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Abstract

Using word embeddings has become the default strategy when representing natural language data.
Traditional word embeddings learn a fixed real-valued vector representation of each word in a corpus
that encodes semantic information. This thesis proposes using subspaces to represent sentences and
texts based on such word embeddings. The motivation behind this idea comes from a crucial aspect
of these embeddings: Performing arithmetic and distance calculations between two word vectors
can give us information about how their respective words relate semantically. Understanding that
a sentence or a text can be represented as a set of word vectors, a natural extension is to compare
two texts based on the subspaces spanned by their word vectors. We call such subspace the word
subspace. The word subspace is a simple representation that does not require computationally
intensive learning and can be derived from sentences and texts with different lengths. The basis
vectors of this subspace are obtained by applying the principal components analysis (PCA) without
data centering and can be regarded as the main hidden topics of the given text. Once represented as
subspaces, we can efficiently compare texts with different lengths in terms of subspace similarity.
Despite these appealing characteristics, this representation has not yet been explored to its full
potential as, in general, subspaces are blindly vectorized (e.g., concatenation of basis vectors), so
they can work with standard machine learning (ML) algorithms. We argue this might not be the
best strategy as there is already a vast theory on general-purpose ML methods that can work directly
with the subspace representation. Therefore, we propose solving several tasks in NLP based on such
theory. We explore the geometry behind the word embeddings to perform a guided decision on the
most appropriated subspace-based method for each task and demonstrate the effectiveness of such
representation through experimental results.
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Chapter 1

Introduction

Recently, using word embeddings has become the default strategy when representing natural lan-
guage data in machine learning. Word embeddings are real-valued representations of words, learned
by neural networks, and can be separated into two different categories: Non-contextualized word em-
beddings, such as word2vec [1], GloVe [2]; and contextualized word embeddings, such as EIMo [3],
BERT [4]. While both types of embeddings aim at learning a continuous vector representation for
natural language data, they differ in how they achieve the embeddings.

Non-contextualized word embeddings, also referred to as traditional word embeddings, learn a
fixed real-valued vector representation of each word in a corpus. They embody the distributional
hypothesis of meaning [5], according to which the meaning of words is defined by contexts in which
they co-occur. They can then generate a real-valued vector for each word in the corpus that encodes
its semantic information. Once a model is trained, we can easily infer the word embeddings through
a look-up table.

On the other hand, contextualized embeddings use mechanisms such as attention [6] and
LSTMs [3] to produce vector representations for words that vary according to their context words.
Therefore, these embeddings can represent the different meanings a word can carry, improving the
performance in several natural language tasks. However, inference of the word embeddings can be
time-consuming as the whole sentence or document has to be processed by the language model to
obtain the word embeddings.

Understanding that a sentence or a text can be represented as a set of word vectors, a natural
extension is to compare two texts based on the subspaces spanned by their word vectors.

In this thesis, we propose representing sentences and texts as linear subspaces from their word
embeddings to perform different tasks in natural language processing. We call such subspace the
word subspace. The word subspace is a simple representation that does not require computationally
intensive learning and can be derived from sentences with different lengths.

Specifically, we focus on the subspace representation of non-contextualized word embeddings.
One crucial aspect of this type of word embedding is that we can get information about the semantic
relationship between two words by performing arithmetic and distance calculation between their
word vectors. However, rather than looking at independent word vectors, we are interested in higher-
level natural language structures such as sentences, paragraphs, and documents (i.e., set of vectors).
Therefore, it is desirable to have a text representation based on a set of these word vectors, and we



achieve this through the word subspace representation.

In the following, we first present a brief overview of text models based on non-contextualized
word embeddings, targeted to solve different natural language processing (NLP) downstream tasks.
Then, we present our motivations for using the subspace representation and discuss the objectives
of this thesis. Finally, we present the thesis structure.

1.1 Related Work

Word embeddings are neural networks trained on a large corpus targeting text representation and
can be plugged into several downstream task models (e.g., text classification, text summarization,
among others) to automatically improve their performance. The results can be improved by further
training a model to generate sentence embeddings [7], [8].

As shown by Perone et al. [9], sentence encoding architectures based on recurrent neural networks
(RNNs) [10], [3] lead to very high performance in several NLP downstream tasks. Nevertheless,
transformer-based models, such as BERT [11] and GPT-2 [12] achieve state of the art in several tasks.
However, as these techniques are substantially more expensive to train and apply than traditional
word embeddings [13], they are limited to when high computational power is available.

In situations where such computational power is not available, an alternative is to learn sentence
representations from traditional word embeddings. The distributional hypothesis of meaning [5]
motivated the development of these word embeddings, such as the word2vec [1]. This hypothesis
states that the meaning of words is defined by contexts in which they co-occur. Aiming at expanding
this framework also to generate sentence representations, the doc2vec [14] was proposed. It fol-
lows the same architecture as the word2vec, where instead of learning word embeddings, it learns
paragraph/document embeddings.

However, learning this direct estimation of the surrounding contexts of a phrase can have a
significant sampling error, as phrases are far more sparse than individual words. As explained by
Tian, Okazaki, and Inui [15], in a moderate size corpus such as the British National Corpus (BNC),
a total of 16000 lemmatized words are observed more than 200 times, but there are only 46000
bigrams formed by them, far less than the 160007 possibilities for two-word combinations. In larger
corpora, we might only observe rare words due to Zipf’s Law, so most of the two-word combinations
will always be rare or unseen.

Such understanding motivates the construction of sentence and document embeddings from
combining word vectors [16]. This strategy also follows the compositional hypothesis that the
meaning of sentences is composed by the meaning of their constituent words.

Considering the above discussion, non-parameterized sentence and document embeddings, i.e.,
a representation based on word embeddings that do not require any further learning of the word
embeddings, can be more appropriate. The simplest stratagem is to take the average of the sentence’s
word vectors and use it as a feature to represent the whole sentence or text. This average vector
can then be used to train traditional machine learning algorithms, such as support vector machines.
Such a simple representation is effective and has motivated the study of the distribution of the word
vectors in a text by using different types of mean.

For example, Arora et al. [17] proposed a weighted sum of the word vectors to generate the
sentence representation, which outperformed many sophisticated neural network models in sentence



embeddings tasks. The weights are obtained by calculating the corresponding word’s smooth inverse
frequency (SIF), generated through a random walk model. Peters at al. [18] proposed a sentence
embedding generated by concatenating the power mean of the sentence’s word vectors. By using
different power levels, we can retrieve many well-known means, such as the arithmetic mean, the
geometric mean, and the harmonic mean.

Understanding that a sentence or a text can be represented as a set of word vectors, a natural
extension is to compare two texts based on the subspaces spanned by their word vectors. Using
subspaces along with textual data has been explored for several decades. For example, the latent
semantic analysis (LSA) [19] applied the singular value decomposition to the word co-occurrence
matrix of a corpus, generating a low-rank representation of words and documents. After the
development of the word embeddings, works such as Yaghoobzadeh and Schciitz [20] evaluated if
the word vector space generated by a word embedding framework contained the subspace necessary
to represent different facets of the words. Word embeddings have also been generated by projecting
the one-hot representation of words onto a latent space generated by the canonical correlation
analysis, generating context-dependent word embeddings [21]. Nevertheless, methods, such as the
principal components analysis (PCA), have been utilized to perform dimension reduction of the word
vector space [22], which achieved similar or better results than the original embeddings in several
benchmarks.

The principal components analysis has been proposed to generate a subspace representation
for textual data based on traditional word embeddings, which we refer to as word subspace. This
representation was first proposed to model sentences [23] and has since been demonstrated to be
a powerful model for understanding and solving different NLP tasks, such as word composition-
ality [24], word polysemy [25], and text summarization [26]. Nevertheless, when represented as
subspaces, we can easily compare textual data in terms of subspace similarity. Besides, the subspace
representation generated by QR-decomposition has also been used to analyze if each new word
in a sentence brings a different orthogonal basis to the subspace spanned by the previous word
vectors [27]. Using a similar strategy, Sbert-Wk [28] uses QR-decomposition to analyze different
information given by each of the layers in BERT to create a sentence embedding.

However, the word subspace representation has not been explored to its full potential. It
is usually used as a baseline for sentence models using spectral methods, such as the dynamic
mode decomposition [29], [30] and discrete cosine transformation [31], [32], where a sentence is
represented as the concatenation of the first principal components of its subspace. While such
approach leads to decent performance, all the interesting properties of the word subspace are lost in
this process.

In the following, we discuss in more depth the properties that motivate the use of the subspace
model for natural language data.

1.2 Motivations

Linear subspaces have been widely used in the classification of image sets, tackling tasks such as
face [33], [34], hand shape [35], [36], and motion recognition [37]-[39]; and have also been applied
in bioacoustic signal classification [40], [41]. Moreover, they have also been applied to artificially
generated features, such as CNN features from images [42], [43] and graph embeddings [44],



succeeding in classification tasks in several data modalities. By this representation, sets of features
representing a single entity, such as a set of images taken from different angles of a person, a set of
frames from a video, lagged feature vectors from an audio signal, among others, are usually modeled
as lower-dimensional linear subspaces in the original high-dimensional feature space by using PCA.
A solid theoretical foundation on subspace-based methods has been developed throughout all these
applications. These methods can directly work with the subspace representation, which motivates
its application in other modalities.

In the natural language processing field, a great motivation to apply the subspace model is
the subspace uniqueness property. While the subspace representation is a unique entity in a high-
dimensional vector space, it can be spanned by different sets of basis vectors. Analogously, we
can express a unique concept by using different words. This parallelism raises the possibility of
modeling the same concept word subspace from different texts containing different words.

There are several advantages to working with such representation. First, since modeling a
subspace requires only applying PCA to a set of features, it has a low computational cost. Moreover,
the subspace-based methods work well when little data is available, as PCA can represent as much
variance as possible in a small number of dimensions, represented by the principal components.
Therefore, variations such as rotation and illumination in computer vision can be captured as linear
combinations of the principal components.

Most importantly, the subspace model is highly interpretable. Given that we have some intuition
on the features, e.g., we understand how two vectors relate to each other, it is possible to visualize
and interpret the subspace’s basis vectors, as the subspace-based methods explore the relationship
between subspaces from a geometrical perspective. Interpretability is one of the characteristics that
sets the subspace models apart from the current trend focused on deep neural models and can be a
step towards more interpretable and explainable Al

However, there is a limitation when working with subspaces. Most traditional machine learning
algorithms require single vector representation on a Euclidean Space. However, subspaces exist on a
Riemannian manifold called Grassmannian, and as such, subspace processing should be performed
on this space. Previous works in NLP have worked around this problem by forcing the vectorization
of the word subspace representation.

Taking such an approach is counter-productive since this vectorization process disregards all the
interesting properties of the subspace mentioned above. While it is understandable the motivation
of working with traditional machine learning algorithms, we cannot ignore the already established
theory on subspace-based methods. The subspace-based methods operate with the subspace repre-
sentation while preserving all the characteristics of this model.

To our knowledge, no work handles the subspaces generated by PCA from the word embeddings
in a text and applies compatible subspace-based methods to the tasks proposed in this thesis.
Although Mu et al. [23] used compatible subspace similarity measurement to perform semantic
textual similarity, their approach consists of modeling each sentence as a subspace, and comparison
was performed on a sentence level. Throughout this thesis, we provide additional insights on the
subspace representation and demonstrate through our experiments how modeling word subspaces
at different levels (e.g., sentence, text, and sets of texts) can help improve the results on text
classification.



1.3 Objectives

This thesis aims to provide a solid foundation for applying the subspace representation to word
embeddings through the word subspace model. While the subspace model has been extensively
applied in the computer vision field, where subspace compatible methods have been developed,
most of the work in NLP undermines the capabilities of this representation.

In this thesis, our main goal is to define the concept of the word subspace and, based on the
established theory of subspace-based methods, develop tools to better understand this model from
the NLP perspective. Moreover, we seek to apply the subspace representation to solve different NLP
tasks, using the knowledge of word embeddings geometry and subspace theory to guide the decision
of the subspace-based method.

Furthermore, we mainly focus on the word subspaces generated from non-contextualized word
embeddings. While we do not go into much depth, we also demonstrate through our experiments
the efficacy in modeling sets of contextualized word embeddings to solve sentiment analysis.

1.4 Contributions
The main contributions of this thesis are:

* The introduction of the concept of word subspace, which is efficient to represent natural
language data based on the word embeddings.

* A simple but powerful tool called the word importance score, which allows us to interpret
the basis vectors of a word subspace and the canonical vectors computed during subspace
comparison.

