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Abstract. We investigate magnetic curves in Killing submersions and we show that the
bundle curvature is constant along magnetic curves with respect to the Killing vector field
if and only if all vertical tubes derived from these magnetic curves are of constant mean
curvature. Then we examine magnetic Jacobi fields along horizontal Killing magnetic curves
in the total space of a Killing submersion. We generalize some important results obtained by
O’Neill for horizontal geodesics to horizontal magnetic curves. Finally, we study magnetic
Jacobi fields along horizontal Killing magnetic trajectories in 3-dimensional Sasakian space
forms.

1. Introduction

The aim of this paper is to connect the theory of magnetic trajectories on a Riemannian
3-manifold with that of Killing submersions (see Definition 4.1). In the seminal paper [41],
O’Neill initiated the study of Riemannian geometry of submersions. In the next paper [42],
O’Neill studied connection of geodesic theory (especially Jacobi fields) of total space and the
base space. In particular, he obtained a formula which relates the index forms of horizontal
geodesics and those of geodesics in the base space.

In 3-dimensional geometry, according to Thurston, there are eight model spaces (see e.g.
[52]). One can see that all model spaces are total spaces of Riemannian submersions. In
particular, except the hyperbolic 3-space H3 and the space Sol3, the model spaces are Killing
submersion over 2-dimensional model spaces. Motivated by this fundamental fact, Killing
submersions with 2-dimensional base and 1-dimensional fiber are now actively studied in
differential geometry (see e.g. [9], [18], [33], [48]). It should be emphasize that Killing
submersions with 2-dimensional base and 1-dimensional fiber involve geometrically natural
dynamical systems – magnetic trajectories.

In magnetism theory, a static magnetic field on an oriented Riemannian 3-manifold (M, g) is
regarded as a divergence free vector field ξ. Under the influence of a magnetic vector field ξ,
a particle moves along the magnetic trajectory. The magnetic trajectory is described as the
curve determined by the Lorentz equation:

∇γ′γ′ = qξ × γ′.

Here ∇ is the Levi-Civita conection, × is the cross product of M and q is a constant, called
the charge. Magnetic trajectories define a dynamical system (Hamiltonian system) on the
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cotangent bundle T ∗M of M [6, 7, 5]. When the magnetic field is absent or the charge is
zero, the magnetic trajectories reduce to geodesics. In this sense, magnetic trajectories are
regarded as geometrically or physically nice perturbation of geodesic flows on T ∗M . The
study of the trajectories of magnetic fields on Riemannian manifolds of arbitrary dimension
has grown up an active and attractive area of mathematics as well as of mathematical physics.
In particular, magnetic trajectories on surfaces needed to be paid much attention to during
last decades (e.g. [1, 8, 34, 47]). Studies on Jacobi fields along magnetic trajectories were
initiated by Gouda [22] and Paternain and Paternain [44].

Let us return our attention to Killing submersions. Let π : (M, g) → (B, ḡ) be a Killing
submersion with dimM = 3 and dimB = 2 and a complete vertical unit Killing vector field
ξ. Then ξ is a static magnetic field (called the Killing magnetic field) on M . Thus the
total space M of a Killing submersion is naturally endowed with magnetic trajectories. This
remarkable fact motivates us to develop differential geometric study of magnetic trajectories
in Killing submersions (with 2-dimensional base and 1-dimensional fiber). Since geodesics are
regarded as magnetic curves with charge zero, it would be expected to extend the O’Neill’s
work [42] to (horizontal) magnetic curves.

The aim of this article is to relate the geometry of magnetic curves in the total space M of a
Killing submersion π : M → B with that of the base space B.

From topological point of view, the existence of special vector fields forces topological re-
strictions on the manifold M . The dimension 3, as is well known, is rather special. In fact,
on every orientable 3-manifold M , there exists a non-vanishing vector field. Much stronger,
we know a very important fact saying that every orientable Riemannian 3-manifold (M, g)
admits an almost contact structure compatible to the metric (and prescribed orientation).
This fact suggests us to investigate Killing submersions, by virtue of the associated almost
contact structure. In fact, the use of the associated quasi-Sasakian structures enables us to
avoid complicated submersion calculus.

In this paper, we show that a Killing submersion (M3, g) → (B2, ḡ) with a unit vertical Killing
vector field ξ induces an almost contact metric structure on M compatible with g. Moreover,
with respect to the almost contact structure, M becomes a quasi-Sasakian manifold whose
structure function is precisely the bundle curvature τ of the Killing submersion.

In the case when τ is non-zero everywhere, we prove that M is pseudo-conformal (CR-
equivalent) to a Sasakian 3-manifold. It should be remarked that under pseudo-conformal
transformations, magnetic curves are not preserved. However, horizontal magnetic curves are
pseudo-conformal invariant.

This paper is organized as follows. After recalling prerequisite knowledges on magnetism
in Section 2, and on Killing vector fields, fibering and almost contact structures in Section
3, we start our investigation on Killing submersions in Section 4. Then, in Section 5, we
study magnetic curves in Killing submersions and we show, in Theorem 5.1, that the bundle
curvature is constant along magnetic curves with respect to ξ if and only if all vertical tubes
derived from these magnetic curves are of constant mean curvature. These assertions are also
equivalent to the property for the magnetic curve of having constant second curvature.
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From the stability viewpoint, the study of the Jacobi fields along magnetic trajectories (called
the magnetic Jacobi fields) is important. In Section 6 we investigate the magnetic Jacobi fields
along horizontal Killing magnetic curves in the total space of a Killing submersion π : M → B.
In Theorem 6.1 and Theorem 6.2 we generalize some important results by O’Neill [42] for
horizontal geodesics to horizontal magnetic curves. We prove, in Theorem 6.3, the following
result: Suppose that the bundle curvature of the Killing submersion π : M → B is non-zero
everywhere. Then, the projection of a magnetic Jacobi field E along a horizontal Killing
magnetic curve γ is a magnetic Jacobi field on π ◦ γ if and only if its derived vector field
D(E) vanishes.

In the last section, we apply our results to Killing submersions equipped with a homogeneous
Sasakian structure. In the subsection 7.3 we give a complete description of the magnetic
Jacobi fields along horizontal Killing magnetic curves in Sasakian space forms of dimension
3.

To develop a global study of magnetic curves, a detailed investigation on magnetic Jacobi
fields is required. In our separate publications [29, 30] we obtain all magnetic Jacobi fields
along contact magnetic curves on Sasakian space forms.

Throughout this article, all manifolds are assumed to be connected. We use Alt-convention
for the differential form calculus.

2. Magnetic curves

2.1. Magnetic fields. On a Riemannian manifold (M, g) consider a closed 2-form F that is
regarded as a static magnetic field. The Lorentz force L, derived from F , is an endomorphism
field defined by

g(LX, Y ) = F (X,Y ).

The magnetic trajectory of F is a curve γ satisfying the Lorentz equation

∇γ′γ′ = qLγ′,

where q is a constant called the charge. One can see that every magnetic trajectory has
constant speed. Unit speed magnetic curves are called normal magnetic curves.

Example 2.1 (Kähler magnetic fields). Let (B, ḡ, J) be a Kähler manifold with complex
structure J . Then the Kähler form F = ḡ(·, J ·) is a magnetic field on B (called the Kähler
magnetic field).

2.2. Variational characterization. Let (M, g, F ) be a Riemannian manifold with an exact
magnetic field F = 2dA. Denote by C∞[a, b] the space of smooth curves in M defined on a
closed interval [a, b] and satisfying the boundary condition

γ(a) = p1, γ(b) = p2.

The Landau-Hall functional LH on C∞[a, b] is defined by

LH(γ) = E(γ) + q

∫ b

a
A(γ′)ds.
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Here E(γ) is the Dirichlet energy of γ, that is

E(γ) =

∫ b

a

1

2
g(γ′(s), γ′(s)) ds.

The first variation formula of LH is given by

d

dε

∣∣∣∣
ε=0

LH(γε) = −
∫ b

a
g
(
∇γ′(s)γ

′(s)− qLγ′(s), V (s)
)
ds,

where γε(s) is a variation of γ satisfying the boundary condition

γε(a) = p1, γε(b) = p2,

for any ε. The variational vector field V is defined, along γ(s), by

V (s) =
∂

∂ε

∣∣∣∣
ε=0

γε(s),

which vanishes at the end points, that is it satisfies V (a) = 0 and V (b) = 0.

