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Chapter 1

Introduction

1.1 Background
The progress of industrial technology is making our daily life more and more con-
venient. Meanwhile, we are facing environmental disasters caused by it. One of the
most common environmental disasters is noise pollution. An innovation to solve
this issue is expected in the transportation industry, for example, to create a quiet
space inside and outside of aircraft, trains, and automobiles. There are primarily
two approaches to dealing with this issue. First is the passive noise control shown in
Figure 1.1a, which uses sound-absorbing materials to prevent unwanted noise from
propagating through the air [1, 2]. This method is effective for noise attenuation
at high frequencies. However, due to the long acoustic wavelength of low-frequency
noise, a massive sound absorber is required to attenuate the noise. Another ap-
proach is the active noise control (ANC) shown in Figure 1.1b, which uses actuators
or loudspeakers to cancel out the noise by producing an antinoise sound. When com-
pared to the passive approach, which is ineffective or expensive, the ANC approach
can efficiently attenuate noise at low frequencies. As noise-canceling earphones and
headphones become more popular in the consumer market, several products incor-
porating the ANC feature are becoming more common.

ANC is a technique by which a noise signal is attenuated by generating an anti-
noise signal from the actuators. The simplest single-channel ANC system is depicted
in Figure 1.2. The antinoise signal is produced by driving the actuator, whose sig-
nal is generated by applying the linear filter to the reference signal captured by the
reference sensor. The error sensor detects residual error signals, which can then be
fed back into an adaptive algorithm, such as the least mean squares (LMS) algo-
rithm, to adaptively update the filter. The filtered-X least mean squares (FXLMS)
algorithm and its variants [3–7] are well known examples of such an approach. Fur-
thermore, the system’s multiple-channel extension has been developed to control
multiple points with multiple sensors and actuators. There are some challenges in
the multiple-channel ANC, which will be mentioned in Section 1.5.

In the context of sound controlling in a large space, studies on the research field
called sound field representation are intimately involved. The sound field repre-
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Figure 1.1: ANC approaches: (a) Passive control. (b) Active control.
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sensor Actuator
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Figure 1.2: Single-input-single-output system.

sentation theory is based on the physical modeling of the sound field propagation
characteristics. The well known sound field synthesis approaches are the wave field
synthesis (WFS) [8] and higher order ambisonics (HOA) [9]. The theory itself has
been studied for a few decades using computer simulation; however, real-world im-
plementation has been hampered by hardware availability. The implementation
based on these methods assumes that many audio channels are independently and
concurrently driven. Figure 1.3 illustrates the sound field reproduction using mul-
tiple loudspeakers, whose amplitude and phase are individually tuned to reproduce
the desired sound field. In recent years, there has been progressing in audio hard-
ware, which has broken through this difficulty. Several audio interfaces with digital
I/O formats such as the multichannel audio digital interface (MADI) [10] and Dante
are commercially available. This situation changes accelerated the research and de-
velopment in the research field.

1.2 Objectives
As mentioned in Section 1.1, the ANC and sound field synthesis techniques have
a high affinity in the context of controlling a sound field in a large space. The
combination of these two research fields has the potential to achieve noise field
attenuation across a large area. Meanwhile, the addition of sound field synthesis
techniques increases the system’s complexity. This is because a sufficient number
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Figure 1.3: Illustration of sound field reproduction.

of sensors and actuators have to be introduced to accurately analyze and reproduce
the sound field based on the theory. The goal of this thesis is to develop spatial
ANC system leveraging the sound field synthesis techniques. The system feasibility
is focused on, and several approaches to addressing the difficulty are investigated.

1.3 Applications
Spatial ANC systems are expected to achieve noise attenuation without wearing any
earmuffs and headphones. The systems have the potential to be used in a wide range
of situations, including public spaces, private spaces for a small number of people,
and personal spaces. Listed below are some examples of applications:

Transportation. Including aircraft, trains, buses, and so on. Engine noise, road
noise, and traffic noise are the target noise to be attenuated. Passengers can
stay in a comfortable space and can hear announcements easily. Furthermore,
the passengers no need to amplify the volume of the listening entertainment
content while traveling.

Automotive. Including cars, vans, trucks, and so on. Engine noise, road noise,
traffic noise, and wind noise are the target noise to be attenuated. Passengers
can enjoy in-car entertainment such as listening to music and watching movies.
There is no need to shout to each other to have a conversation with other
passengers.

9



Room. Including a room at home, meeting room, telephone booth, and so on. The
target noises to be reduced are construction noise, traffic noise, and speaking
noise. One can be free of construction and traffic noise, allowing them to focus
on their work.

1.4 Contributions
In this thesis, it is aimed to achieve the improvement of the noise attenuation perfor-
mance as well as the improvement of the system feasibility in spatial ANC system.
The summary of the contributions is listed as follows:

1. Introduction of the compressive sensing (CS) approach to spatial ANC.
The CS approach is successfully adopted in spatial ANC system to improve the
noise attenuation performance. The spatial Nyquist theorem’s performance
limitation has been overcome. To improve the system’s noise attenuation, we
define several types of sensing matrices in the transformed domain.

2. Development of the feasible microphone-loudspeaker array structure.
Instead of using equally sampled spherical arrays, we propose a feasible array
structure such as the multiple circular arrays, which are easy to install in
practice. Furthermore, for spatial ANC, the concept of distributed sensor
arrays with sensor placement flexibility is proposed.

3. Investigation of the novel adaptive algorithm.
A novel weighted LMS algorithm for the feasible array structure is proposed.
The proposed method tries to prioritize the suppressible noise signal by defin-
ing weights based on direction of arrival. Based on the secondary source
geometry, the weights can be defined intuitively.

1.5 Related works
1.5.1 Multiple-channel ANC
Spatial ANC aims to attenuate the noise field over a sizable space using multiple
microphones and secondary sources. In practice, multiple-channel FXLMS-based
methods [11, 12] were proposed. The brief system structure is depicted in Fig-
ure 1.4. The adaptive filter’s slow convergence speed when the reference signals are
highly correlated is a significant disadvantage of this method. To address this issue,
frequency-domain algorithms have been proposed [13–18].

Another drawback of this approach is that an entire region of interest (ROI) has
to be covered with densely placed error microphones to produce a large quiet region
because the method tries to minimize the residual error only at the error microphone
positions. Thus, we refer to this method as the multiple-point method.

10
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1.5.2 Harmonic-domain ANC
In contrast to the multiple-point method, harmonic-domain-based ANC methods,
which decompose signals into harmonic basis functions, e.g., spherical harmonic (SH)
functions, were proposed [19–24]. The advantages of this approach are that the
sound field can be controlled in terms of a region rather than points, and fast conver-
gence can be achieved by uniformly placing the microphones and secondary sources
on a suitable surface, such as a sphere. Although this array geometry constraint re-
sults in stable and efficient signal representation in the SH-domain, spherical arrays
in 3D space with a large number of microphones and loudspeakers are physically
difficult to build in practice. The reference microphone array (RMA) takes up a lot
of room because it is at the very edge of the system, reducing its viability.

1.5.3 Sound field reproduction
Instead of using a spherical array, multiple circular arrays were used to first trans-
form signals into azimuth harmonic coefficients, and then the SH coefficients are
calculated numerically to reproduce a 3D sound field [25]. The difficulty in con-
structing the array structure has been reduced in this approach, but the ROI must
still be surrounded by circular arrays.

In most practical situations [26,27], the underlying sound field is due to a small
number of underlying sound sources. In this context, CS has been successfully
applied to sound field reproduction, sound field separation, and sound localiza-
tion [28–32]. Koyama and co-workers [28, 29] showed that spatial aliasing [33, 34]
originating from spatial sampling can be avoided in sound field reproduction. Takida
et al. [30] demonstrated that the exterior and interior sound fields, which correspond
to the direct source and reverberant component, can be precisely separated. CS has
also been used in spatial ANC. Zhang et al. [35] demonstrated that the number of
secondary sources can be reduced.

11
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Figure 1.5: Structure of this thesis.

1.6 Structure of this thesis
The rest of the thesis is organized as in the flow chart in Figure 1.5. In Chap-
ter 2, the basic theory of the sound field representation and ANC is reviewed. In
Chapter 3, the sparse signal representation in the spatial ANC task is investigated
to improve the system performance while reducing the system complexity. The
multiple circular array structure is introduced in Chapter 4 to improve system via-
bility. The weighting based on direction of arrival is investigated in Chapter 5. The
sparse signal representation and distributed sensor array structure are combined in
Chapter 6. Finally, Chapter 7 brings the thesis to a close.
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Chapter 2

Active noise control based on
spatial audio theory

Sound field analysis and reproduction based on a physical model of the sound prop-
agation has the potential to efficiently control the sound field in a sizable region.
The adaptive filtering approach is introduced to control the ever-changing sound
field by combining it with the sound field representation theory. Spatial ANC refers
to the task of specifically attenuating the unwanted noise field in a large region.

In this chapter, the background theory related to the spatial ANC is reviewed.
Besides, the problem of the existing approaches is stated.

2.1 Sound field representation
Let s(r, t) be an acoustical pressure in the volume of interest. In the source-free
region, the sound field satisfies the time-domain acoustic wave equation [36]:

∇2s(r, t)− 1

c2
∂2s(r, t)

∂t2
= 0, (2.1)

where ∇2 is the Laplacian, r is the position vector, t is the time index, and c is
the speed of sound. To analyze the steady-state, we can apply the temporal Fourier
transform to Eq. (2.1), which leads to the homogeneous Helmholtz equation [36]:(

∇2 + k2
)
S(r, k) = 0, (2.2)

where k = 2πf/c is the wave number, f is the temporal frequency. Hereafter, wave
number k is omitted for notational simplicity.

The general solution of the Helmholtz equation, Eq. (2.2), is known to be
plane waves and harmonic functions [36]. One of the solutions to the homogeneous
Helmholtz equation is a superposition of plane waves, which is known as Herglotz
wave function [37]:

S(r) =

∫
r̂∈S2

ρ(pw)(r̂)eikr̂·rdr̂, (2.3)

13



Figure 2.1: The coordinate system used in this study.

where S2 is the unitary sphere, ρ(pw)(r̂) is the distribution of the plane waves, and
r̂ is a unit vector toward the direction of the plane wave. Figure 2.1 depicts the
coordinate system used in this study. Angle θ is termed azimuth and ϕ is termed
colatitude.

Another solution is obtained in spherical coordinates by utilizing the separation
of variables [38], which leads to:

S(r) =
∞∑
ν=0

ν∑
µ=−ν

αν,µjν(kr)Yν,µ(r̂), (2.4)

where αν,µ is the harmonic coefficient of the sound field and jν(kr) is the spherical
Bessel function.

Yν,µ(r̂) = (−1)µ
√

2ν + 1

4π

√
(ν − µ)!
(ν + µ)!

Pν,µ(cos θ)e
iµϕ (2.5)

is the SH function of order ν and degree µ, Pν,µ(cos θ) is the associated Legendre
function, and θ and φ are the colatitude and azimuth angle, respectively. Eq. (2.4)
represents the interior sound field in the absence of a sound source within the ROI.
This condition, known as an interior problem, is depicted in Figure 2.2. Refer to
Chapter 6 for the form for describing the exterior field shown in Figure 2.3.

2.2 Active noise control based on adaptive filter-
ing

ANC is a technique, which can actively attenuate the time-varying noise signal by
measuring the signal with sensors and driving the antinoise signal from transduc-
ers. One of the simplest ANC systems consists of a single reference sensor, single

14



Sound source
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Figure 2.2: Interior problem where all the sound sources exist outside the ROI.

secondary source, and single error sensor. This is referred to as a single-channel feed-
forward ANC system, in which the reference signal captured by the reference sensor
is used to generate the antinoise signal from the secondary source. The residual
signal is measured by the error sensor in order to monitor the system’s performance.
There are variety of methods applied to several acoustic problems based on this
principle [4, 5].

2.2.1 Time-domain filtered-X least mean squares algorithm
The adaptive filtering approach has been widely used in ANC applications to con-
trol the time-varying noise field. By updating the filter coefficients using the LMS
algorithm, the adaptive filter minimizes the residual signal monitored by the error
microphone. It is well understood that the presence of a secondary path generally
leads to instability [39]. Because of the presence of the secondary path, the error
signal and the reference signal are misaligned. To solve this problem, the FXLMS
algorithm has been proposed [40–42]. The block diagram of the FXLMS algorithm
is depicted in Figure 2.4. The estimated secondary path is placed in the reference
signal path to compensate the secondary path.

As shown in Figure 2.4, the residual error signal at the error microphone position
can be written as a sum of the primary noise signal and the antinoise signal:

e(n) = d(n)− s(n) ∗
[
wT(n)x(n)

]
, (2.6)

where n is the time index, s(n) is the impulse response of the secondary path, ∗ is
the linear convolution operator, and (·)T is the transpose operator. w(n) and x(n)

15
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Figure 2.3: Exterior problem where all the sound sources exist inside the ROI.

are the coefficient vectors of the adaptive filter and reference signal, respectively.
The cost function is expressed as the expectation of the squared residual signals:

J (n) = E
[
e2(n)

]
. (2.7)

The adaptive filter minimizes the instantaneous error

Ĵ (n) = e2(n) (2.8)

in each step using the steepest descent algorithm. The adaptive update of the filter
coefficients is performed by stepping toward the negative gradient direction of the
cost function with step size u

w(n+ 1) = w(n)− u

2
∇Ĵ (n) (2.9)

= w(n) + ux′(n)e(n), (2.10)

where

x′(n) = ŝ(n) ∗ x(n). (2.11)

ŝ(n) is the impulse response of the estimated secondary path, which can be mea-
sured in advance or modeled using online modeling methods [43, 44] in practical
applications.
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Figure 2.4: Block diagram of the time-domain FXLMS algorithm.

2.2.2 Temporal-frequency-domain FXLMS
The time-domain FXLMS system [45,46] has been shown effectiveness in many ANC
applications. However, its high computational complexity and slow convergence of
adaptive processing limit the practical implementation.

To overcome these drawbacks, temporal-frequency-domain FXLMS algorithms
were developed. The temporal-frequency-domain FXLMS algorithm’s block diagram
is shown in Figure 2.5. The M -point signal block x(n̄) is formed by accumulating
the reference signal x(n) in the buffer, where n̄ is the block index. The signal vector
x(n̄) is transformed into the temporal frequency domain by using the fast fourier
transform (FFT):

X(n̄) = FFT[x(n̄)] = [X0(n̄), X1(n̄), . . . , XM−1(n̄)]
T , (2.12)

where M is the length of the block.
The residual error signal at the error microphone can be obtained by using the

inverse fast fourier transform (IFFT):

e(n) = d(n)− s(n) ∗ IFFT [W(n̄) ◦X(n̄)] . (2.13)

where W(n̄) is the temporal-frequency-domain adaptive filter and ◦ is the element-
wise product operator. The residual error signal is also accumulated in the buffer
and transformed into the temporal frequency domain every M sample:

E(n̄) = FFT[e(n̄)] = [E0(n̄), E1(n̄), . . . , EM−1(n̄)]
T , (2.14)

The adaptive filter update can be performed in each frequency bin based on the
complex LMS algorithm:

Wm(n̄+ 1) = Wm(n̄) + µmX
′∗
m(n̄)Em(n̄), (2.15)
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Figure 2.5: Block diagram of the temporal-frequency-domain FXLMS algorithm.

where m is the frequency bin index and (·)∗ is the complex conjugate operator. The
filtered reference signal X ′

m(n̄) can be defined as

X ′
m(n̄) = Ŝm(n̄)Xm(n̄), (2.16)

where Ŝm(n̄) is the estimated secondary path in the temporal frequency domain.

2.2.3 Spherical-harmonic-domain FXLMS
The adaptive algorithm in the temporal frequency domain has been successfully ap-
plied to several practical applications including a multiple-channel system to enlarge
the quiet region [47–50]. However, increasing the number of channels to control a
large region remains a challenge. To address this issue, a novel approach based
on spatial frequency analysis has been developed. This method employs the spa-
tial audio theory described in Section 2.1 to analyze and control the large sound
field. The signals are transformed into harmonic coefficients using orthogonal basis
function such as SH function. The transformed domain is also known as the SH-
domain, mode domain, or wave domain. The adaptive algorithm in the SH-domain
is described in this section.

