
UNIVERSITY OF TSUKUBA

DOCTORAL THESIS

Effects of Non-Verbal Emotion-Like

Feedback on the Interaction Between

People and a Single-Eyed Spherical Robot

Author:

Diego Eiji

ONCHI SUGUIMITZU

Supervisor:

PhD. Seung Hee LEE

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Kansei Information

Graduate School of Comprehensive Human Sciences

Doctoral Program in Kansei, Behavioral, and Brain Sciences

2022

http://www.tsukuba.ac.jp
http://eiji.onchi.me
http://eiji.onchi.me
https://kansei.design
http://www.chs.tsukuba.ac.jp
http://www.kansei.tsukuba.ac.jp

ii

“Nothing has such power to broaden the mind as the ability to investigate systemat-

ically and truly all that comes under thy observation in life.”

Marcus Aurelius, Meditations (c. 161–180 CE), Chapter II.

iii

Abstract

Diego Eiji

ONCHI SUGUIMITZU

Effects of Non-Verbal Emotion-Like Feedback on the

Interaction Between People and a Single-Eyed Spherical

Robot

The dynamic between humans and robots is becoming an important part

of our daily lives and many researchers in the area of Human-Robot Inter-

action are creating Social Robots that are pleasant to use and interact with.

To that end, the goal of this research was to study how different elements

of non-verbal communication between a robot and a human affect the in-

teraction experience on an emotional level when doing collaborative tasks.

Moreover, this work aims to develop several open source tools that might

aid researchers and developers in future endeavors in Human-Robot Inter-

action research.

Several improvements were made to the robot developed by Onchi and

Lee (2019) both in hardware and software, and two main investigations into

non-verbal emotional expressions and human-robot interaction were con-

ducted.

A within-subjects experiment with 8 design students (4F / median age:

20–32) from the University of Tsukuba was conducted between the robot

showing only motion feedback (control) and motion with LED feedback (LED).

iv

The results indicated that adding an LED changes the emotional impres-

sion of the robot. It is possible to use this stimulus to modulate the valence

and arousal of the emotion being expressed and create a tool to dynamically

change the emotion of a non-humanoid robot using movement, light, and an-

imations. Having a variable output other than just movement may increase

the animacy perceived, thus creating a more engaging experience.

The second part of the study focused on how the robot compared to other

interacting agents, like humans or computers, using a cooperative game. A

within-subjects experiment with 24 participants (12F / medianage = 25–29)

from the University of Tsukuba was conducted. The overall results evi-

denced that people prefer to interact with physical beings that can express

some type of feedback during the interaction. The performance of the robot

was comparatively similar to when people interacted with another person,

while the interaction with the computer was categorized as emotionally neu-

tral and no social bonding happened.

Finally, this research generated not only insights in the area of Human-

Robot Interaction, but also useful tools available to the scientific and pro-

gramming community. In particular, six open source modules optimized for

the Raspberry Pi platform were created.

keywords: robot, interaction, minimalism, feedback, emotion

v

Acknowledgements

I would like to thank the following people, without whom I would not have

been able to complete this research, and without whom I would not have

made it through my doctoral degree.

First, I would like to thank the professors of the University of Tsukuba, es-

pecially to my supervisor Dr Seung Hee Lee, whose insight, knowledge, and

passion regarding Kansei steered me through this research. Also, I would like

to thank my colleagues at Lee Laboratory for helping me during the research

with their valuable feedback. And special thanks to Ban, who went out of his

way to help me in times of need!

I would also like to thank Natanya C., who help me during my experi-

ments and took great videos and pictures of the spherical robot. Without her,

the design of the animations would not have been as polished!

And my biggest thanks to my family for all the support you have shown

me through this research, a hard work of three years and more away from

them. Without them, it would have been hard to continue in this path and

see the culmination of my studies. Thank you so much!

