈{
δẑ1(t)

δη̂i;ε(t ′)
∂

∂ ẑ1
+ δẑ2(t)

δη̂i;ε(t ′)
∂

∂ ẑ2

}
g(ẑ1, ẑ2)

〉
(81)

for the white-noise limit. Since the formal solution of the SDE (73) is given by

ẑ1(t) = ẑ1(tini) + σ

∫ t

tini
dt ′η̂1;ε(t ′), (82)

ẑ2(t) = ẑ2(tini) + σ

∫ t

tini
dt ′η̂2;ε(t ′), (83)

assuming the absense of transactions during [tini, t), we obtain

lim
t ′↑t

δẑi (t)

δη̂ j (t ′)
= σ. (84)

We thus obtain

lim
ε↓0〈η̂i;ε(t)g(ẑ1, ẑ2)〉 = σ

2

〈
∂

∂ ẑi
g(ẑ1, ẑ2)

〉
. (85)

The formula (85) is useful in deriving the full ML equation. Indeed, for the white-noise
limit ε ↓ 0, we obtain〈
d f (ẑ1, ẑ2)

dt

〉
=

∫ ∞

−∞
dz1dz2

∂Pt (z1, z2)

∂t
f (z1, z2), (86)

〈
σ η̂i;ε

∂ f (ẑ1, ẑ2)

∂ ẑi

〉
=

∫ ∞

−∞
dz1dz2Pt (z1, z2)

σ 2

2

∂2 f (ẑ1, ẑ2)

∂z2i

=
∫ ∞

−∞
dz1dz2 f (ẑ1, ẑ2)

σ 2

2

∂2Pt (z1, z2)

∂z2i
, (87)

〈
(η̂1;ε − η̂2;ε) f (ẑ1 − sL/2, ẑ2 + sL/2)δ(ẑ1 − ẑ2 − sL)

〉

= σ

2

∫ ∞

−∞
dz1dz2Pt (z1, z2)

(
∂

∂z1
− ∂

∂z2

)
f (z1 − sL/2, z2 + sL/2)δ(z1 − z2 − sL)

= −σ

2

∫ ∞

−∞
dz1dz2 f (z1 − sL/2, z2 + sL/2)δ(z1 − z2 − sL)

(
∂

∂z1
− ∂

∂z2

)
Pt (z1, z2),

(88)

and 〈
(η̂1;ε − η̂2;ε) f (ẑ1, ẑ2)δ(ẑ1 − ẑ2 − sL)

〉

= σ

2

∫ ∞

−∞
dz1dz2Pt (z1, z2)

(
∂

∂z1
− ∂

∂z2

)
f (z1, z2)δ(z1 − z2 − sL)
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Left derivative (              )

Right derivative (              )

Fig. 9 Schematic of the left (∂1;−1) and right (∂1;+1) derivatives of Pt (z1 + L/2, z2 − L/2) on the condition
z2 = z1. The right derivative is zero, while the left is nonpositive

= −σ

2

∫ ∞

−∞
dz1dz2 f (z1, z2)δ(z1 − z2 − sL)

(
∂

∂z1
− ∂

∂z2

)
Pt (z1, z2), (89)

where we have performed the partial integration. By introducing a symbol

∂̃12 := ∂

∂z1
− ∂

∂z2
(90)

and by substituting f (ẑ1, ẑ2) = δ(ẑ1 − z1)δ(ẑ2 − z2), we obtain the full ML equation

∂Pt (z1, z2)

∂t
=

∑
i=1,2

σ 2

2

∂2Pt (z1, z2)

∂z2i
+

∑
s=±1

−sσ 2

2
δ(z1 − z2)∂̃12Pt

(
z1 + sL

2
, z2 − sL

2

)

−
∑
s=±1

−sσ 2

2
δ(z1 − z2 − sL)∂̃12Pt (z1, z2). (91)

We will further rewrite this ML equation by considering several technical issues.

6.4 Technical Issues on the Left and Right Derivatives

Here we consider the technical issues on the left and right derivatives in Eq. (91). Let us
first consider the meaning of the derivatives in ∂̃12 for the contribution of s = 1. For the
nonnegativity of the probability,

Pt (z1, z2) ≥ 0 for all z1, z2. (92a)

At the same time, the transaction rule imposes an obvious restriction,

Pt (z1, z2) = 0 for z1 − z2 ≥ L. (92b)

As illustrated in Fig. 9, this implies that

∂1;+1Pt

(
z1 + L

2
, z1 − L

2

)
:= lim

h↓0
Pt

(
z1 + L

2 + h, z1 − L
2

) − Pt
(
z1 + L

2 , z1 − L
2

)
h

= lim
h↓0

0 − 0

h
= 0, (93a)

∂2;−1Pt

(
z1 + L

2
, z1 − L

2

)
:= lim

h↓0
Pt

(
z1 + L

2 , z1 − L
2 − h

) − Pt
(
z1 + L

2 , z1 − L
2

)
−h

= lim
h↓0

0 − 0

−h
= 0, (93b)
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where we have introduced the left (s = −1) and right (s = +1) derivatives as

∂1;s f (z1, z2) := lim
h↓0

f (z1 + sh, z2) − f (z1, z2)

sh
, ∂2;s f (z1, z2) := lim

h↓0
f (z1, z2 + sh) − f (z1, z2)

sh
.

(94)
We can also show

∂1;+1Pt (z1, z1 − L) = ∂2;−1Pt (z1, z1 − L) = 0. (95)

Considering the relations (93) and (95), the derivatives ∂̃12 for s = 1 should be understood
as

∂̃12 → ∂̃12;+1 := ∂1;−1 − ∂2;+1. (96)

Similarly, by considering the apparent restriction imposed by the transaction rule

Pt (z1, z2) = 0 for z1 − z2 ≤ −L, (97)

the derivative ∂̃12 for s = −1 should be understood as

∂̃12 → ∂̃12;−1 := ∂1;+1 − ∂2;−1. (98)

In summary, the ML equation (91) should be technically interpreted as

∂Pt (z1, z2)

∂t
=

∑
i=1,2

σ 2

2

∂2Pt (z1, z2)

∂z2i
+

∑
s=±1

−sσ 2

2
δ(z1 − z2)∂̃12;s Pt

(
z1 + sL

2
, z2 − sL

2

)

−
∑
s=±1

−sσ 2

2
δ(z1 − z2 − sL)∂̃12;s Pt (z1, z2) (99)

in terms of the left and right derivatives.

6.5 Sign of Derivatives

Next, we consider the sign of the derivatives. As illustrated in Fig. 9, the relation (92) implies

∂1;−1Pt

(
z1 + L

2
, z1 − L

2

)
:= lim

h↓0
Pt

(
z1 + L

2 − h, z1 − L
2

) − Pt
(
z1 + L

2 , z1 − L
2

)
−h

= lim
h↓0

Pt
(
z1 + L

2 − h, z1 − L
2

) − 0

−h
≤ 0, (100a)

∂2;+1Pt

(
z1 + L

2
, z1 − L

2

)
:= lim

h↓0
Pt

(
z1 + L

2 , z1 − L
2 + h

) − Pt
(
z1 + L

2 , z1 − L
2

)
h

= lim
h↓0

Pt
(
z1 + L

2 , z1 − L
2 + h

) − 0

h
≥ 0. (100b)

We can also show

∂1;−1Pt (z1, z1 − L) ≤ 0, ∂2;+1Pt (z1, z1 − L) ≥ 0. (101)

This implies that

−sσ 2

2
δ(z1 − z2)∂̃12;s Pt

(
z1 + sL

2
, z2 − sL

2

)
≥ 0, (102a)
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(a) (b) (c)

(d)