Let the ROI be a spherical region surrounded by an error microphone array
(EMA), a secondary loudspeaker array (SLA), and a RMA. The antinoise field in
the temporal frequency domain generated by the SLA can be described as

Sc(r) =
Ls∑
ℓ=1

dℓG(r|rℓ), (2.17)

where Ls is the number of loudspeakers and dℓ is the driving signal of the ℓ-th
loudspeaker. The free field Green’s function, G(r|rℓ), can be parameterized as

G(r|rℓ) =
∞∑
ν=0

ν∑
µ=−ν

Cν,µ,ℓjν(kr)Yν,µ(r̂), (2.18)
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Figure 2.6: Block diagram of the SH-domain FXLMS algorithm.

where Cν,µ,ℓ is the SH coefficient of the acoustic transfer function from the ℓ-th
loudspeaker to the ROI. By substituting (2.18) to (2.17), the antinoise field can be
represented as

Sc(r) =
∞∑
ν=0

ν∑
µ=−ν

Ls∑
ℓ=1

dℓCν,µ,ℓ︸ ︷︷ ︸
zν,µ

jν(kr)Yν,µ(r̂). (2.19)

The coefficient Cν,µ,ℓ can be further decomposed as

Cν,µ,ℓ = gν,µY
∗
ν,µ(r̂ℓ), (2.20)

where gν,µ is the SH coefficient of the acoustic transfer function. From Eq. (2.19)
and Eq. (2.20), zν,µ can be written as

zν,µ = gν,µ

Ls∑
ℓ=1

dℓY
∗
ν,µ(r̂ℓ)︸ ︷︷ ︸

ξν,µ

, (2.21)

where ξν,µ is the SH coefficient of the driving signals.
Now, the noise field attenuation is considered in SH domain. The residual noise

field captured by the EMA can be described as a sum of the primary noise field
given in Eq. (2.4) and the antinoise field given in Eq. (2.19):

eν,µ = αν,µ + zν,µ

= αν,µ + gν,µξν,µ. (2.22)

As depicted in Figure 2.6, the FXLMS algorithm generates the antinoise signal by
applying a linear filter to the reference signal; thus, the total residual noise field can
be written as

eν,µ = αν,µ + gν,µxν,µwν,µ, (2.23)

19



where xν,µ and wν,µ are the SH coefficients of the reference signal and the adaptive
filter, respectively. By concatenating all available coefficients for each order ν and
degree µ, we can write Eq. (2.23) in a matrix form:

e = α+ gxw, (2.24)

where

g = diag(g0,0, . . . , gN,N) ∈ C(N+1)2×(N+1)2 ,

x = diag(x0,0, . . . , xN,N) ∈ C(N+1)2×(N+1)2 ,

and

w = [w0,0, . . . , wN,N ]
T ∈ C(N+1)2×1.

The notation diag(·) indicates the diagonal matrix whose diagonal elements consist
of the vector of argument. The truncation order N is usually determined by adopting
the criterion N = ⌈ekR/2⌉ [51] or N = ⌈kR⌉ [52], where R is the radius of the ROI.

A cost function is set as the sum of the squared residual signals [23]:

J (ι) =
N∑
ν=0

ν∑
µ=−ν

|eν,µ(ι)|2 = e(ι)He(ι), (2.25)

where ι is the iteration index. A gradient of the cost function J (ι) can be calculated
as

∂J (ι)
∂w∗(ι)

= x′(ι)He(ι), (2.26)

so that we can update the filter coefficients as

w(ι+ 1) = w(ι)− ux′(ι)He(ι). (2.27)

The filtered reference coefficients can be defined as

x′(ι) = ĝx(ι), (2.28)

where ĝ is the coefficients of the estimated secondary path.

2.3 Problems of existing approaches
The harmonic-domain approaches in spatial ANC leveraging the spatial frequency
analysis [23] have improved the size of the controllable region. This is because the
signal representation, for example, in the SH-domain, allows for the description of
a large continuous region of the sound field rather than just a few points. It is
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well known that signal decomposition into the SH-domain leads to faster adaptive
processing convergence and lower computational complexity due to the signal inde-
pendence characteristics in the SH-domain [21].

These approaches have been shown certain breakthroughs in the spatial ANC
tasks, however, there is another shortcoming that needs to be addressed to realize
practical systems. In reality, the sound field must be spatially sampled before it can
be processed from the captured signal by the microphones or reproduced by driving
discretized loudspeakers. For accurate signal processing, this spatial sampling theo-
retically necessitates a spatially uniform sampling. Spatially uniform sampling is a
difficult problem in three dimensions [53]. Furthermore, installing the microphone
and loudspeaker array physically is usually difficult because it has a huge impact on
the system’s feasibility.

The spherical microphone array and loudspeaker array have been used for the
study in the sound field capturing [54], sound field synthesizing [55], and binaural
processing [56,57]. [55,57] show the hardware implementations. One of the difficul-
ties in these studies is reducing the complexity of the array structure for practical
application.

2.4 Summary
The basic theory related to the spatial ANC was reviewed. The sound field repre-
sentation theory gives an analytical solution to analyze and process the sound field
in a large space. Adaptive filtering approaches, such as FXLMS algorithms, can
be applied to signals that are constantly changing. Although the combination of
these two approaches has demonstrated progress in spatial ANC tasks, the chal-
lenge of the array structure’s complexity remains for practical use. Starting from
the next chapter, several solutions to improve the system feasibility of spatial ANC
are discussed.
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Chapter 3

Spatial active noise control using
sparse signal representation

Spatial ANC systems aim to attenuate undesired noise over a spatial region by
generating an antinoise sound field over the region using secondary sources. Such
a system is viewed as an extension from the well-studied single-channel ANC [3–5]
to a multiple-channel system [3, 6]. Controlling a sound field over a large area,
on the other hand, necessitates a large number of reference and error microphones
to capture the reference noise signals and residual error signals, respectively. In
addition, a large number of loudspeakers are required to generate the antinoise. The
requirement for a large number of microphones limits the practicality of using spatial
ANC systems. Nevertheless, in most practical applications [26, 27], the underlying
noise field is caused by a small number of underlying noise sources. The goal of this
chapter is to use a sparse signal representation to reduce the number of microphones
required by spatial ANC systems.

In practice, multiple-channel ANC in the frequency domain [11, 12] is widely
used to attenuate the noise field at multiple points where the error microphones
are placed. The requirement to uniformly place many error microphones inside
the control region is one disadvantage of this approach to creating a large quiet
zone. In contrast, spatial sound field representation techniques, such as WFS [8]
and HOA [58, 59] are promising techniques to control not only multiple points but
the entire space of interest. These techniques have been applied to ANC, and it
has been demonstrated that harmonic-domain ANC can achieve noise attenuation
over a large space while requiring less computational complexity [19, 21, 22]. How-
ever, such systems still require a large number of microphones and loudspeakers to
reproduce the sound field properly, thus limiting the feasibility of practical imple-
mentations. The system suffers from artifacts due to spatial aliasing [60] due to
violating the spatial Nyquist sampling criterion when there are not a theoretically
sufficient number of sensors.

One way to alleviate the aliasing restriction is by expressing the noise field using
only a small number of basis functions from an over-complete dictionary. This
approach is well known as CS [61], which can provide an accurate solution for
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underdetermined problems where the sparse characteristic of the underlying signal
field is usually used to solve the problem [62].

In this chapter, a harmonic-domain ANC system is proposed that can perform
noise attenuation in large space beyond the spatial Nyquist frequency using fewer
reference microphones than required by the Nyquist theory. A superposition of
weighted plane waves impinging from the far-field is used to describe the reference
noise field. The reference harmonic coefficients are reconstructed using estimated
plane wave weights calculated using various types of CS methods, which are expected
to include fewer artifacts caused by spatial aliasing. The proposed methods are
evaluated and compared in terms of reference-noise-field reproduction accuracy and
noise attenuation level. The results show that the proposed method is capable of
overcoming the spatial Nyquist frequency limitation. Furthermore, while properly
controlling the noise field, the number of reference microphones can be reduced.

Nicolas [31] proposed CS sound field reproduction based on plane wave decom-
position by introducing an HOA-based constraint. The loudspeaker weights, how-
ever, were calculated using amplitude-panning, which cannot be used directly for
harmonic-domain processing. Jihui [35, 63] proposed the sparse complex FXLMS
algorithm, despite using the CS approach to calculate sparse loudspeaker weights,
so that spatial aliasing artifacts caused by the spatial sampling of the microphone
array could not be avoided.

3.1 Problem statement
Let us assume an arbitrary noise field S(r), where all the noise sources are outside
of the ROI in 2D space. The geometrical setup with the microphone arrays and
loudspeaker array is illustrated in Figure 3.1 The noise field can be represented as
a decomposition of harmonic coefficients:

S(r) =
∞∑

µ=−∞

βµJµ(kr)e
iµϕ, (3.1)

where βµ is the µth-order circular harmonic (CH) coefficient and Jµ(·) is the µth-
order Bessel function. The coefficient βµ can be calculated by exploiting the orthog-
onality of exponential functions:

βµ =
1

Jµ(kr)

∫
S(r)e−iµϕdϕ. (3.2)

Our objective is to derive an algorithm to acquire precise reference CH coefficients
of a noise field, which are then used to perform ANC instead of using direct coefficient
extraction Eq. (3.2). Because the noise field is measured at multiple discrete points
in practice, the calculation Eq. (3.2) contains spatial aliasing artifacts. Even with
an insufficient number of microphones, the noise field is expected to be attenuated
at higher frequencies beyond the spatial Nyquist frequency.

23



Error microphone array
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Noise source

Figure 3.1: Geometric setup of feedforward ANC system. The colored circle indi-
cates the ROI.

3.2 Sparse weight estimation of plane wave
In this section, we derive the CH coefficient reconstruction based on plane wave
decomposition assuming that the noise field is constructed by a superposition of
weighted plane waves. A sound field in a specific region is known to be approximated
by a superposition of a few plane waves [64, 65]. The weights of the plane waves
can be accurately estimated using the CS approach, which can be used to derive a
sparse solution from a few measurements [66].

As an alternative to Eq. (3.1), the solution to the homogeneous Helmholtz equa-
tion can be derived by utilizing a plane wave function [65], which is also referred to
as the Herglotz wave function:

S(r) =

∫
r̂∈S

ρ(pw)(r̂)eikr̂·rdr̂, (3.3)

where ρ(pw)(r̂) is the distribution of plane wave and r̂ ≡ (1, ϕℓ) is a unit vector toward
the direction of the plane wave. Figure 3.2 illustrates this sound field expression also
termed plane wave composition. The circular expansion of the incident noise field
due to a unit-magnitude plane wave is given by [65]

eikr̂ℓ·r =
∞∑

µ=−∞

iµe−iµϕℓJµ(kr)e
iµϕ. (3.4)
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Plane waves

Figure 3.2: Plane wave composition in 2D field.

From Eq. (3.3) and Eq. (3.4), we have

S(r) =
∞∑

µ=−∞

iµJµ(kr)e
iµϕ

∫
r̂∈S

ρ(pw)(r̂)e−iµϕℓdr̂ (3.5)

=
∞∑

µ=−∞

iµ
∫
r̂∈S

ρ(pw)(r̂)e−iµϕℓdr̂︸ ︷︷ ︸
βµ

Jµ(kr)e
iµϕ. (3.6)

Equation Eq. (3.6) shows that the CH coefficient βµ can be reconstructed using the
plane wave distribution ρ(pw)(r̂) to reproduce the incident noise field.

The plane wave composition Eq. (3.3) can be approximated by a limited number
of plane waves [64]:

S(r) ≈
L∑
ℓ=1

γℓe
ikr̂·r. (3.7)

We represent Eq. (3.7) in a matrix form:

s = Eγ, (3.8)

where s ∈ CQ is a vector of the observed signals, γ ∈ CL is an vector of plane wave
weights, and E ∈ CQ×L is a matrix given by

E =

e
ikr̂1·r1 · · · eikr̂L·r1

... . . . ...
eikr̂1·rQ · · · eikr̂L·rQ

 . (3.9)

We assume that the composition of plane waves is sparse with the underdetermined
condition (Q < L) in Eq. (3.8).
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3.2.1 ℓ1-norm constrained minimization
One of the most widely used techniques to estimate a sparse solution is a convex
relaxation:

minimize
γ

∥γ∥pp, s.t. s = Eγ. (3.10)

Applying basis pursuit denoising (BPD) [67], Eq. (3.10) can be written in an un-
constrained form as:

J = minimize
γ

1

2
∥s−Eγ∥22 + λ1∥γ∥1. (3.11)

where λ1 controls the strength of the sparsity constraint. By utilizing the gradient
descent algorithm, we can update the weights γ as

γ(ι+ 1) = γ(ι)− ηpw
2
∇J (ι), (3.12)

where ι is the iteration index and ηpw is the step size. A gradient of the cost function
J (ι) can be calculated as [35, 63]

∇J (ι) = 2EHv(ι) + λ1

(
sgn

{
R [γ(ι)]

}
+ isgn

{
I [(γ(ι)]

})
, (3.13)

where (·)H denotes the Hermitian-transpose operation, sgn(·) denotes the sign func-
tion, and R(·) and I(·) denote the real and imaginary parts of the argument. Finally,
substituting Eq. (3.13) into Eq. (3.12), the plane-wave weights can be calculated as:

γ(ι+ 1) = γ(ι)− ηpwEHv(ι)− 1

2
ηpwλ1

(
sgn

{
R [γ(ι)]

}
+ isgn

{
I [(γ(ι)]

})
. (3.14)

3.2.2 Iteratively reweighted least squares
It is known that by introducing the ℓp-norm and solving the following optimization
problem, where 0 < p < 1, one can provide a sparse solution with much fewer mea-
surements than p = 1 [68, 69]. Although the optimization problem Eq. (3.10) is
nonconvex, we can adopt the iteratively reweighted least squares (IRLS) to solve it
iteratively by replacing the ℓp term with a weighted ℓ2 norm [67, 69]. The IRLS is
known to converge relatively quickly in terms of iterations; however, the algorithm
includes matrix inversion in every iteration, which may result in a high compu-
tational cost. To address this issue, there is a quick implementation of the IRLS
algorithm [70].

3.3 Circular-harmonic-domain active noise control
3.3.1 Order truncation
Let us consider a series truncation in sound field decomposition Eq. (3.1):

S(r) ≈
N∑

µ=−N

βµJµ(kr)e
iµϕ. (3.15)
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Figure 3.3: Extracted CH coefficients of the cylindrical wave using microphone
outputs. The horizontal broken line indicates the spatial Nyquist frequency.

To determine the truncation order N , N = ⌈ekR/2⌉ [51] or N = ⌈kR⌉ [52], where
R is the radius of the ROI, are known to be the adequate criteria.

Now, we discretize the sound field by placing finite microphones on the surface
of the ROI:

βµ ≈
1

QJµ(kr)

Q∑
q=1

S(rq)e
−iµϕq , (3.16)

where Q is the number of microphones and ϕq is the azimuth angle of the q-th
microphone. We need at least Q ≥ 2N+1 microphones to avoid spatial aliasing [71].
The CH coefficients of a noise field captured by a 41-element circular microphone
array with a radius of 2 m are shown in Figure 3.3. N = 20 is the maximum order
of the CH coefficients. Look for spatial aliasing artifacts in higher-order signals
above 546 Hz, which is the spatial Nyquist frequency for this condition. The high
amplitude of low frequency corresponds to an evanescent wave [36] of the cylindrical
source. This evanescent component only exists near the source, and the amplitude
decays exponentially [60]. As a result, we assume that the impact on an ANC
system’s performance within the control region is minimal.

3.3.2 Adaptive filter update
We describe a CH-domain adaptive filtering algorithm based on the FXLMS algo-
rithm [41]. Consider two circular microphone arrays placed in a free field, as depicted
in Figure 3.1. The outer circle is a RMA captures reference signals, and the inner
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circle is an EMA, measuring the residual signals. A circular SLA is positioned
between the two microphone arrays to drive the antinoise signals.

