
MAGNETIC JACOBI FIELDS IN SASAKIAN SPACE FORMS
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Abstract. Typical examples of uniform magnetic fields are Kähler magnetic fields on
Kähler manifolds. It is very difficult to study magnetic Jacobi fields of non-uniform magnetic
fields in an arbitrary Riemannian manifold. The canonical magnetic fields of Sasakian man-
ifolds are non-uniform but exact. In this paper we completely determine magnetic Jacobi
fields on Sasakian space forms of dimension greater or equal to 5.

1. Introduction

A magnetic curve on a Riemannian manifold (M, g) is a solution of the Lorentz equation

(1.1) ∇γ′γ′ = qϕγ′,

where ϕ is a (1, 1) tensor field obtained from a closed 2-form F on M , q is a real number and
∇ is the Levi-Civita connection defined by g.

The study of magnetic curves is an active field of mathematics and mathematical physics as
well, for several reasons:

• The original problem stems from the study of motion of a charged particle in a static
magnetic field in E3.

• Magnetic curves obviously generalize geodesics; when the magnetic field F is absent,
the Lorentz force ϕ is zero, and hence the Lorentz equation (1.1) reduces to the
equation of geodesics.

• Magnetic curves are solutions of a variational problem; more precisely, they are critical
points of the LH functional (on C∞([a, b]))

(1.2) LH(γ) = E(γ)− q

b∫
a

A(γ′(s))ds,

where E(γ) =

b∫
a

1

2
g(γ′(s), γ′(s))ds is the Dirichlet energy of γ and A is the potential

1-form generating the magnetic field F .
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A second variational formula for the integral LH leads to the concept of magnetic Jacobi field.
Maybe the first researchers who investigated Jacobi fields along magnetic trajectories on a
Riemannian manifold were Gouda [11] and Paternain & Paternain [19]. See also [1].

In our previous papers we investigated several geometric properties of magnetic curves in
almost contact metric manifolds when the magnetic field is given by the fundamental 2-form.
We have been interested in finding the maximum osculating order of such a curve, in obtaining
some reduction results for the codimension of these curves and to get conditions under which
the magnetic curves are periodic. See e.g. [8, 17, 14, 16, 18] as well as [6, 13].

Detailed study on magnetic Jacobi fields gives us insight on how small variations affect the
evolution of magnetic curves. One needs to point out that Adachi [1] and Gouda [12] studied
magnetic Jacobi fields with respect to uniform magnetic fields, that is when the Lorentz force
is parallel, i.e. ∇ϕ = 0. The parallelism is determinative in their study. However, when the
ambient space is a Sasakian manifold, the Lorentz force comes naturally obtained from the
contact magnetic field F = −Ω = −dη and hence ϕ = φ. Therefore, due to (3.2), the Lorentz
force is no longer parallel and hence the magnetic field is not uniform.

The study of Jacobi fields on geodesics in Sasakian space forms is done in [3, 4], where
the Jacobi equation is completely solved. When the magnetic field is involved, the problem
becomes more complicated.

In a very recent paper [15] we obtained all magnetic Jacobi fields along contact magnetic
curves on 3-dimensional Sasakian space forms. In particular, we constructed explicit examples
of magnetic Jacobi fields on the unit 3-sphere S3, on the Heisenberg group Nil3 and on SL2R,
respectively.

In this paper we continue the study initiated in [15] and we investigate magnetic Jacobi fields
in Sasakian space forms of dimension greater or equal to 5.

2. Preliminaries

On a Riemannian manifold (M, g) with a closed 2-form F (regarded as a static magnetic
field), the Lorentz force ϕ derived from F is an endomorphism field defined by

g(ϕX, Y ) = F (X,Y ).

The magnetic trajectory of F is a curve γ satisfying the Lorentz equation (1.1), where the
constant q is called the charge. One can see that every magnetic trajectory has constant
speed. Unit speed magnetic curves are called normal magnetic curves.