Fig. 10 a The transaction rule imposes the condition Pt (z1, z2) = 0 for |z1 − z2| ≥ L and the transaction
occurs on the line |z1 − z2| = L . In the light-red regime |z1 − z2| < L , the PDF can be non-zero such that
Pt (z1, z2) > 0. The full ML Eq. (68) implies that the probability current Jt;s on the line z1 − z2 = sL is
transferred to the line z1 = z2 for both s = ±1. b Let us consider the time just before a transaction. There are
two scenarios: c The ask price a1 moves to the left, leading to a transaction. This type of transactions implies
that the ask is the taker, and the bid is the maker. d The bid price b2 moves to the right, leading to a transaction.
This type of transactions implies that the bid is the taker and the ask is the maker

−sσ 2

2
δ(z1 − z2 − sL)∂̃12;s Pt (z1, z2) ≥ 0 (102b)

for s = +1. Similarly, we can show the inequality (102) even for s = −1. By considering
the inequality (102), it is useful to introduce the nonnegative probability current:

Jt;s(z1, z2) := −sσ 2

2
δ(z1 − z2 − sL)∂̃12;s Pt (z1, z2) ≥ 0. (103)

Using the nonnegative probability current Jt;s(z1, z2), we can rewrite the ML equation (99)
as

∂Pt (z1, z2)

∂t
=

∑
i=1,2

σ 2

2

∂2Pt (z1, z2)

∂z2i
+

∑
s=±1

[
Jt;s(z1 + sL/2, z2 − sL/2) − Jt;s(z1, z2)

]
.

(104)
Considering the nonnegativity of the probability current Jt;s(z1, z2) ≥ 0, it would be

useful to introduce a notation where the nonnegativity is apparent. We thus introduce the
symbol |∂̃12;s | defined by

∣∣∣∂̃12;s
∣∣∣ f (z1, z2) := ∣∣∂1;−s f (z1, z2)

∣∣ + ∣∣∂2;s f (z1, z2)∣∣ ≥ 0, (105)

whose nonnegativity is apparent by its definition. We can thus rewrite the probability current
Jt;s(z1, z2) as

Jt;s(z1, z2) := σ 2

2
δ(z1 − z2 − sL)

∣∣∣∂̃12;s
∣∣∣ Pt (z1, z2) ≥ 0. (106)

We thus obtain the full ML equation (68).
Notably, the selectionof the left and right derivatives in theMLequationswere not apparent

in our previous publications [16, 17]. In this sense, the full ML equation (68) that we have
derived in this report is the complete form in terms of the mathematical interpretation.

123



Exact Solution to Two-Body Financial … Page 27 of 48     8 

6.6 Intuitive Interpretation of the Full Master-Liouville Equation (68)

Here we provide an intuitive interpretation of the full ML Eq. (68) from the viewpoint of
the probability current. In this subsection, we abbreviate the technical symbol of the left and
right derivatives for simplicity. The transaction rule apparently imposes the rule

Pt (z1, z2) = 0 for |z1 − z2| ≥ L (107)

and the transaction occurs on the lines |z1 − z2| = L . The full ML equation (68) means that
the probability current Jt;s on the line z1 − z2 = sL is transferred to the line z1 = z2 for
s = {+1,−1}, due to the transaction rule (see Fig. 10a).

In addition, we can intuitive decompose the probability current as
� �

Jt;s(z1, z2) = δ(z1 − z2 − sL)
∑
i=1,2

∣∣∣ j (i)t;s (z1, z2)
∣∣∣ , j (i)t;s (z1, z2) := −σ 2

2

∂

∂zi
Pt (z1, z2).

(108)

� �
The decomposed probability current j (i)t;s represents the transaction where the i th trader is the
taker and the other is the maker. In addition, similarly to Eqs. (61), we can rewrite the full
ML equation as
� �

∂Pt (z1, z2)

∂t
=−

∑
i=1,2

∂

∂zi
j (i)t;s (z1, z2)+

∑
s=±1

[
Jt;s(z1+sL/2, z2 − sL/2)− Jt;s(z1, z2)

]
.

(109)

� �
Apparently, this formula is a natural extension of the probability-current representation (61)
of the reduced ML equation.

Let us explain the necessary background knowledge on takers and makers in financial
markets. In the double-auction systems, the trader leading to the decision via the market
orders is called a taker, whereas the trader waiting for transactions is called maker. This
distinction is practically vital because the takers and makers regarded as liquidity consumers
and providers, respectively. Many market regulators offer a financial incentive to makers
because sufficient liquidity provision will stabilise the market.

From the viewpoints of the taker and maker, any transaction can be classified whether the
first trader is a taker or maker. For example, let us consider the timing just before a transaction
â1 = b̂2 (see Fig. 10b). There are two classifications for this transaction: the first case is that
the ask price â1 moves to the left and then leads to the transaction (Fig. 10c). In this case,
the first trader is the taker and the second trader is the maker. Another case is that the bid
price moves to the right and then leads to the transaction. In this case, the second trader is
the taker, and the first trader is the maker (Fig. 10d). Considering that the probability current
j (i)t;s originates from the diffusion of the i th trader, j (i)t;s represents the contribution where the
i th trader leads a transaction as the taker.
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(a) snapshot of order book (b) traders’ decision-making

volume

price
interaction with
market midprice

Fig. 11 Traders make their decisions on the basis of the current order book. One of the key feature variables
is the market midprice ẑM. As an advanced modelling, interaction between traders and market midprice is
incorporated in Sect. 7

7 AdvancedModelling: Interaction Between Traders via theMarket
Midprice

Here we introduce a generalised dealer model by incorporating interaction between traders
and then exactly solve the model straightforwardly on the basis of the kinetic approach.

7.1 Dealer Model with Interaction via theMarket Midprice

We have shown the exact solution to the simple two-body dealer model by the kinetic
theory.At the same time, it is realistic to introduce interaction between the traders via the order
book. For example, it is a reasonable assumption that traders avoid immediate transactions
by submitting orders far from the market midprice ẑM = ẑcm = (z1 + z2)/2. In the absence
of transactions, we thus consider the following generalised dealer model (see Fig. 11):

dẑ1
dt

= − d

dr̂1
U

(
r̂1

) + σ ξ̂G1 (110a)

dẑ2
dt

= − d

dr̂2
U

(
r̂2

) + σ ξ̂G2 (110b)

with the interaction via the market midprice U , the independent white Gaussian noises ξ̂Gi ,
and relative prices r̂i = ẑi − ẑM from the midprice for i = 1, 2. We assume that the potential
is a symmetric function with minimum at r = 0:

U (0) = 0, U (r) = U (−r) ≥ U (0) for any r . (110c)

This potential has the effect to keep the distance between the market midprice and the best
bid (ask) price. The market spread tends to be kept wide due to this potential and, thus,
immediate transactions are unlikely if the potential strength is strong (see Fig. 12).

In the presence of transactions, the jump rule is given by the same rule as the conventional
dealer model:

|ẑ1(t) − ẑ2(t)| = L �⇒ ẑ1(t + dt) = ẑ2(t + dt) = ẑ1(t) − L

2
sgn(ẑ1(t) − ẑ2(t)).

(110d)

We then describe this generalised dealer model in terms of the relative coordinate to the
centre of mass r̂ := ẑ1 − ẑcm = (ẑ1 − ẑ2)/2:
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er-book representation(b) ord(a) potential interaction

11 22

Market spread tends to be kept
wide due to the interaction

Fig. 12 Schematic of the potential interaction via the market midprice ẑM = ẑcm. a The relative coordinate
r̂i is introduced from the market midprice for i = 1, 2. We can define the “force" F̂i := −U ′(r̂i ) which has
the effect to keep the market spread wide and thus to prevent immediate transactions

r(t + dt) =
{
r(t) + (−U ′(r̂) + σcmη̂(t)

)
dt (|r(t)| < L/2)

0 (|r(t)| = L/2)
(111)

with η̂(t) := (ξ̂G1 − ξ̂G2 )/
√
2, U ′(r) := dU (r)/dr , and σcm := σ/

√
2.