Adopting the circular-harmonic-domain feedforward (CHFF) FXLMS algorithm,
a residual SH coefficient at step ι can be written as:

eµ(ι) = βµ + wµ(ι)x
′
µ(ι), (3.17)

where wµ(ι) is the µth-order SH-domain weight of the adaptive filter, x′µ(ι) = gµxµ(ι)
is the µth-order filtered reference SH coefficient. Here, gµ is the µth-order SH-domain
coefficient of the acoustic transfer function of the loudspeaker, and xµ(ι) is the µth-
order reference SH coefficient. In the 2D free field, the coefficient of the acoustic
transfer function represented by a circular wave can be described as:

gµ = − i
4
H(2)
µ (kRs), (3.18)

where H(2)
µ (·) is the Hankel function of second kind of order µ, and Rs is the radius

of the loudspeaker array. The SH-domain reference coefficient can be calculated as:

xµ(ι) = iµ
L∑
ℓ=1

γℓ(ι)e
−iµϕℓ , (3.19)

using γℓ(ι) reconstructed from the reference signals by solving the optimization
problem mentioned in the previous section. Finally, the filtered-X normalized least
mean squares (FXNLMS) [72] algorithm updates the weight as:

wµ(ι+ 1) = wµ(ι)− ηw
eµ(ι)x

′∗
µ (ι)

x′∗µ (ι)x
′
µ(ι)

, (3.20)

where (·)∗ denotes the complex conjugate operation and ηw is the step size.

3.4 Validation
3.4.1 Experimental conditions
Methods

We conducted simulation studies to evaluate and compare the accuracy of the re-
constructed reference SH coefficients and noise attenuation performance among the
following methods:

(i) “CHFF” corresponding to the conventional method using SH decomposition
based on Eq. (3.2) and SH-domain filter update based on Eq. (3.20) as a
baseline;

(ii) “Proposed (L1)” corresponding to the method using ℓ1-norm constrained plane-
wave-weight estimation based on Eq. (3.14) for the reconstruction of the ref-
erence coefficients;
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Figure 3.4: SDR of reference sound field at several frequency bins. The vertical
broken line indicates the spatial Nyquist frequency corresponding to the reference
microphone array.

(iii) “Proposed (p = 1)” and (iv) “Proposed (p = 0.5)” corresponding to the meth-
ods using IRLS methods for the plane-wave-weight estimation based on Eq. (3.11).

Geometrical setup

The ANC system consists of RMA, SLA, and EMA surrounding the ROI in a 2D
free field as shown in Figure 3.1. The radii of the EMA and RMA are 1 m and
2 m, respectively. Each array of microphones is made up of 41 omnidirectional
microphones. The SLA is made up of 41 monopole loudspeakers with a radius of
1.5 m. The harmonic coefficients have a maximum order of N = 20. For these
simulation conditions, the spatial Nyquist frequency corresponding to the RMA is
546 Hz, and to the EMA is 1092 Hz. We use L = 128 plane waves to construct the
over-complete matrix E.

Due to spatial aliasing, there will be more artifacts in the calculation of the
reference signal than the error signal because the RMA is placed at the outermost.
The methods described above were applied to the reference signal to reduce artifacts
and reconstruct accurate reference signals.

Noise signal

A single point source of white noise was placed outside of the RMA as the primary
noise source.
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Evaluation metric

The signal-to-distortion ratio (SDR) [28] was calculated inside the ROI described
as the colored region in Figure 3.1 to evaluate the reconstruction accuracy of the
reference signals, which affects the noise attenuation performance of feedforward
ANC.

Next, an average noise level inside the ROI was calculated to evaluate the noise
attenuation performance. Due to the spatial aliasing artifacts in the reference coef-
ficients, it is expected that performance differences will be visible above the spatial
Nyquist frequency.

3.4.2 Accuracy of reconstructed reference signal
The SDR among four different methods at the frequency range from 200 Hz to
1400 Hz is shown in Figure 3.4. The vertical broken line is the spatial Nyquist
frequency in this condition. The circular expansion result corresponds to the SH
decomposition based on Eq. (3.16), which is a step in the “CHFF” system. The
SDR in the circular expansion method degrades noticeably above the spatial Nyquist
frequency. The other three proposed methods, on the other hand, maintain high
SDR values at higher frequencies.

The reconstruction error of the SH coefficient of the reference signal was calcu-
lated and shown in Figure 3.5. Higher errors are appearing from higher-order com-
ponents above spatial Nyquist frequency in “CHFF.” The striped pattern represents
spatial aliasing artifacts. As previously stated, higher errors in the evanescent wave
region have only a minor impact on the ANC system.

Our preliminary examination showed that the convergence speed varies among
each proposed method. For example, “Proposed (L1)” needs around 100 iterations
to converge, whereas, “Proposed (p = 0.5)” needs only around 10 iterations. We
heuristically determined the number of iterations to be sufficient for convergence.

3.4.3 Noise attenuation performance
The noise attenuation performance among the methods was evaluated while per-
forming the adaptive ANC algorithm. Figure 3.6 depicts the level of noise attenu-
ation after 50 iterations at various frequencies. The vertical broken lines represent
the spatial Nyquist frequencies for the reference and error microphone arrays, re-
spectively. Below the Nyquist frequency of the RMA, the “CHFF” and the proposed
method gave almost the same results except “Proposed (L1),” which gave an even
worse performance. We found that this was due to the strength of the constraint
that was controlled by the parameter λ1. The ℓ1 constraint was too strong to calcu-
late accurate reference SH coefficients for lower frequencies below the spatial Nyquist
frequency. We confirmed that the result improved after manually tuning the pa-
rameter for each frequency; however, we use a fixed parameter in this paper because
the issue is beyond the scope of this thesis, and we are not tuning any parameters
for other methods.
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(a) (b)

Figure 3.5: CH coefficients error between original and reconstructed noise field.
The horizontal broken line indicates the spatial Nyquist frequency: (a) “CHFF.”
(b) “Proposed (p = 0.5).”

For higher frequencies, the attenuation level of “CHFF” degrades due to spatial
aliasing; however, the proposed method can still attenuate the noise. All methods
were out of control above the Nyquist frequency of the EMA, and no attenuation
could be achieved.

3.4.4 Reduction of the number of reference microphones
When the noise field can be expressed by a sparse set of plane wave weights, the
number of reference microphones can be reduced to calculate the reference SH coeffi-
cients. Figure 3.7 shows the average noise level after 50 iterations of ANC. Recalling
the Nyquist frequency of the RMA, it is natural that the noise attenuation perfor-
mance starts degrading above 546 Hz for Q = 41 and 1092 Hz for Q = 81 in “CHFF.”
On the other hand, despite a reduction in the number of reference microphones, the
proposed method performs well over a wide range of frequencies. The ANC system
begins to diverge above 1092 Hz for both methods, which is the Nyquist frequency
of the EMA.

3.5 Summary
In this chapter, the author focused on the reference signal reconstruction on feed-
forward ANC system and explored the improvement of the noise attenuation per-
formance by adopting sparse signal representation. As a result of the comparison
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CHFF
Proposed (L1)
Proposed (𝑝 = 1)
Proposed (𝑝 = 0.5)

Figure 3.6: Average noise level at several frequency bins after 50 iterations. The
vertical broken lines indicate the spatial Nyquist frequencies corresponding to the
reference (left) and the error (right) microphone array.

among several methods based on CS, the IRLS approach with p = 0.5 performs well
in terms of both convergence speed and noise attenuation performance.

Future work will be directed toward applying the proposed approach to the
error signal to further improve the system performance. Furthermore, investigating
the descent number of iterations in the sparse weights reconstruction is critical for
practical implementation. The goal of adaptive filtering-based ANC is to track the
changing noise field. When the noise field is stationary, however, frequent adaptation
is not required. Similarly, the required number of iterations in sparse weight recovery
would be adjusted by monitoring the stationarity of the noise field.
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(a) (b)

Figure 3.7: Average noise level among various setups for the number of reference
microphones: (a) “CHFF.” (b) “Proposed (p = 0.5).”
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Chapter 4

Spatial active noise control using
multiple circular arrays

ANC is a technique, which attenuates an undesired primary noise field by repro-
ducing an antinoise field, having the opposite phase and the same amplitude of the
primary noise field using secondary sources. Several attempts have been made in
practical applications to cancel the noise field in automobiles [26,27] and aircraft [73],
which requires noise attenuation over a large region. Multiple-channel ANC meth-
ods [3, 6, 74] have sparked increased interest in controlling the sound field over a
large space for this purpose. However, the ANC system requires many microphones
uniformly placed to achieve sufficient attenuation of the noise field. Also, it needs
many loudspeakers to generate an appropriate antinoise field, both of which result
in high implementation costs.

Multiple-channel ANC methods adopting the FXLMS algorithm in temporal-
frequency-domain was successful in many practical applications [5,11,12]. Nonethe-
less, they suffer from the aforementioned disadvantage of requiring a large number
of uniformly distributed error microphones to generate a large quiet zone within
the ROI. Because the temporal-frequency-domain representation of a sound field
does not implicitly describe the underlying sound field aspects, the system can only
attenuate the noise field near the error microphone positions using the so-called
multiple points method [75].

In contrast, spatial sound field reproduction techniques such as WFS [8] and
HOA [58, 59] are decent approaches to mitigate this problem. To reproduce an
arbitrary sound field, these methods control acoustic pressure only on a planar or
spherical surface rather than the entire region. As a result, the harmonic-domain
sound field representation has been applied to ANC methods, resulting in a larger
quiet zone and faster convergence speed with even lower computational complexity
[19, 21–23]. However, the array geometry for 3D space is constrained to a regularly
sampled spherical array in order not to violate the spatial Nyquist theory [33], which
makes it impractical in a real environment.

Taking into account the feasibility of the ANC system, several methods have
been proposed to reduce the number of microphones and loudspeakers by introduc-
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Figure 4.1: Sound field reproduction error caused by dimensional mismatch. The
figure is plotted using [76, 77].

ing a sparseness constraint [31,35,63,78], which is known as the CS approach [61].
Although the array structure can be flexible, it is preferable to have a regularly
sampled array without any prior knowledge of the noise field, such as the source’s
direction. Another approach that is commonly used in most practical setups is to
use 3D point sources as secondary sources for a 2D sound field reproduction, known
as 2.5-dimensional synthesis [79,80]. The number of microphones and loudspeakers
is reduced by using a 2D array structure in this approach. Because the 2D repro-
duction problem assumes a height invariant sound field model, line sources are a
good choice of secondary sources. Actual cabinet loudspeakers, on the other hand,
typically exhibit point source characteristics. This dimensional mismatch prevents
a perfect reproduction of the desired sound field due to a difference of amplitude
decay between the 2D line source and the 3D point source. Perfect reproduction
can be achieved only at a given reference point or line [81] as depicted in Figure 4.1,
which directly affects the performance of ANC.

In this chapter, the author proposes a simple microphone and loudspeaker array
structure for 3D space attenuation in SH-domain ANC, which improves upon the
feasibility of spatial Nyquist based arrays. Multiple circular microphone arrays
are used to capture the 3D SH coefficients of the noise field, and multiple circular
loudspeaker arrays are used to generate the antinoise field. When compared to the
conventional SH-domain ANC system, which uses an impractical spherical array, we
show that our proposed method provides comparable noise attenuation performance
with a practical array structure.
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4.1 Problem statement
In this section, the author reviews the theory of capturing and reproducing a sound
field using multiple circular microphone and loudspeaker arrays based on the SH
decomposition of the sound field proposed in [25, 82].

Let us consider a noise field generated by noise sources outside the ROI in 3D
space. We can represent the incident noise field at an arbitrary point r ≡ (r, θ, ϕ):

S(r) =
∞∑
ν=0

ν∑
µ=−ν

αν,µjν(kr)Pν,µ(cos θ)Eµ(ϕ), (4.1)

where ν and m are integers representing order and degree respectively, αν,µ are the
SH coefficients, jν(·) is the νth-order spherical Bessel function, Eµ(ϕ) = (1/

√
2π)eiµϕ

is the normalized exponential function and

Pν,|µ|(cos θq) =
√

2ν + 1

2

√
(ν − |µ|)!
(ν + |µ|)!

Pν,|µ|(cos θq) (4.2)

is the normalized associated Legendre function. Hereafter, the series expansion in
Eq. (4.1) is truncated to N = ⌈ekR/2⌉ [51] or N = ⌈kR⌉ [52], where R is the radius
of the ROI.

4.2 Microphone and loudspeaker arrangements
4.2.1 Multiple circular microphone arrays
The noise field on a circle with a radius rq and a colatitude θq is given by:

S(rq) ≈
N∑
ν=0

n∑
µ=−ν

αν,µjν(krq)Pν,|µ|(cos θq)Eµ(ϕ), (4.3)

where rq ≡ (rq, θq, ϕ). We reformulate Eq. (4.3) by exchanging the order of summa-
tions to reveal the Fourier series expansion coefficients, which leads to:

S(rq) ≈
N∑

µ=−N

Eµ(ϕ)
N∑

ν=|µ|

αν,µjν(krq)Pν,|µ|(cos θq)︸ ︷︷ ︸
a
(q)
µ

. (4.4)

The coefficient a(q)µ is expressed as azimuth harmonic coefficient in [25]. Consider
a circular microphone array positioned on the circle. Using orthogonal exponen-
tial functions, the azimuth harmonic coefficient can be calculated from microphone
outputs:

a(q)µ ≈
2π

Pq

Pq∑
p=1

S(rq,p)E−µ(ϕq,p), (4.5)
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where Pq is the number of microphones of q-th array and rq,p ≡ (rq, θq, ϕq,p) is the
position of the p-th microphone. Note that instead of taking an integral in Eq. (4.5),
a summation is taken, which is an approximation due to a spatial discretization.

From Eq. (4.4), the relation between the SH coefficients and azimuth harmonic
coefficients is written as:

a(q)µ =
N∑

ν=|µ|

αν,µjν(krq)Pν,|µ|(cos θq). (4.6)

Taking into account Q circular microphone arrays, a matrix formulation can be
constructed:

Jµαµ = Aµ, (4.7)
where

Jµ =

 j|µ|(kr1)P|µ|,|µ|(cos θ1) · · · jN(kr1)PN,|µ|(cos θ1)
... . . . ...

j|µ|(krQ)P|µ|,|µ|(cos θQ) · · · jN(krQ)PN,|µ|(cos θQ)

 , (4.8)

αµ = [α|µ|,µ, α(|µ|+1),µ, . . . , αN,µ]
T, and Aµ = [a

(1)
µ , . . . , a

(Q)
µ ]T.

In order to get a stable solution of Eq. (4.7), we need to set up an over-determined
system, which requires more than N − |µ| arrays. Furthermore, a high condition
number in Eq. (4.8) must be avoided by designing an array geometry to avoid con-
taining small values of spherical Bessel functions and normalized associated Legendre
functions. [25] contains a more detailed discussion of the design of microphone array
geometry.

In the x-y plane, odd coefficients have no contribution to the sound field [25].
By setting the colatitude θq = π/2 for every array, Eq. (4.8) can be reduced for
ν = |µ|, |µ| + 2, . . . , N , which leads to a reduction of the number of microphone
arrays.