* Empirical demonstration of the mathematical property of the subspace uniqueness on the word
vector space, which shows that different sets of word vectors (i.e., different texts) belonging
to the same topic span the same topic subspace.

* The incorporation of the uniqueness property to solve topic classification, which supports
modeling a word subspace from sentences, texts and sets of texts.

* The geometric interpretation of the word embeddings to solve the sentiment analysis task.

* The proposal of a multi-modal framework for multimedia generation based on the word
subspace model.
1.5 Thesis organization
The remainder of this thesis is organized as follows:

» Chapter 2: Word Subspace

This chapter presents the word subspace model and lays the theoretical foundation behind it,
explaining how we can model a word subspace from a set of word vectors and compare two



sentences or texts by using the subspace similarity. We also show how it is possible to extract
the semantic difference between two sentences or texts based on the difference between their
subspaces.

Chapter 3: Text Analysis based on Word Subspace

In this chapter, we propose a simple but powerful tool called the word importance score, which
allows us to interpret the basis vectors of a word subspace and the canonical vectors computed
during subspace comparison. We demonstrate how we can use this score by analyzing toy
data.

Chapter 4: Topic Classification

This chapter discusses the application of the word subspace concept in topic classification.
We focus on two different sub-tasks: Topic classification and sentiment analysis. First, we
explore the geometry behind the word embeddings to perform a guided decision on the type
of subspace-based method that is more suitable to solve each task. Then, based on the
uniqueness property, which shows that different texts from the same topic generate almost the
same word subspace, we propose solving topic classification by using the mutual subspace
method (MSM) [45]. We demonstrate how incorporating the uniqueness property into the
MSM leads better results through our experimental evaluation and use the tools proposed in
Chapter 3 to interpret our results. For sentiment analysis, we explore the geometry behind
the word vectors and show how we can compensate for the lack of sentiment information in
these embeddings by using methods such as the orthogonal mutual subspace-based method
(OMSM) and the Grassmann variations of MSM and OMSM, such as the Grassmann subspace
method (GSM) and the Grassmann orthogonal subspace method (GOSM).

Chapter 5: Multimedia generation

In this chapter, we explore how the word subspace concept can be used as a powerful tool
to compare different types of media, such as image and text, in a meme generation problem.
We propose news2meme, a method for automatically generating memes from a news article,
where we aim to match texts and images efficiently. We approach this task as two multimedia
retrieval problems with the same input news text: 1) An image retrieval task where the output
is a meme image; 2) A text retrieval task where the output is a catchphrase. These two
outputs are combined to generate the meme for the news article. First, we represent texts and
catchphrases as sets of word vectors through the word2vec representation. Then, to handle
images similarly, we extract sets of tags from the images using a deep neural network. These
tags are then translated to word vectors in the same vector space through word2vec. Finally,
we represent the intrinsic variability of features in a set of word vectors with a word subspace.
Under this framework, we can directly compare images and texts, making retrieval across
media formats possible. Preliminary experiments were performed to evaluate our framework.

Chapter 6: Conclusions

Finally, in this chapter we present our conclusions and discuss several directions to be explored
as future work.



Chapter 2

Word Subspace

In this chapter, we present the concept of the word subspace. We start by giving its definition and
explain how a word subspace can be modeled from a sentence, a text, or a set of texts. We then
explain how two word subspaces can be compared in terms of subspace similarity and the difference
between subspaces. We finally explore one essential characteristic of the subspace representation,
the subspace uniqueness property, and investigate if it holds for subspaces modeled from word
vectors.

2.1 Definition of Word Subspace

In this formulation, words are represented as vectors in a real-valued feature vector space RP
generated by a word embedding model. Naturally, a sentence, text, or a set of texts can be seen as
a set of word vectors, which can be modeled as a set of basis vectors spanning a linear subspace.
To obtain a consistent subspace representation, which can be applied to sets of different numbers of
word vectors, the principal components analysis (PCA) without data-centering is applied to the set
of word vectors.

Through this representation, most of the variability of the word vectors in the set is retained,
and, consequently, a word subspace can effectively and compactly represent the context of the
corresponding sentence, text, or set of texts. Each direction given by the basis vectors of the word
subspace represents the directions with the highest variance of the text in the embedding space and
can be regarded as the main semantic meanings [26], or main hidden topics.

Figure 2.1 shows how to model a word subspace from a text. Consider a text d to be a set of
N words, d = {wk}kN: .- Each of these words are translated into a word vector by using a word
embedding model of our choice, resulting in a set of word vectors X; = {xk}kN: L The word vectors
in this set can then be stacked into a matrix X; € RP*N, where p is the dimension of the word vector
space.

To model the word subspace for this set of word vectors, we first need to compute the following
autocorrelation matrix, R :

R;=X4X] 2.1

The orthonormal basis vectors of the m-dimensional subspace ) are obtained as the eigenvectors
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Figure 2.1: Process of modeling a text as a word subspace. Words from the text are extracted and
then translated to word vectors by using a word embedding model. Then, the set of word vectors is
modeled as a word subspace by using PCA

with the m largest eigenvalues {4,}}" | of the matrix Ry4. The subspace ), is then represented by the
matrix Y, € RP*™ which has the corresponding orthonormal basis vectors as its column vectors.

Analogously, it is possible to model a word subspace from a set of documents D = {d,-}ll.fll. In
this case, we are modeling the distribution of the words in all of the documents in the set. To model
it, we follow the same process described above. The main difference is the word vector matrix Xp,
which will stack all the word vectors from all the documents in the set.

In general, the dimension m of each subspace is empirically determined. For sentences, about
four dimensions should suffice to retain most of the sentence’s variance [23]. However, for texts
or sets of texts, more dimensions will likely be necessary. The amount of variance retained by the
basis vectors of the subspace can be determined by using the cumulative contribution rate u(m).
Considering that we want to keep a minimum of y,,;, of the text variance, we can determine m by
ensuring that u(m)g > fmin, Where:

_ Z;Zl(/ll)

= . 2.2
p(m)a 7 ) (2.2)

2.2 Comparison between subspaces

In this section, we discuss how to compare two sentences or texts based on their word subspace
representation. We present two different ways to compare them: Based on the subspace similarity
and based on the difference subspace.

2.2.1 Subspace similarity

To measure the similarity between two word subspaces ) and ), the canonical angles between
the two word subspaces are used [46]. There are several methods for calculating canonical angles
[47], [48], and [34], but the simplest and most practical is the singular value decomposition (SVD).
Consider two subspaces represented as matrices of bases, Y| = [®;...®,, ] € RP*™ and Y, =
[¥;...¥,] € RP*™, where ®; are the bases for )} and W; are the bases for J,, and m; > m,. Let
the SVD of Y'Y, € R™>™ be Y| Y> = ULV, where X = diag(1, . . ., Km,), {Ki :121 represents the
set of singular values. The canonical angles {6,-}?;21 can be obtained as {cos™! (k1), ...,cos™! (Kmy) }
(k1 > ... > Km,). The similarity between the two subspaces is measured by ¢ angles as follows:



Table 2.1: Document distribution over the classes of the Reuters-8 dataset

Index Class Number of samples

1 acq 2292
2 crude 374
3 earn 3923
4 grain 51

5 interest 271
6 money-fx 293
7 ship 144
8 trade 326

1 t
Syl = - D cos i, 1 <1< my, my < my. (2.3)

i=1

2.2.2 Difference Subspace

To understand what are the different topics between two texts, we can use the concept of difference
subspace (DS) [45]. The DS is a natural extension of the difference vector concept to a pair of
subspaces. By projecting a vector or a subspace onto a DS, we can extract different components,
that is, different topics between two word subspaces.

Consider two subspaces V; and )%, represented as matrices of bases, Y| = [®...®D,, ] €
RP™ and Y, = [¥; ... ¥pm,] € RP*™2, where ®; are the bases for )} and ¥; are the bases for ).
To compute the difference subspace 252 between subspaces )| and ), we first need to calculate
the following projection matrices P = Y1¥| and Q = Y1Y,". Then, we perform the eigenvalue
decomposition of the matrix P + Q. The subspace spanned by the eigenvectors of P + Q with
eigenvalues larger than 0 and smaller than 1 span the difference subspace D-.

2.3 Word subspace uniqueness

To better understand how we can use the word subspace along with consolidated subspace-based
method to solve different tasks in NLP, we analyze a basic mathematical property of the subspace
representation. One attractive characteristic of the subspace representation is that, while it is a
unique entity in a high-dimensional vector space, it can be spanned by different sets of basis vectors.
This section seeks to understand if different sets of word vectors from the same topic can generate
the same subspace by observing how the subspace similarities change when different sets of words
are modeled.

For this purpose, we analyzed the word subspace generated from the Reuters-8 dataset classes
without stop words [49]. We considered words in the texts as they appeared without performing
stemming or typo correction. This database has eight different classes, where the number of samples
varies from 51 to over 3000 documents, as can be seen in Table 2.1.



To obtain the vector representation of words, we used a pre-trained model for word2vec! [1]. For
this analysis, we first chose class 1 and class 3 and defined all subspaces to have a dimension of 50.

We first observe how the similarities behave. Consider the texts in class 1 for the standard train
set, D|. We randomly divided them into two subsets of 798 texts, namely D} and D%, so that there is
no overlap between them. Then, for each of the subsets, we obtained the word vectors corresponding
to their respective words, resulting in the word vector sets X 11 and X 12 We modeled them as word
subspaces, represented by the basis vectors Yl1 and Y12, and calculated the similarity between them:

S(Yll’le) = 097,
which indicates that their subspaces are very close to each other.
Then, we compared Y 11 and Y 12 with Y3, the basis vectors of the word subspace generated by the
word vectors in class 3 from train set, X3. We obtained the following similarities:
S(Yll ,Y3) = 067,
S(le,Yj;) = 0.68.

Since the similarity between Yll and le is almost 1 and their similarities with Y3 are much lower,
we can see that both subsets are very close to each other while being further apart from class 3.

Finally, we compared the word subspace Y| generated from X, with the word subspace Y3, and
obtained:

Se,.vs) = 0.68,

which is about the same as when comparing the subsets of class 1 with class 3.

Now, let us also look at the texts from classes 1 and 3 in the test set. If we model the word
subspace from the texts of class 1, Z;, and compare it with the subsets from class 1 of the train set,
we obtain:

S(ZI,YII) = 096,
S(ZI,YIZ) = 097,

which is about the same when Yll and le were compared to each other. This shows that Z, Yl1 and
le are very close to each other.
If we compare Z; with Y3, we obtain:

S(z,.y;) = 0.68,

which is almost the same as the similarity between Y| and Y3. Finally, to see if Z; corresponds to
Y|, we can take their similarity:

Sz,.y,) = 0.96,

which indicates they are almost the same.

Thttps://code.google.com/archive/p/word2vec/
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Figure 2.2: Similarity matrix between the subspaces of the classes in the train set of the Reuters-8
dataset and the subspaces Yl Y12 and Y;. Y; was modeled from all texts in the train set of class 1,
represented by X;; Y 12 and Y| were modeled from mutually exclusive subsets of X

On the other hand, if we compare Z3, the word subspace generated from texts of class 3 in the
test set, and Y3, we obtain:
S(zs,y5) =0.92.

Therefore, we can understand that, if texts belong to the same semantic topic, we can obtain
almost the same word subspace by considering different subsets of it.

To better understand these relationships, we can check how the subspace of each class in the
train set compares to the subspaces Y!, Y12 and Y. These similarities are represented in Fig. 2.2:

We can see that the subsets of class 1 have a high similarity between them. In contrast, they have
a much lower similarity with the other classes. We can also see that the two subsets compare to the
other classes very similarly to how class 1 itself compares to the other classes. This result is a strong
indication that the subspaces Y, Y12, and Y| are almost the same, despite them being generated from
different texts.

11



Chapter 3

Text Analysis based on Word Subspace

In this chapter, we present how to perform text analysis based on the word subspace representation.
We start by introducing the Word Importance Score, which allows us to interpret the basis vectors
of a word subspace. Then, we demonstrate how the word subspace and the word importance score
can be used to perform text analysis on toy data.

3.1 Word Importance Score

The basis vectors of a word subspace represent the most important directions in terms of variance
of the text word vectors and can be interpreted as the main hidden topics in the text. Despite the
word vector space being a real-valued space, the word vectors represent discrete data, i.e., words,
and therefore it is very likely that no known word vectors correspond to the basis vectors. However,
we can understand which words are more important to represent the hidden topics based on the word
importance score, defined as the cosine similarity between the word vectors from the text and its
basis vectors.

