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Abstract

Finite-fault inversion of seismic waveforms has been used as a common tool to understand

rupture evolution during an earthquake since 1980s. Despite the development of dense and

high-quality seismic networks, especially since the 2000s, difference of source models for the

same earthquake has been pointed out, which may come from modeling errors due to inappro-

priate assumption of source model. In particular, modeling errors of fault geometry can largely

distort solutions and bias understanding of source processes. In recent years, there have been

studies introducing modeling errors of fault geometry into seismic source inversion. However,

fault geometry is crucial information to understand regional tectonics and earthquake dynamics,

and seismic waveforms generally contain information on fault geometry as well as rupture evo-

lution. This dissertation aimed at development of inversion methods simultaneously to estimate

rupture evolution and fault geometry from teleseismic P waveforms. In the first step, we imple-

mented an inversion method extracting information on fault geometry as well as rupture evolu-

tion, named potency density tensor inversion, by representing fault slip on the assumed simple

fault plane by the superposition of five basis double-couple components of potency density

tensor, instead of two double-couple components compatible with the fault direction. Because

teleseismic P-wave Green’s function is quite sensitive to shear-slip direction while relatively in-

sensitive to shear-slip location, the inversion method enables us to infer spatiotemporal potency

density tensor distribution without detailed assumptions about fault geometry. In the next step,

making use of the developed potency density tensor inversion method, a further advanced in-

version method to construct fault geometry was implemented as a non-linear inversion process,

first assuming a flat fault surface and then updating the fault geometry by using the information

on slip direction. The developed inversion methods were evaluated by numerical simulations
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and applications to teleseismic P waveforms of the MW 7.7 2013 Balochistan, Pakistan and the

MW 7.9 2015 Gorkha, Nepal, earthquakes, which occurred along geometrically complex fault

systems. The obtained spatiotemporal potency density tensor distribution of the Balochistan

earthquake suggests that the rupture propagated unilaterally towards southwest from the epi-

center, and its constructed fault shows a curved strike-slip fault convex to southeast, which is

consistent with the observed surface ruptures. The constructed fault of the Gorkha earthquake is

a reverse fault with a ramp-flat-ramp structure, which is also consistent with the fault geometry

derived from geodetic and geological data. These results exhibit that the developed inversion

methods work well for estimating fault geometry of an earthquake and make great contribution

to the advancement of detailed understanding of earthquake source processes and tectonics.

Keywords: Finite-Fault Inversion, Fault Geometry, Nonlinear Inversion, The 2013 Balochis-

tan Pakistan Earthquake, The 2015 Gorkha Nepal Earthquake
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1. General introduction

Earthquake is a shear slip phenomenon occurring along fault surface internal of the Earth

(e.g. Aki & Richards, 2002), and the seismic source is of great interest to seismologists. In

general, seismic waveform contains information on both rupture evolution and fault surface ge-

ometry during an earthquake, and seismic source analyses by using seismic waveforms have

been conducted since 1970s (e.g. Trifunac, 1974). One method to estimate spatial and temporal

rupture distribution during an earthquake is finite-fault inversion of seismic waveforms, which

has been used since 1980s (e.g. Olson & Apsel, 1982; Hartzell & Heaton, 1983; Ji et al., 2002;

Yagi & Fukahata, 2011a). That method requires Green’s function, which is a seismic wave-

form per unit slip rate and represents propagation effects from a source point to an observation

station, and then estimates shear-slip distribution along an assumed model fault embedded in

possible source area from seismic waveforms. Finite-fault source models have also been uti-

lized to investigate characteristics and common features of rupture among earthquakes, such as

a nucleation point on fault (Mai et al., 2005), scaling properties of source parameters (e.g. Ye

et al., 2016; Hayes, 2017), and temporal pattern of seismic moment release (e.g. Meier et al.,

2017). Thus, the finite-fault inversion is a key technique to help understand rupture diversity

and source physics of earthquake.

Development of observation network in recent decades, especially since 2000s, has in-

creased quality and quantity of waveform records, and we can freely and quickly get them after

an earthquake via internet (e.g. IRIS Data Management Center; https://ds.iris.edu/ds/nodes/

dmc/). It is natural to expect that the high quality data makes it possible to construct a source

model representing more detailed rupture behavior that have conventionally been difficult to

retrieve. However, non-uniqueness of the source models for the same earthquake constructed

by different inversion schemes has been problematic in studies of seismic source inversion (e.g.

Beresnev, 2003; Mai et al., 2016), which can disturb unified interpretation and comprehen-

sion of earthquake source process. It has been pointed out that differences of assumed Earth
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structure and fault geometry, which are used for calculating theoretical Green’s function, may

be sources of the non-uniqueness (e.g. Mai et al., 2016), but these are uncertain and we can

never know them. Therefore, it can be said that the seismic source inversion possibly contains

methodological problem and has not fully utilized the improved observational data.

In recent years, especially since 2010s, several studies aimed to suppress effects originated

from uncertainty by introducing it into seismic source inversion. Yagi & Fukahata (2011a)

pointed out that modeling errors originated from uncertainty of Green’s function, which comes

from a discrepancy between the true and the calculated Green’s function due to inaccuracy of the

Earth’s structural model, can largely distort solutions and developed a novel inversion scheme

in which data covariance matrix includes uncertainty of Green’s function. The inversion scheme

proposed by Yagi & Fukahata (2011a) made it possible to construct a source model that is less

susceptible to choices of Earth structural model, and then, several inversion schemes introducing

the uncertainty into the data covariance matrix have been developed (e.g. Minson et al., 2013;

Duputel et al., 2014). One notable point of the inversion method of Yagi & Fukahata (2011a) is

that their formulation enables us to estimate the slip-rate function stably without applying the

non-negative slip constraint, which had been a common constraint to stabilize the estimation of

slip (e.g. Du et al., 1992; Freymueller et al., 1994). Inversion method proposed by Minson et al.

(2013) was stable and also no longer requires a smoothing constraint, which assumes spatial or

spatiotemporal smoothness of slip distribution and is a common constraint to stabilize inversion

estimation (e.g. Yabuki & Matsu’ura, 1992; Ide et al., 1996; Fukahata et al., 2003), as a prior

probability density function, although a smoothing constraint that forces constant slip on each

subfault is still imposed implicitly in their method (e.g. Bodin et al., 2009; Nocquet, 2018).

These pioneering studies have paved the way for flexible and stable seismic source inversion

methods with fewer a priori constraints by better evaluation of the errors involved in seismic

source inversion.

Uncertainty of fault geometry is another major source of the modeling errors that can largely

distort solutions. Most finite-fault inversion studies have modeled fault geometry based on a pri-

ori information, such as aftershock distribution, surface rupture trace, centroid moment tensor

(CMT) solution, and other fault models (e.g. Wald & Heaton, 1994; Koketsu et al., 2004; Field-

ing et al., 2013; Yue et al., 2013; Avouac et al., 2014; Ye et al., 2017; Okuwaki & Yagi, 2017). In

particular, for earthquakes occurring on geometrically complex fault systems, an overly simple

and inappropriate approximation of the fault geometry may result in an inappropriate source
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model, even when the uncertainty of the Green’s function is taken into account (e.g. Ragon

et al., 2018; Shimizu et al., 2020). Ragon et al. (2018) took into account uncertainty of the fault

geometry by introducing it into the data covariance matrix based on the framework of Duputel

et al. (2014), allowing for robust estimation of the slip distribution even if the approximated

fault geometry deviates slightly from the true one. The introduction of the uncertainty of fault

geometry as well as Green’s function into an inversion scheme would contribute to the con-

struction of unbiased source models, but is not for extracting the information on fault geometry

from observational data.

Another approach to suppress possible bias of source image originated from uncertainty of

fault geometry, which is a new proposal in this dissertation, is to extract information on fault

geometry and simultaneously to estimate shear-slip distribution from observational data. Infor-

mation on fault geometry is a subject of interest to researchers because it has been shown that

geometric complexity of fault is related to regional tectonics (e.g. Fielding et al., 2013; Avouac

et al., 2014; Elliott et al., 2016), to introduce spatiotemporal complexities in the regional seis-

micity by numerical simulation studies (e.g. Qiu et al., 2016; Dal Zilio et al., 2019), and to play

an important role in rupture propagation (e.g. Aki, 1979; Wald & Heaton, 1994), such as con-

trolling acceleration and deceleration of rupture propagation (Okuwaki & Yagi, 2018; Okuwaki

et al., 2020; Yamashita et al., 2021). Therefore, fault geometry contains important informa-

tion for a better understanding of earthquake dynamics and regional tectonics, and should be

abundantly contained in observational data with good quality.

This dissertation proposes finite-fault inversion frameworks of teleseismic waveforms that

enables us to estimate both fault geometry and shear-slip evolution, which had generally been

a difficult challenge because of strong nonlinearity in the inversion analysis (e.g. Fukahata &

Wright, 2008; Asano & Iwata, 2009). First, we propose the potency density tensor inversion; a

new finite-fault inversion method that introduces uncertainty of Green’s function into the data

covariance matrix following the inversion formulation of Yagi & Fukahata (2011a) and adopts

five basis double-couple components (Kikuchi & Kanamori, 1991) to represent fault slip, which

means that the direction of shear-slip is not confined on the assumed fault plane. Of course, the

true fault geometry should be compatible with the actual slip direction, but because the tele-

seismic P-wave Green’s function is insensitive to slight changes in the absolute source location

but sensitive to an assumed direction of shear-slip, the new inversion method makes it possible

to estimate the spatiotemporal distribution of potency density tensors (e.g. Ampuero & Dahlen,
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2005) on the assumed model fault plane. Potency density tensors, which are moment density

tensors divided by rigidity, contain information on the fault displacement direction (i.e. strike,

dip and rake) and hence represent information on true fault geometry. Moreover, potential

bias in the source image due to inappropriate assumptions of fault geometry can be reduced in

our proposed inversion framework because the shear slip direction can be represented indepen-

dently of the assumed model fault plane. Unlike multiple point source inversions that have been

developed to estimate focal mechanisms and source locations of several subevents from seis-

mic waveforms (e.g. Kikuchi & Kanamori, 1991; Duputel et al., 2012a,b; Duputel & Rivera,

2017; Shi et al., 2018; Yue & Lay, 2020), the potency density tensor inversion resolves rupture

propagation and associated changes of focal mechanism between subevents and elucidates the

details of rupture propagation and its relationship to fault geometry. In Chapter 2, we present

the formulation of the developed method and evaluate it through synthetic tests and application

to waveforms of the MW 7.7 2013 Balochistan, Pakistan earthquake, which occurred on geo-

metrically complex fault systems and is a typical case of an earthquake where inappropriate

fault geometry assumption can significantly distort the inversion solution.

Next, we propose an iterative inversion method to construct fault geometry from teleseismic

P waveforms. This method uses the potency density tensor inversion to solve the spatial distri-

bution of strike and dip angles on the assumed fault, and iterative solutions allow us to update

the fault geometry step by step, constructing a fault geometry that is consistent with the spatial

distribution of strike and dip angles. Unlike a conventional method in which fault geometry

is determined subjectively by an analyst, this method makes it possible to objectively obtain

fault geometry from observational data. Moreover, potency density on the obtained fault can be

more directly interpreted as slip, which makes it possible to properly understand rupture prop-

agation velocity and its relation to fault geometry. In Chapter 3, we present the methodology

and evaluate it through synthetic tests and application to waveforms of the Balochistan earth-

quake and also the MW 7.9 2015 Gorkha, Nepal, earthquake, which occurred on well-known,

geometrically complex fault systems.
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2. Development of potency density tensor

inversion method

In this chapter, we proposes a new finite-fault inversion method, named potency density

tensor inversion, that resolves spatiotemporal distribution of potency density tensor on a model

fault and also mitigates effects originated from uncertainty of fault geometry. The fundamental

framework of the new inversion method is the finite-fault inversion of teleseismic waveforms

developed by Yagi & Fukahata (2011a). Yagi & Fukahata (2011a) showed that uncertainty of

Green’s function is a major source of modeling errors which can largely distort inversion so-

lution and showed that a formulation introducing uncertainty of Green’s function into the data

covariance matrix makes it possible to mitigate effects of the uncertainty. Notably, the inversion

method of Yagi & Fukahata (2011a) enables us to flexibly estimate rupture evolution without

applying non-negative slip constraint, which has been confirmed by applications of it to inver-

sion analyses of the MW 9.1 2011 Tohoku-oki, the MW 7.9 2008 Wenchuan, China, and the MW

8.1 2017 Chiapas, Mexico earthquakes (Yagi & Fukahata, 2011b; Yagi et al., 2012b; Okuwaki

& Yagi, 2017). In order to develop a flexible finite-fault inversion method that estimate potency

density tensor distribution during an earthquake, we adopted the inversion method proposed by

Yagi & Fukahata (2011a) as a framework. Here we present mathematical formulation of the po-

tency density tensor inversion in Section 2.1 and demonstrate it through numerical simulations

in Section 2.2 and application of it to teleseismic waveforms of the MW 7.7 2013 Balochistan,

Pakistan earthquake in Section 2.3.