4.2.2 Multiple circular loudspeaker arrays
A desired antinoise field can be written in a same manner as Eq. (4.3):

Sdes(r) =
∞∑
ν=0

ν∑
µ=−ν

γν,µjν(kr)Pν,µ(cos θ)Eµ(ϕ). (4.9)

Suppose the ℓ-th circular loudspeaker aperture is producing an antinoise field:

S(r) =

∫ 2π

0

ρℓ(φ)
1

4π

eik||rℓ−r||

||rℓ − r||
dφ, (4.10)

where rℓ ≡ (rℓ, θℓ, φ) is the position on the circular aperture and ρℓ(φ) is the ℓth cir-
cular continuous loudspeaker aperture function. Spherical expansion of the incident

37



sound field due to a unit-magnitude point source is given by

1

4π

eik||rℓ−r||

||rℓ − r||
=

∞∑
ν=0

ν∑
µ=−ν

−ikh(2)ν (krℓ)Pν,µ(cos θℓ)

×E−µ(φ)jν(kr)Pν,µ(cos θ)Eµ(ϕ), (4.11)

where h(2)ν (·) is the νth-order spherical Hankel function of second kind. Substituting
Eq. (4.11) into Eq. (4.10) leads to:

S(r) =
∞∑
ν=0

ν∑
µ=−ν

−ikβ(ℓ)
µ h(2)ν (krℓ)Pν,µ(cos θℓ)

×jν(kr)Pν,µ(cos θ)Eµ(ϕ), (4.12)

where
β(ℓ)
µ =

∫ 2π

0

ρℓ(φ)E−µ(φ)dφ (4.13)

is the Fourier series expansion coefficient of the circular aperture function. Equating
Eq. (4.9) and Eq. (4.12) while taking into account L circular loudspeaker apertures,
we have

γν,µ =
L∑
ℓ=1

−ikβ(ℓ)
µ h(2)ν (krℓ)Pν,µ(cos θℓ). (4.14)

We now have simultaneous equations:

Γµ = HµBµ, (4.15)

where

Hµ = −ik ×

h
(2)
|µ| (kr1)P|µ|,|µ|(cos θ1) · · · h

(2)
|µ| (krL)P|µ|,|µ|(cos θL)

... . . . ...
h
(2)
N (kr1)PN,|µ|(cos θ1) · · · h

(2)
N (krL)PN,|µ|(cos θL)

 , (4.16)

Γµ = [γ|µ|,µ, γ(|µ|+1),µ, . . . , γN,µ]
T, and Bµ = [β

(1)
µ , . . . , β

(L)
µ ]T . The SH-domain co-

efficients of the loudspeaker weight can be calculated by solving Eq. (4.15) in a
least-square sense. Finally, the loudspeaker weight of the v-th loudspeaker at the
ℓ-th circular array is given by

ρ̃ℓ(ϕv) =
2π

Vℓ

N∑
µ=−N

β(ℓ)
µ Eµ(ϕv), (4.17)

where Vℓ is the number of loudspeakers of ℓ-th array.
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Figure 4.2: Multiple circular microphone and loudspeaker array structure. The
microphones are marked as • and the loudspeakers are marked as ◦.

4.3 Spherical-harmonic-domain active noise con-
trol

In this section, an SH-domain adaptive filtering algorithm utilizing azimuth har-
monic representation is described.

Consider a residual noise field, which is a sum of the noise field described by
Eq. (4.1) and the antinoise field described by Eq. (4.9). SH coefficients of the
residual sound field can be written as:

rν,µ = αν,µ + γν,µ. (4.18)

By concatenating all available coefficients for each degree µ, we can write Eq. (4.18)
in a matrix form:

Rµ = αµ + Γµ, (4.19)
where Rµ = [r|µ|,µ, r(|µ|+1),µ, . . . , rN,µ]

T. We set a cost function as a sum of the
squared residual signal:

Jµ =
N∑

ν=|µ|

|rν,µ|2 = RH
µRµ, (4.20)

where (·)H denotes the Hermitian-transpose operation. A gradient of the cost func-
tion Jµ can be calculated as

∂Jµ
∂Bµ

= HH
µ (αµ +HµBµ) = HH

µRµ. (4.21)
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By utilizing the steepest descent algorithm, we can update the coefficients Bµ as

Bµ(ι+ 1) = Bµ(ι)− ηµHH
µRµ, (4.22)

where ι is the iteration index and ηµ is the step size. Finally, the canceling loud-
speaker weight of each loudspeaker can be calculated by Eq. (4.17).

To calculate the residual signal Rµ, first, calculate the azimuth harmonic coef-
ficients from microphone outputs by Eq. (4.5), then solve the inverse problem of
Eq. (4.7), i.e., αµ = J+

µAµ. The use of azimuth harmonic representation has the
advantage of allowing us to design a flexible microphone array geometry to calcu-
late SH coefficients while taking into account the underlying structure of the wave
propagation [25]. It is important to note that once the array geometry is fixed, J+

µ

is the static matrix, which is appropriate for an adaptive process because there is
no matrix inversion with each iteration.

4.4 Validation
4.4.1 Experimental conditions
Methods

The noise attenuation performance is evaluated among the following methods:

(i) “SHD” corresponding to the conventional SH-domain adaptive algorithm, which
utilizes spherical array geometry, as a reference method;

(ii) “FD” corresponding to the conventional temporal-frequency-domain adaptive
algorithm, also termed multi-point method;

(iii) “AHD” corresponding to the proposed method.

Geometrical setup

“SHD” requires a spherical microphone and loudspeaker array, whose microphones
and loudspeakers are equally distributed on the surface of a sphere. To avoid spatial
aliasing, arrays must have at least (N + 1)2 microphones and loudspeakers [33].
We used 20 microphones and loudspeakers to create a third order system. The
microphones and loudspeakers were placed at the vertices of the dodecahedron to
avoid orthonormality error [83], with radii 0.2 m and 1.0 m.

Although we consider sound propagation in 3D space, we limited the ROI in the
evaluation to the x-y plane because the height of the human head varies little in
many practical applications, such as sitting in a vehicle seat. As mentioned before,
we only need the even-order coefficients to control the x-y plane. Table 4.1 shows
the SH coefficients up to the third order and Table 4.2 shows only the even-order
coefficients. For each degree µ in Table 4.2, there are at most two coefficients,
thus we need at least two circular microphone arrays to calculate the coefficients.
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Table 4.1: All SH coefficients.

HHHHHHν
µ −3 −2 −1 0 1 2 3

0 α0,0

1 α1,(−1) α1,0 α1,1

2 α2,(−2) α2,(−1) α2,0 α2,1 α2,2

3 α3,(−3) α3,(−2) α3,(−1) α3,0 α3,1 α3,2 α3,3

Table 4.2: Even-order SH coefficients.

HHHHHHν
µ −3 −2 −1 0 1 2 3

0 α0,0

1 α1,(−1) α1,1

2 α2,(−2) α2,0 α2,2

3 α3,(−3) α3,(−1) α3,1 α3,3

When we look at µ = 1, for example, two even-order coefficients are present. Seven
microphones are placed in the first array, which needs at least 2N + 1 microphone
to capture the third order SH coefficient α3,1. The coefficient α1,1 can be captured
by placing three microphones as the second array. Figure 4.2 depicts the simulated
array structure of “FD” and “AHD.”

The loudspeaker array geometry, like the microphone array geometry, was based
on the result of our preliminary experiment. Two loudspeaker arrays are used to
control the sound field on the x-y plane. Seven loudspeakers are placed at z = 0 m
with a radius r1 = 1 m as a first array, and three loudspeakers at z = 0.8 m with a
radius r2 = 0.8 m as a second array.

Both free field and reverberant field were simulated. A rectangular room of 6 m
× 5 m × 4 m in size with a wall reflection coefficient of 0.6 was simulated as the
reverberant field. We set the coordinate origin at (x, y, z) = (−1,−0.5,−0.5) with
respect to the center of the room.

Noise signal

We placed a single noise source outside of the microphone and loudspeaker arrays. As
the primary noise source, a point source of tone signal with an operation frequency
of 400 Hz was used. Each error microphone output receives a signal-to-noise ratio
of 60 dB white Gaussian noise. Note that a signal power is calculated as an average
of the initial error microphone outputs and is used as a reference value to simulate
the power of the measurement noise.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Residual noise fields in a free field (upper row) and reverberant
field (lower row) after 50 steps of ANC processing: (a)(d) “SHD.” (b)(e) “FD.”
(c)(f) “AHD.” Symbols “x” and “.” indicate the loudspeaker and microphone po-
sitions, respectively. Note that all microphones and loudspeakers are plotted by
mapping to the x-y plane.

Evaluation metric

To compare the noise attenuation performance of each method, the average noise
level inside the ROI was calculated. The ROI was a circular region with a radius of
0.2 m on the x-y plane inside the inner microphone array.

Since “SHD” used the spherical arrays, which is an ideal configuration to control
all the SH coefficients up to a certain order, we expected that “SHD” gives the best
performance. “AHD” used fewer microphones and loudspeakers to control only the
even-order SH coefficients to limit the ROI to the x-y plane. “AHD” is expected
to give better performance than “FD,” which is the conventional method with the
same array structure. Besides, we evaluated how close the performance of “AHD”
with fewer components and the simple array structure is to that of “SHD.”

4.4.2 Noise attenuation performance
We evaluated the noise attenuation performance of each method. Figure 4.3 demon-
strates the amplitude difference of the residual noise field from the original noise field
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(a) (b)

Figure 4.4: Average noise level inside the region of interest: (a) Free field. (b) Re-
verberant field.

after 50 steps of the adaptive processing. As we can see, “AHD” provides a com-
parable quiet zone to “SHD.” Because it does not implicitly describe the underlying
aspects of the sound field, “FD” can only attenuate noise near the microphone po-
sition. Figure 4.4 shows the average noise level inside the ROI, i.e., inside the circle
of radius 0.2 m. Both the free field and reverberant field results show a similar
tendency among the methods. “SHD” achieves the fastest convergence speed as
expected because it employs ideal spherical arrays with enough microphones and
loudspeakers to control the entire region in the SH-domain and performs the adap-
tive filtering order independently. The convergence speed of “AHD” is much faster
compared to “FD,” on the other hand, it is slightly slower compared to “SHD.” How-
ever, the number of microphones and loudspeakers is less and the array geometry
is quite simple since there are only a few circular arrays, which is applicable for
practical implementation. “AHD” seems to be more sensitive to the measurement
noise compared to the other methods. One possible explanation is that “AHD” has
to solve two minimization problems, i.e., one is for solving Eq. (4.7) to calculate the
error SH coefficients and another one is for solving Eq. (4.15) to calculate the SH
coefficients of the loudspeaker outputs, hence estimating errors are accumulated.
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4.5 Summary
In this chapter, we investigated the SH-domain ANC algorithm using multiple cir-
cular arrays in 3D space. Normally, noise attenuation over a large area necessitates
uniformly distributed many microphones and loudspeakers, which limits the sys-
tem’s practicability. To alleviate this problem, we simplified the array structure by
introducing the azimuth harmonic representation of the signal. The adaptive update
of the ANC system was derived in the azimuth harmonic-domain.

In the simulation, the ANC system controlling the sound field up to a third
order was constructed using two circular microphone arrays as well as two circular
loudspeaker arrays. This simpler array structure is appropriate for use in practical
applications. Using the appropriate spherical array, the proposed method demon-
strated comparable noise attenuation performance to the reference SH-domain ANC
method. Although the simulation results demonstrated a significant improvement
in the specific condition, the arrays must be carefully designed for other situations,
such as a different frequency band, truncation order, and ROI size. One of the future
works would be a study on a systematic algorithm for determining array geometry.

The results shown in this chapter indicate that a non-spherical array structure
has the potential of attenuating the noise in a sizable 3D space. The research
presented in this chapter provided some insights into the use of multiple groups of
microphones and loudspeakers to reduce the feasibility of the array structure while
maintaining noise attenuation performance, which is the motivation for this thesis.
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Chapter 5

Array-geometry-aware spatial
active noise control based on
direction of arrival weighting

ANC over a sizable space is a challenging problem in acoustic signal processing. An
arbitrary noise field is captured and attenuated using multiple sensors and secondary
sources. This method is thought to be a progression from single-channel ANC [3–5]
to multiple-channel ANC [3,6]. One of the most widely used techniques for creating
a quiet region over a space is a multiple-channel system using the FXLMS algorithm
[11,12]. This system attempts to minimize the residual error only in the vicinity of
the error sensors. Thus, a drawback of the system is that the error sensors must be
distributed densely throughout the ROI to achieve a large quiet region.

In the context of controlling a sound field over a space, spatial sound field rep-
resentation in the harmonic-domain [58, 59], also known as mode decomposition, is
a reasonable approach. Harmonic-domain ANC methods [19, 21–24, 84–86] have a
larger quiet region and a faster convergence speed than conventional multiple-point
pressure control methods, despite having a lower computational cost. However, one
disadvantage of most of these approaches [19, 21–24] is that the sensors and sec-
ondary sources must be uniformly placed on a suitable surface, such as a sphere, to
achieve optimal performance. Although this constraint of the array geometry gives
a stable and efficient signal representation in the harmonic-domain, spherical arrays
in a 3D space with numerous sensors and secondary sources are physically difficult
to set up in practice for the following reasons: (1) the uniform sampling of a spheri-
cal surface is difficult; (2) the physical array structure becomes complex; (3) sensors
and secondary sources placed in the lower hemisphere are difficult to install.

Taking into account the feasibility of the ANC system, several attempts have
been made to reduce the number of sensors and secondary sources by introducing
a sparseness constraint [35, 63, 78, 87]. Another approach is that instead of using
a spherical array, multiple circular arrays are used to first transform signals into
azimuth harmonic coefficients [25] and then the SH coefficients are calculated in
a least-squares sense to perform ANC in the SH-domain as introduced in Chap-
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ter 4 [88]. The noise attenuation capability, on the other hand, is determined by
the array geometry. As a result, the geometry must be carefully designed based on
the results of the harmonic-domain analysis [25,82] in order to precisely capture and
generate the primary noise and antinoise fields.

In this chapter, we propose a direction of arrival (DOA) weighting method that
attempts to prioritize the controllable DOA of the sound field determined by the
secondary source geometry. We present array geometries that employ multiple hor-
izontal rings for both sensors and secondary sources, which are more practical than
spherical array geometries. We consider them to be reasonable geometries because
horizontal control of the sound field is critical for human perception due to the
height of ears. The multiple-horizontal-ring arrays have a high resolution of the
sensors and secondary sources on the azimuth angle; hence, we assume that the
DOA nearly parallel to the horizontal plane is the controllable DOA. Although a
noise field arriving from the same height as the arrays can be effectively captured
and controlled, due to the sensor and secondary source geometries, it is difficult
to attenuate a noise field arriving from other directions, i.e., above and below the
arrays. The power of the DOA distribution is defined based on the DOA weighting
and then used to formulate the cost function that will be minimized by driving the
secondary sources. Controllable harmonic orders dependent on array geometry are
prioritized without using prior knowledge of the primary noise field by appropriately
designing the DOA weighting. A numerical simulation in three-dimensional space
is used to evaluate the proposed algorithm.

5.1 Problem statement
The objective of spatial ANC is to attenuate a primary noise field in a target region
by using multiple sensors and secondary sources. We use Me error sensors, Mr

reference sensors, and L secondary sources. The error sensors are assumed to be
in a spherical region Ω that includes the target region, while the secondary source
and reference sensor arrays are outside Ω. In the practical setup, for example,
multiple-horizontal-ring geometry is used for each array, as shown in Figure 5.1.
Our goal is to achieve spatial ANC with these practical sensors and the secondary
source geometry by calculating the optimal driving signals of the secondary sources,
denoted by d = [d1, . . . , dL]

T with the transpose operator (·)T, from signals received
by error and reference sensors.

The origin is set at the center of Ω and the position vector is denoted as r = rr̂
in spherical coordinates, where r̂ is a unit vector in 3D space. The sound pressure of
wave number k at position r, denoted as S(r, k), is approximated in the SH-domain
as

S(r, k) =
N∑
ν=0

ν∑
µ=−ν

αν,µ(k)jν(kr)Yν,µ(r̂), (5.1)

where Yν,µ(·) is the (ν, µ)th-order SH function and jν(·) is the νth-order spherical
Bessel function. The truncation order N is usually determined by adopting the
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Figure 5.1: Example of the geometric setup of feedforward spatial ANC system.

criterion N = ⌈ekR/2⌉ [51] or N = ⌈kR⌉ [52], where R is the radius of the target
region. We hereafter omit k for notational simplicity. The SH coefficients αν,µ up
to the truncation number N , α := [α0,0, . . . , αN,N ]

T ∈ C(N+1)2 , can be obtained
using the observed signals from the error sensors distributed inside or around Ω, as
described in the next paragraph. As error signals, we use the global SH coefficients
α, whose expansion origin is the coordinate origin.