Let X = [x;...xy] be an embedding matrix, where each column is the word vector for each
word in the text d = {wk}sz »and Y = [®@q...®,] be the basis vectors of the word subspace V
generated from X. We consider all word vectors were normalized to have norm equal to 1. To
calculate the word importance score of wy with respect to basis vector @, we use the following
equation:

I(xy, ®;) =x; ' @;. 3.1

The intuition behind this score is that the closest the word vector is to the basis vector of the
word subspace, the more relevant this word is with regard to the hidden topic represented by the
basis vector. Therefore, it is possible to understand these hidden topics by observing the closest
known word vectors to them.

Furthermore, we can understand which words in the text are the most important by measuring
the projection of its word vectors onto its subspace. For example, the word importance score of
word wy with respect to the word subspace ) is defined by the following equation:

I(xy,Y) = x; " Pxy, (3.2)

12



where P = YY" is the projection matrix of the subspace ).

Despite its simplicity, the word importance score is a powerful metric that can help us quickly
understand essential information about the texts (i.e., main topics) and interpret how two texts are
related to each other in terms of similarity.

LetY, = [®...®,, ] e RP™eand Y}, = [¥;...¥,,,] € R be the basis vectors matrices
of the word subspaces ), and ), generated from the embedding matrices X, = [x] .. .xNa] and
Xp =[x }) .. .xg”], respectively. To understand which word vectors from X, and X; were more
relevant to the comparison between ), and ), we calculate their importance with respect to the
canonical vectors pairs p;,q;(i = 1,...,1):

1(xk, pi) = xK"p; (3.3) I(xk, qp) =xK"q; (3.4)
Based on these scores, we can see how two texts relate to each other in terms of subspace
similarity and understand, for example, why a given input text was assigned to a determined class
in a topic classification problem. However, if we seek to understand what makes two texts different,
analysis based on the canonical vectors might not be effective if the texts have some similarities
while having different points. In this case, we can use the importance score with regards to the basis
vector of their difference subspace.
LetD = [} ..., ] be the basis vectors of the difference subspace between )} and )),. Consider
{x; };.V: | to be the set of word vectors from both texts. To measure the importance score of the word
w; with respect the difference subspace basis vector Yy, we use the following equation:

I(x;, ) = x; 0k (3.5)

3.2 Analysis of Toy Data

This section demonstrates how we can use the word importance score to analyze texts. We first show
how we can easily understand the topics inside a text based on its word subspace. Then, we analyze
how two texts relate to each other based on their similarity and difference subspace.

We selected three different texts for this demonstration: Textl and Text2 talk about the same
event, i.e., protests in early 2019 in Brazil due to the cuts in the public funding on education. Text3
talks about protests in 2014 against the World Cup in Brazil. We specifically chose them such that
there is a common topic among them, i.e., they all talk about protests, while one differs in terms of
their motivation. The full texts can be seen in Appendix A.

Then, we modeled a word subspace for each one of them. For this analysis, we pre-processed
the texts by removing the stop words and defined all word subspaces to have 40 dimensions.

3.2.1 Word subspace representation

We start by analyzing the word subspaces generated from each of the texts by using the word
importance score described in Equation 3.2. Then, for easier visualization, we plotted a word cloud
for each text, where the bigger and darker the word is, the higher is the importance score. They can
be seen in Figure 3.2.

For Textl, we can see that words such as “protest” and “thousands” are the most important,

followed by words such as “Thursday”, “government”, “student”, and “demonstration”. We can
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(a) Textl. (b) Text2. (c) Text3.

Figure 3.1: Word cloud representing the word importance score of the words in each text, according
to their word subspaces.

see that for Text2, more attention is given to words related to education, such as “Education” and
“student”, but words associated with the protests, such as “protesters” are also highlighted. Finally,
for Text3, we can see that words related to the World Cup and the strikes are considered more
important. They are all consistent with our prior knowledge about the texts, which shows that the
basis vectors of the word subspace are aligned with the main topics in the text.

Furthermore, it is possible to visualize these words per basis vector by using Equation 3.1, where
words highlighted based on the first vector are more important than words highlighted by the second
basis vector and so on.

Figure 3.2 shows the words for the Text1, according to the first four basis vectors of its subspace.
Here we have a clearer understanding of the main hidden topics of the text. We can see that words
such as “protests”, “government”, and “education” are considered to be more important by the first
basis vector. Interestingly, the first basis vector of a subspace modeled from a set of vectors by PCA
without data centering is almost the same as the average of the vectors. This result might justify why
taking the average of word vectors works well on many different NLP tasks.

However, the words in a text can represent different aspects of its content. For the first basis
vector, we could grasp a general idea of what is happening in the text. However, if we look at the most
important words according to the second basis vector, we see different words being highlighted. We
can see that the second and third basis vector highlighted a different topic included in the first basis
vector analysis. The second basis vector gave more importance to the education topic, highlighting
words such as “education”, “students”, and “teachers”, whereas the third basis vector gave more
importance to the protests, highlighting words such as “protests” and “demonstrations”.

If we extend this analysis to the fourth basis vector, we can see another highlighted aspect of the
text, where the fourth basis vector mainly highlighted the name of cities, such as “Sao Paulo”, “Rio
de Janeiro” and “Brasilia”, and “Brazil” itself.

By observing how the word subspace highlights the words in each of its bases, we can observe
a factorization of the main topics in the text. For example, while the first basis vector was capable
of capturing words related to the main topic, i.e., the protests against cuts in education in Brazil,
the following basis vectors could separate it into what was happening (protests), what was it related
to (education), and where did it happen (cities in Brazil). Such analysis is strong evidence that
considering the whole distribution of the words in the text through the subspace representation can
lead to a richer representation of the contents of the text.
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Figure 3.2: Word clouds representing the word importance score of the words in textl, according to
the first four basis vector of its word subspace.
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Figure 3.3: Word clouds representing the word importance score of the words in the texts about the
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Figure 3.4: Word clouds representing the word importance score of the words in the texts that talk
about different protests, i.e., Textl and Text3, based on the first canonical pair between their word
subspaces.

3.2.2 Comparison between texts - Canonical Vectors

In this section, we analyze which words are more important when comparing two texts by using
Equations 3.3 and 3.4. Based on these equations, it is possible to understand which words are
more important when comparing their respective subspaces, which can serve as an essential tool for
understanding the results in a classification task, for example.

We first analyze how two texts talking about the same event relate to each other. Figure 3.3
shows the most important words with respect to the first pair of canonical vectors between Text1 and
Text2. We can see words such as “students”, “teachers”,“thousands” highlighted in both texts. We
also see words such as “protests” highlighted with lower importance scores. This result is coherent
as both texts talk about protests made by students and professors in favor of education. At the same
time, it reveals that what mostly connects them is the topic “education”.

Next, we perform the same analysis on two texts that talk about different protests. Figure 3.4
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Figure 3.5: Word clouds representing the word importance score of the words in the texts with
respect to the first basis vector of the difference subspace between Textl and Text3.

shows the important words with respect to the first pair of canonical vectors between Textl and

>

Text3. Words such as “protest”, “demonstration”, and “thousands” were highlighted in Text1l and

words such as “streets”, “protests” and “demonstrators” were highlighted in Text3. In this case, no
words related to the motivation of the protests were highlighted, as they are different for each text.

3.2.3 Comparison between texts - Difference Subspace

So far, we have focused on understanding how texts are related when comparison based on canonical
vectors is performed. We could see that when texts talk about common subjects, the canonical
vectors can connect them by these subjects. However, in cases where texts have some similar and
different points, the analysis based only on the canonical angles might not be sufficient.

Consider Text2 and Text3. Both talk about protests happening in Brazil, however, one of
them discusses the protests against education funding cuts, while the other talks about the protests
against the World Cup. To understand what are the differences between these texts, we modeled
the difference subspace from the word subspaces of Textl and Text3 as described in Section 2.2.2.
Then, we calculated the word importance of the words in both texts with respect to the basis vectors
of this difference subspace, following Equation 3.5.

Figure 3.5 shows the most important words that differ Textl and Text3 based on the first basis
vector of their difference subspace. We can see that words such as “right”, “show”, and “scholarships”
were highlighted for Textl, while words such as “world”, “homeless”, and “windows” highlighted
for Text3. As expected, we have words related to education and the world cup being considered
more important when looking for their differences. However, we also see words that, when isolated,
do not seem to connect to the content of the texts.

Figure 3.6 shows the most important words that differ Text1 and Text3 based on the second basis
vector of their difference subspace. By observing the most important words according to the second
basis vector of their difference subspace, we can better understand what they mean in the context
of the texts. For example, we see the word “president” highlighted in Textl. Therefore, it is likely
that the word “right”, highlighted in the first text based on the first basis vector of the DS, is being
used as political meaning. Furthermore, more words related to education are highlighted, such as
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Figure 3.6: Word clouds representing the word importance score of the words in the texts with
respect to the second basis vector of the difference subspace between Text1l and Text3.

“education”, whereas words related to the world cup are highlighted for Text3.

3.3 Summary

This chapter presented a simple but powerful tool to perform text analysis based on the word
subspace representation, the word importance score. It measures how important a word vector is
with regards to a word subspace basis vector, canonical vectors, or the basis vector of the difference
subspace taken from two texts. The importance with respect to each of these vectors can reveal
important information about a text, such as the main hidden topics in a particular text or set of texts
and the topics that relate two texts based on their subspace similarity or difference subspace. We
demonstrated how to perform such analysis by using toy data and, throughout the remainder of this
thesis, we use these tools to interpret the results given by the word subspace model along with the
subspace-based methods.
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Chapter 4

Word Subspace for Text Classification

This chapter proposes a novel framework for text classification based on subspace-based methods.
We specifically cover two sub-tasks within text classification: topic classification and sentiment
analysis. We explore the geometry behind the word embeddings to make a guided decision on the
subspace-based method that is more suitable for solving each task.

Text classification aims to classify different texts into a fixed number of predefined categories,
helping to organize data and making it easier for users to find the desired information. In the past
years, many methods based on machine learning and statistical models have been applied to perform
this task, such as latent semantic analysis (LSA), support vector machines (SVM), and multinomial
naive Bayes (MNB). Recently, several non-parametric models based on word embeddings have been
proposed to solve these tasks using different spectral methods [29], [31], [30], [32].

To our knowledge, no work handles the subspaces generated from the word embeddings in a
text and applies compatible subspace-based methods to solve text classification, as proposed in this
thesis. Although Mu et al. [23] utilized compatible subspace similarity measurement to perform
semantic textual similarity, they took a naive approach by modeling word subspaces at a sentence
level, which they demonstrated to be adequate to solve semantic textual similarity tasks.

However, such a naive approach might not be the best suited for text classification. Since
most word embeddings are trained based on the words’ co-occurrence, the generated word vectors
might not necessarily discriminate towards a given classification task. Hence, it is essential to find
a subspace-based method that better extracts the discriminative features necessary for each task.
Under such methods, we model word subspaces at the sentence level and at the text level. More
importantly, in this chapter, we demonstrate how the understanding of the subspace uniqueness
property discussed in Chapter 2 supports the word subspace modeling at these different levels.

We show the validity of the proposed frameworks through experiments on four different datasets,
where two of them focus on topic classification, and two focus on sentiment analysis. We demonstrate
the effectiveness of the word subspace representation and the subspace-based classification methods
by comparing them with the performance of recent text models.

The remainder of this chapter is organized as follows. We dedicate Section 4.1 for Topic
Classification and Section 4.2. In each of them, we describe how we chose the most appropri-
ate subspace-based method and demonstrate their performance through experimental evaluation.
Finally, a summary is presented in Section 4.3.
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4.1 Topic Classification

The goal in topic classification is to assign an input text to a previously modeled class of the same
main topic. This main topic can be characterized by a set of word vectors X, = {£} that correspond
to words that highly co-occur in such a context. In general, this specific set of words might not be
available; however, we hypothesize that the word’s distribution from all texts in a class is a reasonable
model of the main topic in this class.

Based on the findings in Section 2.3, we conjuncture that there should exist a word subspace
spanned by these important words to represent the topic class, i.e., topic class subspace, which
we can derive from a single text from the class or a combination of all texts in the class, i.e.,
span(X.) ~ span(X.). On top of that, a word subspace modeled from a text, i.e., text subspace,
that also belongs to this topic class should be almost the same as the topic class subspace, i.e.,
span(Xi) ~ span(X.).

Under these assumptions, the classification of an input text can be performed by comparing its
text subspace with the topic class subspaces. This process can be performed under the framework
of the mutual subspace method (MSM) [45], where words from texts of the same class are assumed
to belong to the same context.

4.1.1 Proposed framework

Our proposed framework has two different states. In the training stage, we model one word subspace
from the set of training documents of each class, following the procedure presented in Section 2.
This process results in the topic class subspaces ). Since the number of words in each class may
vary largely, the dimension m of each topic class subspace can be set to different values accordingly.