7.2 ML Equation in the Presence of U(r)

We derive theML equation corresponding to Eq. (111). As a natural extension of the reduced
ML Eq. (61) for U (r) = 0, we obtain the following reduced ML equation in the presence of
the potential:
� �

∂Pt (r)

∂t
= − ∂

∂r

(
jDt (r) + jPt (r)

) +
∑
s=±1

[
Jt;s(r + sL/2) − Jt;s(r)

]
, (112a)

where jDt (r), jPt (r), and Jt;s(r) are the probability currents due to diffusion, potential,
and jump, respectively, defined by

jDt (r) := −σ 2
cm

2

∂Pt (r)

∂r
, jPt (r) := −U ′(r)Pt (r), Jt;s(r) := | jDt (r)|δ(r − sL/2) ≥ 0,

(112b)

where we have ignored the minor technical issues on the left and right derivatives.
� �
The derivation of Eq. (112) is essentially parallel to that of Eq. (61) (see Appendix I for the
detail).

7.3 Exact Steady Solution for General Avoiding Potential

We next show the exact solution for the order-book profile for a symmetric general avoiding
potential (see Appendix G.2 for the derivation):
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� �

For a symmetric potential

U (r) = U (−r), (113a)

we obtain the exact solution

φ(r) =
⎧⎨
⎩

1

Z
exp

[
−2U (r)

σ 2
cm

]
{G(L/2) − G(|r |)} (|r | ≤ L/2)

0 (|r | > 0)
(113b)

with

G(r) :=
∫ r

0
dx exp

[
2U (x)

σ 2
cm

]
, Z :=

∫ L/2

−L/2
dr exp

[
−2U (r)

σ 2
cm

]
{G(L/2) − G(|r |)} .

(113c)

� �

7.4 Exact Steady Solution for Harmonic Avoidng Potential

We next consider the specific case where the avoiding potential is harmonic:
� �

For the harmonic avoiding potential

U (r) = u2r2

2
, u > 0, (114)

the exact steady solution is given by

φ(r) =

⎧⎪⎨
⎪⎩

1

Z
e
− u2r2

σ2cm

[
erfi

(
uL

2σcm

)
− erfi

(
u|r |
σcm

)]
(|r | ≤ L/2)

0 (|r | > L/2)
(115)

with

Z = 1

2uσcm
√

π

[
2πσ 2

cmerf

(
uL

2σcm

)
erfi

(
uL

2σcm

)
− u2L2

2F2

(
1,1
3/2,2

∣∣∣ − u2L2

4σ 2
cm

)]
.

(116)

� �
Here we have introduced the following special functions:

erf(x) ≡ (2/
√

π)

∫ x

0
e−t2dt (117a)

erfi(x) ≡ −ierf(i z) (117b)

2F2
(
a1,a2
b1,b2

∣∣∣z
)

≡
∞∑
n=0

(a1)n(a2)n
(b1)n(b2)n

zn

n! (117c)

with the Pochhammer symbol (a)n ≡ a(a+1)(a+2) . . . (a+n−1) for n ≥ 1 and (a)0 = 1.
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(b)(a)

(d)(c)

Fig. 13 Numerical steady PDF φN (r) for the N -body dealer model for various N , showing the non-monotonic
convergence to the tent function (118). a, b For N ∈ [N , N∗], the PDF tail becomes wider with N∗ � 7,
at least numerically. We note that the figure b enlarges the tail near r = L . c, d The numerical tail seems to
exhibit the convergence to the tent function (118) for N ∈ (N∗,∞)

8 Numerical Confirmation and Discussion

8.1 Numerical ConfirmationWithout Avoiding Potential

8.1.1 Exact Solution for N = 2

Here we numerically confirm the validity of the tent-function formula (65) for φ(r) (see
Appendix J for the detailed numerical scheme). We have plotted the numerical PDF for φ(r)
as shown in Fig. 13a and b, where the tent function is precisely consistent with the numerical
result for N = 2.

8.1.2 Non-monotonic Convergence for N → ∞

Let us discuss the relationship of the two-body exact solution (65) and the numerical solutions
for the N -body dealermodel. According toRefs. [16, 17], remarkably, themean-field solution
for N → ∞ is also given by the tent function

lim
N→∞ φN (r) = max

{
0,

L/2 − |r |
L2/4

}
, (118)

where the steady PDF φN (r) := 〈δ(ẑi − ẑcm − r)〉 is defined for the N -body dealer model,
by making assumptions (see Appendix J and Refs. [16, 17] for the model assumptions) that

– all the traders share the same value of their buy-sell spread: L̂i := âi − b̂i = L = const.
– the dynamics is given by the straightforward generalisation of Eq. (4); i.e., randomwalks

with “collisions” when bid and ask prices coincide with each other.
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Fig. 14 Numerical steady PDF φ(r) for the two-body dealer model under the harmonic avoiding potential
U (r) = u2r2/2 with u = 1. The numerical PDF φ(r) excellently fits the theoretical line (115) for u �= 0 but
shows discrepancy with the tent function for u = 0

This implies that the exact solution for N = 2 is equal to themean-field solution for N → ∞:

φN=2(r) = lim
N→∞ φN (r). (119)

On the other hand, the solution φN (r) is different from the tent function (65) for general
N �= 2,∞: φN (r) :�= max{0, (L/2 − |r |)/L2/4} for N �= 2,∞. Indeed, the next-leading-
order (NLO) mean-field solution for large N � 1 is given by

φN (r) = 4ε

L2

[
F

( |r | − L/2

ε

)
− 2F

( |r |
ε

)]
(120)

with the thickness of the boundary layer ε and the tail function F(r) defined by

ε := L

2
√
N

, F(r) := 1√
2π

e−r2/2 − r

2
erfc

(
r√
2

)
. (121)

These relations (119) and (120) suggest that the convergence behaviour of the steady PDF
φN (r) is not monotonic in terms of the tail; the tail becomes wider from N = 2 to N = N∗
with some fixed value N∗ > 0 and then it finally converges to the tent function (65).

To confirm this picture, we have performed the numerical simulations of the N -body
dealer model for various N as shown in Fig. 13 (see Appendix J for the detailed numerical
scheme). Figure 13a and b shows that the tail becomes wider up to N∗ � 7, numerically. On
the other hand, the tail monotonically converges to the tent function (118) for N > N∗, as
suggested by the numerical Fig. 13c and d. This non-monotonic convergence suggests that
one of the approximate criteria to apply the mean-field solution (120) might be to satisfy the
condition N > N∗ since it is a threshold whereby the solution exhibits qualitatively differ-
ent behaviours. It might be interesting to investigate the reason behind this non-monotonic
convergence numerically and theoretically.

8.2 Numerical Confirmation Under Harmonic Avoiding Potential for N = 2

We next confirm our exact solution (115) in the presence of the harmonic avoiding potential
for N = 2 (see Appendix J for the detailed numerical scheme). The numerical plot nicely
agrees with the theoretical line (115) in Fig. 14. In addition, the PDF φ(r) shrinks around
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r = ±L/2 in the presence of U (r) and, thus, immediate transactions are unlikely for large
u.

8.3 Discussion to Other Order-BookModels

The dealer model is a simple microscopic model that can replicate various empirical findings,
as shown in Refs. [16, 17]. In this report, we have discussed the analytical characters of the
revealed order book in terms of explicit exact solutions. The revealed order book is defined
by the visible order book gathering all the limit orders, in contrast to the latent order book (see
the related discussion below). While several order-book models have been proposed in the
literature, such as the zero-intelligence order-book model [30, 31], their explicit analytical
characters have not been well-documented even in terms of the revealed order book due to
their high-dimensional characters.7 The dealer model is currently exceptional in the sense
that the kinetic theory can thoroughly scrutinise its analytical characters for both mean-field
limit N → ∞ and two-body case N = 2. It might be interesting to extend the kinetic
financial framework beyond the dealer model, such as for the zero-intelligence models.

Another research directionwould be to address the latent order book instead of the revealed
order book. While the revealed order book is visible and is mainly contributed by high-
frequencymarketmakers, the latent order book is invisible and is considered to bemanaged by
low-frequency actors. In Refs. [33], a latent order bookmodel based on the reaction-diffusion
process was proposed to explain the nonlinear market impact after meta-order splitting. This
model’s book profile is locally linear near the market midprice, which is directly related to
the square-market-impact law.