We have already pointed out that magnetic curves are critical points of the LH functional
(1.2), where the magnetic field F is obtained from the potential 1-form A, that is F = 2dA.
Gouda obtained in [11] the second variational formula of LH:

d2

dε2

∣∣∣∣
ε=0

LH(γε) = −
∫ b

a
g(Jq,F (W (s)), V (s))ds,
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where V and W are variational vector fields along γ(s) in a 2-parameter variation. The
operator Jq,F acts on the space Γ (γ∗TM) of all vector fields along γ and it is defined by

Jq,F (W ) = ∇γ′∇γ′W +R(W,γ′)γ′ − qϕ(∇γ′W )− q(∇Wϕ)γ′.

We call the operator Jq,F the magnetic Jacobi operator derived from the magnetic field F .

A vector field W (s) along γ is said to be a magnetic Jacobi field if it satisfies Jq,F (W ) = 0.

Proposition 2.1. ([11]) On a magnetic curve γ(s), the velocity γ′(s) is a magnetic Jacobi
field along γ(s).

Proof. Let γ(s) be a magnetic curve and choose W (s) = γ′(s). Since γ is a solution of the
Lorentz equation (1.1), we have

Jq,−dη(γ
′) =∇γ′∇γ′γ′ +R(γ′, γ′)γ′ − qϕ(∇γ′γ′)− q(∇γ′ϕ)γ′

=∇γ′(qϕγ′)− qϕ(∇γ′γ′)− q(∇γ′ϕ)γ′ = 0.

□

Let us give now some motivation for our investigation.

Proposition 2.2. Let (M,φ, ξ, η, g) be a Sasakian manifold and let W be a vector field on
M such that LξW = pξ, where p ∈ R. Here, by L we denote the Lie differentiation. Then
W is a magnetic Jacobi field along any integral curve of ξ (thought as a magnetic curve with
arbitrary strength q), i.e. Jq,−dη(W ) = 0.

Proof. Since [ξ,W ] = ∇ξW − ∇W ξ we easily get ∇ξW = pξ − φW . A second covariant
derivative along ξ leads to ∇ξ∇ξW = −W + η(W )ξ. Hence Jq,−dη(W ) = 0 for any q. □

Remark 2.1. The condition LξW = pξ is not artificial; for example it occurs when the
Sasakian manifold M is a non-trivial (i.e. non-Einstein) Ricci soliton. See e.g. [10, 9].

Remark 2.2. The notion of Jacobi field (along geodesics) was extended also in other direc-
tion. A vector field W on a Riemannain manifold (M, g) is called a Jacobi-type vector field if
it satisfies the equation

∇X∇XW −∇∇XXW +R(W,X)X = 0, for any X ∈ X(M).

In this regard, it is proved that any Killing vector field on M is a Jacobi-type vector field.
The converse is not true, that is there are Jacobi-type vector fields that are not Killing vector
fields. See [7]. Moreover, in the same paper [7], the author provides a sufficient condition
for a Ricci soliton to be an Einstein manifold. This condition is that the potential field is a
Jacobi-type vector field.

Remark 2.3. In [9] the author states that the soliton vector of a non-Einstein Sasakian
manifold is a Jacobi field along the integral curves (geodesics) of the Reeb vector field ξ.
The statement given in Proposition 2.2 extends this result to arbitrary q. This is a good
motivation to study magnetic Jacobi fields in Sasakian manifolds.
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3. Magnetic Jacobi fields in Sasakian space forms

Our aim is to study magnetic Jacobi fields along contact magnetic curves in Sasakian space
forms of arbitrary dimension.

3.1. Sasakian space forms. Let us recall some notions in the (almost) contact (metric)
geometry.

A (φ, ξ, η) structure on a manifold M is defined by

• a field φ of endomorphisms of tangent spaces,
• a vector field ξ and
• a 1-form η

satisfying

η(ξ) = 1, φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0.

When (M,φ, ξ, η) is endowed with a compatible Riemannian metric g, namely

g(φX,φY ) = g(X,Y )− η(X)η(Y ), for all X,Y ∈ X(M),

then M is said to have an almost contact metric structure, and (M,φ, ξ, η, g) is called an
almost contact metric manifold.

As an immediate consequence we have that ξ is unitary and η(X) = g(ξ,X), ∀X ∈ X(M).

We define a 2-form Ω on (M,φ, ξ, η, g) by

(3.1) Ω(X,Y ) = g(X,φY ), for all X,Y ∈ X(M),

called the fundamental 2-form of the almost contact metric structure (φ, ξ, η, g).