In the classification stage, for an input document d,,, we model a text subspace ), and compare
it in terms of subspace similarity with the topic class subspaces. This framework can be seen in
Fig. 4.1.

Finally, the class with the highest similarity with d is assigned as the class of d:

prediction(dy) = argmax.(S(y..y,))- 4.1

Fig. 4.2 shows the modeling and comparison of sets of words by MSM. This method can compare
different-sized sets and naturally encode proximity between sets with related words.

It is important to note that the main difference between the approaches taken by Mu et al. [23]
to solve the semantic textual similarity (STS) task is that, in their method, the word subspaces were
modeled at a sentence level, and comparison was also performed between two sentences (i.e., same
natural language structure level). In this work, we propose representing each class as a single word
subspace, modeled from all texts in the class, and classifying the input text by comparing it the set
of texts in each training class (i.e., comparison between different levels). If we were to keep the
same strategy, each topic class would be represented by several text subspaces. To classify an input
text, we would need to compare its text subspace to all of the reference text subspaces and assign
the label of the reference text it is the closest to. We will refer to this framework as INN-MSM. Our
experiments demonstrate that while this approach is valid, it might not be the most appropriate to
solve topic classification.
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Figure 4.1: Text classification based on word subspace, under the MSM framework
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Figure 4.2: Comparison of sets of word vectors by the mutual subspace method

4.1.2 Topic class subspace modeling by weighted PCA

The word subspace formulation presented in Chapter 2 is a practical and compact way to represent
sets of word vectors, retaining most of the variability of features. However, when modeling a topic
class subspace, the number of word vectors in X, = {x’é}i’:1 can be large, leading to large memory
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consumption. Therefore, we propose a reformulation to the word subspace modeling to reduce the
memory load while achieving the same results.

In this formulation, instead of considering every instance of the word vectors in the class, we
consider each unique word vector and the number of times it occurs (i.e., term-frequency). Then,
we apply a weighted version of the PCA [50], [51].

Consider the set of word vectors {x k}kN£1 € RP, which represents each unique word in a class,
and the set of weights {wi}ﬁ\i I, which represents the frequencies of the words in the class. We
combine these frequencies into the subspace modeling by weighting the word embedding matrix X
as follows:

X = xQ!/2, 4.2)

where X € RP*Nu is a matrix containing the word vectors {xk}ivgl and Q is a diagonal matrix
containing the weights {wi}i’\i“l.
We then perform PCA by solving the SVD of the matrix X:

X=AMB", (4.3)

where the columns of the orthogonal matrices A and B are, respectively, the left-singular vectors
and right-singular vectors of the matrix X, and the diagonal matrix M contains singular values of
X.

Finally, the orthonormal basis vectors of the m.-dimensional weighted subspace WV are the
column vectors in A corresponding to the m largest singular values in M. This process is equivalent
to modeling the word subspace as described in Chapter 2, but as we reduce the size of the embedding
matrix by considering unique instances, it is possible to reduce memory and time consumption in
the process of modeling the topic class subspace.

Besides the computational gain, modeling the word subspace through this formulation allows us
to explore different weights for the words, such as binary weights, term-frequency inverse document-
frequency weights, and others. The effects of using these different weights when modeling the word
subspace are not in the scope of this thesis; however, in our experiments, we demonstrate how binary
weights can be more effective, depending on the dataset.

4.1.3 Experimental Evaluation

This section describes the experiments performed to show the validity of our proposed frameworks
for topic classification.

We performed four different experiments. We first compared our methods with conventional
text classification methods, such as multinomial naive Bayes and latent semantic analysis. Then,
we performed a simple analysis of the word importance score to investigate the validity of using
the INN-MSM framework. We also report the computational time difference when modeling the
reference classes for MSM using the generalized PCA. Then, we show how the word subspace
representation and MSM compare with more recent text models.

We used two different datasets, Reuters-8 dataset from [49], and The 20 newsgroups dataset,
also from [49]. To obtain the vector representation of words, we used a pre-trained model for
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word2vec!.

Comparison with Conventional Text Classification methods

We first tested the classification performance of MSM along with the word subspace representation
(WSub) on the Reuters-8 dataset, using as word embedding the pre-trained word2vec model men-
tioned above. To understand how the frequency of the words influences the results, we also tested
performing classification by considering only one occurrence of each word when modeling the word
subspaces (u-WSub).

We considered the following conventional methods for comparison: multi-variate Bernoulli
(MVB), multinomial naive Bayes (MNB) [52], latent semantic analysis (LSA) [19] and support
vector machines (SVM). Since none of these methods work with vector set classification, we also
compared a simple baseline for comparing sets of vectors, defined as the average of similarities
between all vector pair combinations of two given sets. For two matrices A and B, containing the
sets of vectors {x/, }f.i*]‘ and {x;; },ZB , respectively, where N4 and Np are the number of words in each
set, the similarity is defined as:

1 Na Np oo
Simia) = 35 PR AS (4.4)
i

We refer to this baseline as similarity average (SA). We only considered one occurrence of each
word in each set for this method.

Depending on the methods, we used different features. Classification with SA and MSM was
performed using word2vec features, to which we refer as w2v. For MVB, due to its nature, only
bag-of-words features with binary weights were used (binBOW). For the same reason, we only used
bag-of-words features with term-frequency weights (tfBOW) with MNB. Classification with LSA is
usually performed using bag-of-words features and, therefore, we tested with binBOW, tfBOW, and
with the term-frequency inverse document-frequency weight, tfidfBOW. We also tested them using
word2vec vectors. In this case, we considered each word vector from all documents in each class to
be an individual sample. In addition to BOW features, we also assessed the performance of SVM
using document representations generated with Latent Dirichlet Allocation [53], a topic modeling
method that represents each document as a combination of a fixed number of topics.

To determine the dimensions of the class subspaces and query subspace in MSM, and the
dimension of the approximation performed by LSA, we performed 10-fold cross-validation, wherein
each fold, the data were randomly divided into a train (60%), a validation (20%) and a test set (20%).
For LDA, we set the number of topics to be 50.

The results can be seen in Table 4.1. The simplest baseline, SA with w2v, achieved an accuracy
rate of 78.73%. This result is important because it shows the validity of the word2vec representation,
performing better than more elaborate methods based on BOW, such as MVB with binBOW.

LSA with BOW features was almost 10% more accurate than SA, where the best results with
binary weights were achieved with an approximation with 130 dimensions, with TF weights were
achieved with 50 dimensions, and with TF-IDF weights were achieved with 30 dimensions.

thttps://code.google.com/archive/p/word2vec/
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Table 4.1: Results on the Reuters-8 dataset, without stop words. We denote the word subspace
representation as WSub and word subspace with single occurrences of words as u-WSub. ‘A’ stands
for accuracy and ‘F1° for the macro f1-score metric

Method Text Model W.E. A F1
SA - w2v | 78.73 61.66
MSM WSub w2v | 92.01 80.62
MSM u-WSub w2v | 90.62 80.56
MVB binBOW - 62.70 42.37
MNB tfBOW - 91.47 79.71
- w2v | 3458 20.64
binBOW - 86.92 71.80
LSA tfBOW - 84.78 71.30
tidf BOW - 82.38 74.92
- w2v | 26.61 13.02
binBOW - 89.23 69.25
SVM tfBOW - 89.10 69.47
tidf BOW - 88.78 69.18
LDA - 92.00 72.56

SVM with BOW features was about 3% more accurate than LSA, with the binary weights leading
to a higher accuracy rate.

It is interesting to note that despite the reasonably high accuracy rates achieved using LSA and
SVM with BOW features, they poorly performed when using word2vec features.

Among the baselines, the best methods were MNB with tfBOW features followed by SVM with
LDA features, both achieving over 90% accuracy. They were also the only conventional methods
that outperformed u-WSub with MSM in terms of accuracy. u-WSub with MSM had an accuracy
rate of 90.62% and an fl-score of 80.56%. However, incorporating the frequency information
in the subspace modeling resulted in significantly higher accuracy at a 95% confidence level (p-
value: 2.79E-06), with WSub achieving 92.01%, and in a slight improvement of the f1-score when
compared with u-WSub.

Overall, the WSub, along with MSM, achieved the best results, being significantly more accurate
than MNB with ttBOW (p-value: 0.031, at a 95% significance level). On the other hand, while LDA
features with SVM had similar accuracy to WSub with MSM, the f1-score was about 8% lower. This
difference demonstrates the capability of the subspace model in handling classes of different sizes.

Besides, the best results when considering the frequencies of the words were achieved by using
smaller word subspaces (150 to 172 dimensions for reference subspaces and 2 to 109 for input
subspaces) than that when using unique occurrences (150 to 181 dimensions for reference subspaces
and 3 to 217 for input subspaces).
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Table 4.2: Comparison results between MSM and INN-MSM on the Reuters-8 database. ‘A’ stands
for accuracy and ‘F1° for the macro f1-score

Method Text Model W.E. A F1
INN-MSM WSub w2v | 85.97 74.72
INN-MSM u-WSub w2v | 88.77 76.40

MSM WSub w2v | 92.01 80.62
MSM u-WSub w2v | 90.62 80.56

Single Subspace vs. Multiple Subspaces per class

Based on the uniqueness property demonstrated in Section 2.3, we could see that modeling several
texts as a single class subspace can lead to a robust representation of a topic class, and therefore
MSM performs well for topic classification. However, a common approach taken by most sentence
and document embeddings, such as DCT embeddings (DCT) [32], and the EigenSent [30], is to
model each sentence or document as a single representation. In the context of subspaces, this
means modeling each document as a subspace, resulting in each topic class being represented by
several document subspaces. Classification, then, would be performed based on the nearest reference
document subspace. Such an approach has some advantages over the proposed MSM, such as making
it easier to update the classifier with new samples. To understand if this strategy is effective, we
tested it in the same settings as the previous section. We refer to this approach as INN-MSM.

The results for INN-MSM can be seen in Table 4.2, which were achieved with subspaces
dimensions varying from 1 to 15. When we compare our proposed framework utilizing the word
subspace and MSM (MSM + WSub), it is clear the advantage of modeling a single reference subspace
for each class over modeling several reference subspaces for each class (INN-MSM + WSub). Even
when considering single occurrences of the words, using MSM as proposed achieved better accuracy
and Fl1-score.

To understand why such difference occurs, we use the word importance score defined in Sec-
tion 3.1. As an example, we selected two texts from the class “money-fx” of the Reuters-8 dataset
and modeled a word subspace for each one of them. Then, the importance score of the words in
each text was calculated according to the canonical vectors between them.

Figure 4.3 shows the word clouds, colored and sized according to the importance score based on
the first pair of canonical vectors when comparing the subspaces of Textl and Text2. Since both texts
belong to the “money-fx” class, we expected that words related to money be the ones connecting
the texts. However, we can see that words such as “group” and “meeting” were considered more
important. This result is probably because both texts talk about meetings happening to discuss
finances. The second pair of canonical vectors (Fig. 4.4) highlights words related to the name of
the countries mentioned in the texts. Only in the third canonical vector (Fig. 4.5), we start to see
words related to money being considered important to compare the texts. Still, these have minor
importance, with the most important ones still being related to the meetings and discussion. Thus,
although these two texts are very similar in terms of subspace similarity, the main reason is that they
both talk about meetings.

On the other hand, if we compare the word subspace for Textl and the word subspace for the
whole class, we can see words related to money receiving more importance. When we compare the
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Figure 4.3: Word importance score for words in texts in the class “money-fx” of the Reuters-8
dataset, according to the first pair of canonical vectors between their word subspaces. Words such
as “group” and “meeting” are considered more important
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Figure 4.4: Word importance score for words in texts in the class “money-fx” of the Reuters-8
dataset, according to the second pair of canonical vectors between their word subspaces. Words
related to the countries are considered more important
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Figure 4.5: Word importance score for words in texts in the class “money-fx” of the Reuters-8 dataset,
according to the third pair of canonical vectors between their word subspaces. Words related to the
countries are considered more important

first text with the subspace modeled from all of the remaining texts in the class, we can see that the
first canonical vector pair considers words related to money as more important (Fig. 4.6).

Finally, it is possible to see how the classification differs between the two approaches by visu-
alizing the distribution of the test subspaces using INN-MSM and MSM on Figures 4.7a and 4.7b,
respectively. As we have different classes with possible different variances, we used the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [54] to generate all the visualizations, as this method gen-
erates the lower dimensional embeddings in a non-linear and non-local manner. We can see that
the word subspaces of seven classes are concentrated in a small region when using INN-MSM. In
contrast, the word subspaces for all classes spread more appropriately when using MSM, improving
classification. Figure 4.8 shows in more detail how the distribution of the test word subspaces of
different classes compare when using INN-MSM and MSM.

