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On the one hand, univalence, originally a type-theoretical notion at the heart of Voevodsky’s Univalent
Foundation Program [The Univalent Foundations Program, Homotopy type theory. Univalent founda-
tions of mathematics. Princeton, NJ: Institute for Advanced Study; Raleigh, NC: Lulu Press (2013; Zbl
1298.03002)], has found general importance as a higher categorical property characterizing descent and
hence classifying maps in (∞, 1)-categories. On the other hand, completeness is a property of Segal spaces
introduced by C. Rezk [Trans. Am. Math. Soc. 353, No. 3, 973–1007 (2001; Zbl 0961.18008)] character-
ising those Segal spaces which are (∞, 1)-categories. The principal objective in this paper is first to
make rigorous a ostensible analogy between univalence and completeness that has found various informal
expressions in the higher categorical research community to date, and second to study its ramifications.
The basic strategy is to understand its quintessence as a translation between internal and external notions,
motivated by model categorical considerations of A. Joyal and M. Tierney [Contemp. Math. 431, 277–
326 (2007; Zbl 1138.55016)]. Consequently, the author characterizes the internal notion of univalence in
logical model categories by the external notion of completeness defined as the right Quillen conditions of
suitably indexed Set-weighted limit functors.
Furthermore, the author extends the analogy, showing that univalent completion in the sense of B. van
den Berg and I. Moerdijk [Math. Ann. 371, No. 3–4, 1337–1350 (2018; Zbl 1400.55007)] translates to Rezk-
completion of associated Segal objects as well. Depending on these correspondence, the author exhibits
univalence as a homotopical locality condition whenever univalent completion exists.
A connection of Rezk-completeness and univalence via a nerve correspondence p 7→ N(p) has been
investigated by N. Rasekh [“Complete Segal objects”, Preprint, arXiv:1805.03561, §6], where a theory of
complete Segal objects in (∞, 1)-categories was developed and univalence of a map p in a locally cartesian
closed (∞, 1)-category C was defined as completeness of its associated Segal object N(p). B. Ahrens et
al. [Math. Struct. Comput. Sci. 25, No. 5, 1010–1039 (2015; Zbl 1362.18003)] introduced a notion of
Rezk-completeness of precategories to categories in the syntax of Homotopy Type Theory, proposing a
definition of ‘category’ for which equality and equivalence of categories agree. They gave a construction
corresponding to a truncated version of the Rezk completion for Segal spaces, and also to the stack
completion of a prestack.
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