If Ω = dη, then (M,φ, ξ, η, g) is called a contact metric manifold. Here dη is defined by
dη(X,Y ) = 1

2

(
Xη(Y ) − Y η(X) − η([X,Y ])

)
, for any X,Y ∈ X(M). On a contact metric

manifold M , the 1-form η is a contact form (see Blair’s book [2]). The vector field ξ is called
the Reeb vector field of M and it is characterized by ιξη = 1 and ιξdη = 0. Here ι denotes
the interior product.

An almost contact metric manifold M is said to be normal if the normality tensor
S(X,Y ) = Nφ(X,Y ) + 2dη(X,Y )ξ vanishes, where Nφ is the Nijenhuis torsion of φ defined

by Nφ(X,Y ) = [φX,φY ] + φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ], for any X,Y ∈ X(M).

A Sasakian manifold is defined as a normal contact metric manifold. Denote by ∇ the Levi-
Civita connection associated to g and adopt the definition given in [2] to characterize the
Sasakian manifold (M,φ, ξ, η, g) by the equation

(3.2) (∇Xφ)Y = g(X,Y )ξ − η(Y )X, for any X,Y ∈ X(M).

A straightforward consequence, but very useful in calculations, is the next formula

(3.3) ∇Xξ = −φX, ∀X ∈ X(M).

A plane section Π at p ∈ M2n+1 is called a φ-section if it is invariant under φp. The sectional
curvature K(Π) of a φ-section is called the φ-sectional curvature of M2n+1 at p. A Sasakian
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manifold (M2n+1, φ, ξ, η, g) is said to be a Sasakian space form if it has constant φ-sectional
curvature. Sasakian space forms are invariant under D-homothetic deformations. See [2].
Therefore, we emphasize that for every value of c there exist Sasakian space forms, as follows:
the elliptic Sasakian space forms, also known as the Berger spheres if c > −3, the Heisenberg
space R2n+1(−3), if c = −3, and B2n × R when c < −3. In the third model B2n is complex
space form of negative holomorphic sectional curvature. See, for further details, [2, Theorem
7.15]. Note that the case c > −3 includes the standard unit sphere S2n+1(1).

In the following we give some formulas for the curvature of a Sasakian manifold (M,φ, ξ, η, g).
If R denotes the curvature tensor of type (1, 3) defined by R(X,Y ) = ∇X∇Y −∇Y ∇X−∇[X,Y ]

we have:

• If M is an arbitrary Sasakian manifold, then

R(X,Y )ξ = η(Y )X − η(X)Y, R(X,Y )ξ = −(∇Xφ)Y + (∇Y φ)X.

• If M is a Sasakian space form of constant holomorphic sectional curvature c and
dimM ≥ 5, then

R(X,Y )Z =
c+ 3

4
(g(Y, Z)X − g(Z,X)Y )

+
c− 1

4
{η(Z)η(X)Y − η(Y )η(Z)X

+ g(Z,X)η(Y )ξ − g(Y, Z)η(X)ξ

− g(Y, φZ)φX − g(Z,φX)φY + 2g(X,φY )φZ}.

3.2. Magnetic Jacobi fields. On a Sasakian manifold M , the contact form η naturally
defines a magnetic field F = −dη and so, the Lorentz force ϕ = φ. A curve γ : I ⊆ R → M
is called a contact magnetic curve on M if it is a solution of the Lorentz equation

∇γ′γ′ = qφγ′.

Note that the curve γ is parametrized by the arclength.

Let now W be a magnetic vector field along the contact magnetic curve γ.

¬ Start with the easiest case when γ is an integral curve of ξ, case in which γ is a geodesic
on M . Then, W is a magnetic Jacobi field along γ if and only if it satisfies the equation

(3.4) ∇ξ∇ξW +R(W, ξ)ξ − qφ(∇ξW )− q(∇Wφ)ξ = 0.

Since M is a Sasakian space form, the equation (3.4) becomes

(3.5) ∇ξ∇ξW + (1 + q)
(
W − η(W )ξ

)
− qφ(∇ξW ) = 0.

Note that we can take an orthonormal basis along γ(s) = Exp(sξ) of the following form:

{ξ(γ(s)), Ea(s), φEa(s)}a=1,...,n

and such that it is parallel. This can be done by virtue of the property ∇ξφ = 0.