2.1 Mathematical formulation

In general, earthquake sources can be represented by moment rate volume density tensors

Ṁ(t, ξ) (e.g. Backus & Mulcahy, 1976) which is represented by a linear combination of five
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S

M1 M2 M3 M4 M5

S

(a) This study

a

(b) Conventional

a

Figure 2.1: Shear-slip representations at each subfault on a model plane S by (a) the new
method and (b) conventional method. Each dot represents a central point of each subfault on
the model plane S . (a) The five beach balls denote the five basis double-couple components
shown by (Kikuchi & Kanamori, 1991). Each component corresponds to a shear dislocation
source, but is not needed to be parallel to the model plane S . The focal mechanisms, plotted
by using a lower-hemisphere projection, are not rotated according to the model plane setting.
(b) The two beach balls represent the two basis double-couple components corresponding to
the shear dislocation sources along the model plane S . Arrows represent the slip directions of
the two double-couple components whose nodal planes correspond to model plane S . The two
focal mechanisms, plotted by using a lower-hemisphere projection, are rotated so that their one
nodal planes match to model plane S ; therefore, they are not equivalent to M3 and M4 shown
in (a).

basis double-couple components Mq (Kikuchi & Kanamori, 1991) (Fig. 2.1a):

Ṁ(t, ξ) =
5∑

q=1

ṁq(t, ξ)Mq, (2.1)

where “five” prescribes the degree of freedom of the moment-rate tensor except for isotropic

expansion sources, ṁq(t, ξ) is a spatiotemporal moment rate volume density function of qth basis

double-couple component, and ξ represents a position in the source area. Conventional finite-

fault inversion solves a slip-rate function at each subfault with one or two directions of shear-

slip along the assumed fault plane (e.g. Olson & Apsel, 1982; Ide et al., 1996; Ji et al., 2002),

which corresponds to solving the potency rate areal density function for two double-couple

components (Fig. 2.1b), where the potency rate corresponds to the moment rate divided by the

rigidity. As shown in Fig. 2.1b, in the conventional scheme, one of the two nodal planes must

match the model fault plane. However, we adopt the inversion framework of Yagi & Fukahata

(2011a) and then propose a formulation for finite-fault inversion of teleseismic waveforms that

solves the potency rate areal density function for five basis double-couple components (Fig.

7



2.1a),

Here a seismic waveform u j for a far-field term observed at a station j is represented by a

linear combination of moment rate volume density functions of five basis double-couple com-

ponents (Fig. 2.1a):

u j(t) =
5∑

q=1

∫
V

G0
q j(t, ξ) ∗ ṁq(t, ξ)dξ + eb j(t), (2.2)

where V is a three-dimensional source area, G0
q j is a Green’s function, eb j is a background and

instrumental noise, and ∗ denotes the time domain convolution operator. Eq. (2.2) represents

the spatiotemporal distribution of moment rate volume density in a three dimensional model

source space. In order to simply represent the three-dimensional source area as a finite-fault

model in two dimensions, we assume that a finite-fault model obtained by a teleseismic body

wave inversion is insensitive to a slight change of source location of the Green’s function:

G0
q j(t, ξ + δξ) ≈ G0

q j(t, ξ), (2.3)

where ξ + δξ is a neighbouring position around ξ. However, Green’s function can change

according to the source depth (e.g. Yagi et al., 2012a; Okuwaki et al., 2019), and we evaluated

the sensitivity of finite-fault model to a slight change of source depth by performing numerical

simulations in Section 2.2. We found some differences in source models according to source

depth, such as the amplitude and the timing of moment rate peaks of source-time function,

but proved that the change of source depth does not seriously affect the estimation of focal

mechanisms and overall features in the source-time function (Fig. 2.8).

The approximation of eq. (2.3) makes it possible to reduce the dimension of the integral

from a volume to a surface integral on a model plane S set in the source area V . Then, eq. (2.2)

becomes

u j(t) =
5∑

q=1

∫
S

G0
q j(t, ξ) ∗ ṁ′q(t, ξ)dξ + eb j(t), (2.4)

where ṁ′q(t, ξ) is the moment rate areal density function, which is the the volume density of the

moment rate function ṁq projected on the model plane S .

The areal density of moment rate function is represented by the areal density of potency rate
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function Ḋq:

ṁ′q(t, ξ) = µ(ξ)Ḋq(t, ξ), (2.5)

where µ(ξ) is the rigidity.

By substituting eq. (2.5) into eq. (2.4), the observed waveform u j is represented by the areal

density of potency rate function Ḋq:

u j(t) =
5∑

q=1

∫
S

G̃q j(t, ξ) ∗ Ḋq(t, ξ)dξ + eb j(t), (2.6)

with

G̃q j(t, ξ) = µ(ξ)G0
q j(t, ξ). (2.7)

Eq. (2.6) means that the finite-fault inversion method can estimate the distribution of potency

rate areal density tensors. The slip rate corresponds to potency rate areal density under a con-

dition that a shear plane and its area are explicitly given, and the potency rate areal density

corresponds to the slip rate when the slip direction of the potency rate areal density tensor lies

along the model plane S .

In the conventional formulation, one of the two nodal planes of the two basis double-couple

components correspond to the model plane S , which means that the fault geometry is assumed

to be the model plane S (Fig. 2.1b). In this study, we adopt q = 5 for the areal density

of potency rate function in eq. (2.6), which means that the shear plane is resolved with the

five basis double-couple components and hence is no longer required to be consistent with the

presumed model plane geometry a priori (Fig. 2.1a).

We represent the areal density of potency rate function Ḋq by a linear combination of a finite

number of basis functions according to the multiple-time-window inversion scheme (e.g. Olson

& Apsel, 1982):

Ḋq �
K∑

k=1

L∑
l=1

aqklXk(ξ)Tl(t − tk), (2.8)

where Xk and Tl are the basis functions for space and time, respectively, and aqkl are the expan-

sion coefficients (model parameters) to be estimated from the seismic waveform. tk is the start

9



time of rupture at a space knot k.

Substituting eq. (2.8) into eq. (2.6), we represent the observed waveform u j by the basis

functions of space and time:

u j(t) =
K∑

k=1

L∑
l=1

5∑
q=1

aqkl

∫
S

G̃q j(t, ξ) ∗
(
Xk(ξ)Tl(t − tk)

)
dξ + eb j(t). (2.9)

Adopting the formulation of Yagi & Fukahata (2011a), we introduce the modeling error of

Green’s function δGq j as

G̃q j(t, ξ) = Gq j(t, ξ) + δGq j(t, ξ). (2.10)

Using the modeling error of Green’s function δGq j, we rewrite eq. (2.9) as:

u j(t) =
K∑

k=1

L∑
l=1

5∑
q=1

aqkl

∫
S

(
Gq j(t, ξ) + δGq j(t, ξ)

)
∗
(
Xk(ξ)Tl(t − tk)

)
dξ + eb j(t). (2.11)

Then, we represent the observation equation at the jth station in vector form as

d j = H ja + eg j(a) + eb j, (2.12)

where d j is the N j (number of data point at the jth station) dimensional data vector representing

the observed waveform u j, a is the M (= 5KL) dimensional model parameter vector, H j is

the N j × M dimensional coefficient matrix representing convolutions of the calculated Green’s

functions and basis functions in time, eg j is the N j dimensional vector representing the modeling

error of Green’s function, and eb j is the N j dimensional vector that represents the background

and instrumental noise. We calculate the data covariance matrix of d from eq. (2.12) following

the method of Yagi & Fukahata (2011a), and represent the stochastic model relating the data

vector d for all stations by the model parameters a.

We adopt the smoothing constraint as prior constraints on each areal density of potency rate

function Ḋq in space and time:

∇2Ḋq(t, ξ) + es = 0, (2.13)

10



∂2

∂t2 Ḋq(t, ξ) + et = 0. (2.14)

As shown in eq (2.13), we also apply the smoothing constraint to spatial distribution of areal

density of potency rate function Ḋq instantaneously at each time step, which stabilizes inversion

solution better than the smoothing constraint only on the total spatial distribution (e.g. Ide et al.,

1996; Ji et al., 2002).

We rewrite eqs (2.13) and (2.14) in vector form as,

S1a + es = 0, (2.15)

S2a + et = 0, (2.16)

where S1 and S2 are M × M dimensional matrices. Following the formulation developed by

Fukahata et al. (2003, 2004), we combine these two prior constraints into a single probability

density function.

Following the method of Yagi & Fukahata (2011a), the unknown scaling parameters of the

modeling error, background noise, and prior constraints are determined on the basis of Akaike’s

Bayesian Information Criterion (ABIC; Akaike, 1980; Yabuki & Matsu’ura, 1992) and model

parameter vectors are iteratively solved in the rest of the formulation process. Fukuda & John-

son (2008) demonstrated that ABIC without applying non-negative constraints avoids the prob-

lems of over-smoothing and under-smoothing, and hence our inversion scheme, which employs

ABIC without non-negative constraints, also avoids them. However, Yamashita et al. (2021) and

Yamashita et al. (2021b) pointed out that our inversion scheme tends to solve spatiotemporally

smooth distribution of potency density tensor and they proposed new smoothing constraints to

resolve clearer source image, which will be discussed in Chapter 4.

For a simple description, we use “potency rate density” and “potency density” instead of

“potency rate areal density” and “potency areal density” in the following sections.

2.2 Numerical simulation

In order to test the formulation developed in this study, we performed numerical simula-

tions in which we analyze synthetic waveforms generated by using a prepared source model
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Table 2.1: Near-source velocity model derived from Avouac et al. (2014) for calculating
Green’s functions.

VP VS Density Thickness
(km/s) (km/s) (103kg/m3) (km)
5.44 3.00 2.50 4.00
6.25 3.45 2.60 12.00
6.53 3.60 2.70 14.00
6.80 3.90 2.90 12.00
7.50 4.30 2.90 3.00
8.11 4.49 3.30 0.00

and theoretical Green’s function. We took 26.951◦N and 65.501◦E as the epicenter of input

source models, and then calculated input synthetic waveforms for the selected stations shown

in Fig. 2.9d by using theoretical Green’s functions and input source models (Figs 2.2–2.6). We

calculated theoretical Green’s functions following the method shown by Kikuchi & Kanamori

(1991) at a 0.1 s interval by adopting the one-dimensional near source velocity structure (Table

2.1) used in Avouac et al. (2014), and set the attenuation time constant t∗ for the P wave to be

1.0 s. We added an error of Green’s function and background noise in the synthetic waveforms.

We added random Gaussian noise with zero mean and a standard deviation of 5 % of maximum

amplitude of each calculated Green’s function as an error of Green’s function, and added ran-

dom Gaussian noise with zero mean and a standard deviation of 1 µm to synthetic waveforms

as the background noise. In the inversion process, we resampled the input waveform data at a

0.8 s interval without applying any filter to either the input waveforms or the theoretical Green’s

functions.

We prepared 3 cases of input source models to check the performance of our new method.

In the case 1, we prepared a simple reverse faulting model with two large potency density areas

on a single flat fault plane with a length of 150 km and a width of 40 km. The fault plane

was configured by a strike of 90◦ and a dip of 45◦, which was discretized into 10 km × 10 km

subfaults and a depth of 25 km was adopted as the hypocentral depth (Figs 2.2a and 2.3a). Total

duration of the input potency rate density function at each subfault was asssumed to be 10 s.

In the case 2, we prepared a input source model with variable focal mechanisms. The input

source model consists of four large potency density areas with focal mechanisms of M1, M2,

M3, and M5 (Fig. 2.1), respectively, on a single model plane with a length of 190 km and a

width of 50 km. The fault plane was configured by a strike of 180◦ and a dip of 0◦, which was

discretized into 10 km × 10 km subfaults and a depth of 25 km was adopted as the hypocentral

12



Figure 2.2: (a) Input source model, (b) Output source model, and (c) waveform fitting between
input and output synthetic waveforms at all stations in the case 1. (a, b) The beach ball color
shows the potency density. The gray line outlines the model fault plane, and the black line
shows the top of the model fault plane. The star denotes the epicenter. The large gray beach
ball represents the total moment tensor obtained by integrating the potency density tensors in
space. (c) Gray and red traces are input and output waveforms, respectively. Station code,
azimuth, and epicentral distance of each station are shown above the trace.
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Figure 2.3: Potency rate density functions of (a) input and (b) Output source models at all
subfaults in the case 1. Each colored trace corresponds to the basis double-couple compnent
shown in Fig. 2.1. The cell outlined by yellow line represents the initially ruptured subfault.
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depth (Figs 2.4a and 2.5a). Total duration of the input potency rate density function at each

subfault was asssumed to be 10 s.

In the inversion process of the cases 1 and 2, we assumed that a model plane whose geometry

is the same as the input one.