Gouda obtained the second variational formula of LH [22]:

d2

dε2

∣∣∣∣
ε=0

LH(γε) = −
∫ b

a
g(Jq,F (W ), V (s))ds,

where V and W are variational vector fields along γ(s) in a 2-parameter variation. The
operator Jq,F acts on the space Γ (γ∗TM) of all vector fields along γ and it is defined by

Jq,F (W ) = ∇γ′∇γ′W +R(W,γ′)γ′ − qL(∇γ′W )− q(∇WL)γ′,

where the Riemannian curvature R is defined by R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. The operator
Jq,F will be called the magnetic Jacobi operator derived from the magnetic field F .

We give, for later use, the following formula

(2.1) Jq,F (fW ) = fJq,F (W ) + 2f ′∇γ′W − qf ′LW + f ′′W,

where f is a smooth function defined on I.

A vector field W (s), along the magnetic curve γ, is said to be a magnetic Jacobi field if it
satisfies Jq,F (W ) = 0.

Remark 2.1 ([22]). Let γ(s) be a magnetic curve and choose W (s) = γ′(s). Then, since
∇γ′γ′ = qLγ′, we obtain

Jq,F (γ
′) =∇γ′∇γ′γ′ +R(γ′, γ′)γ′ − qL(∇γ′γ′)− q(∇γ′L)γ′

=∇γ′(qLγ′)− qL(∇γ′γ′)− q(∇γ′L)γ′ = q{(∇γ′L)γ′ − (∇γ′L)γ′} = 0.

Hence γ′(s) is a magnetic Jacobi field.

Proposition 2.1. Let γ be a magnetic curve and W be a magnetic Jacobi field along it. Then
the following formula holds along γ

(2.2)
d

ds
g(∇γ′W,γ′) = qg((∇WL)γ′, γ′).

Corollary 2.1 (Conservation law). The formula (2.2) implies that if ∇WL is skew-adjoint
with respect to g, then g(∇γ′W,γ′) is constant along γ. See also [4, Lemma 1.2].
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2.3. Three dimensional case. Now let us focus on the situation dimM = 3.

Cross product. Let (M, g) be an oriented Riemannian 3-manifold with the volume element
dvg. Then, the cross product × of (M, g), with respect to dvg is defined by

g(X × Y, Z) = 3! dvg(X,Y, Z).

One can see that

Z × (X × Y ) = g(Y, Z)X − g(Z,X)Y,

g(X × Y, Z) = g(X,Y × Z), ∀X,Y, Z ∈ X(M).

Curve theory. Let γ(s) be a unit speed curve in an oriented Riemannian 3-manifold
(M, g, dvg) with the non-vanishing acceleration ∇γ′γ′. Here ∇ denotes the Levi-Civita con-
nection. We can take a unit normal vector field N by the formula ∇γ′γ′ = κ1N . Next define
a unit vector field B by B = T × N . Here T = γ′. In this way we obtain an orthonormal
frame field F = (T,N,B) along γ which is positively oriented, that is, dvg(T,N,B) > 0. The
orthonormal frame field F is called the Frenet frame field and it satisfies the Frenet-Serret
formula:

∇γ′F = F


0 −κ1 0

κ1 0 −κ2

0 κ2 0


for some function κ2. These functions κ1 and κ2 are called the first curvature and the second
curvature of γ, respectively. A unit speed curve γ is said to be a helix if both κ1 and κ2
are constant. In particular a helix with κ1 > 0 and κ2 ̸= 0 are called a proper helix. A
Riemannian circle is a unit speed curve with constant κ1 > 0 and κ2 = 0. Geodesics are
regarded as the unit speed curves with κ1 = 0.

Magnetic curves on 3-dimensional manifolds. On an oriented Riemannian 3-manifold
(M, g, dvg, F ) equipped with a static magnetic field F , the magnetic field F is identified with
a divergence free vector field V via the Hodge star operator ∗ as

V = ♯(∗F )/2.

Conversely, let V be a divergence free vector field. Then the corresponding closed 2-form F
is given by

F = 2ιV dvg = 2 ∗ (♭V ).

Here ♯ : T ∗M → TM and ♭ = ♯−1 : TM → T ∗M are the so-called musical isomorphisms. The
operator ιV is the interior product by V . The Lorentz equation is rewritten as

∇γ′γ′ = qV × γ′.

3. Killing vector fields and fiberings

3.1. Regularity of vector fields. Generally speaking, the existence of special vector fields
forces topological restrictions for manifolds. Let us recall a fundamental fact.

Lemma 3.1. Let M be an orientable manifold. Then the following two assertions are mutu-
ally equivalent:
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• There exists a non-vanishing vector field globally defined on M .
• Either M is non-compact or M is compact with χ(M) = 0.

In addition we know that χ(M) = 0 for any compact 3-manifold M . Therefore, we emphasize
that every orientable 3-manifold admits a non-vanishing vector field.

A non-vanishing vector field ξ on a 3-manifold M is said to be quasi-regular (almost regular
in the sense of [51], see also [20, p. 342]) if there exists some positive integer k, and each point
p ∈ M has a cubical coordinate neighborhood (U ;x, y, z) such that

(1) each integral curve of the vector field ξ passes through U at most k times, and
(2) each component of the intersection of an integral curve with U has the form x = a,

y = b, with a and b constant. In case k = 1, ξ is called a regular vector field (see
[36, 43]).

Tanno [49] showed that the following three conditions are mutually equivalent for regular
(and complete) vector field ξ:

(1) The period function of ξ is constant (maybe infinite).
(2) There exists a 1-form η satisfying η(ξ) = 1 and £ξη = 0.
(3) There exists a Riemannian metric g satisfying g(ξ, ξ) = 1 and £ξg = 0.

In such a case, M is a principal bundle over the orbit space B = M/G under the action of
G = {exp(tξ)}t∈R. The prescribed vector field ξ is a unit Killing vector field with respect
to the Riemannian metric g. In addition, there exists a Riemannian metric ḡ on B so that
π : M → B is a Riemannian submersion (see Section 4.1). The one-form η is a connection
form of the principal bundle π : M → B.

If the global flow exp(tξ) has no fixed point, then M is a principal line bundle over B. On the
other hand, if there exist p ∈ M and t ∈ R such that exp(tξ)(p) = p, then M is a principal
circle bundle over B. The property (2) is closely related to geodesible vector fields. See the
next Remark.

Remark 3.1 (geodesible vector field). A non-vanishing vector field ξ on a 3-manifold M is
said to be geodesible if there exists a Riemannian metric g on M with respect to which ξ
has unit length and the integral curves are geodesics. Wadsley and Sullivan showed that the
following four conditions are mutually equivalent (see Geiges [21]):

• ξ is geodesible.
• There exists a 1-form η satisfying η(ξ) = 1 and £ξη = 0.
• There exists a 1-form η satisfying η(ξ) = 1 and £ξdη = 0.
• There exists a hyperplane field D transverse to ξ and invariant under the flows of ξ.

3.2. Almost contact structures. On the other hand, on an oriented Riemannian 3-manifold
(M3, g, dvg) there exists a unit vector field ξ on M . Denote by η the metrical dual 1-form of
ξ. Then we define an endomorphism field φ on M by

(3.1) φX = ξ ×X.
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Then the structure tensor fields (φ, ξ, η, g) on M has the following properties [15]:

(3.2) φ2 = −I + η ⊗ ξ and η(ξ) = 1,

(3.3) g(φX,φY ) = g(X,Y )

for all vector fields X and Y on M and

dvg = −1

2
η ∧ Φ,

where Φ is a two-form defined by

Φ(X,Y ) = g(X,φY ).

A structure (φ, ξ, η) on an oriented Riemannian 3-manifold (M3, g, dvg) is called an almost
contact structure compatible to the metric g and the orientation determined by dvg. The
cross product derived from dvg is described as

X × Y = −Φ(X,Y )ξ + η(X)φY − η(Y )φX.

The covariant derivate ∇φ of φ, the exterior derivatives dη of η and the differential dΦ of Φ
are given by (see [40]):

(3.4) (∇Xφ)Y = g(φ∇Xξ, Y )ξ−η(Y )φ∇Xξ, dη = η∧∇ξη+
1

2
tr(φ∇ξ)Φ, dΦ = (divξ)η∧Φ,

respectively.

It should be remarked that the unit vector field ξ is neither regular nor Killing, in general.
In the next subsection, we discuss the condition “ξ is Killing”.

For later use, here we recall the notion of rank for one-forms on 3-manifolds.

