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Abstract

For the last decade, image-set based classification methods have gained substantial attention in vari-
ous applications of multi-view images or videos. The essence of image-set based classification is on
how to effectively represent intrinsic information of a set and measure the similarity between two
image sets. Among the conventional methods, this thesis focuses on subspace-based methods due
to their efficiency, the compactness of a subspace model, and practical and efficient computation.
In this type of methods, a set of images is compactly modelled by a subspace in a high-dimensional
vector space. After converting each image set to a subspace, the similarity between two sets to
be compared can be calculated by using the canonical angles between their subspaces. While the
subspace representation has remarkable representation ability of a set, there is still room for the
improvement for the classification. This thesis develops accurate classification algorithms by ob-
taining a discriminative representation of a set. First, we introduce a metric space in the calculation
of canonical angles and learning it to obtain suitable subspace representations. This allows us to
transform subspace representations such that the new subspaces are still efficient representations
of sets and more suitable for the classification than the original one, by obtaining a discriminative
metric space through the proposed optimization problem. Then, we introduce convex cone represen-
tation as an accurate representation compared with the subspace representation. A convex cone is a
set of vectors by a non-negative linear combination of bases. Due to the non-negativity, the convex
cone can be a more compact and accurate representation than the subspace. To establish a convex
cone-based framework, we mathematically define multiple angles between two convex cones and
then use the angles to define the geometric similarity between them. Moreover, to enhance the
framework, we introduce two types of feature extraction methods based on the relationship of mul-
tiple convex cones. Finally, we show that the similarity can be used as a kernel function and then
propose the powerful classification methods using the kernel trick.
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Chapter 1

Introduction

This thesis proposes image-set classification methods using subspace and convex cone representa-
tions. Image-set based classification method has been known as an efficient approach for various
types of classification problems, as an image set can capture precise information about the target
object than one image. Here, the important step of image-set classification is on how to effectively
represent intrinsic information of a set.

We seek to construct accurate classification methods by using rich information of a set. To reach
this goal, we propose six methods to classify image sets represented as subspaces or convex cones.
To establish the motivation and position of this work, we first overview the image-set classification
methods.

1.1 Overview of image-set classification methods

For the last decade, image-set based classification methods have gained substantial attention in
various applications of multi-view images or videos, such as 3D object recognition and motion
analysis. The essence of image-set based classification is on how to effectively represent intrinsic
information of a set and measure the similarity between two image sets, i.e., representation models.
To this end, several types of methods using different representations, e.g. covariance matrix, normal
distribution, subspace, have been proposed [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In
the following, we briefly describe image set classification methods while focusing on subspace
representation based methods, which are representative methods and the main interest in this thesis,
while referring to Figure 1.1.

The Mutual Subspace Method (MSM) [1] is the pioneer for image set classification, as shown at
the top of Figure 1.1. In MSM, an image set is converted to a subspace representation for extracting
intrinsic information and classified based on similarities between input and dictionary subspaces.
There are two main reasons to use the subspace representation: 1) it is empirically known that
images belonging to the same category distribute in a low-dimensional subspace [16, 17, 18], and
2) it is theoretically known that images taken in a specific condition form a low dimensional sub-
space [19, 20, 21].

MSM required similarity between two subspaces. To calculate the similarity, [1] used the min-
imum angles (or the first canonical angle [22]) between two subspaces. [23] proposed to utilize
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multiple canonical angles to deal with complicated shapes and confirmed its effectiveness on the
3D face recognition task.

The well-known limitation of the MSM is that it does not have any mechanisms to separate
subspaces of different categories. This limitation induces poor discrimination ability, and thus
decreases its classification performance. To solve the problem, the early attempt is to utilize ge-
ometric relationships among subspaces to obtain a discriminative transformation of the subspaces
(feature extraction), typified by discriminative canonical correlation (DCC) [24], Constrained MSM
(CMSM) [25, 26] and Orthogonal MSM (OMSM) [27, 28], as shown in the upper left of Figure 1.1.
These methods were employed successfully in various tasks, and further improved by the kernel
trick, i.e., by utilizing non-linear subspace representation [29, 30, 28].

The recent advances in image set classification were mainly made by the introduction of the
Grassmann manifold, which is defined as the set of m-dimensional linear subspaces, as shown in
the upper right of Figure 1.1. For instance, Grassmann Discriminant Analysis (GDA) [31, 32] is a
popular extension method of the MSM. [31] defined the kernel functions on the Grassmann manifold
and employed them to generalize the powerful feature extraction method, the Fisher discriminant
analysis, for subspaces. GDA has been used as a basic tool to construct novel methods [33, 34]. The
representative extensions are Graph-Embedding GDA (GGDA) and Grassmann Dictionary Learn-
ing (GRDICT) [35, 36]. GGDA incorporated graph structure inherited in the Grassmann manifold,
and GRDICT introduced the concept of dictionary learning and sparse constraint to GDA.

The state of the art methods in subspace-based methods are the projection metric learning
(PML) [37], and Riemann manifold metric learning on Grassmann manifold (RMML-GM) [38].
PML learns a transformation matrix of subspaces from the original Grassmann manifold to the
Grassmann manifold consisting of the lower-dimensional subspaces, such that the transformed sub-
spaces have the high discriminative ability. To this end, PML defined the optimization problem,
and solve it by the gradient descent method. RMML-GM revealed that the global optimum of the
optimization problem in the PML can be obtained by Riccati’s equation. Furthermore, there are a
few studies to attempt to utilize neural network models with subspace representation [39, 40].

Instead of the subspace-based methods, classification methods using other representations have
been investigated. Especially, covariance, sparse and affine hull representations showed competitive
results on the same tasks succeeded by the subspace-based methods [41, 42, 43]. These methods
have the same development as the subspace-based methods [44, 42, 45, 46, 38, 47, 48]. The advan-
tages of the above representations are that they can model a distribution of an image-set accurately
compared with subspace. Therefore, if parameters of a representation can be estimated stably, these
methods may achieve the same or superior results to the subspace-based methods. However, as the
number of images in an image set is typically less than the dimension of image features, it is a bit
difficult to estimate the parameters accurately.

1.2 Motivations

The motivation to focus on subspace-based methods is to their efficiency, the compactness of a
subspace model, a simple geometrical relationship of class subspaces, and practical and efficient
computation. The validity of the subspace representation is also supported by the evidence based on
physical characteristics. For example, a low-dimensional subspace (with at most nine dimensions)
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Figure 1.1: Diagram of the algorithms proposed in this thesis (in red boxes) and the relationship
with conventional algorithms.

can represent a set of images of a convex object with Lambertian reflectance under a fixed camera
view and various illumination conditions [19, 20, 21].

It has been empirically shown that the subspace representation works effectively, even when the
above assumptions are not strictly satisfied. In fact, many studies have supported the effectiveness
of the subspace representation in various problems [1, 31, 37] as described in the previous sec-
tion. While the subspace representation has remarkable representation ability of a set, there are still
problems for the improvement for the classification.

First problem is that the previous subspace-based methods calculate canonical angles in a met-
ric vector space with a simple scalar product, i.e., Euclidean space. The previous methods have
achieved considerable results by designing a method to efficiently utilize similarity (or dissimilar-
ity) defined by canonical angles [49, 22] in Euclidean space. Although this calculation is simple
and easy to implement, there is still large room for the improvement of the representation ability
in which an identity matrix is naively used as the metric matrix. PML and RMML-GM may have
learning mechanisms of the metric matrix, as learning a transformation matrix and scalar product
have a close relationship. However, they ignored the orthogonality of basis vectors to simplify the
learning process, resulting in that these methods could not fully utilize the geometric relationship
among subspaces.

The second problem is that the subspace representation includes redundant space. Various image
features, such as LBP, HoG and CNN features, have only non-negative values. This characteristic
induces the additivity of feature vectors [50]. Furthermore, the additivity allows only the linear
combination with non-negative coefficients of feature vectors. Accordingly, a set of features forms
a convex cone instead of a subspace in a high-dimensional vector space, where a convex cone
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is mathematically defined as a subset of a subspace that is closed under the linear combination
with non-negative coefficients. Besides, it is well known that a set of front-facing images under
various illumination conditions forms a convex cone, referred to as an illumination cone [19, 20, 21].
The illumination cone has an advantage over the illumination subspace as it has a more accurate
representation ability. These facts suggest that subspace representation is rough approximation of
convex cone representation.

1.3 Objective

This thesis aims to produce two novel approaches; 1) introducing a metric space and learning it to
obtain suitable subspace representations, and 2) introducing the novel representation, convex cone,
to the image-set based classification, as an extension of the subspace representation. The goal is to
develop classification algorithms that achieve high classification performance by solving the above
problems.

1.4 Contributions

Based on the above problems, we enumerate the contributions of this thesis as follows:

1. We propose metric learning methods for image set recognition using subspace representation
(Chapter 3). The proposed methods learn a general scalar product space (metric space) that
produces more valid canonical angles, i.e., discriminative subspaces. To realize this idea,
we first introduce an A-based scalar product instead of the standard scalar product, where
A is a symmetric positive definite matrix and the canonical angles between two subspaces
are measured through the A-based scalar product. We learn a discriminative metric space
by optimizing metric A in terms of the Fisher ratio from local Fisher discriminant analysis.
Besides, we introduce a mechanism to automatically reduce the dimension of the metric space
by imposing a low-rank constraint on metric A.

2. We propose convex cone-based frameworks for image-set classification (Chapter 4) to accu-
rately and compactly represent a set of features. To establish a convex cone-based framework,
we mathematically define multiple angles between two convex cones, and then use the angles
to define the geometric similarity between them. Moreover, to enhance the framework, we
introduce two discriminant spaces. We first propose a discriminant space that maximizes gaps
between cones and minimizes the within-class variance. We then extend it to a weighted dis-
criminant space by introducing weights on the gaps to deal with complicated data distribution.

3. We propose convex cone kernels for effectively handling image-set data, where each set of
images is compactly represented by a convex cone (Chapter 5). Then, with these convex
cone kernels, we propose a framework under which we properly visualize the geometrical
relationship among convex cones and build strong classifiers for multiple convex cones.
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1.5 Thesis organization

The rest of this thesis is organized as follows.

• Chapter 2 provides the preliminaries for the proposed methods.

• Chapter 3 introduces metric learning method for subspaces.

• Chapter 4 introduces convex cone-based classification frameworks; mutual convex cone method
(MCM), Constrained MCM (MCM) and extension of the CMCM.

• Chapter 5 describes the convex cone kernels and cone discriminant analysis.

• Chapter 6 concludes the thesis by providing summaries and future works.

5



Chapter 2

Preliminary

This section describes the basis for our methods, 1) a subspace representation of an image set, 2)
the definition of the similarity between subspaces based on canonical angles in Euclidean space, 3)
the two fundamental subspace-based image set classification methods, MSM and CMSM, and 4)
convex cone representation of an image set, and the projection of a vector onto a convex cone.

2.1 Subspace representation and canonical angles

Let X ∈ Rd×n be an image set, where the image set has n images, each image is expressed as a d
dimensional vector. The image set can be compactly and accurately represented by a low dimen-
sional subspace. The orthonormal basis vectors S ∈ Rd×m of the m dimensional subspace can be
obtained as eigenvectors corresponding to m largest eigenvalues of the matrix XXT.

The similarity between two subspaces is measured by the canonical angles. Given two m dimen-
sional subspaces S1 and S2 in d-dimensional vector space, the canonical angles {0 ≤ θ1, · · · , θm ≤
π
2 } between S1 and S2 are recursively defined as follows [49, 22]:

cos θi = max
u∈S1

max
v∈S2

uT
i vi, (2.1)

s.t. ∥ui∥2 = ∥vi∥2 = 1, uT
i uj = vT

i vj = 0, i ̸= j,

where ui and vi are the canonical vectors producing the i-th smallest canonical angle θi between S1

and S2. The j-th canonical angle θj is the smallest angle in the orthogonal direction to the canonical
angles {θk}j−1

k=1. A conventional similarity applying the canonical angles is defined as follows:

fp(S1,S2) =

m∑
i=1

cos2 θi. (2.2)

This similarity can be easily obtained as ∥ST
1 S2∥2F without calculating individual angles [31].

2.2 Mutual subspace method

Mutual subspace method (MSM) [1] is a classification method of an image set based on its subspace
representation. The essence of MSM is to use the structural similarity between subspaces as the sim-
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ilarity between input and reference image sets. The subspace similarity is defined by the canonical
angles between two subspaces to precisely compare the whole structures of them, as defined in the
previous section.

In MSM, an input subspace Sin is classified by comparison with class subspaces {Sc}Cc=1 by
measuring their similarity using this similarity.

