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Abstract

Question answering over knowledge base (KBQA) is an important and chal-
lenging task which aims at correctly answering natural language questions posed
by humans. It has a wide range of application in natural language processing (NLP)
and information retrieval (IR) such as search, dialogue systems, information ex-
traction, and summarization. Several existing knowledge-based question answering
systems exploit complex end-to-end neural network architectures to solve the QA
task. While these methods achieve good results, this performance comes at a high
memory and computational cost because data or tokens are represented as vectors
or embeddings of high dimension to train the neural network. These high dimen-
sion representations require more computational resources and take long to exe-
cute when training the neural network. Further more, such end-to-end approaches,
makes it even more difficult to conduct a detailed performance analysis.

In this dissertation, we focus on how to efficiently perform question answering
over knowledge bases. This study consists of two parts; In the first part, the question
answering task is decomposed into three different components of entity detection,
entity linking, and relation prediction, and we solve each of the components sepa-
rate to come up with the correct answer candidate to the question. The second part
applies dimension reduction technique to generate low dimensional vectors that are
used to train a similarity matching function between the question and the candi-
date answers from which the closest candidate answer is selected to be the correct
answer to the question. Further more, knowledge based question answering faces
an ambiguity challenge when identifying the matching entities and relations in the
knowledge base. We take a step towards addressing these challenges.

In order to achieve efficient question answering over knowledge bases, We pro-
pose a simple yet efficient approach to address the knowledge base question an-
swering task. We also propose and analyze an auto-encoder framework that can
learn low dimension representations of the original input embeddings, and then re-
constructs them back with a lesser dimension. Our proposed framework retains as
much information as possible and minimize the reconstruction error between the
original and the reconstructed data when training the question answering model. As
a result, in the experiment and the analysis, this study indicates that we can achieve
reasonable performance on the question answering task all the while preserving
computational time and memory requirements.
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Chapter 1

Introduction

Question answering over knowledge base has been conducted using large scale
knowledge bases (KB), such as Freebase [12], DBpedia [60], Wikidata [93], and
Yago [44] to mention but a few. Such large scale knowledge bases, consist of real
world entities as nodes and the relations between them as edges. Each directed edge
along with its head and tail entity, constitute a triple that is to say (head entity,
relation, tail entity) also known as a knowledge base fact. For example,
when a natural language question such as where was Barack Obama born?
is posed by a user, the aim of question answering over the knowledge base is to iden-
tify a triple or fact (Barack Obama, people/person/place of birth,
Honololu) from the the knowledge base such that the tail entity (Honololu)
is the answer to the question.

Knowledge bases have in recent years become pivotal in question answering be-
cause of their ability to provide precise answers to users questions. Users commonly
use structured query languages like SPARQL for querying resource description
framework (RDF) data in such knowledge bases. SPARQL is a powerful query lan-
guage which requires expert knowledge that is hard to learn for non-programmers
who would want to access the information in the KB. So, the most convenient ap-
proach that has gained much attention is knowledge based question answering that
allows end users to pose natural language questions over a knowledge base without
knowledge of the underlying schema, and in return receive entities as the answers
to the question.

In the past, a number of question answering systems, such as AquaLog [62],
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NLP-Reduce [54], PowerAqua [63], and FREyA [25], have been proposed. Many
of them map a natural language question to a triple-based representation. For ex-
ample, a simple question like "who wrote the Neverending story?",
PowerArqua [63] would map this question to the triple ([person,organisation],
wrote, Neverending story) and then, similarity measures are applied to
retrieve the matching sub-graphs from the RDF repository. This approach, however,
has a number of drawbacks such as failure to capture the original semantic structure
of the question using triples.

In addition, several studies in deep learning, have seen a surge of end-to-end
complex neural network approaches that have performed well on a variety of natural
language processing tasks like opinion extraction [47], sentence classification [55],
entity linking [102], and question answering [41,65]. While these methods achieve
good results, this performance comes at a high memory and computational cost
because data or tokens are represented as vectors or embeddings of high dimension
to train the neural network. These high dimension representations require more
computational resources and take long to execute when training the neural network.
Further more, such end-to-end approaches, makes it even more difficult to conduct
a detailed performance analysis.

In this dissertation, we propose a modular and efficient knowledge based ques-
tion answering approach. The proposed approach consists of two parts; In the first
part, the question answering task is decomposed into three different components of
entity detection, entity linking, and relation prediction, and we solve each of the
components separate to come up with the correct answer candidate to the ques-
tion [18]. The second part applies dimension reduction technique to generate low
dimensional vectors that are used to train a similarity matching function between
the question and the candidate answers from which the closest candidate answer is
selected to be the correct answer to the question [17].

Although the question answering task only involves retrieving facts in the KB,
it is quite challenging in real life because (1). a synonymy or variant of the name
may be used in the knowledge base (KB), (2). knowledge bases contain millions of
entities represented by entity machine identifiers (MID’s) whereby different MID’s
posses the same name and when a natural language query is posed, it retrieves
many candidate entities that are hard to distinguish. For example, it becomes dif-
ficult to answer a question such as ’what country was the film the
debt from?’ because there are 4 entity MID’s (04j0t75, 0bj3wz4j,
0bjwlk1l, 0dy60p) with the name ’the debt’ in the Freebase KB. A sim-
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ilar problem is faced during relation prediction, where multiple relations are iden-
tified and it is not clear which one is being referenced. For example, there are differ-
ent relation types referenced for the above question i.e., (film/film/country,
film/film/written by, music/album/release type). These ambi-
guity problems, exacerbate as the scale of the knowledge base grows. For these
reasons, entity linking becomes a bottleneck in knowledge base question answering
and can be conjectured that a method to identify such ambiguities in the data would
be crucial for the enhancement of KBQA.

1.1 Contributions

In this study, we propose a simple yet efficient approach to address the knowledge
base question answering task. It consists of two parts; part one is referred to as
pipeline-based question answering, and this approach decomposes the question an-
swering task into three different components that is to say entity detection, entity
linking, relation prediction and each of these components are separately solved to
come up with the correct answer candidate for the given question. Part two which
we refer to as the dimension reduction for question answering applies dimension re-
duction technique to generate low dimensional vectors for both the natural language
question and the candidate answers to train the similarity matching model between
the question and candidate answer representation. This proposed approach is faster,
efficient, and performs reasonably well compared to previous complex approaches.
In this section, we summarize the main ideas and contributions of this study.

1.1.1 Pipeline-Based Approach for Question Answering

The knowledge based question answering task aims at identifying a triple from
the underlying knowledge base to answer a given natural language question. We
employ what we call the pipeline-based approach to solve the task where by the
task is decomposed into sub-tasks of entity detection, entity linking, and relation
prediction.

• Entity detection: Given a natural language question, we start by identifying
the entity mentioned in the question. The entity mention identified from the
question text is used as the query in the entity linking phase to search for all
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candidate entity nodes in the knowledge base associated to the mention. We
formulate this sub-task as a sequence labeling problem that assigns a label
to each token.

• Entity linking: The entity detection step outputs a sequence of tokens that
represent an entity mention which should be linked or queried to the knowl-
edge base. This is formulated as a search problem with the aim of retrieving
top matching candidates using string matching.

• Relation prediction: The goal of this sub-task is to identify the relation
being queried in the given natural language question. This is done by clas-
sifying the natural language question as one of the knowledge base relation
types. It outputs the relation type associated to the given question. This rela-
tion type is used for pruning the candidate list generated by the entity linking
step and all the entity nodes with a relation type different from the one as-
sociated to the question are removed from the list. The candidate triple with
the highest score in remaining list is chosen to have the object entity which
is the answer to the question.

The experiment performed using the SimpleQuestions benchmark dataset shows
that a combination of basic LSTMs, GRUs, and non-neural network techniques
achieve reasonable performance while providing an opportunity to understand the
question answering problem structure.

1.1.2 Dimension Reduction for Question Answering

Dimensional reduction techniques have proved to be computationally efficient while
at the same time achieving good results on different NLP tasks [35]. However, they
have not been extensively explored for the question answering task.

In this study, we extend the dimension reduction approach to the question an-
swering task. To this end, we presents a novel approach to reconstruct embedding
dimensions to a low dimension and use the reconstructed low dimension embed-
dings to design a similarity matching function to measure the semantic similarity
between the input natural language question and the candidate answers where the
closest candidate becomes the answer to the question.

To be specific, we apply the Long Short Term Memory auto-encoder (LSTM-
AE) [61] to generate low dimensional vectors. The LSTM-AE, captures both the
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semantic information in word embeddings and the syntactic information in word
order. The LSTM-AE focuses on the most relevant features of the input embeddings
and uses these most relevant features to train a question answering model.

The Experiments on a real world insuaranceQA benchmark, show that the pro-
posed approach can obtain performance comparable to standard baselines while
remaining cost efficient on both time and memory.

1.2 Overview of the Thesis

In the previous sections we have presented the background, motivations, and the
main contributions of this thesis. In this section, we summarize the dissertation
structure:

Chapter 2: Preliminary. This chapter makes a thorough review on the trends
in KBQA. We discuss the background, advances, and the applications of question
answering research.

Chapter 3: Related work. In this chapter, we review existing studies on question
answering, to be specific, we review the pros and cons of the existing methods.

Chapter 4: Pipeline-Based approach. In Chapter 4, we formally define the ques-
tion answering problem and propose our work of decomposing the knowledge base
question answering task into sub-tasks of entity detection, entity linking, and rela-
tion prediction. We also present a detailed analysis of the experimental results that
confirm the effectiveness of our approach.

Chapter 5: Dimension Reduction approach. Chapter 5, covers our work on the
application of dimension reduction techniques to solve the question answering task.
In this work, we apply an auto-encoder to generate low dimensional embeddings
from the original input dimensions of the question and the candidate answers, and
we design a similarity matching function to measure the semantic similarity be-
tween the input question and the candidate answers.

Chapter 6: Conclusion. Finally in Chapter 6, we conclude the thesis and talk about
future directions.
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Chapter 2

Preliminaries

As mentioned earlier, this thesis focuses on improving the performance of ques-
tion answering over knowledge base also known as KBQA. In this chapter, we
thoroughly review the trends in KBQA, we discuss the background, advances and
applications of question answering research.

2.1 Question Answering Research

Question answering is one of the oldest tasks in natural language processing which
aims at addressing the human need to information access. It can be traced back
in the 1960’s [85] when research on practical question answering systems and lan-
guage processing started to take off. At the time, English questions on how to
conduct natural language research such as; how to characterize a sentence?, how
to handle ambiguity and partial answers in the language were being asked [94].
Thanks to this, high quality question answering systems that answered questions
about baseball [38] and human dialogue systems [11, 96] were designed as early as
1960. These and other question answering systems not mentioned here, relied on
two major QA paradigms to answer natural language questions posed by humans
that is to say information retrieval-based QA and knowledge base-based QA.

While there are different forms of questions that can be asked by humans, most
of the existing question answering systems focus on factoid questions which is also
the primary focus of our thesis. Factoid questions can be answered by simple facts
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that can be expressed inform of short texts. Examples of such questions include:

• Where was Barack Obama born?

• Who was the first prime minister of Ethiopia?

Such questions are referred to as factoid questions because they consist of a single
entity mention and as earlier mentioned, the major paradigms for addressing the
factoid question answering are information retrieval-based question answering and
knowledge base-based question answering. In the following subsections, we discuss
in details each of the question answering paradigms.

2.1.1 Information Retrieval-based Question Answering (IR-based)

Information retrieval-based question answering which is sometimes called open do-
main question answering, relies on the vast amount of web text or collections of
scientific papers like DBLP to retrieve relevant passages used to answer users ques-
tion [53].