The dealer model was validated on the empirical observation of the high-frequencymarket
makers in Refs. [16, 17]. It mainly focuses on the revealed order book, and studying the latent
order book is out of scope in this paper. However, we think it would be possible to extend
this model to analyse the latent order book. For example, by introducing high-frequency and
low-frequency actors, the revealed order book can be decomposed into the high-frequency
market-maker order book and the other (i.e, the latent order book). The book shape of such
a generalised dealer model is expected to be also locally linear near the midprice (as implied
from the tent-function profile (118) in the mean-field limit N → ∞), consistently with the
latent order book model. Such extensions will be very interesting for a deeper understanding
of the relationship to other models and are left for future studies.

9 Conclusion

We have exactly scrutinised the stochastic dealer model by focusing on the specific case
N = 2 from the viewpoint of kinetic theory. We first derive a reduced form of the master-
Liouville (ML) equation based on Novikov’s theorem for coloured noise. We also examine
the physical meaning of the reduced ML equation from the probability current viewpoint,
intuitively discerning why the reduced ML equation takes its form as it is. The reduced
ML equation is exactly solved to obtain the average-order book profile and the transaction

7 One remarkable formula was derived for the revealed book profile by a phenomenological theory based on
themethod of images under the diffusive approximation [11, 32].While this theory includes a fitting parameter
that cannot be fixed within the theory, it predicts a scaling behaviour of the book profile qualitatively consistent
with empirical results (such as hump shapes). To the best of our knowledge, this was the only analytical formula
for the book shape before our kinetic works.
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interval. Remarkably, the average transaction interval coincides with that in the previous
literature [15], showing the consistency between the different approaches. We next derive
the full ML equation to examine its physical meaning and consistency with the reduced ML
equation. To demonstrate the power of this approach, we generalise the dealer model in terms
of the interaction between traders via the order book and again exactly solve the generalised
model within the kinetic approach. Finally, we provide the numerical simulations to test our
exact solution’s validity.

Since theMLEs are derived in this paper, various traditional tools for the master equations
will be available for the mathematical analysis of the dealer model. For example, while we
have only focused on the steady solution φ(r), it is possible to consider the time-dependent
solutions (since the steady solution corresponds to the ML operator’s zero eigenfunction,
time-dependent solution corresponds to non-zero eigenfunctions). In addition, it might be
interesting to apply the full counting-statistics framework for the MLE to study the complete
transaction interval statistics from a different angle.

In this paper, we have attempted to thoroughly investigate the mathematical structure of
the kinetic theory for financial Brownian motion by focusing on the simplest case of N = 2.
We have shown that various theoretical methods finally produce the same results, which
guarantees the mathematical soundness of our approach. While our previous long paper [17]
has meticulously revealed the mean-field mathematical structure of the N -body dealer model
with N � 1, this report supplements our previous Letter [16] from the viewpoint of the exact
solution of the simplest case N = 2, by the detailed description of the ML equations in the
complete form. Also, the utility of this mathematical formulation is demonstrated by solving
an advanced and realistic dealer model. It would be interesting to observe such a potential
interaction from microscopic data analysis directly. In addition, we believe that the thick
technical review section would help non-expert readers understand our mathematical theory
without hurdles.
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A Brief Review on the ı Function

We briefly review the δ function. The δ function is formally defined by the following relation:

δ(x) =
{
0 (x �= 0)

∞ (x = 0)
,

∫ ∞

−∞
dx f (x)δ(x) = f (0) (122)
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for an arbitrary function f (x).
Using this relation, we can derive the variable-transformation formulas. For example, we

can derive

δ(ax) = 1

|a|δ(x) (123)

with constant a �= 0. This relation can be derived as follows: for an arbitrary function f (x)
and positive a > 0, we obtain

∫ ∞

−∞
dx f (x)δ(ax) = 1

a

∫ ∞

−∞
dy f

( y

a

)
δ(y) = 1

a
f (0) (124)

by the variable transformation y := ax . The same calculation can be performed for a < 0
likewise.

The variable-transformation formula (123) can be generalised

δ (g(x)) =
∑
i

1

|g′(xi )|δ(x − xi ) (125)

for an arbitary function g(x), where xi is the i th zero point of g(x) such that g(xi ) = 0 and
xi < xi+1 by assuming g′(xi ) �= 0. This can be derived as follows: for x sufficiently near xi ,
g(x) can be expanded as

g(x) � g(xi ) + g′(xi )(x − xi ) + o((x − xi )). (126)

This means that

δ(g(x)) � δ
(
g′(xi )(x − xi ) + o((x − xi ))

) � 1

|g′(xi )|δ (x − xi ) for x near xi . (127)

By considering the contributions for all x near {xi }i , we obtain Eq. (125).

B Derivation of Novikov’s Theorem

We derive Novikov’s theorem (15a) as follows: let us apply the functional Taylor expansion
(see Appendix C),

g[η̂ε; t] = g[0; t]+
∞∑
n=1

1

n!
∫ t

0
dsn

δng[ηε; t]
δηε(s1) . . . ηε(sn)

∣∣∣∣
ηε=0

η̂ε(s1) . . . η̂ε(sn), dsn :=
n∏

k=1

dsk .

(128)
By introducing sn := (s1, . . . , sn), this implies

〈η̂ε(t)g[η̂ε; t]〉 =
∞∑
n=1

1

n!
∫ t

0
dsn R(n)(sn)〈η̂ε(t)η̂ε(s1) . . . η̂ε(sn)〉, (129a)

R(n)(sn) := δng[ηε; t]
δηε(s1) . . . ηε(sn)

∣∣∣∣
ηε=0

. (129b)

Here we use a mathematical fact on the Gaussian random numbers:

〈η̂ε(t)η̂ε(s1) . . . η̂ε(sn)〉 =
n∑

i=1

〈η̂ε(t)η̂ε(si )〉
〈

n∏
j=1| j �=i

η̂ε(s j )

〉
. (130)
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By considering a symmetry of R(n)(sn)

R(n)(sn) = R(n)(s′n), where s′n is any permutation of sn, (131)

we obtain

〈η̂ε (t)g[η̂ε; t]〉 =
∞∑
n=1

1

n!
∫ t

0
dsn R(n)(sn)

n∑
i=1

〈η̂ε (t)η̂ε(si )〉
〈

n∏
j=1| j �=i

η̂ε (s j )

〉

=
∞∑
n=1

1

n!
n∑

i=1

∫ t

0
dsi 〈η̂ε (t)η̂ε(si )〉

∫ t

0

⎛
⎝ n∏

k=1|k �=i

dsk

⎞
⎠ R(n)(sn)

〈
n∏

j=1| j �=i

η̂ε (s j )

〉

=
∫ t

0
ds1〈η̂ε (t)η̂ε(s1)〉

∞∑
n=1

1

(n − 1)!
∫ t

0
ds2 . . . dsn R

(n)(sn)
〈
η̂ε (s2) . . . η̂ε (sn)

〉
.

(132)

Eq. (128) implies

δg[η̂ε; t]
δη̂ε(s)

=
∞∑
n=1

1

n!
∫ t

0
dsn R(n)(sn)

δ

δη̂ε(s)
{η̂ε (s1) . . . η̂ε (sn)}

=
∞∑
n=1

1

(n − 1)!
∫ t

0
ds2 . . . dsn R

(n)(s, s2, . . . , sn)η̂ε(s2) . . . η̂ε (sn), (133)

where we have used the symmetry (131) again. We thus obtain Eq. (15a) by substituing
Eq. (133) into Eq. (132).

C Brief Review on the Functional Taylor Expansion

We briefly reivew the functional Taylor expansion in this Appendix. Before the review of
the functional Taylor expansion, we first review the Taylor expansion for a n-dimensional
vector x := (x1, . . . , xn) with a positive integer n. For an arbitrary function f (x), the Taylor
expansion implies

f (x) =
∞∑
k=0

1

k!