2.3 Constrained MSM

MSM was extended to Constrained MSM (CMSM) [25, 51] by introducing projection of subspaces
onto a constraint space. As a constraint space, generalized difference subspace (GDS) [51] is typ-
ically used. GDS consists of only difference components among subspaces {Sc}Cc=1. Thus, the
projection of class subspaces onto GDS can enlarge the separability among the class subspaces,
substantially enhancing the classification performance of MSM [51].

2.4 Convex cone representation

In this subsection, we describe the definition of a convex cone and the projection of a vector onto a
convex cone. A convex cone C in the d-dimensional vector space Rd is defined by a finite number
of generators (basis vectors) {bi ∈ Rd}ri=1 as C = {a|a =

∑r
i=1wibi, wi ≥ 0}. As indicated by

the definition, a convex cone has non-negative constraints on the combination coefficients, unlike a
subspace.

Given a set of feature vectors {xi ∈ Rd}Ni=1. We obtain the basis vectors {bi}ri=1 of a convex
cone by non-negative matrix factorization (NMF) [52, 53] to suppress noise and remove redundant
bases of a cone model. Let X = [x1x2 . . .xN ] ∈ Rd×N and B = [b1b2 . . .br] ∈ Rd×r(<N). NMF
generates the basis vectors B by solving the following optimization problem:

arg min
B,W

∥X−BW∥F ,

s.t. (B)i,j , (W)i,j ≥ 0, (2.3)

where ∥ · ∥F denotes the Frobenius norm, and the number of basis vectors r is a hyperparameter.
We use the alternating non-negativity-constrained least squares-based method [53] to solve this
problem.

Although the basis vectors can be computed by NMF, the projection of a vector x onto the con-
vex cone is slightly complicated by the non-negative constraints. In [50], the projection is defined
with the non-negative least squares (NNLS) method [54] as follows:

arg min
{wi}

∥x−
r∑

i=1

wibi∥2,

s.t. wi ≥ 0. (2.4)

The projected vector x̂ is obtained as x̂ =
∑r

i=1wibi. In the end, the angle θ between a vector x
and the convex cone can be calculated as follows:
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cos θ =
x̂Tx

∥x̂∥2∥x∥2
. (2.5)
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Chapter 3

Metric learning for subspace based
method

This chapter discusses a method that enables applying metric learning for subspace-valued data
to generating subspace representation which is suitable for the classification. In Section 3.1, we
describe the background of the proposed method. In Section 3.2, we elaborate the proposed metric
learning method. In Section 3.3, we present the details of the automatic dimension reduction method
of the metric space. In Section 3.4, we demonstrate the effectiveness of the proposed methods
through classification experiments. Finally, Section 3.5 concludes this chapter.

3.1 Background

Conventional subspace-based methods have achieved considerable results by designing a method
to efficiently utilize similarity (or dissimilarity) defined by canonical angles [49, 22] between two
subspaces measured in the vector space [1, 25, 29, 30, 28, 31, 55, 56]. In these methods, canonical
angles are calculated in a metric vector space with a simple scalar product, i.e., Euclidean space.
Although this calculation is simple and easy to implement, there is still large room for the improve-
ment of the representation ability in which an identity matrix is naively used as the metric matrix.
To enhance the representation ability of canonical angles, we introduce a generalized concept of
canonical angles with a scalar product space based on A-based scalar product [57]. In our metric
space, the canonical angles between two subspaces are measured through a scalar product defined
by a symmetric positive definite matrix A.

Then, we propose a method for learning a valid metric vector space for more discriminative
canonical angles between two given subspaces by searching for a suitable A. The conceptual di-
agram of the proposed methods is shown in Fig. 3.1. This learning method is equivalent to the
deformation problem of the metric vector space, while fixing all the class subspaces. In this sense,
the proposed method can be regarded as a kind of dual problem of learning subspace method [58],
where the class subspaces are moved in reverse, while fixing the metric vector space.

Our idea of deforming a metric vector space is simple, yet effective. However, the optimization
of the metric matrix A is not trivial, since A is required to be a symmetric positive definite matrix.
This means that we need to solve an optimization problem on a Riemann manifold consisting of
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Figure 3.1: Conceptual diagram of the proposed metric learning method. The similarity between
two subspaces S1 and S2 is calculated by the canonical angles {θi} in At-based scalar product
space (metric space). The metric space is updated step by step through the optimization of the met-
ric At, using Riemann conjugate gradient (RCG) method such that the different category subspaces
are more separated while the same subspaces are more close, with reference to the local relation-
ship between subspaces. The rank of At corresponds to a dimension of t-th metric space. In the
optimization, the low-rank constraint on At has the effect of sequentially reducing the dimension
of the metric space.

symmetric positive definite matrices. To learn the effective metric space, we define an optimization
problem and solve it by the Riemann conjugate gradient method (RCG) [59, 60], as RCG converges
in a small number of iterations. Especially, we utilize the Dai-Yuan-type RCG method [61].

Since RCG optimizes A by using the Euclidean gradient of the objective function, we compute
the gradient of the objective function, including the computation of canonical angles with respect to
A. Then, with this gradient, a metric space is sequentially updated by the RCG to provide efficient
canonical angles for classification. We call this learning algorithm A-based Metric Learning for
Subspace representation (AMLS).

A few studies have proposed reliable metric learning methods using subspace representation [37,
38]. The proposed methods is essentially different from these methods in what is the object to be
learned. The proposed method focuses on the metric space, in which class subspaces exist. We try
to adjust the space itself as mentioned previously. In contrast, the conventional methods focus on
each class subspace and rotate them by some orthogonal transformation. Besides, the conventional
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methods can not fully utilize the geometry of subspaces, as they ignore the orthogonality of basis
vectors to simplify their learning processes.

Furthermore, we propose a variation of the proposed method, motivated by the following fact:
the rank of A corresponds to the dimension of a metric space. This characteristic enables us to re-
duce the dimension d of the metric space sequentially by decreasing the rank of A0 in optimization
steps. To this end, we impose a low-rank constraint on A by adding a term of trace norm regu-
larization to the cost function. This constraint induces sparseness on the singular values of d × d
matrix A0. As a result, several singular values are set to zero so that only d′ singular values are
non-zero. As a result, the original d-dimensional metric space has shrunk to a d′(< d)-dimensional
metric space, according to the rank of A0, although the dimension of the metric space still appears
to remain d. To extract the actual d′ metric space, we perform the dimension reduction from d to
d′ by applying PCA to a set of learning data in the A0-based metric space. After that, we project
the learning data onto the new d′ metric space. A new metric d′ × d′ matrix A1 is optimized for the
projected learning data in the same way mentioned above. We call this enhanced method AMLS
with the Low-rank constraint (AMLSL).

The same set of steps can be sequentially repeated in the optimization process. In this way, a set
of these is sequentially repeated in the optimization process. Besides, our dimension reduction based
on sparseness provides a more discriminative space, as demonstrated in the experiment section.
Although the process in this idea may seem complicated, it is simple and scalable compared to
previous dimension reduction methods.

The main contributions of this chapter are as follow:

1. Introducing the generalized concept of canonical angles based on a metric space for subspace-
based image set classification.

2. Deriving the gradient of the similarity computation using the generalized canonical angles,
and then proposing a learning method, called A-based metric learning method for subspace
representation (AMLS), for generating a discriminant metric space.

3. Incorporating the low-rank constraint on A into AMLS for sequential dimension reduction of
metric space.

4. Demonstrating the fundamental performance of AMLS in tasks of image set based recogni-
tion using public databases.

3.2 A-based metric learning for subspace representation

In this section, we first provide the concept of canonical angles in an A-based inner product, which
are the necessary fundamental techniques for constructing our method. Then, we describe the details
of the proposed A-based metric learning for subspace representation (AMLS). First, we formulate
the optimization problem of A in order to learn a suitable metric space for calculating the canonical
angles. Then, we derive the optimization method based on Riemann conjugate method with the
gradient of the similarity using the canonical angles.
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3.2.1 Canonical angles with an A-based scalar product

The canonical angles described in the previous chapter are measured in a space equipped with the
standard Euclidean scalar product. These angles can be generalized by introducing an A-based
scalar product, i.e., scalar product is calculated on the metric space defined by the symmetric
positive-definite matrix A ∈ Rd×d [57].

Let (x,y)A = xTAy be an A-based scalar product, and ∥x∥A =
√
(x,x)A be the correspond-

ing vector norm. Given two subspaces S1, S2, the canonical angles in the A-based scalar product
between them are defined as follows:

cos θi = max
u∈S1

max
v∈S2

(ui,vi)A,

s.t. ∥ui∥A = ∥vi∥A = 1, (ui,uj)A = (vi,vj)A = 0, i ̸= j. (3.1)

The corresponding similarity fA and dissimilarity dA are defined as follows:

fA(S1,S2) =

m∑
i=1

cos2 θi = ∥ŜT
1 AŜ2∥2F , (3.2)

dA(S1,S2) =

m∑
i=1

sin2 θi =

m∑
i=1

(1− cos2 θi)

= m− ∥ŜT
1 AŜ2∥2F = m− fA(S1,S2), (3.3)

where the orthonormal basis S1, S2 of each subspace are converted to A-orthonormal basis Ŝ1, Ŝ2,
i.e., ŜT

1 AŜ1 = ŜT
2 AŜ2 = I to preserve the orthonormality of a subspace basis under the A-based

metric by the following equation:

Ŝi = SiUiΣ
−1/2
i , (3.4)

where the columns of Ui are the eigenvectors, and the diagonal elements of Σi are the eigenvalues of
the matrix ST

i ASi. If A is the identity matrix, the above definition corresponds to the conventional
canonical angles in the Euclidean scalar product.

Inspired by this formulation, we propose a metric learning method based on this new scalar prod-
uct space (also called metric space). To demonstrate its capabilities, we build a high-performance
classification method for image sets in the next section.

3.2.2 Problem formulation

Given N image sets {Xi ∈ Rd×ni}Ni=1, where each image set Xi = [xi
1, . . . ,x

i
ni
] has ni images,

and each image is represented by a d−dimensional feature vector xi
j , our objective is to classify Xi.

We first generate subspaces {Si}Ni=1 corresponding to each image set. Then, we learn the metric A
by minimizing a discriminative cost function.

To design the cost function, we utilize the idea of local Fisher discriminant analysis (LFDA) [62].
LFDA can work even if each class has a multimodal distribution by incorporating local relationships
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between data. First, we define two terms: the sum of the local similarity Jb between subspaces of
different categories, and the sum of the local dissimilarity Jw between subspaces of the same cate-
gory as follows:

Jb(A) =
1

kN

N∑
i=1

∑
j∈N i

k

fA(Si,Sj), (3.5)

Jw(A) =
1

kN

N∑
i=1

∑
j∈Pi

k

dA(Si,Si)

=
1

kN

N∑
i=1

∑
j∈Pi

k

m− fA(Si,Si), (3.6)

where, N i
k and P i

k are index sets of k-neighbor subspaces with the i-th subspace in different
categories and the same category, respectively. Finally, we define the discriminative cost function
as follows:

J(A) = Jb(A) + Jw(A) + λ(1− ∥A∥2F )2, (3.7)

where, the last term is the regularization to prevent the norm of A from becoming too large, and
λ(≥ 0) is the weight parameter of the regularization. As the cost function decreases, we can obtain
a more suitable metric space for classification. In the next subsection, we describe the optimization
method for the cost function with respect to A.

3.2.3 Optimization

To minimize the cost function, we utilize the Riemann conjugate gradient method (RCG), since
the metric A is on the manifold of symmetric positive definite matrices. The RCG updates A by
searching a suitable matrix along the geodesic of the direction to the Riemann gradient of the cost
function. The Riemann gradient is, intuitively, the closest vector to the Euclidean gradient that is
also tangent to the manifold, in this case of symmetric positive definite matrices. Therefore, we
need to show the Euclidean gradient of the cost function. To this end, since the function has the
terms of the similarity fA, in order to easily obtain the gradient, we first reformulate the similarity
as follows:

fA(Si,Sj) = ∥ŜT
i AŜj∥2F

= tr(ŜT
j AŜiŜ

T
i AŜj) = tr(ŜjŜ

T
j AŜiŜ

T
i A)

= tr(SjUjΣ
−1/2
j Σ

−1/2
j UT

j S
T
j ASiUiΣ

−1/2
i Σ

−1/2
i UT

i S
T
i A)

= tr(ST
i ASj(S

T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1). (3.8)
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In the above equation, we can use the cyclic property of the matrix trace and UiΣ
−1
i UT

i = (ST
i ASi)

−1.
This allows us to obtain the gradient ∇AfA(Si,Si) of the similarity with respect to A as follows:

∇AfA(Si,Si) = ∇Atr(ST
i ASj(S

T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1)

= Si(S
T
i ASi)

−1ST
i ASj(S

T
j ASj)

−1ST
j

− Sj(S
T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1ST
i ASj(S

T
j ASj)

−1ST
j

+ Sj(S
T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1ST
i

− Si(S
T
i ASi)

−1ST
i ASj(S

T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1ST
i . (3.9)

With this gradient ∇AfA, we can obtain the Euclidean gradient of the cost function as follows:

∇AJ(A) =
1

kN

N∑
i=1

∑
j∈N i

k

∇AfA(Si,Sj)

− 1

kN

N∑
i=1

∑
j∈Pi

k

∇AfA(Si,Sj)

− λ(1− ∥A∥2F )A. (3.10)

A can be updated by the RCG with this Euclidean gradient, until the maximum number of iterations
is reached.