Therefore, while INN-MSM can achieve reasonable results, using MSM as proposed in this
thesis is more effective for topic classification. Furthermore, this analysis shows the importance of
understanding the geometry behind the subspace representation, such as the uniqueness property.

Execution time experiment

As explained in Section 4.1.2, when modeling all words from all texts into a single word subspace,
the number of word vectors in the embedding matrix X, = {x* }kN:C , can be large. A large embedding
matrix can lead to large memory consumption and a slow PCA computation. By using a weighted
version of PCA, we reduce the size of the embedding matrix while achieving the same results. In this
section, we demonstrate this computational improvement by measuring the execution time of MSM
using both the original and the proposed weighted ones. We used the subspace dimensions obtained
in the previous experiment and classified the Reuters-8 dataset following the same experimental
set-up.

Table 4.3 shows the results of this experiment, where the times were measured for each fold and
averaged. We also included the execution times for the comparison methods tested in the experiment
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Figure 4.6: Word importance score in the text 1 in “money-fx”, according to the first pair of canonical
vectors between its subspace and the class subspace
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Figure 4.7: Distribution of the test subspaces representing each class in the R8 dataset when using
(a) INN-MSM and (b) MSM

of Section 4.1.3. We can see that using the weighted PCA was more than 30% (1.5 seconds)
faster than using regular PCA. Looking at the accuracy, we can see that both achieved the same
performance. Nevertheless, we can see that even when using the regular PCA, the subspace-based
method is significantly faster than using the traditional methods.

Comparison with recent methods

We compared our methods to more recent text models in the Reuters-8 and the 20newsgroup
datasets. These models aim at creating a single vector representation for a sentence based on the
word embeddings of the sentence’s words. More specifically, we compared with the concatenated
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Figure 4.8: Comparison of the distribution of test subspaces for different classes of the R8 dataset
when: (a) using INN-MSM; (b) using MSM. Using INN-MSM leads to high overlap between
the classes. In contrast, when using MSM, the overlap is reduced, improving the classification
performance

power mean embeddings (p-mean) [18], discrete cosine transform embeddings (DCT) [32], and the
EigenSent embeddings [30]. We also include results for the PCA sentence embedding (to which
we will refer as concatPCA) reported in Kayal and Tsatsaronis’ work [30], which is based on the
same subspace generation mechanism but represents the text as a concatenation of the basis vectors,
instead of using a matrix with the basis vectors.

To allow a direct comparison with the results reported in the published literature, we used the
same word2vec pre-trained model as word embedding, and for both datasets, we used the ‘no-short’
variation, following the standard train-test splits. We reported weighted precision, recall, and F1
metrics to match the published literature for this experiment. To determine the dimensions of the
subspaces for MSM, we performed 10-fold cross-validation with the train set and reported the results
for the final model on the test set.

The results for this comparison are in Table 4.4. The results for the R8 dataset were achieved
with reference word subspaces of 150 dimensions for u-WSub and 120 dimensions for WSub; the
input subspaces dimensions varied from 3 to 210 for u-WSub and 2 to 120 for WSub. As for
the 20newsgroup dataset, the best results were achieved with reference word subspaces of 240
dimensions for both u-WSub and WSub. As for the input subspaces, they varied from 2 to 210
dimensions for u-WSub, and from 2 to 240 for WSub.

We can see that for the R8 dataset, considering all word occurrences helped increase our
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Table 4.3: Results for the execution time experiment: Comparison between modeling the topic class
subspaces with regular PCA and with the weighted PCA. For reference, the execution time for some
of the comparison methods have also been included

Method Text Model Accuracy Execution time (s)
PCA WSub 92.01 = 0.30 4.81 +=0.08
Weighted PCA WSub 92.01 + 0.30 3.13 +0.05
MNB tfBOW 91.47 + 0.37 19.25 + 0.46
LSA binBOW | 86.92 +7.49 25.55 £ 8.30
SVM tfBOW 89.10 + 0.24 105.39 + 2.20
SVM LDA 92.00 + 0.66 133.32 +2.60

Table 4.4: Comparison of the word subspace representation along with MSM with different sentence
embeddings. Results for DCT were taken from Almarwani’s work [32]; for PCA, p-mean and
EigenSent were taken from Kayal and Tsatsaronis’ work [30]. All results were based on the
word2vec word embedding and standard train-test split was used for both datasets

Text RS 20n
Model P R F1 P R F1
MSM u-WSub 95.00 94.83 94.81 7493 74.73 74.65
MSM WSub 95.51 9529 09534 7432 73.86 73.77
SVM  concatPCA | 83.83 83.42 83.41 5543 54.67 54.77
SVM p-mean 96.69 96.67 96.65 72.20 71.65 71.79
SVM DCT 96.98 96.98 96.94 7220 71.58 71.73
SVM EigenSent | 97.18 97.13 97.14 7224 71.62 71.78

Method

methods’ performance by almost 1.5% in the Fl-score. As for the 20newsgroup dataset, using a
single occurrence of the words led to the best results. On top of that, for both datasets, we can see
that using the word subspace representation with subspace-based methods led to significantly better
results than concatPCA along with SVM.

When compared to p-mean, DCT, and EigenSent, our approaches performed the worst in the
Reuters-8 dataset. However, DCT and EigenSent models take the word order into account, which
might have helped improve the results.

As for the 20newsgroups dataset, we can see that our methods achieved the best results. Although
both datasets contain texts from news articles, the texts in the 20newsgroup are longer (average of
124.69 + 253.12 words) than the texts in the Reuters-8 dataset (76.23 + 88.77 words). Therefore,
we may assume that the order of the words for longer texts does not make much difference when the
intent is to classify the text’s topic. Besides, assuming that each text has only one main topic, the
longer it is, the higher are the chances that different words related to that topic will appear.

It is crucial to keep in mind that the R8 dataset is highly imbalanced, and looking only at the
weighted metrics can be misleading, as they favor classes with more samples. Therefore, we also
present the class-wise fl-score to see if our methods perform well both on the larger classes (e.g.,
‘acq’ and ‘earn’ classes) and on the smaller classes (e.g., ‘grain’ class).
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Table 4.5: Class-wise F1-score of u-WSub and WSub with MSM on the R8 dataset

Class Number of samples | u-WSub  WSub
acq 2292 9633  96.74
crude 374 87.50  89.07
earn 3923 98.00  98.28
grain 51 0523  95.23
interest 271 79.22  81.33
money-fx 293 82.54 8540
ship 144 82.19  76.92
trade 326 85.53  85.36

These results are shown in Table 4.5. Despite the class ‘grain’ being the one with the smallest
number of samples, it achieved one of the highest f1-scores, after ‘acq’ and ‘earn’. The classes our
method struggled the most to classify were the four last ones. Intuitively speaking, the main topic
for these four classes is very related to each other, and they may share many terms that similarly
co-occur, and thus, they can be harder to be distinguished from each other.

4.2 Sentiment Analysis

In this section, we tackle the task of binary sentiment analysis. The goal is to assign each input
text to the class with the same sentiment, which can be positive or negative. In other words, given
a training set of documents D = {di}ll.fll, with known classes C = {c; }?zl, we wish to classify an
input document d,; into one of the classes in C (positive or negative).

To solve this task, we first need to pay attention to the nature of the word embeddings. As
most of them are trained based on the co-occurrence of the words, adjectives such as “good” and
“bad” might end up having word vectors very close to each other, although they convey opposite
sentiments. Therefore, to perform efficient sentiment analysis, it is necessary to push the word
vectors apart, corresponding to these opposite sentiment words.

To tackle this problem, we propose using a discriminative version of MSM, named the orthog-
onal mutual subspace method (OMSM) [55]. Through the whitening process [56], this method
orthogonalizes the reference subspaces, pushing them further apart.

In topic classification, we assume that words in texts from the same topic class have a common
context and, therefore, can be modeled into a single topic class subspace. However, for sentiment
analysis, as texts that talk about the same topic may convey opposite sentiment, modeling each
sentiment class as a single word subspace might result in two main problems: First, the distribution
of the word vectors of each sentiment class might be non-uniform and, therefore, PCA will not be
efficient to model it; Second, there may be significant overlap between each sentiment class subspace
(i.e., the overlapping topics), leading to little discrimination power.

In this case, we need to disregard each text’s main topic and focus on the sentiment it conveys.
To perform that, we propose modeling a text subspace for each text and then characterizing each
sentiment class by the distribution of the text subspaces it contains. As a set of m-dimensional
linear subspaces of R” lie as a set of points on a Grassmann manifold G(m, p) [57], we seek to
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Figure 4.9: Orthogonalization of subspaces by using the whitening transformation

model each sentiment class as a set of points corresponding to its text subspaces on the Grassmann
manifold. To perform this, we can use a variation of the MSM on the Grassmann Manifold, the
Grassmann subspace method (GSM) [58]. To combine the discriminative power of OMSM with
the representational capability of GSM, we ultimately propose using the Grassmann orthogonal
subspace method (GOSM) [58] to solve sentiment analysis.

In the following, we explain how to apply these two strategies to solve sentiment analysis based
on the theory of the subspace-based methods.

4.2.1 Orthogonalization by the whitening transformation

Most of the traditional word embeddings are trained based on the co-occurrence of the words.
Because of that, adjectives such as “good” and “bad” might end up having word vectors very close
to each other, although they carry opposite sentiments. This characteristic can lead to low accuracy
when performing sentiment analysis of texts based on these word embeddings.

To solve this problem, we propose using a discriminative variant of the mutual subspace method:
the orthogonalized mutual subspace method (OMSM). By applying the whitening process, it is
possible to orthogonalize the reference subspaces, i.e., maximize their distance. We hypothesize that
performing the orthogonalization of the reference subspaces should alleviate the lack of sentiment
information of the word embeddings. Figure 4.9 depicts this behavior.

Mathematically, whitening is the process of making all eigenvalues of an autocorrelation matrix
the same, i.e., it decreases the standard deviation of the eigenvalues. Moreover, under the subspace
representation context, it makes the subspaces distributions uniform, increasing the angles between
them [55].

To orthogonalize the subspaces of the positive and negative sentiment reference subspaces, we
need to calculate a whitening matrix O. First, for each class ¢; € {c; }Lﬂ, we define a projection
matrix P;, which takes a word vector v and creates its projection in the c; class subspace. Such a
projection matrix can be obtained by the following:
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Pi=> @0] (4.5)

where {®;}!" | are the basis vectors of the c; class subspace. Then, we define the total projection
matrix G = Zﬁl P;.

The whitening matrix O can be obtained based on the eigenvalues and eigenvectors of the matrix
G € RYP? by the following:

0=A'2ET (4.6)

where v = |C|xm, A € R¥ is the diagonal matrix with the i-th highest eigenvalue of the matrix G as
the i-th diagonal component, and E € RP*¥ is a matrix whose i-th column vector is the eigenvector
of G corresponding to the i-th highest eigenvalue.

This matrix O whitens the matrix G so that the |C| subspaces are orthogonalized, when |C|xm <
p.

When we utilize the whitening transformation along with MSM, we perform the orthogonal
mutual subspace method (OMSM). Classification under this framework is very similar to MSM;
however, we compute a whitening transformation matrix during the training stage. In the classifi-
cation stage, we first apply this whitening transformation to all reference and input word subspaces
through the following equation:

Y, = OY, 4.7

where Y is the matrix whose column vectors correspond to the basis vectors of the subspace which
we wish to transform. Then classification follows as described in MSM.

It is important to note that the transformed basis vectors in Y, are not guaranteed to be orthogonal
among themselves and, therefore, to calculate the subspace similarity, it is necessary to orthogonalize
the transformed basis vectors through the Gram-Schmidt orthogonalization process.

This orthogonalization process is done blindly, i.e., all words from the positive class will be
pushed apart from all the words of the negative class. While this can affect words with similar mean-
ings in similar contexts (e.g., therefore and hence), we assume that such relationship changes between
these words are not as crucial for sentiment analysis as words that carry sentiment information.

4.2.2 Subspace representation on a Grassmann manifold

Since texts about different topics may convey the same sentiment, we cannot model a single word
subspace directly from the word vectors to represent a whole sentiment class. Instead, it is possible
to model each text as a text subspace and then characterize each sentiment class by the distribution
of the subspaces it contains. These subspaces lie as points on a Grassmann manifold, and, therefore,
we seek to model each sentiment class as a set of points corresponding to the subspaces on the
Grassmann manifold.