Definition 3.1. A one-form η on a 3-manifold M is said to be of

• rank 1 if dη = 0.
• rank 2 if dη ̸= 0 and η ∧ dη = 0.
• rank 3 if η ∧ dη ̸= 0.

In particular, a one-form η of rank 3 is called a contact form on M .

A 3-manifold M together with a contact form η is called a contact 3-manifold. We can orient
a contact 3-manifold by the volume element −η ∧ dη/2. On a contact 3-manifold (M,η)
there exists a unique vector field ξ such that η(ξ) = 1 and dη(ξ, ·) = 0. This vector field
is traditionally called the Reeb vector field of (M,η). The existence of a contact form also
implies the existence of an almost contact structure.

Proposition 3.1. On a contact 3-manifold (M,η) with the Reeb vector field ξ, then there
exist an endomorphism field φ and a Riemannian metric g on M such that the (φ, ξ, η, g)
satisfies (3.2)–(3.3), Φ = dη and dvg = −η ∧ dη/2. Such a Riemannian metric g is called the
associated metric.

A contact 3-manifold M together with a structure (φ, ξ, η, g) is called a contact metric 3-
manifold. It should be emphasize that the Reeb vetor field ξ is divergence free and hence its
corresponding two form F := −dη is a magnetic field on M . The Lorentz force is φ.
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3.3. Unit Killing vector fields. Now let us concentrate our attention to unit Killing vector
fields on Riemannian 3-manifolds. The following results play a crucial role in this article.

Lemma 3.2 ([48]). Let (M, g, dvg) be an oriented Riemannian 3-manifold. Assume the ex-
istence of a unit Killing vector field ξ globally defined on M . Then there exists a smooth
function τ on M satisfying

∇Xξ = τ X × ξ

for any vector field X on M and dτ(ξ) = 0. The function τ is related to the sectional curvature
function as

τ2 = K(X ∧ ξ)

for any tangent vector X linearly independent of ξ.

Remark 3.2. On a Riemannian manifold (M, g) with a unit Killing vector field ξ, the sec-
tional curvature function satisfies K(X ∧ ξ) ≥ 0, for any non-zero tangent vector linearly
independent of ξ [11].

Comparing Lemma 3.2 with (3.1) and (3.4), we obtain

Theorem 3.1. Let (M, g, dvg, ξ) be an oriented Riemannian 3-manifold with a unit Killing
vector field ξ. Then the structure (φ, ξ, η, g) defined by η = ♭ξ and (3.1) is an almost contact
metric structure on M satisfying

(3.5) (∇Xφ)Y = τ(g(X,Y )ξ − η(Y )X), ∇Xξ = −τφX, dτ(ξ) = 0.

This almost contact metric structure satisfies £ξφ = 0.

According to the terminology of almost contact metric geometry, the structure (φ, ξ, η, g)
satisfying (3.5) is a quasi-Sasakian structure (see [13, 40]). The statement of the Theorem 3.1
is strongly related to Theorem 3.8 in [16]. The use of this fact will enable us to avoid
complicated submersion calculus.

In particular, quasi-Sasakian 3-manifolds with τ = 1 are called Sasakian 3-manifolds. Sasakian
3-manifolds are characterized as orientable Riemannian 3-manifolds which possess unit Killing
vector fields satisfying a specific curvature property [14, 24]:

Proposition 3.2. Let (M3, g) be a Riemannian manifold. If there exists a unit Killing vector
field ξ on M which satisfies K(X ∧ ξ) = 1 for any nonzero tangent vector X orthogonal to ξ,
then M is a Sasakian 3-manifold. More precisely, the structure (φ, ξ, η, g) defined by η =: ♭ξ
and φ := −∇ξ is Sasakian.

4. Killing submersions

In this section we assume that M = (M, g) and B = (B, ḡ) are Riemannian manifolds of
dimension 3 and 2, respectively. In addition, M is suppose to be orientable.
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4.1. Submersion calculus. Let π : (M, g) → (B, ḡ) be a submersion. Then π−1(p̄) is a
submanifold of M , for any p̄ ∈ B, called the fiber over p̄. A vector field W on M is said
to be vertical if it tangents to the fibers. On the other hand, vector fields orthogonal to
fibers are called horizontal vector fields. The terminologies vertical and horizontal are used
for individual tangent vectors.

A submersion π is said to be a Riemannian submersion if π∗ preserves the length of horizontal
vectors [41].

Now let π : (M, g) → (B, ḡ) is a Riemannian submersion. Then, each tangent space TpM is
decomposed as

TpM = Hp ⊕ Vp,

where Vp is the tangent space of the fiber π
−1(π(p)) at p and Hp is the orthogonal complement

of Vp. Tangent vectors in Vp [resp. Hp] are vertical vectors [resp. horizontal vectors]. The
linear subspaces Vp and Hp are called the vertical subspace and the horizontal subspace at p,
respectively.

Any tangent vector X ∈ TpM decomposes as X = Xh+Xv with Xh ∈ Hp and Xv ∈ Vp. The

components Xh and Xv are called the horizontal part and the vertical part of X, respectively.

A vector field X on M is said to be basic if it is horizontal and there exists a vector field X̄
on B such that X is π-related to X̄, that is, π∗X = X̄.

On the other hand, for any vector field X̄ on B, there exists a basic vector field X̄↑, which is
π-related to X̄. The basic vector field X̄↑ is called the horizontal lift of X̄.

Let ∇ be the Levi-Civita connection on M . Then the O’Neill’s fundamental tensor fields A
and T are respectively defined by

AXY = (∇XhY h)v + (∇XhY v)h,

TXY = (∇XvY v)h + (∇XvY h)v, X, Y ∈ X(M).

The restriction AH×H of A to the horizontal distribution is the integrability obstruction forH.
The tensor field A is often refered as to the O’Neill tensor field or the O’Neill’s integrability
tensor field.

Let us denote by ∇̂ the connection on fibers induced from ∇. Then one can see that the
restriction of T to vertical vectors gives the vector valued second fundamental form of fibers.
Thus π has totally geodesic fibers if and only if TUV = 0 for any vertical vector fields U and
V . Next, let ∇̄ denotes the Levi-Civita connection on B. We recall the following formula
[41]:

∇X̄↑ Ȳ ↑ = (∇̄X̄ Ȳ )↑ +AX̄↑ Ȳ ↑.

Take a basis {X,Y } of the horizontal subspace Hp. Denote by κ, the Gauß curvature of
(B, ḡ). Then the sectional curvature K(Hp) = K(X ∧ Y ) (called the horizontal curvature) of
Hp and κ are related by

(4.1) κ = K(Hp) +
3||AXY ||2

||X × Y ||2
.

For more information on Riemannian submersion, we refer to [12, 17, 41].
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4.2. Killing submersions.

Definition 4.1. A Riemannian submersion π : (M, g) → (B, ḡ) is said to be a Killing
submersion if it admits a complete vertical unit Killing vector field ξ on M .

The one-parameter group G = {exp(tξ)}t∈R of isometries generated by ξ acts on M and B is
obtained as the factor space of M by G. An element exp(tξ) is called a vertical translation.
In addition M is a principal fiber bundle over B with the structure group G (see §3 of the
present paper and [17, Theorem 1.11]). Note that the completeness of M implies that of B
[17, Theorem 1.11]. The metrical dual one-form η is a connection one-form of the principal
G-bundle π : M → B.

The unit Killing vector field ξ is identified with a magnetic field F := 2ιξdvg. We call it the
Killing magnetic field of the Killing submersion.

4.3. Associated quasi-Sasakian structure. Here we collect some fundamental results on
Killing submersions.

Let π : (M, g) → (B, ḡ) be a Killing submersion with the unit Killing vector field ξ as before.
First, since ξ is a unit Killing vector field, the connection form η and the endomorphism field
φ defined by (3.1) determine a quasi-Sasakian structure (φ, ξ, η, g) on the total space M . It
should be remarked that the function τ is constant along fibers since dτ(ξ) = 0. Hence τ is
regarded as a smooth function on B. The function τ is called the bundle curvature of the
Killing submersion.

Next, since £ξφ = 0, φ is invariant under the action of G. Thus the submersion π induces a
complex structure J on B as [39]:

Jπ(p)X̄π(p) = π∗p(φpX̄
↑
p ), X̄ ∈ X(B).

One can see that J is ḡ-orthogonal. Since dimB = 2, the Kähler form Ω = ḡ(·, J ·) of B is
closed. Thus Ω is a magnetic field on B (see Example 2.1).