The image-set classification can be executed by the nearest neighbor strategy by using the sim-
ilarity by the optimized A.

3.3 Dimension reduction of a metric space

In this section, we describe the details of the proposed method of sequentially reducing the dimen-
sion of the original metric space. The method consists of two steps, as mentioned in Sec. 3.1. First,
we outline the algorithm of the optimization with a low-rank constraint. Next, we show how to apply
principal component analysis (PCA) to our A-based metric space to reduce its dimensionality.

3.3.1 Optimization with Low rank constraint

Our idea is based on the fact that the rank of metric A indicates the dimension of a metric space,
as mentioned previously. This suggests that we can realize the dimension reduction effectively by
decreasing the rank of a metric matrix A. We impose a low-rank constraint on A by adding a term
of trace norm regularization to our cost function J(A). The cost function is then modified as

Jlr(A) = J(A) + η∥A∥∗, (3.11)

where ∥A∥∗ indicates the trace norm of A, and η(> 0) is the weight parameter of the regularization.
To minimize the above mentioned cost function, Jlr(A), we utilize the proximal gradient

method (PGM) [63, 64, 65]. This method is built as a combination of two processes: a regular-
ization operation and the traditional gradient-based method without the trace norm regularization.
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In this thesis, we consider a combination of an operation for the trace norm regularization and the
RCG method for optimizing J(A) described in the previous section. The first operation proxtrη is
defined as follows:

proxtrη (A) = Umax(Σ− ηI, 0)UT, (3.12)

where the columns of U are the eigenvectors of A, the Σ is a diagonal matrix whose diagonal
elements are the eigenvalues of A, I is the identity matrix, and max is the element-wise max oper-
ation [66]. In PGM, the operation proxtrη is applied to A, after each step of the RCG to minimize
J(A). PGM can be interpreted as it incorporates the effect of the regularization, after optimizing A
under the original cost function J(A). Therefore, the rank of A is reduced in the step of applying
the operation proxtrη . After the rank has decreased to d′ by this optimization, we reduce the dimen-
sion by PCA with the A-based scalar product. In the next subsection, we describe a method to make
a transformation matrix V ∈ Rd×d′ from the d-dimension metric space to the actual d′-dimensional
metric space by PCA.

Algorithm 1: Algorithm of the proposed metric learning method.

Input: N image sets {Xi ∈ Rd×ni}Ni=1, class labels {li}Ni=1 and weight parameters λ, η, subspace
dimension m, the number of neighborhood subspaces k, and the number of maximum
iterations T

Output: AT and VT

Initialization : A0 ∈ Rd×d

1: V0 = I
2: Generate m-dimensional subspace Si for each image set Xi.
3: for t = 1 to T do
4: Compute the gradient ∇At−1J(At−1) by Eq. 3.10.
5: At = RCG(At−1, ∇At−1J(At−1) )
6: At = proxtrη (At), (Eq. 3.12)
7: if Rank of At is reduced then
8: Calculate V by Eq. 3.16
9: Vt = VTVt−1

10: At = VTAtV
11: for i = 1 . . . N do
12: X̂i = VtXi

13: Generate m-dimensional subspace Si from X̂i

14: end for
15: else
16: Vt = Vt−1

17: end if
18: end for
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3.3.2 Dimension reduction based on A-based PCA

The dimension of the metric space still appears to remain d, after the rank of A is reduced to d′ in
the previous subsection. This means that we need to extract the actual d′-dimensional metric space.
To this end, we apply PCA to a set of learning data, where PCA is required to be performed in the
updated metric space based on the optimized metric A in the previous section.

In this subsection, we explain the technical details of how to obtain a transformation matrix
V ∈ Rd×d′ that maps data from the original d-dimensional metric space to the d′(= the reduced
rank of A)-dimensional metric space.

First of all, we describe how to perform PCA in the A-based metric space. Given N image
sets {Xi ∈ Rd×ni}Ni=1, where each image set Xi = [xi

1, . . . ,x
i
ni
] has ni images, and each image

is represented by a d-dimensional vector xi
j . As well known, PCA is a method for maximizing the

scalar product between image vectors {xi
j} and a principal component vector w. We define the

objective function of PCA in the A-based metric space as follows:

arg max
w

∑
i,j

(w,xi
j)

2
A =

∑
i,j

(wTAxi
j)

2

s.t. ∥w∥2A = 1. (3.13)

The above optimization problem can be rewritten by the Lagrange multipliers method as follows:

arg max
w

∑
i,j

(wTAxj
i )

2 + α(wTAw − 1)2. (3.14)

The differential of the Eq. (3.14) yields the following equation.

ARAw − βAw = ARv − βv, (3.15)

where v = Aw and R =
∑

i,j(x
i
j)(x

iT
j ). By assuming that Eq. (3.15) equals 0, the transformation

matrix V ∈ Rd×d′ can be obtained as a matrix whose columns are the d′(= rank(A)) eigenvectors
corresponding to the d′ largest eigenvalues of the following equation:

ARV = βV. (3.16)

With this matrix V, we extract a new metric A1 of the actual d′-dimensional metric space as
VTAV. Each image vector is projected onto this new metric space as VTxi

j . After that, new
subspaces {Si} are generated from the projected vectors {VTxi

j}j .
AMLS with the Low-rank constraint is called AMLSL. This algorithm is summarized in Algo-

rithm 1. If η = 0, the algorithm corresponds to AMLS.

3.4 Evaluation experiments

In this section, we demonstrate the effectiveness of the proposed methods through the extensive
experiments on two tasks: multi-view image-based object recognition and video-based face recog-
nition. For object recognition task, we used ETH-80 dataset [67] and RGB-D dataset [68]. For face
recognition task, we used YouTube Celebrity dataset [69] and YouTube Face dataset [70].
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3.4.1 Experimental settings

The ETH-80 dataset consists of eight different categories, captured from 41 viewpoints, and there
are 10 objects for each category. Five objects were randomly sampled from each category and used
as a training data, and the remaining five objects were used as a testing data. As an input image set,
we used 41 multi-view images for each object. We resized each image to 32 × 32 pixels and used
a 1024-dimensional feature vector whose element is a pixel intensity of the corresponding image.
We evaluated the classification performance of each method in terms of the average accuracy of ten
trials using randomly divided datasets.

The RGBD Object dataset [68] consists of object images in 51 different classes. There are 3 to
14 objects in each class, and each object is captured from over 200 viewpoints. As an image set, we
used a set of multi-view images of each object. The half image sets per each class were randomly
selected as training data, and the remaining image sets were used as test data. We repeated the
evaluation five times with different random selections. For this dataset, we used CNN features [71]
extracted from the ResNet-18 [72] trained on ImageNet [73].

The YTC dataset [69] contains 1910 videos of 47 people. Face recognition using this dataset is
still challenging since all of the face images are low-resolution and face images of the same person
have extreme variations, such as change of face direction and emotion. We used a set of face images
extracted from a video by the Viola and Jones detection algorithm [74], as an image set. All the
extracted face images were resized to 20 × 20 pixels. After converting each image to grayscale,
we applied a histogram equalization contrast adjustment method as a preprocessing. We used a
400-dimensional feature vector whose element is a pixel intensity of the corresponding image. We
used six videos per each person randomly selected as training data, and nine videos per each person
randomly selected as test data. We evaluated the classification performance of each method in terms
of the average accuracy of five trials using randomly divided datasets.

The YouTube Faces (YTF) database [70] contains 3425 videos of 1595 people. We cropped
face regions with the annotated data [70] and used the cropped face images of each video as an
image set. As we removed the classes with only one or two videos, the number of classes used
for this experiment is 226. As with the experiment for the RGBD dataset, the image sets of each
class were randomly split in half into training and test data. We repeated the evaluation five times
with different random splits. We used CNN features extracted from the ResNet-50 trained on the
VGGFace2 dataset [75].

The proposed methods have five parameters: the maximum number of optimization steps,
weight parameters λ and η for corresponding regularization, subspace dimension, and the num-
ber of neighbor subspaces k. The maximum number of optimization steps was fixed to 100 and λ
was fixed to 1e-3. For the proposed method with the low-rank constraint, AMLSL, η was fixed at
1e-4. The subspace dimension was tuned at the range from 10 to 30 with the increments of 10 by
the grid search algorithm on the training data. The number of neighbors k was tuned at the range
from 2 to 10 with the increments of 2 by the same strategy.

To examine the effectiveness of the proposed methods, we compared them with various meth-
ods: classification methods based on models other than subspace: affine hull based method (AHISD) [41],
sparse representation-based method (SANP) [43], Gaussian distribution-based method (GPL) [12]
and covariance based metric learning methods, Log-Euclidean Metric Learning (LEML) [44] and
Riemann Manifold Metric Learning on Symmetric Positive Definite manifold (RMML-SPD) [38].
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(a) ETH-80. (b) RGB-D.

(c) YTC. (d) YTF.

Figure 3.2: The curves of the cost function J(A) on four datasets. The horizontal axis means the
number of iterations of the optimization method. The blue and green lines are values of the cost
function on AMLS and AMLSL respectively.

For comparison with subspace based classification method, we compared with traditional meth-
ods: MSM [1], CMSM [25], OMSM [28], Discriminative Canonical Correlations (DCC) [24],
Grassmann Discriminant Analysis (GDA) [31], Graph-Embedding GDA (GGDA)[55], Manifold-
manifold distance (MMD) [76], Grassmann dictionary learning method (GRDICT) [35], and and
state-of-the-art metric learning method: Projection Metric Learning (PML) [37], and RMML on
Grassmann manifold (RMML-GM) [38].

Besides, to confirm the effectiveness of AMLSL, we show the result by the combination of
AMLS and the naı̈ve PCA, where the PCA is used to reduce the feature dimension into the same
dimension obtained by AMLSL.

The parameters, other than the subspace dimension, of the above methods were tuned at the
suggested range by the original papers under our experimental settings using the grid-search algo-
rithm on the training data. The subspace dimension was tuned at the range from 10 to 30 with the
increments 10 by the same strategy.
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Figure 3.3: The curves of rank of A (the dimension of a metric space). The horizontal axis means the
number of iterations of the optimization method. The vertical axis shows the ratio of the dimensions
of the metric space and to the original vector space, i.e., d′/d× 100.

3.4.2 Results and discussion

We first discuss the characteristic of the proposed methods by using the results shown in Fig. 3.2
and 3.3. Figure 3.2 and 3.3 show transitions of the cost function J(A) (Eq. (3.7)) and the rank of
A (the dimension of a metric space) in the optimization process. Since the cost values decrease
as the number of iterations of the optimization method increases, the basic ability of the proposed
optimization method using the differential (Eq. (3.10)) was validated. The low-rank constraint did
not contribute to the improvement of the cost value unfortunately, as the cost values of AMLSL are
almost the same as that of AMLS. However, it was confirmed that the optimization step automat-
ically learns the dimension of the metric space. This may suppress the effect of overfitting in the
testing phase. The more detailed discussion is in the later with the results of classification.

Table 3.1 shows the experimental results including those from various conventional methods.
Overall, subspace-based methods show superior or the same results compared with the other models
under our settings. The effectiveness of the proposed methods can be seen as it achieved better
results compared with the subspace-based metric learning methods, such as PML and RMML-GM,
which learn classification methods based on canonical angles in the standard metric space. This
supports the effectiveness of our key idea; to learn efficient metric space for calculating canonical
angles.

Furthermore, AMLSL showed competitive results compared with AMLS and better results than
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Table 3.1: Experimental results (recognition rate (%), standard deviation) of the proposed metric
learning methods on the four datasets.