In the case 3, we prepared a left-lateral strike-slip faulting model within a bending fault

consisting of two, 60 km long and 30 km wide, vertical fault planes, with strikes of 135◦ and

180◦, respectively (Figs 2.6 a and b). The input fault plane was discretized into 10 km and

5 km subfaults along strike and dip, respectively, and a depth of 30 km was adopted as the

hypocentral depth (Figs 2.6 a and b). Total duration of the input potency rate density function

at each subfault was assumed to be 20 s. In our new method, we assume that a finite-fault

model obtained by a teleseismic body wave inversion is insensitive to a slight change of source

location of the Green’s function (eq. 2.3), which means that the model plane used for inversion

analysis can be spatially deviated from the true fault plane to some extent. Therefore, in the

inversion process of this case, we set a single model plane, 120 km long and 40 km wide, with

a strike of 165◦ and a dip of 0◦, horizontally covering the input source area (Fig. 2.6b) to verify

the extent to which the assumption affects the solution. The model plane was discretized into

10 km × 10 km subfaults and we took a depth of 30 km as the initial rupture depth.

For all cases, we assumed that the total duration of the potency rate density function used

for the inversion analysis is the same as the input one.

The results show that the spatiotemporal distribution of focal mechanisms in the input source

models were well reproduced by the obtained output source models (Figs 2.2b, 2.3b, 2.4b, 2.5b,

2.6c and d), although the amplitude of output potency rate density function at each subfault is

smaller and smoother than the input ones (Figs 2.3b and 2.5b), which may be originated from

the input models which do not fully obey our smoothing constraints (eqs 2.13 and 2.14). The

input synthetic waveforms were well explained by the output waveforms (Figs 2.2c, 2.4c and

2.6e).

In the case 3, it should be noted that the 45◦ change of a strike orientation of strike-slip

mechanism during the rupture evolution in the input source model can be reproduced in the out-

put source model adopting the horizontal model plane (Figs 2.6c, 2.6d and 2.7), and the output

waveforms explained the input synthetic waveforms well (Fig. 2.6e). This result implies that

the approximation of teleseismic P waveform Green’s function (eq. 2.3) works well and sim-

plified assumptions of model space, such as the single horizontal model plane, can be adopted

15



Figure 2.4: Caption next page.
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Figure 2.4: (a) Input source model, (b) Output source model, and (c) waveform fitting at all
stations between input and output synthetic waveforms in the case 2. (a, b) The beach ball color
shows the potency density. The gray line outlines the model fault plane. The star denotes the
epicenter. The large gray beach ball represents the total moment tensor obtained by integrating
the potency-density tensors in space. (c) Gray and red traces are input and output waveforms,
respectively. Station code, azimuth, and epicentral distance of each station are shown above the
traces.

for estimation of potency density tensor distribution of an earthquake.

17



0 60
Time (s)

0

2

Po
te

nc
y 

ra
te

 d
en

sit
y 

(m
/s

)

Component 1
Component 2
Component 3
Component 4
Component 5

0 60
Time (s)

0

2

Po
te

nc
y 

ra
te

 d
en

sit
y 

(m
/s

)

Case 2

(a) Input

(b) Output

Figure 2.5: Potency rate density functions of (a) input and (b) Output source models at all
subfaults in the case 2. Each colored trace corresponds to the basis double-couple compnent
shown in Fig. 2.1. The cell outlined by yellow line represents the initially ruptured subfault.
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Figure 2.6: Caption next page.
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Figure 2.6: (a) Fault geometry and focal mechanisms of the input source model, (b) distribution
of potency density and slip angles of the input source model, (c) output source model, (d)
distribution of strike angles extracted from the output source model, and (e) waveform fitting
at all stations between input and output synthetic waveforms in the case 3. (a) The blue line
represents the top of the input fault plane. The star denotes the epicenter. The pink circle denotes
the point where strike angle of the fault changes. Beach balls show assumed focal mechanisms.
(b) The blue arrow denotes the slip vector, and its length is related to the amount of potency
density. The star denotes the initial rupture point. The pink line represents the boundary where
strike angle of the fault changes. Color shows the potency density. (c, d) Color shows the
potency density. The star denotes the epicenter. The gray line outlines the horizontally assumed
model plane. The blue line represents the top of a fault plane of the input source model. The
small beach ball, shown in (c), shows the focal mechanism at each subfault, plotted using a
lower-hemisphere projection. Direction of the bar shown in (d) corresponds to the strike angle
extracted from the focal mechanism shown in (c). (e) Gray and red traces represent the input
and output waveforms. Station code, azimuth, and epicentral distance of each station are shown
above the traces.

Figure 2.7: Snapshots of output source model in the case 3. Color of small beach ball represents
the potency rate density. The star denotes the epicenter. The gray line outlines the horizontally
assumed model plane. The blue line represents the top of a fault plane of the input source
model. The small beach ball shows the potency density tensor at each subfault, plotted using
a lower-hemisphere projection. The large blue and red beach balls are the centroid potency
density tensor obtained by integrating potency rate density function in space and time at each
time window for the input and output source models, respectively.
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Figure 2.8: (a) Output source models with different source depths and (b) their moment rate
functions in the case 3. (a) The small beach ball shows the focal mechanism at each subfault,
and its color represents the potency rate density. The star denotes the epicenter. The gray line
outlines the horizontally assumed model fault plane. Focal mechanisms are plotted using a
lower-hemisphere projection.

In the case 3, we further evaluated a sensitivity to an assumption of the depth of the horizon-

tal model plane, ranging between 25 km and 35 km every 2.5 km. The obtained potency density

tensor distributions at variable model plane depths showed a similar pattern of focal mechanisms

(Fig. 2.8a) and suggest that the change of initial rupture depths does not significantly affect a

resultant potency density tensor distribution, although deeper source model shows smaller in-

tensity of overall potency density due to relatively high amplitude of Green’s function with

deeper source depth. We can recognize that an arrival time of peaks in the source-time function

is shifted in time within 1.6 s according to the model plane depth, which is explained by travel

time difference expected from the difference in depth (Fig. 2.8b). The peak of the moment

rate at around 10 s in the output source-time function is at most 26 % smaller than that of the

input one, which is originated from the difference of depth range between the input and output

rupture extent. However, the relative amplitudes and the number of moment rate peaks in the

source-time functions of all output source models are similar to those of the input source model

(Fig. 2.8b).
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2.3 Application to real waveforms

2.3.1 The 2013 Balochistan earthquake

We applied the method developed in this study to teleseismic waveforms of the 2013 Balochis-

tan, Pakistan, earthquake to test the formulation. The epicenter (26.951◦N, 65.501◦E), deter-

mined by the U.S. Geological Survey, National Earthquake Information Center (USGS NEIC;

https://earthquake.usgs.gov/earthquakes/eventpage/usb000jyiv) was located in the east of the

Makran accretionary wedge in the south-western Pakistan. In the eastern part of the Makran

accretionary wedge, the Arabia plate subducts under the Eurasia plate at a rate of ∼40 mm/yr in

the southern part of Makran accretionary wedge and the eastern side of the Makran accretionary

wedge adjoins the India plate northwardly converging towards the Eurasia plate at a rate of ∼40

mm/yr (DeMets et al., 2010) (Fig. 2.9a). According to observed surface rupture distribution

(Zinke et al., 2014) and analyses of optical satellite images (Avouac et al., 2014; Jolivet et al.,

2014; Zinke et al., 2014) and of interferometric synthetic aperture radar (InSAR) data (Barnhart

et al., 2014), the Balochistan earthquake shows a curved surface rupture pattern, which is simi-

lar to the arcuate topographic features around the epicenter. The global centroid moment tensor

(GCMT; http://www.globalcmt.org/CMTsearch.html) solution and the W-phase moment tensor

solution estimated by USGS (https://earthquake.usgs.gov/earthquakes/eventpage/usb000jyiv)

suggest that the Balochistan earthquake was a left-lateral strike-slip earthquake (Fig. 2.9c).

Studies of back-projection technique resolved spatiotemporal distributions of high-frequency

radiation sources showing mostly unilateral rupture propagation towards the south-west from

the epicenter (Avouac et al., 2014; Wang et al., 2016). Finite-fault modeling studies pro-

posed source models with curved fault geometry which was represented by multiple rectangles

(Avouac et al., 2014) or a non-planar surface (Jolivet et al., 2014). As mentioned in the Gen-

eral Introduction, such the possibly curved and geometrically complex fault of the Balochistan

earthquake could prevent us from constructing a reliable source model because an inappropri-

ate and a simplified assumption of fault geometry can yield significant modeling errors. In fact,

the Balochistan earthquake is a case in which an assumption of simplified single planar fault

largely distorts inversion solution (unrealistic estimate of rupture propagation direction). For

example, Japan Meteorological Agency provisionally constructed a finite-fault model with tele-

seismic waveforms by using a single flat fault (https://www.data.jma.go.jp/svd/eqev/data/world/

20130924/sr201309242029.pdf), and the source model suggested the north-eastward rupture
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Figure 2.9: Tectonic setting and the observed surface rupture trace of the 2013 Balochistan
earthquake, the model plane settings, and the moment tensor solutions from USGS NEIC,
GCMT, and this study. (a) Blue line represents the surface rupture trace derived from Zinke
et al. (2014). Aftershocks with MW ≥ 3 occurring within 1 week of the mainshock (USGS
NEIC; https://earthquake.usgs.gov/earthquakes) are plotted as red dots. Pink arrows repre-
sent the relative motions of the Arabia and India plates against the Eurasia plate from the
UNAVCO (https://www.unavco.org) plate motion calculator following the MORVEL model
(DeMets et al., 2010). The orange rectangle outlines the area shown in Fig. 2.9(b). Topography
was drawn by using 2010 Global Multi-resolution Terrain Elevation Data 7.5 arcsecond median
elevations (GMTED; https://topotools.cr.usgs.gov/gmted viewer/) (Danielson & Gesch, 2011)
and the shadows were drawn with the light coming from a 45◦ azimuthal direction. (b) Model
planes used in this study. The top of each model fault plane is shown by a bold line, and the
light-colored lines outline the inclined model planes. The star denotes the epicenter. The blue
line represents the trace of surface rupture measured by Zinke et al. (2014). (c) Moment tensor
solutions. The gray beach balls show the W-phase CMT solution estimated by USGS (https:
//earthquake.usgs.gov/earthquakes/eventpage/usb000jyiv/moment-tensor) and the GCMT solu-
tion from the Global CMT Catalog Search (http://www.globalcmt.org/CMTsearch.html). The
red beach ball represents the total moment tensor estimated by using a horizontal model plane
in this study. (d) Station Distribution (red triangles) around the epicenter (star) in an azimuthal
equidistant projection. The circles show the teleseismic distances at 30◦ and 90◦.
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propagation that is inconsistent with results of back-projection analyses and observational data

(e.g. Wang et al., 2016; Avouac et al., 2014; Zinke et al., 2014) and would be originated from

modeling error of fault geometry. In Section 2.4.3, we demonstrate the unrealistic source im-

age originated from modeling error of fault geometry and discuss it further. Thus, the 2013

Balochistan earthquake is a suitable case for testing the fault geometry resolvability of the new

finite-fault inversion framework developed in this study and for showing its insensitivity to

modeling errors of fault geometry.

2.3.2 Data processing and model setting

We downloaded the waveform data from the Incorporated Research Institutions for Seis-

mology Data Management Center (IRIS-DMC). 36 vertical components of globally observed

teleseismic P waveforms were selected based on a view point of a high signal-to-noise ratio and

a good azimuthal coverage (Fig. 2.9d). We manually determined the first motion of the tele-

seismic P waveforms, deconvolved the instrumental response from the original waveforms to

convert into velocity waveforms, and then resampled the waveform data at a 0.8 s sampling in-

terval. Following the method of Kikuchi & Kanamori (1991), we calculated theoretical Green’s

functions at a 0.1 s interval, and the attenuation time constant t∗ for the P wave was set to 1.0 s.

We used the one-dimensional layered velocity structure model around the source region (Table

2.1) adopted by Avouac et al. (2014) to calculate the theoretical Green’s functions. We do not

apply any filter to either the observed waveforms or the theoretical Green’s functions to extract

detailed information of rupture process possibly recorded in the high-frequency components of

the seismic records. Since our new inversion method makes it possible to estimate spatiotem-

poral potency density tensor distribution whose focal parameters are independent of the strike

and dip angles of the assumed model fault plane, which was described in Section 2.1, we em-

bedded the model fault plane horizontally at a certain depth. We set a single model fault plane

striking 230◦ and dipping 0◦ with a length of 200 km and a width of 45 km wide (Fig. 2.9b)

that horizontally covered the entire surface rupture area inferred by Zinke et al. (2014). As the

depth of the model fault plane, we took 7.5 km hypocentral depth that minimized the ABIC

value among different hypocentral depth configurations. The model plane was expanded into

bilinear B-spline functions with an interval of 5 km and adopted the epicenter for the initial

rupture point. The potency rate density function at each source knot was represented by a linear
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Figure 2.10: Spatial distribution of potency density tensors and source-time function (inset).
The small beach ball shows the focal mechanism at each subfault, plotted using a lower-
hemisphere projection. The star denotes the epicenter. The beach ball color shows the potency
density. Several beach balls (black outlines) were selected and magnified to emphasize the spa-
tial variation of the focal mechanism. The strike and dip angles are shown on the right side of
the enlarged beach ball.

combination of B-spline functions with a temporal interval of 0.8 s and a duration of 31 s so as

to flexibly represent variation of rupture behaviours. We also assumed a total source duration

of 60 s on the basis of source-time functions estimated by previous finite-fault studies (Avouac

et al., 2014; Barnhart et al., 2014). The maximum rupture-front velocity was set as 4 km/s that

takes into account the possibility of supershear rupture reported by Avouac et al. (2014).