Decompose W (s) with respect to this frame as

W (s) = f(s)ξ(γ(s)) +

n∑
a=1

[
αa(s)Ea(s) + βa(s)φEa(s)

]
,
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where f , αa and βa are smooth functions on I.

The equation (3.5) leads to the following system of differential equations:

(3.6a) f ′′ = 0

(3.6b) α′′
a + (q + 1)αa + qβ′

a = 0

(3.6c) β′′
a + (q + 1)βa − qα′

a = 0, a = 1, . . . , n.

Our aim is to obtain explicit solutions for this system. Some special situations, which are
analogue to those in dimension 3 (see [15]), are briefly described in the next few lines.

Case q = 0. This case corresponds to Jacobi fields along geodesics. We obtain easily the
solution

(3.7)

f(s) = f1s+ f0

αa(s) = Aa cos s+Ba sin s

βa(s) = Āa cos s+ B̄a sin s,

where f0, f1, Aa, Ba, Āa and B̄a are real constant which can be obtained from the initial
conditions. See also [5].

Case q = −1. The solution of the system (3.6) is given by

(3.8)

f(s) = f1s+ f0

αa(s) = Ca +Aa cos s+Ba sin s

βa(s) = Da +Ba cos s−Aa sin s,

where f0, f1, Aa, Ba, Ca and Da are real constants.

Case q = −2. The solution of the system (3.6) is given by

(3.9)

f(s) = f1s+ f0

αa(s) = (Aa + Āas) cos s+ (Ba + B̄as) sin s

βa(s) = (Ba + B̄as) cos s− (Aa + Āas) sin s,

where f0, f1, Aa, Āa, Ba and B̄a are real constants.

Case q /∈ {−2,−1,0}. The first equation (3.6a) yields immediately

(3.10) f(s) = f1s+ f0,

where f0 and f1 are real constants. So, we analyze the next 2n differential equations.

From (3.6b) we get β′
a = −α′′

a+(q+1)αa

q . In (3.6c) we take the derivative and then we substitute

the expression of β′
a, previously obtained. Thus, we obtain a fourth order differential equation

in αa, namely

α(4)
a + (q2 + 2q + 2)α′′

a + (q + 1)2αa = 0.

The general solution of this equation is

(3.11) αa(s) = Aa cos s+ Āa sin s+Ba cos(q + 1)s+ B̄a sin(q + 1)s,



MAGNETIC JACOBI FIELDS 7

where Aa, Āa, Ba and B̄a are constants. Going back to the system (3.6) we find

(3.12) βa(s) = Āa cos s−Aa sin s− B̄a cos(q + 1)s+Ba sin(q + 1)s.

It is not clear for us if the two very particular situations q = −1 and q = −2 have any
geometrical or physical interpretation. Moreover, we have to point out that when γ is an
integral curve of ξ, it is not necessary assuming M to be a Sasakian space form. Indeed, the
equation (3.5) holds in any Sasakian manifold.

 Next, let γ be a non-geodesic magnetic curve on M such that γ′(s) and ξ(γ(s)) are not
collinear. Denote by θ the contact angle, that is cos θ = η(γ′). It is known, see e.g. [8], that
θ is constant.

Remark 3.1. The 3-space {ξ(γ(s)), γ′(s), φγ′(s)} is parallel along γ(s). Moreover, if E(s) is
parallel along γ and orthogonal to ξ(γ(s)) then φE(s) is also parallel.

Proof. To show the second part of the statement we compute

∇γ′(φE) = (∇γ′φ)E + φ∇γ′E︸ ︷︷ ︸
=0

= g(γ′, E)ξ − η(E)γ′ = 0.

□

In order to sustain the first part of the previous remark we give the following proposition.

Proposition 3.1. The following vector fields along γ are parallel:

(i) E1(s) = f1ξ +A1γ
′ +B1φγ

′, where

f1(s) =
q(1+q cos θ)

k2
(1− cos ks)

A1(s) = 1 + q(q+cos θ)
k2

(cos ks− 1)

B1(s) = − q
k sin ks;

(ii) E2n(s) = f2nξ +A2nγ
′ +B2nφγ

′, where

f2n(s) =
1

sin θ +
(1+q cos θ)2

k2 sin θ
(cos ks− 1)

A2n(s) = − cot θ + (q+cos θ)(1+q cos θ)
k2 sin θ

(1− cos ks)

B2n(s) =
1+q cos θ
k sin θ sin ks;

(iii) E2n+1(s) = f2n+1ξ +A2n+1γ
′ +B2n+1φγ

′, where

f2n+1(s) = −1+q cos θ
k sin θ sin ks

A2n+1(s) =
q+cos θ
k sin θ sin ks

B2n+1(s) =
1

sin θ cos ks.

