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The study of the 2-representation theory of finitary and fiat 2-categories was pioneered by V. Mazorchuk
and V. Miemietz [Compos. Math. 147, No. 5, 1519–1545 (2011; Zbl 1232.17015); Mosc. Math. J. 14, No.
3, 595–615 (2014; Zbl 1342.17003); Int. Math. Res. Not. 2016, No. 24, 7471–7498 (2016; Zbl 1404.18014);
Math. Z. 282, No. 1–2, 411–434 (2016; Zbl 1375.18037)] and further exploited in various other works
[M. Mackaay et al., Indiana Univ. Math. J. 68, No. 1, 1–33 (2019; Zbl 1472.18019); A. Chan and V.
Mazorchuk, Math. Proc. Camb. Philos. Soc. 166, No. 2, 325–352 (2019; Zbl 1411.18008)], having important
applications in quotients of 2-Kac-Moody algebras [V. Mazorchuk andV. Miemietz, Trans. Am. Math. Soc.
368, No. 11, 7623–7644 (2016; Zbl 1365.18006)] and Soergel bimodules [M. Mackaay and V. Mazorchuk, J.
Pure Appl. Algebra 221, No. 3, 565–587 (2017; Zbl 1404.18013); J. Zimmermann, J. Pure Appl. Algebra
221, No. 3, 666–690 (2017; Zbl 1360.18008); T. Kildetoft et al., Trans. Am. Math. Soc. 371, No. 8,
5551–5590 (2019; Zbl 1409.18005)]. This paper extends the theory to certain 2-categories with infinitely
many objects, called locally finitary 2-categories, generalizing the classical classification results of simple
transitive 2-representations of weakly fiat 2-categories to this environment.
The synopsis of the paper goes as follows.
§2 gives the initial definitions for locally finitary 2-categories and their 2-representations, presenting
some minor results which demonstrate that the cell structures of the 2-category is highly analogous
in the generalization.

§3 generalizes various results in [M. Mackaay et al., Indiana Univ. Math. J. 68, No. 1, 1–33 (2019;
Zbl 1472.18019)], leading up to Theorem 3.6 as well as Theorem 3.12, which classifies the simple
transitive 2-representations for locally finitary 2-categories associated to certain infinite-dimensional
algebras.

§4 considers generalizations of various results in [V. Mazorchuk and V. Miemietz, Compos. Math. 147,
No. 5, 1519–1545 (2011; Zbl 1232.17015); Mosc. Math. J. 14, No. 3, 595–615 (2014; Zbl 1342.17003);
Int. Math. Res. Not. 2016, No. 24, 7471–7498 (2016; Zbl 1404.18014); Math. Z. 282, No. 1–2, 411–
434 (2016; Zbl 1375.18037); Trans. Am. Math. Soc. 368, No. 11, 7623–7644 (2016; Zbl 1365.18006)],
eventually aiming to establish Theorem 4.33 classifying all simple transitive 2-representations of
strongly regular locally weakly fiat 2-categories as being equivalent to cell 2-representations. The
result is utilized to classify all simple transitive 2-representations of cyclotomic 2-Kac-Moody alge-
bras.

§5 presents an application of the result by demonstrating that cyclotomic 2-Kac-Moody algebras of
given weights are locally weakly fiat 2-categories, submitting to the aforementioned theorem.

§6 examines the further generalization to locally restricted G-finitary 2-categories for some countable
abelian group G, constructing a degree zero 2-category associated to such a 2-category and using
it to construct a degree zero coalgebra 1-morphism for a given graded transitive 2-representation
of the original 2-category. The setup allows of proving Theorem 6.21 claiming that the previously
constructed internal 2-representations associated to a transitive 2-representation is to be viewed
as a degree zero construction in a canonical fashion. This is applied to the cyclotomic 2-Kac-
Moody categories of given weights, showing that their cell 2-representations are all graded simple
2-representations, which leads to Theorem 6.25 claiming that any simple transitive 2-representation
is in fact a graded 2-representation.
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