Usually, the user will pose a natural language query to the information retrieval sys-
tem, the system will then return a set of documents retrieved from a vast amount of
documents that is to say, news articles, paragraphs, web texts, and scientific papers
as illustrated in Figure 2.1 a similarity matching function such as a cosine similar-
ity [82] is applied to rank potential documents. To rank documents in information
retrieval (IR), the term weight for each document word referred to as term frequency
inverse document frequency (tf-idf) is computed.

Term Frequency Inverse Document Frequency (tf-idf): It is the product of two
terms, the term frequency (tf) and the inverse document frequency idf. Term fre-
quency tf is the measure of the word frequency in the document. The words that
occur more often are likely to inform the document contents. Quite often, the term
frequency is obtained using log of word frequency Equation 2.1. This is due to
the fact that the more frequency the word is in the document does not necessarily
translate into direct relevance to the document.

tf = log10(count(t,d) + 1) (2.1)
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Document
Document
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Figure 2.1: Illustration of the basic information retrieval or open domain question
answering architecture. The query and documents are represented as vectors in
the vector space, and a similarity matching function is applied to rank potential
documents.

where t and d represent the term and document respectively. One is added in
Equation 2.1 to void taking log on 0.

On the other hand, document frequency df is the number of documents contain-
ing the term. The terms that occur in only a few documents are helpful in discrim-
inating those documents from the rest while the terms that occur across the entire
collection of documents are less helpful. Inverse document frequency (idf) [51] is
obtained from;

idf = log10
N

df
(2.2)

where N is the total number of documents, and df the number of documents in
which t occurs.

Therefore, term frequency inverse document frequency (tf-idf) is obtained as a
product of term frequency tf and the inverse document frequency idf.

tf-idf = tf · idf (2.3)
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The similarity matching function is computed using the cosine similarity between
the document

−→
d and query −→q vector representations as;

cos(−→q ,
−→
d ) =

−→q ·
−→
d

||−→q ||||
−→
d ||

(2.4)

It is also possible to compute the cosine similarity as the dot product of unit vectors
as;

cos(−→q ,
−→
d ) =

−→q
|−→q |
·
−→
d

|
−→
d |

(2.5)

on replacing the query and document representation with term frequency inverse
document frequency, the Equation 2.5 can be written to measure the similarity be-
tween the query and the document as a sum of products of:

score(q,d) =
∑
t∈q

tf-idf
|d|

(2.6)

Evaluation: The above similarity score, outputs a set of ranked documents and
we evaluate the performance of ranked documents as either relevant to our purpose
or not relevant using precision, recall, and F1-measure as the metrics.

The precision measures the fraction of the returned documents that are relevant as;

Precision =
|Relevant ∩Retrieved|

|Retrieved|
(2.7)

While the recall measures the fraction of all relevant documents that are returned
as;

Recall =
|Relevant ∩Retrieved|

|Relevant|
(2.8)

It is important to note that for the question answering task, the corresponding terms
i.e., relevant and retrieved would mean correctly answered and attempted to answer
respectively.
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The F-measure is the weighted average between the precision and recall and it
is computed as follows:

F1 =
2 · Precision ·Recall

Precision+Recall
(2.9)

We also evaluate the ranked retrieval using mean average precision (MAP). This
metric, quantifies how good the model performs at a given question. It is given as
the average over ranks;

MAP =
1

Q

Q∑
q=1

aveP (q) (2.10)

where Q is the number of questions and aveP is the average precision for a given
question q. Given a question, its corresponding aveP is calculated and the mean of
all these aveP scores gives us the mean average precision.

Datasets for Information Retrieval-based QA Most of the existing datasets
used in the IR-based question answering contain tuples of (passage, question,
answer) an example can be seen in Figure 2.2.

Table 2.1: Existing Information Retrieval Based Question Answering Datasets.

Dataset Size Source Formulation
Name Reference Total Questions Questions Source Dataset formulation

SQuAD V1.0 [77] questions 100,000 Crowdsourced Wikipedia Passage text spans

SQuAD V2.0 [76] questions 150,000 Crowdsourced Wikipedia Passage text spans

HotPotQA [99] questions 113,000 Crowdsourced Wikipedia Passage sentence

TriviaQA [52] questions 650,000 Crowdsourced Wikipedia & web passage sentence

Natural Questions [58] questions 323,045 Crowdsourced Wikipedia Passage paragraph

TyDiQA [23] questions 204,000 Multilingual Wikipedia Passage paragraph

MS MARCO [71] questions 100,000 User logs Bing Generated Human

NewsQA [88] questions 100,000 Crowdsourced CNN passage text-spans

WikiQA [98] questions 3,047 Crowdsourced Bing passage paragraph

TRECQA [92] questions 1,362 Crowdsourced user passage text-spans

Several datasets for Information Retrieval-based QA have been introduced and Some
of the existing IR-based QA datasets are shown in table 2.1.
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Figure 2.2: A wikipedia sample passage in the SQuAD [76] dataset. Each of the
answers is a segment of text from the passage.

2.1.2 Knowledge Base-based Question Answering (KBQA-based)

The second paradigm for factoid question answering is the knowledge-based. Dif-
ferent from the IR-based in Section 2.1.1, the KBQA-based relies on a structured
knowledge base to answer the posed natural language question. The system maps
the natural language question to a structured query which is then used to query the
knowledge base.

Knowledge bases consists of a huge amount of valuable information encoded in
form of resource description framework (RDF) triples. The RDF triple, consists of a
tuple that is to say entity, relation, entity which often represents real
world entities in form of subject, predicate, object. Using existing
knowledge bases such as DBpedia [60] or Wikidata [93], the Knowledge-based QA
task is usually solved by either modeling the knowledge base as a graph consisting
of real world entities as nodes and connected to other nodes by relations as edges
between nodes.

Given a natural language question, the task of knowledge-based question an-
swering is to identify a triple or fact from the knowledge base that is the intended
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answer to the question. A triple can also be interpreted as a directed edge. Fig-
ure 2.3 shows the the process of question answering using a graph as the knowledge
base. As can be seen from the figure, for a natural language to be answered, the en-
tity mention in the question is linked to the knowledge base through entity linking.

Where was Barack Obama born?
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Figure 2.3: Illustration of the question answering over a knowledge base. From the
figure, given a natural language question the mention in the question is first linked
to the knowledge base to retrieve a sub-graph with ranked candidate fact triples.

Entity linking Entity linking is at the core of knowledge-based question answer-
ing. It plays a central role of linking the entity mention in the natural language
question to the corresponding entity nodes in the knowledge base [15, 48]. Entity
linking in the knowledge-based question answering task is performed through men-
tion detection and mention disambiguation [40, 67, 70]. The entity linking task is
a well studied problem in literature [16, 84] and TAGME linker [31] is one of the
common entity linking algorithms used in literature which first detects the men-
tion in the question and then links the mention to the corresponding entity nodes
in the knowledge base to output a set of candidate fact triples from the underlying
knowledge base as shown in Figure 2.3. The knowledge-based question answering
task has increasingly attracted many researchers attention and some of the existing
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datasets for this problem are shown in Table 2.2.

Table 2.2: Existing Knowledge Base-Based Question Answering Datasets.

Dataset Size Knowledge & train set Dev & test sets
Name Reference Total Questions Knowledge-base : train Dev: test

SimpleQuestions [13] questions 108,442 Freebase : 75,910 10,845 : 21,687

FreebaseQA [50] questions 28,348 Freebase : 20,358 3,994 : 3,996

WEBQUESTIONS [6] questions 5,810 Freebase : 3,778 - : 2,032

WEBQUESTIONSSP [101] questions 4,737 Freebase : 3,098 - : 1,639

COMPLEXWEBQUESTIONS [86] questions 34,689 Freebase : - - -

Modern systems also combine the knowledge-based and information retrieval
based knowledge sources also known as hybrid-base question answering to achieve
better performance on the question answering task [32].

2.1.3 Application of Question Answering

Question answering systems have seen a wide range of applications including hu-
man computer interfaces, where they seem to be more natural and convenient com-
pared to keyword search for non-technical users [34, 83, 91].

Traditionally, information access calls for manual reading of large amounts of
documents to identify the relevant piece of information. However, question answer-
ing systems have proven potential to directly obtain the correct answer to the posed
questions which accelerates the information search process in practice [80].

One of the prominent question answering systems is the IBM Watson that worn
the Jeopardy challenge [33]. IBM watson has since been extended to other com-
ponents such as healthcare decision support and business intelligence. Besides,
question answering research have led to designing of domain specific systems in
the medical field [21], and question answering for education [20].

Furthermore, question answering systems are increasingly being applied in elec-
tronic edge devices such as wearables, google home, Apple siri to mention but a
few. Although question answering systems are increasingly being applied to edge
devices, they have not been fully adopted in actual real world application. One of
the main reasons for this limitation is the computational complexity associated with
existing state-of-art question answering systems.
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Chapter 3

Related Work

Research on Question answering has continued to gain much attention in recent
years, and several studies that solve this task are increasingly being proposed. This
section reviews some of the existing works in the literature that solve this task.

Today, the existing approaches for solving the QA task maybe labeled as, free
text-based or open domain question answering and structured knowledge-base based
question answering. In free text-based question answering, answer candidates are
first retrieved from text documents, and the answer to the question is obtained by
identifying the most similar answer out of the candidate answers. On the other hand,
the structured knowledge-based question answering approach relies on large scale
knowledge bases like DBpedia [60] to find the answer to the user’s question. In the
related works, we will focus on structured knowledge based question answering.

The existing methods for solving the above question answering approaches can
be categorized into two main categories of semantic parsing, and information ex-
traction methods. The semantic parsing methods aim at mapping the natural lan-
guage question into a logical form for it to be queried on the knowledge base. The
existing methods that directly parse the natural language question into a structured
query using semantic parsing include syntactic parsing [10, 78, 97], semantic role
labeling [9], and semantic parsing [100]. In addition, other semantic parsing meth-
ods such as [6, 7] use hand-crafted rules to manually translate the natural language
question to a structured query.

However, the application of manual annotation is often expensive when training
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the parser and for this reason, a quite different but semantic approach was proposed
in [8]. In this approach, Berant et al start by representing the document entities and
relations in form of a knowledge base, and then they represent the question as a
structured query for easy matching with the knowledge base contents. It is impor-
tant to note that these semantic based methods rely on linguistic heuristics hence
domain specific, and as previously mentioned, they largely depend on manually
annotated hand-crafted rules which limits them from being scaled and transferred.

In contrast, the information extraction methods focuses on retrieving a set of
candidate answers from text documents or candidate triples from the underlying
structured knowledge base and measure semantic similarity between the question
and candidate answers to obtain the correct answer. Information extraction methods
have increasingly become popular and some of the earlier studies that applied the
method to the question answering task include [27, 57, 104, 106]. In both works,
a natural language sentence paired with its logical form is taken as input to output
the classification. Although these methods showed improvement on the given task,
they required expensive manual annotation.

In addition, embedding models that take as input a pair of questions and their
corresponding answers to learns the vector representation of the question words and
the constituents of the knowledge base [14, 79] were proposed. The learned vector
representations are then used to score the natural language question against the can-
didate answers. The proposed approach achieve promising performance although,
simply summing vectors falls short when it comes to word order information.

Furthermore, in 2015, Bodes et al [13] proposed a study that introduces a Sim-
pleQuestions benchmark which consist of 108,442 simple questions annotated with
the correct Freebase knowledge base triples. In this study, a memory network is pro-
posed as the original solution to solve the task. This benchmark prompted a line of
work that saw several researchers like Golub and He [41] applying character level
encoder-decoder with attention mechanism to solve the simple question answering
over knowledge base task. Although this approach improve the state-of-the-art, the
character level encoding method results in longer sequences, and also introduces
the complexity of the attention mechanism which would be of lesser importance in
the simple question answering task.