Local description of Killing submersion is clarified by Manzano [33, Theorem4.2].

Theorem 4.1. Let (M, g) → (B, ḡ) be a Killing submersion. Then M is locally isometric to
the following canonical example:

• The projection is given by

π : D × R → D; π(x, y, z) = (x, y).

• D is a starlike region in R2.
• The metric on D is ḡ = λ(x, y)2(dx2 + dy2).
• The metric on D × R is

g = λ(x, y)2(dx2 + dy2) + (dz + µ(x, y)(ydx− xdy))2 ,

where µ is a certain smooth function on D. The bundle curvature τ is given by

τ =
2µ+ µxx+ µyy

2λ2
.
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Note that in the case when (M, g) is homogeneous, then it is locally isometric to the so-called
Bianchi-Cartan-Vranceanu spaces (Example 4.1, see also [10]).

Proposition 4.1. Let (M, g) → (B, ḡ) be a Killing submersion with a unit Killing vector field
ξ. Then the connection form η is of rank 3 if and only if the bundle curvature is non-zero
everywhere on M .

Proof. By Theorem 4.1, the connection form η is expressed as

η = dz + µ(x, y)(ydx− xdy).

The exterior differential of η is computed as dη = −2τλ2dx ∧ dy. Hence we get

dη ∧ η = −2τλ2dx ∧ dy ∧ dz.

This shows the result. □

Here is a worth pointing remark: In the case when the connection η is a contact form, then the
Killing magnetic field F = 2ιξdvg = −Φ has a magnetic potential −dη/τ . Namely, the contact
condition implies the existence of a magnetic potential. Thus, from variational problem point
of view, the contact condition of the connection η is reasonable.

4.4. Horizontal curvature. Let π : M → B be a Killing submersion. Then the O’Neill
tensor field A is described as

AXY =
1

2
η([X,Y ])ξ

for all horizontal vector fields X and Y , i.e. vector fields orthogonal to ξ. By the definition
of dη, we have

2dη(X,Y ) = Xη(Y )− Y η(X)− η([X,Y ]) = −η([X,Y ])

for all horizontal vector fields X and Y .

On the other hand, we have dη = τΦ, so, we get

AXY = −dη(X,Y )ξ = −τΦ(X,Y )ξ.

This formula can be verified in another way. In fact, if X,Y are horizontal vector fields on
M (that is they are orthogonal to ξ) we have

AXY = (∇XY )v.

Successive computations lead to

g(∇XY, ξ) = −g(Y,∇Xξ) = −g(Y, τX × ξ) = τg(Y, φX) = −τΦ(X,Y ).

This shows that

AX(φX) = τg(X,X)ξ, ∀X ⊥ ξ.

Hence we obtain the following fundamental formulas:

(4.2) ∇X̄↑ Ȳ ↑ = (∇̄X̄ Ȳ )↑ + τ g(φX̄↑, Ȳ ↑)ξ, and [X̄↑, Ȳ ↑] = [X̄, Ȳ ]↑ + 2τg(φX̄↑, Ȳ ↑)ξ.
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The Riemannian curvature R of M and R̄ of B are related by (cf. [39]):

(4.3)
R(X̄↑, Ȳ ↑)Z̄↑ =

[
R̄(X̄, Ȳ )Z̄

]↑
+
[
dτ(X̄↑)g(φȲ ↑, Z̄↑)− dτ(Ȳ ↑)g(φX̄↑, Z̄↑)

]
ξ

+τ2
[
g(φX̄↑, Z̄↑)φȲ ↑ − g(φȲ ↑, Z̄↑)φX̄↑ + 2g(φX̄↑, Ȳ ↑)φZ̄↑].

Take a unit tangent vector X orthogonal to ξ; then the plane X ∧ φX coincides with the
horizontal subspace. The O’Neill formula (4.1) implies that the horizontal curvature of M is
given by

(4.4) K(X ∧ φX) = κ− 3τ2,

where κ is the Gauß curvature of B.

4.5. Curvature properties. Let us denote by r the scalar curvature of the total space M
of the Killing submersion π : M → B. Then the Riemannian curvature R of M is explicitly
expressed as (cf. [40]):

R(X,Y )Z =
r − 4τ2

2
(g(Y, Z)X − g(Z,X)Y )

+
r − 6τ2

2
(η(Z)η(X)Y − η(Y )η(Z)X)

+
r − 6τ2

2
(g(Z,X)η(Y )− g(Y, Z)η(X)) ξ

+ (dτ(φZ)η(X) + dτ(φX)η(Z))Y

− (dτ(φZ)η(Y ) + dτ(φY )η(Z))X

+ (η(X)g(Y, Z)− η(Y )g(Z,X))φ grad τ

− (g(Y, Z)dτ(φX)− g(Z,X)dτ(φY )) ξ,

where r is the scalar curvature. By using this formula, the horizontal curvature is computed
as K(X ∧ φX) = (r − 4τ2)/2. Comparing this with (4.4), we obtain

R(X,Y )Z = (κ− 3τ2)(g(Y, Z)X − g(Z,X)Y )(4.5)

+ (κ− 4τ2)(η(Z)η(X)Y − η(Y )η(Z)X)

+ (κ− 4τ2) (g(Z,X)η(Y )− g(Y, Z)η(X)) ξ

+ (dτ(φZ)η(X) + dτ(φX)η(Z))Y

− (dτ(φZ)η(Y ) + dτ(φY )η(Z))X

+ (η(X)g(Y, Z)− η(Y )g(Z,X))φ grad τ

− (g(Y, Z)dτ(φX)− g(Z,X)dτ(φY )) ξ.

When η is contact, then one can deform the Riemannian metric g so that the bundle curvature
is 1 under preserving the horizontal distribution and the Killing vector field (up to sign). More
precisely we can prove the following result [31]:
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Proposition 4.2. Assume that the bundle curvature τ has constant sign ε = ±1. Then we
introduce a new structure (φ̃, ξ̃, η̃, g̃) on the total space M , defined by

φ̃ = φ, ξ̃ = εξ, η̃ = εη, g̃ = ετg + (1− ετ)η ⊗ η.

Then π : (M, g̃) → (B, ετ ḡ) is still a Killing submersion with the unit Killing vector field

ξ̃. The resulting structure has the bundle curvature 1 and it is called the pseudo-conformal
deformation of the original structure.

(M, g) −−−−→ (M, g̃)yπ

yπ

(B, ḡ) −−−−→ (B, ετ ḡ)

Proposition 4.2 means that every total space of a Killing submersion with rank 3 connection
is pseudo-conformally deformable to a Sasakian total space.

Remark 4.1 (Sasakian space forms). Let M be a Sasakian 3-manifold. Take a vector X ∈
TpM orthogonal to ξ. Then the tangent plane X ∧ φX is called the holomorphic plane at
p. The sectional curvature K(X ∧ φX) is called a holomorphic sectional curvature at p. A
Sasakian 3-manifold is said to be a 3-dimensional Sasakian space form if it is of constant
holomorphic sectional curvature.

Example 4.1 (Bianchi-Cartan-Vranceanu models). Let us consider the following two-parameter
family {M(κ, τ) : (κ, τ) ∈ R2} of homogeneous Riemannian 3-spaces:

M(κ, τ) =
{
(x, y, z) ∈ R3 : 1 +

κ

4
(x2 + y2) > 0

}
equipped with the Riemannian metric

g =
dx2 + dy2

{1 + κ
4 (x

2 + y2)}2
+

(
dz +

τ(ydx− xdy)

1 + κ
4 (x

2 + y2)

)2

.

This 2-parameter family of homogeneous Riemannian is called the Bianchi-Cartan-Vranceanu
model spaces. The metrics as above are defined over the whole 3-space R3 for κ ≥ 0. This
two-parameter family includes the model spaces of the Thurston geometry except H3 and Sol3.
See e.g. [52]. More precisely, M(κ, τ) is isometric to the following homogeneous Riemannian
3-manifolds:

• If τ = κ = 0, then M(0, 0) = E3 (Euclidean 3-space),
• If κ = 0, τ ̸= 0, then M(0, τ) ∼= Nil3 (Heisenberg group),
• If κ > 0, τ ̸= 0, then M(κ, τ) ∼= SU(2) \ {∞} with SO(2)-isotropic left invariant
metric,

• If κ < 0, τ ̸= 0, then M(κ, τ) ∼= S̃L2R with SO(2)-isotropic left invariant metric,
• If κ > 0, τ = 0, then M(κ, τ) ∼= S2(κ) \ {∞} × R,
• If κ < 0, τ = 0, then M(κ, τ) ∼= H2(κ)× R,
• If κ− 4τ2 = 0 then M(κ, τ) ∼= S3(τ2) \ {∞}.
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The vector field ξ := ∂/∂z is a complete unit Killing vector field and it generates a one-
parameter group of isometries onM(κ, τ). Furthermore, this group action is simply transitive.
The orbit space B(κ) = M(κ, τ)/ξ is

B(κ) =
{
(x, y) ∈ R2 : 1 +

κ

4
(x2 + y2) > 0

}
equipped with Riemannian metric

ḡ =
dx2 + dy2

{1 + κ
4 (x

2 + y2)}2
.