ETH-80 YTC RGB-D YTF

AHISD [41] 71.00±5.43 68.13±2.22 80.14±1.73 88.99±0.44

SANP 81.25±1.32 58.37±1.83 78.13±2.19 70.09±1.86

GPL 63.25±5.53 72.20±2.70 83.88±1.09 93.04±0.85

LEML [44] 86.00±5.43 62.13±2.04 88.06±3.12 78.68±0.42

RMML-SPD [38] 86.25±4.75 59.55±2.19 88.20±3.58 74.76±0.65

MSM 88.25±3.88 68.06±2.00 89.78±1.06 89.96±0.53

CMSM 94.50±4.15 75.15±1.93 90.22±1.85 91.85±0.57

OMSM 89.75±2.61 73.07±2.09 86.91±1.47 92.38±0.53

DCC [24] 72.75±8.20 73.52±1.96 89.78±2.12 91.63±0.93

GDA [31] 92.50±1.44 64.85±3.32 88.06±1.55 81.19±2.88

GGDA [55] 94.75±3.22 70.97±2.42 88.78±0.64 81.94±2.46

MMD 63.75±5.30 67.28±1.65 82.45±2.72 86.39±1.37

GRDICT 95.25±2.49 74.26±1.90 92.37±1.20 91.81±1.20

PML [37] 93.75±3.17 68.00±0.04 90.22±0.03 89.60±0.06

RMML-GM [38] 90.25±4.16 69.03±1.96 90.93±1.48 89.74±0.70

AMLS 95.75±0.05 76.78±0.01 92.66±0.00 92.86±0.00

AMLS with PCA 92.50±1.94 75.56±1.53 92.37±0.35 91.94±0.41

AMLSL 94.75±0.68 75.72±0.02 92.81±0.00 92.91±0.00

AMLS with PCA. This suggests that by applying dimension reduction automatically, AMLSL can
efficiently extract essential information for the classification.

3.5 Summary

In this chapter, we discussed A-based Metric Learning for Subspace representation (AMLS). We
further extended the idea of AMLS by adding the Low-rank constraint. This enhanced AMLSL is a
powerful method with a function of dimension reduction and high discriminative ability. The core
ideas behind the proposed methods are 1) measuring the canonical angles in a metric space equipped
with metric A, a symmetric positive definite matrix, and 2) designing suitable metric space for
calculating canonical angles by optimizing metric matrix A in terms of the local relationship among
subspaces. We formulated the optimization method of A based on the Riemann conjugate gradient
method. To this end, we have rewritten the subspace similarity on a metric space and then derived
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the gradient of it. We verified the effectiveness of the proposed methods through the extensive
classification experiments.
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Chapter 4

Convex cone-based method

In this chapter, we propose the three types of image set based classification methods using convex
cone representations.

In Section 4.1, we describe the background of the proposed methods. In Section 4.2, we elab-
orate the fundamental convex cone-based method (Mutual Convex cone Method; MCM). In Sec-
tion 4.3, we present an extension method of the MCM, Constrained MCM (CMCM), by introducing
the projection onto a discriminant space. In Section 4.4, we further extend CMCM by incorporating
weight on the generation of the discriminant space. In Section 4.5, we demonstrate the effectiveness
of the proposed methods through various experiments. Finally, Section 4.6 concludes this chapter.

4.1 Background

In this chapter, we propose a method for image-set classification based on convex cone models,
which can exactly represent the geometrical structure of an image set. As discussed in chapter 1,
a convex cone can be a more accurate representation compared with a subspace. To incorporate
the convex cone into the framework of image-set recognition, we need to consider how to calculate
the structural similarity between two convex cones. To this end, we define multiple angles between
two convex cones to capture exactly the geometrical relationship between them, like the canonical
angles between two subspaces [22, 49]. We then propose a new method for obtaining the angles in
turn from the smallest to the largest by applying the alternating least squares method (ALS) [77]
to the convex cones sequentially. Finally, we define the geometric similarity between two convex
cones based on the obtained angles. We call the classification method using this similarity the
mutual convex cone method (MCM).

Furthermore, to improve the performance of the MCM, we introduce the projection of convex
cones onto a discriminant space D , which minimizes the within-class variance and enlarges the gaps
(between-class variance) between convex cones. The gaps between convex cones precisely capture
the difference component between the cones, i.e., difference information, such as shape difference,
among various objects. Since such information is essential for classification, the projection onto D
enhances the classification ability of MCM, similarly to that of the projection of class subspaces
onto a generalized difference subspace (GDS) in CMSM [51]. Finally, we classify an input image
set by using the cone similarity between the projected input and class convex cones Ĉin, {Ĉj}, as
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Figure 4.1: Conceptual diagram of the basic idea of the proposed methods. First, feature vectors
are extracted from an image set. Then, each set of features is represented by a convex cone. The
classification is performed by calculating the similarity based on the angles {θi} between the convex
cones Cin and {Cj}. To enhance the classification ability of this approach, the projection of the
convex cones onto the discriminant space D or the weighted discriminant space is introduced before
calculating the angles.

shown in Fig. 4.1. We call this method the constrained mutual convex cone method (CMCM).
Then, we further extend the proposed MCM and CMCM, considering more practical cases. So

far, MCM and CMCM assume that an image set of a class can be well represented by a single
convex cone. However, it is not necessarily reasonable in many practical applications, e.g., in the
case that there are multiple videos collected under different situations for a class. In such cases, a
single cone is insufficient to represent the complicated structure information. To address this issue,
we represent a set of images by multiple convex cones instead of a single convex cone.

Moreover, for the above representation, we redesign how to generate a discriminant space for
CMCM. We re-define the between-class variance (gaps) to extract more complicated gaps between
multiple convex cones. We calculate the gaps for every pair of convex cones from different classes
and then generate a discriminant space from these gaps. In this process, we also introduce weights
on gaps to enhance the discriminant ability. The basic idea is that the weight on a gap is set to be
larger when the gap is small. From this strategy, we expect the effect that small gaps between two
cones can be enlarged after the projection onto the discriminant space.

However, the extension method requires high computational cost in compensation for its high
discriminant ability. To alleviate this high computational cost, we introduce a new strategy for fast
implementation. The key idea is to divide the similarity calculation into two steps, where we first
use the subspace-based method and then use the cone-based method.

In preparation for this fast implementation strategy, we generate the subspaces containing each
convex cone by applying the Gram-Schmidt orthogonalization to the basis of the cone in advance.
Then, in the first step, we calculate the similarities between the input and reference subspaces cor-
responding to their original cones, and select several neighbourhood cones of the input cone by
using the similarities. The calculation using subspaces is much faster than that directly using cones.
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In the second step, we precisely calculate the similarities between the input cone and the selected
neighbourhood cones by the proposed method. We name the CMCM with this selection process
“fast CMCM”. As shown later, the fast CMCM can achieve about ten times speedup in comparison
with the original method.

The main contributions of this chapter are summarized as follows.

1. To enhance the subspace-based methods, we introduce a convex cone representation to accu-
rately and compactly represent a set of features.

2. We introduce two novel mechanisms in our cone-based classification: a) multiple angles
between two convex cones to measure the similarity between the cones; b) projection of
convex cones onto a discriminant space to enlarge the class separability.

3. To enhance the classification performance of the cone-based framework, we propose a weighted
discriminant space to further enlarge the class separability by reflecting the local relationship
between multiple convex cones of a class.

4. To reduce the computational cost induced by the convex cone representation, we develop a
fast implementation of CMCM by switching the cone-based and subspace-based methods.

5. With the valid combination of the contributions 2) and 3), we build three types of novel image-
set based classification methods, called MCM, CMCM and extended CMCM, based on the
convex cone representation, the discriminant space, and the multiple cone representation.

4.2 Mutual convex cone method

In this section, we describe the algorithm of MCM, after establishing the definition of geometric
similarity between two convex cones.

4.2.1 Basic idea

The canonical angles between subspaces can be analytically calculated from the projection matri-
ces in closed form. In contrast, the calculation of the angles between cones is not trivial, as the
projection onto a cone includes the process of NNLS (Eq. 2.4). Hence, we propose a new method
for obtaining the angles in turn from the smallest to the largest by applying the alternating least
squares method (ALS) [77] to the convex cones sequentially. The key idea here is to project convex
cones onto the orthonormal complement space of the subspace spanned by two vectors forming
the angle obtained in the previous step and then to apply ALS to the projected cones again. This
sequential projection works effectively like the orthogonal decomposition of a convex cone in high
dimensional vector space.

The following subsection describes the detailed definition of the multiple angles and the simi-
larity between convex cones.
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Algorithm 2: Algorithm to search for the pair p1 and q1.
Input: Basis vectors {b1

i }, {b2
i } of two convex cones, C1 and C2.

Let Pj(y) be the projection operator of a vector y onto a convex cone Cj , explained in
Section 2.4.

1. Randomly initialize y ∈ Rd.
2. p1 = P1(y)/∥P1(y)∥2.
3. q1 = P2(y)/∥P2(y)∥2.
4. ŷ = (p1 + q1)/2.
5. If ∥ŷ − y∥2 is sufficiently small, the procedure is completed. Otherwise, return to step 2
after setting y = ŷ.

return cos2 θ1 = (
pT
1 q1

∥p1∥2∥q1∥2 )
2.

4.2.2 Multiple angles and geometric similarity between two convex cones

To define the geometric similarity between two convex cones, we consider how to define multiple
angles between two convex cones like canonical angles. Let two convex cones C1, C2 be formed
by basis vectors {b1

i ∈ Rd}N1
i=1 and {b2

i ∈ Rd}N2
i=1, respectively. Assume that N1 ≤ N2 for

convenience. As we need to consider the non-negative constraint, the angles between two convex
cones cannot be obtained analytically, unlike the canonical angles. Instead, we find two vectors,
p ∈ C1 and q ∈ C2, which form the smallest angles between the convex cones. In this way, we
sequentially define multiple angles from the smallest to the largest, in order.

First, we search for a pair of d-dimensional vectors p1 ∈ C1 and q1 ∈ C2, which have the
maximum correlation, by solving the following optimization problem:

cos θ1 = max
p1∈C1

max
q1∈C2

pT
1 q1, s.t. ∥p1∥2 = ∥q1∥2 = 1. (4.1)

This problem can be solved by the alternating least squares method (ALS) [77]. Thus, the first angle
θ1 can be obtained as the angle formed by p1 and q1. The algorithm of the ALS is summarized in
Algorithm 2.

For the second angle θ2, we find a pair of vectors p2 and q2 with the maximum correlation, but
with the minimum correlation with p1 and q1. Such a pair can be found by applying ALS to the
projected convex cones C1 and C2 on the orthogonal complement space S ⊥ of the subspace S
spanned by the vectors p1 and q1 as shown in Fig. 4.2. Then θ2 is formed by p2 and q2. In this
way, we can obtain all of the pairs of vectors pi,qi forming the i-th angle θi, i = 1, . . . , N1.

With the resulting angles {θi}N1
i=1, we define the geometric similarity sim between two convex

cones C1 and C2 as

sim(C1,C2) =
1

N1

N1∑
i=1

cos2 θi. (4.2)

4.2.3 Algorithm of mutual convex cone method

The mutual convex cone method (MCM) classifies an input convex cone, using the similarities
defined by Eq. (4.2) between the input and reference convex cones. MCM consists of two phases, a
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Figure 4.2: Conceptual diagram of the procedure searching for pairs of vectors {pi,qi}. The first
pair of p1 and q1 can be found by the alternating least squares method. The second pair of p2 and
q2 is obtained by searching the orthogonal complement space S ⊥ of the two dimensional subspace
S = Span{p1,q1}.

training phase and a recognition phase.
Given C class sets with L images {xc

i}Li=1.
Training Phase

1. Feature vectors {f ci } are extracted from the images {xc
i} of class c.

2. The basis vectors of class-c convex cone, {bc
j}, are generated by applying NMF to the set of

feature vectors {f ci }.

3. {bc
j} are recorded as the class convex cone of class c.

4. The above process is conducted for all C classes.

Recognition Phase

1. A set of images {xin
i } is input.

2. Feature vectors {f ini } are extracted from images {xin
i }.
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3. The basis vectors of the input convex cone, {bin
j }, are generated by applying NMF to the

input set of feature vectors {f ini }.

4. The input image set {xin
i } is classified based on the similarity (Eq. (4.2)) between the input

convex cone {bin
j } and the class-c convex cone {bc

j}.

4.3 Constrained mutual convex cone method

In this section, we extend MCM by introducing the projection onto a discriminant space. We first
describe the basic idea of the introduction of a discriminant space, and then define the discriminant
space based on the gaps among convex cones. After that, we detail the algorithm of the extended
MCM.

4.3.1 Basic idea

As convex cones capture essential information of each image set, the gaps between them precisely
capture the difference components between corresponding objects, such as the shape difference. The
performance of MCM can be enhanced by extracting the gap information, since such information is
essential for classification. To this end, we design a discriminant space based on the gaps.

4.3.2 Generation of discriminant space

To enhance the performance of MCM, we introduce a discriminant space D , which enlarge the gaps
(the between-class variance Sb) and minimizes the within-class variance Sw for the convex cones
projected on D , similarly to the Fisher discriminant analysis (FDA). In our method, the within-class
variance Sw is calculated from basis vectors of convex cones, and the between-class variance Sb

is calculated from gaps among convex cones for effectively utilizing the information formed by
convex cones.