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Purpose of the Study . 2

1.2 Significance of the Study . 3

1.3 Structure of this Thesis . 4

1.4 Ethical Considerations . 5

2 Literature Review 7

2.1 Interaction . 8

2.1.1 Human Interaction . 8

2.1.2 Human-Robot Interaction 8

2.2 Non-Verbal Feedback . 10

2.2.1 Social Eye Gaze Feedback 11

2.2.2 Blinking Information . 11

2.3 Emotional Expressions . 12

2.3.1 Universally Recognized Emotions 12

2.3.2 Emotional Eyelids . 13

2.3.3 Emotional Expressions in Robots 14

2.3.3.1 Uncanny Valley 14

2.3.4 Expressing Emotions as Movement 16

viii

2.4 Aim of this Study . 17

2.5 Measuring Emotions . 18

2.5.1 Russell’s Circumplex Model of Affection 19

2.5.2 Self-Assessment Manikin (SAM) 20

2.5.3 Physiological Data . 21

2.5.3.1 Heart-Rate . 21

2.5.3.2 Electrodermal Activity (EDA) 22

2.6 Measuring Interactions . 24

2.6.1 Working Alliance Inventory Short Revised (WAI-SR) . 24

2.6.2 Robotic Social Attributes Scale (RoSAS) 27

2.6.3 Cooperative Games . 29

2.7 Analyzing the Data . 30

2.7.1 Linear Mixed-Effects Model (LMM) 30

2.8 Kansei Design . 30

3 Hardware Development 33

3.1 Design Methodology . 34

3.2 Mechanical Components . 34

3.2.1 Top Beam . 38

3.2.2 Bottom Beam . 39

3.2.3 Inner Base . 40

3.2.4 Outer Base . 40

3.3 Electronic Components . 41

4 Software Development 45

4.1 Programming Language . 46

4.1.1 The Go Programming Language 46

4.2 Open Source Modules . 47

4.2.1 anim . 48

ix

4.2.2 servo . 50

4.2.3 ring . 52

4.2.4 PiCam . 52

5 Smart Bracelet 57

5.1 Electronic Development . 58

5.1.1 Heart-Rate: MAX30102 60

5.1.2 Electrodermal Activity Sensor: Grove GSR 60

5.1.3 Motion Sensor: LSM6DS33 61

5.2 Software Development . 62

5.2.1 ads1x15 . 62

5.2.2 lsm6 . 62

5.2.3 max3010x . 64

5.2.4 Validation . 65

6 Animated Eye 67

6.1 Research Motivation . 68

6.2 Design . 69

6.2.1 LED Ring: NeoPixel 12 × 5050 RGB 69

6.3 Animations . 71

6.4 Experiment . 75

6.4.1 Methodology . 75

6.4.1.1 Video Samples 76

6.5 Results . 76

6.5.1 SAM . 77

6.5.2 Text Analysis . 81

6.6 Discussion . 84

x

7 Human-Robot Interaction 87

7.1 Research Motivation . 88

7.2 Cooperative Game Design . 88

7.3 Methodology . 92

7.3.1 Experimental Procedure 92

7.3.2 Robot Interaction . 94

7.3.3 Physiological Data Measurement 95

7.3.4 Health Considerations 96

7.4 Results . 97

7.4.1 Subjective Impressions 97

7.4.2 Robotic Social Attributes Scale 100

7.4.3 Robot Gender and RoSAS 101

7.4.4 Self-Assessment Manikin 104

7.4.4.1 Valence . 104

7.4.4.2 Arousal . 106

7.4.4.3 Dominance . 107

7.4.5 Working Alliance Inventory 109

7.4.5.1 Task . 109

7.4.5.2 Goal . 111

7.4.5.3 Bond . 112

7.4.6 Decision Making . 114

7.4.6.1 Decision Time 114

7.4.6.2 Follow Rate . 116

7.4.7 Physiological Data . 117

7.4.7.1 Heart-Rate . 117

7.4.7.2 Electrodermal Activity 119

7.5 Discussion . 124

7.5.1 Social Robot . 124

xi

7.5.2 Emotional Impressions 125

7.5.3 Social Interaction . 127

8 Conclusions 131

8.1 Robot Development . 132

8.1.1 Light Animations . 132

8.2 Human-Robot Interaction . 132

8.3 Open Source . 134

8.4 Limitations . 134

8.5 Contributions . 135

8.6 Future Work . 136

A Surveys 139

A.1 Self-Assessment Manikin: English Version 140

A.2 Self-Assessment Manikin: Japanese Version 141

A.3 Robotic Social Attributes Scale: English Version 142

A.4 Robotic Social Attributes Scale: Japanese Version 143

A.5 Working Alliance Inventory: English Version 144

A.6 Working Alliance Inventory: Japanese Version 146

B Ethics 149

B.1 Ethics Approval . 150

B.2 Research Instructions: Japanese Version 151

B.3 Research Instructions: English Version 153

B.4 Agreement Form: Japanese Version 155

B.5 Agreement Form: English Version 156

C Electrodermal Analysis per Participant 157

C.1 EDA of Participant 1 . 158

C.2 EDA of Participant 2 . 159

xii

C.3 EDA of Participant 3 . 160

C.4 EDA of Participant 4 . 161

C.5 EDA of Participant 5 . 162

C.6 EDA of Participant 6 . 163

C.7 EDA of Participant 7 . 164

C.8 EDA of Participant 8 . 165

C.9 EDA of Participant 9 . 166

C.10 EDA of Participant 10 . 167

C.11 EDA of Participant 11 . 168

C.12 EDA of Participant 12 . 169

C.13 EDA of Participant 13 . 170

C.14 EDA of Participant 14 . 171

C.15 EDA of Participant 15 . 172

C.16 EDA of Participant 16 . 173

C.17 EDA of Participant 17 . 174

C.18 EDA of Participant 18 . 175

C.19 EDA of Participant 19 . 176

C.20 EDA of Participant 20 . 177

C.21 EDA of Participant 21 . 178

C.22 EDA of Participant 22 . 179

C.23 EDA of Participant 23 . 180

C.24 EDA of Participant 24 . 181

D Source Code 183

D.1 Module: robot . 184

D.1.1 License . 184

D.1.2 robot/robot.go . 184

D.2 Module: servo . 188

xiii

D.2.1 License . 188

D.2.2 servo/servo.go . 188

D.2.3 servo/blaster.go . 191

D.2.4 servo/servo_test.go 194

D.2.5 servo/blaster.go . 198

D.2.6 servo/example_test.go 200

D.2.7 servo/package_test.go 201

D.2.8 servo/live_test.go 202

D.2.9 servo/export_test.go 203

D.2.10 servo/stress_test.go 203

D.3 Module: ring . 205

D.3.1 License . 205

D.3.2 ring/ring.go . 205

D.3.3 ring/layer.go . 207

D.3.4 ring/color.go . 208

D.3.5 ring/color_test.go 209

D.3.6 ring/example_test.go 211

D.4 Module: PiCam . 214

D.4.1 License . 214

D.4.2 picam/bench_test.go 214

D.4.3 picam/example_save_test.go 214

D.4.4 picam/example_test.go 215

D.4.5 picam/format_string.go 215

D.4.6 picam/info.go . 216

D.4.7 picam/picam.go . 216

D.4.8 picam/picam_test.go 218

D.5 Module: anim . 220

D.5.1 License . 220

xiv

D.5.2 anim/anim.go . 220

D.5.3 anim/body.go . 221

D.5.4 anim/errors.go . 222

D.5.5 anim/eye.go . 222

D.5.6 anim/anim.yaml . 225

D.6 Module: tracker . 227

D.6.1 License . 227

D.6.2 tracker/tracker.go 227

D.7 Module: bracelet . 230

D.7.1 License . 230

D.7.2 bracelet/console.go 230

D.7.3 bracelet/main.go . 231

D.8 Module: ads1x15 . 236

D.8.1 License . 236

D.8.2 ads1x15/ads1x15.go 236

D.8.3 ads1x15/channel.go 238

D.8.4 ads1x15/const.go . 238

D.8.5 ads1x15/muxsetting_string.go 239

D.8.6 ads1x15/options.go 240

D.9 Module: lsm6 . 243

D.9.1 License . 243

D.9.2 lsm6/const.go . 243

D.9.3 lsm6/device.go . 244

D.10 Module: max3010x . 246

D.10.1 License . 246

D.10.2 max3010x/beat.go . 246

D.10.3 max3010x/const.go . 247

D.10.4 max3010x/fir.go . 248

xv

D.10.5 max3010x/heartrate.go 248

D.10.6 max3010x/max3010x.go 249

D.10.7 max3010x/moving_average.go 251

D.10.8 max3010x/options.go 251

D.10.9 max3010x/spo2.go . 252

D.10.10max3010x/time_series.go 252

D.10.11max3010x/max3010x/main.go 253

D.10.12max3010x/max30102/const.go 255

D.10.13max3010x/max30102/max30102.go 257

D.10.14max3010x/max30102/options.go 261

D.11 Module: serial . 263

D.11.1 License . 263

D.11.2 serial/serial.go . 263

Bibliography 265

xvii

List of Figures

2.1 Humanoid Robots . 9

2.2 Spot . 9

2.3 The Uncanny Valley . 14

2.4 Sophia . 15

2.5 Motion as Feedback . 16

2.6 Motion as Feedback . 17

2.7 Circumplex Model of Affection 19

2.8 SAM . 20

2.9 Heart-Rate Signal Sample . 21

2.10 EDA Signal Sample . 23

3.1 Robot’s Exploded View . 36

3.2 Original Robot . 37

3.3 Improved Robot . 37

3.4 Improved Top Beam . 38

3.5 Improved Bottom Beam . 39

3.6 Improved Inner Base . 40

3.7 Improved Outer Base . 41

3.8 Robot Schematic . 43

3.9 Electronic Components . 43

4.1 Robot Software . 49

xviii

5.1 Smart Bracelet . 58

5.2 Smart Bracelet Schematic . 59

5.3 MAX30102 . 60

5.4 GSR . 61

5.5 LSM6DS33 . 61

5.6 Smart Bracelet Software . 63

5.7 Sample Data . 66

5.8 Sample Data . 66

6.1 Robot’s LED . 69

6.2 Explosion View of the Robot’s Eye 70

6.3 Original Version of the Robot’s Eye 70

6.4 NeoPixel Ring . 70

6.5 Robot’s Motion and LED . 71

6.6 Happy (A) . 72

6.7 Surprise (B) . 72

6.8 Sadness (C) . 73

6.9 Anger (D) . 73

6.10 Confusion (E) . 74

6.11 Assertion (F) and Negation (G) 74

6.12 Video Samples . 76

6.13 NRC-VAD Box-Plot . 80

6.14 NRC-VAD Box-Plot . 83

7.1 Layout of the Collaborative Game 90

7.2 Random Maze . 90

7.3 Player B Screen . 91

7.4 Thinking Screen . 91

7.5 Player A Screen . 91

xix

7.6 Flowchart of the Experiment . 93

7.7 Participant Interacting with Robot 96

7.8 Robot’s Name and Gender . 97

7.9 Character Names . 98

7.10 RoSAS Box-Plot . 101

7.11 Box-Plot of RoSAS by Robot Gender Before the Experiment . . 102

7.12 Box-Plot of RoSAS by Robot Gender After the Experiment . . 103

7.13 Valence Box-Plot . 104

7.14 Arousal Box-Plot . 106

7.15 Dominance Box-Plot . 108

7.16 Task Box-Plot . 109

7.17 Goal Box-Plot . 111

7.18 Bond Box-Plot . 113

7.19 Decision Time Box-Plot . 115

7.20 Follow Rate Box-Plot . 117

7.21 Heart-Rate Box-Plot . 118

7.22 EDA SCL per Partner . 120

7.23 EDA SCR when following the robot 122

7.24 EDA SCR when following the person 122

7.25 EDA SCR when following the computer 122

7.26 EDA SCR when not following the robot 123

7.27 EDA SCR when not following the person 123

7.28 EDA SCR when not following the computer 123

C.1 EDA of Participant 001 Condition robot 158

C.2 EDA of Participant 001 Condition person 158

C.3 EDA of Participant 001 Condition computer 158

C.4 EDA of Participant 002 Condition robot 159

xx

C.5 EDA of Participant 002 Condition person 159

C.6 EDA of Participant 002 Condition computer 159

C.7 EDA of Participant 003 Condition robot 160

C.8 EDA of Participant 003 Condition person 160

C.9 EDA of Participant 003 Condition computer 160

C.10 EDA of Participant 004 Condition robot 161

C.11 EDA of Participant 004 Condition person 161

C.12 EDA of Participant 004 Condition computer 161

C.13 EDA of Participant 005 Condition robot 162

C.14 EDA of Participant 005 Condition person 162

C.15 EDA of Participant 005 Condition computer 162

C.16 EDA of Participant 006 Condition robot 163

C.17 EDA of Participant 006 Condition person 163

C.18 EDA of Participant 006 Condition computer 163

C.19 EDA of Participant 007 Condition robot 164

C.20 EDA of Participant 007 Condition person 164

C.21 EDA of Participant 007 Condition computer 164

C.22 EDA of Participant 008 Condition robot 165

C.23 EDA of Participant 008 Condition person 165

C.24 EDA of Participant 009 Condition robot 166

C.25 EDA of Participant 009 Condition person 166

C.26 EDA of Participant 009 Condition computer 166

C.27 EDA of Participant 010 Condition person 167

C.28 EDA of Participant 011 Condition robot 168

C.29 EDA of Participant 011 Condition person 168

C.30 EDA of Participant 011 Condition computer 168

C.31 EDA of Participant 012 Condition robot 169

C.32 EDA of Participant 012 Condition person 169

xxi

C.33 EDA of Participant 013 Condition robot 170

C.34 EDA of Participant 013 Condition person 170

C.35 EDA of Participant 013 Condition computer 170

C.36 EDA of Participant 014 Condition robot 171

C.37 EDA of Participant 014 Condition person 171

C.38 EDA of Participant 014 Condition computer 171

C.39 EDA of Participant 015 Condition robot 172

C.40 EDA of Participant 015 Condition person 172

C.41 EDA of Participant 015 Condition computer 172

C.42 EDA of Participant 016 Condition robot 173

C.43 EDA of Participant 016 Condition person 173