To perform this, we can use a variation of the MSM on the Grassmann Manifold, the Grassmann
subspace method (GSM). The MSM presented in Section 4.1 is regarded as the most straightforward
method on the Grassmann manifold, where the classification is performed by using the similarity
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between a reference point and an input point. In this case, classification compares a set of reference
points on the Grassmann manifold with an input point.

The Grassmann manifold G(m, p) is defined as a set of m-dimensional linear subspaces of
RP [57]. A Grassmann manifold can be embedded in a reproducing kernel Hilbert space by using a
Grassmann kernel [59]. In this work, we use the projection kernel, defined as the following:

I,
kp(V12) = — Z; cos” 0 (4.8)
j:
which is homologous to the subspace similarity.
Then, a text subspace ) can be represented as a vector with regards to a reference subspace
dictionary {)/, }quzl as:

y= kp(y,yq)

4.9
= ey Vs V1) ey (Vs Vs oo ey (Vs V)] € BY 9

Figure 4.10 shows a conceptual diagram of the word subspace representation on a Grassmann
manifold. Consider the set of training word subspaces T = {yi}l'.fl' corresponding to the documents

in the training set D, with known sentiment classes C = {c; }§=1' We obtain a set of vectors { y,-}ll.fl|
corresponding to each training word subspace by using equation 4.9 with respect to 7. Through the
kernel trick using the projection kernel, we now have a set of points on the Grassmann manifold
corresponding to each sentiment class. GSM models the sentiment class subspaces {S.; }?zl based on
the set of points corresponding to each class. GOSM further performs the whitening transformation
to the two class subspaces, S, and S, on the Grassmann manifold.
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4.2.3 Experimental Evaluation

This section explains the experiments performed to test the subspace-based methods and the word
subspace model on the sentiment analysis task. We separate this section into two parts. In the first
part, we verify if the word subspace representation is valid for sentiment analysis. We also analyze
how the orthogonalization and the representation on the Grassmann manifold help to improve the
results. Then, in the second part, we compare our methods with recent text models and discuss the
advantages and disadvantages of the proposed methods.

In this experiment, we used two datasets: The movie review dataset v2.0 (MR)?2, proposed
by [60], and the binary version of the Stanford sentiment tree dataset (SST-2)3, proposed by [61].
Both datasets contain data extracted from movie reviews; However, the MR dataset aims at sentiment
analysis on a document level, while the SST-2 dataset aims at sentiment analysis on a sentence level.
For the MR dataset, we used the standard train-test split, in which we performed 10-fold cross-
validation with the train set to determine the word subspaces dimensions and report the results of
the final model on the test set. For the SST-2 dataset, we used the standard train and dev sets to
determine the word subspaces dimensions and report the final model results on the test set.

Subspace-based methods

In this first part, we used the INN-MSM as a baseline. We performed an ablation study to see
the effects of the representation on the Grassmann manifold and the orthogonalization process in
the classification results. In addition to testing with word2vec, we also tested by using GloVe#
and BERT> word embeddings. Specifically for BERT, we considered the average of the token
representations given by the 4 last layers.

Table 4.6 shows the results for this experiment. First of all, we can see that better results are
achieved for both datasets as better word embeddings are used. However, using the naive approach
of INN-MSM does not perform well. For example, using MSM with w2v embeddings performed
better than using INN-MSM with BERT, an embedding that has been consolidated as a state-of-art
representation. Nevertheless, for both datasets and all embeddings, using MSM performed better
than INN-MSM.

We can see that for the MR dataset, there is a slight improvement when applying the or-
thogonalization (OMSM) for w2v and Glove over MSM, which supports our assumption that the
orthogonalization process can alleviate the lack of sentiment information in these word embeddings.

To illustrate how the orthogonalization helped increase the discrimination between positive and
negative sentiment words, we show in Table 4.7 the cosine similarity between opposite sentiment
words before and after the orthogonalization of the reference sentiment classes with the word2vec
embeddings.

We can see that the orthogonalization helped to push apart these word vectors that contain
opposite sentiments. On the other hand, it is interesting to see that for words such as “hence”
and “therefore”, which happen in similar contexts and have similar meanings, the cosine similarity

2http://www.cs.cornell.edu/people/pabo/movie-review-data/
3https://nlp.stanford.edu/sentiment/
4http://nlp.stanford.edu/data/glove.42B.300d.zip
Shttps://github.com/google-research/bert (BERT-base uncased model)
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Table 4.6: Results for subspace-based methods on the MR and SST-2 datasets. Best results for each
dataset per word embedding are highlighted in bold

Word Movie Review SST-2
Embedding Method A R P A R P
INN-MSM | 61.18 61.18 61.32 | 60.21 60.20 60.24

MSM 7645 7420 77.77 | 75.53 7552 75.73
w2V OMSM 76.55 69.40 80.98 | 75.69 75.70 75.92

GSM 79.75 81.70 78.70 | 74.28 74.25 78.63

GOSM 84.25 83.70 74.66 | 7291 7290 73.09
INN-MSM | 64.49 6448 64.59 | 61.94 61.93 62.04

MSM 76.80 72.60 79.27 | 7712 7711 77.14
GloVe OMSM 77.05 67.80 83.20 | 76.71 76.70 76.75

GSM 79.65 81.30 78.80 | 73.78 73.72 78.42

GOSM 85.75 85.20 86.24 | 67.80 67.79 67.84
INN-MSM | 66.93 6693 67.12 | 71.41 71.40 71.58

MSM 7744 7487 79.00 | 81.59 81.59 81.63

BERT OMSM 73.66 74.62 73.33 | 83.24 8324 83.25
GSM 86.24 86.23 86.39 | 8245 8243 84.24
GOSM 91.14 91.14 91.20 | 85.51 85.50 85.53

Table 4.7: Cosine similarity between word2vec embeddings of words with opposite sentiment before
and after the orthogonalization of the reference word subspaces in the Movie Review dataset

Words Before | After

Good Bad 0.71 0.17
Incredible Terrible | 0.47 0.23
Excellent  Awful 0.40 0.16

almost did not change (0.70 to 0.75). This result might be because these words are not specific to
any sentiment and similarly occur in both classes.

For BERT, the orthogonalization process made the results significantly worse. This result is
likely to be related to the fact that BERT word embeddings are dynamically generated, where
each word embedding depends on the words around it in the text. The word embeddings might
represent some helpful sentiment information for this classification in this process. Therefore, the
orthogonalization process might not be beneficial.

The results in the MR dataset further improved when using the representation on the Grassmann
manifold, which is consistent with our assumption that mixing texts from different topics in a single
reference word subspace does not lead to satisfactory results for sentiment analysis. Therefore, by
modeling each text as a single word subspace, we can increase the abstraction level by projecting them
onto the Grassmann manifold, where modeling the sentiment class subspaces will not be directly
affected by the different topics. The best results in this dataset were achieved when combining both
approaches for all the embeddings.
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Table 4.8: Accuracy results for the MR and SST-2 datasets between the proposed methods and
different sentence embeddings

Word Emb. Method Text Movie SST-2
Model Review

MSM WSub 7645  75.53

GOSM WSub 84.25 7291

w2y LogReg concatPCA | 65.74 71.94
LogReg p-mean 76.30  79.90

LogReg DCT 77.10  81.00

MSM WSub 76.80  77.12

GOSM WSub 85.75 67.80

LogReg concatPCA | 63.43  50.58

Glove LogReg p-mean 77.10  80.20
LogReg DCT 77.05  79.63

LogReg WR - 82.20

LogReg GEM 78.80  83.60

For the SST-2 dataset, we see different behavior. OMSM performed better than GSM for all
three embeddings. This result is probably due to the short length of the sentences in this dataset.
For short sentences to express a sentiment, it is more likely that they contain more words that carry
a sentiment, in which case, the classification can benefit from the orthogonalization.

Notice, however, that the word subspace with BERT was the only one to improve MSM when
using GSM. While the subspace representation is very efficient at generalizing the distribution of
a set of vectors, the subspace cannot create a precise representation if there is not enough variance
within the set. This lack is compensated by BERT, as each word embedding depends on each
sentence’s words, creating more unique representations for each sentence.

Comparison with recent methods

In this section, we compared our methods against the following text representation models: the con-
catenated power mean embeddings (p-mean) [18], discrete cosine transform embeddings (DCT) [32],
geometric embedding (GEM) [27], and the a random-walk based embedding (WR) [17]. To allow a
direct comparison with the results reported in the published literature, we used the same word2vec
and GloVe pre-trained models as word embeddings.

The p-mean, GEM, and WR results were taken from their respective papers. For DCT, as
the results reported in the original paper for these two datasets were based on the Fast-text word
embeddings, we trained a logistic regression based on w2v and GloVe embeddings. These results
were achieved by considering only the ¢” coefficient. We also computed the results for the concatPCA
sentence embeddings to see how they compare with our proposed methods.

Table 4.8 shows the results. For the MR dataset, we achieved the best results when using the
GOSM. The concatPCA embedding, on the other hand, achieved the worst results. These results
support the findings in the topic classification experiment, which shows that using a classification
framework compatible with the word subspace model is much more efficient than forcing it to work
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with conventional machine learning methods through concatenation.

For the SST-2, we can see that the word subspace, along with the subspace methods, did not
perform well. Instead, models that consider the word order, such as DCT and GEM, achieved the
best results. This result also suggests that the order of words might be more critical for shorter
sentences.

4.3 Summary

This chapter proposed a new framework for text classification based on subspace-based methods.
We also proposed a generalized formulation for the word subspace, which can significantly speed
up the modeling of a subspace from a large number of words. We specifically tackled two sub-tasks
within text classification: Topic classification and sentiment analysis.

For topic classification, as words important for the classification tend to occur in a specific
context (i.e., topic), we assumed that words from texts of the same class belong to the same context.
Based on this assumption and the subspace uniqueness property, we hypothesized that there should
exist a word subspace spanned by these important words that can be derived from all texts in the
class. Therefore, we proposed using the mutual subspace method (MSM), where words from texts
of the same class are assumed to belong to the same context.

For sentiment analysis, as word vectors generated by word embeddings of words that carry
opposite sentiment tend to be close to each other, we proposed using a discriminative version of
MSM, the orthogonal mutual subspace method (OMSM), to reduce the similarity between them.
Furthermore, to avoid the overlap between sentiment class subspaces (as texts about the same topic
may convey opposite sentiment), we proposed modeling each text as a word subspace. However, it
is also necessary to understand the distribution of word subspaces for each sentiment class. As these
subspaces lie on a Grassmann manifold, we proposed using a variation of MSM and OMSM, the
Grassmann subspace method (GSM) and the Grassnmann orthogonal subspace method (GOSM).

Our experiments demonstrated the effectiveness of the word subspace model when compared
against conventional text classification methods and recent non-parameterized text models. Despite
the limitation of not accounting for word order, the understanding and incorporation of the uniqueness
property of the subspace representation helped improve the results compared with the framework of
INN-MSM. Furthermore, our results showed that using MSM led to significantly better results than
concatenating the basis vectors along with standard machine learning algorithm, and ultimately, our
approach achieved the best results in the 20newsgroup dataset. We further demonstrated how using
the weighted version of PCA helps speeding-up the modeling of a topic class subspace in more than
30% with no performance loss. Finally, combining the discriminative power of OMSM and the
representational power of GSM by using the Grassmann orthogonal subspace method achieved the
best results on the Movie Review dataset.
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Chapter 5

Word Subspace for Multimedia
Generation

This chapter presents a framework for multimedia generation, where we demonstrate a more practical
application of the word subspace model. We specifically focus on the generation of memes from
news articles.

Internet Memes have gained prominence due to their simplicity and comicality. This term is
used to describe an activity, concept, catchphrase, or piece of media (e.g., an image, hyperlink,
video, website, or hashtag) that spreads by mimicry or for humorous purposes via the Internet [62].
One of the most popular types of memes is the “image macro” meme [63], a combination of a phrase
and image, which uses irony and sarcasm to depict a general opinion.

Due to their rapid spread, Internet memes have gained much attention in the past few years.
They can be viewed as a form of art, as in websites such as knowyourmeme.com, memedump.com,
or memebase.com, and also as solid public relations and advertising tools, with examples of memes
purposely designed to create publicity for products or services [64]. Nevertheless, they spread from
user to user on social networks through mimicry, commentary, or parodies, usually containing some
inside joke or sarcasm. Therefore, it is not uncommon to have a rapid increase of memes surrounding
an event with a significant impact on society, spread through the news.

While the study of the relationship between meme creation and news events is out of the scope
of this thesis, we recognize the potential of increasing the reach of important news to a public that
might not actively seek such information on news platforms and, therefore, we are interested in
tackling the problem of meme generation from news articles.