2.3.3 Results

Integrating potency rate density function for each basis double-couple component at each

subfault in time, we obtained the spatial distribution of potency density tensors on the model

fault plane (Fig. 2.10). The CLVD component of potency density tensor at each subfault is

not clearly significant (Fig. 2.10), which suggests that teleseismic P waveforms are useful to

constrain a CLVD component of a shallow strike-slip earthquake under the condition of a good
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azimuthal coverage of station distribution.　 In this study, the potency density at each subfault is

represented as an average of absolute value of eigenvalues for T - and P- axes of a diagonalized

potency density tensor at each subfault. As shown in Fig. 2.10, large potency density area is

distributed around the epicenter and extends to south-west from the epicenter about 150 km.

Obtained potency density tensor has two set of fault parameters (i.e. strike, dip and rake angles)

and our method can not uniquely choose a set of fault parameters alone. In order to simply

describe the variation of potency density tensors, we take the fault plane whose strike was in

the range between 180◦ and 270◦ based on the mapping of the surface rupture (e.g. Zinke et al.,

2014) and hereafter describe about a nodal plane of each potency density tensor close to the

fault plane. The spatial distribution of potency density tensor shows that strike-slip faulting

is dominated throughout the model space, and a potency density tensor estimated around the

epicenter shows strike-slip faulting with a strike of 216◦ and a dip of 77◦ (Fig. 2.10). Around

80 km south-west from the epicenter, strike-slip faulting with a strike of 243◦ and a dip of 45◦

was estimated, and around 140 km south-west from the epicenter, a potency density tensor with

a reverse or oblique-slip faulting with a strike of 244◦ and a dip of 53◦ was estimated (Fig. 2.10).

Integrating the spatial distribution of potency density tensors shown in Fig. 2.10, we obtained

a total moment tensor. The total moment tensor shows a strike-slip faulting with a strike of

226◦ and a dip of 61◦ and includes 8% of the non-double-couple components (Fig. 2.9c). The

total released seismic moment was 7.53 × 1020 Nm (MW 7.8) that is comparable to the GCMT

solution of 5.59 × 1020 Nm (MW 7.8). The source-time function, obtained by calculating the

seismic moment at each time step, has a major peak at around 17 s and three minor peaks at

around 29 s, 43 s and 53 s (Fig. 2.10).

In order to make the spatiotemporal variation of focal mechanisms recognizable, we showed

a potency density tensor in 10-s time window on its centroid location by integrating the potency

rate density in space and time along the model plane (Fig. 2.11). The centroid locations and the

potency density tensors show that the centroid location migrates unilaterally towards the south-

west from the epicenter, and migration distances from 20 to 50 s is longer than those before 20

s and after 50 s. We can see a successive transition of the potency density tensor in each time

window from strike-slip faulting with a strike of 205◦ and dip of 68◦ to oblique-slip faulting

with a strike of 241◦ and a dip of 39◦ during 0 to 60 s, indicating a clockwise rotation of the

strike orientation from north to south (Fig. 2.11). We can also see this temporal transition of

the focal mechanism in the static, spatial variation of the distribution of potency density tensors
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Figure 2.11: Centroid potency density tensors during the rupture evolution. The centroid lo-
cations of the potency rate density (green squares) and its potency density tensor (red beach
ball) is shown at each time window. The distance between the adjacent centroid locations and
the corresponding time window for the centroid location are shown. The blue line represents
the trace of surface rupture measured by Zinke et al. (2014). The black rectangle outlines the
horizontal model plane. The star denotes the epicenter.

(Fig. 2.10).

In order to further visualize the variation of focal mechanism during rupture evolution at

all subfaults, we calculated a potency density tensor by temporally integrating the potency rate

density function in each time window at each subfault and then plotted their stike and dip angles

within a strike angle range between 180◦ and 270◦ (Fig. 2.12a). The histogram snapshots (Fig.

2.12a) shows a successive transition of strike angle from 200◦ to 240◦ during 0 to 50 s, which

means the clockwise rotation of fault plane during rupture propagation. Focusing on dip angles,

we can see temporal variation of dip angles, showing steep, around 80◦, during 0 to 20 s, and

shallow, around 60◦, during 20 to 50 s. While the centroid location migrates fast from 20 s to

50 s (Fig. 2.11), the dip angles seems more scattered than those during 0 to 20 s. In the last

time window, The distributions of strike angle and dip angle seems scattered, but shows a small

peak of dip angle around 40◦. We also plotted the strike and dip angles of the two fault plane of

potency density tensor at all subfaults for all time windows without any range of strike angles

(Fig. 2.12b). We can see two modes of strike angle at around 130◦ and 230◦ (Fig. 2.12b) that

can be consisdered to represent the two conjugated fault planes.
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2.4 Discussion

2.4.1 Rupture propagation and fault geometry of the 2013 Balochistan earth-

quake

We estimated unilateral rupture propagation towards the south-west from the epicenter

(Fig. 2.11), which is consistent with the spatiotemporal distribution of high-frequency radi-

ation sources tracked by the back-projection analyses (Avouac et al., 2014; Wang et al., 2016).

During 20 to 50 s, the estimated migration velocity of average centroid location was 3.8 km/s

(Fig. 2.11) which exceeds the near source shear-wave velocity at the hypocentral depth of the

model fault plane we set (Table. 2.1). Regarding the centroid location migration velocity as

a rupture velocity and comparing it directly with rupture front velocity inferred by the back-

projection analyses (Avouac et al., 2014; Wang et al., 2016) are principally impossible, but the

period from 20 to 50 s when the centroid migration speed exceeds the shear-wave velocity well

matches the period when a rupture velocity exceeded the local shear-wave velocity reported by

Avouac et al. (2014).

The trace of surface rupture measured by Zinke et al. (2014) has a strike orientation of 200◦

around the epicenter, 230◦ around 80 km south-west of the epicenter, and 240◦ around 140 km

south-west of the epicenter. These strike orientations of surface rupture trace are consistent with

the strike angles of the static potency density tensor distribution (Fig. 2.10) and spatiotemporal

transition pattern of strike angle of potency density tensor every 10 s during rupture evolution

(Fig. 2.11). As can be seen in Fig. 2.10, we estimated relatively shallow dipping fault rupture

in the south-western part of the source area, showing 45◦ dip angle around 80 km south-west

from the epicenter and 53◦ dip angle around 140 km south-west from the epicenter. We also

estimated the shallow dip angle in the temporal evolution (Figs 2.11 and 2.12), showing 39◦ dip

angle of centroid potency density tensor during 50–60 s in Fig. 2.11 and relatively high peak

of dip angle around 40◦ in Fig. 2.12. It has been shown that the Makran accretionary wedge

accommodates thrust fault (Haghipour et al., 2012), and it can be considered that the estiamted

shallow dipping fault represents the thrust fault the Balochistan earthquake ruptured.

We performed the synthetic test in which the source model of the 2013 Balochistan earth-

quake is adopted as an input model and then evaluated the robustness of the obtained results

(Figs 2.13a, b and 2.14). The results show that our new method can reproduce the variation of
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potency density tensors including the clockwise rotation of strike orientation of strike-slip fault-

ing during the rupture propagation toward the south-west from the epicenter (Figs 2.13c and d),

suggesting the rupture propagation along the curved fault. This result suggests that our estima-

tion of the focal mechanism change along with the rupture propagation in the real application

is robust.

These results prove that the new inversion method enables us to estimate the direction of

rupture propagation and the curved pattern of fault geometry which are consistent with the

back-projection analysis and optical satellite images, even by simply assuming model space as

the single horizontal plane. This would be attributable to the the relatively narrow depth range

of rupture extent of the Balochistan earthquake, shallower than 15 km shown by (e.g. Avouac

et al., 2014; Barnhart et al., 2014). Another factor of our estimated realistic results is that the

uncertainty of Green’s function is taken into account in our new method, and we verified it by

applying a method that is the same as our new method but neglecting uncertainty in Green’s

function (Fig. 2.15). The obtained source model shows that the estimated strike angles of

potency density tensors are inconsistent with the strike orientation around both the north-east

and the south-west ends of the surface rupture trace measured by Zinke et al. (2014) (Fig. 2.15).

Thus, introducing uncertainty of Green’s function is indispensable to the stable estimation of

potency density tensor distribution. However, for an earthquake with a wide rupture extent

in depth, such as a subduction zone earthquake, Green’s function should be more variable and

hence it is better to adopt a inclined model plane for calculating depth varying Green’s function.

2.4.2 Sensitivity to a model plane geometry

In Section 2.1, we assumed that Green’s function of teleseismic body wave is insensitive

to a slight change of source location (eq. 2.3), which neglects modeling errors originated from

uncertainty of the space configuration, and then represented the potency density tensor distri-

bution in a simple two-dimensional model space in Sections 2.2 and 2.3. Here, we applied the

new method with a use of a different geometry of model space and then evaluated the effects of

the assumption of Green’s function in eq. (2.3).

As a model space geometry different from the one used in Section 2.3, we adopted an

inclined plane with a length of 200 km, a width of 25 km, and a dip of 64◦ which is an

average dip angle of model planes of finite-fault source model constructed by USGS NEIC
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Figure 2.13: (a, b) Input and (c, d) output source model in the synthetic test for evaluation of
our result. (a, c) The small beach ball color shows the potency density. The star denotes the
epicenter. The large red beach ball represents the total moment tensor obtained by integrating
the potency density tensors in space. (b, d) Color shows the potency rate density. The gray line
outlines the model plane. The star denotes the epicenter. The large red beach ball represents the
centroid potency density tensor at each time window.
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Figure 2.14: Potency rate density functions of input (our result) and output (reproduced) source
models at all subfaults in the synthetic test for evaluation of our result. Gray and red traces
correspond to input (our result) and output (reproduced) models, respectively. The cell outlined
by yellow line represents the initially ruptured subfault.

Figure 2.15: Spatial distribution of the potency density tensors obtained by using the formula-
tion that neglects uncertainty of Green’s function. The small beach ball shows the focal mech-
anism at each source knot, plotted using a lower-hemisphere projection. The star denotes the
epicenter. The beach ball color shows the potency density.
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Figure 2.16: (a) Total moment tensor, (b) source-time function, and (c) the centroid potency
density tensors during rupture evolution obtained by using the inclined model plane. The star
denotes the epicenter. The gray line outlines the model fault plane, and the black line shows
the top of the model fault plane, respectively. The green squares and beach balls represent the
centroid location and the centroid potency density tensor at each time window, respectively.
Time windows and the distance between adjacent centroid locations for the centroid location
are shown.
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Figure 2.17: Waveform fitting between observed (top gray line) and synthetic waveforms for
the analyses using the horizontal model plane (middle blue line) and inclined model plane (bot-
tom green line). Station code, azimuth, and epicentral distance at each station are shown above
the traces.
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(https://earthquake.usgs.gov/earthquakes/eventpage/usb000jyiv) (Fig. 2.9b). The other model

parameters, such as a temporal interval and a duration of potency rate density function, are the

same as in Section 2.3.

The obtained total moment tensor indicates strike-slip faulting, and the more realistic fault

plane has a strike of 226◦ and a dip of 77◦ (Fig. 2.16a), which shows a steeper dip angle than

that of the total moment tensor obtained by using a horizontal model plane in Section 2.3 (Fig.

2.9c). The total released seismic moment was 7.00 × 1020 Nm (MW 7.8), which is close to the

one obtained in the analysis adopting a horizontal model plane in Section 2.3. In the source-time

function (Fig. 2.16b), we can recognize a large peak around 11 s and three smaller peaks around

28 s, 42 s, and 57 s. Comparison with the source-time function obtained by using the horizontal

model plane (Fig. 2.10) indicates that the timings of the peaks of the source-time function are

earlier in time in the range of 1–5 s. This is explainable by the travel time difference originated

from the model space difference, which means that the source model with deeper extent allows

earlier start of rupture and we reproduced it in the synthetic test case 3 (Fig. 2.8b). However,

the number and relative amplitudes of the peaks are similar with the one obtained by adopting

horizontal model plane (Fig. 2.10). Focusing on the centroid potency density tensors at every

10 s (Fig. 2.16) during 0 to 30 s, we can see the similar transition pattern of focal mechanism

to the one obtained by adopting the horizontal model plane (Fig. 2.11), showing the strike-

slip mechanism and the clockwise rotation of strike orientation during the rupture propagation

towards the south-west from the epicenter, and the rotation of the strike orientation continued

until 50 s. The average speed of centroid location migration during 20 to 50 s reaches to 4.3

km/s (Fig. 2.16) which is close to the one in the previous result (Fig. 2.11).