(
n∑

i=1

xi
∂

∂ yi

)k

f ( y)

∣∣∣∣
y=0

. (134)

The functional Taylor expansion is a generalisation of the relation (134). In other words,
the functional Taylor expansion implies

f [x] =
∞∑
k=0

1

k!
(∫ ∞

−∞
dtx(t)

δ

δy(t)

)k

f [y]
∣∣∣∣
y=0

(135)

with an arbitrary functional f [x] := f [{x(t)}t ] for a function {x(t)}t . Here, δ/δx(t) is the
functional derivative.

The functional derivative δ/δx(t) is related to the δ function as

δx(t)

δx(t ′)
= δ(t − t ′), (136)

which is a generalisation of the following relation for a finite-dimensional vector x:

∂xi
∂x j

= δi, j . (137)
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DDerivationof theFokker–PlanckEquation (16) in theWhiteNoiseLimit

Let us derive the Fokker-Planck equation (16) corresponding to the SDE (14) in the white-
noise limit. The derivative of an arbitary function f (x̂(t)) is given by the chain rule8:

d f (x̂)

dt
= (−α(x̂) + β(x̂)η̂ε

) d f (x̂)
dx̂

. (138)

Next, let us take the ensemble average of both sides. We first obtain two identities:〈
d f (x̂)

dt

〉
= lim

dt↓0

〈
f (x̂(t + dt)) − f (x̂(t))

dt

〉
=

∫
dx f (x) lim

dt↓0
Pt+dt (x) − Pt (x)

dt

=
∫

dx f (x)
∂

∂t
Pt (x), (139)

and 〈
α(x̂)

d f (x̂)

dx̂

〉
=

∫
dx Pt (x)α(x)

d f (x)

dx
= −

∫
dx f (x)

∂

∂x
α(x)Pt (x), (140)

where we have used the partial integration by assuming the sufficiently-rapid decay of the
PDF:

lim
x→±∞ Pt (x) = 0, lim

x→±∞
∂n Pt (x)

∂xn
= 0, (141)

with any positive integer n. Using Novikov’s theorem (15b), we obtain an identity for the
white-noise limit ε ↓ 0:

lim
ε↓0

〈
η̂ε(t)β(x̂(t))

d f (x̂(t))

dx̂

〉
= lim

ε↓0

∫ t

0
ds

1

2ε
e−(t−s)/ε

〈
d

dx̂

{
β(x̂)

d f (x̂)

dx̂

}
δx̂(t)

δη̂ε(s)

〉

= 1

2
lim
s↑t

〈
d

dx̂

{
β(x̂)

d f (x̂)

dx̂

}
δx̂(t)

δη̂ε(s)

〉
. (142)

The formal solution of the SDE (14) is given by

x(t) = x(tini) +
∫ t

tini
dt ′

{−α(x̂(t ′)) + β(x̂(t ′))η̂ε(t
′)
}

(143)

for any tini ∈ [0, t]. Notably, considering the causality, the effect of η̂ε(s) is only related to
the later value of x̂(t ′) with t ′ > s. In other words, we obtain

δx̂(t ′)
δη̂ε(s)

= 0 for t ′ < s. (144)

Using these relations, we obtain the formal functional derivative

δx̂(t)

δη̂ε(s)
=

∫ t

tini
dt ′

{
−∂α(x̂(t ′))

∂ x̂

δx̂(t ′)
δη̂ε(s)

+ ∂β(x̂(t ′))
∂ x̂

δx̂(t ′)
δη̂ε(s)

η̂ε(t
′) + β(x̂(t ′)) δη̂ε(t ′)

δη̂ε(s)

}

=
∫ t

tini
dt ′

{
−∂α(x̂(t ′))

∂ x̂
+ ∂β(x̂(t ′))

∂ x̂
η̂ε(t

′)
}

δx̂(t ′)
δη̂ε(s)

+
∫ t

tini
dt ′

{
β(x̂(t ′))δ(t ′ − s)

}

= β(x̂(s)) +
∫ t

s
dt ′

{
−∂α(x̂(t ′))

∂ x̂
+ ∂β(x̂(t ′))

∂ x̂
η̂ε(t

′)
}

δx̂(t ′)
δη̂ε(s)

(145)

8 The ordinary chain rule is available because the OU coloured noise is a continuous and bounded function
of time. If we take the white-noise limit first, the ordinary chain rule must be replaced with the Itô formula.
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for any s ∈ (tini, t), where we have used δη̂ε(t ′)/δη̂ε(s) = δ(t ′ − s) and the causality
relation (144). We thus obtain

lim
s↑t

δx̂(t)

δη̂ε(s)
= β(x̂(t)), (146)

deducing an identity

lim
ε↓0

〈
η̂ε(t)β(x̂(t))

d f (x̂(t))

dx̂

〉
= 1

2

〈
d

dx̂

{
β(x̂)

d f (x̂)

dx̂

}
β(x̂)

〉
= 1

2

∫
dx f (x)

∂

∂x
β(x)

∂

∂x
β(x)Pt (x),

(147)
where we have used the partial integration implicitly. Since an integral identity

∫
dx f (x)

∂Pt (x)

∂t
=

∫
dx f (x)

[
∂

∂x
α(x) + 1

2

∂

∂x
β(x)

∂

∂x
β(x)

]
Pt (x) (148)

holds for any function f (x), we obtain the Stratonovich-type Fokker-Planck equation (16).

E Derivation of the Liouville Equation (20) for the Collisional Dynam-
ics (17)

In this appendix, the Liouville equation (20) is derived from the collisional microscopic
dynamics (17). For an arbitrary function f (x̂, v̂), its time-evolusion during [t, t + dt) is
given by

d f (x̂, v̂) =
⎧⎨
⎩

v̂(t)
∂ f (x̂(t), v̂(t))

∂ x̂
dt (t∗ /∈ [t, t + dt))

f (x̂(t),−v̂(t)) − f (x̂(t), v̂(t)) (t∗ ∈ [t, t + dt))
(149)

with d f (x̂, v̂) := f (x̂(t + dt), v̂(t + dt)) − f (x̂(t), v̂(t)) and infinitesimal positive dt > 0.
This relation is equivalent to

d f (x̂, v̂)

dt
= v̂

∂ f (x̂, v̂)

∂ x̂
+ [

f (x̂,−v̂) − f (x̂, v̂)
]
δ(t − t∗). (150)

Let us take the ensemble average of both sides to obtain

〈
d f (x̂, v̂)

dt

〉
=

〈
v̂
∂ f (x̂, v̂)

∂ x̂
+ [

f (x̂,−v̂) − f (x̂, v̂)
]
δ(t − t∗)

〉
. (151)

We then consider a relation,

〈
v̂
∂ f (x̂, v̂)

∂ x̂

〉
=

∫ ∞

−∞
dxdvPt (x, v)v

∂ f (x, v)

∂x
= −

∫ ∞

−∞
dxdv f (x, v)v

∂Pt (x, v)

∂x
(152)

using the partial integration.
We next make a transformation of the term 〈[ f (x̂, v̂)− f (x̂,−v̂)]δ(t − t∗)〉 using a useful

identity

δ(x̂(t) − x∗) = 1

|dx̂(t)/dt |δ(t − t∗) = 1

|v̂(t)|δ(t − t∗), assuming x̂(t) < x∗ and v̂(t) > 0.

(153)
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Back to the origin

Lattice

Fig. 15 Discrete random walks model (158) on a lattice with interval l. The particle r̂(t) hops to the nearest-
neighbors r̂(t) − l and r̂(t) + l with equal probability, according to the Poisson process of intensity λ. The
particle goes back to the origin at the boundary |r̂(t)| = L/2 (equivalently, when |r̂(t)| = lnb, the particle
goes back to the origin with the intensity λ/2)

Here the condition v̂(t) > 0 is essential because it restricts the collision direction. This
implies

δ(t−t∗) = |v̂(t)|Θ(v̂(t))δ(x̂(t)−x∗)with the Heaviside function Θ(x) :=

⎧⎪⎨
⎪⎩
1 (x > 0)

1/2 (x = 0)

0 (x < 0)

.