We define these gaps as follows. Let Cc be the c-th class convex cone with Nc basis vectors
{bc

i}
Nc
i=1, Pc be the projection operation of a vector onto Cc defined by Eq. (2.4), and C be the

number of the classes. We consider C vectors {pc
1}, c = 1, 2, . . . , C , such that the sum of the

correlation
∑

i ̸=j (p
i
1)

Tpj
1/(∥pi

1∥2∥p
j
1∥2) is maximum. Such vectors can be obtained by using the

concept of generalized canonical correlation analysis [78, 79]. The detailed procedure is shown in
Algorithm 3, which is almost the same as the original algorithm, except that the non-negative least
squares (LS) method is used instead of the standard LS method.

Next, we search for a set of second vectors {pc
2} with the maximum sum of the correlations

under the constraint that they have the minimum correlation with the previously found {pc
1}. The

second vectors {pc
2} can be obtained by applying the above procedure to the convex cones projected

onto the orthogonal complement space of the vector y1. In the same way, a set of the j-th vectors
{pc

j} can be computed by applying the same procedure to the convex cones projected onto the
orthogonal complement space of {yk}j−1

k=1. In this way, we finally obtain the sets of {pc
j}. With the

sets of {pc
j}, we define a difference vector dc1c2

j as

dc1c2
j = pc1

j − pc2
j . (4.3)
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Algorithm 3: Procedure to search for a set of first vectors {pc
1}Cc=1

Input: Basis vectors {bc
i} of convex cones {Cc}c

Let Pj(y) be the projection operator of a vector y onto a convex cone Cj .
1. Randomly initialize y1.
2. Project y1 onto each convex cone, and then normalize the projection as
pc
1 = Pc(y1)/∥Pc(y1)∥2.

3. ŷ1 =
∑C

c=1 p
c
1/C.

4. If ∥y1 − ŷ1∥2 is sufficiently small, the procedure is completed. Otherwise, return to step
2 after setting y1 = ŷ1.

return {Pc(y)}c

Considering that each difference vector represents the gap between the two convex cones, we use
these vectors to define Sb as

Sb =

Ng∑
j=1

C−1∑
c1=1

C∑
c2=c1+1

dc1c2
j (dc1c2

j )T, (4.4)

where Ng is the minimum number of basis vectors of class convex cones, i.e., min({Nc}).
Next, we define the within-class variance Sw by using the basis vectors {bc

i} for all classes of
convex cones:

Sw =

C∑
c=1

Nc∑
i=1

(bc
i − µc)(b

c
i − µc)

T, (4.5)

where µc =
∑Nc

i=1 b
c
i/Nc. Finally, the Nd-dimensional discriminant space D is spanned by Nd

eigenvectors {ϕi}Nd
i=1 corresponding to the Nd largest eigenvalues {γi}Nd

i=1 of the following eigen-
value problem:

Sbϕi = γiSwϕi. (4.6)

4.3.3 Algorithm of constrained mutual convex cone method

We construct the constrained MCM (CMCM) by incorporating the projection onto the discriminant
space D into the MCM. CMCM consists of a training phase and a recognition phase. In the fol-
lowing, we explain each phase for the case in which C classes have L images {xc

i}Li=1 each and the
discriminant space D is utilized.
Training Phase

1. Feature vectors {f ci } are extracted from images {xc
i}.

2. The basis vectors of the c-th class convex cone, {bc
j}, are generated by applying NMF to each

class set of feature vectors.

3. Difference vectors {dc1c2
j } are computed according to the method explained in section 4.3.2.
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4. The discriminant space D is generated by solving Eq. (4.6) with {bc
j} and {dc1c2

j }.

5. The basis vectors {bc
j} are projected onto D .

6. A convex cone formed by a set of the projected basis vectors {b̂c
j}j is registered as the class

convex cones of class c.

Recognition Phase

1. A set of images {xin
i } is input.

2. Feature vectors {f ini } are extracted from images {xin
i }.

3. The basis vectors of a convex cone, {bin
j }, are generated by applying NMF to the set of

feature vectors.

4. The basis vectors {bin
j } are projected onto the discriminant space D and then the lengths of

the projected basis vectors are normalized to 1. The normalized projections are represented
by {b̂in

j }.

5. The input set {xin
i } is classified based on the similarity (Eq. (4.2)) between the input convex

cone {b̂in
j } and each class convex cone {b̂c

j}.

4.4 Extension of constrained mutual convex cone method

In this section, we further enhance the CMCM by incorporating the information of the fine local
structure between different classes into the generation of an enhanced discriminant space, consider-
ing the case that an image set of a class has the complex structure. We further improve the ability
of the enhanced discriminant space by introducing weights on gaps. Finally, we propose a fast
implementation of the enhanced CMCM.

4.4.1 Basic idea

In practical applications, a class distribution are often complicated, for example, in the case that an
image set of a class contains multiple videos collected under different situations. In these cases,
it is reasonable to represent each class by multiple cones instead of a single cone. In our method
using multiple reference cones, the classification of an input cone Cin is performed by the nearest
neighbor classifier in a very similar procedure to the original CMCM using a single convex cone,
except that this enhanced CMCM uses a newly designed discriminant space.

In the following sections, we redesign the method for generating an enhanced discriminant space
in response to the multiple convex cone representation of a class. Then, we introduce weights on
gaps to incorporate local structure into the generation of an enhanced discriminant space.
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4.4.2 CMCM with enhanced discriminant space

Consider nc training image sets {Xc
i}n

c

i=1 for the c-th class, where each image set Xc
i has nc

i images
{xc

i,j}
nc
i

j=1. Let Fc
i ∈ Rd×nc

i be a matrix whose j-th column vector is a feature vector such as pixel

intensities and CNN feature extracted from the image xc
i,j , and {bc

i,j ∈ Rd}N
c
i

j=1 be the basis vectors
of each reference convex cone C c

i generated from each feature set Fc
i .

We first reformulate the between-class variance Sb by using multiple gaps (difference vectors)
{dik,hl

j } between every pair of convex cones C k
i and C l

h from different classes as follows:

S′
b =

Ng∑
j=1

C−1∑
k=1

C∑
l=k+1

nk∑
i=1

nl∑
h=1

dik,hl
j (dik,hl

j )T, (4.7)

where Ng is the minimum number of basis vectors of references convex cones, min({N c
i }), and

{dik,hl
j } are the difference vectors between vector pairs {pik

j ,phl
j } of two convex cones C k

i and C l
h,

which are obtained by applying the method described in Sec. 4.3.2, and C is the number of classes.
Subsequently, we reformulate the within-class variance Sw as follows:

S′
w =

C∑
c=1

nc∑
i=1

Nc
i∑

j=1

(bc
i,j − µc

i )(b
c
i,j − µc

i )
T, (4.8)

where µc
i is the mean vector of the basis vectors {bc

i,j} of the i-th reference convex cone of the c-th

class, {C c
i }, which is calculated by

∑Nc
i

j=1 b
c
i,j/N

c
i .

We obtain an enhanced discriminant space De as the subspace spanned by Nd eigenvectors
corresponding to the Nd largest eigenvalues of the following eigenvalue problem:

S′
bϕi = γiS

′
wϕi. (4.9)

With the multiple cone representation, the projection of cones onto De can more accurately and
finely maximize between-class variance S′

b while minimizing within-class variance S′
w, in compar-

ison with a naive discriminant space generated based on a single cone representation.

4.4.3 Enhanced discriminant space with weights

So far, all the gaps (difference vectors) are treated with the same contribution to generating the
enhanced discriminant space De. However, the smallest gaps between convex cones are more im-
portant for discrimination than the largest gaps. In fact, several studies reported the validity of this
idea [55, 80, 62]. Motivated by these studies, we expect that adding different weights can ensure that
the smallest gaps between two cones are selectively enlarged after the projection onto the discrim-
inant space, which leads to a better discriminative ability. Concretely, we enhance the discriminant
space by introducing the weighted between-class variance with weights {wikhl} as follows:

S′′
b =

Ng∑
j=1

C−1∑
k=1

C∑
l=k+1

nk∑
i=1

nl∑
h=1

wikhldik,hl
j (dik,hl

j )T, (4.10)
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where the weights {wikhl} are defined as

wikhl =

Ng∑
j=1

((pik
j )Tphl

j )2/Ng. (4.11)

This formulation means that the value of wikhl increases as the corresponding gap between convex
cones becomes smaller. The enhanced discriminant space with weights maximizes more effectively
the between-class variance, while minimizing the within-class variance. We can obtain the enhanced
discriminant space as the subspace spanned by Nd eigenvectors corresponding to the Nd largest
eigenvalues of the following eigenvalue problem:

S′′
bϕi = γiS

′
wϕi. (4.12)

In the following, we refer this further enhanced discriminant space as the weighted discriminant
space Dew.

4.4.4 Validity of enhanced discriminant space

To see the high discriminative ability of the enhanced discriminant spaces, we visualize the pro-
jections of convex cones onto D , De, and Dew as 2D maps by using multi-dimensional scaling
(MDS) [81]. For the visualization, we synthesized ten cones {C 1

i }10i=1 for class-1 and five cones
{C 2

i }5i=1 for class-2. Each convex cone C c
i is spanned by three 100-dimensional basis vectors

{bc
i,j ∈ R100}3j=1. Figure 4.3a shows the 2D visualization map of the synthesized cones without

any projection.
Figs. 4.3 b, c and d show the maps of the cones projected onto D , De and Dew, respectively.

Through the comparison between the two maps in b and c, we can see that the cones projected onto
De are better separated than the cones projected onto D . This indicates a clear advantage of the
enhanced discriminant space De using multiple cones for each class over the naive discriminant
space D using a single cone for each class.

Next, we evaluate the validity of introducing weights to the enhanced discriminant space Dew.
We cannot see a large visual difference between the two projection maps of c and d, since a 2D pro-
jection map cannot capture completely high-dimensional structures in the 100-dimensional vector
space. However, by comparing them carefully, we can observe that there is no overlap in d, while
there are partial overlaps in c.

To further verify the advantage of Dew over De quantitatively, we calculated the class separa-
bility of the projected cones in the original 100-dimensional vector space. The class separability
is defined as tr(Sb

′)/tr(S′
w). This index was used for both De and Dew for fair comparison. The

class separabilities of the projections on De and Dew are 259.4 and 910.6, respectively. This large
difference supports clearly the validity of the introduction of weights to the enhanced discriminant
space.

4.4.5 Fast implementation of CMCM

CMCM is much more computationally costly than the subspace-based methods, MSM and CMSM.
This is because the calculation of similarity between cones needs heavy computation due to ALS.
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(a) Original data. (b) Distribution on the discriminant space D gener-
ated from two class convex cones.

(c) Distribution on De. (d) Distribution on Dew.

Figure 4.3: Results of the projections onto discriminant spaces D ,De, and Dew. Each plot is
generated by MDS. The shapes of each point indicate the corresponding class. The dotted lines
are plotted between basis vectors of a cone.

Moreover, the cost of the extended CMCM with N reference cones is N times higher than that of
the original CMCM.

To alleviate this high cost, we divide the similarity calculation into two steps. The first step is
based on the subspace similarity and the second step is based on the cone similarity in Eq.(4.2).

We generate in advance the subspaces containing each cone by applying the Gram-Schmidt or-
thogonalization to the bases of the cone. Then, in the first step, we generate the input subspace from
an input cone and calculate the similarities between the input and reference subspaces. After that,
we select several neighborhood reference subspaces according to the subspace similarities obtained
above. In the second step, we calculate the similarities of the input cone and the reference cones,
which correspond to the reference subspaces selected above. Finally, the input cone is classified into
the class with the maximum cone similarity. This two-step process can reduce the computational
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cost largely, while maintaining the high discriminative ability of the extended CMCM, as clearly
shown in experiments in sec.4.5.

4.5 Evaluation experiments

In this section, we conduct five experiments to evaluate the effectiveness of the proposed methods.
In the first experiments, we mainly demonstrate the effectiveness of the convex cone representation
by comparing the performances of the proposed methods (MCM and the CMCM with D) with the
fundamental subspace-based methods (MSM and CMSM). More concretely, the first experiment
verifies the effectiveness of using multiple angles between convex cones to measure the structural
similarity between them, using the multi-view objects dataset [67].

The second experiment analyzes the attribute of difference vectors between two convex cones
by visualizing the difference vectors as heatmap images.

The third experiment reveals how efficiently a convex cone captures essential information of an
image set for classification by observing the transitions of performances while varying the number
of training data, using the multi-view hand shape dataset [82].

The forth experiment evaluates the validity of the convex cone model and the representation
ability of multiple convex cone models for image-set classification on the YouTube Celebrities
dataset [69], using four types of typical image features.