C.44 EDA of Participant 016 Condition computer 173

C.45 EDA of Participant 017 Condition robot 174

C.46 EDA of Participant 017 Condition computer 174

C.47 EDA of Participant 018 Condition robot 175

C.48 EDA of Participant 019 Condition person 176

C.49 EDA of Participant 019 Condition computer 176

C.50 EDA of Participant 020 Condition robot 177

C.51 EDA of Participant 020 Condition person 177

C.52 EDA of Participant 020 Condition computer 177

C.53 EDA of Participant 021 Condition robot 178

C.54 EDA of Participant 021 Condition person 178

C.55 EDA of Participant 021 Condition computer 178

C.56 EDA of Participant 022 Condition robot 179

C.57 EDA of Participant 022 Condition person 179

C.58 EDA of Participant 022 Condition computer 179

C.59 EDA of Participant 023 Condition robot 180

C.60 EDA of Participant 023 Condition person 180

xxii

C.61 EDA of Participant 023 Condition computer 180

C.62 EDA of Participant 024 Condition robot 181

C.63 EDA of Participant 024 Condition person 181

C.64 EDA of Participant 024 Condition computer 181

xxiii

List of Tables

2.1 Facial Characteristics of Emotions 13

2.2 WAI Items (English Version) . 25

2.3 WAI Items (日本語版) . 26

2.4 RoSAS Items . 28

6.1 Shapiro-Wilk’s Normality Test of SAM Scores 77

6.2 Wilcoxon Signed Rank Test of SAM by LED 78

6.3 Wilcoxon Signed Rank Test of Valence by LED 78

6.4 Wilcoxon Signed Rank Test of Arousal by LED 79

6.5 Wilcoxon Signed Rank Test of Dominance by LED 79

6.6 Most Common Unique Words per Animation 81

7.1 Name and Gender of the Robot 99

7.2 Shapiro-Wilk’s Normality Test of RoSAS Scores 100

7.3 Paired T-Test of RoSAS when Interacting with the Robot . . . 101

7.4 T-Test of RoSAS by Gender Before Interacting with the Robot . 102

7.5 T-Test of RoSAS by Gender After Interacting with the Robot . 103

7.6 LMM of Valence by Partner . 105

7.7 Pairwise Comparison of Valence by Partner 105

7.8 LMM of Arousal by Partner . 107

7.9 LMM of Dominance by Partner 108

7.10 LMM of Task by Partner . 110

7.11 Pairwise Comparison of Task by Partner 110

xxiv

7.12 LMM of Goal by Partner . 112

7.13 Pairwise Comparison of Goal by Partner 112

7.14 LMM of Bond by Partner . 113

7.15 Pairwise Comparison of Bond by Partner 114

7.16 LMM of Decision Time by Partner 115

7.17 Pairwise Comparison of Decision Time by Partner 116

7.18 LMM of Follow Rate by Partner 117

7.19 LMM of Heart-Rate by Partner 118

7.20 Pairwise Comparison of Heart-Rate by Partner 119

xxv

List of Abbreviations

ADC Analog-Digital Converter
EDA Electodermal Activity
GSR Galvanic Skin Response
I2C Inter-Integrated Circuit
RoSAS Robotic Social Attributes Scale
SAM Self-Assessment Manikin
SPI Serial Peripheral Interface
WAI Working Alliance Inventory

xxvii

Dedicated to my family, who

supported me even at a

distance.

1

Chapter 1

Introduction

The beginning of each chapter throughout this thesis presents a short overview

of the topics in the chapter. In addition, the above flowchart connects the

main ideas of the research and is used as a visual guide to aid the reader.

2 Chapter 1. Introduction

1.1 Purpose of the Study

People are social creatures that use collaboration to achieve greater goals.

This collaboration is not limited between humans, but inter-species collab-

oration has been important throughout human history (Orozco and Parker-

Starbuck, 2015, p. 19). For example, dogs were used to aid hunters when

going after a prey, or horses were used as a transportation medium before

the combustion engine was mainstream. With the advent of technology,

non-living alternatives have been developed, either as virtual agents (Ama-

zon.com Inc, 2021; Google Nest, 2021) or robots (Rethink Robotics, 2021;

Pandey and Gelin, 2018; Boston Dynamics, 2021). Especially for situations

where a person might be endangered, robots are beginning to be used.

This dynamic between humans and robots is becoming an important part

of our daily lives. It has caught the interest of many researchers in the area of

Human-Robot Interaction to create social robots that are pleasant to use and

interact with. To that end, the goal of this research is to study how different

elements of non-verbal communication between a robot and a human affect

the interaction experience on an emotional level when doing collaborative

tasks. Moreover, this work aims to develop several open source tools that

might aid researchers and developers in future endeavors in Human-Robot

Interaction research.

Research questions Related to the above matters, the present study focuses

on the following main research questions:

• “Is it possible to use light animations to enhance emotional expression?”

• “Will people interact with an emotional robot on the same level as interacting

with a person?”

• “Is feedback essential when doing collaborative tasks?”

1.2. Significance of the Study 3

To answer those questions, the following research structure was designed:

1. Study the minimal means to express non-verbal emotion-like expres-

sions in a spherical robot (Onchi and Lee, 2019).

2. Study if light can be used as an additional non-verbal mean to convey

emotion-like expressions in the spherical robot and if it makes a signif-

icant difference (Chapter 6).

3. Study the interaction experience with the spherical robot using a coop-

erative game (Chapter 7).

4. Finally, draw conclusions on how to use these insights for the design of

interactive non-humanoid robots.

1.2 Significance of the Study

This study is motivated by research in Social Robotics aimed to create in-

tuitive robots (Breazeal, 2002; Thomaz and Breazeal, 2008; Chernova and

Thomaz, 2014; Onchi and Lee, 2019). In particular, it follows the steps of

Onchi and Lee (2019) to create a non-humanoid minimalistic robot that can

express emotion-like feedback to increase the interaction experience of peo-

ple. The design approach and research considerations follow a Kansei Design

methodology, an approach introduced in Section 2.8.

The author of this research hopes that the results of this work serve as a

foundation to create better social robots that people feel comfortable inter-

acting with. Furthermore, the author looks forward to people using the open

source tools developed during this research and encourages future collabo-

rators to keep improving on them.

4 Chapter 1. Introduction

1.3 Structure of this Thesis

Each chapter begins with a visual schematic of the thesis and a short descrip-

tion to guide the reader throughout the document. The current thesis follows

the structure presented below:

• Chapter 2: Literature Review presents the context of this research, as

well as the theoretical background in which the development and val-

idation of the robot are based. It introduces the state of the art in col-

laborative social robots and emotional expression. At the end of this

chapter, the details of the measuring techniques used in this thesis are

presented.

• Chapter 3: Hardware Development presents the physical design con-

siderations of the robot, and highlights the improvements done over

the initial robot developed by Onchi and Lee (2019). Then, the elec-

tronic and mechanical design of the robot is explained.

• Chapter 4: Software Development presents the software design of the

robot’s program and all the open source tools developed to make it

possible. This chapter also includes an explanation of each module and

their possible use outside this thesis.

• Chapter 5: Smart Bracelet presents the development of a custom made

smart bracelet to measure the physiological information of participants,

as well as the open source tools created for this device.

• Chapter 6: Animated Eye presents the design process of the animated

eye of the robot, as well as its validation test. This chapter includes the

reason behind each animation created and concludes with the results

collected in the study.

1.4. Ethical Considerations 5

• Chapter 7: Human-Robot Interaction presents the design of the col-

laborative game use to test the level of trust that a person has depend-

ing on their interacting partner. The methodology and results are in-

cluded. The chapter ends with the information collected during the

interview with the participants.

• Chapter 8: Conclusions provides the discussion of the research as a

whole, as well as focusing on the possible interpretations and implica-

tions of each study conducted. It concludes with the limitations of the

study, its contributions, and future work.

• Appendix is a collection of additional material relevant to this thesis

including, but not limited to, surveys, source code, and relevant docu-

ments.

1.4 Ethical Considerations

This research was conducted with the approval of the Research Ethics Com-

mittee of Art and Design, University of Tsukuba (Appendix B.1). All partic-

ipants took part in the research voluntarily after being informed of the de-

tails of the research in their preferred language (Appendix B.2 for Japanese

and Appendix B.3 for English) and signing proper Agreement Form (Ap-

pendix B.4 for Japanese and Appendix B.5 for English).

7

Chapter 2

Literature Review

This chapters presents the context of this thesis as well as the necessary liter-

ature review to understand the concepts researched. It starts with the state of

the art on human-robot interactions, followed by ways to express emotions

in robots. An introduction to several measuring instruments is presented,

and a definition of Kansei Design is presented at the end.

8 Chapter 2. Literature Review

2.1 Interaction

2.1.1 Human Interaction

People are social creatures that interact with their environment and attempt

to give meaning to the information perceived. When people socialize with

others, there is a conscious and unconscious effort to understand the inten-

tion behind the actions of the other party (Baldwin and Baird, 2001). People

construct an idea of a person based on the motivations and goals that they

can infer, either from experience or memory (Goldman, Graesser, and Broek,

1999).

2.1.2 Human-Robot Interaction

This social interaction not only happens between humans. We are able to in-

teract with non-living agents (e.g. robots) or other species (e.g. pets) as well.

In this sense, the concept of animacy is important in Human-Robot Inter-

action. Animacy1 is defined as the “state of being alive and animate” (Collins

English Dictionary - Complete and Unabridged, 2014). Animacy might be

good feature to evaluate if people consider an artificial agent to be “alive”,

but seems to be difficult to quantify (Bartneck et al., 2009b). Some elements,

like giving a physical body to an artificial agent, can increase the level of

animacy of robots (Scholl and Tremoulet, 2000). In this regard, Bartneck et

al. (2009a) have shown that the physical shape of a robot can influence the

perceived intelligence and animacy of the agent.

1Animacy is also used in Linguistic to define the semantic feature of languages to express
how alive something is.