The natural projection π : M(κ, τ) → B(κ) defined by π(x, y, z) = (x, y) is a Killing submer-
sion with totally geodesic fibres and with constant bundle curvature τ . The base space B(κ)
is of constant curvature κ. With respect to the associated almost contact structure, M(κ, τ)
is a quasi-Sasakian 3-manifold satisfying ∇ξ = −τφ. In particular, M(c, 1) is a Sasakian
space form of constant holomorphic sectional curvature c (see [10]). It is known that simply
connected and complete 3-dimensional Sasakian space forms are isomorphic to one of the
following spaces [50]:

• SU(2) equipped with Berger sphere metric if c > −3 and c ̸= 1,
• S3 if c = 1,
• Nil3 if c = −3,

• S̃L2R if c < −3.

Note that the Killing submersion π : S3 → P1 is nothing but the Hopf fibering. The magnetic
curves in SU(2) and SL2R are investigated in [27] and [28], respectively.

5. Magnetic curves in Killing submersions

5.1. Tubes. Let π : (M, g) → (B, ḡ) be a Killing submersion. Take a curve γ̄ in B, then its
inverse image Σγ̄ := π−1{γ̄} of γ̄ in M is a flat surface in M with mean curvature κ̄/2 (see
[18, 19, 26, 32]). Here κ̄ denotes the geodesic curvature of γ̄. The flat surface Σγ̄ is called the
vertical cylinder over γ̄.

Example 5.1 (Hopf tubes). Let S3 be the unit 3-sphere equipped with the standard Sasakian
structure. The Hopf fibering π : S3 → P1 is a Killing submersion. For a unit speed curve γ̄ in
the complex projective line P1, the vertical cylinder Σγ̄ is traditionally called the Hopf tube
or Hopf cylinder. When γ̄ is closed, the surface Σγ̄ is often called the Hopf torus over γ̄.

5.2. Magnetic curves and Killing submersions. Let π : (M, g) → (B, ḡ) be a Killing
submersion from an oriented Riemannian 3-manifold onto a Riemannian 2-manifold with a
unit Killing vector field ξ. Then ξ defines a quasi-Sasakian structure on M . In particular,
if τ ̸= 0 on M , then M is quasi-Sasakian of rank 3, that is pseudo-conformal to a Sasakian
3-manifold.

Now let γ(s) be a unit speed magnetic curve in the total space M with respect to the Killing
magnetic field F = 2ιξdvg. The Lorentz equation is

∇γ′γ′ = qφγ′.

Since ξ is a Killing vector field, we obtain the following.
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Proposition 5.1. Every normal Killing magnetic curve is a loxodrome in the total space.
More precisely, the contact angle function θ(s) defined by cos θ(s) = g(γ′(s), ξ) is constant
along γ(s).

Moreover, the first and second curvatures of γ are [31]:

κ1 = |q| sin θ, κ2 = τ + q cos θ.

We consider the projected curve γ̄ = π ◦ γ in B. Then the projected curve satisfies

∇̄γ̄′ γ̄′ = (q + 2τ cos θ)Jγ̄′.

The proof of this fact is similar to that of [25, Theorem 2.1]. This formula shows that γ̄ has

the curvature κ̄ = q+2τ cos θ
sin θ , since s̄ = (sin θ)s is the arclength parameter for γ̄. Hence the

vertical cylinder Σγ̄ has mean curvature q
2 sin θ + τ cot θ.

Assume that all the vertical tubes derived from magnetic curves are of constant mean cur-
vature, then τ is constant along γ. Hence γ̄ is a Kähler magnetic curve and hence it is a
Riemannian circle or a geodesic.

Theorem 5.1. Let π : (M, g) → (B, ḡ) be a Killing submersion with a unit Killing vector
field ξ. Then the following three statements are mutually equivalent:

(1) The bundle curvature τ is constant along magnetic curves with respect to ξ.
(2) All the vertical tubes derived from magnetic curves with respect to ξ are of constant

mean curvature.
(3) Every magnetic curve with respect to ξ has constant second curvature, hence, they are

helices on M .

This theorem provides the corrected version of the essential contribution of [35, Theorem 3.1].

Remark 5.1. In [46, Theorem 4.1], the authors claim that if a quasi-Sasakian 3-manifold
M admits contact magnetic curves, then it is cosymplectic or an α-Sasakian 3-manifold with
α ∈ R×. However, this claim is not correct. In our previous paper [31] we have exhibited
explicit examples of quasi-Sasakian 3-manifold with non-constant α which admit non-trivial
contact magnetic curves.

5.3. Conservation law. In Proposition 2.1 we emphasize a geometric condition for the
Lorentz force L under which a certain quantity is constant along a magnetic curve. In the
case of Killing submersion, we have

g((∇Wφ)γ′, γ′) = τ g
(
g(W,γ′)ξ − η(γ′)W,γ′

)
= 0.

Proposition 5.2. Let γ be a Killing magnetic curve in a total space of a Killing submersion.
Then for any magnetic Jacobi field W along γ, the function g(∇γ′W,γ′) is constant along γ.

6. Magnetic Jacobi fields through Killing submersions

Now let us take an arc length parametrized curve γ(s) in the total space M of a Killing
submersion π : M → B and a vector field E along γ. We split E as E = H + V , where
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H = Eh and V = Ev, respectively. We use the notation (by O’Neill [42]):

E′ = ∇γ′E, E′′ = ∇γ′∇γ′E, E∗ := π∗E, E′
∗ = ∇̄γ̄′E∗.

Then we have

E′(s)h =E′
∗(s)

↑ +AHγ′(s)v +Aγ′(s)hV (s) + Tγ′(s)vV (s),

E′(s)v =Aγ′(s)hH(s) + Tγ′(s)vH(s) + V ′(s)v,

which implies, for E = γ′(s), the following two formulas

γ′′(s)h =γ̄′′(s)↑ + 2Aγ′(s)hγ
′(s)v + Tγ′(s)vγ

′(s)v,

γ′′(s)v =Tγ′(s)vγ
′(s)h + (∇γ′γ′(s)v)v.

Here γ̄ = γ ◦ π and γ̄′′ = ∇̄γ̄′ γ̄′.

Hereafter, we use the quasi-Sasakian structure associated to the Killing submersion π : M3 →
B2. First, we notice that for any vector field E on M , its vertical component Ev is given by

Ev = g(E, ξ)ξ = η(E)ξ.

Consequently, the horizontal component is obtained as

Eh = E − η(E)ξ.

Theorem 6.1. Let γ : I → M be a normal Killing magnetic trajectory and E be a vector
field along γ. Then we have

(6.1)


E′(s)h = E′

∗(s)
↑ − τ(cos θφE + η(E)φγ′)

E′(s)v =
[
d
dsη(E) + τg(E,φγ′)

]
ξ.

Proof. Because ∇ξξ = 0 and as T is a tensor field, it follows that Tγ′(s)vV (s) = 0. Then,
since γ is a Killing magnetic curve, it is a loxodrome, that is the contact angle θ is constant.
As cos θ = η(γ′), we compute

AH(s)γ
′(s)v = η(γ′)AHξ = cos θ(∇Hξ)h = −τ cos θφE

Aγ′(s)hV = η(V )Aγ′(s)hξ = η(E)(∇γ′(s)hξ)
h = −τη(E)φγ′(s).

Hence, the first equation is proved. To show the second equation we write

Aγ′(s)hH = (∇γ′(s)hH(s))v = η(∇γ′(s)hH(s))ξ = g(∇γ′(s)hH(s), ξ)ξ

= −g(H,−τφγ′)ξ = τg(E,φγ′)ξ

Tγ′(s)vH = η(γ′)TξH = cos θ(∇ξH)v = 0

V ′(s)v = (∇γ′(s)V )v =
(
∇γ′(s)(η(V )ξ)

)v
= d

dsη(E)ξ.