We can recognize a similar pattern of potency density tensor distributions between the in-

clined model plane and the horizontal model plane analyses, showing the clockwise rotation

of strike angle during the unilateral rupture propagation towards south-west from the epicenter.

However, the inclined plane model yielded the potency density tensors having steeper dip angle

during 30 to 60 s (Fig. 2.16c) and the discrepancy of dip angle becomes larger as the rupture

evolves. Here, we defined the variance to quantify the waveform fit:

Variance =

∑
j

∑
t

(
uobs

j (t) − usyn
j (t)
)2

∑
j

∑
t

uobs
j (t)

2 , (2.17)
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where uobs
j and usyn

j represent observed and synthetic waveforms obtained by the inversion anal-

ysis at the jth station at time t. The degree of fitting between the observed and synthetic wave-

forms is quite similar between the two analyses (Fig. 2.17), but the variance (eq. 2.17) is

0.04 larger, meaning worse fit, in the analysis using the inclined model plane. The dip angle

of the model plane prescribes the spatial source location, and the horizontal model plane more

broadly covers the possible rupture extent than the inclined model plane (Fig. 2.9b). The hor-

izontal model plane with the larger coverage may be less suffered from the possible error of

model space assumption in the analysis of the Balochistan earthquake.

2.4.3 Bias due to limited flexibility of slip direction

In this Subsection, we show that modeling errors of fault geometry can significantly distort

the solution of conventional inversion methods that limit the estimated slip direction (Fig. 2.1b)

and that our new method is robust to the modeling errors of fault geometry. We applied the

conventional method to the Balochistan earthquake and adopted a single model plane with a

length of 260 km, which is 60 km longer in the north-east direction than the model planes used

in Section 2.3 and Subsection 2.4.2, and a width of 25 km, a strike of 230◦, and a dip of 64◦

(Fig. 2.9b). As the conventional method, we employed the formulation of Yagi & Fukahata

(2011a) that introduces uncertainty of Green’s functions into the data covariance matrix, which

is the fundamental framework of our new method, but adopts only the two basis double-couple

components to represent fault slip (Fig. 2.1b).

The resultant seismic moment obtained by the conventional inversion scheme was 7.27 ×

1020 Nm (MW 7.8), which is comparable to that obtained by new our method (6.43 × 1020

Nm, MW 7.8). However, the conventional method estimated the opposite direction of rupture

propagation to that of the new inversion schemes (Fig. 2.18). The potency density distribution

estiamted by conventional method showed that the rupture unilaterally propagated toward north-

east from the epicenter (Fig. 2.18b) and accordingly the main ruptured area are distributed in the

area north-east of the epicenter (Fig. 2.18d), which is consistent with the source model with a

single flat fault constructed by Japan Meteorological Agency (https://www.data.jma.go.jp/svd/

eqev/data/world/20130924/sr201309242029.pdf) However, this north-eastward rupture propa-

gation seems unrealistic because the studies of back-projection analysis estimated the south-

westward rupture propagation from the epicenter (e.g. Avouac et al., 2014; Wang et al., 2016)
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Figure 2.18: Comparison of source models between the formulation developed in this study
and the one used by Yagi & Fukahata (2011a). (a, b) Time evolution of potency rate density
along the strike direction and (c, d) potency density distribution obtained with the new and
conventional method, respectively. The star denotes the epicenter. The gray line outlines the
model plane, and the black line shows the top of the model plane. Contour intervals in (a),
(b), (c) and (d) are 0.19 m/s, 0.23 m/s, 3.1 m and 4.0 m, respectively. (e) Waveform fitting
comparison at selected stations between the new (orange) and the conventional (blue) method.
The station code, azimuth, and epicentral distance are shown above the traces. Several phases
where the observed waveform was not well reproduced by the conventional method are pointed
out by arrows.
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and the surface rupture is distributed mainly in the area south-west from the epicenter (e.g.

Avouac et al., 2014; Zinke et al., 2014). While some phases of the observed waveforms were

not well reproduced by the conventional inversion scheme at some stations (Fig. 2.18e), the

variance of the waveform fittings obtained with the conventional method was only 0.04 larger

than that obtained with our new method. Even though the difference of the variance between

the two methods seems small, the conventional method limiting estimated slip direction could

not reproduce the realistic rupture propagation direction independently inferred from observa-

tional data and other previous analyses. It can be said that even if we introduce the uncertainty

in Green’s functions into the covariance matrix, a simplified assumption of the fault geometry

within a conventional inversion framework limiting slip direction may distort the solution (Fig.

2.18) and biase interpretations of the source process. In an actual case, when we have little

information on fault geometry in an analysis immediately after an earthquake occurrence, we

usually adopts a single and wide plane as a model space. However, this inappropriate assump-

tion of fault geometry possibly yeilds an unrealistic source model distorted by modeling errors

of fault geometry. Our new method makes it possible to mitigate such a problem, and to con-

struct a realistic source model relatively quickly without detailed information about the fault

geometry.
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3. Development of an approach to construct

fault geometry

The seismic waveform contains information on both rupture propagation and fault geometry

underground. Finite-fault inversion of seismic waveforms has been widely used for resolving

rupture propagation in detail along a model fault plane, but it had been generally difficult to

constrain the fault geometry of an earthquake solely by using it because the inverse problem

that should be solved becomes strongly nonlinear (Fukahata & Wright, 2008; Asano & Iwata,

2009). The finite-fault modeling developed in Chapter 2, named potency density tensor in-

version, which introduces uncertainty of Green’s functions into seismic source inversion Yagi

& Fukahata (2011a) and adopts five basis double-couple components (Kikuchi & Kanamori,

1991) to represent fault slip, has made it possible to extract information on fault geometry as

well as rupture propagation from teleseismic P waveforms. Taking into account the insensitivity

of teleseismic P-wave Green’s function to slight changes of absolute source location, the new

inversion method enables us to infer the spatiotemporal distribution of potency density tensors,

which are moment density tensors by divided by rigidity. Because spatiotemporal distribution

of potency density tensor contain information on the direction of fault displacement, we can

extract information on fault geometry (i.e. strike and dip angles) from seismic waveforms,

which was proven by numerical simulations and an application to real teleseismic waveforms

in Chapter 2.

While the the flexibility of the model space assumption in potency density tensor inversion,

the locations of potency density tensors estimated on an assumed model fault surface can deviate

from their true location, which means that the spatial distribution of the strike and dip angles

of potency density tensors cannot directly be interpreted as the fault geometry. Moreover, as

we described in Section 2.1, the estimated potency density cannot be directly interpreted as slip

because the assumed model fault surface is not always identical to the real fault surface. It is
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Figure 3.1: Schematic illustration of fault geometry constructed by our new method: (a) vertical
fault with variable strike and uniform dip direction, and (b) nonvertical fault with variable dip
and uniform strike. Colored non-planar surface outlined by gray line represents the fault. The
top of fault plane is shown by a black line.

sometimes difficult to properly understand rupture propagation velocity and its relation to fault

geometry without explicit representation of fault geometry. Thus, source models obtained by

the potency density tensor inversion may not be interpreted in the same way as those obtained by

conventional inversion methods, in which a shear slip direction is fixed on the assumed model

fault surface.

Here, we propose a nonlinear inversion method to construct fault geometry from teleseismic

P waveforms that uses the potency density tensor inversion to solve the spatial distribution of

strike and dip angles on the assumed fault. By iteratively solving spatial distribution of po-

tency density tensor and updating fault geometry step by step, it is possible to constrain a fault

geometry that is consistent with the spatial distribution of strike and dip angles. An obtained

source model, whose model fault geometry is constrained by inversion of seismic waveforms,

provides us to better estimation of the relationship between rupture propagation and fault ge-

ometry without suffering from possible bias due to inappropriate assumption of fault geometry,

which implies that the new method shows the way for flexible finite-fault modeling that extracts

more information from data with fewer assumptions. This chapter presents the methodology

of the new approach and our evaluation of the proposed method through the synthetic tests and

real application of it to waveforms of the MW 7.7 2013 Balochistan, Pakistan and the MW 7.9

2015 Gorkha, Nepal, earthquakes involving geometrically complex fault systems.
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3.1 Workflow

We used the potency density tensor inversion developed in Chapter 2 to construct fault ge-

ometry that is consistent with the spatial distribution of the strike or dip of the obtained potency

density tensors. Since the obtained potency density tensors is robust to the assumed model fault

geometry but is affected to some degree (Figs 2.11 and 2.16), the inversion analysis needs to be

performed iteratively to construct the fault geometry, at each step solving the spatial distribution

of potency density tensors on the assumed fault surface. In this study, we assumed that the fault

geometry changes only either along strike or along dip and also neglected discontinuity of fault

and multiplane fault system for simplicity. This assumption results in two types of fault model:

a vertical fault with variable strike and uniform dip direction (Fig. 3.1a), and a nonvertical fault

with variable dip and uniform strike (Fig. 3.1b). The proposed method consists of four steps.

Step 1: Set an initial model fault plane

The initial model fault is a single rectangle plane, which is placed to roughly cover the

possible rupture extent of an earthquake (Step 1 in Fig. 3.2). The model fault is discretized

into a finite number of flat subfaults evenly spaced along the strike and dip directions,

and each subfault has the same strike and dip as those of the model fault plane. The

initial rupture point corresponds to the earthquake hypocenter, which was independently

estimated by other studies.

Step 2: Perform a potency density tensor inversion

The potency density tensor inversion is performed to get the spatial distribution of potency

density tensors on the initial model fault plane or the non-planar fault surface obtained

after the previous iteration. Following the formulation described in Chapter 2, the po-

tency density tensor inversion introducing the modeling error of the Green’s function into

the data covariance matrix (Yagi & Fukahata, 2011a) stably estimates potency rate den-

sity function from observed waveforms (eq. 2.6). Integrating the potency rate density

functions in time, we obtain the spatial distribution of the potency density tensors.

Step 3: Estimate strike/dip along the model fault

In this study, we considered that a fault surface curves only along the strike, in which case

the fault is flat in the dip direction, or curves only along the dip direction, in which case the

fault is flat in the strike direction. We calculate the average potency density tensors along
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the direction in which the fault is flat. Thus, for example, we obtain focal mechanisms

averaged in the dip direction along the strike direction of the model fault surface (Step 2

in Fig. 3.2). In order to construct a model fault surface, it is required to select one of the

two nodal planes of the averaged focal mechanism for each subfault. In this study, we

select one of the two nodal planes by calculating the inner product between the normal

vectors of the two nodal planes and the normal vector of a reference surface defined by

the analyst, and the nodal plane with the larger inner product (in the absolute) value is

selected as the realistic fault plane (Step 3 in Fig. 3.2). For simplicity, the reference

surface is not updated after the first iteration in this study.

Step 4: Update the model fault geometry or finish the iteration

Taking the nodal plane selected in step 3 as the direction of the fault surface, we update the

fault geometry by locating the direction of that nodal plane at the center of each subfault.

We smoothly connect the central points of the subfaults by adopting a spline interpolation

with a quadratic function fi:

y = fi(x),

fi(x) = ai(x − xi)2 + bi(x − xi) + ci (xi ≤ x ≤ xi+1),

i = 1, 2, ...,N − 1, (3.1)

where x is the distance from the hypocenter along the strike/dip direction of the initial flat

model fault surface, y is the displacement of the model fault surface perpendicular to the

initial flat model fault surface, and N denotes the number of subfaults along the strike/dip.

The xi term, which corresponds to a knot of the quadratic function fi, is the x coordinate

of the central point of the ith subfault along the strike/dip.

Here, the unknown parameters are ai, bi, and ci and the total number of them is 3(N − 1).

The displacement y and its derivative are continuous at the knots from i = 2 to N − 1:

fi−1(xi) = fi(xi),

f ′i−1(xi) = f ′i (xi),

i = 2, 3,...,N − 1. (3.2)

43



The number of these conditions is 2(N − 2). In addition, the gradient of the fault surface

at each knot is given by the direction of the nodal plane selected in step 3:

y′(xi) = di,

i = 1, 2, ...,N, (3.3)

where di represents the gradient of the fault surface at the ith subfault along the strike/dip.

The number of this condition is N. Therefore, by determining the location of the hypocen-

ter (i.e. fi(x) = 0), it is possible to uniquely determine the values of ai, bi, and ci and to

obtain the updated geometry of the model fault surface (Step 4 in Fig. 3.2).

After the update of fault geometry, the model fault surface is discretized into rectangular

subfaults again. Here, the interval between central points of adjacent subfaults is taken to

be the same as the original one and the distance of the strike/dip direction, to which the

fault is bending, is measured not along the original fault strike/dip (the x axis) but along

the fault surface. In this study, each subfault is not assigned the same area, which yields

slight biases in the estimated density of potency. The model fault surface obtained in step

4 is adopted to update the fault geometry, and the process goes back to step 2 (Fig. 3.2).