2.1. Interaction 9

(A) Pepper (B) NAO

FIGURE 2.1: Example of humanoid robots.
Source: (A) SoftBank Robotics (2021), (B) ubahnverleih (2016)

FIGURE 2.2: Spot from Boston Dynamics
Source: Boston Dynamics (2021)

Social robots that work with people can take a myriad of forms. For

example, Pepper (Pandey and Gelin, 2018), shown in Figure 2.1a, is a hu-

manoid robot from by SoftBank Robotics that is used in several areas includ-

ing healthcare, education, entertainment, among others. Another represen-

tative robot is NAO (Gouaillier et al., 2009), a robot developed by the same

company which is widely used in scientific research (Tapus et al., 2012; Han

et al., 2012; Jokinen and Wilcock, 2013; Andreasson et al., 2017). As shown in

Figure 2.1b, this robot has a full humanoid build.

On the other hand, non-humanoid robots are also used for tasks that re-

quire collaboration with people. For example, Spot (Boston Dynamics, 2021),

10 Chapter 2. Literature Review

presented in Figure 2.2, is a four-legged robot developed by Boston Dynam-

ics that resembles a dog. This robot is used in construction or mining to go

to places that would otherwise be dangerous for people.

Apart from the physical shape of a robot, Holroyd et al. (2011) identified

four social connection events that can enhance Human-Robot Interaction: di-

rected gaze, which indicates where the robot is looking at; mutual facial gaze,

in which both parties look at each other when interacting; adjacency pair,

which refers to the minimal overlap between the communication between

the parties; and backchannel, which are brief behavioral cues done by the

listener.

2.2 Non-Verbal Feedback

Feedback is an essential part of communication in human beings. Without

feedback, important information might be lost and affect interactions. Feed-

back provides a second system of communication that can regulate the sub-

tleties of communication, but this system must be shared by all interacting

parties to be understood (Bateson, 1975). This second system is not limited

by words, but relies on other cues to indicate pacing and roles during com-

munication.

In other words, feedback is not just bounded to verbal cues: human com-

munication is aided by non-linguistic elements, like gestures or sounds, that

provide that layer of information (Payrato, 2009). They can be used conscious

or unconsciously to express emotional states or affective signals (Krauss,

Chen, and Chawla, 1996).

2.2. Non-Verbal Feedback 11

2.2.1 Social Eye Gaze Feedback

Social eye gaze in human-robot interactions is an important tool to express

non-verbal information (Admoni and Scassellati, 2017). This behavior has

been defined as having a dual function (Cañigueral and Hamilton, 2019):

one to perceive information, like deictic gaze (Johnson, Ok, and Luo, 2007)

or emotional states (Baron-Cohen, Wheelwright, and Jolliffe, 1997); and the

other to signal information, such as gaze cueing (Kuhn, Tatler, and Cole,

2009) or floor management (Kendon, 1967) at the same time. Another im-

portant aspect of gaze during communication is gaze aversion, a behavior

that conveys three main functions: cognitive, intimacy modulation, and floor

management (Andrist et al., 2014). This attentional focus can be simulated

by having a consistent motion, regardless of the physical shape (Johnson and

Ma, 2005). These are important behaviors during human-to-human com-

munication as well as human-to-robot interactions, because people naturally

tend to look for those behavioral cues by focusing on the eyes and mouth

of the speaker (Vatikiotis-Bateson et al., 1998) to collect information on the

mental state and attentional focus of the speaking part (Langton, Watt, and

Bruce, 2000).

2.2.2 Blinking Information

Blinking is a natural behavior in human interactions, the average blinking

rate of a resting person was measured to be 17 blinks per minute, while the

rate increases to 26 when engaging in conversation (Bentivoglio et al., 1997).

Additionally, the length of the blink can be modulated to convey non-verbal

information during communication (Hömke, Holler, and Levinson, 2018).

This visual feedback can help in establishing proper turn-taking (Levinson,

12 Chapter 2. Literature Review

2016). Blinking patterns have been used in robots to create a smoother con-

versational interaction with people (Funakoshi et al., 2008). Therefore, it is

possible to use blinking patterns in robots to increase their animacy.

2.3 Emotional Expressions

2.3.1 Universally Recognized Emotions

Ekman, Friesen, and Ellsworth (1972) introduced seven universally recog-

nized facial emotions. These emotions can be defined by how different parts

of the human face move and look. While those emotions can be understood

regardless of culture, their boundaries are not clearly defined. It is possible

to blend several elements of the face to show mixed emotions (Ekman and

Friesen, 2003).

Later research in neuroscience narrowed down these universally recog-

nized emotions to four: happy, sad, fear/surprise, disgust/anger (Jack, Gar-

rod, and Schyns, 2014). By abstracting these movements and applying them

in a non-humanoid robot, it was found that high-paced upward motions con-

vey positive emotions while low-paced downward movements express neg-

ative emotions (Onchi and Lee, 2019). In other words, direction and speed are

enough elements to express basic emotion-like features on a spherical robot.

An additional visual way to display emotions is with color. Brightness and

saturation in LED displays were shown to be positively correlated with emo-

tional arousal (Wilms and Oberfeld, 2018). Blue hues were correlated with

sadness (Terada, Yamauchi, and Ito, 2012). However, the emotional meaning

of color depends on context and can be used to express positive and negative

emotions (Kaya and Epps, 2004).

2.3. Emotional Expressions 13

TABLE 2.1: Shape of eyelids to express emotions: “Table 1: Set
of emotions based on the physical characteristics of human beings.”

Emotion Description Picture Avatar

Neutral Upper eyelid touches the
iris, lower eyelid is re-
laxed.

Happiness Cheeks raise, pushing the
lower eyelid. Upper eyelid
can be raised.

Surprise Eyes wide open. Sclera
fully visible.

Sadness Eyes slightly squinted, up-
per eyelid drops due to the
brows.

Fear Eyes open and tense.
Lower eyelid contracted.

Disgust Eyes squinted due to the
wrinkle of the nose.

Anger Eyes focused and wide
open. Upper eyelid seems
lower due to the brow.

Source: Onchi, Saakes, and Lee (2020)

2.3.2 Emotional Eyelids

By focusing on just the eyes, Onchi, Saakes, and Lee (2020) studied if it was

possible to express different emotions using rigid eyelids on a single-eyed

2D avatar (Table 2.1). Their results showed that people understand the dif-

ference in emotional states just by changing the positions of the eyelids. This

was part of a study into minimalist elements to express emotions in con-

sumer electronics to be able to add an emotional layer to the experience.

14 Chapter 2. Literature Review

FIGURE 2.3: The Uncanny Valley: “Figure 2. The presence of
movement steepens the slopes of the uncanny valley. The arrow’s path

represents the sudden death of a healthy person.”
Source: Adapted from The Uncanny Valley (Mori, MacDorman, and Kageki, 2012, p. 99)

2.3.3 Emotional Expressions in Robots

Researching how to express and simulate emotions in robots has been of in-

terest for the area of Human-Robot Interaction. In this regard, one approach

to design robotic emotions is to closely recreate human expressions (Breazeal,

2002; Kishi et al., 2012). However, it is possible that these humanoid robots

fall into the Uncanny Valley, the point where people feel aversion toward a

human-like robot (Mori, MacDorman, and Kageki, 2012).

2.3.3.1 Uncanny Valley

The closest reference people have to recreate emotional expressions are hu-

man beings. Therefore, it is not uncommon to imitate the physical character-

istics of people with the goal to create emotional agents. However, the mo-

ment this physicality approaches a real human, but fails to complete grasp

2.3. Emotional Expressions 15

FIGURE 2.4: Sophia from Hanson Robotics
Source: ITU Pictures (2018)

its essence, is the point where people start feeling uncomfortable with that

agent. In Human-Robot Interaction, this inflection point is known as the Un-

canny Valley, the moment where “[. . .] a person’s response to a human-like robot

would abruptly shift from empathy to revulsion as it approached, but failed to attain,

a lifelike appearance” (Mori, MacDorman, and Kageki, 2012).

To address this concern, Sumioka et al. (2013) proposed that a minimalis-

tic design could avoid the Uncanny Valley and be used to create robots that

are socially accepted. Studies using this concept have shown that minimal

motions, colors, sounds, or a combination of them can be enough to express

some basic emotions (Terada, Takeuchi, and Ito, 2013; Löffler, Schmidt, and

Tscharn, 2018; Onchi and Lee, 2019). Thus, this research aims to continue

exploring different minimalistic ways to express non-verbal emotional feed-

back.

16 Chapter 2. Literature Review

FIGURE 2.5: Robot developed by Onchi and Lee (2019) showing
different movements as non-verbal feedback.

Source: Onchi and Lee (2019)

2.3.4 Expressing Emotions as Movement

In the early work of Onchi and Lee (2019), the single-eyed spherical robot

that could move its attentional focus, shown in Figure 2.5, was developed

with the objective to improve training interactions. As part of their research,

they studied how movement affected the emotional impression of people.

By controlling the speed and direction of the motion, different non-verbal

emotion-like feedback were designed. As presented in Figure 2.6, their re-

sults evidenced that non-verbal movement feedback cannot be classified into

an specific emotional state, but they can be used to convey emotional in-

formation about the robot within the emotional dimensions proposed by

Russell (1980). In general, a high-paced upwards movement was associated

with a positive emotional state, while a low-paced downwards movement

expressed a negative emotional state.

2.4. Aim of this Study 17

FIGURE 2.6: Correlation between movement speed and direc-
tion with the emotional impression.