The fifth experiment thoroughly evaluates the classification performance of the proposed meth-
ods using thehree datasets: 1) YouTube Celebrities (YTC) [69], 2) RGBD Object dataset [68], and
3) YouTube Faces (YTF) [70].

4.5.1 Effectiveness of using multiple angles

In this experiment, we verify the effectiveness of using multiple angles for calculating the structural
similarity between convex cones, through a classification experiment using the ETH-80 dataset [67].

Experimental protocol

The ETH-80 dataset consists of object images in eight different classes. Each class has ten types
of objects. Thus, this dataset consists of images taken from 80 objects, and each object is captured
from 41 viewpoints. One object randomly sampled from each class set was used for training, and
the remaining nine objects were used for testing. As an input image set, we used 41 multi-view
images for each object. Thus, we have eight image sets for training and 72 image sets for testing.
We used images scaled to 32 × 32 pixels and converted to grayscale. Vectorized features of the
grayscale images were used as input, i.e. the dimension of the feature vector is 1024.

We evaluated the classification performance of MCM and CMCM, while varying the number
of angles used for calculating the similarity. As baselines, MSM and the CMSM were also evalu-
ated. Dimensions of reference subspaces and convex cones were set to 20, and dimensions of input
subspaces and convex cones were set to 10.

33



Figure 4.4: Results of classification experiment. The vertical axis is the accuracy, and the horizontal
axis is the number of angles used for calculating the similarity.

Results and discussion

Figure 4.4 shows the accuracy changes of the different methods against the number of angles. The
horizontal axis denotes the number of angles used for calculating the similarity. We can confirm
that the accuracy of MCM and CMCM increases, as the number of angles increases. This result
shows clearly the importance of comparing the whole structures of convex cones by using multiple
angles rather than using only the minimum angle for accurate classification.

In the case of using one or two angles, the accuracy of CMCM is lower than CMSM. However,
with an increase in the number of angles, CMCM outperforms the methods MSM and CMSM
which are based on the subspace representation. This supports the effectiveness of the convex cone
representation and indicates that using multiple angles is essential to compare the structures of two
convex cones.

4.5.2 Visualization of difference vectors between convex cones

In this experiment, we analyze the attribute of difference vectors between convex cones through
the visualization of them on two sets of facial expressions, neutral and smile. They were extracted
from the CMU PIE dataset [83]. Each set has 20 front face images taken under various illumination
conditions. Fig. 4.5 shows sample images of the face images.
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Figure 4.5: Sample images of the facial expression images used in the experiment. The top and
bottom rows show the neutral and smile face images respectively.

Figure 4.6: Results of visualizing the difference vectors. The top and bottom rows show the differ-
ence vector between two subspaces {zi} and the difference vector between two convex cones {di},
respectively.

According Facial Action Coding System (FACS) in psychology and anatomia [84, 85], an ar-
bitrary facial expression can be represented as some combination of 44 facial muscle movements,
where the i-th movement is called an action unit i (AU-i). For example, the change from neutral
facial expression to smile can be represented as a combination of two AUs, raising cheek (AU-6)
and pulling lip corner (AU-12). Thus, we evaluate the propriety of the proposed difference vectors
by observing how accurately the visualization obtained in this experiment captures the AU-6 and
AU-12.

After representing the two sets of raw images as convex cones, we generated the difference vec-
tors {di} between the two convex cones according to Eq. (4.3). For comparison, we also calculated
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(a) (b)

Figure 4.7: Mean images of absolute value images of the difference vectors {di}5i=1 between convex
cones and the difference vectors {zi}5i=1 between subspaces. (a)

∑5
i=1 |zi|/5. (b)

∑5
i=1 |di|/5.

the difference vectors {zi} between the canonical vectors of two subspaces of the two sets. We
set the number of basis vectors of each convex cone to 5 and the dimension of each subspace to 5.
Thus, we have five difference vectors for each model.

Figure 4.6 shows the visualization results of {zi}5i=1 and {di}5i=1. We can see that both sets
of the difference vectors can emphasize regions around the cheek and mouth. These regions can
move largely in comparison with other regions when changing from neutral facial expression to
smile. However, the resolutions in variation captured by them are a bit different. To take a closer
look at this difference, we calculated mean images of the absolute values of the difference vectors,
by

∑5
i=1 |zi|/5 and

∑5
i=1 |di|/5, as shown in Fig. 4.7. The difference vectors, {zi}, between the

subspaces capture roughly difference on the whole face. On the other hand, the difference vectors,
{di}, between convex cones capture clearly fine difference around the cheek and mouth, which
correspond precisely to the AU-6 and AU-12.

4.5.3 Representation ability of a convex cone

This experiment aims to reveal how efficiently a convex cone captures essential structural informa-
tion of an image set. To this end, we evaluate our methods while changing the number of training
data, using the multi-view hand shape dataset [82]. As detailed later, we show the results from the
soft voting with a CNN, in addition to our methods and MSM/CMSM, to verify the importance of
considering structural information of image sets.

Experimental protocol

The multi-view hand shape dataset [82] consists of 30 classes of hand shapes. Each class data
was collected from 100 subjects at a speed of 1 fps for 4 seconds using a multi-camera system
equipped with seven synchronized cameras at intervals of 10 degrees. During data collection, the
subjects were asked to rotate their hands at a constant speed to increase the number of viewpoints.
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Figure 4.8: Sample images of the multi-view hand shape dataset used in the experiments. Each row
shows a hand shape from various viewpoints.

Figure 4.8 shows sample images in the dataset. The total number of images collected was 84000 (=
30 classes×4 frames×7 cameras ×100 subjects).

We randomly divided the subjects into two sets. One set was used for training, and the other
was used for testing. To evaluate the efficiency of convex cone representation, we conducted the
experiment by setting the numbers of subjects used for training to 1, 2, 3, 4, 5, 10, and 15. Hence,
the number of training images was 840N (= 30 classes×7 cameras×4 frames×N subjects). We set
the number of subjects used for testing to 50. We treated 28 images of a subject as an input image
set. Thus, the total number of convex cones for testing was 1500 (=30 classes×50 subjects).

In this experiment, we used CNN features. To extract effective CNN features, we fine-tuned the
ResNet-50 [72] pre-trained on ImageNet [73]. To this end, we slightly modified the architecture of
the ResNet-50 for our experimental setting. First, we replaced the final layer of the ResNet-50 with
a 1024-way fully connected (FC) layer with the ReLU function. Next, we added a class number -
way FC layer with softmax behind the replaced FC layer. Then, we trained the modified ResNet
using the training images.

We extracted a CNN feature of each image from the replaced 1024-way FC layer. Thus, the
dimensionality d of a CNN feature vector was 1024.

Besides, we utilized this fine-tuned network as a baseline of the methods, which do not consider
the structure of an image set, with the following procedure; we classified an input image set based
on the average value of the output conviction degrees class from the last FC layer with softmax. In
the following, we call this method as “softmax”.

For subspace and cone-based methods, the parameters were tuned by grid search on the training
set with the following ranges: the dimension of class subspaces and convex cones varied from 10
to 50 in increments of 10; the dimension of input subspace and convex cone varied from 5 to 20
in increments of 5. For CMCM, the dimensions of the discriminant space D was set to the matrix
rank of the between-class variance Sb. For CMSM, the maximum dimension dmax of GDS is
(the dimension of class subspace) × (the number of classes). The dimension of GDS was tuned
by the same strategy while varying the reduction dimension dred with the range from 5 to 30 in
increments of 5. The dimension of GDS is set to dmax − dred. This strategy was also conducted on
the experiments in the later subsections.
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Results and discussion

Table 4.1 shows the accuracies versus the number N of training subjects. The overall performances
of the subspace and convex cone methods achieved competitive results compared with that of soft-
max. In particular, the improvements are significant when the number of training subjects N is
small. From this result, we can see the importance of considering structural information of image
sets.

Table 4.1: Change in the accuracies (%) against the number of training subjects.

N 1 2 3 4 5 10 15
softmax 36.07 71.41 83.87 86.60 91.60 95.73 96.53
MSM 62.27 73.47 85.27 87.60 91.13 95.27 96.20
CMSM 65.87 74.73 87.40 91.00 92.87 95.73 96.27
MCM 63.07 74.60 85.67 88.27 92.07 95.40 96.67
CMCM 67.87 75.33 87.47 91.33 93.53 96.27 97.00

Our methods outperformed the subspace-based methods, MSM and CMSM. This supports the
effectiveness of our core ideas: the utilizing of convex cone representation and the cone similar-
ity with multiple angles. Besides, the result suggests that a convex cone can extract meaningful
information of image-sets efficiently and stably, even if the number of training data is small.

Moreover, CMCM showed superior performance to MCM in all cases. This improvement indi-
cates the effectiveness of the projection onto D , which is designed to extract discriminative features
based on differences among the cones. This insight also means the efficient representation ability
of a convex cone model, since the difference among them works well.

4.5.4 Representation ability of multiple convex cones

In this subsection, we evaluate the representation ability of multiple convex cones in addition to a
single convex cone, on the video-based face recognition dataset, YouTube Celebrities (YTC) [69],
using four representative image features: Local Binary Pattern (LBP) [86], Histogram of Gradient
(HoG) [87] and two types of CNN features, which are extracted from ResNets trained on Ima-
geNet [73] and VGGFace2 [75] datasets, respectively. We show the classification performances of
our methods, including the CMCM with Dew and its fast implementation. For convenience, we use
wCMCM to denote the CMCM with Dew.

Experimental protocol

The YTC dataset contains 1910 videos of 47 people. We used a set of face images extracted from a
video by the Incremental Learning Tracker (ILT) [88], as an image set. Six videos per each person
were randomly selected as training data, and nine videos per each person were randomly selected
as test data. We repeated the evaluation five times with different random selections.

For extracting LBP and HoG features, all the extracted face images were scaled to 30 × 30
pixels and converted to grayscale. For extracting CNN features, all face images were scaled to 224
× 224 pixels and then inputted to the networks.
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Table 4.2: Parameter ranges used in the grid search algorithm. dis and dcs are the dimensions of
input and class subspaces, respectively. N c and N in are the number of basis vectors of input and
class cones, respectively. dred is a parameter for the dimension of GDS, and N c

i is the number of
basis vectors of each cone used for wCMCM. Each element [x–y/z] in the table means that the
corresponding parameter varied from x to y in increments of z.

YTC RGBD YTF
dis,N in [3–15/3] [4–20/4] [3–15/3]
dcs,N c [6–30/6] [8–40/8] [6–30/6]
dred [3–15/3] [4–20/4] [3–15/3]
N c

i [3–15/3] [4–20/4] [3–15/3]

The parameters were tuned by the grid search algorithm on the training set, with the ranges
shown in the left column of Table 4.2. The dimensions of the discriminant space D and the weighted
discriminant space Dew were set to the matrix rank of the between-class variance Sb and S′′

b, re-
spectively. Besides, for the fast wCMCM, the number of nearest convex cones to be selected by
subspace similarities is set to 5.

Table 4.3: Experimental results (recognition rate (%), standard deviation) for the YTC dataset.

LBP HoG ImageNet VGG face2
#Clusters[min,max/mode] [1,3/2] [1,5/2] [1,3/2] [1,3/1]
MSM 32.91±1.29 60.90±1.57 55.51±2.04 89.69±0.96
CMSM 48.75±3.26 72.39±1.76 71.02±1.50 91.49±1.00

MCM 37.40±2.81 62.55±1.84 56.12±1.71 90.54±1.16
CMCM 53.33±2.26 72.86±1.92 71.39±1.92 92.34±1.00
wCMCM 69.27±2.17 77.21±2.52 81.47±1.32 92.96±0.72
fast wCMCM 69.08±2.18 76.97±2.87 81.42±1.28 92.91±1.16

Results and discussion

Table 4.3 shows the classification results of the baselines and the proposed methods using the four
kinds of features. The experimental results support the effectiveness of our main ideas as well as
the previous two experiments since MCM and CMCM showed competitive results compared with
the baselines regardless of the features we used.

Furthermore, the performance of CMCM increased by introducing multiple convex cones and
the weighted discriminant space Dew in wCMCM. This further enhancement shows that 1) the
cones have superior representation ability, and 2) the weights work effectively to obtain local fine
structural information between cones of different classes as we expected. Moreover, we notice that
the fast version of wCMCM achieved almost the same recognition rate as the original wCMCM,
while speeding up more than ten times compared with the original wCMCM as shown in Table 4.4.
This result concludes that we can compare the similarity between a pair of cones, which are faraway
to each other, by using the subspace similarity instead of the cone similarity.
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Although wCMCM significantly outperforms CMCM in all features, amounts of improvements
are different. To analyze this difference, we automatically estimated the number of clusters in each
class by applying DBSCAN clustering [89]. The second row of Table 4.3 shows the minimum,
maximum, and mode numbers of clusters. It can be seen that the more clusters there are in a class
on average, the more significantly wCMCM improves the classification performance. This indicates
that we can efficiently represent the complex structure of each class by using multiple convex cones
and extract meaningful information for classification by using the weighted differences between
them.