In [102], authors use character-level convolutional neural network for entity
linking and a separate word-level convolutional neural network with attentive max-
pooling that models the relationship between the predicate and question pattern to
improve the model. This approach employs attention mechanism to obtain better
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matches for the relations. In this thesis, we only focus on word-level encoding and
do not apply attention mechanisms.

Another related study is Dai et al’s work [24] which investigated a word-level
recurrent neural network (RNN). In this work, they proposed a conditional proba-
bilistic framework using bidirectional gated recurrent units (BiGRUs) to infer the
target relation first and then the target subject associated with the candidate rela-
tions. This work is trained on Freebase-specifc predicate and entity representation,
and cannot be easily transferred to other KB’s.

In addition, Lukovnikov et al [65], applied a hierarchical word-level and character-
level question encoder to train a neural network. This model learns to rank sub-
ject–predicate pairs in an end-to-end manner to enable the retrieval of relevant facts
given a question. The above techniques exploit increasingly complex end-to-end
deep learning techniques that are computationally expensive and limit the opportu-
nity to fully understand the problem structure.

However, our study takes a different approach of decomposing the question an-
swering task into different components and solve each component separate. More-
over, our approach performs reasonably well compared to complex neural network
methods and provides the opportunity to understand the problem structure. This ap-
proach is inspired by existing works [75, 89] that a similar approach of decompos-
ing the KBQA into sub-tasks. Although they take a similar approach, our proposed
method differs from these approaches in the following ways;

• Both [75] and [89] decompose the knowledge base question answering task
into two components of entity detection and relation classification. Our ap-
proach decomposes the knowledge base question answering task into three
components of entity detection, entity linking, and relation prediction.

• In [75], they apply only the BiLSTM on the entity detection task to find the
topic entity together with attentive recurrent neural network with similarity
matrix-based convolutional neural network (AR-SMCNN) for relation clas-
sification to compute the correlation between the question and candidate
relation. Where as [89] applies only recurrent neural network (RNN) for
both entity detection and relation prediction. Our proposed approach goes
a step further to evaluate different methods on each of these tasks including
BiLSTM, BiGRU, Conditional Random Fields (CRF), BiLSTM-CRF, and
BiGRU-CRF on the entity detection task and BiLSTM, BiGRU, CNN and
Logistic Regression (LG) for relation prediction task.
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• In addition to the above differences, our proposed method treats the entity
linking task as a separate task and applies string matching to solve the task.
We also make an analysis to understand some of the limitations in our pro-
posed model and how to overcome them.

Besides, the limited application of question answering systems to simple elec-
tronic edge devices brought about by the high dimension data used to train complex
systems, has brought interest in the exploration of dimension reduction techniques
for computation efficiency. In this regard, several studies have been proposed to
model word embeddings as low dimensional linear sub-spaces extracted via prin-
cipal component analysis (PCA) [35]. Although linear sub-spaces are efficient di-
mensional reduction techniques, they can only learn linear relationships but fall
short when it comes to complex non-linear functions [2].

On the other hand, autoencoders have the ability to learn non-linear complex
relationships of the input representation and generate more similar representations
as the input but with a lesser dimension [42]. Despite the fact that dimensional
reduction techniques have proved to be computationally efficient while at the same
time achieve good results on different NLP tasks, they have not been extensively ex-
plored for the task of question answering. We take a step in exploring the dimension
reduction technique for solving the question answering task.
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Chapter 4

Pipeline-Based Approach for
Question Answering

In this chapter, we propose an approach for efficient question answering (QA) of
simple queries over a knowledge base (KB) whereby a single triple consisting of
(subject, predicate, object) is retrieved from the KB when a natural
language question is given. This approach is referred to as pipeline-based approach.
Different from existing knowledge based question answering systems that make it
difficult to examine the process of query processing because they exploit complex
end-to-end neural network approaches that are computationally expensive and take
long to execute when training the neural network. The pipeline-based approach
that we propose, decomposes the question answering task into three sub-tasks of
entity detection, entity linking, and relation prediction and solves each of the com-
ponents separately. More precisely, our proposed approach is quite simple, it ex-
plores basic neural network and non-neural network methods for entity detection
and relation prediction plus a few heuristics for entity linking. Substantial exper-
iments performed using the SimpleQuestions benchmark dataset shows that
our proposed approach performs reasonably well compared to previous state-of-
the-art approaches. All the work introduced in this chapter are published in both
[18] and [19].
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4.1 Introduction

Question answering over knowledge base has been conducted using large scale
knowledge bases (KB), such as Freebase [12], DBpedia [60], Wikidata [93], and
YAGO [44]. These knowledge bases consist of a large pool of information with real-
world entities as nodes and relations as edges. Each directed edge, along with its
head entity and tail entity, constitute a triple, i.e., (head entity, relation,
tail entity), which is also known as a fact. Knowledge bases have in recent
years become pivotal in question answering because of their ability to provide pre-
cise answers to users questions. However, because of the large volume and complex
data structure, of these large scale KB’s, it is difficult for non-technical users to ac-
cess the substantial and valuable knowledge in them. To bridge this gap, the most
convenient approach that has gained much attention is knowledge based question
answering that allows end users to pose natural language questions over a knowl-
edge base without knowledge of the underlying schema, and in return receive en-
tities as the answers to the question. Several existing question answering studies
that map a natural language question to a triple-based representation and retrieve
a matching sub-graph from the knowledge base have been proposed [54, 62]. This
approach, however, has a number of drawbacks such as failure to capture the origi-
nal semantic structure of the question using triples. Besides, recent studies in deep
learning, have seen a surge of end-to-end complex neural network approaches that
perform well on a variety of natural language processing tasks like opinion extrac-
tion [47], sentence classification [55], entity linking [102], question answering [45]
to mention but a few. Such end-to-end architectures suffer from long execution time
when training the networks and more so, difficult to conduct detailed performance
analysis in the end-to-end setting.

To overcome this challenge brought about by end-to-end complex methods, this
approach focuses on simple factoid questions based on the SimpleQuestions
benchmark [13], in which answering the question requires the extraction of a single
fact from the knowledge base. The pipeline-based approach reduces the question
answering task to finding a single fact i.e., (subject, predicate, object)
in the KB that answers the question. For example, given a question "where was
Barack Obama born?", this approach identifies a triple, (Barack Obama,
people/person/place of birth, Honolulu) from the knowledge base
that contains an object entity which is the answer to the question. This study focuses
on simple questions mainly because they are the most common types of questions
observed in various question answering sites [102]. Although, this task is referred
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to as "simple", in reality it is difficult and far from being solved. We, there-
fore, propose an efficient method that identifies a fact from the knowledge base that
best matches the question. The proposed method bears a resemblance to answer
selection [103] in which the question answering system chooses the answer from a
candidate list given a question.

Furthermore, knowledge based question answering faces a challenge when iden-
tifying the matching entities and relations in the knowledge base. This is due to the
fact that knowledge base entities are represented by machine identifiers (MID’s),
and its possible to have a single name represented by multiple MID’s, for example
in the freebase knowledge base, a name "the debt" is represented by four MID’s
(04j0t75,0bj3wz4j,0bjw1k11,0dy60p) which makes it difficult to answer
the question what country was the film the debt from?. Similar
challenges are faced when matching relations, an example here is that three different
relation types are referenced for the above question i.e., (film/film/country,
film/film/written by, music/album/release type). These ambigu-
ity problems, exacerbate as the scale of the knowledge base grows. For these rea-
sons, entity linking becomes a bottleneck in knowledge base question answering
and can be conjectured that a method to identify such ambiguities in the data would
be crucial for the enhancement of KBQA.

In summary, this research makes the following key contributions:

• We present a simple yet effective approach to address the knowledge base
question answering task. Our approach is faster, efficient and performs rea-
sonably well compared to previous complex approaches that apply end-to-
end neural network on a similar task of simple question answering.

• We establish a strong non-neural-network baseline on this task to compare
with neural networks. The baseline includes CRF’s (Conditional Random
Fields) for entity detection and LR (Logistic Regression) for relation classi-
fication.

• We show that ambiguity in the data limits the performance. There are of-
ten multiple answers that are not easy to disambiguate and our approach
identifies such ambiguities in the data which improves the performance.

• We present an empirical error analysis to gain insights into the mistakes
produced and the reasons that bring about the mistakes in an attempt to
improve the performance in the future work.
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The rest of this chapter is organized as follows: We formulate the problem and
introduce key concepts in Sect. 4.2, we provide the details of our proposed approach
in Sect. 4.3. We examine experiments and provide a detailed analysis and discussion
in Sect. 4.4, and conclude the Chapter in Sect. 4.5 with an outlook on future work.

4.2 Problem Definition

The goal of this study is to design a question answering system that can map a sim-
ple natural language question q to a matching query Q consisting of the subject and
the relation referred to in the question that can be executed against the knowledge
base G to retrieve the answer to the question. We restrict ourselves to simple ques-
tions, which only require the retrieval of a single fact from the knowledge base to
be answered for the purpose of experiment.

Let G = {(Si, P i, Oi)} be the knowledge base representing a set of triples
where Si represents a subject entity, Pi a predicate or relation, and Oi an Object
entity. Given a natural language question q represented as a sequence of words,
q = {w1, w2, ..., wT}, the task of question answering is to identify a triple or fact
from the knowledge base (ŝ, p̂, ô) ∈ G such that ô is the intended answer to the
question. A triple can also be interpreted as a directed edge, from s to o.

We therefore formulate this task to finding the right subject ŝ and predicate
or relation p̂ referred to in the question q that characterizes a set of triples in the
knowledge base G that contain the answer ô to the question. The initial goal is
to generate a structured query Q consisting of (subject, relation) from the natural
language question q that accurately interpret the question. To generate the structured
query, our approach makes two assumptions; First, we assume first-order questions
that can be answered by retrieving a single fact from the KB and second, we assume
that the source or subject entity is mentioned in the question. The pipeline-based
approach solves the task in the following steps:

• Given a natural language question q, we start by identifying the entity men-
tion m in the question.

• Link the mention m to the knowledge base and generate the entity candidate
list Ce from the knowledge base comprising of all the entities associated
with m and the relation candidate list Cr comprising of all the relations
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connected to the candidate entities.

• We then score the semantic similarity between the question and the gener-
ated candidate sets ce and cr and the triple consisting of the subject entity s
and predicate p with the highest score will be considered to have an object
entity o as the final answer.

4.3 Proposed Approach

In this section, we provide a detailed explanation of our proposed approach. In
Figure 4.1, we present an illustration of the proposed workflow which solves the
question answering task in the following steps:

• Given a natural language question, we start by identifying / detecting the
entity mentioned in the question.

• Then, the question is classified as one of the relation types in the knowledge
base. From these two steps a structured query in the form of entity and
relation is generated.

• The next step is to link the entity mention to the knowledge base and gen-
erate the entity candidate list from the knowledge base comprising of all the
entities associated with the entity mentioned in the question. These entities
are connected to other entities by a relation which generates a list of candi-
date triples from which a candidate triple with high score is identified as the
answer to the question.

Different from existing models that solve the question answering task in an end-to-
end setting that makes it more difficult to conduct a detailed performance analysis,
this pipeline approach of decomposing the question answering task into different
components provides us with an opportunity to solve each component separate and
understand the problem structure. In the following paragraphs we provide details of
how each component in our proposed approach is solved and the methods used.
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Knowledge Base as a graph 

deputy_of

Barack 
Obama

Democratic party

USA

president_of

Republican
party

president_of
pre
sid
en
t_o

f

pre
side

nt_
of

Hawaii

place_of_birth

ha
s_
sp
ou
se

deput
y_of

me
mb
er_
of

member_of

me
mb

er_
of

state_of

Michelle Obama

Joe Biden

Bill Clinton

Donald Trump

member_of

Mike Pence

Entity: Barack Obama
Relation: place_of_birth

Entity 
Linking 

Entity detection

Relation Prediction

List Subj e Relation r Obj e’ e, Score 

1 Barack 
Obama

place_of_birth Hawaii 0.86

2 Barack
Obama

has_spouse Michelle 
Obama

0.62

3 Barack
Obama

president_of USA 0.43

… … … … …

Candidate listNatural language question

Inverted Index

Fact 
Selection

e| r | 𝒆!