Previous works have successfully generated memes from posts on Twitter and news headlines;
however, most of them did not extract information automatically from both images and texts to
create the memes. For example, Costa, Oliveira and Pinto [65] search for the most frequent nouns
associated with a public figure and replaces them in quotes, creating new phrases. However, the
image is retrieved from the internet using a search engine, with no analysis of the image context. In
a different work [66], despite using common meme images, they matched the headlines based on a
set of rules manually defined for each image.

Wang and Wen [67] studied the correlation among popular meme images and their wordings,
retrieving meme descriptions from raw images. Their results showed that extracting information

39



from both image and text generates meaningful memes, with descriptions more coherent with the
image context.

More recently, works using the Show and Tell model [68], an image captioning framework, to
generate memes were also proposed. This framework consists of first encoding the meme image
using a convolutional neural network, such as VGG-16 [69], as in Akandjani and Bouk’s work [70],
and Inception-v3 [71], as in Peirson and Tolunay’s work [72]. Then, the encoded image is given as
an input to an LSTM network that outputs the corresponding meme caption. While such a framework
can generate coherent captions, the meme generation is heavily conditioned on the input image.

Finally, works such as memebot [73] generate a meme by combining a selected meme image
and a transformer-generated caption, given an input sentence. Memebot is a robust model which can
generate memes by leveraging inputs from different modalities of data but requires heavy supervised
training.

Considering the above discussion, we propose the news2meme, a framework for automatic “image
macro” meme generation from news articles. We attempt to leverage information automatically
extracted from both text and image to generate the meme without heavy supervised training. Our
input is a news text, and the output is a meme composed of an image and a catchphrase. Our problem
is then formulated as two multimedia retrieval tasks where we wish to retrieve a meme image and a
catchphrase that matches the content of the input news text well.

To solve our problem, we need to compare and match three different information sources: a
meme image, a catchphrase, and a news text. To this end, they must be represented in a common
form for direct comparison. Our basic idea to address this issue is to represent the three sources
as sets of word vectors as follows: Words in the news text and catchphrase are translated to word
vectors using the word2vec representation [1]. For the images, first, a set of tags is extracted from
them by using a deep neural network. Then, these tags are then translated to word vectors by using
the word2vec.

Under this framework, we represent each set of words compactly as a word subspace in the same
vector space and calculate the similarity between two word subspaces by using the mutual subspace
method (MSM) [45]. Thus, we can link and compare the different types of information sources
naturally and effectively. In this way, we can realize the framework to retrieve the meme image and
catchphrase from a given news text query.

The rest of this chapter is organized as follows. First, in Section 5.1, we describe our proposed
meme generator, explaining how to match the three types of media. Then, we performed tests to
evaluate our framework, and their main results are described in Section 5.2. Finally, we present a
brief summary in Section 5.3.

5.1 Proposed Meme Generator
In this section, we first give a general overview of our framework with its basic concept. Then, we

explain how to model a word subspace from texts and images and how retrieval is performed through
word subspace.
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Figure 5.1: Flowchart of the proposed framework. Main words and image tags are extracted from
catchphrases and news articles, using a POS tagger, and from meme images, using a DNN; Words
and tags are then translated to vectors using the word2vec representation. Each set of word vector is
modeled into a word subspace )/, and the similarity between them is calculated using MSM.

5.1.1 Framework overview

The primary goal of news2meme is to generate a meme from a news text. Figure 5.1 shows our
framework. To generate a meme, we find an image and a catchphrase corresponding to the news text
by comparing word subspaces.

Our framework has two different stages: A learning and a generation stage. In the learning stage,
we consider two different sources: Sjg, with meme images; and S, With catchphrases. For
each meme image and each catchphrase in those sources, we model a word subspace, resulting in
sets of catchphrase word subspaces, V.., and sets of image word subspaces, V;,. These are the
reference word subspaces.

Then, in the generation stage, for a given input news text in the source S;y;, we model an input
word subspace );,;. Next, we calculate the similarity between the input word subspace and the
reference word subspaces (images and catchphrases) using MSM. The image and catchphrase with

the highest similarity are retrieved. Finally, the selected image and catchphrase are combined to
generate the meme.
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Figure 5.2: Flowchart of tag vectors extraction from imges using a deep neural network (DNN)

5.1.2 Word Subspace from different medias

To model all three sources (i.e., images, catchphrases, and news text) into word subspaces in the
same vector space, we first perform the following preprocessing:

Text data: For each input news text and catchphrase, we use the Stanford part-of-speech
tagger! [74] to extract a set of meaningful words (i.e., verbs, nouns and adjectives). Then, these
words are translated to word vectors, using word2vec, resulting in sets of word vectors. The set of
word vectors from an input text is denoted as {x! xt}N”” while the vector set of a catchphrase is

i=1 *

[ N, cphr

denoted as {x’ , }. "
cphr_i=1 . . . . .

Image data: Figure 5.2 shows our preprocessing for images. To make images compatible with

text media, we represent them as sets of tags, which are extracted by using a deep neural network,

the AlexNet [75]. Given a pre-defined set of tags, it extracts semantic information from the image in

the form of a vector of probabilities among them. The N;,,, most likely tags are then converted to

vectors using word2vec. The resulting set of tag vectors of an image is represented as {x! g}i]iilr"”
Under this setting, a set of words from a text contains syntactic information and can be seen as

an ordered set, while the image tags are naturally non-ordered. Still, modeling both types of media

as word subspaces can effectively represent the context of the corresponding text or image in the

same vector space.

5.1.3 Retrieval based on word subspace

By representing all three types of media as word subspaces, we can compare them based on the
similarity between the word subspaces. This way, it is possible to not only retrieve information from

thttps://nlp.stanford.edu/software/tagger.shtml (3.4.1)
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Figure 5.3: Comparison of sets of word vectors by the mutual subspace method

the same modality (e.g., a text from a text) but also retrieve information across modalities (e.g., an
image from a text).

Consider an input word subspace for news text data, );,;, and a reference word subspace for
image, V;my. We can compare them by measuring the canonical angles 6 between them under the
framework of MSM [45]. The canonical angles are defined as the arccosine of the singular values
obtained by applying SVD [34] to the matrix Y, ,Y;,y, where Y, € RP*™xt and ¥, € RP*Mimg
are the bases matrices of V;,; and V4, respectively. Ultimately, the similarity between these two
word subspaces is defined by using ¢ angles as follows:

t
S[t] = %Zcos2 0is 1 <t < Mipy. (5.1)

i=1
Figure 5.3 shows the modeling and comparison of sets of words by MSM. This method can
compare sets of different sizes and naturally encodes proximity between sets that have common
words or related words. For example, the word subspace Y;, of an input news text with the words
“hero” and “comics” may be closer to an image word subspace )41 containing the tag “batman”

than an image word subspace ;4> containing the tags “bird” and “yellow”.

5.2 Experimental Evaluation
In this section, we discuss the validity of news2meme through two preliminary qualitative experi-

ments. We first describe the datasets we created to perform these experiments. Then, we describe
the design of each experiment and summarize our main results.
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5.2.1 Datasets

We created three different datasets:

¢ Meme image dataset S;,,4, with 812 images commonly used in memes, downloaded from the
Meme Generator website 2. For each image, we also extracted the image title.

e Catchphrase dataset S¢ ., with 1193 phrases taken from famous series, movies, and cartoons,
downloaded from the catchprase.info website3.

e News dataset S;,;, with 2517 news articles from the News in Levels website4, from the
categories ‘History’ (46 articles), ‘Nature’ (119), ‘Sports’ (93), ‘Interesting facts’ (1040),
‘Funny’ (61), and ‘News’ (1158). We chose this website over other news websites because it
has short and simplified versions of news articles.

5.2.2 Meme Generation

We generated 2517 memes from news articles in the news database S;; using our proposed frame-
work. As training data, we used image tags extracted from images in the database S;,,, and main
words from catchphrases in the database S, .

For the image tags, we considered the top 5 predictions by AlexNet for each image and added
words from the image title. As for the catchphrases, we extracted the main words (nouns, adjectives,
and verbs) using the POS tagger and added the name of the character who says the catchphrase.

These sets of words and tags were then translated to vectors, keeping only one occurrence of each
word. PCA was then applied to each set of vectors, thus creating 812 meme image word subspaces
{y;'mg}f:lf and 1193 catchphrase word subspaces {ygp hr}}i?. We set the dimensions of the word
subspaces, Vimg and Ve ppr, to values ranging from 4 to 7 and from 3 to 8, respectively.

We used the news in S, as inputs, generating one meme for each news as described in section 5.1.
The word subspaces ), dimensions ranged from 7 to 38.

5.2.3 Meme evaluation experiment

We used 990 memes generated following the procedure in Section 5.2.2. Nine subjects were asked to
read 110 news articles each and evaluate their corresponding generated memes regarding the image
and phrase. Subjects voted them as ‘Good’ when they depicted well the news and ‘Bad’ when they
did not. To better understand the image and phrase combination, we gave a score for each meme.
Considering ‘Bad’ as 0 and ‘Good’ as 1, we summed both votes, obtaining a maximum score of
2 when both image and phrase were ‘Good’ and a minimum score of 0 when both were ‘Bad’.
Table 5.1 shows the percentage of the three possible scores each category received.

Memes with the highest scores were from the ‘Sports’ and ‘Nature’ categories. We can see an
example in 5.4a, in which the news is about a young polar bear that strayed into a village in the
Russian Arctic®. News2meme successfully related the news with a polar bear picture and found a

2https://imgflip.com/memegenerator

3http://www.catchphrases.info/

“http://newsinlevels.com
Shttps://www.newsinlevels.com/products/polar-bear-in-a-village-level-2/
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Table 5.1: Meme Evaluation Results - General Score (%)

General
Both Bad One Good Both Good

Sports 20.43 24.73 54.84
Nature 17.65 31.93 50.42
History 41.30 19.57 39.13
Interesting 29.45 44.36 26.18
News 71.21 16.67 12.12
Overall 30.66 37.18 32.15

(a) ‘Polar Bear in a Village’. (b) ‘Spider inside a man’s body’.

Figure 5.4: Example of: (a) Good Meme and (b) Bad meme. Images taken from the website:
imgflip.com/memegenerator

connection between “young” and “boy”. On the other hand, memes from the ‘News’ category were
the ones with the lowest scores. Analyzing the comments from the subjects, we noticed that most of
the articles from this category reported tragic events and, therefore, subjects voted ‘Bad’ regardless
of the image and catchphrase.

Participants also reported cases where the generated meme had a ‘Good’ image, but a ‘Bad’
catchphrase and vice-versa. One example can be seen in Fig. 5.4b, which was generated from an
article about a spider inside a man’s scar®. The phrase translates as what could be seen as the spider’s
point of view. However, the picture shows a man falling in the water.
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(a) ‘Star Wars Exhibition’. (b) ‘Human vs. Horse’.

Figure 5.5: Example of: (a) Meme with direct relation and (b) Meme with interesting relation.
Images taken from the website: imgflip.com/memegenerator

5.2.4 Analysis of the Generated Memes

In this section, we analyze some of the generated memes by using the word importance score
presented in Section 3.

For some memes, the relation between the news text and the retrieved image and catchphrase was
straightforward. For example, Fig. 5.5a shows the meme generated from a news article about a Star
Wars exhibition’. The image shows Yoda, a character of Star Wars, which shows that news2meme
just related the character cited in the news (“It includes an original Darth Vader suit, a Yoda puppet,
[...]”) with the image. As for the catchphrase, it made the connection based mainly on the word
“game”, which also appears in the news article (“Visitors to the exhibition can also play a game,
[...]7).

On the other hand, some of the generated memes at first did not seem to have any relation to
their news. Figure 5.5b shows one example. When inputting a news article about a professional
sprinter that ran faster than a racehorse?®, news2meme generated a meme with an image of Goku,
an animation character, with the catchphrase “He is right behind me, isn’t he?”. While “Goku” is
among the tags of the image, it is unclear how this entity is related to the text. Therefore, we looked
among the most similar words to “Goku” and found “dragon”. Then, looking at the similar words
for “dragon”, we found “fast”, which relates to the news text. We also analyzed the word importance
scores when comparing the image with the text, noticed that the words “legs”, “horse”, and “faster”
in the text received the highest scores, while the word “Goku” and “shoes” in the image tags received
the highest score. Therefore, although “Goku” and “fast” were not directly connected, the subspace
representation encoded such indirect relation.