The global SH coefficients α can be estimated by several methods, such as uni-
formly placing error microphones on a spherical surface or distributing higher-order
microphone (HOM) as the error sensors [71]. We return to the latter method, which
is based on the translation operator [89], because it allows for greater flexibility
in the placement of the error microphones. HOMs are typically spherical/circular
microphone arrays that are intended to capture higher-order SH coefficients. We
assume that the local SH coefficient series up to the V -th order with the expansion
origin rq, denoted as α(q)

local ∈ C(V+1)2 , are obtained from the q-th HOM at rq. By us-
ing the translation operator, which relates the SH coefficients for different expansion
origins, the global and local coefficients are approximately represented as

...
α

(q)
local...

 =


...

T(q)

...

α, (5.2)

where T(·) ∈ C(V+1)2×(N+1)2 is the translation matrix. By denoting the error SH co-
efficients as αlocal := [α

(1)T
local, . . . ,α

(Q)T
local ]

T, Eq. (5.2) can be represented as αlocal = τα
with the concatenated matrix τ := [T(1)T, . . . ,T(Q)T]T ∈ CQ(V+1)2×(N+1)2 ; therefore,
the global SH coefficients α can be obtained as α = τ+αlocal, where (·)+ denotes
the Moore–Penrose pseudoinverse matrix.

In this situation, S(r) inside Ω can be expanded using the Herglotz wave function
as

S(r) =

∫
k̂∈S2

p(k̂)eik⟨k̂,r⟩dk̂, (5.3)

where the unit vector k̂ denotes the DOA of the plane wave, ⟨·, ·⟩ is the Euclidean
inner product, and the right-hand side of Eq. (5.3) is integral on the unit sphere S2.
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Figure 5.2: Block diagram of the proposed algorithm.

The DOA distribution of the plane wave p(k̂) can be expanded in the SH-domain
as

p(k̂) =
N∑
ν=0

ν∑
µ=−ν

ρν,µYν,µ(k̂) (5.4)

=:
N∑
ν=0

ν∑
µ=−ν

pν,µ(k̂). (5.5)

From Eq. (5.3) and Eq. (5.5), S(r) can be represented by the plane wave decompo-
sition in the SH-domain as

S(r) =
N∑
ν=0

ν∑
µ=−ν

∫
k̂∈S2

pν,µ(k̂)e
ik⟨k̂,r⟩dk̂. (5.6)

Note that the coefficients ρν,µ are related to the SH coefficients αν,µ as described
in [89]:

αν,µ = 4πiνρν,µ. (5.7)

From Eq. (5.7), the DOA distribution pν,µ(k̂) can be interpreted as the sound field
element of direction k̂ derived from the SH coefficients αν,µ and represented as

pν,µ(k̂) = (4πiν)−1αν,µYν,µ(k̂). (5.8)

5.2 Direction of arrival weighting
We derive an adaptive ANC algorithm with the DOA weighting based on the FXLMS
algorithm depicted in Figure 5.2. In the proposed algorithm, the driving signals d are
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obtained by the linear filtering of the observed signals from the reference sensors,
denoted as x = [x1, . . . , xMr ]

T. By denoting the truncated SH coefficients of the
primary noise field as β := [β0,0, . . . , βN,N ]

T ∈ C(N+1)2 , the global SH coefficients α
are represented as

α = β+Gd = β+GHx, (5.9)

where G ∈ C(N+1)2×L is the acoustic transfer function from the secondary sources to
the error sensors in the SH-domain and H ∈ CL×Mr is the filter coefficient matrix.

We define the power of the DOA distribution derived from the (ν, µ)-th SH
coefficient based on the plane wave decomposition in the SH-domain Eq. (5.6) as

Πν,µ =

∫
k̂∈S2
|pν,µ(k̂)|2dk̂. (5.10)

In the configuration of the secondary sources described in Section 5.1, the sound field
component from a specific DOA, such as a higher elevation direction, cannot be well
controlled by the sources. We define the cost of the power of the DOA distribution
to attenuate the controllable sound field component in the proposed algorithm by
taking the DOA weight into account. Therefore, we define the weighted power of
the DOA distribution for the (ν, µ)-th order as

Πw
ν,µ =

∫
k̂∈S2

w(k̂)|pν,µ(k̂)|2dk̂, (5.11)

where w(k̂) is the non-negative DOA weighting function. By substituting Eq. (5.8)
into Eq. (5.11), the reformulation of Eq. (5.11) in the SH-domain is obtained as

Πw
ν,µ = α∗

ν,µαν,µw̃ν,µ, (5.12)

where

w̃ν,µ =
1

(4π)2

∫
k̂∈S2

w(k̂)Yν,µ(k̂)
∗Yν,µ(k̂)dk̂. (5.13)

The proposed adaptive algorithm minimizes the instantaneous summation of the
weighted power of the DOA distribution, which is

J =
N∑
ν=0

ν∑
µ=−ν

Πw
ν,µ(ι), (5.14)

where ι represents the iteration index. We design w(k̂) according to the controllable
sound field component dependent on the secondary source geometry so that w(k̂)
becomes large for the controllable DOA k̂. From Eq. (5.12), Eq. (5.14) can be
formulated using the SH coefficients α as

J = α(ι)HWα(ι), (5.15)
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where W ∈ C(N+1)2×(N+1)2 is a diagonal matrix and (W)ν,µν,µ = w̃ν,µ. The update
rule for the filter coefficients H is derived by the LMS algorithm as

H(ι+ 1) = H(ι)− η ∂

∂H∗J (5.16)

= H(ι)− ηĜHWα(ι)x(ι)H, (5.17)

where η represents the step size of the adaptation and Ĝ is the estimated secondary
path. Note that W is independent of both k and H(ι) and can be calculated in
advance.

The proposed algorithm is closely related to the method of minimizing the
squared error of SH coefficients (αHα), which corresponds to the theoretical exten-
sion of [23] to the feedforward FXLMS algorithm. We hereafter call this method the
mode-matching-based method (MM). When w(k̂) is designed as a uniform function
in the proposed method, W becomes the identity matrix and J = αHα; therefore,
“MM” is regarded as a special case of the proposed method.

5.3 Validation
5.3.1 Experimental conditions
Methods

We compared the noise attenuation performance of the proposed method with “MM.”
(i) “MM” corresponding to the conventional mode-matching-based algorithm, which

can be considered as the uniformly weighted case of the proposed method;

(ii) “Proposed” corresponding to the proposed method utilizing the DOA weighting.
The details of the definition of the weighting function are described below.

Geometrical setup

The geometrical setup of the arrays is illustrated in Figure 5.3. Instead of using
a fully surrounding spherical array geometry for the sensor and secondary source
arrays, multiple-horizontal-ring arrays were introduced, which can be considered as
a practical geometry. We considered two circular loudspeaker arrays placed at the
elevations of θ(sec)1 = 0 and θ

(sec)
2 = π/6. The loudspeaker arrays consisting of 16

loudspeakers per ring were used to produce an antinoise sound field. The distance
to each loudspeaker array was 0.4 m from the coordinate origin. The two horizontal
ring-shaped RMAs, each with 16 microphones, were positioned at the same elevation
as the loudspeaker arrays, 0.5 m from the coordinate origin. The residual noise
field was recorded by the error microphones’ HOMs. Each HOM consisted of four
microphones uniformly placed on a sphere with a radius of 0.1 m, which captures
up to first-order local SH coefficients. Eight HOMs were placed 0.2 m from the
coordinate origin at the vertices of a cube. The simulations were carried out in a
three-dimensional free field.
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𝑥−𝑦 plane

Reference mic
Loudspeaker
Error microphone array

Figure 5.3: Geometrical setup of the arrays.

Noise signal

We placed a point source of white noise as the primary noise source. To evaluate the
noise attenuation performance dependent on the direction of the primary source, two
different heights of the primary source were simulated. Each error and the reference
microphone output were subjected to white Gaussian noise with a signal-to-noise
ratio of 40 dB.

Evaluation metric

The noise attenuation performance was evaluated by defining the regional noise
reduction (RNR) inside the region as

RNR(n) = 10 log10

∑
i |S(0)(ri)|2∑
i |S(ι)(ri)|2

, (5.18)

where S(ι)(ri) is the residual error at the i-th grid point in the evaluation region at
the ι-th iteration and S(0)(ri) is the initial noise field at the i-th point. We defined
the two evaluation regions S1 and S2 shown in Figure 5.4 as horizontal circular
regions at heights of z = 0 m and z = 0.05 m, respectively. Each circular region was
inscribed in a sphere with a radius of 0.2 m placed at the coordinate origin. There
were 1876 and 1780 uniformly sampled grid points in S1 and S2, respectively.

5.3.2 Analysis of weighting matrix
We defined a binary weighting function as a simple case according to the loudspeaker
array geometry, which only depends on the elevation θ, as

w(k̂) =

{
1 (θ

(w)
1 < θ < θ

(w)
2 )

0 (otherwise).
(5.19)
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Figure 5.4: Definition of the evaluation regions.

(a)

Low priority

High priority

(b)

Figure 5.5: Comparison of weighting functions: (a) Uniform weighting. (b) Binary
weighting.

Since the multiple horizontal rings of loudspeakers have a high resolution on the
azimuth angle, the DOA nearly parallel to the x-y plane should be prioritized as the
controllable direction. Therefore, we defined the weighting function with θ

(w)
1 = 0

and θ
(w)
2 = π/12. This weighting prioritizes the DOA nearly parallel to the x-y

plane. The weighted power of the DOA distribution using the uniform weighting
function and binary weighting function is illustrated in Figure 5.5.

Once the DOA weighting function is defined, the SH-domain weighting coef-
ficient can be calculated by Eq. (5.13). We used the Gauss–Kronrod quadrature
formula [90] to approximate the integral calculation because there is no analytical
solution for the defined weighting function. Figure 5.6 depicts the power of the
weighting coefficient for each order and degree. From the figure, we can see that
the even orders, which make the main contribution to the sound field close to the
x-y plane, have large weights. Moreover, the weights with ν = µ have a larger value
than the other even-order weights.
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Figure 5.6: SH-domain weighting coefficients w̃ν,µ.

5.3.3 Noise attenuation performance
We compared the proposed method with “MM” under the same array geometries
as described in Section 5.3.1. Note that the truncation order was determined by
N = ⌈krtar⌉, where rtar = 0.2 m is the radius of the target region.

The noise attenuation performance for the frequency range of 100 Hz to 1000 Hz
is shown in Figure 5.7. The result was obtained by calculating the average of
10 random sequence patterns of noise. The primary noise source was placed at
(x, y, z) = (0.0, 3.0, 0.2) m. The primary source was placed near the x-y plane, as
illustrated in Figure 5.8a. At all frequencies, we can see that the proposed method
outperforms “MM.” In S1 and S2, “MM” performed nearly identically, whereas the
proposed method significantly reduced noise in S1, indicating that the weighted cost
function was appropriate for the array geometry.

Figure 5.9 shows the convergence performance at 500 Hz. Both “MM” and the
proposed method showed similar convergence performance characteristics, whereas
the proposed method gave a higher RNR than “MM.” This implies that the DOA-
weighted cost function Eq. (5.15), as written, is appropriate for the array geometry.
The power distribution of the residual noise field on the x-y plane after 500 iterations
of adaptive processing at 500 Hz is shown in Figure 5.10. The RNR in S1 for “MM”
was 11.75 dB, while the proposed method had an RNR of 17.52 dB.

5.3.4 Noise attenuation performance of higher source posi-
tion

We moved the primary noise source to a higher position (x, y, z) = (0.0, 1.0, 3.0) m
as illustrated in Figure 5.8b to evaluate the robustness of the methods. Figure 5.11
shows the result. Although the proposed method’s performance degraded rapidly
above 600 Hz, we can see that the overall tendency was the same as when the noise
source was close to the x-y plane. Figure 5.12 shows the power distribution of the
residual noise field on the x-y plane (z = 0) and the higher plane (z = 0.05). We can
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Figure 5.7: Regional noise reduction inside the target region for various frequencies.

Primary
noise

𝑥−𝑦 plane

(a) (b)

Figure 5.8: Positional relationship between the primary source and loudspeaker
array: (a) Primary source placed close to the x-y plane. (b) Primary source placed
at the higher position.

see that on the z = 0 plane, the residual noise of “Proposed” was lower than “MM.”
By contrast, the residual noise on the z = 0.05 plane remained for both methods.
This indicates that the noise signal impinging from the higher elevation angle was
difficult to attenuate using the array structure used in the simulation. Although
the z = 0 plane was also affected by this difficult situation in “MM,” “Proposed”
managed to attenuate the plane to some extent.

Regarding the practical environment, sound reflections from the ceiling and floor
may affect the performance. Placing sound-absorbing materials on the ceiling and
floor, for example, could reduce the noise field impinging from directions where the
noise field is difficult to attenuate. As a result, performance degradation at high
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Figure 5.9: Regional noise reduction at 500 Hz for each iteration index.
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Figure 5.10: Residual noise field after 500 iterations of FXLMS algorithm: (a) “MM.”
(b) “Proposed.” The reference microphones, secondary loudspeakers, and error mi-
crophones are represented by gray dots, blue triangles, and red dots, respectively.
It should be noted that all microphones and loudspeakers are projected to the x-y
plane.

frequencies would be reduced.
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Figure 5.11: Regional noise reduction inside the target region for various frequencies.

5.4 Summary
In this chapter, we proposed the SH-domain ANC algorithm utilizing the DOA
weighting, which controls the noise field attenuation in terms of direction. Tradi-
tionally, the direction of noise propagation was treated uniformly. To put it another
way, noise components impinging from any direction were designed to be attenuated.
As a result, spherical arrays of microphones and loudspeakers with uniform distri-
bution were required. However, this limits the system’s practicability. To tackle
the problem, we investigated the approach to give the DOA weighting in the LMS
procedure according to the array geometry, which leads the system to a reasonable
solution.

In the simulation, the proposed method outperformed the conventional “MM”-
based algorithm using a nonuniform array geometry, for which it can be considered
difficult to control coefficients of all orders. Because of the lack of microphones
and loudspeakers in the vertical direction, the noise from the higher position was
difficult to attenuate by the circular arrays. Although the conventional method
degrades significantly in this condition, the proposed method maintains its attenu-
ation performance. This can be considered that the LMS update was not too much
affected by the vertical components of the noise field, which will be an unstable
solution seeking due to less number of microphones and loudspeakers.

The DOA weighting function can be intuitively defined based on the secondary
source array geometry without any prior information of the primary noise field.
One of the future projects will be to investigate the reasonable weighting function.
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Figure 5.12: Residual noise field after 500 iterations of FXLMS algorithm:
(a) “MM” (z = 0). (b) “Proposed” (z = 0). (c) “MM” (z = 0.05). (d) “Pro-
posed” (z = 0.05).

A closed-form function can also be defined as the weighting function, allowing the
numerical integration to be replaced by the analytical one, resulting in less numerical
error.

The study in this chapter showed the validity of the use of non-spherical arrays.
Compared to Chapter 4, the array geometry is not restricted to the circular shape,
therefore there is more degree of freedom in designing the array structure.
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Chapter 6

Spatial active noise control using
sparse decomposition of reference
signals from distributed sensor
arrays

We previously introduced the CS approach to reduce the number of reference mi-
crophones and showed that noise can be attenuated by using several microphones
that is smaller than a number required by the spatial Nyquist theory [78]. Because
CS is based on the assumption that the columns of a sensing matrix are mutually
incoherent, the reproduction accuracy at low frequencies is limited [91]. However,
at low frequencies, they are generally highly coherent [66, 92, 93]. To overcome this
problem, CS has been applied to SH coefficients [94, 95].