The conclusion is now immediate. □
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Corollary 6.1. When E = γ′, we have

(6.2)


γ′′(s)h = γ̄′′(s)↑ − 2τ cos θ φγ′(s)

γ′′(s)v = 0.

In addition, we have the following conservation lemma (cf. [42, Corollary 2]):

Lemma 6.1. If a Killing magnetic curve γ in the total space M of a Killing submersion
π : M3 → B2 is horizontal at the initial point, then it is horizontal at any point. In this case
γ is a horizontal curve.

Remark 6.1. An arbitrary Killing magnetic curve γ in M satisfies the Lorentz equation
γ′′(s) = qφγ′(s). Note that the two sides of the equality above are horizontal since φγ′(s) =
(Jγ̄′(s) )↑, where γ̄ = γ ◦ π and J is the complex structure on B. The Lorentz equation
induces a new “Lorentz equation” on B, that is

(6.3) γ̄′′ = (q + 2τ cos θ)Jγ̄′.

So, we obtained a Kähler magnetic curve on B with variable strength. However, if the bundle
curvature τ is constant, or γ is horizontal, it follows that γ̄ is a (true) Kähler magnetic curve
on B with strength q̄ = q + 2τ cos θ.

In analogy with the definition introduced by O’Neill along horizontal geodesic we define the
following notion. Let γ be a horizontal Killing magnetic field and E a vector field along γ.
Decompose E as usual, into the horizontal and the vertical parts, respectively: E = H + V .
We define

(6.4) D(E) =
(
∇γ′V

)v − TV γ′ + 2Aγ′H,

which is called the derived vector field of E [42]. Note that this definition can be stated for
any horizontal curve γ.

Remark 6.2. D(E) is always vertical.

Our aim for the next part of this section is to give an analogue of the Theorem 2 from the
O’Neill’s paper [42]. More precisely, we prove the following theorem:

Theorem 6.2. Let E be a vector field on a horizontal Killing magnetic curve γ. Then the
magnetic Jacobi operator Jq,F of charge q with respect to the magnetic field F = 2ιξdvg is
given by

Jq,F (E) = E′′ +R(E, γ′)γ′ − qφ(∇γ′E)− q(∇Eφ)γ
′

and it splits as Jq,F (E) = Jq,F (E)h + Jq,F (E)v with

(6.5)


Jq,F (E)h = (Jq,J(E∗))

↑ − 2τη(D(E))φγ′

Jq,F (E)v = D(E)′ + τη(D(E))φγ′,

where D(E) is the derived vector field of E.



18 J. INOGUCHI AND M. I. MUNTEANU

Before starting the proof of this theorem note that the projected curve γ̄ = π◦γ of a horizontal
Killing magnetic curve γ is a Kähler magnetic curve on B with the same strength q as γ. The
magnetic Jacobi operator Jq,J of γ̄ satisfies

Jq,J(E∗) = E′′
∗ + R̄(E∗, γ̄

′)γ̄′ − qJ∇̄γ̄′E∗, E∗ = π∗(E).

We can write the expression for the derived vector field D(E) in a more efficient form.

Lemma 6.2. Let E be a vector field on a horizontal Killing magnetic curve γ. Then, the
derived vector field D(E) can be expressed as

(6.6) D(E) =

[
d

ds
η(E) + 2τg(E,φγ′)

]
ξ.

Proof. We compute

D(E) =
[
∇γ′(η(E)ξ)−∇η(E)ξγ

′ + 2∇γ′H
]v
.

Since ∇ξγ
′ and ∇γ′ξ are horizontal, we can write

D(E) =
d

ds
η(E)ξ + 2

[
∇γ′H

]v
.

Now, since γ is horizontal, we have

∇γ′H = (∇̄γ̄′E∗)
↑ +Aγ′H = (∇̄γ̄′E∗)

↑ + g(∇γ′H, ξ)ξ = (∇̄γ̄′E∗)
↑ + τg(E,φγ′)ξ.

Hence the formula (6.6) is proved. □

We give, without proof, the expression of the covariant derivative of the derived vector field
D(E).

Lemma 6.3. Let E be a vector field on a horizontal Killing magnetic curve γ and D(E) the
derived vector field. Its covariant derivative is given by the formula

D(E)′ =
{

d2

ds2
η(E)− 2dτ(γ′)g(φE, γ′) + 2τg(φγ′, (∇̄γ̄′E∗)

↑) + 2τ2η(E)− 2qτg(E, γ′)
}
ξ

−τη(D(E))φγ′.

Proof of Theorem 6.2. We will develop the four terms which appear in the expression of Jq,F .

1. The term E′′

We split ∇γ′∇γ′E as ∇γ′∇γ′E = T1 + T2, where T1 = ∇γ′∇γ′H and T2 = ∇γ′∇γ′(η(E)ξ).

We compute first T1.

T1 = ∇γ′
[
(∇̄γ̄′E∗)

↑ + τg(φγ′, E)ξ
]
= (∇̄γ̄′∇̄γ̄′E∗)

↑ + τg(φγ′, (∇̄γ̄′E∗)
↑)ξ

+ dτ(γ′)g(φγ′, E)ξ + τ
d

ds
g(φγ′, E)ξ − τ2g(φγ′, E)φγ′

=
[
(∇̄γ̄′∇̄γ̄′E∗)

↑ + τ2g(φE, γ′)φγ′
]
+
[
τg(φγ′, (∇̄γ̄′E∗)

↑)− dτ(γ′)g(φE, γ′) + τ
d

ds
g(φγ′, E)

]
ξ.
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To compute the last term in the previous formula we write

d

ds
g(φγ′, E) =g(∇γ′(φγ′),H) + g(φγ′,∇γ′H) but γ′ is unitary and horizontal

=g(τξ − qγ′,H) + g(φγ′, (∇̄γ̄′E∗)
↑ + vertical terms)

=− qg(γ′, E) + g(φγ′, (∇̄γ̄′E∗)
↑).

Thus we obtained the horizontal and the vertical parts for T1:

T h
1 = (∇̄γ̄′∇̄γ̄′E∗)

↑ + τ2g(φE, γ′)φγ′ = (E′′
∗ )

↑ + τ2g(φE, γ′)φγ′,

T v
1 =

[
2τg(φγ′, (∇̄γ̄′E∗)

↑)− dτ(γ′)g(φE, γ′)− τqg(E, γ′)
]
ξ.

Next, let us compute now T2.

T2 = ∇γ′∇γ′(η(E)ξ) = ∇γ′
[
d
dsη(E)ξ − τη(E)φγ′

]
= d2

ds2
η(E)ξ − 2α d

dsη(E)φγ′ − dτ(γ′)η(E)φγ′ − τη(E)(τξ − qγ′).

We got the horizontal and the vertical parts for T2:

T h
2 = τqη(E)γ′ − 2τ

d

ds
η(E)φγ′ − dτ(γ′)η(E)φγ′, T v

2 =
[ d2

ds2
η(E)− τ2η(E)

]
ξ.

2. The term R(E, γ′)γ′

To compute the curvature term R(E, γ′)γ′, first we decompose it as R(E, γ′)γ′ = T3 + T4,
where T3 = R(H, γ′)γ′ and T4 = η(E)R(ξ, γ′)γ′ and we use the formula (4.3).

If we set X̄ = E∗ and Ȳ = Z̄ = γ̄′ in (4.3) and since γ is horizontal, we obtain

R(H, γ′)γ′ =
(
R̄(E∗, γ̄

′)γ̄′
)↑ − dτ(γ′)g(φE, γ′)ξ + 3τ2g(φE, γ′)φγ′.

Identifying the horizontal and the vertical parts respectively, we get

T h
3 =

(
R̄(E∗, γ̄

′)γ̄′
)↑

+ 3τ2g(φE, γ′)φγ′, T v
3 = −dτ(γ′)g(φE, γ′)ξ.

In order to compute T4 we write

R(ξ, γ′)γ′ = ∇ξ∇γ′γ′ −∇γ′∇ξγ
′ −∇[ξ,γ′]γ

′ = τ2ξ + dτ(γ′)φγ′.

Here we extend first γ′ to a basic vector field X and then we compute the brackets [ξ,X] = 0.
This implies also ∇ξγ

′ = −τφγ′.