Here k =
√

(q + cos θ)2 + sin2 θ.
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Set, at some point p

e1 = γ′, e2n =
1

sin θ

(
ξ − cos θγ′

)
and e2n+1 =

1

sin θ
φγ′

and e2, . . . , e2n−1 such that they are unitary, mutually orthogonal and ea+n−1 = φea, for
a = 2, . . . , n.

We will consider the parallel transport of the vectors e2, . . . , e2n−1 along γ to obtain Ea(s), φEa(s)
for a = 2, . . . , n and hence to have a basis at γ(s). This idea arises from [4].

Now a Jacobi magnetic vector field W (s) along γ may be decomposed as

(3.13) W (s) = f(s)ξ(γ(s)) +A(s)γ′(s) +B(s)φγ′(s) +
n∑

a=2

[αaEa + βaφEa] ,

where f , A, B, αa and βa are smooth functions on I.

The equation Jq,−dη(W ) = 0 implies

(3.14)

(2B′ + qB′ cos θ + f ′′) ξ + (A′′ − 2B′ cos θ − qB′) γ′

+
(
B′′ + qA′ + (c− 1)B sin2 θ − 2f ′

)
φγ′

+
n∑

a=2
(α′′

a + ℓαa + qβ′
a)Ea +

n∑
a=2

(β′′
a + ℓβa − qα′

a)φEa = 0,

where ℓ = (c+3)−(c−1) cos2 θ
4 + q cos θ. Note that ℓ is the analogue of l

4 from the paper [5]. We
obtain the following system of differential equations

(3.15a) f ′′ + (2 + q cos θ)B′ = 0,

(3.15b) A′′ − (q + 2 cos θ)B′ = 0,

(3.15c) B′′ + qA′ + (c− 1)B sin2 θ − 2f ′ = 0,

(3.15d) α′′
a + ℓαa + qβ′

a = 0,

(3.15e) β′′
a + ℓβa − qα′

a = 0.

We integrate the first two equations, (3.15a) and (3.15b) respectively, that is, there exist two
constants λ1 and λ2 such that

(3.16) f ′ = λ1 − (2 + q cos θ)B and A′ = λ2 + (q + 2 cos θ)B.

From (3.16) and (3.15c) we find a second order ODE in B:

(3.17) B′′(s) + µB(s) + λ0 = 0,

where µ = q2 + 4q cos θ + 4 + (c− 1) sin2 θ and λ0 = qλ2 − 2λ1.

The solution of the equation (3.17) can be described, briefly, as follows:

Case µ = 0. We obtain

(3.18) B(s) = −λ0

2
s2 +B0s+ B̄0,

where B0, B̄0 ∈ R.
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Using (3.16) we get

(3.19)
f(s) = λ1s− (2 + q cos θ)

(
−λ0

6 s3 + B0
2 s2 + B̄0s

)
+ f0

A(s) = λ2s+ (q + 2 cos θ)
(
−λ0

6 s3 + B0
2 s2 + B̄0s

)
+A0,

where f0, A0 ∈ R.

Case µ > 0. Set k =
√
µ. The solution for the differential equation (3.17) is

(3.20) B(s) = B0 cos ks+ B̄0 sin ks−
λ0

µ
,

where B0, B̄0 ∈ R.

Using (3.16) we get

(3.21)
f(s) = λ1s− (2 + q cos θ)

(
B0
k sin ks− B̄0

k cos ks− λ0
µ s

)
+ f0

A(s) = λ2s+ (q + 2 cos θ)
(
B0
k sin ks− B̄0

k cos ks− λ0
µ s

)
+A0,

where f0, A0 ∈ R.

Case µ < 0. Set k =
√
−µ. The solution for the differential equation (3.17) is

(3.22) B(s) = B0 cosh ks+ B̄0 sinh ks−
λ0

µ
,

where B0, B̄0 ∈ R.