Table 4.4: Average classification times (millisecond). The numbers of angles for the similarity are
10. This experiment is conducted by Matlab 2018b on Intel CPU i7-7700.

wCMCM fast wCMCM
507.2 30.0

4.5.5 Comparison of classification performance with conventional methods

In this subsection, we thoroughly evaluate the classification performance of the proposed meth-
ods using three public datasets, YTC, RGBD and YTF. As comparison methods, in addition to
the baselines, we show the results of the various fundamental and recent subspace-based methods
(DCC [24], GDA [31], GGDA [55], MMD [76], PML [37], RMML-GM [38]), as references. In
particular, PML and RMML-GM have been known as powerful classification methods for image-
set based recognition. Besides, we show the results of other types of methods: covariance-based
methods (LEML [44], RMML-SPD [38]), an affine hull-based method (AHISD [41]) and a sparse-
representation method (SANP [43]). In the following, details of each dataset and experimental
protocols are described. After that, experiment results are shown.

Datasets and experimental protocols

For RGBD and YTF datasets, we utilize the same protocol described in section 3.4. For YTC
dataset, we utilize CNN feature vectors extracted from the ResNet50 trained on the VGG Face2
dataset, although other settings are the same as that described in the section 3.4.

The parameters of the proposed methods were tuned by the grid search algorithm on the training
set, with the ranges shown in Table 4.2.

Results and discussion

Table 4.5 shows the classification results of the proposed methods and various conventional meth-
ods. The proposed methods showed consistent results with the previous experiments for all datasets,
i.e., the results support the effectiveness of our key ideas: the convex cone representation, the cone
similarity with multiple angles, and the discriminant spaces. For instance, CMCM and wCMCM
showed better results than CMSM by more than 1% on the RGBD and YTF datasets.

Furthermore, the proposed method achieved competitive results compared with more powerful
subspace-based methods. This result also supports the validity of the proposed methods, and in-
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Table 4.5: Experimental results (recognition rate (%), standard deviation) for the three public
datasets.

YTC RGBD YTF

Conventional methods

AHISD [41] 90.02±1.17 80.14±1.73 88.99±0.44
SANP [43] 89.97±1.08 79.28±2.85 70.09±1.86
LEML [44] 90.83±2.00 88.06±3.12 78.68±0.42
RMML-SPD [38] 89.93±1.40 88.20±3.58 74.76±0.65
DCC [24] 92.34±0.81 89.78±2.12 91.63±0.93
GDA [31] 90.36±1.55 88.06±1.55 81.19±2.88
GGDA [55] 92.48±1.45 88.78±0.64 81.94±2.46
MMD [76] 90.30±1.18 82.45±2.72 86.39±1.37
PML [37] 91.25±0.10 90.22±0.03 89.60±0.06
RMML-GM [38] 91.30±0.80 90.93±1.48 89.74±0.70

Base lines
MSM 89.69±0.96 89.78±1.06 89.96±0.53
CMSM 91.49±1.00 90.22±1.85 91.85±0.57

Proposed methods

MCM 90.54±1.16 91.74±0.84 92.60±0.92
CMCM 92.34±1.00 91.94±0.94 92.82±0.92
wCMCM 92.96±0.72 92.23±0.94 93.17±0.41
fast wCMCM 92.91±1.16 91.94±0.60 93.17±0.31

dicates that our cone-based frameworks can be further enhanced by utilizing the progress of the
subspace-methods in the future.

4.6 Summary

In this chapter, we established a novel framework for image set classification, which is based on the
convex cone representation, referred to as the constrained mutual convex cone method (CMCM).

The key idea of our framework is to represent an image set by a convex cone and then measure
the similarity between two image sets as the geometric similarity between two corresponding convex
cones. The geometric similarity of two convex cones is measured with the angles between them,
which we defined newly in this paper, by using the alternating least squares method. To derive
higher performance from our cone representation, we designed a new type of discriminant space that
increases the class separability between sets of cones from different classes. Moreover, we enhanced
the ability of this discriminant space by introducing weights to enlarge the gaps between a pair of
close convex cones. As CMCM has high computational cost, we constructed its fast implementation
by combining our cone-based method with the conventional subspace-based method.

In the evaluation experiments, we first verified that using multiple angles is essential to compare
two convex cones. Then, we demonstrated that the difference between convex cones could capture
more useful information for image-set classification. The classification performance of the proposed
frameworks was evaluated through extensive experiments, showing that it can achieve competitive
results compared with various conventional methods.
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Chapter 5

Convex cone kernels

This section proposes convex cone kernels which allows us to apply classical machine learning
techniques to convex cone representations.

In Section 5.1, we describe the background of the proposed methods. In Section 5.2, we define
convex cone kernels and show their positive semi definiteness. In Section 5.3, we construct two
image set classification methods based on the cone kernesl. In Section 5.4, we demonstrate the ef-
fectiveness of the proposed methods through two classification experiments. Section 5.5 concludes
this chapter.

5.1 Background

As discussed in the previous chapter, it is not a trivial task to explore the complicated geometrical
relationship of multiple convex cones. To alleviate this difficulty, we propose several types of convex
cone kernel functions based on the smallest angles between two convex cones. We show that our
kernel functions can work as positive-definitive functions, both theoretically and empirically. As
a result, we can examine the detailed relationship among multiple sets of convex cones by only
calculating the kernel functions, as shown in Fig. 5.1.

To illustrate the effectiveness of our convex cone kernels, we visualize the relationship of image-
sets through convex cone representation, by using the algorithms of Kernel PCA [90]. Moreover,
we propose convex cone discriminant analysis (CDA) for classifying multiple sets of convex cones.
The essence of this method is to extend linear discriminant analysis (LDA) [91] to the feature space
F defined by the convex cone kernel. This idea is motivated by kernel discriminant analysis [92,
93, 94]. In addition, to further enhance the performance of CDA, we introduce the projection of
convex cones onto a discriminant space [95] to achieve more powerful feature extraction, before
kernel mapping the convex cones using the kernel from the original vector space V into the feature
space F . This projection can selectively extract the difference component between convex cone
classes, such that the kernel function generated from a set of these emphasized convex cones can be
more discriminative. As a result, the discriminant ability of CDA can increase significantly. This
enhanced CDA is named enhanced CDA (eCDA).

The main contributions of this paper are as follows:

1. Proposal of several types of convex cone kernels for handling multiple convex cones.
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Figure 5.1: Conceptual diagram of the convex cone kernels. With the kernel trick, a set of convex
cones is efficiently handled while preserving on the relationship between the convex cones. Since
the kernel has positive definiteness, this operation can be regarded as the handling on the feature
space F defined by the kernel function k, where ϕ is the mapping function defined by the kernel k.

2. Proposal of a visualization scheme for the relationship between convex cones, based on the
proposed convex cone kernels, by using Kernel PCA.

3. Proposal of the cone discriminant analysis (CDA) and the enhanced CDA (eCDA).

4. Verification of the effectiveness of our convex cones representation framework.

5.2 Convex cone kernels

5.2.1 Definition of convex cone kernels

There are several options to measure the similarity between sets, such as using the maximum dis-
tance or the minimum distance [31, 1, 41]. The best choice highly depends on specific tasks or data
distributions. To deal with various situations, we define three types of convex cone kernels based
on the smallest angles {θi}ri=1 between two convex cones C1 and C2 as follows:

· Min angle kernel
kmin(C1,C2) = cos2 θ1. (5.1)

· Max angle kernel
kmax(C1,C2) = cos2 θr. (5.2)

· Mean angle kernel

kmean(C1,C2) =

r∑
i=1

cos2 θi/r. (5.3)

The above kernel functions approach 0 if the convex cones are orthogonal to each other, and ap-
proach 1 if the whole structure of the convex cones is the same. The kmin emphasizes the similar
structure between C1 and C2, since the closest structure are analyzed in this kernel. On the other
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Figure 5.2: Examples of image-sets from CMU PIE. We used 5 images taken under various illumi-
nation conditions as an image-set.

hand kmean exploits the centroids of C1 and C2, which provides information about the whole geo-
metric structure of both C1 and C2. Finally, kmax take advantage of the most dissimilar structure
contained in C1 and C2, which may be useful in many applications.

It is important to check whether a kernel function has positive definiteness. As the above kernels
are clearly symmetric, to show that the proposed kernel functions have positive definiteness, we first
prove that the mean angle kernel kmean has positive definiteness as follows:
Proof. Let λj , λk ∈ R, pl

j ,q
l
k be a vector pair forming the l-th smallest angle θj,kl between two

convex cones Cj , Ck, and Yj = [p1
j , · · · ,pr

j ],Yk = [q1
k, · · · ,qr

k], where ∥pl
j∥2 = ∥ql

k∥2 = 1.∑
j,k

λjλkkmean(Cj ,Ck) =
∑
j,k

λjλk

∑
l

cos2 θj,kl /r =
∑
j,k

λjλk∥YT
j Yk∥2F /r

=
∑
j,k

λjλktr(YjY
T
j YkY

T
k )/r = tr(

∑
j

λjYjY
T
j )

2/r = ∥
∑
j

λjYjY
T
j ∥2F /r ≥ 0. (5.4)

Therefore it is verified that the mean angle kernel is a positive-definite kernel function.
The positive definiteness of the remaining two kernel functions can be proved by the above pro-

cedure, changing only Yj and Yk. Thus, each kernel function can be considered as the inner prod-
uct on the feature space that is defined by the kernel function, e.g., kmean(C1,C2) = ϕ(C1)

Tϕ(C2),
where ϕ(Ci) is a mapping function to the feature space. We can apply kernel-based methods to a set
of convex cones through our kernel functions. Besides, by assuming that the distance on the feature
space is Euclidean like ∥ϕ(C1) − ϕ(C2)∥22 = kmean(C1,C1) + kmean(C2,C2) − 2kmean(C1,C2),
we can apply distance-based manifold learning methods to a set of convex cones.

5.2.2 Visualization using convex cone kernels

To illustrate the applicability of the proposed kernels, we visualize the relationship between image-
sets using the typical dimension reduction method, Kernel PCA (KPCA) [90], with the mean angle
kernel.

In this experiment, we used front face images of 2 facial expressions of 2 people included in
the CMU PIE dataset [83], i.e., we have four categories as shown in Fig.5.2. Each category has 40
images taken under various illumination conditions. Five images randomly selected from each set
was used as an image-set. Thus, the number of image-sets is 32 (i.e. 4 (categories) × 40 (images)
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(a) Subspace kernel. (b) Mean angle kernel

Figure 5.3: Visualization results by Kernel PCA. Each point corresponds to an image-set. The color
of each point indicates a person and the shape of each point indicates a facial expression.

/ 5). We generated a convex cone with 5 basis vectors from an image-set, and then applied KPCA
to the set of convex cones. For the comparison, we also applied the methods to the set of subspaces
that were generated from the image sets. For the subspaces, we used the projection kernel [31].

Figures 5.3 shows the visualization results. A point in each figure corresponds to one image
set. The color of each point indicates a person, and the shape of each point indicates a facial
expression. Although the subspace kernel kmax with KPCA causes overlapping between categories,
kmax efficiently clusters the subjects. This suggests that our kernel can capture more discriminative
information than the subspace-based method can, since the points referring to the two convex cone
kernels make clusters according to the category. Compared with the subspace-based method, the
proposed kernel function can be confirmed to be more effective.

5.3 Image-set based classification using convex cone kernels

In this section, we describe the details of the image-set based classification framework based on the
convex cone discriminant analysis (CDA) and the enhanced CDA (eCDA).

5.3.1 Convex cone discriminant analysis

We construct a convex cone discriminant analysis based on the proposed kernels, by combining
them with kernel discriminant analysis (KDA).

Let {C1, . . . ,CN} be the convex cones and {y1, . . . , yN} be the class labels yi ∈ {1, . . . , C},
and Nc be the number of convex cones of the c-th class data. Without loss of generality, we assume
that the data are ordered according to the class labels: 1 = y1 ≤ y2 ≤ · · · ≤ yN . CDA is formulated
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as

max
α⊤K(V − eNe⊤N/N)Kα

α⊤(K(IN − V )K + σ2IN )α
, (5.5)

where K is the kernel matrix whose elements (K)i,j is calculated by the proposed kernel function,
eN is a vector of ones of length N , V is a block-diagonal matrix whose c-th block is the matrix
eNce

⊤
Nc

/Nc, and Σb = K(V −eNe⊤N/N)K. The term σ2IN is used to regularize the covariance
matrix Σw = K(IN − V )K. It is composed of the covariance shrinkage factor σ2 > 0, and the
identity matrix IN of size N . The C−1 optimal directions {αi} can be obtained as the eigenvectors
of (Σw + σ2IN )−1Σb.