The iterations end when the strike/dip direction obtained by step 3 is acceptably similar

to that of the model fault surface used in the inversion analysis. The similarity of the two

strikes/dips is evaluated by the inner product between the unit vectors representing the

two strikes/dips. When the inner product averaged over the subfaults along the strike/dip

is sufficiently close to 1 (more than 0.99 in this study), the model fault surface is regarded

as the fault geometry.

To sum up, the nonlinear inversion method starts from step 1 and then proceeds from step 2

to 4 iteratively. We assign (step 1) or update (step 4) the fault geometry, with which we obtain

the potency density tensor distribution (step 2), and then extract the strike/dip from that solution

(step 3) to update the fault geometry (step 4).

3.2 Numerical simulation

In order to validate the performance of our proposed method, we performed numerical sim-

ulations composed of a strike-slip fault (case 1) and a dip-slip fault (case 2). For both cases,
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Figure 3.3: Input source model for case 1. (a) Fault geometry in a 3-D view. The input fault
plane consists of two vertical planes with different strikes that reach the surface along the black
lines and intersect on the blue line. The star denotes the hypocenter. (b) Slip distribution on
the input fault plane. The arrows are slip vectors and their lengths are proportional to slip
amounts. The star denotes the hypocenter. (c) Station distribution (red triangles) around the
epicenter (star) in an azimuthal equidistant projection. The gray circles indicate the 30◦ and 90◦

epicentral distances.

we prepared input source models described below, and calculated synthetic velocity waveforms

using theoretical Green’s functions. In both cases, the slip-rate function at each subfault was

represented as a combination of linear B-spline functions with a 0.8 s interval. Theoretical

Green’s functions were calculated following the method of Kikuchi & Kanamori (1991) at 0.1

s intervals, and the attenuation time constant t∗ for the P wave was taken to be 1.0 s. The one-

dimensional near source velocity structures for the cases 1 and 2 are listed in Tables 2.1 and

3.1, respectively. In the calculation of the synthetic waveforms, errors in the Green’s function

and background noise were added to the synthetic waveform. We added random Gaussian noise

with zero mean and a standard deviation of 5% of the maximum amplitude of each calculated

Green’s function to each calculated Green’s function as an error of Green’s function. We then

added random Gaussian noise with zero mean and a standard deviation of 1 µm as the back-

ground noise. In the inversion process, the calculated synthetic waveform data was resampled

at a 0.8 s interval, and the calculated waveforms or the theoretical Green’s functions were not

low-pass filtered.

3.2.1 Case 1: Strike-slip fault with variable strike

We applied the proposed method for a vertical fault variating strike angle with uniform dip

angle. The input fault is composed of two vertical fault planes, each one 75 km long and 20 km

45
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Figure 3.4: Results of case 1 in synthetic tests. (a) True, initial, and estimated fault traces. Trace
of the true fault surface is drawn by the gray line. The central points of subfaults of the initial
and estimated model fault surfaces are represented by gray and red circles, respectively. The
star denotes the epicenter. (b) Results of sensitivity test to the strike of the initial model fault
plane. All three initial fault planes (open circles) result in estimated fault traces (filled circles)
that are almost indistinguishable at the scale of this plot. (c) Slip distribution estimated on the
model fault surface. The arrows represent slip vectors and their lengths are proportional to slip
amounts. (d) Potency density tensor distribution obtained after the first (flat model surface)
and the last iterations (curved model surface) in the case 1 in synthetic tests. The beach ball
represents the focal mechanism at each subfault and their color shows the amount of slip. The
star denotes the hypocenter.

wide, with strikes of 160◦ and 200◦, respectively (Fig. 3.3a). Two slip patches are distributed on

the fault, and the slip direction is pure right lateral (Fig. 3.3b). The total duration of input slip-

rate function at each subfault was assumed to be 6 s, and the hypocenter location was 26.900◦N,

65.400◦E at a depth of 7.5 km. Rupture of each subfault was triggered by the expanding circular

rupture front propagating from the hypocenter at 3 km/s. Synthetic waveforms were calculated

for the selected stations shown in Fig. 3.3c.

In the inversion analysis, we adopted the initial model fault as a vertical plane with a length

of 150 km, a width of 20 km, and a strike of 180◦ (Fig. 3.4a). The potency rate density functions

on this plane were expanded by bilinear B-spline functions with a spatial interval of 5 km and

by linear B-spline functions with a temporal interval of 0.8 s and a total duration of 6 s. The

hypocenter was the same one used as the input, and the maximum rupture front velocity was

assumed to be 3 km/s. As a reference plane for selecting a realistic nodal plane in Step 3 of the

nonlinear inversion method, we adopted the plane with 354◦ strike and 89◦ dip obtained from

the total potency tensor in the preliminary analysis.

The fault model, constrained by two iterations, showed straight parts and a bend of fault and

well reproduced the geometric features of input fault (Fig. 3.4a). The estimated slip distribution

showed two slip patches and overall pure right lateral slip direction (Fig. 3.4c), which is consis-

tent with the slip distribution of input source model (Fig. 3.3b). Although the potency density

tensor distributions obtained after the first and the last iterations are quite similar to each other

(Fig. 3.4d), the source model obtained after the last iteration also reproduced fault geometry

of the input source model (Fig. 3.4a). This can be said as the advancement made in this study

because our proposed method helps us interplate a source model and its fault geometry better.

We tested sensitivity of a constructed fault geometry to the strike of the initial model plane by
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Table 3.1: Near-source velocity model from CRUST1.0 (Laske et al., 2013) used for calculating
Green’s functions.

VP VS Density Thickness
(km/s) (km/s) (103kg/m3) (km)
6.00 3.52 2.72 27.25
6.30 3.68 2.79 13.08
6.60 3.82 2.85 14.17
8.44 4.68 3.45 0.00
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Figure 3.5: Input source model for case 2. (a) Fault geometry in a 3-D view. The input fault
plane consists of three planes with a ramp-flat-ramp structure. Black and blue lines are top of
model fault and intersections of sub-planes, respectively. The star denotes the hypocenter. (b)
Slip distribution on the input fault plane. The arrows represent slip vectors and its length is
proportional to slip amount. (c) Station distribution (red triangles) around the epicenter (star)
in an azimuthal equidistant projection. The gray circles indicate the 30◦ and 90◦ epicentral
distances.

changing it to 170◦ and 190◦, and obtained the similar results (Figs 3.4 b and c). However,

the fault model with a 170◦ initial strike slightly deviated from the true fault geometry at the

southern end of the model fault (Fig. 3.4b). It would be originated from a large deviations of the

initial fault plane from the true one and the modeling error of the Green’s function increasing

with distance from the hypocenter. These results prove that the proposed method can be used

for constructing faults with variable strike under the condition that the initial model fault plane

is reasonably accurate.

3.2.2 Case 2: Reverse fault with variable dip angle

We applied the proposed method for a nonvertical fault with variable dip and uniform strike.

The input fault is composed of three adjacent planes with different dips (Fig. 3.5a). The three
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Figure 3.6: Results of synthetic test case 2. (a) Cross sections of the true, initial, and estimated
fault surfaces. (b) Estimated fault geometry in a 3-D view. The star denotes the hypocenter. (c)
Results of sensitivity test to the dip of the initial fault plane. All three initial fault planes (open
circles) result in estimated fault traces (filled circles) that are indistinguishable at the scale of
this plot. (d) Estimated slip distribution on the model fault surface. The arrows represent slip
vectors and their lengths are proportional to slip amounts.
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planes had a 285◦ strike and together extended 65 km; from top to bottom their dips were 20◦, 0◦

and 20◦, and their widths were 20 km, 25 km, and 20 km, respectively. The input source model

has a large slip patch at around the center of the fault and pure dip slip (Fig. 3.5b). The total

duration of input slip-rate function at each subfault was assumed to be 10 s, and the hypocenter

location was 28.231◦N, 84.731◦E at a depth of 15 km. Rupture of each subfault was triggered

by the expanding circular rupture front propagating from the hypocenter at 3 km/s. Synthetic

waveforms were calculated for the selected stations shown in Fig. 3.3c.

In the inversion analysis, We adopted a horizontal plane with a length of 65 km, a width of

75 km, a depth of 15 km, and a strike of 285◦ as the initial model fault (Fig. 3.6b). The potency

rate density functions on this plane were expanded by bilinear B-spline functions with a spatial

interval of 5 km and by linear B-spline functions with a temporal interval of 0.8 s and a total

duration of 10 s. The hypocenter was the same one used as the input, and the maximum rupture

front velocity was assumed to be 3.0 km/s. As a reference plane for selecting a realistic nodal

plane, the plane with 273◦ strike and 11◦ dip derived from the total potency tensor obtained

from the preliminary analysis was adopted.

The obtained fault model after two iterations, shown in Fig. 3.6a a cross sectional view and

in Fig. 3.6b as as a 3-D view, is characterized by a dip ranging from 4◦ around the hypocenter to

18◦ and 19◦ near the up-dip and down-dip edges, respectively. The obtained fault geometry was

slightly smoother than the input but reproduced the geometric pattern of input fault geometry

and its slip distribution well (Fig. 3.6d). We tested the sensitivity of source model to the dip of

the initial model plane by changing it to 10◦ and 20◦, we obtained the similar results (Figs 3.6

c and d). These results prove that the proposed method can be used for constructing faults with

bending along dip.

3.3 Application to real waveforms

In order to further examine the validity of the proposed method, we applied it to teleseismic

waveforms of the MW 7.7 2013 Balochistan, Pakistan, and the MW 7.9 2015 Gorkha, Nepal,

earthquakes. Fault geometries of the both earthquakes have been probed by previous studies and

shown that they occurred on non-planar faults. Thus, these earthquakes provide us opportunities

to test whether the proposed method can reconstruct curved fault geometries.
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3.3.1 The 2013 Balochistan earthquake

Global Centroid Moment Tensor (GCMT; Dziewonski et al., 1981; Ekström et al., 2012,

https://www.globalcmt.org/CMTsearch.html) solution and the W-phase moment tensor solu-

tion determined by the U.S. Geological Survey, National Earthquake Information Center (USGS

NEIC; https://earthquake.usgs.gov/earthquakes/eventpage/usb000jyiv) indicated that the Balochis-

tan earthquake was a strike-slip event. Analyses of optical satellite images acquired after the

earthquake (Avouac et al., 2014; Jolivet et al., 2014; Zinke et al., 2014) showed surface dis-

placements describing a curve convex to the south-east. The teleseismic P-waveform inversion

analysis described in Chapter 2 provided a source model showing strike-slip faulting in which

the strike orientation clockwisely rotates from 205◦ at the north end to 240◦ at the south end

(Figs 2.10 and 2.11).

In this Chapter, our inversion analysis used the vertical components of teleseismic P wave-

forms observed at 36 stations shown in Fig. 3.3c and converted to velocity (Fig. 3.9), the same

data used in Chapter 2, and then resampled the waveform data at a 0.8 s interval without apply-

ing any filter. We adopted the epicenter of USGS finite-fault model and the hypocentral depth

of 7.5 km used in Chapter 2. Theoretical Green’s functions were computed the same way as the

synthetic tests in Section 3.2, using the one-dimensional near source velocity structure (Table.

2.1) used in Avouac et al. (2014). The initial fault plane had a length of 200 km and a width

of 20 km, with a strike of 230◦ and a dip of 90◦, that roughly followed the trace of the surface

rupture observed by Zinke et al. (2014) (Fig. 3.7a). The potency rate density functions on this

plane were expanded by bilinear B-spline functions with a spatial interval of 5 km and by lin-

ear B-spline functions with a temporal interval of 0.8 s and a total duration of 31 s. We also

assumed the maximum rupture-front velocity to be 4 km/s and the total source duration to be

60 s, following the finite-fault inversion analysis in Chapter 2. We adopted a plane with a strike

of 226◦ and a dip of 69◦, derived from the total potency tensor obtained by a preliminary anal-

ysis, as the reference surface used for selecting realistic nodal planes in step 3 of our nonlinear

inversion approach.

