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By identifying vertically isomorphic morphisms in J. Bénabou’s [Lect. Notes Math. 47, 1–77 (1967; Zbl
1375.18001)] bicategory Span(C) of spans of morphisms in a category C with pullbacks, one obtains the
category

Span(C)

in which spans are composed horizontally via pullback in C. If C is regular so that C has also binary
products and a pullback-stable (regular epi, mono)-factorization system, one may similarly form the
category

Rel(C)

of sets and relations in C, with the horizontal composite of a composable pair of relations obtained as
a regular image of their span composite. which is the prototypical example of a unitary and tabular
allegory [P. T. Johnstone, Sketches of an elephant. A topos theory compendium. I. Oxford: Clarendon
Press (2002; Zbl 1071.18001)].
D. Pavlović [J. Pure Appl. Algebra 99, No. 1, 9–34 (1995; Zbl 0829.18002)] considered, without any epi-
or mono restrictions, an arbitrary pullback-stable factorization system (E ,M) of a category C with binary
products and pullbacks, forming the category

RelM(C)

whose morphisms are represented by those spans (A ← R → B) whose induced morphism R → A × B
lies inM. This paper takes a fresh look at this category by treating it as a quotient category of Span(C),
The synopsis of the paper goes as follows.
§2 describes, for any pullback-stable class E of morphisms in C containing all isomorphisms and be-
ing closed under composition, a compatible equivalence relation ∼E on Span(C) which renders its
quotient category

SpanE(C)

isomorphic to RelM(C) whenever is a factorization partner of E (Theorem 2.3).
§3 gives necessary and sufficient conditions for a compatible equivalence condition ∽ on Span(C) to
make its quotient category an allegory (Theorem 3.6).

§4 shows that the provision M ⊆ Mono(C) is necessary for RelM(C) to form an allegory (Theorem
4.6).

§5 shows that, given any stable factorization system (E ,M) in a finitely complete category C, there is a
least pullback-stable and composition-closed class E• containing E and making SpanE•

(C) a unitary
tabular allegory (Theorem 5.8).

§6 sets up the 2-category of unitary tabular allegories on the one hand and that of finitely complete
categories rigged out in a pullback-stable factorization system on the other, showing that the con-
struction of Theorem 5.8 gives rise a left ajoint to the 2-functor

Map : UTabAll→ STabFact

assigning to a unitary tabular allegory its category of Lawverian maps rigged out in its stable
factorization system that makes it a regular category. The Freyd-Scedrov Representation Theorem
[P. J. Freyd and A. Scedrov, Categories, allegories. Amsterdam etc.: North-Holland (1990; Zbl
0698.18002), 2.154] allows of presenting UTabAll as 2-equivalent to the full subcategory RegCat
of STabFact consisting of all regular categories, so that every finitely complete category with a
pullback-stable factorization system allows for a reflection into RegCat.
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