Based on these optimal directions, we construct the classification framework which consists of
a training phase and a recognition phase as follows.
Training phase

Given training N image-sets {Xi ∈ Rd×Ni}Ni=1, where each set has Ni images, Xi = [xi
1, . . . ,x

i
Ni
],

xi
j ∈ Rd is a feature vector extracted from an image, {y1, . . . , yN} is the class label, and yi ∈

{1, . . . , C}.

1. Generate convex cones Ci by applying NMF to the training data Xi.

2. Generate optimal directions A = [α1, . . . ,αC−1] by solving optimization problem Eq.(5.5).

3. Obtain feature vectors {fi} as fi = ATki, where ki is a vector whose j-th element is calcu-
lated by a convex cone kernel using Ci and Cj .

Recognition phase
Given input feature set Xin = [xin

1 , . . . ,xin
Nin

].

1. Generate input convex cone C in by applying NMF to the input set Xin

2. Obtain a feature vector f in as f in = ATkin, where kin is a vector whose j-th element is
calculated by a convex cone kernel using Cj and C in.

3. Classify the input based on the nearest neighbor method using f in and {fi}.

5.3.2 Enhanced convex cone discriminant analysis

CDA can be considered as a linear discriminant analysis on the feature space defined by the kernel
function. To further enhance the classification performance of the CDA-based framework, we intro-
duce the projection onto a discriminant space. The projection is the operation on the original space
to extract the difference between classes. Thus, the projection nearly orthogonalizes convex cones
between classes. Consequently, projected convex cones can produce a set of more discriminant
features, in comparison with the original convex cones.

The classification framework based on the enhanced CDA (eCDA) is as follows:
Training phase

Given training N image sets {Xi ∈ Rd×Ni}Ni=1, where each set has Ni images, Xi = [xi
1, · · · ,xi

Ni
],

xi
j ∈ Rd is a feature vector extracted from an image, {y1, · · · , yN} are the class labels and

yi ∈ {1, · · · , C}.
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1. Generate a convex cone Ci by applying NMF to the training data Xi.

2. Generate class convex cones Ĉc by applying NMF to convex cones {Ci|yi = c} of a class.

3. Generate a discriminant D space by the method of [95] using Ĉc.

4. Project each convex cone Ci onto the discriminant space D . We denote projected convex
cones as C ∗

i .

5. Obtain optimal directions A and feature vectors {fi} by steps 2 and 3 in the CDA’s training
phase with C ∗

i .

Recognition phase
Given input feature set Xin = [xin

1 , · · · ,xin
Nin

].

1. Generate input convex cone C in by applying NMF to the input set Xin

2. Project the input convex cone C in onto the discriminant space D . We denote projected input
convex cone as C in∗

3. Obtain a feature vector f in as f in = ATkin, where kin is a vector whose j-th element is
calculated by a convex cone kernel using C ∗

j and C in∗.

4. Classify the input based on nearest neighbor method using f in and {fi}.

5.4 Evaluation experiments

In this section, we demonstrate the effectiveness of the proposed methods through experiments
on action recognition using videos and object recognition using multi-view images. Through the
action recognition experiments, we show the effectiveness of the proposed methods by comparing
with Grassmann manifold based discriminant analysis (GDA)[31] and enhanced GDA (eGDA)[3]
as baselines, since they have been widely known as one of the powerful classification methods
based on subspace representation using a kernel function. Then, through the object recognition
experiments, we evaluate the effectiveness by comparing with various conventional methods.

5.4.1 Action recognition

Experimental protocol

We conducted an action recognition experiments using the KTH action dataset [96]. The KTH
dataset consists of 6 classes of actions. Each action was performed by 25 subjects in videos, filmed
under 4 different shooting conditions: outdoors, outdoors with variations of zooming, outdoors with
different clothes, and indoors. We conducted 10-fold cross-validation, with 10 subjects randomly
selected for training and the remaining subjects for testing. For each sequence, we used the bound-
ing box from [97] to do segmentation between actions. Each frame was resized to a 16× 16 pixels
and converted to grayscale. We used the raw pixel values with additional information of the height
and width of the bounding box of the subject, resulting in a 258-dimensional vector for each frame.
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For feature vectors fi, we used time elastic (TE) features [98], since it was confirmed that the
TE feature is suitable for subspace-based method [99]. A TE feature can be obtained by concate-
nating multiple frames randomly selected from a sequence while retaining the original order in the
sequence. By repeating the random sampling, we can obtain a set of TE features from a sequence.
A subspace or convex cone of a sequence is generated from a set of TE features of a sequence.

For the experiment, 5 frames were randomly sampled from a sequence to generate the vector,
i.e., the dimension of a feature vector is 1290 (i.e. 5×258), and 100 TE features extracted from a
sequence. The number of basis vectors of a convex cone varied from 5 to 25 in increments of 5, and
the number of basis vectors of each class convex cones varied from 30 to 90 in increments of 30.

As another baseline method, we conducted the nearest neighbor method using the mean angle
kernel as the similarity. In the following, we refer to this method as “Cone-1NN”.

Table 5.1: Experimental results (recognition rate (%), standard deviation) for the action recognition.

KTH

GDA 67.56±1.70
eGDA 69.17±1.30
Cone-1NN 59.54±2.36

CDA with kmin 52.36±2.45
CDA with kmax 42.60±6.26
CDA with kmean 69.81±1.51
eCDA with kmin 61.38±2.84
eCDA with kmax 48.22±2.04
eCDA with kmean 72.95±1.70

Results and discussion

Table 5.1 lists the experimental results. The methods using the mean angle kernel kmean showed
superior results to the other proposed kernel functions. This result may suggest that it is important
to compare the whole structure of convex cones in this experimental situation. Moreover, the kmean

based methods showed superior results to the subspace-based methods, GDA/eGDA. These results
indicate that the convex cone representation works effectively for the problems, and the mean angle
kernel kmean is appealing for measuring the structure information of convex cones.

As CDA and eCDA with kmean outperformed Cone-1NN, it was confirmed that these methods
generate suitable directions for the classification based on convex cone representation. As can be
seen in Table 5.1, eCDA outperformed CDA. This result supports the validity of our another core
idea: projecting onto a discriminant space helps to improve the classification ability of CDA.
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5.4.2 Object recognition

Experimental protocol

In this experiment, we used the ETH-80 dataset [67]. The ETH-80 dataset consists of eight different
categories, captured from 41 viewpoints. Each category has ten types of objects. Five objects
randomly sampled from each category were used for training, and the remaining objects were used
for testing. As an input image set, we used 41 multi-view images for each object. To conduct a
consistent experiment with previous works, we used images scaled to 32 × 32 pixels [100, 101].
For the feature vector, we used pixel intensities, i.e., vectorized images fi ∈ R1024 was used. We
evaluated the classification performance of each method in terms of the average accuracy of ten
trials using randomly-split datasets.

The number of basis vectors of a convex cone varied from 5 to 15 in increments of 5, and the
number of basis vectors of each class convex cones varied from 20 to 80 in increments of 20.

Table 5.2: Experimental results (recognition rate (%), standard deviation) for object recognition.

ETH-80

DCC[24] 91.75±3.74
MMD[76] 77.50±5.00
CHISD[41] 79.53±5.32
MMDML[102] 94.50±3.50
ADNT[100] 98.12±1.69
PLRC[103] 87.72±5.67
Reconst. Model [101] 94.75±4.32
GDA[31] 87.55±6.40
eGDA[99] 95.00±2.64
Cone-1NN 88.25±4.72

CDA with kmin 56.00±22.52
CDA with kmax 64.25±6.46
CDA with kmean 93.00±3.87
eCDA with kmin 83.75±6.04
eCDA with kmax 70.50±8.32
eCDA with kmean 97.00±2.58

Results and discussion

Table 5.2 shows the experiments results including those from various conventional methods. First
of all, consistently with the action recognition experiment, we can see that the proposed methods,
CDA and eCDA with kmean, performed better than the subspace-based methods, GDA and eGDA.
These results also suggest that the proposed methods based on the mean angle kernel significantly
capture useful information for the classification using convex cone representation. In addition,
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eCDA achieved superior result to CDA. From this result, we could confirm the effectiveness of
eCDA again.

The proposed methods also achieved the same or superior results compared with other conven-
tional methods. In particular, since the essence of the proposed methods is very simple, it is impres-
sive that we could achieve competitive results compared with deep neural network (DNN) based
methods, such as MMDML, ADNT, and Reconst. model, although the essence of the proposed
methods is much simpler. This also indicates the effectiveness of the proposed kernel function.

5.5 Summary

In this chapter, we proposed three types of convex cone kernels based on the smallest angles between
convex cones for effectively handling image-set data. After verifying that each kernel is a positive
definite function, we conducted visualization experiments using Kernel PCA with the proposed
kernel. The visualization illustrated the effectiveness of the proposed kernel compared with the
projection kernel, the kernel function for subspaces.

We also used our proposed kernels to construct an image-set based classification framework,
which is termed convex cone discriminant analysis (CDA). Furthermore, to enhance the classifica-
tion performance of CDA, we introduced the projection onto a discriminant space before mapping
the feature space defined by a convex cone kernel, as the projection can emphasize the difference
between classes. As a result, we constructed a more powerful classification framework based on the
enhanced CDA (eCDA). We verified the effectiveness of CDA and eCDA through two experiments.
Our results confirmed not only that the proposed methods outperform the subspace-based methods,
but also that they can achieve competitive results with much more complex methods using deep
neural networks.
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Chapter 6

Concluding remarks

This chapter summarizes the work described in this thesis and the future directions.

6.1 Summary

In this study, we introduced image set based classification methods using two data representations,
subspaces and convex cones. The motivations of the proposed methods are that while the subspace
representation has remarkable representation ability of a set, there are two large problems in the
representation ability for the classification: 1) canonical angles are calculated in Euclidean space,
i.e., there is large room for the improvement of the representation ability in which an identity matrix
is naively used as the metric matrix, and 2) subspace representation is a rough approximation of
convex cone representation. The goal was to solve these problems and develop algorithms with
high classification performance.

In chapter 3, we proposed the metric learning method for subspace representations. The key idea
behind this method is to introduce a metric space in the calculation of the canonical angles and learn
the metric space to produce discriminative subspace representations. To this end, we differentiated
the calculation of the canonical angles and use it to minimize our cost function by the Riemannian
conjugate gradient method. Besides, we introduced the low-rank constraint on the metric matrix to
automatically extract essential information for the classification. We demonstrated the effectiveness
of the proposed methods through the extensive experiments.

In chapter 4, we introduced two image set classification methods using novel representation, a
convex cone. The reason for introducing convex cone representations is that the cone representation
has a high probability to produce exact class boundaries due to its accurate representation ability
compared with a subspace. To construct a convex cone based method, we defined multiple angles
between convex cones and used it for calculating the similarity between two convex cones. Further-
more, we introduced two types of discriminant spaces, which enlarge the gaps among convex cones
to increase the performance of the framework using convex cone representations.

In chapter 5, we defined three types of cone kernels and constructed two classification methods
using the concept of Fisher discriminant analysis, to efficiently handle a set of convex cones. We
showed the effectiveness of the proposed cone-based methods through object classification experi-
ments using two datasets.
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6.2 Future work

Although we validated the effectiveness of the proposed methods, there are still many challenges to
be tackled in the future.

The metric learning methods proposed in chapter 3 is the first pursuit of designing a metric
space for measuring canonical angles based on A-based scalar product. As this approach can fully
utilize the geometry of multiple subspaces and is fundamentally different from conventional meth-
ods, which are designed to utilize standard canonical angles efficiently, we think that our methods
can offer various possible future directions, e.g., the combination of the proposed method with the
kernel-based subspace learning method [31, 55], or to incorporate the success of the metric learning
for vector data [104, 105]. Besides, we will consider embedding the proposed learning method in
the learning process of neural networks by using the derived gradient of the subspace similarity.

In chapter 4 and 5, we proposed the fundamental convex cone-based frameworks by defining the
similarity between convex cones. In the future, we will further explore the development of 1) a novel
discriminant space for convex cones by incorporating recent advances in image feature extraction
methods, such as [106, 107, 108], 2) a novel learning algorithms for convex cones by incorporating
the development of the subspace-based methods, and 3) a fast calculation method of the smallest
angles between convex cones. Besides, we will seek the theoretical relationship between subspace
and cone-based methods by using the canonical angles in a metric space as an interface.

Subspace-based methods have a wide range of applications, such as text classification and
acoustic classification [109, 110, 111]. Although all proposed methods were constructed for im-
age set classification, the proposed methods can be applied to these applications. We will consider
applying our method to new fields and developing further extensions.
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