In this chapter, we focus on reference signal reconstruction and exploit its effi-
cient representation by utilizing the inherent spatial sparseness of the noise field. As
previously stated, RMA takes up a lot of space and limits system performance due to
spatial aliasing; thus, we investigate sparse recovery of reference signals to improve
both system viability and performance. The flexibility of the RMA structure and
placement is achieved by combining the sparse recovery with the translation of the
field [89] based on the addition theorem [96]. The sensing matrix is transformed into
orthonormal space, which improves low frequency reconstruction accuracy. Further-
more, using CS to represent signals compactly improves performance at frequencies
higher than the spatial Nyquist frequency. Another fundamental issue with har-
monic expansion-based sound field representation is that outgoing and incoming
sound fields must be considered separately [36]. This is due to the harmonic ex-
pansion being based on a complete set of solutions to the homogeneous Helmholtz
equation, which does not allow any sound sources to existing inside a closed region
when an incoming sound field is considered. In a practical setup, however, the ex-
istence of sound sources inside the ROI is easily assumed. Regarding this problem,
the proposed method describes the sound field in a sparsely represented manner and
estimates the spatial noise source distribution. We can define target noise sources as
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Figure 6.1: System model of the interior sound field constructed using different RMA
structures: (a) ROI fully surrounded by RMA. (b) Compactly distributed RMAs.

those that are expected to be attenuated and nontarget noise sources as those that
are expected to be ignored based on the distribution. Nontarget sources, such as
those found within the ROI, can be eliminated from the ANC processing, resulting
in increased system robustness.

The main contributions in this chapter are as follows: (1) Generalization of the
SH-domain reference signal representation utilizing the translation of the field, which
can be applied to an arbitrary RMA structure; (2) Improvement of aforementioned
low frequency accuracy in CS by transforming signals into the SH-domain; (3) In-
creasing the system robustness by compensating the spatial noise source distribution
of both the interior and exterior sound fields. To summarize, our proposed method
allows for greater flexibility in reference microphone placement, which increases sys-
tem viability. Furthermore, for the aforementioned problem associated with the
composite noise field of outgoing and incoming sound fields, system robustness is
increased.

6.1 Problem statement
An interior noise field attenuation in a sizable 3D space is usually achieved by
surrounding an ROI with a large number of sensors and loudspeakers. As shown
in Figure 6.1a, one of the best configurations for performing SH-domain ANC is to
place spherical arrays of error microphones, secondary loudspeakers, and reference
microphones around a global origin, i.e., the center of the ROI, to surround the ROI.
Because the reference signals of a noise field must be captured before the noise wave
front arrives at the ROI, the RMA must be placed in the farthest location to satisfy
the causality constraint. Therefore, the RMA becomes relatively large, which may
be difficult to construct in practice. Furthermore, to avoid spatial aliasing, a large
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number of microphones are required to fill the gap between the microphones. The
basic idea in dealing with these issues is based on the assumption of a practical
situation, namely that the positions of the noise sources are known and the noise
sources are sparsely distributed. In such a scenario, sufficient noise attenuation may
be achieved by placing the reference microphones closer to the possible noise source
direction(s), as shown in Figure 6.1b. Hereafter, the center points of distributed
RMAs are referred to as local origins.

Now, let us consider an arbitrary noise field S(r) in the free field at position r
within the ROI, Ω. In contrast to the homogeneous Helmholtz equation Eq. (2.2),
S(r) satisfies the inhomogeneous Helmholtz equation [97, 98] when we assume that
the sound sources exist inside the region:

(∇2 + k2)S(r) = −ρ(ps)int (r), (6.1)

where ρ(ps)int (r) is the distribution of point sources inside the region Ω. By approximat-
ing ρ(ps)int (r) as a linear combination of Lps,int point sources, S(r) can be represented
as a sum of the particular and homogeneous solutions [29, 99]:

S(r) = SP(r) + SH(r). (6.2)

The particular solution can be described as a convolution of ρ(ps)int (r
′) and the acoustic

transfer function inside Ω:

SP(r) =

∫
r′∈Ω

ρ
(ps)
int (r

′)G(r|r′)dr′ ≈
Lps,int∑
ℓ=1

γ
(ps)
ℓ,intG(r|r

′
ℓ,int), (6.3)

where G(r|r′) is the free field Green’s function between r and r′, γ(ps)ℓ,int is the complex
amplitude of the ℓ-th source inside Ω, and r′ℓ,int is the source position inside Ω. The
homogeneous solution can be described as a superposition of plane waves, which is
referred to as the Herglotz wave function as

SH(r) =

∫
r̂∈S2

ρ(pw)(r̂)eikr̂·rdr̂, (6.4)

where S2 is the unitary sphere, ρ(pw)(r̂) is the distribution of the plane waves, and
r̂ is a unit vector toward the direction of the plane wave. We also consider the
solution’s approximation by discretizing the direction of plane waves. In the plane
wave domain, a sound field composed of far-field sources can be decomposed into
a sparse set of weights. A sound field composed of near-field sources, on the other
hand, can be expressed by the superposition of a few point sources. The combination
of these two types of sound sources enables a sparse signal representation of diverse
sound fields. Therefore, we introduce the model of SH(r) as a sum of the plane
waves and point sources:

SH(r) ≈
Lpw∑
ℓ=1

γ
(pw)
ℓ eikr̂ℓ·r +

Lps,ext∑
ℓ=1

γ
(ps)
ℓ,extG(r|r

′
ℓ,ext), (6.5)
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where γ
(pw)
ℓ and γ

(ps)
ℓ,ext are the complex amplitudes of the plane waves and point

sources, respectively, which exist outside Ω, Lpw and Lps,ext is the number of the
plane waves and point sources, respectively, and r′ℓ,ext is the source position outside
Ω. From Eqs. (6.3) and (6.5), we describe the solution to Eq. (6.1) as

S(r) ≈
Lpw∑
ℓ=1

γ
(pw)
ℓ eikr̂ℓ·r

+

Lps,ext∑
ℓ=1

γ
(ps)
ℓ,extG(r|r

′
ℓ,ext) +

Lps,int∑
ℓ=1

γ
(ps)
ℓ,intG(r|r

′
ℓ,int). (6.6)

Now, we assume that Lmic microphones are placed inside Ω to capture the noise
field. We discretize the integration into a sum of L = Lpw + Lps,ext + Lps,int defined
grid points as shown in Eq. (6.6), and we derive the total noise field captured at the
microphone position S = [S(r1), . . . , S(rLmic

)]T as a sum of finite point sources and
plane waves:

S = Hγ, (6.7)
where H is the sensing matrix consisting of the basis functions of the point sources
and plane waves, and γ ∈ CL×1 is the distribution of the point source and plane
wave. In sparse decomposition, Eq. (6.7) is set to be an underdetermined problem
and the matrix H is the so-called over-complete dictionary, which usually has a dense
resolution of the spatial discretization. The total primary noise field is described by
the noise distribution γ. This work’s problem model is similar to that of [100]. The
distinction is in the definition of the sensing matrix. An acoustic transfer function
in the spatial (temporal frequency) domain is defined as a sensing matrix in [100].
In this work, however, a sensing matrix is defined in the SH-domain. This gives
an advantage to the system when a small microphone array is used to capture the
sound field in the low frequency. Further discussions of the difference in the sensing
matrix can be found in Sections 6.3.2 and 6.5.3.

The goal of this study is to precisely estimate the reference signals of the primary
noise field from the measurements of RMAs. Extrapolation of the noise field is
required in the array configuration shown in Figure 6.1b because the RMAs are
placed at local origins that are at different distances from the global origin. To
reproduce the same sound field in theory, at least the same number of microphones
are required in local origins as in global origins, according to the literature [101,102].
A much larger number of microphones are required for the precise reproduction of
the ROI when the distances between the local origins and the global origin are large.
Instead of increasing the number of microphones, we decompose the noise field into
a sparse set of basis functions using an SH-domain representation of the sensing
matrix and measurements in the CS framework.

Figure 6.2 shows a block diagram of the proposed method, which follows the
standard FXLMS algorithm. Acoustic feedback from the secondary sources to the
reference microphones is a common problem in ANC tasks and several solutions are
proposed in the literature [103,104]. Although, these methods can also be applied to
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Figure 6.2: Block diagram of the proposed method.
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Figure 6.3: Block diagram of the reference signal estimation part.

our system, we ignore the feedback path in this work for the sake of simplicity. Our
approach focuses on the reference signal estimation block by utilizing the sparsity of
the noise field. Figure 6.3 depicts the flow of the estimation process in detail. In the
decomposition stage, the measurements are first transformed into SH coefficients
and then decomposed into a sparse set of basis functions of the sound field, i.e.,
point sources and plane waves, followed by the reconstruction stage. Finally, the
reconstructed reference signal is input to the SH-domain FXLMS algorithm.

6.2 Spherical-harmonic-domain ANC
The basic formulation of the sound field representation and FXLMS in SH-domain
is described in Chapter 2. In this section, the detailed formulation of SH-domain
representation utilizing the CS approach is explained.
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6.2.1 Spherical-harmonic-domain adaptive filter update
As written in Eq. (2.25), the cost function of the ANC system is evaluated by
calculating the squared residual signals in SH-domain. The SH coefficient enm can
be calculated by measuring the sound field on a boundary of a sphere:

eν,µ =
1

jν(krq)

∫ 2π

0

∫ π

0

S(r)Y ∗
ν,µ(θ, ϕ) sin θdθdϕ, (6.8)

where rq is the radius of the EMA. Note that we use the orthonormality of the SH
function: ∫ 2π

0

∫ π

0

Yν,µ(θ, ϕ)Y
∗
ν′,µ′(θ, ϕ) sin θdθdϕ = δν,ν′δµ,µ′ , (6.9)

where δν,ν′ denotes the Kronecker delta function. The numerical instability caused
by the spherical Bessel function in the denominator in Eq. (6.8) is known as the
Bessel zero problem or forbidden frequency problem [89]. A rigid baffle array is
commonly used in practice to avoid this problem. Instead of using the spherical
Bessel function in (6.8), a different radial function for a rigid baffle array, bν(krq),
is introduced:

bν(krq) = jν(krq)−
j
′
ν(krq)

h
(1)′
ν (krq)

h(1)ν (krq), (6.10)

where h(1)ν (·) is the first kind of the ν-th order spherical Hankel function, and h(1)
′

ν (·)
and j ′ν(·) are the derivative of h(1)ν (·) and jν(·), respectively. The coefficient eν,µ can
be calculated as

eν,µ =
1

bν(krq)

∫ 2π

0

∫ π

0

S(r)Y ∗
ν,µ(θ, ϕ) sin θdθdϕ. (6.11)

Alternatively, one can use either a dual-radius open spherical array [105], multiple
rigid spherical arrays [71], or multiple flat arrays [106] to avoid the Bessel zero
problem.

In practice, the SH coefficient can be calculated from the error microphone signal,
Se(ra), by discretizing the sound field on a sphere based on the quadrature method
described in [89]:

eν,µ ≈
1

bν(krq)

A∑
a=1

ΛaSe(ra)Y
∗
ν,µ(θa, ϕa), (6.12)

where A is the total number of the sampling points and Λa is the sampling weights.
In the SH-domain FXLMS algorithm, the reference SH coefficients x are used

to generate the SH coefficients of the antinoise noise field as z = gxw, as well as to
update the adaptive filter w using Eq. (2.27). As a result, accurate estimation of the
reference SH coefficients is critical for both noise attenuation and filter convergence
performance. Sections 6.3 and 6.4 describe the method for estimating the reference
SH coefficients.
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Figure 6.4: Column coherence between a given direction (θ1, ϕ1) = (π/2, 0), which
is shown as a red solid circle, to other directions of the plane wave sensing matrix:
(a) 500 Hz. (b) 1000 Hz. Each dot represents a single plane wave direction as well
as a point source position. The first row represents the result of the spatial-domain
sensing matrix, and the second row represents the result of the SH-domain sensing
matrix.

6.3 Sparse decomposition of noise field
6.3.1 CS applied to spherical-harmonic-domain signals
We derive an SH-domain sensing matrix and measurement signals in the CS frame-
work to efficiently decompose a noise field into a sparse set of basis functions. We
assume that all noise sources exist outside of the ROI in this case. As described in
(6.5), an arbitrary noise field can be expressed as a sum of plane waves and point
sources that exist outside the ROI. An SH-domain representation can be derived
by applying the SH expansion of a plane wave [38],

eikr̂·r =
∞∑
ν=0

ν∑
µ=−ν

4πi−νY ∗
ν,µ(θs, ϕs)︸ ︷︷ ︸

ψ
(pw)
ν,µ (r̂)

jν(kr)Yν,µ(θ, ϕ), (6.13)
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Figure 6.5: Column coherence between a given point (x1, y1) = (0, 0.5), which is
shown as a red solid circle, to other points of the point source sensing matrix:
(a) 500 Hz. (b) 1000 Hz. Each dot represents a single plane wave direction as well
as a point source position. The first row represents the result of the spatial-domain
sensing matrix, while the second row represents the result of the SH-domain sensing
matrix.

and that of a point source [36],

G(r|r′) =
∞∑
ν=0

ν∑
µ=−ν

−ikh(1)ν (krs)Y
∗
ν,µ(θs, ϕs)︸ ︷︷ ︸

ψ
(ps)
ν,µ (r′)

×jn(kr)Ynm(θ, ϕ), (6.14)

where (rs, θs, ϕs) is the source position and ψ(pw)
ν,µ (r̂) and ψ(ps)

ν,µ (r′) is the SH coefficients
of the plane wave and point source, respectively. From Eqs. (2.4), (6.5), (6.13),
and (6.14), an SH-domain representation of the noise field can be described as

αν,µ ≈
Lpw∑
ℓ=1

γ
(pw)
ℓ ψ

(pw)
ν,µ,ℓ +

Lps∑
ℓ=1

γ
(ps)
ℓ ψ

(ps)
ν,µ,ℓ, (6.15)

where Lpw and Lps are the numbers of the grid directions and points of the plane
wave and point source, respectively. The matrix form of Eq. (6.15) can be derived
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by truncating the order of SH expansion in a sufficient order, which can be written
as

α = ψγ, (6.16)
where

ψ = [ψ(pw)ψ(ps)] (6.17)

=

 ψ
(pw)
0,0,1 · · · ψ

(pw)
0,0,Lpw

ψ
(ps)
0,0,1 · · · ψ

(ps)
0,0,Lps... . . . ... ... . . . ...

ψ
(pw)
N,N,1 · · · ψ

(pw)
N,N,Lpw

ψ
(ps)
N,N,1 · · · ψ

(ps)
N,N,Lps


and

γ = [γ
(pw)
1 , . . . , γ

(pw)
Lpw

, γ
(ps)
1 , . . . , γ

(ps)
Lps

]T. (6.18)
One way of finding the optimal solution of Eq. (6.16) is to assume the spatial

sparsity of γ and solve the following minimization problem:

minimize
γ

∥α−ψγ∥22 + λ∥γ∥pp, (6.19)

where the operator ∥ · ∥p(0 < p ≤ 1) indicates the ℓp-norm. The first term of
Eq. (6.19) represents the approximation error and the second term is introduced to
induce a sparse solution [68], where the parameter λ balances both terms. There
are several algorithms for solving the problem [69, 107–109]. Although the sensing
matrix is described in the SH-domain, the sparsity constraint is still imposed on the
spatial source distribution γ.

6.3.2 Coherence of sensing matrix
The performance of the CS in (6.19) highly depends on the coherence of the sensing
matrix. One way to measure the coherence is to calculate the Gram matrix Γ [66]:

Γij =
∥hH

i hj∥2
∥hi∥2∥hj∥2

, (6.20)

where each (i, j) element in Γ is the normalized inner product of the columns hi and
hj of the sensing matrix H.