The nonlinear procedure finished after the third iteration, and the resultant source model is

shown in Fig. 3.7 and well reproduced observed waveforms at all stations (Fig. 3.9) with the

variance (eq. 2.17) of 0.307. The estimated fault trace is 205 km long and shows a curved

pattern whose strike angle smoothly changes from 218◦ at the northern edge around 50 km
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Figure 3.7: Caption next page.
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Figure 3.7: Fault geometry and slip distribution of the 2013 Balochistan earthquake estimated
in this study (a) Gray circles represent the center of subfaults of the initial fault plane. The small
beach ball symbols show the focal mechanisms of the subfaults on the estimated fault trace, ob-
tained by integrating the potency density tensors, shown in (b), with respect to the dip direction.
Blue bars and numbers indicate the strike orientations of the subfaults at the hypocenter and
both ends of the estimated fault. The large beach ball symbol shows the total potency tensor
of the earthquake, obtained by integrating the potency density tensors shown in (b), over the
fault surface. The gray line represents the surface rupture trace observed by Zinke et al. (2014).
The moment rate function of the earthquake estimated in this study is shown at the right of the
map. The star denotes the epicenter. Topography was drawn by using 2010 GMTED 7.5 arc-
second median elevations (https://topotools.cr.usgs.gov/gmted viewer/) (Danielson & Gesch,
2011). (b) Potency density tensor distribution on the estimated fault surface. beach ball sym-
bols indicate the focal mechanism at each subfault and their color indicates the slip amount.
(c) strike-slip and dip-slip profiles along the model fault trace, which was estimated from the
potency density tensors at the top of the fault surface. The strike-slip component is positive
for left-lateral faulting, and the dip-slip component is positive for reverse faulting. The gray
vertical bar represents the location of the epicenter. (d) Distribution of dip angle (color) on the
estimated fault surface.

north-east of the epicenter, to 213◦ around the epicenter, to 241◦ at the southern edge around

140 km south-west of the epicenter (Fig. 3.7a). The curved pattern of fault geometry is consis-

tent with the curved pattern of surface rupture trace observed after the earthquake (e.g. Zinke

et al., 2014), shown by the gray line in Fig. 3.7a, but the estimated fault geometry is slightly

smoother than the observed surface rupture trace, which may be originated from our methodol-

ogy uniformly assigning the vertical dip angle along the fault surface. Focal mechanisms along

the estimated fault trace (Fig. 3.7a), obtained by integrating the potency density tensors (Fig.

3.7b) along the dip direction, are predominated by strike-slip faulting. Integrating the potency

density tensors (Fig. 3.7b) over the model fault surface, we obtained the total potency tensor

of this earthquake (Fig. 3.7a), which shows strike-slip faulting with a strike of 226◦ and a dip

of 69◦. The total seismic moment release is 6.16 × 10 Nm (MW 7.8), which is comparable to

the estimate of 7.53 × 1020 Nm (MW 7.8) in Chapter 2 and the GCMT solution of 5.59 × 1020

Nm (MW 7.8). The estimated source-time function has a prominent peak at around 12 s and

three minor peaks at around 28, 43, and 58 s (Fig. 3.7a), which is comparable to the results in

Chapter 2 (Figs 2.10 and 2.16b).

Focal mechanisms are composed of two nodal planes, and we could select the realistic fault

plane from the focal mechanisms obtained in this inversion analysis by using the same criteria

as used in step 3 in our nonlinear inversion approach (Figs 3.7 a and b). Decomposing the
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Figure 3.8: Finite-fault source model of the Balochistan earthquake obtained this study com-
pared with that of Avouac et al. (2014) and the surface displacements obtained by the analysis
of optical image correlation by Zinke et al. (2014). (a) Slip distribution obtained in this study
and Avouac et al. (2014). Slip distribution of Avouac et al. (2014) is shown as the background
gray color and outlined by the black and gray lines. Slip distribution at the top layer (2.5 km
depth) of the fault plane estimated in this study is represented as the warm colored line, which
is drawn at the shifted location from the trace of the estimated fault (pink dashed line) for visi-
bility. The star denotes the epicenter. (b) Slip distribution obtained in this study and the surface
displacements estimated by Zinke et al. (2014). Surface displacements of Zinke et al. (2014)
are represented as the gray colored line. Slip distribution at the top layer (2.5 km depth) of the
fault plane estimated in this study is represented as the warm colored line, which is drawn at
the shifted location from the trace of the estimated fault (pink dashed line) for visibility. The
star denotes the epicenter. (c) Dip distribution at each depth of the fault estimated in this study
(drawn as a curved line) and that of the finite-fault source model of Avouac et al. (2014). The
star denotes the epicenter.
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Figure 3.9: Waveform fitting at all stations between observed (gray line) and synthetic wave-
forms (red line) in the analysis of the Balochistan earthquake by using the constrained fault
model. Station code, azimuth, and epicentral distance of each station are shown above the
traces. The variance (eq. 2.17) is 0.307.
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potency density tensors at the top of the fault into the strike-slip component (positive for left-

lateral and negative for right-lateral fault slip) and the dip-slip component (positive for reverse

and negative for normal fault slip), we recognized that left-lateral strike-slip is predominant,

reaching a maximum of 16.3 m near the epicenter and gradual decrease toward both ends of

the fault (Fig. 3.7c). The dip-slip component has a maximum value of 3.0 m at around 25 km

north-east of the epicenter and decreases to −1.3 m (1.3 m normal faulting) at around 100 km

south-west of the epicenter involving small fluctuation (Fig. 3.7c).

By selecting realistic fault planes from the estimated potency density tensors, we obtained

distribution of dip angles on the fault surface and recognized the variation of dip angles ranging

from 57◦ to 89◦ (Fig. 3.7d). The dip is clearly depth-dependent, being steeper in the shallower

part of the fault surface, especially around the epicenter and in the area 100 km south-west of the

epicenter (Fig. 3.7d), consistent with the idea of a listric fault. In the vicinity of the epicenter,

the dip increases gradually from 68◦ at 17.5 km depth to 72◦ at 2.5 km depth (Fig. 3.7d). In

the are around 100 km south-west of the epicenter, the dip angle increases from 60◦ at 17.5 km

depth to 71◦ at 2.5 km depth (Fig. 3.7d), indicating that the depth dependence of the dip angle

is clearer than that around the epicenter.

3.3.2 The 2015 Gorkha earthquake

According to the GCMT solution (Dziewonski et al., 1981; Ekström et al., 2012) and the

W-phase moment tensor solution determined by the USGS NEIC (https://earthquake.usgs.gov/

earthquakes/eventpage/us20002926) indicate that the Gorkha earthquake was a thrust event with

a fault plane dipping at 7◦. A teleseismic P-waveform inversion analysis (Yagi & Okuwaki,

2015) provided a finite-fault source model in which the main rupture area was distributed around

50 km east of the epicenter. The Gorkha earthquake has been reported to have occurred along

the Main Himalayan Thrust (e.g. Avouac et al., 2015; Elliott et al., 2016; Hubbard et al., 2016;

Duputel et al., 2016). An analysis of Interferometric Synthetic Aperture Radar (InSAR) and

Global Navigation Satellite System (GNSS) data (Elliott et al., 2016) showed that the earth-

quake occurred on a north-dipping fault with a ramp-flat-ramp structure, dipping at 30◦ from

the surface to 5 km depth, 7◦ in a relatively flat section 75 km wide, and 20◦ in the deepest

section 30 km wide. Hubbard et al. (2016) proposed a similar geometric model of the Main

Himalayan Thrust, covering the source area of the Gorkha earthquake, on the basis of geologi-
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Figure 3.10: Source model of the 2015 Gorkha earthquake estimated by the proposed method.
(a) Potency density tensor distribution on the estimated fault surface. The light gray line outlines
the initial fault plane. Small beach ball symbols indicate the focal mechanism for each subfault
and their color indicates the slip amount according to the color scale in (b). The beach balls more
than 50% of the maximum slip amount are emphasized by black lines. The large beach ball
symbol shows the total potency tensor of the earthquake, obtained by integrating the potency
density tensors over the fault surface. Arrow indicates azimuth of 3-D view of (b). Topography
was drawn by using 2010 GMTED 7.5 arcsecond median elevations (https://topotools.cr.usgs.
gov/gmted viewer/) (Danielson & Gesch, 2011). (b) 3-D view of the estimated fault geometry
and slip distribution viewed from the north-east indicated by the arrow in (a). (c) Cross section
of the model-fault surface along line A–B in (a). Central points of subfaults of the initial and
estimated model fault surfaces are represented by gray and red circles, respectively. Denoted
numbers are dip angles at the hypocenter and both ends of the estimated fault. (d) Moment rate
function of the earthquake estimated in this study.
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Figure 3.11: Fault geometry and slip distribution of the Gorkha earthquake estimated in this
study and Elliott et al. (2016). (a) Slip distribution estimated in this study (red line) and Elliott
et al. (2016) (gray line). The top of fault surface estimated by Elliott et al. (2016) is shown
by the black dashed line, and the gray dashed lines outline the dipping fault surface. Contour
intervals of this study and Elliott et al. (2016) are 1.0 m and 1.6 m, respectively. The star denotes
the epicenter. (b) Cross section of the model fault estimated by Elliott et al. (2016) along line
A–A’ in (a). (c) Cross section of the model fault estimated in this study along line A–A’ in (a).
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Figure 3.12: Waveform fitting at all stations between observed (gray line) and synthetic wave-
forms (red line) in the analysis of the Gorkha earthquake. Station code, azimuth, and epicentral
distance at each station are shown above the traces. The variance (eq. 2.17) is 0.179.
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cal data in which the central portion had a 7◦ dip and the adjoining portions on the up-dip and

down-dip sides had a 26◦ dip. Duputel et al. (2016) conducted a receiver function analysis and

proposed a ramp-flat-ramp fault geometry for the Gorkha earthquake.

In the inversion analysis, we used vertical components of teleseismic P waveforms observed

at the 54 stations shown in Fig. 3.5c and converted to velocity waveforms (Fig. 3.12), which

are the same teleseismic waveforms used by Yagi & Okuwaki (2015), and then resampled the

waveform data at a 1.0 s interval without applying any filter. We adopted the USGS epicenter

(28.231◦N, 84.731◦E) and the hypocentral depth of 15 km used by Yagi & Okuwaki (2015).

Theoretical Green’s functions were computed using the one-dimensional near-source velocity

structure (Table 3.1) of the CRUST 1.0 model (Laske et al., 2013) in the same way as the

synthetic tests in Section 3.2. The initial fault plane has a length of 160 km and a width of

110 km with a strike of 285◦ and a dip of 0◦, that entirely covered the possible source region

estimated by Yagi & Okuwaki (2015) (Fig. 3.10a). The potency rate density functions on the

model fault plane were expanded by bilinear B-spline functions with a spatial interval of 10 km

and 5 km along the strike and dip directions, respectively, and by linear B-spline functions with

a temporal interval of 1.0 s and a total duration of 28 s. Following Yagi & Okuwaki (2015), we

assumed the maximum rupture-front velocity to be 3 km/s and the total source duration to be

60 s. We adopted a plane striking 326◦ and dipping 8◦, derived from the total potency tensor

obtained by a preliminary analysis, as the reference surface used for selecting realistic nodal

planes.

The nonlinear inversion procedure finished after the third iteration, and the resultant source

model is shown in Fig. 3.10 and well reproduced observed waveforms (Fig. 3.12) with a

variance (eq. 2.17) of 0.179. The fault plane dips towards the north-east and is 105 km wide

(Figs 3.10 b and c). The potency density tensor distribution (Fig. 3.10a) shows that the main

rupture area, more than 50% of the maximum slip, is distributed around 50 km east of the

epicenter with the maximum slip of 5.0 m and is dominated by thrust faulting with dip angles

ranging from 2◦ to 22◦. The total potency tensor shows thrust faulting with a strike of 332◦ and

a dip of 9◦ (Fig. 3.10a). The total seismic moment release is 9.1 × 1020 Nm (MW 7.9), which is

consistent with the 9.1 × 1020 Nm (MW 7.9) estimated by Yagi & Okuwaki (2015). The cross

sectional view of the estimated fault surface (Fig. 3.10c) perpendicular to the fault strike (the

A–B line shown in Fig. 3.10a), indicates a variation of dip angle, showing 42◦ at the up-dip

edge around 45 km south-west of the hypocenter, 6◦ at the hypocenter and 15◦ at the down-dip
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edge around 55 km north-east of the hypocenter. The three-dimensional view of the fault model

(Fig. 3.10b) showed that the main rupture area was distributed in the low-dipping (<10◦) flat

part of the model fault plane, and the main rupture area was surrounded by a high-dipping ramp

structure.

3.4 Discussion

In this Chapter, we proposed a nonlinear inversion approach to construct the fault geometry

of an earthquake by adopting the finite-fault potency density tensor inversion estimating spatial

distribution of potency density tensors on an assumed fault plane and providing us information

on slip direction on the fault plane. Through synthetic tests and applications to real waveform

data, we showed that our proposed method successfully construct the fault geometry, even if the

strike or dip along the fault surface changes. Thus, it is possible to more directly compare the

obtained source model with other observational data, as can be done for source models provided

by conventional finite-fault inversion methods.

The surface ruptures after the Balochistan earthquake recorded by Zinke et al. (2014) can

be easily compared with our source model (Fig. 3.7a) and found to be in good agreement. The

prominent surface displacement around the hypocenter in our model (Figs 3.7 b and c) is also

consistent with the distribution of surface displacement across the fault trace estimated by the

analyses of optical satellite images (e.g. Avouac et al., 2014; Zinke et al., 2014) and the slip

distribution of finite-fault model of Avouac et al. (2014) (Figs 3.8 a and b). The Arabia plate

subducts under the Eurasia plate in the southern part of the Makran accretionary wedge, and

it has been shown that active thrust faults exist in the Makran accretionary wedge (Haghipour

et al., 2012), the site of the Balochistan earthquake source area. The estimated depth dependent

dip angle on the constructed fault surface, showing shallowing dip with increasing depth (Fig.