Relation filter

Structured query

Figure 4.1: Illustration of the proposed approach, the two main components of
entity detection and relation prediction compose Q the structured query from which
a list of candidates is generated by an inverted index from the knowledge base G,
and the list is filtered using the query relation type to select the best candidate.

4.3.1 Step 1: Entity Detection

The goal of Step 1 is to identify the entity m mentioned in the question. We for-
mulate this as a sequence labeling problem that assigns a label (I: entity and 0:
non-entity) to each token in the given input question. To this end, we apply both
recurrent neural networks RNN’s and conditional random field (CRF) a non-neural
network model.

Recurrent Neural Network (RNN): Recurrent neural networks [29] are capable
of processing arbitrary sequential inputs by applying an activation function to the
hidden vector recursively. The general idea of recurrent neural network is to come
up with the output y given the input x. This is done by computing the hidden state
at the current time step ht, which is given by the input at the current time step xt,
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and the hidden state at previous time step ht−1.

yt = (Wo · ht)

ht = (Wih · xt + U · ht−1 + b),

(4.1)

where W and b are the weights and bias respectively.

From Figure 4.2, as we read the sentence from left to right, the RNN considers the
hidden state at the previous time step to compute the hidden state at the current time
step. As we go deep into the sentence, the equations for computing the hidden states
at each time step becomes;

h1 = (U⊤ · h0 +W⊤ · x1)

h2 = (U⊤(U⊤ · h0 +W⊤ · x1) +W⊤ · x2)

h3 = (U⊤(U⊤(U⊤ · h0 +W⊤ · x1) +W⊤ · x2) +W⊤ · x3)

(4.2)

yn-1

x0 x1 xn-2 xn-1

ht(xt, ht-1)
yt(ht)

ht(xt, ht-1)
yt(ht)

ht(xt, ht-1)
yt(ht)

ht(xt, ht-1)
yt(ht)

y0 y1 yn-2

hinit h0 h1 hn-3 hn-2 hn-1

Figure 4.2: Vanilla RNN showing the processing of sequential inputs and outputs.

From Equation 4.2, we can see a long series of multiplication of small values which
brings about the diminishing of gradients that causes the learning process in the
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recurrent neural network to become degenerate. In other words, the recurrent neural
network tends to be biased towards the most recent input [5]. To solve the Vanishing
gradient tendency in RNN’s, we use LSTM or long short term memory networks
that are commonly used due to their ability of processing longer sequences.

In the sequence tagging task, each token in the input question is represented
with a word embedding, the representation is then combined with the hidden layer
representation from the previous time step using either BiLSTMs (Bidirection Long
Short-Term Memory) [43] or BiGRUs (Bidirectional Gated Recurrent Units) [22]
as illustrated in Figure 4.3. In our experiment, we go a step further to combine

O

BiLSTM/BiGRU
Hidden layer

Embedding layer

Output

where was Barack Obama born

IIOO

Figure 4.3: Showing sequence tagging for entity detection using either BiLSTM or
BiGRU.

both neural network and non-neural network (BiLSTM-CRF and BiGRU-CRF)
models to label the entity m mentioned in the question. For example, the question
”where was Barack Obama born?” is assigned a gold label sequence ”{0,
0, I, I, 0}”.

The key idea of LSTMs is the cell state. As we read the sentence from left to
right, the LSTM is going to have a new memory variable C<t> called the memory
cell at time step t so that when the network gets further into the sentence it can
still remember information seen earlier [37]. LSTMs have the ability to control the
hidden state updates and outputs using gates. They consist of three gating functions;
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the update gate Γu used to control the update at each time step, the forget gate Γf

which decides the amount of information from the previous hidden state to keep or
throw away, and the output gate Γo which regulates the flow of information in and
out of the cell.

The current memory cell C<t> is computed by interpolating the previous hidden
state a<t−1> and the candidate state C̃<t>. The equations that govern the LSTM
behavior are defined as;

Ĉ
<t>

= tanh(Wc[a
<t−1>, X<t>] + bc),

Γf = σ(Wf [a
<t−1>, X<t>] + bf ),

Γo = σ(Wo[a
<t−1>, X<t>] + bo),

C<t> = Γu ⊙ Ĉ
<t>

+ Γf ⊙C<t−1>,

a<t> = Γo ⊙C<t>,

(4.3)

where ĉ<t> is the candidate cell state at time t, a<t−1> the activation at previous
time step, X<t> the current input, W and b are parameter and bias terms respec-
tively. c<t> is the current internal cell state with ⊙ as the element wise vector
product. σ denotes sigmoid and tanh the hyperbolic tangent.

The GRUs on the other hand, consists of two gates; the update gate Γu, and the
reset gate Γr. The update gate allows the model to learn by itself, how much of the
previous information should be passed to the future. This limits the vanishing gra-
dient problem since the model does not have to remember all the information seen
previously. The reset gate tells how relevant is the previous cell state for computing
the current candidate state. The GRU transition equations are defined as follows:

Ĉ
<t>

= tanh(Wc[Γr ⊙C<t−1>, X<t>] + bc),

Γu = σ(Wu[C
<t−1>, X<t>] + bu),

Γr = σ(Wr[C
<t−1>, X<t>] + br),

C<t> = Γu ⊙ Ĉ
<t>

+ (1− Γu)⊙C<t−1>,

(4.4)

where by C<t−1> is the previous cell state and σ denotes the sigmoid activation
function given by;

σ(x) =
1

1 + e−x
(4.5)
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σ is applied element wise to the vector.

The BiLSTMs and BiGRUs are able to capture the information flowing in both
ways. They apply a non-linear transformation to compute the hidden layer repre-
sentation at the current time step. The final hidden representation at the current
time step is then projected to the output dimensional space and normalized into a
probability distribution via a softmax layer Figure 4.3 shows the network architec-
ture. In our sequence tagging setting, we concatenate the forward and backward
hidden states ht = [

−→
ht ,
←−
ht ]. Finally the hidden states sequence obtained by either

the BiLSTM or BiGRU is denoted by:

Hlstm = BiLSTM(X1, X2, ..., Xn) = (h1,h2, ...,hn),

Hgru = BiGRU(X1, X2, ..., Xn) = (h1,h2, ...,hn),

(4.6)

here, H is the hidden states matrix, X the input sequence and n the length of the
sequence.

Conditional Random Fields (CRF’s): The other method that we use for entity
detection is Conditional random fields [59]. CRF has been successfully used in
many sequence labeling tasks, we therefore compare the performance between non-
neural networks with neural networks on the entity detection task. They are used to
represent the probability of a hidden state sequence given some observations.

For example, given the input sequences x = (x1, x2, ..., xm), and s = (s1, s2, ..., sm)
the output states or label sequence, the conditional probability Pcond can be given
by;

Pcond = p(s|x;W, b) (4.7)

We define Φ(x, s) ∈ Rd a feature map that maps x paired with s to d a dimensional
feature vector. The probability is therefore modeled as a log linear;

p(s|x,w) = exp(w.ϕ(x, s))∑
s′ exp(w.ϕ(x, s

′))
(4.8)

where w ∈ Rd is a parameter vector with s’ ranging over all possible outputs. The
parameter vector w can be estimated by assuming that we have a set of n labeled
samples {(xi, si)}n, with i = 1. The regularized log likelihood is given by;

L(w) =
n∑

i=1

log p(si|xi, w)− λ2

2
||w||22 − λ1||w||1 (4.9)
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where λ2
2
||w||22 and λ1||w||1 forces w to be small in the respective norm. We esti-

mate a parameter vector w* as;

w∗ = argmax(w ∈ RdL(w)), (4.10)

if we are able to estimate w* the parameter vector, we can then find the most likely
tag of the sentence s* for a sentence x by;

s∗ = argmaxsp(s|x : w∗), (4.11)

Combination of RNN’s and CRF (BiLSTM-CRF and BiGRU-CRF): The com-
bination of RNN’s with CRF incorporates both the input sequence information as
well as the information on the output sequence. As shown in Figure 4.4 the initial
layer encodes the input sequence to a vector representation, the vector representa-
tions are then passed on to the BiLSTM or a BiGRU layer which captures the se-
mantic information of the input sequence. The output is then passed to a CRF layer
that calculates the probability distribution using the dependencies among labels of
the entire sequence.

O O I I O

BiLSTM/BiGRU
Hidden layer

Embedding layer

CRF

where was Barack Obama born

Figure 4.4: Showing sequence tagging for entity detection using either BiLSTM-
CRF or BiGRU-CRF.
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4.3.2 Step 2: Relation Prediction

The goal of relation prediction is to identify the relation being queried in the given
natural language question. This is done by classifying the natural language question
as one of the knowledge base relation types. Several methods including neural
networks such as BiLSTM, BiGRU, CNN and non-neural networks methods like
logistic regression LR are explored for question classification.

Recurrent Neural network(RNN): A model similar to the one used for entity
detection is used and both BiLSTM and BiGRU are applied. However, relation
prediction is not a tagging task since it is over the entire question. The classification
decision is based on the output of the hidden layer of the last token as shown in
Figure 4.5.

People/person/place_of_birth

BiLSTM/BiGRU
Hidden layer

Embedding layer

Output

where was Barack Obama born

Figure 4.5: RNN architecture for relation prediction

Convolutional Neural Networks (CNNs): Figure 4.6 illustrates the application
of CNN for relation classification, we apply vanilla CNNs to extract local features
by sliding filters over the word embeddings. the sentence is represented by concate-
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Figure 4.6: Showing how convolutional filters are applied to word window to pro-
duce a feature map to which Maxpooling is applied to reduce the size while main-
taining the most important features for Relation prediction.

nating words and padding where necessary as;

x1:n = x1 ⊕ x2 ⊕ ....⊕ xn, (4.12)

We use convolutional filters on the input matrix transformed into word embeddings
to generate new features from a window of words represented by;

ci = f(W.xi:i+h−1 + b), (4.13)

The filter is applied to each of the possible window of words in the sentence to
produce a feature map represented as;

c = [c1, c2, . . . , cn−h+1], (4.14)

and finally we apply maxPooling over the filter to take the maximum value as a
feature corresponding to this particular filter. The idea is to capture the most im-
portant feature, which is basically one with the highest value for each feature map.
And finally these features are passed on to the fully connected softmax layer whose
output is the probability distribution over labels. CNNs have shown to perform well
on sentences classification [46], we adopt the architecture by [55], and modify it to
a single static channel instead, and use it for relation classification.
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Table 4.1: Table showing sample questions and their relation, the questions and
relations are split into individual words to come up with their respective represen-
tations that is to say word embeddings from question words and bag of words from
relation words.

Question Relation
what is the place of birth of Barack Obama born? people/person/place of birth
what country was the film the debt from? film/film/country
which artist recorded most of us are sad? music/recording/artist

Logistic Regression: In order to compare the performance of neural network
with non-neural network methods on the relation prediction task, we apply lo-
gistic regression. In our experiment, we consider two types of features extracted
from the question, that is to say; (1). Term Frequency-Inverse Document
Frequency (tfidf), (2). Question Word embeddings and 1-Hot
encoding of relation words. The vector representations of the question,
are obtained from both question and relation words. Table 4.1, shows sample ques-
tions and the respective relations. Question word embeddings are averaged and
out-of-vocabulary words are assigned a vector of zero. Words in the relation class
are split into individual tokens to come up with a vocabulary of relation words. The
vector representations are concatenated as shown in Figure 4.7 to come up with the
question features. This vector representation, combines word embeddings strength
and one-hot encoding. Both the neural network and the non-neural network meth-
ods classify the entire question into one of the Freebase KB relation types. The
relation prediction step outputs the relation type associated to the given question.