Sensing matrices for the plane waves can be described as

E =

 eikr̂1·r1 · · · eikr̂Lpw ·r1

... . . . ...
eikr̂1·rLmic · · · eikr̂Lpw ·rLmic

 (6.21)

in the spatial-domain and ψ(pw) in the SH-domain, respectively. Likewise, sensing
matrices for the point sources can be described as

G =

 G(r1|r′1) · · · G(r1|r′Lps
)

... . . . ...
G(rLmic

|r′1) · · · G(rLmic
|r′Lps

)

 (6.22)
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Figure 6.6: Array structure and grid point configuration: (a) Grid points of the
exterior field. (b) Grid points of both interior and exterior sound fields for the inner
RMAs. The light and dark regions correspond to the exterior and interior fields,
respectively. (c) Grid points of both interior and exterior sound fields for the outer
RMAs.

in the spatial-domain and ψ(ps) in the SH-domain, respectively. By plotting a col-
umn of the Gram matrix Γi1, the direction- and position-dependent coherence can be
visualized for the sensing matrices E, ψ(pw), G, and ψ(ps). In Figures 6.4a and 6.4b,
Γi1 indicates the correlation between one direction (θ1, ϕ1) = (π/2, 0) and all other
possible directions (θi, ϕi), while in Figures 6.5a and 6.5b, Γi1 indicates the correla-
tion between one point (x1, y1) = (0.5, 0) and all other possible directions (xi, yi).
Note that only the grid points in the x-y plane is considered for the better visibility.
974 grid directions of plane waves are defined based on the Lebedev quadrature
scheme [110]. 960 grid points are uniformly placed in a 3 × 3 m region for point
sources. The measurement points are sampled uniformly on the surface of a 0.1-m-
radius sphere. The points’ positions correspond to the vertexes of a dodecahedron’s
20 faces. The figure shows that the source distributions of closely located two point
sources, as well as two plane waves, are difficult to estimate separately using the
spatial-domain sensing matrix, particularly at low frequencies, because the majority
of the matrix’s columns are highly correlated. In contrast, the SH-domain sensing
matrix shows a high correlation only at relatively close directions and positions at
around (θ1, ϕ1) and (x1, y1). Also, note that the SH-domain sensing matrix based
on the plane wave is frequency invariant.

6.3.3 Translation of interior spherical harmonic coefficients
One straightforward way to capture the interior SH coefficient αnm of the primary
noise field in Eq. (2.4) from observations of the noise field S(r) is to place an RMA
to the coordinate origin. In this setup, the ROI is surrounded by an RMA as
shown in Figure 6.1a. However, it is difficult to implement distribution of reference
microphones to sample the region’s surface. Alternatively, we can apply the concept
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of distributed HOMs, i.e., typically a spherical or circular microphone array, which is
designed to capture the higher-order harmonics, to capture the noise field of a large
space with distributed arrays [71]. By clustering the microphones, we can reduce the
total number of units instead of uniformly distributing many microphones to enclose
the entire ROI. Figure 6.6a depicts the array structure as well as the defined grid
points. We define the interior field as the inside region, whose boundary is a sphere
of radius Rq, which is shown in white in Figure 6.6a. Note that we choose the
outermost local origin Oq to define the boundary. Each RMA should be able to
extract SH coefficients up to a certain order. To capture SH coefficients, spherical
arrays or any other 3D array structure mentioned in Section 6.2.1 with a sufficiently
large aperture can be used. In this method, the translation relationship of SH
coefficients among different expansion origins is utilized to estimate the global SH
coefficients by placing HOMs to the local origin Oq:

S
(q)
H (r) =

∞∑
v=0

v∑
u=−v

α(q)
v,ujv(kr

′)Yv,u(θ
′, ϕ′), (6.23)

where

α(q)
v,u =

∞∑
ν=0

ν∑
µ=−ν

αν,µT
µ,u
ν,v (rq). (6.24)

T µ,uν,v (rq) is the translation coupling coefficient [38, 96] between the local and global
interior SH coefficient, where rq = (Rq, θq, ϕq) is the position of the q-th local origin.
Note that we assume the noise sources do not exist inside each HOM. Taking into
account all Q HOMs, we can construct the following matrix formulation:

αlocal = τψγ, (6.25)

where

αlocal = [α
(1)T
local, . . . ,α

(Q)T
local ]

T ∈ CQ(V+1)2 (6.26)

and

τ = [T(1)T, . . . ,T(Q)T]T ∈ CQ(V+1)2×(N+1)2 . (6.27)

αlocal and τ consist of Q vectors and matrices, whose q-th block elements are α(q)
local =

[α
(q)
0,0, . . . , α

(q)
V,V ]

T and

T(q) =

T
0,0
0,0 (rq) · · · TN,0N,0 (rq)

... . . . ...
T 0,V
0,V (rq) · · · TN,VN,V (rq)

 ∈ C(V+1)2×(N+1)2 . (6.28)

The truncation order of the global coefficient N is determined to make the sensing
matrix, τψ, a full-rank matrix. This can be achieved by choosing a sufficiently large
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order, which satisfies (N + 1)2 ≥ Q(V + 1)2. As shown in Figure 6.6a, the grid
points of the point source are defined to be in the exterior field, which is outside of
the outermost-positioned RMAs. The local SH coefficient α(q)

u,v can be calculated by
measuring the sound pressure on a boundary of a sphere to the local origin Oq:

α(q)
u,v ≈

1

bν(kr̄q)

A∑
a=1

ΛaS
(q)
r (ra)Y

∗
ν,µ(θa, ϕa), (6.29)

where r̄q is the radius of the q-th RMA and S
(q)
r (ra) is the reference signal of the

q-th RMA.
Finally, the spatial noise distribution γ can be estimated by solving the following

minimization problem:

minimize
γ

∥αlocal − τψγ∥22 + λ∥γ∥pp. (6.30)

6.3.4 Translation of interior and exterior SH coefficients
A typical setup of SH-domain spatial ANC assumes noise sources propagating from
the exterior field. Therefore, the interior problem of a sound field is usually consid-
ered. The ROI is assumed to be free of any sound sources in the interior problem.
When this assumption is violated (i.e., sound sources exist in the region), sound
field estimation fails. To improve the robustness of the ANC system, we devised
method for taking into account both an interior and an exterior sound field. The
considered array structure and the grid points are illustrated in Figures 6.6b and
6.6c. It is worth noting that the boundary of the interior and exterior fields can be
defined in a variety of ways, and it is determined by the local origin on which the
focus is placed.

In analogy to the interior sound field representation, the exterior sound field can
be written as

SP(r) =
∞∑
ν=0

ν∑
µ=−ν

β̆ν,µh
(1)
ν (kr)Yν,µ(θ, ϕ), (6.31)

where β̆ν,µ is the SH coefficient of the exterior field, and h
(1)
ν (·) is the first kind of

the ν-th-order spherical Hankel function. From Eqs. (2.4) and (6.31), a composite
noise field at a boundary of the interior and exterior sound field can be written as

S(r) =
∞∑
ν=0

ν∑
µ=−ν

[ αν,µjν(kr)Yν,µ(θ, ϕ)

+β̆ν,µh
(1)
ν (kr)Yν,µ(θ, ϕ) ] . (6.32)

The translation relationship for the interior field in Eq. (6.23), as well as for the
exterior field, can be applied to Eq. (6.32), which leads to

S(r) =
∞∑
v=0

v∑
u=−v

[ α(q)
v,u + β(q)

v,u︸ ︷︷ ︸
ζ
(q)
v,u

] jv(kr
′)Yv,u(θ

′, ϕ′), (6.33)
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where

β(q)
v,u =

∞∑
n=0

ν∑
µ=−ν

β̆ν,µT̆
µ,u
ν,v (rq). (6.34)

T̆ µ,uν,v (rq) is the translation coupling coefficient [38, 96] between the local interior
SH coefficient β(q)

v,u originating from the interior sources and the global exterior SH
coefficient β̆ν,µ.

Finally, taking into account all Q HOMs and applying the translation relation-
ships in Eqs. (6.24) and (6.34), we derive the following matrix formulation:

ζlocal =


τ(1)

τ(2)

. . .
τ(Q)



Ψ(1)

Ψ(2)

...
Ψ(Q)

γ, (6.35)

where ζlocal = [ζ
(1)T
local, . . . , ζ

(Q)T
local ]

T ∈ CQ(V+1)2 , τ(q) = [T(q), T̆(q)], and

Ψ(q) =

[
ψ(q) O

O ψ̆
(q)

]
∈ C2(N+1)2×L.

ψ̆
(q) corresponds to the q-th sensing matrix consisting of exterior point source basis

functions and L is the total number of the grid directions and points correspond to
both the interior and exterior sound fields. Similar to Eq. (6.28), T̆(q) can be written
as

T̆(q) =

 T̆
0,0
0,0 (rq) · · · T̆N,0N,0 (rq)

... . . . ...
T̆ 0,V
0,V (rq) · · · T̆N,VN,V (rq)

 ∈ C(V+1)2×(N+1)2 . (6.36)

In contrast to Eq. (6.25), we define different sensing matrices Ψ(q) for every Q lo-
cal origin since the distance between the global origin and the local origin defines
the boundary between the interior and exterior sound fields, as illustrated in Fig-
ures 6.6b and 6.6c. A sparse set of weights can be estimated by solving the following
minimization problem:

minimize
γ

∥ζlocal − τΨγ∥22 + λ∥γ∥pp. (6.37)

If all the RMAs are placed at the same radius from the global origin, all sensing
matrices Ψ(q) become equivalent, which we denote as Ψ(0). Therefore, the matrix
formulation can be simplified as

ζlocal =


τ(1)

τ(2)

...
τ(Q)

Ψ(0)γ. (6.38)
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(a) (b)

Figure 6.7: Definition example of target and nontarget grid points: (a) Illustration
of a boundary of the target region. (b) Overall configuration.

6.4 Reconstruction of reference SH coefficient
In this section, we describe the reference signal reconstruction stage of our proposed
method shown in Figure 6.3. The estimated spatial noise distribution γ̂ and a re-
construction matrix can be used to reconstruct the reference SH coefficients. By
defining the appropriate reconstruction matrix, the reference signal can be recon-
structed in a variety of ways. We discuss several definitions of the reconstruction
matrix, which is required to run the SH-domain FXLMS algorithm.

First, let us assume that only incoming noise sources exist in the exterior field,
which is the same configuration discussed in Section 6.3.3. Note that the grid points
of the point source are defined to be outside of the outermost-positioned RMA,
as shown in Figure 6.6a. Since the global interior SH coefficients of the reference
signals are required, we define a reconstruction matrix as Π = ψ̃, which is the
order-truncated sensing matrix in the global SH-domain. Ñ is the required order
in the following ANC processing. Thus, the global SH coefficients of the reference
signals can be calculated as

x = Πγ̂. (6.39)
The proposed algorithm is summarized in Algorithm 1. We use M-FOCUSS al-
gorithm [109] to estimate γ̂. As shown in Algorithm 1, M-FOCUSS is nested in
the adaptive ANC processing, hence this structure is computationally expensive in
general. We did, however, confirm that by initializing γ̄ with γ̂, which was the
last value in the previous iteration, only a few iterations were required to satisfy
M-FOCUSS’s termination condition. This is because when the noise sources have
the same distribution, the spatial sparsity does not change. As a result, if the distri-
bution of noise sources does not change rapidly, the computational complexity can
be reduced.
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Algorithm 1: Proposed algorithm
i = 1; Initialize w[i]← 0;
while i reaches last frame number do
αlocal[i] = [α

(1)
0,0[i], . . . , α

(Q)
N,N [i]]

T;
Update αlocal[i] by calculating Eq. (6.29);
Update e[i] by calculating Eq. (6.12);
j = 1; Initialize γ̄[j]← γ̂[i− 1];
// M-FOCUSS
while stop = 0 and j is smaller

than predefined maximum value do
W [j]← diag(γ̄[j](1−p/2));
Q[j]←

[
(ψW [j])HψW [j] + λI

]−1
(ψW [j])Hαlocal[i];

γ̄[j]← W [j]Q[j];
if Termination condition is satisfied then
γ̂[i]← γ̄[j];
stop = 1;

end
j ← j + 1;

end
x[i]← Πγ̂[i];
z[i]← gx[i]w[i];
w[i+ 1]← w[i]− η(gx[i])He[i];
i← i+ 1;

end

Next, we consider the general setup shown in Figures 6.6b and 6.6c, where both
the interior and exterior noise sources exist. The exterior noise sources are repre-
sented by target grid points, from which the noise source is expected to be attenu-
ated, whereas nontarget grid points represent the interior noise sources. We define
the reconstruction matrix as Π = [ψ̃, O] ∈ C(Ñ+1)2×L, where Π is now a recon-
struction matrix consisting only of the interior field basis functions ψ̃. The global
SH coefficients of the reference signals can be reconstructed using Eq. (6.39). As
a result, nontarget noise sources corresponding to the interior noise sources can be
removed from the reconstructed reference SH coefficients.

Now, we show a practical definition of the target grid point rtar based on the
distance between the local origins and the global origin. Because of the causality
constraint, noise attenuation cannot be achieved in a feedforward structure when
a grid point is closer to the global origin than to any local origins where an RMA
exists. This is because a noise wavefront propagates to the ROI before it is captured
by the RMA. Let us consider the distance ROq , which is from a grid point to the
farthest reference microphone of q-th RMA, and RO, which is from a grid point to
the nearest point of ROI. The two distances are shown in Figure 6.7a. The noise
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Figure 6.8: Regional noise reduction with the on-grid condition after 100 iterations
of FXLMS algorithm for various frequencies. f

(ref)
Nyq and f

(err)
Nyq are the Nyquist fre-

quencies of RMA and EMA, respectively.

wavefront has to be captured by all reference microphones of at least one RMA
before it arrives at ROI. Therefore, we define the target grid point as a point that
satisfies ROq < RO. We denote r

(q)
tar ∈ Ωq as the target grid point for the q-th local

origin, where Ωq is the target region defined for Oq. Finally, the target grid point
can be defined as a point inside a union of each region Ωq as rtar ∈ {Ω1 ∪ · · · ∪ΩQ}.
The overall model is described in Figure 6.7b. We can then define the reconstruction
matrix by using only the interior basis functions corresponding to the grid point rtar.

The target and nontarget grid points can be arbitrarily defined in the recon-
struction stage. The reconstruction matrix can be defined using prior information
from the target and nontarget regions. As a result, nontarget noise sources are
passed through, while only target noise sources propagating from the target region
are attenuated.

6.5 Validation
6.5.1 Experimental conditions
Methods

We evaluated and compared the noise attenuation level among the following meth-
ods:
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(i) “BL-MIMO” corresponds to the temporal-frequency-domain feedforward FXLMS
algorithm [3];

(ii) “BL-MD” corresponds to the SH-domain feedforward FXLMS algorithm, which
is a modification of the feedback version based on [23] using the concentric
array structure;

(iii) “SDCS” corresponds to the conventional SH-domain feedforward FXLMS al-
gorithm utilizing CS, whose sensing matrix is represented in the spatial do-
main [78];

(iv) “MDCS” corresponds to the SH-domain feedforward FXLMS algorithm utiliz-
ing CS by inputting SH coefficients for the reference signal reconstruction;

(v) “MDCS-C1” uses the same method as (ii) with only the difference in the use
of the nonconcentric array structure, whose radius of RMA is 0.1 m placed at
(0, 0.6, 0); thus, the array does not surround the entire ROI;

(vi) “MDCS-C2” uses 2 RMAs with a radius of 0.1 m, which consist of 12 micro-
phones placed on vertexes of an icosahedron. The M-FOCUSS algorithm with
p = 0.5 is used to estimate the weight, γ. Each method’s filter update equa-
tion was modified by its normalized version [111], which divided the update
term by the power of the filtered reference signals.

The step size was set to 1.0 for all methods.
The truncation order for each RMA and EMA can be calculated as Ñ = ⌈kRmic⌉,

where Rmic is the radius of the array. According to this criterion, we obtain the spa-
tial Nyquist frequencies of the RMA and EMA to be 273 Hz and 819 Hz, respectively,
for the setup of “BL-MD.”

156 points of point sources and 110 directions of plane waves, in total 266 grid
points and directions, are defined as a set of interior basis functions for the sensing
matrix. Because rotational symmetry can be assumed, we only define grid points
on the horizontal plane. It is worth noting that the grid points for the interior basis
functions are not defined within the ROI. The truncation order N of the translation
matrix described in Eq. (6.25) is heuristically determined, i.e., N = 11, to satisfy
(N + 1)2 ≥ (V + 1)2Q.

Geometrical setup

We conducted simulation studies in a 3D-free field to evaluate the noise attenuation
performance. An RMA, SLA, and EMA are arranged such that they surround the
ROI, which is the typical setup of spatial ANC. The RMA captures and feeds back
the reference noise field, whereas the EMA captures and feeds back the residual noise
field to the adaptive filter. Each error and reference microphone output receives a
signal-to-noise ratio of 40 dB white Gaussian noise. The SLA generates the antinoise
field to dampen the unwanted noise field. For the microphone arrays, we assume an
open array structure. A rigid baffle array, on the other hand, is commonly used in the
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actual implementation of a microphone array. In that case, reflections among HOMs
may be taken into account, which is analytically derived in the literature [112], to
improve the accuracy of the sound field estimation.