(154)
We obtain

〈[ f (x̂, v̂) − f (x̂,−v̂)]δ(t − t∗)〉
=

∫ ∞

−∞
dxdvPt (x, v) [ f (x, v) − f (x,−v)] |v|Θ(v)δ(x − x∗)

=
∫ ∞

−∞
dxdv f (x, v) [Θ(v)Pt (x, v) − Θ(−v)Pt (x,−v)] |v|δ(x − x∗), (155)

where we have made a variable transformation −v → v for the second term. We thus obtain
an identity for any f (x, v):∫ ∞

−∞
dxdv f (x, v)

∂Pt (x, v)

∂t

=
∫ ∞

−∞
dxdv f (x, v)

{
−v

∂Pt (x, v)

∂x
+ [Θ(v)Pt (x, v) − Θ(−v)Pt (x,−v)] |v|δ(x − x∗)

}
,

(156)

leading the Liouville equation (20).

F Derivation Based on the Continuous Limit from a Lattice Model

Wehave derived theML equation (22) via Novikov’s theorem, which requires advanced tech-
niques on both non-Markovian stochastic processes and kinetic theory. However, considering
that the derivation is multidisciplinary, we believe that another more elementary derivation
without requiring such technicalities will be helpful for non-experts. Therefore, we provide a
more elementary derivation of the reducedML equation (22) based on a random-walk model
on the one-dimensional lattice. This derivation will clearly present the technical issues on
the left and right derivatives.

Let us consider a lattice of interval l and the particle dynamics on the lattice (see Fig. 15).
The location of the particle is denoted by r̂(t), which obeys the symmetric Poisson jump
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process whose jump sizes are ±l in the absense of collisions against barriers, such that

r̂(t + dt) = r̂(t) +

⎧⎪⎨
⎪⎩

+l (prob. = λ
2dt)

−l (prob. = λ
2dt)

0 (prob. = 1 − λdt)

(157)

with an infinitesimal positive dt > 0 and the total Poisson intensity λ > 0. We note that
the probability of occurrence of a Poisson jump during [t, t + dt) is given by λdt . The
hopping barriers are placed at r = ±L/2 := ±lnb with positive integer nb. At the moment
of collisions r̂(t) = ±L/2, the particle comes back to the origin r = 0. In summary, the
stochastic dynamics is given by

r̂(t + dt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r̂(t) + l (prob. = λ
2dt, if r̂(t) ≤ l(nb − 2))

r̂(t) − l (prob. = λ
2dt, if r̂(t) ≥ l(2 − nb))

0 (prob. = λ
2dt, if |r̂(t)| = l(nb − 1))

r̂(t) (prob. = 1 − λdt)

. (158)

This system is a discrete version of the SDE (6b) and reduces to the SDE (6b) for the
continuous limit, as will be discussed later.

F.1 Master-Liouville Equation for the Lattice Model

Let us derive the ML equation for this lattice model as follow. For an arbitrary function
f (r̂(t)), we obtain the following identity,

d f (r̂(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (r̂(t) + l) − f (r̂(t)) (prob. = λ
2dt, if r̂(t) ≤ l(nb − 2))

f (r̂(t) − l) − f (r̂(t)) (prob. = λ
2dt, if r̂(t) ≥ l(2 − nb))

f (0) − f (r̂(t)) (prob. = λ
2dt, if |r̂(t)| = l(nb − 1))

0 (prob. = 1 − λdt)

. (159)

with d f (r̂(t)) := f (r̂(t + dt)) − f (r̂(t)). By taking the ensemble average of both sides, we
obtain
〈
d f (r̂)

dt

〉
=

〈
λ

2

[
f (r̂ + l) − f (r̂)

]
1D+ (r̂) + λ

2

[
f (r̂ − l) − f (r̂)

]
1D− (r̂) + λ

2

[
f (0) − f (r̂)

]
1D∂

(r̂)

〉

(160)
with the indicator function 1D(x) for the following domain symbols

D+ := (−∞, l(nb − 2)], D− := [−l(nb − 2),∞), D∂ := {r = ±l(nb − 1)}. (161)

The indicator function 1D(x) is introduced for any domain D, such that

1D(x) =
{
1 (x ∈ D)

0 (x /∈ D)
. (162)

Equation (160) is equivalent to

∑
r

f (r)
∂Pt (r)

∂t

= λ

2

∑
r

Pt (r)
[{ f (r + l) − f (r)} 1D+ (r) + { f (r − l) − f (r)} 1D− (r) + { f (0) − f (r)} 1D∂

(r)
]
.

(163)
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By substituting f (r) = δr ,r ′ with the Kronecker delta δr ,r ′ , the right-hand side can be
transformed into

λ

2

[
Pt (r

′ − l)1D+(r ′ − l) − Pt (r
′)1D+(r ′) + Pt (r

′ + l)1D−(r ′ + l) − Pt (r
′)1D−(r ′)

−Pt (r
′)1D∂

(r ′)
] + λ

2
δ0,r ′

∑
r∈D∂

Pt (r). (164)

After replacing r ′ → r , we thus obtain the ML equation

∂Pt (r)

∂t
=λ

2

{
Pt (r − l)1D+(r − l) − Pt (r)1D+(r) + Pt (r + l)1D−(r + l)

−Pt (r)1D−(r) − Pt (r)1D∂
(r)

} + λ

2
δ0,r {Pt (−lnb + 1) + Pt (lnb − l)} . (165)

This ML equation can be rewritten as

∂Pt (r)

∂t
=λ

2
Δ2Pt (r) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if l ≤ |r | ≤ l(nb − 1)
λ
2 {Pt (−lnb + l) + Pt (lnb − l)} , if r = 0

− λ
2 Pt (lnb − l), if r = +lnb

+ λ
2 Pt (−lnb + l), if r = −lnb

= λ

2
Δ2Pt (r) + δr ,0

λ

2
{Pt (−lnb + l) + Pt (lnb − l)}

− δr ,lnb
λ

2
Pt (lnb − l) + δr ,−lnb

λ

2
Pt (−lnb + l), (166)

where we have used the boundary condition9

Pt (r) = 0 for |r | ≥ lnb (167)

and the second-order difference operator Δ2 defined by

Δ2Pt (r) := Pt (r + l) − 2Pt (r) + Pt (r − l). (168)

F.2 Continuous Limit

We take a continuous limit of the latticemodel (158) consistently with the original continuous
version (6b) according to the system size expansion [4–6]. In other words, we consider the
diffusive limit:

l → 0, nb → ∞, λ → ∞, λl2 = σ 2
cm = const., lnb = L/2 = const. (169)

The discrete ML equation (166) reduces to the continuous version (22) for the diffusive
limit (169). Indeed, by using the Kramers-Moyal expansion [4–6]

Δ2Pt (r) � l2
∂2Pt (r)

∂r2
+ O(l3), (170)

Pt (+lnb − l) = Pt (+L/2 − l) � Pt (+L/2) − l∂−1Pt (+L/2) + O(l2) = −l∂−1Pt (+L/2) + O(l2),
(171)

9 The obvious relation ∂Pt (±lnb)/∂t = 0 should hold at the boundary r = ±lnb, which is consistent with
the ML equation (166) under the boundary condition (167).
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Pt (−lnb + l) = Pt (−L/2 + l) � Pt (−L/2) + l∂+1Pt (−L/2) + O(l2) = +l∂+1Pt (−L/2) + O(l2),
(172)

and replacing the Kronecker δ with the Dirac δ function

lim
l↓0

1

l
δr ,x = δ(r − x), (173)

we obtain Eq. (22) from Eq. (166). This derivation is rather elementary without requiring
either Novikov’s theorem or functional calculus. We believe this derivation will develop the
better intuition of the general audience, particularly about the technical issues on the left and
right derivatives.