4.3.3 Step 3: Entity Linking

The entity detection and relation prediction steps outputs a structured query in form
of the entity mention and the relation that accurately represent the natural language
question. The identified entity sequence of tokens that represent the candidate en-
tity in the structured query are linked to the actual entity node in the knowledge
base. We apply the string matching technique to solve the entity linking task.
We build an inverted index to link the extracted entity to the actual knowledge
base. The inverted index maps all entity n-grams where n ∈ {1, 2, 3} to the en-
tity’s name for every knowledge base entity. Borrowing from our previous example
identified entity ”Barack Obama”, the corresponding n-grams are {"Barack",
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Figure 4.7: Shows the concatenation of the average word embeddings from the
question words and the bag of words from the relation words to come up with the
question features.

"Obama", "Barack Obama"}. All the corresponding n-grams from the entity
mention are extracted, we iterate over entity n-grams in a decreasing order of n
and if we find candidate values, early termination is applied to stop searching for
smaller values of n. This helps in pruning entities that would have been retrieved
for smaller values of n. After coming up with all possible entities from the knowl-
edge base, candidate entity nodes are retrieved from the index and appended to the
list. These candidate entities in the list are ranked using edit distance and the top
candidates are kept. The process is illustrated in Algorithm 1.

Once we have a list of candidate entities, each candidate node is used as a starting
point to reach candidate answers. We limit our search to a single hop and retrieve
all nodes that are reachable from the candidate node where the relation path is con-
sistent with the relation obtained from step 2. We scan the entity candidate list
generated by the entity linking step and all the entity nodes with a relation type dif-
ferent from the one associated to the question are removed from the list, only those
candidate entity nodes with a relation type leading to another node that is similar to
the one generated in step 2 are kept from which the entity node with a high score
in the remaining candidate list has an object entity node which is the answer to
the question. This entity linking method however, introduces some ambiguity chal-
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Algorithm 1 Step 3: Entity Linking
Input: Detected Entity i, Inverted Index Iinv
Output: Candidate List Ce

0: Initialize Ce = {}, in = n− grams in i
0: in←− Sort in by lengt
0: j ←−Max Lengt(in) // get Max Toks in in

for tok ∈in do
0: if Ce = {} and Tok Num(tok) < j then

j ←− Tok Num(tok)
0: else if Ce ̸= {} and Tok Num(tok) < j then

break
0: end if
Ce←− CeUIinv[tok]
end the for loop =0

lenges especially for large scale knowledge base where many entities may share the
same name, making it difficult to find the correct entity.

4.3.4 Identification of Ambiguity in the Data

One of the contributions of this work is to show that there exists multiple answers to
the question that are not easy to disambiguate which limits the performance of the
question answering system. This is a common challenge in free open datasets and
such ambiguities are most likely to arise from the annotation process. In the Sim-
plequestions dataset, annotators are asked to write a natural language question for a
corresponding triple [13]. In such a case, where one is only given a triple, it’d be
difficult to anticipate possible ambiguities in the KB. We identify such ambiguities
in the data.

Given a natural language question q with the corresponding triple (s, p, o), where
s, p, and o are the subject, relation and object respectively, we aim at determining
a set of all possible (s, p) pairs that accurately interpret the question q. The first
step is to determine the string alias a by matching the the phrase in q (i.e., entity in
the structured query) with the subject alias s in Freebase. Next, we find all other
Freebase entity MID’s that share this alias and add them to a set S. For example,
given the question "what country was the film the debt from?",
from Table 4.2 we can see three examples of subject-relation pairs with equal lin-
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Table 4.2: Showing examples of ambiguity in the data

Entity MID (S) Freebase alias (s) Potential relations (P)
fb:m.04j0t75 the debt (country) film/film/country
fb:m.0bj3wz4j the debt (film) film/film/written by
fb:m.0bjwlk1l the debt (music) music/album/release type

guistic evidence that can not be easily disambiguated.

After generating a set of entities S, the next step is to come up with a set of
potential relations P as shown in Table 4.2. For this, we abstract a from the ques-
tion i.e., "what country was the film < e > from?" to determine an
abstract relation p. An accurate semantic interpretation of the question q is defined
if there exists a subject-relation pair (s, p) ∈ KB where p ∈ P and s ∈ S. In a case
where multiple (s, p) pairs exist as shown in the table, the question is not answer-
able. To answer such a question, we predict the most likely relation pmax ∈ P that
makes the answer candidate to be (s, pmax) ∈ KB. If it happens that answer candi-
dates are more i.e., pmax is more than one, then we pick smax with the most facts of
type pmax.

To summarize, the entity linking process uses the inverted index to map all the
entity n-grams of the identified mention to all the corresponding nodes in the knowl-
edge base in order to generate the candidate list of the corresponding nodes. All of
the nodes in the generated list are connected to other nodes by a relation to form a
triple. The candidate list is then filtered using the relation obtained in the relation
prediction step. To identify the triple that contains an object entity which is the
answer to the question, all the candidate triples with a relation type different from
the one obtained are filtered out and the candidate triple with a highest score in the
remaining candidate list becomes the answer to the question. Figure 4.8 gives a
summary of the process.

4.4 Experiments

We compute precision, recall, and F1-score for every sequence tags against the
ground truth for evaluation in entity detection. We evaluate recall for top results
(R@k) for both entity linking and relation prediction to see if the correct answer
appears in the top k results and the final prediction is marked as correct if both
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Infered Structured query: Entity e: Barack Obama ,   Relation r: people.person.place_of_birth

Barack Obama
Barack

Obama

Entity n-grams

Inverted Index KB candidate nodes

Michelle Barack Obama

Sasha Obama

Obama

…
…

…

e1 

e3

…
…
…

e2

e7 : United states
e8 : Hawai
e9: 6/10/2001
…
…
…

Candidate answers

e7 : 0.3
e8 : 0.9

e9: 0.6
…
…
…

Score

bornOn

people.person. place_of_birth

head_of_state

Relation type Filter

n = 2
n = 1
n = 1

Figure 4.8: Illustration of the entity linking process. The inverted index maps entity
n-grams to corresponding nodes in the knowledge base to come up with a candidate
list. The relation type filter is used to filter out all candidate nodes with a different
relation from that in the structured query.

entity and relation match the ground truth in end-to-end evaluation.

4.4.1 Experimental Setting

We evaluate our proposed method using the SimpleQuestions benchmark. This
benchmark was first released by [13], and it is commonly used for studying the
simple question answering task. It consists of 108,442 total questions with 75,910,
10,854, and 21,687 train, validation, and test sets respectively. Each question is
associated with a triple from the freebase knowledge base that answers the ques-
tion. In the experiment, we initialize word embeddings using glove vectors [73] of
300-dimension, and train on batches of 64 with a learning rate of 0.0001 and we use
negative log likelihood to optimize parameters using Adam optimizer [56]. We use
the FB2M freebase subset as the knowledge base in our experiments for purposes of
comparison with previous work that applied a similar subset on the simple question
answering task.

There are three main components in our proposed approach: entity detection,
entity linking, and relation prediction. Each of these components is solved sepa-
rately. In the experiment, entity detection and relation prediction experiments are
conducted independently. However, the entity linking experiment depends on the
output of the entity detection and therefore conducted after the entity detection.
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Table 4.3: Entity detection results for both neural network, non-neural network and
a combination of neural and
non-neural network methods.

Neural Network Non-neural network Neural net & Non-neural net

Metrics BiGRU BiLSTM CRF BiGRU-CRF BiLSTM-CRF

Val Test Val Test Val Test Val Test Val Test

Precision 92.69 92.12 92.73 92.04 90.85 90.72 97.30 96.78 97.32 96.71

Recall 93.28 93.12 93.46 92.23 89.92 89.8 96.47 96.08 96.49 95.18

F1 92.99 92.62 93.09 92.63 90.36 90.2 95.80 95.63 95.87 95.68

The experiment for each component (entity detection and relation prediction) was
implemented using PyTorch v0.2.1 and we use fuzzywuzzy package to compute
string matching scores on a PC with an Intel Core i5 (3.3 GHz) CPU with 16 GB
RAM running on macOS sierra.

4.4.2 Entity Detection Evaluation

We evaluate the token level precision, recall, and F1 score. Token level represents
an exact match between the predicted token and the ground truth. The results in
Table 4.3, shows that neural network methods that is to say BiGRU and BiLSTM
achieves a good performance with F1 score of 92.62 and 92.63 respectively, al-
though the results from CRF a non-neural network method is comparable at 90.2.

Besides, we can observe from the Table 4.3 that a combination of BiGRU-CRF
and BiLSTM-CRF achieves better results. This confirms that a combination of
RNN’s with CRF can boost the performance on the entity detection task.

4.4.3 Entity Linking Evaluation

Table 4.4, presents the entity liking results obtained for a given model. The table
consists of two parts, the top part of the table represents results before ambiguity
is resolved and the bottom part represents results after resolving the ambiguity is-
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Table 4.4: Entity linking results using neural network, non-neural and a combina-
tion of neural and non-neural network methods
before and after ambiguity resolution.

Neural Network Non-neural network Neural net & Non-neural net

Top-k BiGRU BiLSTM CRF BiGRU-CRF BiLSTM-CRF

Val Test Val Test Val Test Val Test Val Test

1 0.675 0.662 0.679 0.662 0.663 0.649 0.680 0.671 0.682 0.672

5 0.823 0.810 0.827 0.811 0.809 0.796 0.854 0.814 0.857 0.816

10 0.860 0.849 0.889 0.876 0.871 0.861 0.892 0.879 0.895 0.880

20 0.885 0.876 0.912 0.903 0.895 0.889 0.914 0.904 0.917 0.906

Result after ambiguity is resolved

1 0.806 0.761 0.810 0.780 0.726 0.713 0.812 0.804 0.813 0.804

5 0.876 0.870 0.881 0.871 0.852 0.850 0.910 0.883 0.911 0.889

10 0.905 0.904 0.908 0.904 0.874 0.871 0.916 0.910 0.921 0.912

20 0.913 0.910 0.919 0.914 0.899 0.893 0.921 0.915 0.924 0.917

sue. We evaluate the recall of the top-k entity candidates which is obtained as a
percentage of questions whose top-k candidates includes the ground truth.

It is observed that before and after ambiguity is taken care of, the result ob-
tained by CRF a non-neural network method is comparable to the neural network
on the entity linking task. Although CRF may have performed slightly lower than
BiLSTM and BiGRU on the entity detection task, the bottleneck is being able to
link the detected entity mention to the correct entity node in the knowledge base.
Furthermore, we can observe that when CRF is combined with the neural network,
the performance is boosted in both cases before and after ambiguity is resolved.
On comparing the entity detection results in Table 4.3 and entity linking results in
Table 4.4, we can observe that before resolving the ambiguity issue, all the models
perform far below on the entity linking task when Top-k=1 compared to the entity
detection and this is due to the existence of ambiguous entities in the knowledge
base that made it difficult to extract the correct entity. However, we can see an im-
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Table 4.5: Relation Prediction results for both Neural and non-neural network meth-
ods.

Neural Network Non-neural network

Accuracy@-k BiGRU BiLSTM CNN LR(TF-IDF) LR(W2Vec+1-Hot)

Val Test Val Test Val Test Val Test Val Test

1 82.22 81.59 81.61 81.10 82.88 81.92 73.36 73.64 71.64 72.31

3 97.75 93.68 93.59 93.35 93.75 93.68 85.67 86.39 86.70 87.11

5 95.93 95.76 96.10 95.52 95.86 95.64 88.58 89.16 90.12 91.63

provement on the entity linking result obtained by all models after the ambiguity is
resolved.