Source: Onchi and Lee (2019)

2.4 Aim of this Study

Looking at the development of commercial assistants, it is possible to see that

companies (Amazon.com Inc, 2021; Google Nest, 2021) tend to focus on cre-

ating abstract representations of their agents. Research in the area of Human-

Robot Interaction has suggested that having a physical body might increase

the animacy of the agent (Scholl and Tremoulet, 2000). In this regard, this sec-

tion presented robots that follow humanoid shapes or have non-humanoid

bodies that interact with people and are used for Social Robotic research.

While it is technologically possible to create complex robots that imitate hu-

man expressions, everyday interactions may benefit by just adding simples

gestures instead of creating a complex machine. This might make mass pro-

duction easier and improve the overall acceptance of robots in the future. In

this sense, more research is needed to find what are the minimal means to

create engaging interactions.

18 Chapter 2. Literature Review

On the other hand, studies have shown that gaze and eyes are an im-

portant source of non-verbal information (Andrist et al., 2014; Admoni and

Scassellati, 2017; Hömke, Holler, and Levinson, 2018). Therefore, it bears the

questions if we can use these elements in a minimalistic way to create simple

movements that can convey information. The research done by Onchi and

Lee (2019) evidenced that a minimalistic robot could express emotion-like

feedback using only movement. However, the information conveyed was

not complete clear and there was room for improvement in how engaging

an interaction could be. In this case, it was necessary to test other means of

non-verbal expression, like light animations.

For that reason, the current thesis focuses on researching what are the

minimal means to create engagement in Human-Robot Interaction experi-

ences by trying to answer the following research questions:

• “Is it possible to use light animations to enhance emotional expression?”

• “Will people interact with an emotional robot on the same level as interacting

with a person?”

• “Is feedback essential when doing collaborative tasks?”

2.5 Measuring Emotions

Russell and Bullock (1986) suggested that the categorization of emotions us-

ing verbal concepts should be considered as fuzzy sets. In this regard, rather

than fixed categories, emotions can be systematically placed along three or-

thogonal axes (valence, arousal, and dominance), and measured using non-

verbal tools (Bradley and Lang, 1994).

2.5. Measuring Emotions 19

FIGURE 2.7: Circumplex Model of Affection: “Figure 5. Regres-
sion weights for 28 affect words as a function of pleasure-displeasure

(horizontal axis) and degree of arousal (vertical axis).”
Source: A Circumplex Model of Affect (Russell, 1980, p. 1173)

2.5.1 Russell’s Circumplex Model of Affection

The Circumplex Model of Affection initially presented by Russell (1980), pro-

poses that emotion can be defined as a two-dimensional state of valence and

arousal. Valence refers to how positive or negative an emotion is. On the

other hand, arousal refers to the level of emotional energy or activation. It is

important to note that emotional arousal is not the same as emotional inten-

sity. While it is easy to confuse intense emotional moments as high arousal

(e.g. feeling excited about winning the lottery), intense emotional states could

happen with low arousal (e.g. intense depression is a state of low arousal).

Therefore, arousal and intensity are considered as separate concepts when

scoring emotions.

20 Chapter 2. Literature Review

FIGURE 2.8: Self-Assessment Manikin. Each dimension con-
sists of five figures and four in-between values, for a total of

nine points in the scale.
Source: adapted and vectorized from Betella and Vershure (2016)

2.5.2 Self-Assessment Manikin (SAM)

The following thesis uses the Self-Assessment Manikin (SAM), a 9-points

scale that measures emotion using pictographs (Figure 2.8). This tool eval-

uates the emotional impression of people using three dimensions: valence,

arousal, and dominance (Bradley and Lang, 1994; Bynion and Feldner, 2017;

Geethanjali et al., 2017). This tool has the advantage to be language agnos-

tic (Bradley and Lang, 1994, p. 50) and does not rely on pre-defined labels

to categorize an emotion. Its simplicity and dimensionality has made this a

popular tool among studies in Affective Computing (Morris, Dontcheva, and

Gerber, 2012; Onchi and Lee, 2019; Jaeger et al., 2019).

The specific figures used were vectorized from the pictures presented

by Betella and Verschure (2016), which are based on Bradley and Lang (1994).

An English (Appendix A.1) and Japanese (Appendix A.2) version of the sur-

vey were prepared and administered using Google Forms.

2.5. Measuring Emotions 21

FIGURE 2.9: Sample heart-rate signal: “Fig. 2. Process of peak
extraction: a moving average is used as an intersection threshold (I).
Candidate peaks are marked at the maximum between intersections
(II), with optional spline interpolation available to improve position
accuracy. The moving average is raised stepwise (III). IV. shows the
detection of the onset and end of clipping, and the result after interpo-

lating the clipping segment.”
Source: Gent et al. (2019).

2.5.3 Physiological Data

Recording physiological data can provide valuable information that could

be hard to detect with surveys or interviews. Especially for unconscious re-

actions, physiological data might provide more insights into the emotional

reactions of people.

2.5.3.1 Heart-Rate

Heart-rate is the measurement of how many cardiac cycles are performed by

the heart in the span of one minute. The resting heart-rate range of a healthy

person has been defined as 60 to 100 beats per minute (Kossmann, 1953),

although Spodick et al. (1992) have lowered this range to 50 to 90 beats per

minute (Spodick et al., 1992), while Graybiel et al. (1944) stated that young

people have a normal range of 38 to 110 beats per minute.

22 Chapter 2. Literature Review

Heart-rate variability is related to the regulation of emotional responses,

which is connected to the sympathetic and parasympathetic reactions of the

body (Appelhans and Luecken, 2006). Azarbarzin et al. (2014) have shown

that there is a positive correlation between the change in heart-rate and the

level of arousal. In particular, when people feel more aroused from a given

event, their heart-rate variation increases. Nevertheless, heart-rate varies

from person to person (Mathias and Stanford, 2003), which means it is more

reliable to compare the changes in heart-rate rather than its actual value

when analyzing a group of people. This thesis uses the analysis method pro-

vided by Gent et al. (2019) with the HeartPy Python module, which can filter

and find heart beats in noisy data (Figure 2.9).

2.5.3.2 Electrodermal Activity (EDA)

Electrodermal Activity (EDA), also known as skin conductance, galvanic

skin response, or electrodermal response, refers to the change in the electrical

properties of the human skin given some stimuli (Boucsein, 2012, p. 2). EDA

is mostly measured as the electrical resistance between two contact points in

the skin, which is altered by sweat secretions (Boucsein, 2012, p. 104). This is

important because sweat regulation is partially managed by the Autonomous

Nervous System (ANS) (Hu et al., 2018), which is also connected to emotional

states in a person (Levenson, 2006). In particular, EDA seems to be correlated

with the emotional arousal of the individual.

EDA is usually analyzed by extracting the phasic2 and tonic3 components

of the signal (Boucsein, 2012, p. 150). Based on the Nyquist-Shannon sam-

pling theorem (Shannon, 1949), to correctly reconstruct both phasic and tonic

2Fast physiological response to a stimulus.
3Slow physiological change measured over a period of time.

2.5. Measuring Emotions 23

FIGURE 2.10: Sample EDA signal: plotting EDA signal using
the eda_plot() function from NeuroKit2.

Source: Makowski et al. (2021).

frequencies of EDA, a sample rate between 200 to 400 Hz is required at min-

imum (Figner and Murphy, 2011).

By separating the signal in this two components, it is possible to get the

Skin Conductance Level (SCL) and the Skin Conductance Response (SCR).

The SCR is a fast fluctuation on the skin conductance related to the somatic

response of the body (Christopoulos, Uy, and Yap, 2016), which has an onset

latency between 1 to 3 seconds, while SCL is the overall conductance over a

long period of time (Figner and Murphy, 2011). In other words, SCR gives

us the immediate response to a stimulus, while SCL gives us the change over

the whole interaction.

In this regard, several automated algorithms have been developed to ana-

lyze this signal. For example, Greco et al. (2016) proposed a convex optimiza-

tion approach to process EDA. On the other hand, Akash et al. (2018) have

shown that there is a relationship between trust in intelligent machines and

EDA. They developed a classification algorithm that aims to predict the level

of trust based on the analysis of the phasic and tonic components of EDA.

This thesis uses the analysis method provided by Makowski et al. (2021) with

the NeuroKit2 Python module, which can filter and split EDA signals into

SCL and SCR (Figure 2.10).

24 Chapter 2. Literature Review

2.6 Measuring Interactions

2.6.1 Working Alliance Inventory Short Revised (WAI-SR)

The Working Alliance Inventory (WAI) is a survey that measures the degree

of collaboration between two people, usually a therapist and a patient, de-

veloped by Horvath and Greenberg (1989). This questionnaire scores the

working alliance4 of an interaction based on the three dimensions proposed

by Bordin (1979): task, bond, and goal. Here, task is defined as the degree in

which the person feels that the tasks done during the interaction are relevant,

bond refers to the personal attachment between both parties, and goal points

to the level of endorsement toward the goal of the activities.

While the original version of this test consisted of 36 items, Tracey and

Kokotovic (1989) developed a short version of 12 items that could measure

this relationship with the same reliability (Tracey and Kokotovic, 1989; Hatcher

and Gillaspy, 2006). Each statement is scored using a 5-point Likert scale for

frequency5. This test has been widely used in Social Robotics to measure the

relationship between the user and the robotic agent (Bickmore and Picard,

2004; Kidd and Breazeal, 2008; Hoffman, 2019; Wilson et al., 2019).

