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Nilpotent spaces play a significant role in the homotopy theory of spaces. Many results holding for simply
connected spaces are to be generalized to nilpotent spaces, which have a rich theory of localizations away
from sets of numbers, including fracture squares that reconstruct a space out of some of its localizations.
The principal objective in this paper is to develop the basic theory of nilpotent spaces in Homotopy Type
Theory [The Univalent Foundations Program, Homotopy type theory. Univalent foundations of mathe-
matics. Princeton, NJ: Institute for Advanced Study; Raleigh, NC: Lulu Press (2013; Zbl 1298.03002)],
which give constructive proofs holding in any ∞-topos.
The synopsis of the paper goes as follows.
§2 establishes the equivalence between the two characterizing properties of nilpotency (Theorem 2.60),
for which the relationship between unpointed Eilenberg-MacLane spaces and doubly pointed Eilenberg-
MacLane spaces are studied. It is shown that the type of unpointed n-dimensional Eilenberg-
MacLane spaces is equivalent to the type of doubly pointed (n+1)-dimensional Eilenberg-MacLane
spaces (Theorem 2.25).

§3 establishes, following the suggestion of Shulman [https://homotopytypetheory.org/2014/06/
30/fibrations-with-em-fiber/], that cohomology isomorphisms between nilpotent types induce
isomorphisms in all homotopy groups.

§4 investigates the localization of a nilpotent type and its effect on homotopy groups, showing that the
localization of a nilpotent type localizes its homotopy groups in the expected way (Theorem 4.19).

§5 constrcuts a fracture square for simply connected types without assuming Whitehead’s principle
(Theorem 5.4). This section as well as the previous one builds on [E. Rijke et al., “Modalities in
homotopy type theory”, Preprint, arXiv:1706.07526].
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