Note that the term T4 can be also computed as

R(ξ, γ′)γ′ =−∇γ′∇γ′ξ +∇∇γ′γ
′ξ = ∇γ′(τφγ′) +∇qφγ′ξ

=dτ(γ′)φγ′ + τ∇γ′(φγ′) + q∇φγ′ξ

=dτ(γ′)φγ′ + τ
[
τξ − qγ′

]
+ qτγ′ = τ2ξ + dτ(γ′)φγ′.

Thus we have

T h
4 = η(E)dτ(γ′)φγ′, T v

4 = τ2η(E)ξ.
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3. The term qφ(∇γ′E)

We have T5 := qφ(∇γ′E) = qφ(∇γ′H) + qφ(∇γ′(η(E)ξ)).

To compute T5 we write

φ(∇γ′H) = φ
(
(∇̄γ̄′E∗)

↑ + vertical part
)
=

(
J∇̄γ̄′E∗

)↑
and

φ(∇γ′(η(E)ξ)) = φ(
d

ds
η(E)ξ + η(E)∇γ′ξ) = τη(E)γ′.

We conclude that T5 is horizontal and hence

T h
5 = q

(
J∇̄γ̄′E∗

)↑
+ qτη(E)γ′, T v

5 = 0.

4. The term q(∇Eφ)γ
′

We easily get that T6 := q(∇Eφ)γ
′ = qτg(E, γ′)ξ, which shows that T6 is vertical:

T h
6 = 0, T v

6 = qτg(E, γ′)ξ.

We now collect all terms T1 to T6 and consider the horizontal and the vertical parts, respec-
tively. Combining with Lemma 6.2 and Lemma 6.3 we get the statement. □

As a consequence of the previous theorem we have the following result.

Theorem 6.3. Let E be a magnetic Jacobi field on the horizontal Killing magnetic curve γ
on M . Assume that the bundle curvature is non-zero everywhere on M . Then E∗ = π∗(E) is
a magnetic Jacobi field on γ̄ = π ◦ γ if and only if D(E) = 0.

Proof. The hypothesis says that Jq,F (E) = 0. Using Theorem 6.2 we obtain

(6.7)


Jq,J(E∗)− 2τη(D(E))Jγ̄′ = 0

D(E)′ + τη(D(E))φγ′ = 0.

If D(E) vanishes, D(E)′ also vanishes and the first equation in (6.7) implies Jq,J(E∗) = 0,
that is E∗ is a magnetic Jacobi field on the Kähler magnetic curve γ̄.

Conversely, suppose that Jq,J(E∗) = 0. It follows that η(D(E)) = 0, since τ ̸= 0 and γ is
horizontal. Recall that D(E) is vertical. Thus, the condition η(D(E)) = 0 implies D(E) = 0.

□
Remark 6.3. In case τ = 0, M is locally isometric to the Riemannian product B × R. In
this case, the second equation in (6.7) leads to D(E)′ = 0. Using Lemma 6.3 with τ = 0, we
obtain

d2

ds2
η(E) = 0.

Hence every magnetic Jacobi field E along a horizontal Killing magnetic curve γ has the form:

E(s) = E(s)↑ + (ρ0s
2 + ρ1s+ ρ2)ξγ(s),

where E(s) is a magnetic Jacobi field along γ̄ and ρ0, ρ1 and ρ2 are constants.
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The next result shows an application of the derived vector field. See [42, Lemma 1].

Theorem 6.4. Let γ be a horizontal Killing magnetic curve on M . Given a vector field E∗
on π ◦ γ and a vertical vector v at γ(0), there exists a unique vector field E on γ such that

(1) π∗E = E∗, (2) D(E) = 0 and (3) E(0) = v.

Furthermore, E is a magnetic Jacobi field if and only if E∗ is.

Proof. If E is a solution of the proposed problem, then its horizontal part is uniquely deter-

mined by the horizontal lift of E∗, that is E
h = E↑

∗ . On the other hand, the vertical part of
E is expressed as Ev = η(E)ξ with the initial condition Ev(0) = η(v)ξ.

Now, condition (2) leads to the following differential equation

d

ds
η(E)ξ + 2

[
∇γ′E↑

∗
]v

= 0,

and so we obtain a Cauchy problem
d
dsη(E) + 2τ ḡ(E∗, Jγ̄

′) = 0,

η(E)(0) = ηγ(0)(v),

which has a unique solution.

For the second part of the statement we use Theorem 6.2. Since D(E) = 0, the formula (6.5)
becomes

Jq,F (E)h =
[
Jq,J(E∗)

]↑
and Jq,F (E)v = 0.

The conclusion follows immediately. □

The next result is another application of the derived vector field. Moreover, it gives the set
of all vertical magnetic Jacobi fields on a horizontal Killing magnetic field on M . It is easy
to prove that ξ is a vertical magnetic Jacobi fields along any horizontal Killing magnetic field
on M (see also Proposition 7.1). We state the following.

Theorem 6.5. Let γ be a horizontal Killing magnetic curve in the Killing submersion M →
B. If the bundle curvature τ is nowhere 0, then E is a vertical magnetic Jacobi field along γ
if and only if D(E) = 0. In particular, the set of all vertical magnetic Jacobi fields along γ
consists in {aξ : a ∈ R}.

Proof. Using the formula (2.1) we find Jq,F (fξ) = f ′′ξ−2τf ′φγ′, where f is a smooth function
of M . Thus fξ is a magnetic Jacobi field along γ if and only if f ′ = 0 (since τ ̸= 0). Taking
f = η(E) and recalling that D(E) = d

dsη(E)ξ (since E is vertical), we get the statement. □

7. Magnetic Jacobi fields along horizontal magnetic curves in Sasakian space
forms

To illustrate the general theory developed in preceding section, we investigate magnetic Jacobi
fields along horizontal Killing magnetic trajectories in 3-dimensional Sasakian space forms.
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As we have seen before, the total space M of a Killing submersion π : M → B of constant
bundle curvature 1 is Sasakian. In addition, a Killing submersion can be normalized to
Sasakian total space if τ > 0 or τ < 0. One can see that Killing magnetic equation ∇γ′γ′ =
qφγ′ is not preserved. However, remarkably, horizontal Killing magnetic curves are preserved
under pseudo-conformal deformation. This observation suggests also us to study Killing
magnetic trajectories in Killing submersions of bundle curvature 1, that is, Killing submersions
with Sasakian structures.

First we should emphasize that Sasakian 3-manifolds are not necessarily total spaces of Killing
submersions.

7.1. The Boothby-Wang fibration. Let M3 = (M,η) be a contact 3-manifold. Then M
is said to be regular if its Reeb vector field is regular. In addition a contact metric 3-manifold
is said to be a regular contact metric 3-manifold if its contact form η is regular.

Now let us consider a regular contact metric 3-manifold M . Then it is known that M is a
Sasakian 3-manifold. Moreover the projection π : M → B = M/G with G = {exp(tξ)}t∈R is
a submersion. All the structure tensor fields of M are invariant under the action of G. Thus
the contact metric structure of M induces a Kähler structure (ḡ, J) on B as we have seen in
Section 4.3. The resulting submersion π : M → B is a Killing submersion.

Thus, Killing submersions with bundle curvature 1 are identified with regular Sasakian 3-
manifolds. (For the quasi-Sasakian case, see [36].)

In the case when M is compact, the fibering π : M → B of a regular contact 3-manifold is well
known as the Boothby-Wang fibering [14]. As we mentioned before, although every regular
contact metric 3-manifold is Sasakian, the converse statement does not hold. In fact, Tanno
[50, §6] constructed an example of non-regular compact Sasakian 3-manifold (of constant
curvature 1). Abe gave examples of non-regular almost contact structures on exotic spheres
[2]. The standard examples of regular Sasakian 3-manifold are 3-dimensional Sasakian space

forms SU(2), S3, Nil3 and S̃L2R exhibited in Example 4.1.

Remark 7.1 (Quasi-regularity). A contact form η is said to be quasi-regular if its Reeb vetor
field ξ is quasi-regular. Rukimbira showed that every Sasakian 3-manifold admits a quasi-
regular Sasakian structure [45]. If a compact Sasakian 3-manifold M is quasi-regular; then
M is a Seifert fibration (principal S1-orbibundle) over a Hodge 2-orbifold, (see [14, Theorem
7.1.3]).

7.2. Some fundamental results. Now we prove an interesting result on the Reeb vector
field ξ.

Proposition 7.1. Let π : M → B be a Killing submersion of bundle curvature 1. Then the
Reeb vector field is a magnetic Jacobi field along any normal Killing magnetic curve γ in a
Sasakian 3-manifold.