This research implements the version developed by Hatcher and Gillaspy

(2006). The list of items in English and Japanese are presented in Tables 2.2

and 2.3 respectively. The name of the interacting partner is mentally replaced

at the underscore space of each statement. An English (Appendix A.5) and

Japanese (Appendix A.6) version of the survey were prepared based on the

official surveys (Society for Psychotherapy Research, 2016), and adminis-

tered using Google Forms.

4Working alliance: change-inducing relationship (Horvath and Greenberg, 1989, p. 224).
51. Never | 2. Rarely | 3. Sometimes | 4. Often | 5. Always

2.6. Measuring Interactions 25

TABLE 2.2: Working Alliance Inventory Items (English Version)

Item Question Scale

1 _____ and I agree about the steps to be taken to improve
his/her performance.

task

2 I am confident that what _____ was doing during training
will help him/her perform better.

task

3 I believe _____ likes me. bond

*4 I have doubts about what we are trying to accomplish in
task.

goal

5 I am confident in my ability to help _____. bond

6 We are working toward mutually agreed upon goals. goal

7 I enjoy working with _____. bond

8 _____ and I have a common perception of him/her goals. task

9 _____ and I have built a mutual trust. bond

*10 _____ and I have different ideas on what his/her real diffi-
culties are.

goal

11 We agree about the kind of changes that would be good for
_____.

goal

12 I think that _____ believes that the way we are working is
useful.

task

(*reverse item)

26 Chapter 2. Literature Review

TABLE 2.3: Working Alliance Inventory Items (日本語版)

Item Question Scale

1 ＿＿と私は、＿＿の状況を改善するためにはどのようなステップを踏めばいのか、意見が一致している。 task

2 課題の有用性について、＿＿と私の意見が一致している。 task

3 ＿＿と私は、互いに好感を抱きあっている。 bond

*4 ＿＿と私の間で、課題から得られるものについての懸念がある。 goal

5 私は、私の援助能力を信頼しきっている。 bond

6 ＿＿と私は、目標を合意したうえで課題を行っている。 goal

7 私は＿＿と一緒に課題するのが楽しいと思っている。 bond

8 課題における＿＿の目標について、＿＿と私の間で共通の認識がある。 task

9 ＿＿と私は、互いに信頼し合っている。 bond

*10 ＿＿と私は、＿＿が抱えている問題についての考えが異なっている。 goal

11 ＿＿と私は、＿＿がどのように変わればよいか、十分理解を深めることができた。 goal

12 私は、課題の方法は＿＿にとって良い方法だと思っている。 task

(*reverse item)

2.6. Measuring Interactions 27

2.6.2 Robotic Social Attributes Scale (RoSAS)

The Robotic Social Attributes Scale (RoSAS) is a validated survey devel-

oped by Carpinella et al. (2017) that measures how sociable a robot feels to a

person. This is an 18-item scale based on the Godspeed Scale (Bartneck et al.,

2009b). It measures three dimensions of robotic social perception: warmth,

competence, and discomfort. Each adjective is scored using a 5-point Lik-

ert scale for association6. In this scale, warmth is measured with the at-

tributes happy, feeling, social, organic, compassionate, and emotional; competence

is scored with the adjectives capable, responsive, interactive, reliable, competent,

and knowledgeable; while discomfort is evaluated with the keywords scary,

strange, awkward, dangerous, awful, and aggressive.

RoSAS is used in this research to create a baseline of the initial perception

of the participant toward the robot. Then, it is possible to measure if that

perception changes after interacting with the robot and analyze how each di-

mension is affected. The list of items in English and Japanese are presented in

Table 2.4. An English (Appendix A.3) and Japanese (Appendix A.4) version

of the survey were prepared and administered using Google Forms. The En-

glish version was based on the questionnaire published by Carpinella et al.

(2017) and the Japanese version was based on the survey used by Noguchi,

Kamide, and Tanaka (2018).

61. Definitely not associated | 2. Probably not associated | 3. Undecided | 4. Probably associated
| 5. Definitely associated

7Based on the ranslation by Noguchi, Kamide, and Tanaka (2018, Table 2).

28 Chapter 2. Literature Review

TABLE 2.4: Robotic Social Attributes Scale Items

Dimension English 日本語7

Warmth Happy 幸せな
Feeling 多感な
Social 社会的な
Organic 有機的な
Compassionate 思いやりのある
Emotional 情緒的な

Competence Capable 有能な
Responsive 敏感な
Interactive 双方向的な
Reliable 信頼できる
Competent 適格な
Knowledgeable 物知りな

Discomfort Scary おそろしい
Strange 奇妙な
Awkward ぎこちない
Dangerous 危険な
Awful ひどい
Aggressive 攻撃的な

2.6. Measuring Interactions 29

2.6.3 Cooperative Games

Cooperative games are activities where two or more participants work to-

ward a defined goal. In this type of games, rather than competing with each

other, the participants try to work together to complete the task at hand (Seif

El-Nasr et al., 2010). These types of games have been used to study collabo-

rative behavior in Human-Human Interaction (Hogan, Fisher, and Morrison,

1974; Creighton and Szymkowiak, 2014) and Human-Robot Interaction (Lee

and Hwang, 2008; Wainer et al., 2013; Jeri et al., 2017; Paetzel, Perugia, and

Castellano, 2020).

This thesis uses an implementation of a collaborative maze solving game

in which the information about the maze is divided between two players and

both players need to work together to exit the maze. A detailed explanation

about the developed game is provided in Section 7.2.

30 Chapter 2. Literature Review

2.7 Analyzing the Data

2.7.1 Linear Mixed-Effects Model (LMM)

Linear Mixed-Effects Models (LMMs) are a type of statistical analysis that

takes into account random effects of the data and can accommodate missing

information (Magezi, 2015). Compared to the more classical approach of us-

ing Analysis of Variance (ANOVA), LMMs are not limited by assumptions of

normality of the data and variance-covariance matrix. Moreover, LMMs are

ideal to analyze nested information with crossed groups.

In particular for this thesis, when studying the effects of interacting part-

ners on emotional impression, trust, and physiological changes, it is possible

to specify random effects (e.g. participant) using LMM. Furthermore, LMM

allows to explicitly partition the variance that is associated with these differ-

ences. On the other hand, contrary to ANOVA, missing information caused

by unexpected behavior or noisy input when recording physiological infor-

mation does not affect the analysis. For those reasons, a LMM analysis was

most appropriate.

2.8 Kansei Design

The design methodology and research decisions in this study are based on

the methodologies used in Kansei Design. Kansei (感性) is a Japanese word

with a complex meaning that is difficult to translate in one word. It might be

used in English to refer to “human sensitivity”, “subjectivity”, “emotions”, and

“feelings” (Lee and Stappers, 1999).

Based on Lee, Harada, and Stappers (2002, p. 213), “Kansei has been re-

garded as a totally subjective phenomenon so that anyone in the world has their own

2.8. Kansei Design 31

individual way of absorbing and presenting. [. . .] But then in the history of prod-

uct design, the emphasis on mass production caused a disregard for the individual’s

preferences and feelings.”.

Therefore, Kansei Design can be regarded as a type of user-centered de-

sign approach with the addition that the experience of both the designer and

user are taken into account when making decisions. In this sense, Kan-

sei Design place an importance on experiencing the world through physical

means (Lee and Stappers, 1999; Lee, Stappers, and Harada, 2000) and using

images and abstraction, instead of concrete words or definitions, to create

new products (Lee, Kato, and Harada, 1997; Lee, Harada, and Stappers, 2002)

This approach was used by Onchi and Lee (2019) to design the initial

prototype of the robot used in this research. This study builds upon their

work to improve and further test the Human-Robot Interaction experience

with non-humanoid robots.

33

Chapter 3

Hardware Development

This chapters presents the design methodology of the spherical robot as well

as the mechanical and electronic improvements made to the robot. It also

includes a detailed explanation of its inner structure.

34 Chapter 3. Hardware Development

3.1 Design Methodology

The spherical robot used is based on the robot developed by Onchi and Lee

(2019). This robot was designed with three design considerations in mind:

gaze direction, transparency, and simplicity. Several design iterations con-

verged into a single-eyed spherical robot that has a solid eye and can move

in two-axes. There was no brow present, and the directional focus was cou-

pled with a whole-body movement of the robot. To express more complex

shapes without a brow, different arc lengths were displayed with LED rings.

Moreover, subtle eye saccades were replaced by bigger movements and body

jerks.

3.2 Mechanical Components

The following section details the mechanical components designed for the

robot. All parts described below are visually presented in Figure 3.1.

The spherical robot of this study is modeled after the robot developed

by Onchi and Lee (2019). The outer cover 7 11 of the robot is made of

two acrylic semi-spheres of 170 mm in diameter, with a thickness of 3.5 mm.

Each hemisphere was spray-painted with white acrylic paint from the inside.

Two pairs of 3D printed stumps 6 12 , which house φ6×3 mm neodymium

magnets, were glued to the inside of the outer cover 7 11 , and they are used

to attach the inside components of the robot with its chassis.

The top beam 9 was remodeled to house the Raspberry Pi Zero W 8

directly on top, secured with four M2.5 screws. Its front has an indentation

to slide a camera sensor and a place to glue two φ13×3 mm neodymium

magnets. This ensures that the computer and the camera move as one unit,

eliminating the risk of damaging the connections. It has embossed the shape

3.2. Mechanical Components 35

of the servo’s horn 13 , which attaches to the motor using two M2 screws. It

also has two cable channels on the back to guide the cables inside the robot.