3.7d), may suggest that the earthquake ruptured such the thrust fault having listric geometry.

Our source model shows a distribution of dip angles that is steep near the epicenter and shallow

in the area about 100 km south of the epicenter (Fig. 3.7d), and its dip angle variation along

strike seems discontinuous and basically steeper than those in the models of Avouac et al.

(2014) (Fig. 3.8c) and Jolivet et al. (2014). Although our model supports the idea of a listric

fault geometry ruptured by the Balochistan earthquake as discussed in Avouac et al. (2014) and

Jolivet et al. (2014), it should be difficult to judge whether model of Avouac et al. (2014) or
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Jolivet et al. (2014) would be more comparable with our model.

Since rupture of the Gorkha earthquake did not reach the surface of the Earth (e.g. Avouac

et al., 2015), there are no observational data that can be compared directly with our estimated

fault geometry. Our source model of the Gorkha earthquake represents a ramp-flat-ramp fault

structure (Figs 3.10 b, c and 3.11), which is consistent with the fault geometry modelled by

using geophysical and geological data (e.g. Elliott et al., 2016; Hubbard et al., 2016; Duputel

et al., 2016), although the flat section in our model is narrower than those studies. In particular,

the upper and lower ramp structures of our fault model seems to represent the middle and deep

ramps of the Main Himalayan Thrust model proposed by Hubbard et al. (2016). The estimated

slip distribution, in which larger slip is concentrated in the flat part of fault (Figs 3.10 a, b

and 3.11), is also consistent with the analysis result of InSAR and GNSS data by Elliott et al.

(2016). The fault model proposed by Hubbard et al. (2016), using geological knowledge and

the slip distribution estimated by Avouac et al. (2015), also places the main rupture area in

the flat part of the fault. Although the dip angles of the ramp structures in the up- and down-

dip parts of our fault model are not exactly equal to those of the fault geometry modelled by

Hubbard et al. (2016), our source model seems to resolve the main rupture area surrounded by

the ramp structures, which is consistent with the model of Hubbard et al. (2016). Therefore,

our proposed method, based solely on teleseismic data, provides a source model of the Gorkha

earthquake that is comparable to fault geometry and slip distributions independently estimated

from geophysical and structural geology.

Since our proposed method employs spline interpolation to construct the fault geometry,

continuous and geometrically smooth faults are suitable for this method. Furthermore, a realistic

strike or dip is selected at each subfault on the basis of the similarity of the resolved nodal plane

to the single reference surface for simplicity. This procedure implicitly limits the variation

of strike or dip to 45◦ or less because a rotation of a focal mechanism around its own B axis

greater than 45◦ reverses the similarity of the conjugate nodal plane to the reference surface.

This assumption was sound in the cases the Balochistan and Gorkha earthquakes because the

variations of strike and dip of their faults were within 45◦. Our proposed method may be

extended to construct a fault geometry with a greater variation of strike or dip than 45◦ by

determining a realistic nodal plane on the basis of the nodal plane of the adjacent subfault

and sequentially extending this procedure in the direction away from the epicenter. Unlike the

geodetic data inversion method, the method proposed in this study can estimate not only the
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fault geometry but also the rupture process, and can be applied to earthquakes that occurred

on the seafloor where geodetic observations are insufficient. On the other hand, it would be

difficult to use our proposed method to construct a conjugated fault system or a multiple plane

fault, such as the faults of the MW 7.8 2016 Kaikoura, New Zealand, and the MW 7.9 2018

Alaska earthquakes.

In each application of our method to both synthetic and real waveforms, it took only a few

iterations of the finite-fault inversion to construct fault geometry, which was expected from the

assumption that the fault geometry can be constructed from strike or dip data alone. Although

this assumption results in a weak nonlinearity in our method, nonlinearities may also originated

from the low spatial resolution of teleseismic data and the fact that the uncertainty of Green’s

function is well defined in the potency density tensor inversion and its framework (Yagi &

Fukahata, 2011a).

Our proposed method is optimized for application to teleseismic P waveform data because

modeling error of teleseismic P-wave Green’s function is explicitly taken into account in the

inversion formulation used in this study. It would be possible to use teleseismic S waveforms

jointly and geodetic data by defining possible errors of picking first motion of S -phase and

modeling error of geodetic Green’s function. Although the spatial resolution of the fault geom-

etry constructed by our proposed method is limited by the product of the sampling interval of

waveform data and the assumed maximum rupture front velocity, the joint use of geodetic data

would increase the spatial resolution and constrain the absolute location of the constructed fault

geometry.
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4. General discussion

This dissertation proposes two methods to probe fault geometry ruptured during earthquake.

One method is the potency density tensor inversion, which enables us to estimate spatiotempo-

ral potency density tensor distribution within a framework of finite-fault inversion of teleseis-

mic waveforms. By taking into account the relative sensitivity of teleseismic P-wave Green’s

function to slip direction, that method no longer requires detailed assumption of fault geometry

which has been an inevitable constraint in finite-fault source modeling, making it possible to ob-

tain less biased source model and opening window to flexible seismic source inversion. Because

the obtained potency density tensor distribution represents fault geometry during rupture propa-

gation, the potency density tensor inversion unwraps relationships between rupture propagation

and fault geometry by using only teleseismic P waveforms. The multiple point source inver-

sions (e.g. Kikuchi & Kanamori, 1991; Duputel et al., 2012b) resolve a focal mechanism for

each subevent under an assumption of a simplified source-time function but miss rupture propa-

gation between subevents as well as a change of focal mechanism during a subevent. It is natural

for a focal mechanism to vary in space and time during a subevent, and the source-time function

generally reflects the directivity effect and hence should be able to express azimuth-dependent

shapes and durations. Therefore, it is difficult for multiple point source inversion approach to

estimate detailed rupture propagation between subevents and smoothly curved fault geometry,

such as those of the 2013 Balochistan earthquake. On the other hand, the potency density ten-

sor inversion flexibly estimates spatiotemporal potency density tensor distribution representing

rupture propagation and variation of the focal mechanism without non-negative slip constraint,

which is a clear advantage over the multiple point source inversions. So far, the potency density

tensor inversion has been applied to analyses for earthquakes other than the 2013 Balochistan

and the 2015 Gorkha earthquakes, such as the 2016 MW 7.1 Romanche (Hicks et al., 2020), the

MW 7.6 2018 Palu Indonesia (Okuwaki et al., 2020; Aránguiz et al., 2020), the MW 7.9 2018

Gulf of Alaska (Yamashita et al., 2021), the MW 8.0 2019 Peru (Hu et al., 2021), and the MW
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7.7 2020 Caribbean (Tadapansawut et al., 2021) earthquakes, and is expected to continue to

contribute to detailed understanding of seismic source process and regional tectonics.

Another one is an approach to construct fault geometry, which is a nonlinear inversion

method and updates model fault geometry by performing the potency density tensor inversion

iteratively. As mentioned in Section 3.4, for earthquakes that ruptured geometrically continu-

ous and smooth fault, this method works well for constructing its fault geometry and reveals

a more direct relationship between rupture propagation and fault geometry than running the

potency density tensor inversion analysis once. Therefore, it is desirable to use the potency

density tensor inversion for earthquakes with drastic change in fault geometry, and to construct

the geometry for earthquakes with geometrically continuous and smooth changes in fault ge-

ometry. The two methods using teleseismic waveforms can be applied to analyze a variety of

earthquakes regardless of the source region, such as under seafloors where geodetic observation

is difficult to obtain, and would be used to reveal geometry of faults existing inland but also

geometry of subducting slab through an application to analysis of interplate earthquake, such as

the MW 9.1 2011 Tohoku-oki and the MW 7.6 2012 Nicoya, Costa Rica earthquakes.

4.1 Effects of smoothing constraints

The potency density tensor inversion solves 2.5 times larger number of model parameters

than the conventional methods (Fig. 2.1), which is equivalent to a freedom from the constraint

on shear-slip direction that is one of prior constraints imposed implicitly in conventional meth-

ods. A noteworthy prior probability density function adopted by the potency density tensor

inversion method is the smoothing constraint. As discussed in Section 2.1, the potency density

tensor inversion adopts the ABIC without the non-negative constraint, and over- and under-

smoothing problem can be avoided. However, this method tends to solve smooth potency

density tensor distribution in space and time, and inferred focal mechanisms contain CLVD

components even when a true source mechanism is a pure double couple, which can be found

in the synthetic tests (Figs 2.2–2.5).

The spatial resolution of the fault geometry constructed by the iterative inversion approach

developed in Chapter 3 is limited by the product of the sampling interval of waveform data

and the assumed maximum rupture front velocity, but may be lower due to the smoothing con-

straints adopted by the potency density tensor inversion, making the constructed fault model

65



geometrically smooth. Furthermore, it is difficult for the potency density tensor inversion to

constrain the strike of low angle thrust fault due to the contamination of CLVD components,

such as that of the Gorkha earthquake (Fig. 3.10). This makes it difficult to use strike angles

to construct fault geometry of such low angle thrust by using our proposed method and was the

reason why we used only dip angles to construct the fault geometry of the Gorkha earthquake

in Chapter 3. It would be necessary to adopt a smoothing constraint providing a sharper source

image for constructing finer geometric structures of fault.

Recently, Yamashita et al. (2021) tackled this problem and succeeded in resolving finer

source image with an approach that makes the strength of the smoothing constraint even among

basis double-couple components. They are also working on developing a new smoothing con-

straint that makes the strength of the smoothness spatiotemporally even among basis double-

couple components (Yamashita et al., 2021b), and the combination of the new smoothing con-

straint and our method would enable us to construct more detailed fault geometries.

4.2 Future prospects for seismic source process analysis

In Chapter 3, we assumed for simplicity that the fault geometry to be constructed changes

only either along strike or along dip (Fig. 3.1), but in general, earthquake faults have three

dimensional variation of geometry. It is possible to use both strike and dip to construct highly

non-planar fault geometry in principle but should be considered that a finite-fault inversion

scheme needs to allow subfaults that differ greatly in their respective areas or to adopt triangu-

lar subfaults instead of rectangular ones. In a study similar to ours, Dutta et al. (2021) proposed

a methodology that constructs three-dimensionally non-planar fault geometry and estimates

spatial distribution of slip from geodetic data within a framework of Bayesian inference. They

adopted triangular subfaults in their finite-fault inversion but only considered geometrically

continuous fault, neglecting discontinuity of fault. It would also be necessary for construct-

ing three-dimensionally non-planar fault to consider how to distinguish between discontinuous

areas and stretched areas in fault.

Finite-fault inversion of seismic waveforms generally requires data processing and param-

eter setting, such as fault geometry and area, rupture duration, and maximum rupture velocity,

which makes it difficult to automatically obtain a reliable source model immediately after an

earthquake. The potency density tensor inversion is free from detailed assumption of fault ge-
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ometry which has been one of the settings that greatly affect the results of inversion and is

a huge obstruction to automation inversion analysis. It can be said that the development of

potency density tensor inversion has taken a step forward in automating inversion analysis.
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5. Conclusion

In this dissertation, we developed new finite-fault inversion approaches to simultaneously

estimate fault geometry and rupture evolution during earthquake. In Chapter 2, we proposed a

new finite-fault inversion of teleseismic P waveforms, named potency density tensor inversion,

which represents shear slip along an assumed fault by a superposition of five basis double-

couple components. By adopting the formulation of Yagi & Fukahata (2011a) as the funda-

mental framework, the new method makes it possible not only to extract information on fault

geometry during rupture propagation but also to suppress effects originated from uncertain-

ties of Green’s function and fault geometry, which are two major sources of modeling errors.

Through numerical simulations and application to real waveforms, we evaluated effectiveness

and flexibility of the potency density tensor inversion method and conclude that the new method

is applicable to an earthquake that involves geometrically complex fault and makes it possible to

provide information of the fault geometry, contributing to more reliable and informative source

modeling. In Chapter 3, we proposed an approach of constructing fault geometry that uses only

teleseismic data and performs potency density tensor inversion iteratively. We assumed that an

estimated fault bends only along the strike or only in the dip direction, which contributes to

weaken a nonlinearity of the iterative approach. We tested the performance of the method by

conducting numerical simulations and then applied this method to teleseismic waveforms of the

2013 Balochistan and 2015 Gorkha earthquakes, which occurred along geometrically complex

fault systems. Results of applications for both events showed that the estiamted fault geom-

etry were consistent with geometric models proposed by previous studies based on different

observational data. This method is suitable for constructing fault geometries for earthquakes

that rupture geometrically smooth and continuous fault surfaces. These two developed meth-

ods are expected to reveal fault geometry and its relation to rupture propagation by using only

teleseismic data, and deepen our understanding of earthquake dynamics and regional tectonics.
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