4.4.4 Relation Prediction Evaluation

In Table 4.5, we observe that, at k=1, CNN outperforms both BiGRU and BiLSTM.
We also observed that neural network methods (i.e., BiGRU, BiLSTM, and CNN)
perform much better than non neural network (i.e., Logistic Regression) on the
relation prediction task.

From the Table 4.5, we can also observe that logistic regression performs better
on test set than the validation set, and this is mainly due to the fact that we used
logistic regression with default parameters. Another important observation to note
is that training each of the models component, i.e., entity detection and relation
prediction for 50 epochs using our PC, it takes approximately 8 hours which is
quicker and efficient compared to training Lukovinikov et al. [65] which takes
close to 6 days for the same number of epochs.

4.4.5 Answering the Question Correctly

Figure 4.9 shows test set accuracy results for obtaining the correct answer to the
question. Our best model which combines the BiGRU-CRF for entity detection and
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BiGRU for relation prediction achieves 80.27% when the ambiguity in the data is
taken care of. From the figure we can observe that a combination of non-neural
network methods i.e., CRF for entity detection and logistic regression (W2Vec+1-
Hot) for relation prediction also, achieve a good performance of up to 75.26% when
ambiguity is taken care of. The performance of our proposed non-neural network
methods is way higher compared to the original paper Bodes et al., [13] which
applied complex memory networks.

62.7
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77.3

70.1

75.26

74.64

79.9

74.81

80.27
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Figure 4.9: Performance comparison of our approach with existing methods on
the task of question answering. The green color represents models when there is
ambiguity in the data.

More results from different experimental settings conducted are presented in Ta-
ble 4.6 with an extensive comparison to other state-of-art methods. We compare
our results with other existing state-of-art complex models in Table 4.6 to examine
the necessity of model complexity on this task. It can be observed that our best re-
sults outperforms the existing models that apply complex neural network. With this
result, we are convinced that the improvement directly attributed to complex neural
networks on the simple question answering task is modest.
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4.4.6 Error Analysis

We make more analysis to understand some of the errors in our model and the main
cause of these errors in an attempt to improve the performance.

• We considered the questions that were retrieved in the second position (hits
= 2) but not in the top position and we found that 733 questions were re-
trieved in the second position.

• We also considered questions that were retrieved in the third position (hits =
3) but not in the first and second position and we found 203 questions.

We performed the analysis using RNN for entity detection and RNN for relation
prediction using the top 50 entities and the top 5 relations for answering the question
on the validation set. We found out that errors mainly occurred during entity linking
and Figure 4.10 shows the causes of the error.
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Figure 4.10: Shows the main causes of error that limit the performance of our
model.

Generally, the two main reasons for the error were; incorrect query which was due
to errors propagated during the entity detection phase and incorrect linking where it
was noticed that in almost all cases, different MID’s had the same entity name and
the model was unable to disambiguate the correct entity from the incorrect one. We
observed 33.9% of such examples (3675 of 10846) in the simplequestions dataset.
Such examples that were found to have multiple MID’s with the same name include
the name "holywood" which has 270 entity MID’s, the subject name "chalie
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chaplin", which has 20 entity MID’s to mention but a few. Such cases make it
difficult to answer the questions. To overcome this, the relation frequency for each
subject in the KB was taken into account which improves the performance of our
model to a new accuracy as shown in Figure 4.9.

Another observation was a number of questions that did not reference a sub-
ject. For example a question "which book is written about?" does not
reference the corresponding subject "01n7q: California". Furthermore,
it was observed that many questions where a correct MID was seen but with a
wrong relation were hard to disambiguate even for humans. For example, the re-
lation referred to by the question "which release was reading on?" is
relation "music/release track/recording", the classifier however, pre-
dicted "music/release track/release".

4.5 Summary of this Chapter

In this chapter we address the simple question answering task using the Simple-
Questions dataset. In this task, questions can be answered by retrieving a single fact
from the freebase knowledge base. We address this problem by decomposing the
question answering task into sub-tasks namely: entity detection, entity linking, and
relation prediction.

We conduct extensive experiments using different models for each sub-task of
entity detection and relation prediction. The aim is to try and bring the task down to
the simplest possible models that perform really well. The results show that neural
network methods perform well on the relation prediction task but not so much on
the entity linking task.

We also present evidence that ambiguities in the data limits performance on
the simplequestions dataset and we present a method to deal with it. Our main
contribution in this work is establishing strong baselines one that uses simple neural-
net and one without neural-net. We are convinced that our baselines will encourage
future researchers to adequately examine and take advantage of simple baselines to
fully understand the simplequestions problem structure.

Our approach applies simple baseline methods that achieve results compara-
ble to state of the art methods that apply complex neural networks and attention
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mechanisms. This is surprising given the proven strength of attention mechanisms.
Although we did not apply attention mechanisms on the simple questions task, we
believe that they might be of help in future work when we extend our approach to
more complex questions.
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Chapter 5

Dimension Reduction for Question
Answering

In this chapter, we present a novel approach to reconstruct embedding dimensions
to a low dimension for solving the question answering task. As earlier mentioned,
it has increasingly become a common practice for QA deep learning models to rep-
resent words as vectors or embeddings in the vector space in order to compute the
similarity measure between questions and the answer candidate because the vector
representations encode semantic information. These vector representations are usu-
ally in dimensions of 100, 300 or even more which makes the question answering
models costly in terms of memory and training time. For this reason, we explore the
dimension reduction approach to efficiently solve the question answering task. In
the following sections, we describe the background of the research, problem defini-
tion, model descriptions, and the experiments. The work described in this chapter
is also published in [17].

5.1 Introduction

In recent years, question answering (QA) system have successfully achieved promis-
ing results, these results are largely attributed to the sheer size of available knowl-
edge and the application of deep learning models [69]. The existing major ap-
proaches for QA systems are; text-based, and knowledge-based.
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As mentioned in Section 2.1.1, for the text-based QA, a most similar candi-
date answer is identified as the answer to the question from a list of candidate an-
swers [1], whereas the knowledge-based QA approach, relies on knowledge bases
like DBpedia [60] to be able to answer the user’s question. The existing methods
for solving QA systems are categorised into two; 1). Methods based on semantic
parsing, and 2). Information retrieval methods. Semantic parsing methods usually
convert the natural language question to a logical form, while information retrieval
methods retrieve a set of answer candidates or facts from the underlying knowledge
base. The question and the retrieved facts are then embedded into vector representa-
tions for measuring the similarity between the given natural language question and
candidate facts from which the closest fact is selected to be the answer.

It has increasingly become a common practice in recent years for QA deep learn-
ing models to represent words as vectors or embeddings in the vector space in order
to compute similarity measure between questions and the answer candidate because
the vector representations encode semantic information [68]. While the application
of deep learning models for question answering has been successful, the high di-
mensional embedding representations comes at a high memory and computational
cost. This hinders the potential of applying question answering systems to simple
electronic edge devices such as smart watches, mobile phones, and also internet of
things (IOT).

For this reason, some studies have proposed to model word embeddings as low
dimensional linear sub-spaces extracted via principal component analysis (PCA)
[35]. Although linear sub-spaces are efficient dimensional reduction techniques,
they can only learn linear relationships but fall short when it comes to complex
non-linear functions [2].

However, auto-encoders have been introduced as network architectures for com-
pressing the input into a latent representation and reconstruct the latent representa-
tion such that it is so close in similarity to the original input [4]. Auto-encoders
have the ability to learn non-linear complex relationships of the input representa-
tion and generate representations that are more similar to the input but with a lesser
dimension [42]. Despite the fact that dimensional reduction techniques have proved
to be computationally efficient while at the same time achieve good results on dif-
ferent NLP tasks, they have not been extensively explored for the task of question
answering.

In this study, we explore the dimension reduction technique for solving the ques-
tion answering task. To be specific, we apply the Long Short Term Memory auto-
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encoder (LSTM-AE) [61] to generate low dimensional vectors. The LSTM-AE,
captures both the semantic information in word embeddings and the syntactic infor-
mation in word order. The auto-encoder architecture consists of an encoder whose
role is to encode the original input data into a compressed representation in the la-
tent space, and the decoder which reconstructs the data from the encoded represen-
tation so that the deference between the outputs and the original inputs is minimal.
The reconstructed low dimensional vectors become the inputs to train the matching
function that learns to measure the similarity between the natural language question
and the candidate answers. We make the following contributions:

• We propose and analyze an auto-encoder framework that learn low dimen-
sion representations of the original input embeddings in the latent space, and
then reconstructs latent representation such that the error between the input
and the low dimension output is minimized.

• We show that our proposed framework retains as much information as pos-
sible and minimize the reconstruction error between the original and the
reconstructed data when training the similarity matching function.

• Our experiment and the analysis of results indicate that we can achieve rea-
sonable performance on the question answering task while reducing compu-
tational time and memory requirements.

The remaining sections in this chapter are organized as follows: In Sect. 4.2, we
formulate the problem and propose our approach, Sect. 4.3, examines experiments,
and provides a detailed analysis and discussion of our findings. and we conclude
the chapter in Sect. 4.4 with an outlook on the future directions.

5.2 Proposed Method

We propose to apply an LSTM-AE to focus on the most relevant features of the
input embeddings and use these most relevant features to train a question answer-
ing model. If we consider natural language questions given as a set Q, and the
underlying knowledge base given as a set of candidate answers F , the aim is to
train a question answering model that can correctly answer the question given a set
of questions and the corresponding candidate answers. For every natural language
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question, answer candidates are first retrieved from the underlying knowledge base
to generate pairs of questions and their corresponding answer candidates.

5.2.1 Formal Definition

Given q ∈ Q a natural language question, and its candidate answers A = {a1, a2, ..., an},
where by A ∈ F comprises of a ground truth answer and the sampled negative an-
swers, each q ∈ Q and each answer candidate a ∈ A comprises of a sequence of
tokens.

We start by learning the representations (embeddings) of the given question and
its corresponding candidates answers, we then apply the LSTM-AE to generate low
dimensional embedding representation from the the original embeddings, and then
compute the similarity to measure the matching degree between the question and
the candidate answers using the generated representations. The overall flow of the
proposed QA approach is illustrated in Figure 5.1

Let T be a set of questions and their corresponding candidate answers;

T = {(qi, Ai), ..., }, (5.1)

where i = 1, 2, ..., |T |, We define the embedding matrix;

W ∈ Rk∗N, (5.2)

where, k is the embedding dimension,

N = NQ +NA, (5.3)

N is the embedding dictionary with NQ and NA the total number of questions and
answers respectively.

The vector representation of the question and the answer are obtained using the
embedding matrixW as shown in Figure 5.2.

where f(q) and g(a) are the functions that map the question and the candidate an-
swer to the embedding space respectively. We are able to learn the question and
candidate answer embeddings by learning a scoring function S(q, a) as;

S = f(q)⊤ · g(a) = Wϕ(q)⊤ ·Wφ(a) (5.4)

47



0.245 0.305

0.125 0.045

….

….

....

….

0.475 0.432

0.235 0.205

0.235 0.205

0.125 0.045
0.230 0.025

0.125 0.045

0.075 0.012

0.235 0.205
0.375 0.332

0.235 0.205

Similarity 
score

Question

Candidate Answers

Question embedding

Candidate 
Answer embedding

Autoencoder

Autoencoder

𝑬! 𝐇! #𝑬!

𝑬" 𝐇" #𝑬"

Figure 5.1: Illustration of the proposed approach. The question (Eq) and answer
(Ea) embedding modules generate the dimensional vector representation of words
that are input to the auto encoder for dimension reduction and the reconstructed
question (Êq) and candidate answer (Êq) representations are used to measure the
similarity score.