Its lateral extremes house φ6×3 mm neodymium magnets which mate with

the top stumps 6 .

The components of the eye are placed on the outside of the top cover 6 .

All parts are hold in place by the eye rim 1 , which has two φ13×3 mm

neodymium magnets glued that mate with the magnets from the top beam 9 .

The cornea 2 made out of an acrylic spherical sector of φ100 mm, the iris

cover 3 , the iris 4 , and the LED ring 5 are clamped together between the

eye rim 1 and the top cover 7 . A detailed explanation of the design consid-

erations of the eye is presented in Chapter 6.

The bottom beam 10 is slanted 60◦ and has a hole in the middle aligned

with the axle of the top servo motor 13 . It is embossed with the shape of the

bottom servo’s horn 13 which attaches to the motor using two M2 screws.

Its lateral extremes house φ6×3 mm neodymium magnets which mate with

the bottom stumps 12 , transferring the motion of the bottom servo 13 to the

bottom cover 11 of the robot.

The bottom servo 13 is placed inside a hole carved in the inner base 14 .

This inner base 14 has five φ13×3 mm neodymium magnets glued with al-

ternating polarity at its bottom. These magnets transfer the rotation of the

inner base 14 onto the bottom base 16 through the bottom cover 11 . Like-

wise, the bottom base 16 has five φ13×3 mm neodymium magnets glued

that match the orientation of the magnets from the inner base 14 . This outer

base is covered with a bottom base cover 15 to reduce friction between the

acrylic and the base. This base as a 1.5 mm rubber film attached at the bottom

to make sure that the robot does not slide when placed on a flat surface.

The following subsections give detailed information on the improvements

done to the robot on each mechanical part.

36 Chapter 3. Hardware Development

F
IG

U
R

E
3

.1
:

E
x

p
lo

d
ed

v
iew

o
f

th
e

ro
b

o
t’s

co
m

p
o

n
en

ts.
1

E
y

e
R

im
|

2
C

o
rn

ea
|

3
Iris

C
o

v
er

|
4

Iris
|

5
L

E
D

R
in

g
|

6
T

o
p

S
tu

m
p

|
7

T
o

p
C

o
v

er
|

8
R

asp
b

erry
P

i
Z

ero
W

|
9

T
o

p
B

eam
|

10
B

o
tto

m
B

eam
|

11
B

o
t-

to
m

C
o

v
er

|
12

B
o

tto
m

S
tu

m
p

|
13

S
erv

o
M

o
to

r
|

14
In

n
er

B
ase

|
15

B
o

tto
m

B
ase

C
o

v
er

|
16

B
o

tto
m

B
ase

|
S

ou
rce:

ow
n

.

3.2. Mechanical Components 37

FIGURE 3.2: Original version of the robot with only dynamic
motion.

Source: Onchi and Lee (2019).

FIGURE 3.3: Improved version of the robot with more fluid mo-
tion and an animated eye.

Source: own.

38 Chapter 3. Hardware Development

(A) Original Top Beam (B) Improved Top Beam

FIGURE 3.4: Comparison between the original version of the
top beam (A) and its improved version (B).

Source: own.

3.2.1 Top Beam

The first big change was the structure of the inner top beam. In the original

version (Figure 3.4a), the camera was placed inside a circular chamber which

limited the flexibility to fine tune the position of the camera within the robot.

Moreover, a separate piece was used to hold the Raspberry Pi Zero W in

place, which led to unwanted movement inside the robot.

For the improved version (Figure 3.4b), the footprint of the Raspberry Pi

Zero W was placed on top, securing the computer to the upper movement

of the robot and ensuring that the cable connecting to the camera would stay

static relative the this computer. Furthermore, the camera chamber was re-

placed by a slit that allowed the camera to be adjusted vertically. This greatly

improved the quality of the image acquired by this sensor. On the other hand,

two cable guides were placed on the back part of the beam to fix the cables

connecting to the servo motors. This avoided inner tangling of the cables

which improved the smoothness of the upper movement.

3.2. Mechanical Components 39

(A) Original Bottom Beam (B) Improved Bottom Beam

FIGURE 3.5: Comparison between the original version of the
bottom beam (A) and its improved version (B).

Source: own.

3.2.2 Bottom Beam

The original bottom beam (Figure 3.5a) worked great to transmit the move-

ment of the bottom servo motor to the bottom case, as well as keeping in

place the top servo motor. However, the placement of the magnets at the

ends of the beam was from the bottom, making the contact point with the

magnets in the stumps flushed. This meant that the magnets would fall after

prolonged use of the robot due to wear of the glue between the plastic and

the magnet, and because the connection between the magnets was stronger

that the glue.

For the improved version (Figure 3.5b), the entrance to the chamber of

the magnets was changed to the top. This added a 0.4 mm layer of plastic

between the magnets and avoided unexpected falls of the magnets. Further-

more, an angle of 45◦ was chamfered on the ends of the bottom beam to avoid

using support material during the 3D printing process.

40 Chapter 3. Hardware Development

(A) Original Inner Base (B) Improved Inner Base

FIGURE 3.6: Comparison between the original version of the
inner base (A) and its improved version (B).

Source: own.

3.2.3 Inner Base

The original inner base (Figure 3.6a) had a cross-shaped base that slid inside

the bottom case of the robot. It used two neodymium magnets in alternat-

ing polarities to transmit the movement to the outer base. Due to the lim-

ited amount of magnets, the robot tended to skid over the outer base on fast

movements, causing the robot to loose traction and behave erratically.

For the improved version (Figure 3.6b), a star shaped base was designed

that could hold an odd number of magnets. This configuration greatly im-

proved the smoothness of the lower motion as well as making the robot more

secure to the base. In addition, the alternating configuration gave the robot

get a fixed orientation relative to the outer base and reduced the times when

the robot lost traction.

3.2.4 Outer Base

Keeping in line with the pattern from the inner base, the original outer base

(Figure 3.7a) had a concave shape with two chambers for the magnets. The

contact point of the bottom case was throughout all the surface and the mag-

nets. Unfortunately, this added extra friction between the flat surface of the

3.3. Electronic Components 41

(A) Original Outer Base

(B) Improved Outer Base

FIGURE 3.7: Comparison between the original version of the
outer base (A) and its improved version (B).

Source: own.

magnets and the convex shape of the bottom case.

For the improved version (Figure 3.7b), a middle cover was designed that

kept a smooth surface over all the bottom part of the case. What is more, all

five magnets were enclosed between the cover and the base. The outer base

had a hole in the middle to help disassembly of the base and magnets in case

of maintenance.

3.3 Electronic Components

The spherical robot is controlled by a Raspberry Pi Zero W1 (Figure 3.9a),

a computer with a 1 GHz ARM single-core CPU, 512 MB of RAM, 802.11

b/g/n wireless LAN, 40-pin header, a Camera Serial Interface (CSI) con-

nector, and a micro USB power input (Raspberry Pi Foundation, 2018). The

operating system on the robot is Raspbian GNU/Linux 10 Buster, a Debian

GNU/Linux based distribution with kernel armv6l 5.4.51+.

1The schematic of the Raspberry Pi Zero W can be found at Stimson (2016).

42 Chapter 3. Hardware Development

For face tracking, a Zero Spy Camera (Figure 3.9c), a module with an

OV56422 camera sensor (OmniVision Technologies Inc., 2009) attached to a

CSI connector, is used. This camera is controlled with the custom made PiCam

module (see Section 4.2.4), that allows access to raw YUV images at around

5 frames per second. Two TowerPro MG996R servo motors (Figure 3.9b),

named servo motor 13 in Section 3.2, actuate the top and bottom sections

of the robot (Torq Pro and Tower Pro, 2014). These motors are metal geared

and have a torque of 9.40 kg cm and an angular speed of 5.51 rad s−1 at 4.8 V.

They are connected directly to the GND, 5V, 14, and 15 pins3 of the Raspberry

Pi Zero W, and controlled with the custom made servo module (see Sec-

tion 4.2.2), that can manage up to 100 servos asynchronously on a Raspberry

Pi Zero W. Finally, a NeoPixel Ring — 12 × 5050 RGB LED with Integrated

Drivers (Figure 3.9d) was used to create the iris of the robot (Adafruit Indus-

tries, 2021c). This ring uses 12 addressable RGB LEDs that can be controlled

individually with one data line connected in series to the GPIO pin 18. A

wired USB-A to USB-micro connector is used to power the robot. The cus-

tom made ring module (see Section 4.2.3) was developed to control these

diodes on a Linux based system with the correct timings. A basic schematic

showing the wiring path of the electronics is shown is Figure 3.8, and pictures

of the electronic components described above are presented in Figure 3.9.

2A 5 megapixel CMOS QSXGA camera sensor.
3The location of the pins are based on GPIO numbering.

3.3. Electronic Components 43

FIGURE 3.8: Basic electronic schematic of the robot.
Source: own, made with Fritzing (2021).

(A) Raspberry Pi Zero W Computer (B) TowerPro MG996R Servo Motor

(C) Zero Spy Camera (D) NeoPixel Ring 12

FIGURE 3.9: Sample pictures of the electronic components.
Source: (A) Raspberry Pi Foundation (2017),

(B) HobbyKing (2021), (C) Adafruit Industries (2021e),
(D) Adafruit Industries (2021c)

45

Chapter 4

Software Development

This chapters presents the programming language used to program the robot

and the open source modules developed to control it. An example code as

well as explanation on how to use those libraries outside this thesis are in-

cluded.