Using (3.16) we get

(3.23)
f(s) = λ1s− (2 + q cos θ)

(
B0
k sinh ks+ B̄0

k cosh ks− λ0
µ s

)
+ f0

A(s) = λ2s+ (q + 2 cos θ)
(
B0
k sinh ks+ B̄0

k cosh ks− λ0
µ s

)
+A0,

where f0 and A0 ∈ R.

Obviously, all the constants that appeared above can be obtained from the initial conditions.

We still have to analyze the differential equations (3.15d) and (3.15e). In order to get the
solution {αa, βa} we adopt the same strategy as we did for (3.6b) and (3.6c).

First we obtain β′
a = −1

q (α
′′
a + ℓαa). Then take the derivative in (3.15e). Combining the two

results we get a fourth order differential equation in αa, namely

(3.24) α(4)
a + (2ℓ+ q2)α′′

a + ℓ2αa = 0.

The associated algebraic equation is t4+(2ℓ+q2)t2+ℓ2 = 0. Compute ∆t2 = q2(q2+4ℓ) = q2µ.

We will distinguish (again) the three cases according to the sign of µ.

Case µ = 0. We get

(3.25)
αa(s) = (Aa + Āas) cos

qs
2 + (Ba + B̄as) sin

qs
2

βa(s) = −(Ba + B̄as) cos
qs
2 + (Aa + Āas) sin

qs
2 ,

where Aa, Āa, Ba and B̄a are constants.
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Case µ > 0.

Subcase ℓ = 0.
We obtain

(3.26)
αa(s) = Ca +Aa cos qs+Ba sin qs

βa(s) = Da −Ba cos qs+Aa sin qs,

where Aa, Ba, Ca and Da are real constants.

Subcase ℓ ̸= 0.

The solutions of the algebraic equation in t are t1,2 = ± |k+q|
√
−1

2 and t3,4 = ± |k−q|
√
−1

2 .
Hence we obtain

(3.27)
αa(s) = Aa cos

k+q
2 s+ Āa sin

k+q
2 s+Ba cos

k−q
2 s+ B̄a sin

k−q
2 s

βa(s) = Aa sin
k+q
2 s− Āa cos

k+q
2 s−Ba sin

k−q
2 s+ B̄a cos

k−q
2 s,

where Aa, Āa, Ba and B̄a are constants.

Case µ < 0.

The solutions of the algebraic equation in t are t1,2 =
k±q

√
−1

2 and t3,4 =
−k±q

√
−1

2 . We obtain

(3.28)
αa(s) =

(
Aa cos

qs
2 + Āa sin

qs
2

)
cosh ks

2 +
(
Ba cos

qs
2 + B̄a sin

qs
2

)
sinh ks

2

βa(s) =
(
Aa sin

qs
2 − Āa cos

qs
2

)
cosh ks

2 +
(
Ba sin

qs
2 − B̄a cos

qs
2

)
sinh ks

2 ,

where Aa, Āa, Ba and B̄a are constants.

Remark 3.2. We have pointed out that µ = (q + 2 cos θ)2 + (c+ 3) sin2 θ, which implies:

• If c > −3 then µ > 0 (since γ′ and ξ are not collinear).
• If c = −3 then µ ≥ 0. The equality holds if and only if the slant angle of the magnetic
curve and the strength are related by q + 2 cos θ = 0.

• If c < −3 then the sign of µ depends on the strength. More precisely, there exist
q1 < q2 such that

◦ µ > 0 if q < q1 or q > q2;
◦ µ = 0 if q = q1 or q = q2;
◦ µ < 0 if q ∈ (q1, q2).

To conclude, we note that the condition q+ 2 cos θ = 0, that appears in the case c = −3, can
be geometrically interpreted saying that the curve is a geodesic with respect to the Tanaka-
Webster connection. Indeed, on a Sasakian manifold, the Tanaka-Webster connection ∇̄ is
given by ([2])

∇̄XY = ∇XY + g(X,φY )ξ + η(X)φY + η(Y )φX.

Consequently, we find

∇̄γ′γ′ = qφγ′ + 2η(γ′)φγ′ = (q + 2 cos θ)φγ′.
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