The question and candidate answer embedding sequences Eq ∈ Rk and Ea ∈ Rk

are denoted as;

Eq ∈ Rk = {eq1 , eq2 ...eqw},
Ea ∈ Rk = {ea1 , ea2 ...eam}, (5.5)

Given the learned question and candidate answer embeding sequences as in Equa-
tion 5.5, we train our question answering model using a loss function that ranks the
answer to the question based on the margin.

As previously seen in equation 5.1, T is the training set of questions paired with
their candidate answers. We minimize the loss function as;

|T |∑
i=1

∑
â∈Â(ai)

(
max{0, ϑ− S(qi, a

−
i ) + S(qi, ai)}

)
, (5.6)
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Figure 5.2: Shows how vector representation are obtained. Each figure correspond
to mapping the question and the answer to the embedding space.

49



where ϑ is the margin. Minimizing the loss above, learns the embedding matrix in
Equation 5.2 such that the score of the correct answer a is greater than the score
with any incorrect answer a−i by at least the margin ϑ.

As earlier proposed, we apply an auto-encoder to focus on the most relevant fea-
tures of the input embeddings and use these most relevant features to train a ques-
tion answering model. The questions and candidate answers embedding sequences
obtained in Equation 5.5 are the inputs to the auto-encoder.

5.2.2 Auto-Encoder for Question Answering

The auto-encoder [105] attempts to copy the inputs of the network to its output.
Auto-encoders are a special type of feed forward network applied in various tasks
such as compression, denoising, sparse representation, and data generation. In case
of compression, the auto-encoder takes as input a large dimension vector and maps
it to a vector representation of lesser dimension which retains as much information
as possible such that the original input can be reconstructed from the vector repre-
sentation of lesser dimension. It is made up of the encoder that maps the input to a
latent representation, and a decoder that reconstructs the latent representation back
to the original input Figure 5.3.

X4

X3

X2

X1

Encoder

v2

v1

Latent space X′
4

X′
3

X′
2

X′
1

Decoder

Figure 5.3: The conceptual illustration of a vanilla auto-encoder, consisting of the
encoder which encodes the input embeddings to a low dimension, the latent-space
which is a low dimensional representation of the original input that focus on the
most important attributes, and the decoder which decompresses the representation
back to the original domain.
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Concretely, for a simple auto-encoder, the encoder part takes as input x ∈ Rk and
maps it to h ∈ Rm as.

h = σ(Wfx + b) (5.7)

where h is the latent representation, σ the element-wise activation function, Wf the
weight matrix that maps the input to the latent representation, and b the bias vector.
The decoder part, reconstructs the original input but with lesser dimension x̃ ∈ Rm

from the latent representation h as.

x̃ = σ̃(Wgh + b̃) (5.8)

where Wg is the weight matrix that reconstructs the latent representation to x̃ ∈ Rm

the approximated original input. The auto-encoder is then trained to find the wights
Wf and Wg that minimize the reconstruction error using the objective function;

L(x, x̃) = ∥x− x̃∥2 = ∥x− σ̃(Wg(σ(Wfx + b)) + b̃)∥2 (5.9)

where x ∈ Rk and x̃ ∈ Rm are the original input and the approximated or the
reconstructed respectively and x is always averaged over the training set. For the
case of a linear auto-encoder, the objective in Equation 5.9 can also be written as;

min
W

1

2

∑
n

∥WgWfxn − xn∥22 (5.10)

In such a case, where we use an euclidean norm i.e., the squared loss, it is equivalent
to the principal component analysis (PCA). In other words, the solution for the
linear auto encoder is the same as PCA.

For a non-linear auto-encoder where the functions f and g are non-linear, our
objective function becomes;

min
W

1

2

∑
n

∥g(f(xn;Wf );Wg)− xn∥22 + c∥f(xn;Wf )∥1 (5.11)

we add a regularization term c∥f(xn;Wf )∥1 to constrain the auto-encoder. The
auto-encoder architecture used in our proposed approach is illustrated in Figure 5.4.
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Figure 5.4: Illustrating the auto-encoder architecture, consisting of the encoder
which encodes the input embeddings (Eq for question and Ea for the answer) to
a low dimension, the latent-space which is a low dimensional representation (Hq

for question and Ha for the answer) of the original input that focus on the most im-
portant attributes, and the decoder which decompresses the encoded representations
(Êq for question and Êa for the answer).

It consists of the encoder network, the latent space, and the decoder network. The
encoder and decoder consists of multiple layers.

The question embedding Eq and candidate answer embeddings Ea obtained in
Equation 5.5, are the inputs to the encoder network. When the question embeddings
Eq and the candidate answer embedding Ea are fed to the encoder network, they are
compressed to the latent representations Hq of the question, and Ha of the answer
candidate. The decoder network then decompresses the encoded representations to
Êq of question, and Êa of the candidate answer with dimension less than that of the
input. The decoder outputs are compared to the initial inputs to update the network
weights. We adopt the LSTM-AE by [61] which uses the encoder to compress the
inputs into a representation and uses this representation to reconstruct it back by the
decoder.

Given the inputs question and candidates answer sequence embeddings 5.5, the
encoder compresses them to obtain latent representations of the question and answer
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candidates as;

Hqenc = f(Eq) ∈ Rm = Bi LSTMEncq(eqt , ht−1),

Haenc = f(Ea) ∈ Rm = Bi LSTMEnca(eat , ht−1), (5.12)

where the dimension m of the latent representation is less than dimension k of the
input embeddings (m < k). eqt , eat represent input word embeddings at a given
time step t, and ht−1 the time step of the previous state.

Given Hqenc and Haenc the encoded question and answer representation, the
decoder which is connected to the encoder via a latent space also known as the
undercomplete [36], is tasked with generating the input sequence. Learning the un-
der complete representation, allows the decoder to capture or focus on the salient
features of the data in the course of decoding. The decoder reconstructs the latent
representation back to the output sequence by sequentially predicting the next token
yt at every time step using the current input and the state at the previous time step
yt−1 until the last token by conditional probability. From the definition of condi-
tional probability;

p(y) =
T∏
t=1

p(yt|{y1, ..., yt−1}, c) (5.13)

yq = fD(Hqenc) = FD(WdHqenc + b),

ya = fD(Haenc) = FD(WdHaenc + b), (5.14)

where fD is the mapping function, FD the decoder activation function, Wd the
weighted matrix and b is the bias. From the above definition, the conditional prob-
ability is modeled as;

p(êqt |{êq1 , ..., êqt−1}, c) = g(êqt−1 , st, c),

p(êat |{êa1 , ..., êat−1}, c) = g(êat−1 , st, c), (5.15)

where êqt and êat are the question and answer candidates input embeddings at time
step t, g is the non-linear activation function that out puts the probability, st is
the decoder hidden state, and c the parameters. The auto-encoder learns how to
reconstruct the original inputs by optimizing the objective function to minimize the
reconstruction error as;

JR =
1

N

∑
i<N

E(ei, êi), (5.16)
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where e and ê are the original and the reconstructed data point respectively while E
is the mean squared error. Therefore, the final reconstructed question and candidates
answer representation generated by the decoder are denoted by;

q̂ = Bi LSTMDecq(êqt , ht−1),

â = Bi LSTMDeca(êat , ht−1), (5.17)

For each reconstructed question q̂, there is a reconstructed positive or ground truth
and the reconstructed negative answers â sampled from the whole answer space for
training. The goal is to design a similarity matching model using the reconstructed
representations for question answering. To do this, we adopt the cosine similarity;

S = cos(θ) =
q̂ · â
||q̂||||â||

, (5.18)

cosine similarity is a common measure for similarity matching and we use it for
computing the similarity matching between the question and answer pairs. We train
the question answering model such that the score of the function S is high if â is the
correct answer of the question q̂ and low if the answer is incorrect. During training,
we minimize the following loss function;

JH =

|T |∑
i=1

∑
â∈A

(
max{0, ϑ− S(q̂i, â

−) + S(q̂i, â)}
)
, (5.19)

where ϑ is the margin, S the cosine similarity score, and â− is sampled from the
negative candidate answers. The similarity between the question, positive answer,
and the question, negative answer are compared to the margin ϑ during the process
of training the loss function.

• If ϑ ≥ S(qi, ai)− S(qi, a−i ), then either the positive answer is ranked below
the negative answer or positive answer ranking is not sufficiently above the
negative one.

• If ϑ ≤ S(qi, ai)− S(qi, a−i ), another candidate answer is sampled from the
candidate list (no update is made to the parameters) until a margin value less
than ϑ is obtained.

We formally define our overall loss function as:

J = JR + JH , (5.20)
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where JR is the reconstruction error loss and the mean squared error loss (MSE) is
used here. JH is the triplet or hinge loss for comparing the distance between the
two similarities of question ground truth answer and question incorrect answer to
the margin. We train an end to end question answering architecture as shown in
Figure 5.1.

5.3 Experimental Evaluation

In this section, we evaluate our proposed question answering approach on the In-
suaranceQA benchmark dataset and compare our result with existing baseline ap-
proaches.

5.3.1 Data

The proposed approach was evaluated on the InsuranceQA dataset [30], the dataset
contains real data collected from the insurance library website 1. we chose to evalu-
ate our proposed method on this benchmark for purposes of comparison with the ex-
isting state-of-art methods evaluated on the same benchmark. In our experiment set
up, we use the version v1 dataset which has a total of 12,887 train questions, 1,000
validation questions, and 3,600 test questions together with 18,540 train answers,
1,454 validation answers, and 2,616 test answers respectively. Also, a question may
have more than one answer. In our experiment, we set the candidate answer size
to 500 for each question, this includes the ground truth, and the randomly selected
candidates from the entire dataset.

5.3.2 Implementation Details

We implement our proposed method using tensorflow 2 version 2.5.0 on a google
Tesla T4 GPU and we conduct two sets of experiment;

• In the first setting, word embeddings were initialized with pre-trained word2vec

1https://www.insurancelibrary.com/
2https://www.tensorflow.org/
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embeddings of dimension 100 [68]. The tokens that are absent in the pre-
trained embeddings are replaced by < UNK > representing an unknown
token and every sentence (question/answer) is marked by an end of sentence
token < eos >. Our autoencoder consists of two encoder and decoder layers
one of 64 and the other of 32 dimensions. We use the Adam optimizer [56]
and train in an end-to-end setting our question answering model for 100
epochs on batches of size 32, with a 0.001 learning rate, a margin value of
0.7 and a dropout regularizer of 0.00001. We test different hyperparameters
and report the one with best result.

• In the second setting, we conduct the same experiment using bidirectional
encoder representations BERT [26]. BERT is a model trained for language
representation, it has a wide range of application in solving natural language
processing tasks. It can be used for extracting quality language features from
text as well as for fine tuning on a given task. For this task, we opt for the
former, and generate word embeddings for our own vocabulary using BERT.
In our experiment, we use base BERT of size 768 to extract embeddings and
the two hidden layers in the encoder and decoder are set to 384 and 192 each.

5.3.3 Evaluation

We evaluate our model by comparing the convergence of the loss function during
training. For this, we compare three sets of experiments;

• Training question answering model using the initial input embedding di-
mension,

• Training the question answering model using low dimension representa-
tion reconstructed by the auto-encoder network with a non-linear hyper-
bolic tangent activation function applied on the network layer (non-linear
auto-encoder),

• Training a question answering model using low dimension representation
reconstructed using auto-encoder network with a linear activation function
applied to the network layer (Linear auto-encoder). This is equivalent to
principal component analysis (PCA) [74].

In the inference, we evaluate our proposed method using Mean Average Precision
(MAP) in order to compare the performance of our proposed approach, with existing
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methods. MAP is a commonly used metric for inference, it quantifies how good the
model performs at a given question.