Shttps://www.newsinlevels.com/products/spider-inside-a-mans-body-level-2/
"https://www.newsinlevels.com/products/star-wars-exhibition-level-2/
Shttps://www.newsinlevels.com/products/horse-vs-human-level-2/
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Table 5.2: Representativeness Experiment Results - Percentage of votes

With Generated Memes | With Created Memes
Generated Random | Created Random
62.55 37.45 76.86 23.14

5.2.5 Representativeness experiment

In this experiment, our main goal was to determine whether memes generated by our framework could
represent news articles’ content better than randomly generated memes. We designed a questionnaire
where participants were asked to read ten news articles and choose among four different options
which meme better represented them. One meme was generated by our framework (generated
memes), and the other three were randomly generated (random memes). We randomly chose these
articles from ‘Sports’, ‘Nature’, ‘History’, ‘Funny’ and ‘Interesting Facts’ categories of our news
database S;,;;

Because the memes were generated based on a news article input, we expected participants to
prefer them over the random ones. However, there was the possibility of participants showing no
preference. This could be due to a flaw in our framework or because the participants made random
choices. Therefore, we also showed ten news articles with four options, one of which was created
by humans from the article (created memes), while the other three were random ones. Participants
were unaware of the created memes, and articles with generated and created memes were shown in
random order.

This questionnaire was implemented as an online form, totaling 51 evaluations. Table 5.2 shows
these results. Created memes were preferred by 76.86% of the participants, which indicates that
they were not making random choices. 62.55% of the participants preferred the generated memes
over the random ones. While it is clear that created memes are superior, this result shows that our
memes are more meaningful than randomly generated ones.

5.3 Summary

In this chapter, we demonstrated how the word subspace can be used in a multimodal setting by
proposing the news2meme, a framework for generating macro image memes from news articles.
To solve this problem, we compared and matched three different media formats: a meme image, a
catchphrase, and a news text. Our key idea is to extract tags from images using a DNN, and main
words from texts, using a POS tagger. Then, we represent these sets of tags and words as word
subspaces. Finally, we used the MSM to compare them and retrieve the most suitable image and
catchphrase to a news text.

Our experiments showed that news articles containing tragic stories were perceived as unsuitable
for memes. However, when using news articles unrelated to tragic events, participants preferred
generated memes over random generations. This result shows that our framework can handle news
articles and unconstrained images. Moreover, we demonstrated how to interpret the generation
results of this framework by using the word importance score.
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Chapter 6

Concluding remarks

This chapter summarizes the results presented in this thesis, and discusses future research directions.

6.1 Summary

In this thesis, we proposed representing a sentence or text as linear subspaces from their word
embeddings, to which we refer as word subspaces, to solve different tasks in the natural language
processing field. We specifically focus on the word subspaces modeled from conventional word
embeddings, such as word2vec, as these embody the distributional hypothesis of meaning, where
the meaning of words is defined by contexts in which they co-occur. We build on top of the linguistic
intuition that the meaning of sentences is composed by the meaning of their constituent words and
try to model such context with the subspace representation.

The primary motivation to apply such representation to the natural language data comes from
an interesting property, the subspace uniqueness. While the subspace is a unique mathematical
entity, it can be represented by different basis vectors. At the same time, in NLP, we can express
a unique concept by using different words. Based on this analogy, we hypothesized that the same
concept word subspace could be derived from different texts, with different words, that talk about
this concept.

The word subspace representation is a simple model that does not require computationally
intensive learning, can be derived from sentences with different lengths, and is highly interpretable.
The basis vectors of a subspace obtained by applying the principal components analysis (PCA)
without data centering can be regarded as the main hidden topics of the given text. Furthermore,
once represented as subspaces, we can efficiently compare texts with different lengths in terms of
subspace similarity.

While the subspace model has been extensively applied in computer vision, most of the work
in natural language processing undermines the capabilities of this representation and disregards the
solid theoretical foundation already developed on top of subspace-based methods. Therefore, in this
thesis, we aimed at defining the concept of the word subspace, proposing simple tools grounded on
the established subspace theory to understand this model from the NLP perspective.

Such definition was presented in Chapter 2. We explained how to model a word subspace from a
sentence, text, or a set of texts. We also explored the subspace uniqueness property, and empirically
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demonstrated how different texts belonging to the same topic class can generate almost the same
word subspace.

To better understand what type of information does the word subspace represents and how to
interpret results given by subspace-based methods when applied to natural language data, we propose
a simple tool called the word importance score to perform text analysis based on the word subspace
in Chapter 3. We demonstrate how we can perform such analysis on a toy data set.

Based on this understanding of the word subspace representation, in Chapter 4, we solved
the problem of text classification. We specifically tackled two sub-tasks: Topic classification
and sentiment analysis. For topic classification, we proposed using the mutual subspace method,
as it embodies the uniqueness property of subspaces. For sentiment analysis, we first explored
the geometrical characteristics of word embeddings and compensated for the lack of sentiment
information by proposing the orthogonal mutual subspace method. We also considered the nature
of the problem, where texts from similar topics can convey opposite sentiments. We proposed using
the Grassmann subspace method and the Grassmann orthogonal subspace method to tackle this
difference.

Lastly, in Chapter 5, we proposed the news2meme, a framework for automatically generating
macro-image memes from news articles. Through this framework, we showed how the word subspace
could be a powerful tool to compare data from different modalities, such as images and text. To
generate a macro-image meme, tags from images are extracted using a CNN, and main words from
texts and catchphrases are extracted using a POS parser. These tags and words are modeled into word
subspaces and matched using the MSM. The best image-catchphrase match is used to create a meme
representing a news article. Our qualitative experiment showed that news articles containing tragic
stories were generally perceived as unsuitable for memes. When using news articles not related to
tragic events, participants preferred over generated memes randomly generated memes. This result
shows that our framework can handle news articles and unconstrained images without using extra
preprocessing techniques.

In each application, we also performed the analysis of the results by using the tools provided in
Chapter 3.

6.2 Future Work

Our experiments have demonstrated the effectiveness of using the subspace representation in several
natural language processing tasks. However, our results have shown that the word subspace model
is still a naive representation. For example, we saw that for some text classification datasets,
such as the Reuters-8 dataset and the binary version of Stanford Sentiment Tree, even when using
highly discriminative subspace-based methods, the word subspace did not perform well compared
with recent text models. A possible explanation for this result might be that both datasets contain
relatively shorter texts compared to the 20newsgroup dataset and the Movie Review dataset. While
the subspace representation is very efficient at generalizing the distribution of a set of vectors, it will
not perform well if there is not enough variance within the set to represent the context of the words.

Besides, the word subspace does not consider the order of the words, resulting in a loss of context
information. To overcome this problem, we could potentially use methods that include the order
information in subspaces generated from a variety of types of data, such as the randomized time

49



warping [76] and the Hankel subspace method [39].

Notwithstanding these limitations, understanding the subspace properties significantly improved
the results. Simply changing how to model reference class subspaces to incorporate the uniqueness
property resulted in significant improvement in the results for topic classification. This result opens
the question of which other subspace properties we are still disregarding and how their understanding
could further improve results.

Moreover, while we have focused on the word subspaces generated from conventional word
embeddings, such as word2vec, our experiments showed the validity of modeling sentences and
texts from their contextual word embeddings, such as BERT. Such language models have been
applied in several NLP tasks, presenting state-of-the-art results. However, as it is yet unclear what
type of information each layer of such model represents, the problem of how to represent a sentence
or a text based on such embeddings is still open. Therefore, a natural progression of this work is
to apply the word subspace on contextualized word embeddings, seeking to understand better what
type of information can be represented through this model.

Furthermore, several questions remain to be answered regarding the application of the subspace
representation in multimodal problems. While the subspace-based methods can work with different
types of data in single-modality problems, they cannot be directly applied in multimodal settings, as
they require that all data lies in the same feature space. In this thesis, we have worked around this
problem using the word subspace as a hub to represent data from different modalities. In contrast,
further research should be conducted to assess the possibility of directly working with multi-modal
data.

Finally, we would like to expand the word subspace application to other NLP tasks. Given the
proper interpretation of the word embeddings, we can perform a guided decision on which subspace-
based method should be applied. Nevertheless, a better understanding of the geometry of the word
embeddings can also lead to the development of new subspace-based methods. As the subspace
representation is efficient for similarity calculation, we would like to explore its application to tasks
such as extractive summarization and information retrieval.
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Appendix A

Toy Data

A.1 Textl: Thousands protest in Brazil over education cuts

Thousands of protesters took to the streets of Brazil’s capital Thursday following calls for a second
nationwide demonstration in as many weeks over the government’s plan to slash education spending.

Far-right President Jair Bolsonaro’s government has provoked outrage among students and
teachers over its proposal to freeze 30 percent of discretionary spending for public universities in
the second half of this year.

A suspension of post-graduate scholarships for students in science and the humanities has also
fueled anger. Tens of thousands protested across Brazil on May 15, but Thursday’s turnout could be
lower after the government said it would free up 1.59 billion reais in funding (about 400 million US
dollars) for the sector.

Protests began in Brasilia ahead of demonstrations in Sao Paulo, Rio de Janeiro and other cities
later in the day.

“I’'m here for those who are poor and deserve the right to quality public education,” social
services student Kaio Duarte told AFP in the capital. “I’m worried that the next generation won’t
have all of the rights to education that I have had. This protest makes clear that students will never
be silenced.”

Thursday’s protests come after thousands of pro-Bolsonaro protesters marched in cities across
Brazil on Sunday in a show of support for the embattled leader. Among their demands was
for Congress to speed up approval of the government’s stalled pension overhaul, seen as key to
unlocking other much-needed economic reforms.

Source: https://www.france24.com/en/20190530-thousands-protest-brazil-over-education-cuts

A.2 Text2: Brazil’s students protest education cuts

Tens of thousands of students and teachers from across Brazil have demonstrated in “defense of
education” after spending freezes were announced by the government of far-right President Jair
Bolsonaro. Classes at universities and colleges were suspended in Sao Paulo, Rio de Janeiro,
Brasilia and 17 of the country’s states on Wednesday, local media reported. Government soldiers
were seen guarding the Education Ministry in the capital, Brasilia. Protesters said Education Minister
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Abraham Weintraub’s decision to cut federal university subsidies by 30% would undermine the ability
of universities to fulfill their mandate. The Education Ministry also announced last week that it would
suspend scholarship payments to postgraduate students in the sciences. “Secondary school pupils,
university students, researchers, teachers and other education employees will take to the streets in
every state,” the National Student Union (UNE) said ahead of the demonstrations. Bolsonaro, who
was attending an event in Dallas, Texas, called the protesters “useful idiots, imbeciles, who are being
used as the maneuvering mass of a clever little minority who make up the nucleus of many federal
universities in Brazil.” Bolsonaro fired Weintraub’s predecessor, Ricardo Velez, in April after he
vowed to stamp out "cultural Marxism" and gender-identity “ideology.”
Source: https://www.dw.com/en/brazils-students-protest-education-cuts/a-48753837

A.3 Text3: Strikes, violent protests hit Brazil ahead of World Cup

With barely a month until the World Cup opens in Brazil, violent protests and strikes are breaking
out across the country by groups angry about the changes the sporting event has brought — and what
it hasn’t.

Demonstrations were held in 18 cities Thursday. The biggest and most violent was in Sao Paulo,
where police shot tear gas and protesters threw rocks and smashed the windows of a car dealership
and a bank. While thousands of people took part in the protests, they were still much smaller than
the massive marches seen during the Confederations Cup last year when tens of thousands took to
the streets.

In the morning, the Homeless Workers Movement blocked main avenues across the city and
about 4, 000 people marched on the Arena Sao Paulo where the inaugural game of the World Cup
will be held on June 12.

Demonstrators accuse the government of spending billions on new stadiums and not enough on
low-income housing. “The World Cup has done nothing to help us,” said Diana, a manicurist who
has been on a list for a government-subsidized house for a decade. “So we decided to use it as a
platform to make our voices heard.”

Taking advantage of the global attention focused on the country for the world soccer champi-
onship, other groups are staging protests to air their grievances. Across the country in Recife, also
a World Cup venue, soldiers were deployed to rein in crime and looting after police went on strike
there.

In Sao Paulo, more than 5,000 striking teachers marched to demand higher wages. In the evening,
a string of anti-World Cup protests were staged in different cities. In Sao Paulo, activists turned out
carrying banners that said “FIFA go home" and "A World Cup without the people means we’re back
on the street again!” About 1, 500 people marched peacefully for a couple of blocks before clashes
erupted.

Anti-World Cup protesters and homeless activists vowed to keep up the pressure through the
global event that ends on July 13. A total of 600, 000 foreign visitors are expected for the cup and
another three million Brazilian fans are expected to travel around the country.

Source: https://edition.cnn.com/2014/05/16/world/americas/brazil-world-cup-protests/index.html
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