GDerivation of the Exact Steady Solution �(r)

We derive the exact steady solution φ(r) with (without) the avoiding potential U (r). In this
appendix, we assume the symmetry of the PDF in the steady state:

φ(r) := lim
t→∞ Pt (r), φ(r) = φ(−r),

∂

∂r
φ(r) = − ∂

∂r
φ(−r). (174)

This symmetry implies that it is sufficient to investigate the steady solution φ(r) only for
r ∈ [0,∞).

G.1 In the Absence of the Avoiding Potential U(r) = 0

Let us first assume the absence of the avoiding potential U (r). On the basis of the ML
equation (22), φ(r) satisfies

σ 2
cm

2

∂2

∂r2
φ(r) = 0, r ∈ (0, L/2), (175)

which implies the piecewise-linear steady solution

φ(r) = C1 + C2r , r ∈ (0, L/2) (176)

with coefficients C1 and C2. We will then consider the boundary condition at r = 0, L/2.

G.1.1 Boundary Condition at r = 0

The boundary condition at r = 0 is given by integrating Eq. (22) over (−h,+h) with
infinitesimal positive h > 0 as

0 =
∫ +h

−h
dr

[
σ 2
cm

2

∂2

∂r2
φ(r) − δ(r)

σ 2
cm

2
∂−1φ(L/2) + δ(r)

σ 2
cm

2
∂+1φ(−L/2)

]

= σ 2
cm

2

(
∂

∂r
φ(h) − ∂

∂r
φ(−h)

)
− σ 2

cm

2
∂−1φ(L/2) + σ 2

cm

2
∂+1φ(−L/2)

= σ 2
cm

∂

∂r
φ(h) − σ 2

cm∂−1φ(L/2), (177)

where we have used |∂−sφ(sL/2)| = −s∂−sφ(sL/2). For h ↓ 0, we obtain the boundary
condition

∂+1φ(0) = ∂−1φ(L/2). (178)
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G.1.2 Boundary Condition at r = L/2

We examine the boundary condition at r = L/2. Let us integrate the ML equation (22) over
(L/2 − h, L/2 + h) with infinitesimal positive h > 0 as

0 =
∫ L/2+h

L/2−h
dr

[
σ 2
cm

2

∂2

∂r2
φ(r) + δ(r − L/2)

σ 2
cm

2
|∂−1φ(L/2)|

]

= σ 2
cm

2

∂

∂r
φ(L/2 − h) − σ 2

cm

2

∂

∂r
φ(L/2 + h) + σ 2

cm

2
|∂−1φ(L/2)| . (179)

Considering the fact ∂−1φ(L/2) < 0, we obtain

∂

∂r
φ(L/2 + h) = ∂

∂r
φ(L/2 − h) − ∂−1φ(L/2). (180)

By taking the limit h → 0, we obtain the boundary condition

lim
h↓0

∂

∂r
φ(L/2 + h) = ∂+1φ(L/2) = 0. (181)

G.1.3 Normalisation Condition and the Explicit Steady Solution

Considering the boundary conditions (178) and (181) together with the local solution (176)
for r ∈ (0, L/2), the global solution is given by

φ(r) =
{
C1 + C2r (r ∈ (0, L/2))

C1 + C2L/2 = const. (r ∈ [L/2,∞))
. (182)

The coefficients C1 and C2 for the steady solution (176) is determined by the normalisation
condition: ∫ ∞

−∞
drφ(r) = 2

∫ ∞

0
drφ(r) = 1, (183)

which deduces the tent function (65) with C1 = 2/L and C2 = −4/L2.

G.2 In the Presence of the Avoiding Potential U(r) �= 0

From Eq. (112) for r ∈ (0, L/2), we obtain

d

dr

[
U ′(r) + σ 2

cm

2

d

dr

]
φ(r) = 0. (184)

The boundady condition at r = 0 is given by integrating the both hand sides (BHSs) of
Eq. (112a) over (−h, h) with h > 0:

0 = σ 2
cm

2

(
∂

∂r
φ(+h) − ∂

∂r
φ(−h)

)
− σ 2

cm

2

∂

∂r
φ(L/2) + σ 2

cm

2

∂

∂r
φ(−L/2) + o(h), (185)

which is equivalent to
∂

∂r
φ(+0) = ∂

∂r
φ(L/2) (186)
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for h ↓ 0, by considering the symmetry (∂/∂r)φ(r) = −(∂/∂r)φ(−r). The boundary
condition at r = L/2 is also given by integrating the BHSs of Eq. (112a) over (L/2 −
h, L/2 + h) with h > 0:

0 = σ 2
cm

2

(
∂

∂r
φ(L/2 + h) − ∂

∂r
φ(L/2 − h)

)
+ σ 2

cm

2

∂

∂r
φ(L/2) + o(h). (187)

Since (∂/∂r)φ(L/2 + h) = 0, the boundary condition (187) always holds for h ↓ 0. Fur-
thermore, the normalisation condition is given by

∫ L/2

0
φ(r)dr = 1

2
. (188)

By solving Eq. (184) under the conditions (186) and (188), we obtain the exact solution (113).

H Consistency Confirmation with the Reduced Master-Liouville Equa-
tion (22)

Let us confirm the consistency between the full and reduced ML equations (68) and (22).
In this Appendix, the technical symbol on the left and right derivatives are abbreviated for
simplicity, such as ∂̃12;s → ∂̃12. Starting from the full ML equation (68), let us apply a
variable transformation:

ẑcm := ẑ1 + ẑ2
2

, r̂ := ẑ1 − ẑcm = ẑ1 − ẑ2
2

�⇒ ẑ1 = ẑcm + r̂ , ẑ2 = ẑcm − r̂ . (189)

This implies the derivative chain rule

∂

∂z1
= 1

2

(
∂

∂zcm
+ ∂

∂r

)
,

∂

∂z2
= 1

2

(
∂

∂zcm
− ∂

∂r

)
. (190)

We thus obtain

∂Pt (zcm, r)

∂t
=σ 2

cm

2

[
∂2

∂z2cm
+ ∂2

∂r2

]
Pt (zcm, r) +

∑
s=±1

[
Jt;s(zcm, r − sL/2) − Jt;s(zcm, r)

]
,

(191)

Jt;s(zcm, r) := − sσ 2
cm

2
δ(r − sL/2)

∂

∂r
Pt (zcm, r), (192)

where we have used σ 2
cm = σ 2/2. By introducing the reduced PDF

Pt (r) :=
∫ ∞

−∞
dzcmPt (zcm, r) (193)

as the result of themarginalisation, we obtain the reducedML equation (22). This consistency
suggests that the kinetic formulation for the dealermodel and the technical calculation therein
are very reasonable from various viewpoints.

I Derivation of theML Equation with Avoiding Potential U(r)

Equation (112) can be derived in an essentially parallel manner to Eq. (61). Let us first replace
the white Gaussian noise η̂(t) with a coloured Gaussian noise η̂ε(t), satisfying 〈η̂ε(t)〉 = 0
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and 〈η̂ε(t1)η̂ε(t2)〉 = (1/(2ε))e−|t1−t2|/ε . The time evolution of an arbitrary function f (r̂) is
given by

d f (r̂) =
⎧⎨
⎩
d f (r̂)

dr̂

(−U ′(r̂) + σcmη̂ε

)
dt (with a collision: τ̂s;i /∈ [t, t + dt))

f (r̂ − sL/2) − f (r̂) (with a collision: τ̂s;i ∈ [t, t + dt))
, (194)

where d f (r̂(t)) := f (r̂(t + dt)) − f (r̂(t)) and τ̂s;i is the i th arrival time of the particle at
r̂(τ̂s;i ) = sL/2 for s = ±1. Using the δ functions, this is equivalent to

d f (r̂)

dt
= d f (r̂)

dr̂

(−U ′(r̂) + σcmη̂ε

) +
∑
s=±1

∑
i=1

[
f (r̂ − sL/2) − f (r̂)

]
δ(t − τ̂s;i )

= d f (r̂)

dr

(−U ′(r̂) + σcmη̂ε

) +
∑
s=±1

[
f (r̂ − sL/2) − f (r̂)

] ∣∣∣∣dr̂dt
∣∣∣∣ δ(r̂ − sL/2).