MAP =
1

Q

Q∑
q=1

aveP (q) (5.21)

where Q is the number of questions and aveP is the average precision for a given
question q. Given a question, its corresponding aveP is calculated and the mean of
all these aveP scores gives us the mean average precision.

5.3.4 Results and Discussion

Figure 5.5, shows the performance comparison of the three experimental settings
conducted using the word2vec embeddings. From left to right; a) the initial embed-
ding dimension, b) reconstructed low embedding dimension using non-linear auto-
encoder , and c) reconstructed low embedding dimension using linear auto-encoder.
We observe a faster convergence when using the reconstructed lower embedding
dimension. The initial word2vec embedding dimension had a better accuracy of
0.932 ± 0.076. We however, did not see a statistical significance in the result.
Which further confirms that a time efficient approach in this case the low dimension
embedding reconstruction method is worth considering.
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linear AE.

Figure 5.5: Shows the train and validation loss for each of the models used; (a). The
initial word2vec embedding dimension, (b). Low embedding dimension using non-
linear auto-encoder, and (c). Low embedding dimension using linear auto-encoder.
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We report in Table 5.1, the train and validation mean accuracy (± standard devia-
tion) of each of the QA model and the time it takes to train each of the model for
100 Epochs. The highlighted values represent a statistical significance.

Table 5.1: Showing mean accuracy values for the training and validation, and the
time taken to train each model setting for 100 epochs using word2vec embeddings.

Accuracy Time (minutes)
QA Model set up for 100 Epochs

Train Val

Word2Vec 0.932 ± 0.077 0.923 ± 0.076 122.42 ± 0.38

Non-Linear AE 0.902 ± 0.066 0.895 ± 0.071 97.35 ± 0.17

Linear AE 0.797 ± 0.079 0.690 ± 0.077 97.02 ± 0.15

We observed that the QA model using the initial embedding dimension takes 30
minutes more to train with respect to the same model using reconstructed embed-
ding dimension in both the linear and non-linear case.

Training the QA model on the initial word2vec embedding dimension seems to
have a better accuracy value of 0.932, a 0.030 higher compared to 0.902 obtained
using low dimensional reconstructed embeddings from non-linear auto-encoder.
However, considering the ± standard deviation, this difference is not statistically
significant. With this result, we may conclude that a time efficient approach in this
case the low dimension embedding reconstruction method is worth considering.

In contrast, we observe a statistical significance in the validation accuracy when
training the QA model using low embedding dimension from non-linear AE and
those from linear AE, although the non-linear AE takes 0.33 ± 0.03 more minutes
to train. We believe that a non-linear AE maybe more suitable for this specific task
since it can capture the non-linear transformations. It is important to note that all
the results reported in Table 5.1 were obtained using word2vec embeddings.

Inference The inference results of both the existing methods, and our proposed
method are reported in Table 5.2. Results from the existing methods are reported
in the first group of the table. These are the results reported by the authors in the
paper.

From the Table 5.2 of results, our proposed approach performs reasonably well
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Table 5.2: performance comparisons between our experiment set up and existing
works, the time taken per question and memory cost in different experiment set-
tings. In our experiment, the candidate answer pool is set to 500 candidates for
each question.

Model Test set Test set Time Memory

(Set up) (one) (two) (in seconds)) (in GB))

Setting 1. word2vec embeddings

Word2Vec Initial dimension 66.9 ± 0.26 60.75 ± 0.13 2.28 ± 0.03 7.29 ± 0.03

Non-linear AE Lesser dimension 64.52 ± 0.21 60.3 ± 0.04 0.13 ± 0.02 5.45 ± 0.02

Linear AE Lesser dimension 53.5 ± 0.14 51.0 ± 0.09 0.08 ± 0.01 5.24 ± 0.03

Setting 2. BERT embeddings

base BERT Initial dimension 74.35 ± 0.11 70.83 ± 0.33 3.19 ± 0.04 11.14 ± 0.24

Non-linear AE Lesser dimension 73.1 ± 0.10 70.28 ± 0.05 0.26 ± 0.03 6.63 ± 0.07

Linear AE Lesser dimension 67.43 ± 0.15 67.21 ± 0.06 0.14 ± 0.04 6.40 ± 0.1

Existing works

Feng et al [30] 2015 65.3 61.0 ... ...

Wang et al [95] 2016 67.0 61.5 ... ...

Ming et al [87] 2016 69.0 64.8 ... ...

Gurevych at al [81] 2017 70.0 ... ... ...

compared to the existing baselines on both test sets. It can be observed from the
table that the result obtained using the low embedding dimension generated by a
non-linear auto-encoder are better than the results obtained using the low embed-
ding dimension generated by a linear auto-encoder for both word2vec and base
BERT experiment settings. Furthermore, we compare the time taken and the mem-
ory usage in our experimental settings.

Word2vec setting: The time taken per question in the initial word2vec embed-
ding dimension setting is 2.28 ± 0.03 seconds which is almost 18 times slower
than the result from the non-linear auto-encoder setting where the time taken per
question is 0.13 ± 0.02 seconds. The time cost per question observed in the linear
auto-encoder setting is 28 times less compared to the initial word2vec embedding
settings.
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In the table we also compare the memory cost in all settings of our experi-
ment, the Word2vec initial embedding dimension, non-linear auto-encoder, and the
linear auto-encoder. The memory cost is 7.27 ± 0.03 GB, 5.45 ± 0.02 GB, and
5.24 ± 0.03 GB respectively. From the table, the Word2vec initial embedding di-
mension setting consumes approximately 2GB more of memory compared to the
auto-encoder settings which further confirms that our proposed approach can be
effective.

base BERT setting: In our experiment, we also train a question answering model
using BERT word emebddings to compare the result with the word2vec because un-
like word2vec which does not consider word context during representation, BERT
trains word representations that are informed by the words around them. In the ex-
periment we use BERT with a 768 dimension. As expected, BERT outperforms the
previous works and other experimental settings in the table on the question answer-
ing task. This performance is mainly due to the context-informed word embeddings
that result in more accurate feature representations. Although BERT performs way
better in terms of accuracy, it suffers from long execution time and memory issues
compared to word2vec i.e base BERT takes 0.19 ± 0.01 sec more and 3.85 GB
more compared word2vec as seen from the table. However, we observed that ap-
plying BERT embeddings to both linear and non-linear auto-encoders, is both time
and memory efficient and achieve good accuracy. The time and memory cost com-
parison between our method and existing methods could not be possible because
previous work does not make this kind of analysis. We also would like to men-
tion that the current proposed LSTM-AE used in our experiment does not apply
attention mechanisms to solve the QA task. For this reason, the performance of our
method on word2vec is less compared to the existing methods that apply attention
mechanisms.

5.4 Summary of this Chapter

In this study, we proposed a new question answering approach using low embedding
dimension generated by the long short term memory auto-encoder (LSTM-AE). We
also apply a linear activation function on each of the auto-encoder layer to model
low embedding dimension which is equivalent to the principal component analysis
PCA.
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Although many existing question answering embedding based methods achieve
good performance, they use the initial embedding dimesnion and less attention has
been paid to the long execution time and memory cost. To measure how effective
our proposed approach can be, we conduct experiment using word2vec and BERT
embedding representation. The experiments showed that solving the question an-
swering task using the low embedding dimension generated by the LSTM-AE is
time and memory efficient and achieves reasonable performance.

In the future work, we wish to extend our approach on the question answering
task in the following directions: First, we seek to consider other dataset and other
pre-trained vector representations with varying dimensions. Second, we wish to
apply our proposed model to other question answering architectures with attention
mechanism like transformers and compare the performance in terms of accuracy,
time, and memory.
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Chapter 6

Conclusions and Future Work

In this dissertation, we propose two approaches to efficiently solve the question
answering task.

In chapter 4, we proposed a pipeline-based approach where the knowledge base
question answering task is decomposed into 4 sub-tasks of entity detection, entity
linking, and relation prediction and we solve each of the components separately.
We explore different models for the entity detection and relation prediction tasks
with the aim of establishing strong baselines; one that uses simple neural networks
and one without neural-networks. Experimental results show that baseline methods
achieves results comparable to state-of-the-art methods that apply complex neural
networks and attention mechanisms. We also present a detailed analysis of the
experimental results to understand some of the errors in our model and the main
cause of these errors in an attempt to improve the performance.

Chapter 5, explores the application of dimension reduction techniques to solve
the question answering task. Specifically, we apply an auto-encoder to generate
low dimensional embeddings from the original input embedding dimension of the
question and the candidate answers. We design a similarity matching function to
measure the semantic similarity between the input question and the candidate an-
swers. Experiments using real world insuaranceQA benchmark, shows that the pro-
posed approach can obtain performance comparable to the standard baselines while
remaining cost efficient on both time and memory.
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6.1 Summary of the Contributions

In this dissertation, we make the following contributions:

• We present a simple yet effective approach to address the knowledge base
question answering task, our approach is faster, efficient, and performs rea-
sonably well compared to previous complex approaches that apply end-to-
end neural network on a similar simple question answering (Chapter 4).

• We establish a strong non-neural-network baseline on this task to compare
with neural networks. The baseline includes Conditional Random Field
(CRF) for entity detection and Logistic Regression (LR) for relation pre-
diction (Chapter 4).

• We show that there exist ambiguities in the data which limits the perfor-
mance, i.e., there are often multiple answers that are not easy to disam-
biguate and our approach identifies such ambiguities in the data which im-
proves the performance (Chapter 4).

• We also present an empirical error analysis to gain insights into the errors
and the reasons that bring about these error in an attempt to improve the
performance in the future work (Chapter 4).

• We propose and analyze an auto-encoder framework that learn low dimen-
sion representations of the original input embeddings in the latent space, and
then reconstructs latent representation such that the error between the input
and the low dimension output is minimized (Chapter 5).

• We show that our proposed framework retains as much information as pos-
sible and minimize the reconstruction error between the original and the
reconstructed data when training the similarity matching function (Chap-
ter 5).

• We conduct experiments and analysis using real world insuaranceQA bench-
mark, and the results indicate that we can achieve reasonable performance
on the question answering task while reducing computational time and mem-
ory requirements (Chapter 5).
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6.2 Future Work

In the future, we wish to extend our work on the question answering task in the
following directions:

First, in chapter 4 we seek to extend our approach to more complex questions
such as Luo et al., [66] and ExAQT [49], we also plan to consider other datasets
like COMPLEXWEBQUESTIONS [86], LC-QuAD [28] with varying embeding
dimensions. In addition, our approach did not apply attention mechanisms [3] on
the simple questions task. However, we believe that they might be of help in future
work when we extend our approach to more complex questions.

Second, in chapter 5 we are considering to explore other datasets and other
pre-trained vector representations such as glove [73] with varying dimensions. Be-
sides, we believe that it is equally important to apply the proposed approach to other
question answering architectures with attention mechanism like transformers [90]
and compare the performance in terms of accuracy, time, and memory.

In long term goal, we plan to to extend our research of question answering to
ever changing knowledge bases. In the real world knowledge changes over time,
but most of the existing KBQA approaches often assume a static knowledge base
making it difficult for a typical KBQA system to answer questions related to the new
knowledge when the KB evolves since it lacks the ability to detect knowledge un-
seen in the training. With the current progress in life-long machine learning, where
a model is trained to adapt to new tasks while preserving its capability on previous
tasks [39], we hope to propose a novel life-long KBQA learning framework that can
progressively expand learning capacity as humans do.

In their work, Pan et al., [72] shows that it is possible to identify the most rele-
vant information in past data and use it to regularize the training of the same model
on new tasks, avoiding catastrophic forgetting. This idea has a natural extension
to our problem, where past data represents the old version of the knowledge base,
and the new task is learning to answer question relevant to new facts added to the
knowledge base.
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