Proof. Since the associated quasi-Sasakian structure is Sasakian, we have

η(γ′) = cos θ, ∇γ′ξ = −φγ′,

where θ is the constant contact angle of γ.
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In order to prove the statement we need some auxiliary computations:

∇γ′∇γ′ξ =∇γ′(−φγ′) = −(1 + q cos θ)ξ + (q + cos θ)γ′.

Then by the formulas (3.5) and (4.5), we get

(∇ξφ)γ
′ = 0, φ(∇γ′ξ) = γ′ − cos θ ξ, R(ξ, γ′)γ′ = ξ − cos θ γ′.

Hence we obtain Jq,−dη(ξ) = 0. We conclude that ξ is a magnetic Jacobi field along γ. □

We state now the following result.

Proposition 7.2. Let γ be a normal Killing magnetic curve in the total space of a Killing
submersion of bundle curvature 1. Then φγ′ is a magnetic Jacobi field along γ if and only if
either it is an integral curve of the Killing vector field ξ, or the horizontal curvature of M is
1.

Proof. We do the following computations by using the curvature formula (4.5)

∇γ′∇γ′(φγ′) =∇γ′
(
(1 + q cos θ)ξ − (q + cos θ)γ′

)
= −(1 + q2 + 2q cos θ)φγ′,

R(φγ′, γ′)γ′ =
{
(κ− 3)− ((κ− 4)) cos2 θ

}
φγ′,

(∇φγ′φ)γ′ =− (cos θ)φγ′, φ(∇γ′(φγ′)) = −(q + cos θ)φγ′.

Hence we get
Jq,−dη(φγ

′) = (κ− 4) sin2 θ φγ′.

Thus φγ′ is an eigensection of Jq,−dη with the eigenvalue κ−4
2 sin2 θ. The statement follows

immediately because κ = 4 is equivalent to that horizontal sectional curvature is 1. □

Note that the Proposition 7.2 can be rephrased as follows:

Corollary 7.1. Let γ be a normal Killing magnetic curve in the total space of a Killing
submersion of bundle curvature 1 such that γ′(s) and ξγ(s) are not collinear. Then φγ′ is a
magnetic Jacobi field along γ if and only if the horizontal sectional curvature of M is 1.

7.3. Magnetic Jacobi fields. In this subsection we assume that κ is constant. Thus as a
Sasakian manifold, M is of constant holomorphic sectional curvature. We denote the holo-
morphic sectional curvature of M by c and the total space by M3(c).

Let γ be a normal horizontal magnetic curve in a Killing submersion of bundle curvature 1.

Let E be a magnetic Jacobi field along a horizontal normal Killing magnetic curve γ. Since
ξγ(s), γ

′(s) and φγ′(s) are unitary and linearly independent for any s, we may decompose E
in this orthonormal basis as follows

(7.1) E(s) = f(s)ξγ(s) + a(s)γ′(s) + b(s)φγ′(s),

where f, a and b are smooth functions depending on s.

The aim of this section is to find magnetic Jacobi field E(s).

In order to apply the formula (2.1) we recall first the following formulas

(7.2) Jq,−dη(ξ) = 0, Jq,−dη(γ
′) = 0 and Jq,−dη(φγ

′) = (c− 1)φγ′.
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By straightforward computations, we can prove that the condition Jq,−dη(E) = 0 leads to the
following ODE system

(7.3)


f ′′ + 2b′ = 0

a′′ − qb′ = 0

b′′ − 2f ′ + qa′ + (c− 1)b = 0.

It should be remarked that the second equation is nothing but the conservation law discussed
in Proposition 5.2. In fact one can check that g(∇γ′W,γ′) = a′ − qb.

Taking the derivative in the third equation and then replacing f ′′ and a′′ from the first two
equations we obtain

(7.4) b′′′ + µb′ = 0,

where µ = q2 + c+ 3.

The solutions of this ODE depends on the sign of µ and hence we distinguish three cases.

The case µ = 0

It follows that b(s) = b0s
2 + b1s + b2, where b0, b1 and b2 are real constants. Plugging this

expression of b in (7.3) we obtain

f(s) = −2
3b0s

3 − b1s
2 + ρ0s+ ρ1,

a(s) = 1
3qb0s

3 + 1
2qb1s

2 + a0s+ a1,

where ρ0, ρ1, a0 and a1 are real constants such that

(7.5) 2ρ0 − qa0 = 2b0 + (c− 1)b2.

The case µ > 0 Put k =
√
µ.

It follows that b(s) = b0 cos(ks) + b1 sin(ks) + b2, where b0, b1 and b2 are real constants.
Plugging this expression of b in (7.3) we obtain

f(s) = 2
k [−b0 sin(ks) + b1 cos(ks) + ρ0s+ ρ1] ,

a(s) = q
k [b0 sin(ks)− b1 cos(ks) + a0s+ a1] ,

where ρ0, ρ1, a0 and a1 are real constants such that

(7.6) 4ρ0 − q2a0 = k(c− 1)b2.
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The case µ < 0 Put k =
√
−µ.

It follows that b(s) = b0 cosh(ks) + b1 sinh(ks) + b2, where b0, b1 and b2 are real constants.
Plugging this expression of b in (7.3) we obtain

f(s) = −2
k [b0 sinh(ks) + b1 cosh(ks) + ρ0s+ ρ1] ,

a(s) = q
k [b0 sinh(ks) + b1 cosh(ks) + a0s+ a1] ,

where ρ0, ρ1, a0 and a1 are real constants such that

(7.7) 4ρ0 + q2a0 = k(1− c)b2.

7.4. Projections. Take a horizontal normal Killing magnetic curve and a magnetic Jacobi
field E(s) along it. Then the horizontal part Eh and vertical part Ev of E are expressed as

Eh(s) = a(s)γ′(s) + b(s)φγ′(s), Ev(s) = f(s)ξγ(s).

The derived vector field D(E) is computed as

D(E) = (f ′(s) + 2b(s))ξγ(s).

From the first equation of (7.3), the coefficient η(D(E)) of D(E) is constant. Thus from
Theorem 6.3,

E∗ = π∗E = a(s)γ̄′(s) + b(s)Jγ̄′(s)

is a magnetic Jacobi filed along γ̄ = π ◦ γ if and only if f ′ + 2b = 0.

• The case µ = 0: In this case, f ′ + 2b = ρ0 + 2b2 = 0. This together with (7.5), we
obtain

2b0 + qa0 = −(c+ 3)b2

• The case µ > 0: In this case,

f ′ + 2b =
2ρ0
k

+ 2b2 = 0

This together with (7.6), we get

−q2a0 = k(c+ 3)b2

• The case µ < 0: In this case,

f ′ + 2b = −2ρ0
k

+ 2b2 = 0

This together with (7.7), we get

−q2a0 = k(c+ 3)b2

Recall that c+ 3 = κ (the Gaussian curvature of B).

Explicit expression for normal magnetic Jacobi fields on 2-dimensional space forms E2, S2
and H2 can be seen in [3].

Final Remarks. The study of magnetic Jacobi fields is motivated by the well known com-
parison theorems in Riemannian geometry. Detailed study on magnetic Jacobi fields gives
us insight on how small variations in the initial conditions affect the evolution of magnetic
curves.
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In this direction, Adachi [4] obtained the comparison theorem for magnetic curves on Kähler
manifold whose Lorentz force is a complex structure (uniform magnetic field).

Gouda [22] studied magnetic Jacobi fields on Riemannian 2-manifolds equipped with compat-
ible Kähler structure. The parallelism of the complex structure (the Lorentz force) is crucial
in these works.

On the contrary, for Sasakian 3-manifolds, the Lorentz force is non-parallel. Thus the behavior
of magnetic Jacobi fields along contact magnetic curves appears complicated. Geometric
and/or topological applications of magnetic Jacobi fields, e.g., magnetic version of comparison
theorems for geodesics, will be discussed in future publications.

As we have already mentioned before, our work is inspired by O’Neill’s work [41]. There are
some strong motivation to consider horizontal trajectories apart the fact this topic needs a
future deep study. Legendre curves are of particular interest for contact geometry and contact
topology. In terms of Killing submersion, the notion of horizontal curve coincides with that
of Legendre curve. Next, for CR-geometry, Legendre magnetic trajectories are nothing but
sub-Riemannian geodesics (see [29, Remark 5.1]). On the other hand, magnetic curves in
some product spaces are studied in [37]. See also [38].
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