We considered the following array configurations:

Concentric array structure. A typical array setup of spatial ANC is a concentric
array configuration, as shown in Figure 6.1a. RMA, SLA, and EMA are all
placed at the global origin in this configuration. Microphones and loudspeak-
ers are placed on a sphere’s surface, which is sampled at 20 vertexes of a
dodecahedron to sample the sphere uniformly. In theory, a 20-channel micro-
phone array and SLA can control a sound field up to the third order. Since
SH-domain representation relies on an expansion origin, a straightforward for-
mulation can be considered with the common origin. The radii of the RMA,
SLA, and EMA are 0.6 m, 0.4 m, and 0.2 m, respectively.

Nonconcentric array structure. A generalized array setup has a nonconcentric array
configuration, as shown in Figure 6.1b. This configuration allows for greater
flexibility in RMA placement. An HOM, for example, can be placed at a local
origin. Furthermore, multiple HOMs can be placed as RMAs at multiple local
origins that do not necessarily surround the ROI. In this configuration, the
SLA and EMA are assumed to be at the global origin, while the RMAs are
assumed to be at local origins.

Noise signal

Two monochromatic point sources of white noise were used as primary noise sources.
Note that uncorrelated noises were used as the primary source signals.

Evaluation metric

The noise attenuation level was evaluated by defining the RNR inside the region as

ϵ1(ι) = 10 log10

∑
i |S(0)(ri)|2∑
i |S(ι)(ri)|2

, (6.40)

where S(ι)(ri) is the residual error at the i-th point at the ι-th iteration and S(0)(ri)
is the initial noise field at the i-th point. The evaluation region is defined as a sphere
inside the radius of EMA. There are 3544 uniformly sampled points in the region.

6.5.2 Noise attenuation performance in a concentric array
The RNR for the frequency band from 100 Hz to 1000 Hz is shown in Figures 6.8
and 6.9. An on-grid condition in which the primary sources are located at grid
points (1, 2, 0) and (0, 5, 0), as well as an off-grid condition in which the sources are
located at non-grid points (0.8, 2.2, 0) and (0.3, 5, 0), are evaluated. The result was
obtained by calculating the average of 10 simulation runs. The proposed “MDCS”
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Figure 6.9: Regional noise reduction with off-grid condition after 100 iterations of
FXLMS algorithm for various frequencies.

outperformed “BL-MIMO” and “BL-MD” in most frequency bins. It can be seen
that the spatial aliasing of the reference signal affects the performance of “BL-
MD.” On the other hand, “MDCS” can maintain its performance beyond the spatial
Nyquist frequency of RMA. Figure 6.10 shows the convergence performance and
Figure 6.11 shows the residual noise field on x-y plane after 100 iterations of ANC
at 500 Hz. To smooth the fluctuation of the result caused by the random amplitude
of the primary noise source and measurement noise, a simple moving average is
calculated over 10 neighbor iterations. Figure 6.10 shows that among the methods,
the proposed method provides the highest RNR with the fewest iterations.

We compared the computational complexity of the filter update among “BL-
MIMO,” “BL-MD,” and “MDCS,” which were O(Ls(Le + Lr)), O((N + 1)2), and
O(LL2

r ), respectively. Le and Lr are the number of the error and reference micro-
phones, respectively. Le and Lr are usually larger than (N + 1)2; thus “BL-MD”
has the least computational complexity. Although “MDCS” requires iterative pro-
cessing in M-FOCUSS, the number of iterations can be reduced as mentioned in
Section 6.4. Therefore, the computational order of “MDCS” can be regarded as L
times higher than “BL-MIMO.”

6.5.3 Evaluation of different RMA structures
The proposed method provides the flexibility of the RMA structure and placement
because RMAs can be located at local origins, as shown in Figure 6.1b. We compared
the RNR among four setups, i.e., “SDCS,” “MDCS,” “MDCS-C1,” and “MDCS-
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Figure 6.10: Regional noise reduction for each iteration index.

C2.” One RMA was placed at (r, θ, ϕ) = (0.6, π/2, π/2) in “SDCS,” “MDCS,” and
“MDCS-C1,” and 2 RMAs were placed at (0.6, π/2, π/4) and (0.6, π/2, 3π/4) in
“MDCS-C2.”

The RNR is shown in Figure 6.12. The proposed methods outperformed “SDCS”
below 700 Hz. The high coherence of the sensing matrix in “SDCS,” as shown
in Figures 6.4 and 6.5, degrades the accuracy of the sparse decomposition of the
reference signals at low frequency. Even when a compact RMA was used, “MDCS-
C1” performed similarly to “MDCS” above 600 Hz; however, at low frequencies, the
performance degraded. This is due to the lack of spatial resolution of the captured
reference signal [66, 92]. We can improve low frequency performance by sampling
the noise field with higher spatial resolution using distributed microphone arrays.
Figure 6.12 shows that by using 2 RMAs in “MDCS-C2,” we can improve the RNR
at frequencies below 600 Hz compared with using 1 RMA in “MDCS-C1,” since the
2 RMAs can capture larger spatial information of the noise field. Figure 6.13 shows
the residual noise field on x-y plane after 100 iterations of ANC at 500 Hz.

6.5.4 Interior noise compensation
A fundamental problem of SH-domain sound field analysis is that the interior and
exterior sound fields cannot be represented at the same time. Since we focus on
controlling the interior sound field, all sound sources must exist outside of the ROI.
However, in practice, a sound source may easily be generated inside the region,
e.g., a human voice. By the proposed method, we can estimate the sound source
distribution to distinguish noise sources, which are generated inside the region and
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Figure 6.11: Residual noise field after 100 iterations of FXLMS algorithm: (a) “BL-
MIMO.” (b) “BL-MD.” (c) “MDCS.” The reference microphones, loudspeakers, and
error microphones are denoted by black dots, blue triangles, and red circles, respec-
tively. It should be noted that all microphones and loudspeakers are mapped to the
x-y plane.

removed from the ANC processing.
We defined the interior region as a sphere, whose radius is the distance from

the global origin to the center of the RMA. The array configuration is the same as
“MDCS-C2” described in Section 6.5.3. We simulated an initial noise field consisting
of a point source placed at (x, y, z) = (0.5, 1, 0), which existed outside of the region.
While performing the ANC processing, we added another point source placed at
(0.5, 0, 0) inside the region at the 30th iteration and simulated a composite noise
field consisting of two point sources, as shown in Figure 6.14a. The noise sources
had a frequency of 600 Hz. Figure 6.14b depicts the noise field with only the interior
noise source. Only the exterior noise source is expected to be attenuated; thus, the
interior noise field remains after the adaptive processing convergence. The resulting
noise field is shown in Figure 6.14c, from which we can confirm that the noise
field of the interior noise source is reproduced in the ROI. The noise attenuation

78



100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

5

10

15

20

25

30

35

40

45

50

R
eg

io
n

al
 n

o
is

e 
re

d
u

ct
io

n
 (

d
B

)

SDCS

MDCS

MDCS-C1

MDCS-C2

Figure 6.12: Regional noise reduction after 100 iterations of FXLMS algorithm for
various frequencies.

performance of the incoming noise field was evaluated by calculating the RNR inside
the region using Eq. (6.40) from the first iteration to the 29th iteration. After the
30th iteration, we defined another measure as

ϵ2(ι) = 10 log10

∑
i |S(ι)(ri)− S̆(ι)(ri)|2∑

i |S̆(ι)(ri)|2
, (6.41)

where S̆(ι)(ri) is the outgoing noise field generated by the interior noise source, which
is expected to be removed from the ANC processing in the proposed method. The
final error distribution after convergence is shown in Figure 6.14d.

Figure 6.15 shows the convergence performance for “BL-MD” and “MDCS-C2.”
After the 30th iteration, “BL-MD” clearly no longer attenuates the incoming noise
field. In contrast, “MDCS-C2” can detect the interior noise source that we do not
want to attenuate and remove it from the ANC processing; thus, the presence of the
interior noise source does not affect convergence performance. This separation of
the target and nontarget sources could be also used to remove the acoustic feedback
from the SLA to the RMAs.

The separation of a target region, whose noise sources are attenuated, and a
nontarget region is not limited to the interior and the exterior regions. Consider a
situation in which you want to hear a sound, such as music, from your front but
not noise, such as traffic noise from behind. To separate noise sources into target
noise sources, which are propagated from the target region, and nontarget noise
sources, directional microphones, or beamforming using HOMs may be utilized.
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Figure 6.13: Residual noise field after 100 iterations of FXLMS algorithm:
(a) “MDCS-C1.” (b) “MDCS-C2.”

However, narrow directivity is difficult to achieve at low frequencies, affecting ANC
performance due to signal capture from nontarget noise sources. This problem can
be solved using the proposed method.

6.5.5 Actual room experiment
We conducted measurements in our audio laboratory to evaluate the noise attenua-
tion performance in a real-world environment. The main differences from the ideal
setup are that the acoustic transfer function includes reverberations and that pri-
mary and secondary sources are not always point sources. The Eigenmike [54] was
used as an RMA as well as an EMA and a 30 channel spherical loudspeaker array
was used as an SLA. The radii of the RMA, SLA, and EMA are 0.042 m, 1.0 m, and
0.042 m, respectively. At the center of the SLA, the EMA was placed. The RMA
and the primary loudspeaker, which produces the primary noise, were placed 1.7 m
and 3.18 m apart from the center point, respectively. The secondary path’s SH
coefficients can be calculated based on the measured secondary path Gact ∈ CLe×Ls .
We write the matrix form of (6.12) as e = TeSe, where Te ∈ C(N+1)2×Le is the SH
transformation matrix. From (2.18) and (2.20), the SH coefficients of the secondary
path can be derived in a matrix form as

gact = TeGactY, (6.42)

where Y ∈ CLs×(N+1)2 is the matrix consisting of SH functions. We confirmed
that the diagonal elements of gact were dominant in our experimental condition.
Hence, we extracted the diagonal elements and diagonalized the matrix similar to
the related work [84].

The average noise attenuation level at the error microphones is shown in Fig-
ure 6.16. The noise attenuation was achieved at the frequency range of 100 to
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Figure 6.14: Simulated sound fields of interior noise compensation: (a) Composite
noise field. (b) Noise field of interior noise source. (c) Residual noise field after noise
attenuation. (d) Error distribution based on Eq. (6.41).

1000 Hz. Unlike the results of the simulation in Sections 6.5.2 and 6.5.3, perfor-
mance degradation at high frequencies cannot be seen. One possible explanation
is that the evaluation points in this experiment are only at the error microphone
positions. The evaluation in terms of a large region in a real-world environment is
something to think about for future research.

6.6 Summary
In this chapter, we proposed the reference signal reconstruction algorithm for SH-
domain feedforward ANC. We assumed that the primary noise field can be repre-
sented as a sum of a sparse set of point sources and plane waves and adopted the CS
approach to decompose the noise field into them. The decomposition accuracy relies
on the column correlation of the sensing matrix in CS; thus, we showed that the SH
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Figure 6.15: Average performance of the incoming noise field attenuation. Interior
noise source is added at the 30th iteration.

basis function is one of the efficient spaces to decompose the sound field. We tested
the proposed method and found that it outperformed the conventional method for
noise attenuation at any frequency above the RMA’s Nyquist frequency. Another
advantage exploited was that both the interior and exterior sound fields can be con-
sidered at once, which is not possible in the case of the general SH-domain signal
representation. This property aids practical implementation by removing an unex-
pected noise source from the system. Furthermore, in our method, any arbitrary
array structure can be used, resulting in the realization of a viable system.
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Figure 6.16: Average noise attenuation level after 100 iterations of FXLMS algorithm
for various frequencies.
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Chapter 7

Conclusion

7.1 Summary
The ANC over a sizable space requires a large number of reference and error micro-
phones to satisfy the spatial Nyquist sampling criterion, which limits the feasibility
of practical realization of such systems. This study looked into how to improve
system feasibility by introducing several approaches to simplify array structures.

In Chapter 3, the CS approach was introduced in the spatial ANC system. The
sparse reference signal representation was adopted in the harmonic-domain signal
to precisely calculate the reference harmonic coefficients. The proposed feedfor-
ward ANC methods reduced the number of microphones required while attenuating
the noise field over a large area. The experimental results showed that the pro-
posed method outperformed conventional methods even above the spatial Nyquist
frequency.

The multiple circular arrays were developed in Chapter 4 to attenuate the noise
field in 3D space, where the fully surrounding spherical array is usually required
for the accurate processing in SH domain. The algorithm for estimating the SH
coefficients is based on the properties of the SH-domain representation. Although
the array structure must be carefully designed for each condition, the simulation
results demonstrated the method’s effectiveness.

To leverage the prior information of the array structure, the novel weighted
LMS algorithm for the adaptive filtering was proposed in Chapter 5. The DOA
weighting method was developed, which can calculate the SH-domain weights from
an arbitrary spatial weighting function. Considering the secondary source geometry,
the weighting function can be set intuitively.

The CS-based approach was revisited in Chapter 6. In contrast to the spatial
sensing matrices proposed in Chapter 3, the new sensing matrices were defined in
the SH-domain. The analysis of the sensing matrix’s column coherence revealed
an improvement in the accuracy of reference signal estimation at low frequencies.
Furthermore, the distributed array structure of the RMAs was investigated to im-
prove the flexibility of the array geometry. The simulation considering a real-world
application was also conducted. The typical use case of the spatial ANC is to sur-
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round the users with an array of microphones to avoid any unwanted noise reaching
them. The problem arises when the users make noise, e.g., having a chat, inside
the array. The system attempts to dampen the desired sound, which you do not
want to dampen. The proposed method demonstrated a solution to this problem
by utilizing the estimated distribution of the noise source. The proposed system
maintains noise attenuation performance by ignoring the desired outgoing sound in
ANC processing.

7.2 Outlook
The uniform sampling of the 3D sound field on the sphere surface is the straight-
forward scheme to calculate the SH-domain coefficients. However, the drawback is
the system’s feasibility. The alternative design of the microphone-loudspeaker array
geometry was investigated in this thesis. The SH-domain signal characteristics were
the focus of one approach described in Chapter 4. The multiple circular arrays were
designed to attenuate the horizontal circular region in the specific condition. For
other conditions such as the frequency range, truncation order, and size of the ROI,
a different array geometry has to be designed. One of the future research directions
will be the investigation of the systematic method for determining array geometry.
Another method described in Chapter 5 included DOA weighting in adaptive pro-
cessing. In this thesis, the simple binary window function was used. In contrast, a
continuous function may result in an accurate calculation in the SH-domain weights,
which may also result in an accurate solution. An investigation of the combination
of the array structure and the adequate adaptive algorithms is the possible direction
of further study.

As a property of the spatial ANC, the computational complexity should be
concerned. The implementation of the CS approach described in Chapters 3 and 6
necessitates iterative processing using IRLS-based algorithms. As a result, the two
distinct iterations are nested. The first is an iteration to estimate the sparse weights,
and the second is an update to the ANC system’s adaptive filter. By focusing on the
iterative approach in adaptive filtering, the sparse weights may be estimated more
efficiently. More specifically, in the adaptive filtering, the internal variable in the
IRLS method, which is updated each iteration, can be estimated efficiently using
the information from the previous iteration. The sparse weights represent the noise
source distribution. Unless the actual distribution does not change rapidly, starting
from the previous internal weights may lead to fast convergence of the CS. One of
the important future works for the realization of the spatial ANC is research aimed
at reducing computational complexity.

This thesis did not consider any feedback from the secondary sources to the
reference microphones as it is assumed to be compensated ideally. To get even
closer to real-world situations, however, this feedback path has to be taken into
account. Furthermore, the evaluation in a highly reverberant environment needs to
be analyzed since the assumption of the sparseness of the source distribution may no
longer be valid. Further experiments in the real-world may also aid in evaluating the
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system’s robustness because it may contain positional errors of the microphones and
loudspeakers, sensitivity and gain variations in the microphones and loudspeakers,
and other errors that cannot be fully modeled.
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