(195)

By considering the sign of the velocity dr̂/dt as dr̂/dt > 0 for r̂ = L/2 and dr̂/dt < 0 for
r̂ = −L/2, we obtain |dr̂/dt | = s(−U ′(r̂) + σcmη̂ε) just before the collosion at r̂ = sL/2.
We thus have

d f (r̂)

dt
= d f (r̂)

dr̂

(−U ′(r̂) + σcm η̂ε

) +
∑
s=±1

s
(−U ′(r̂) + σcm η̂ε

) [
f (r̂ − sL/2) − f (r̂)

]
δ(r̂ − sL/2).

(196)
By taking the ensemble average of BHSs, we obtain

〈
d f (r̂)

dt

〉
=

〈
d f (r̂)

dr̂

(−U ′(r̂) + σcmη̂ε

)

+
∑
s=±1

s
(−U ′(r̂)+σcmη̂ε

) [
f (r̂−sL/2)− f (r̂)

]
δ(r̂− sL/2)

〉
. (197)

By substituting f (r̂) = δ(r̂ − r), we first obtain the following relations:
〈
d f (r̂)

dt

〉
= d

dt
〈 f (r̂)〉 = d

dt

∫ ∞

−∞
dr ′ f (r ′)Pt (r ′) = ∂

∂t
Pt (r), (198)

〈
d f (r̂)

dr̂
U ′(r̂)

〉
=

∫ ∞

−∞
Pt (r

′)d f (r
′)

dr ′ U ′(r ′)dr ′ = −
∫ ∞

−∞
f (r ′) ∂

∂r ′
[
U ′(r ′)Pt (r ′)

]
dr

= ∂

∂r

[
U ′(r)Pt (r)

]
, (199)

〈
U ′(r̂) f (r̂ − sL/2)δ(r̂ − sL/2)

〉 =
∫ ∞

−∞
dr ′Pt (r ′)U ′(r ′) f (r̂ ′ − sL/2)δ(r ′ − sL/2)

= Pt (sL/2)U ′(sL/2)δ(r) = 0, (200)

and

〈
U ′(r̂) f (r̂)δ(r̂ − sL/2)

〉 =
∫ ∞

−∞
dr ′Pt (r ′)U ′(r ′) f (r̂ ′)δ(r ′ − sL/2)

= Pt (sL/2)U ′(sL/2)δ(r − sL/2) = 0, (201)

123



    8 Page 46 of 48 K. Kanazawa et al.

Table 1 Parameter table for the numerical simulations

Variable Meaning Numerical value Dimension

L Spread constant 2 Price

u2 Strength of the avoiding potential 0 or 1 Time−1

σ 2 Variance of the random walks 1 Price2/time

Δt Discrete timestep 10−4/
√
N/2 Time

Tini Time for the initialisation 20 Time

Tend Time for the sampling 104 Time

Δr Interval between the bins 10−2 Price

rmax Maximum value of the bins 3 Price

rmin Minimum value of the bins −3 Price

Here Δt depends on the total number of the traders N because the minimum characteristic length ε :=
L/(2

√
N ) depends on N likewise

where we have used Pt (sL/2) = 0 (i.e., Pt (r) must have the vanishing probability at the
boundary). UsingNovikov’s theorem and substituting f (r̂) = δ(r̂−r), in addition, we obtain

lim
ε↓0

〈
σcm

d f (r̂)

dr̂
η̂ε

〉
=

〈
σ 2
cm

2

d f (r̂)

dr̂2

〉
=

∫ ∞

−∞
f (r ′) σ 2

cm

2

∂2

∂r ′2 Pt (r
′)dr ′ = σ 2

cm

2

∂2

∂r2
Pt (r),

(202)

lim
ε↓0

〈
η̂ε f (r̂ − sL/2)δ(r̂ − sL/2)

〉 =
〈
σcm

2

∂

∂ r̂
f (r̂ − sL/2)δ(r̂ − sL/2)

〉

=
∫ ∞

−∞
dr ′Pt (r ′) σcm

2

∂

∂r ′ f (r
′ − sL/2)δ(r ′ − sL/2)

= −σcm

2
δ(r)

∂

∂r
Pt (sL/2), (203)

and

lim
ε↓0

〈
η̂ε f (r̂)δ(r̂ − sL/2)

〉 =
〈
σcm

2

∂

∂ r̂
f (r̂)δ(r̂ − sL/2)

〉

=
∫ ∞

−∞
dr ′Pt (r ′)σcm

2

∂

∂r ′ f (r
′)δ(r ′ − sL/2)

= −σcm

2
δ(r − sL/2)

∂

∂r
Pt (sL/2). (204)

In summary, we have

∂

∂t
Pt (r) = ∂

∂r

[
U ′(r) + σ 2

cm

2

∂

∂r

]
Pt (r) +

∑
s=±1

[δ(r) − δ(r − sL/2)]

(
−s

σ 2
cm

2

∂

∂r
Pt (sL/2)

)
,

(205)

which is equivalent toEq. (112) by considering that (∂/∂r)Pt (L/2) < 0 and (∂/∂r)Pt (−L/2)
> 0.
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We explain the numerical scheme for the N -body dealer model. We also note that the orig-
inal codes are available as “Supplementary Code S1.jl” (without potential U (r) = 0) and
“Supplementary Code S2.jl” (with potential U (r) = u2r2/2), which can be run on the Julia
Programming Language (see Appendix K for the data availability statements).

Let us define the bid price, ask price, and midprice of the i th trader as b̂i , âi , and ẑi :=
(b̂i + âi )/2 for i ∈ 1, 2, . . . , N . We assume that the spread is identical to all traders, such that
âi − b̂i = L = const. for all i = 1, 2, . . . , N . The discrete time is introduced as tk = kΔt
with discrete timestep Δt > 0 and integer k. We run the simulation during [−Tini, Tend),
where the data sample during [−Tini, 0) is discorded for the initialisation. The dynamical
equation is basically given by

ẑi (tk+1) = ẑi (tk) − u2(ẑi (tk) − ẑM(tk))Δt + σ
√

Δt ξ̂ (tk), ẑM(tk) := 1

2

(
ẑ1(tk) + ẑ2(tk)

)
(206)

with the normal random number ξ̂ (tk) with the unit variance 〈ξ̂ (tk)ξ̂ (tk′)〉 = δk,k′ . If there is
a transaction, there occurs a jump representing resubmissions:

|ẑi (tk) − ẑ j (tk)| ≥ L �⇒ ẑi (tk+1) = ẑ j (tk+1) = ẑi (tk) + ẑ j (tk)

2
. (207)

Even though it is a rare event for dt ↓ 0, but if there are multiple collisions at the same time,
only one pair composed of the highest bid and lowest ask is selected to make a transaction
during one discrete timestep. The steady PDF φN (r) is calculated according to the following
formula,

φN (r) :=
〈
1

N

N∑
i=1

δ(ẑi − ẑcm − r)

〉
� 1

Tend

∑
tk∈[0,Tend)

Δt

(
1

N

N∑
i=1

δ(ẑi − ẑcm − r)

)

(208)
for sufficiently large Tend by assuming the ergodicity. Numerically, we introduce the bins,
such as [rk, rk+1)where rk := r0+kΔr , r0 = rmin, rNr = rmax, and Nr := (rmax−rmin)/Δr
and then make an approximation on the δ function as

δ(ẑi − ẑcm − r) �
{
1/Δr if r ∈ [rk , rk+1) and ẑi − ẑcm ∈ [rk , rk+1) for some k ∈ 0, . . . , Nr − 1

0 otherwise
.

(209)
By applying this binning approximation to Eq. (208), we numerically evaluate the steady
PDF φN (r) under the parameter set summarised in Table 1.
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