46 Chapter 4. Software Development

4.1 Programming Language

The original prototype developed by Onchi and Lee (2019) used Python 3

as the main programming language of the robot. While this interpreted lan-

guage is effective for prototyping, the next version of the robot required a

more robust program that could handle concurrent execution and be light

weight at the same time. Therefore, the whole source code of the robot was

re-designed and re-written using Go (Go, 2021), a statically programming

language that was designed to be compiled, scalable, and handle concur-

rency.

4.1.1 The Go Programming Language

Go (2021) is an open source programming language, initially developed by

Google, that is distributed under a BSD-style license1. Go was developed to

be simple, scalable, and have fast compiling times. It also uses concurrency2

and channels3 as the pillars when creating programs. Because Go is a stat-

ically typed4 and compiled language, it is ideal to be deployed into small

systems and less prone to unexpected behaviors.

Listing 1 and Listing 2 show an example of the code required to update

the position of different servo motors in Go and Python respectively. In

the Python version (Listing 1), control of the servo motor is done as a self-

contained thread using the threading module. In contrast, the version in Go

(Listing 2) manages all servo motors inside a goroutine5 and uses channels to

1BSD license: Berkeley Software Distribution license. It is a type of license for free
software that has minimal restrictions.

2Concurrency: the ability of a program to run different parts of its instructions at the
same time or out-of-order, without changing the outcome.

3Channels: a type of variable that acts like a “pipe” to send and receive data.
4Statically typed: the variables used by the program are explicitly defined and check at

compilation time.
5Goroutine: a function in Go that is run concurrently to the main thread.

4.2. Open Source Modules 47

32 class _Update (threading.Thread):

33 def __init__(self, servo):

34 threading.Thread.__init__(self)

35 self._servo = servo

36 self._running = False

37

38 def run(self):

39 self._running = True

40 self._previous_time = time.time()

41 while self._running:

42 delta_time = time.time() - self._previous_time

43 self._previous_time = time.time()

44 self._servo.update(delta_time)

45

46 def stop(self):

47 self._running = False

LISTING 1: Example of how to asynchronously update the po-
sition of a servo in Python 3. Taken from Onchi and Lee (2019).

99 updateCh := time.NewTicker(3 * time.Millisecond)

123 case <-updateCh.C:

124 for _, servo := range b._servos {

125 if !servo.isIdle() {

126 pin, pwm := servo.pwm()

127 data[pin] = pwm

128 }

129 }

LISTING 2: Example of how to concurrently update the posi-
tion of a servo in Go. Taken from servo/blaster.go. See Ap-

pendix D.2.5 for the complete source code.

control the update rate. This design allow for concurrent control of hundreds

of servomotors reliably (Onchi, 2020).

4.2 Open Source Modules

For the sake of this research, and to contribute to the community of develop-

ers in the area of Robotics and Automation, several Go modules were pro-

grammed and made available as open source projects. Figure 4.1 shows a

48 Chapter 4. Software Development

flowchart of how each module is interconnected in the robot. The main con-

trol of the robot is done at the top level robot package (Appendix D.1). This

package depends upon the anim (Appendix D.5) and tracker (Appendix D.6)

packages. To promote mutual facial gaze and increase the animacy of the

robot (Holroyd et al., 2011), the module pigo from Simo (2020) version 1.4.2

was used. This module uses pixel intensity comparison-based object detec-

tion (Marku et al., 2014) to detect facial landmarks, such as eyes and mouth,

and outputs regions of interest that might contain matching objects. The fol-

lowing subsections present all modules used in the robot, with notes on how

they can be used outside of this research.

4.2.1 anim

The module anim is in charge of loading the animations that allow the robot

to express emotion-like feedback. This package reads a YAML6 that is easy to

configure for a person (Appendix D.5.6). This format allows to place com-

ments preceded by a # (hashtag).

This module was developed to control both the body and eyes of the robot

using text-based animation key frames. Each line from the YAML file repre-

sents one key frame of the animation. Each frame can be configured to move

the robot at a certain direction with a customized speed, and changing the

shape of the eye by closing the top and bottom eyelids. The frames from the

body and the eye are loaded separately and using the keyword sync synchro-

nizes two key frames from each region of the robot. This allows the robot to

perform asynchronous behaviors and finish correctly at the end of the anima-

tion. Moreover, each animation can be named, and a playlist can be defined

at the beginning of the file to specify which animations to use without having

6YAML: YAML Ain’t Markup Language is a human readable data serialization scheme.

4.2. Open Source Modules 49

F
IG

U
R

E
4

.1
:

M
o

d
u

le
s

u
se

d
an

d
d

ev
el

o
p

ed
in

G
o

fo
r

th
e

ro
b

o
t.

S
ou

rc
e:

ow
n

.

50 Chapter 4. Software Development

1 eye.data:

2 think:

3 - eye: sync 1.0, 0.0, 500, 1.0

4 - eye: sync 1.0, 0.0, 500, 1.0

5 # shake

6 - eye: sync 0.7, 0.2, 200, 1.0

7 - eye: 0.8, 0.1, 200, 1.0

8 - eye: 0.7, 0.2, 200, 1.0

9 - eye: sync 0.8, 0.1, 200, 1.0

10 # return

11 - eye: sync 1.0, 0.0, 500, 1.0

12

13 body.data:

14 think:

15 - body: sync 0, 0.5, 0, 1.0

16 - body: sync 0, 0.5, 0, 1.0

17 # shake

18 - body: sync 0, 0.6, 0, 1.0

19 - body: 0, 0.5, 0, 1.0

20 - body: 0, 0.6, 0, 1.0

21 - body: sync 0, 0.5, 0, 1.0

22 # return

23 - body: sync 0, 0, 0, 1.0

LISTING 3: Example of how to program an animation into the
robot using a YAML configuration file.

to delete unused ones. This functionality permitted rapid testing of complex

animations. Listing 3 presents an example of an animation in the robot.

4.2.2 servo

This module uses pi-blaster (Hirst et al., 2013) to control servo motors on

a Raspberry Pi. Under the hood, it opens a pipeline to /dev/pi-blaster

and sends commands in the format GPIO=PWM. The module calculates the ap-

propriate PWM7 based on the speed and position of the servo motor and

groups the writes to /dev/pi-blaster at a rate of 40 ms, if multiple servos

are connected. A detailed documentation of this module is presented at the

reference site (https://pkg.go.dev/github.com/cgxeiji/servo). An exam-

ple of how to use his module is presented in Listing 4.

Each connected servo motor is managed independently from one another

7PWM: Pulse-Width Modulation

https://pkg.go.dev/github.com/cgxeiji/servo

4.2. Open Source Modules 51

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "github.com/cgxeiji/servo"

7)

8

9 func main() {

10 // Use servo.Close() to close the connection of all servos and pi-blaster.

11 defer servo.Close()

12 // Create a new servo connected to gpio 14.

13 myServo := servo.New(14)

14 myServo.MinPulse = 0.05 // Set the minimum pwm pulse width (default: 0.05).

15 myServo.MaxPulse = 0.25 // Set the maximum pwm pulse width (default: 0.25).

16 myServo.SetPosition(90) // Set the initial position to 90 degrees.

17 myServo.SetSpeed(0.2) // Set the speed to 20% (default: 1.0).

18 myServo.Name = "My Servo"

19 // Print the information of the servo.

20 fmt.Println(myServo)

21 // Connect the servo to the daemon.

22 err := myServo.Connect()

23 if err != nil { log.Fatal(err) }

24 defer myServo.Close()

25

26 myServo.SetSpeed(0.5) // Set the speed to half. This is concurrent-safe.

27 myServo.MoveTo(180) // This is a non-blocking call.

28

29 /* do some work */

30

31 myServo.Wait() // Call Wait() to sync with the servo.

32

33 // MoveTo() returns a Waiter interface that can be used to move and wait on

34 // the same line.

35 myServo.MoveTo(0).Wait() // This is a blocking call.

36 }

LISTING 4: Example of the servo module to control a servo
motor.

and is designed to be concurrent-safe8. If the package servo detects that

pi-blaster is not running on the system when executed, it will throw a

warning and redirect all writes to /dev/null. This way, it is possible to build

and test code on machines other than a Raspberry Pi or do a cold run before

committing.

8It is safe to use in parallel or pseudo-parallel processes without the risk of a race condi-
tion.

52 Chapter 4. Software Development

4.2.3 ring

ring is a wrapper of rpi-ws281x-go (Supcik et al., 2020) specialized in con-

trolling ring-shaped LEDs. This module adds the ability to use layers to

do complex animations. Each layer supports color transparency and blend-

ing is handled automatically. A detailed documentation of this module is

presented at the reference site (https://pkg.go.dev/github.com/cgxeiji/

ring). An example of how to use the module with a simple fading animation

is presented in Listing 5. Because rpi-ws281x needs to access /dev/mem to

create correct PWM timings, it is necessary to run the compiled binary with

root9 permissions.

Compilation Compiling directly on a Raspberry Pi might take too long.

The recommended way to compile this module is to cross-compile using a

Docker container10.

4.2.4 PiCam

PiCam is a Go wrapper to raspiyuv11 to get []uint8 and image.Image data

of the latests frame captured by the Raspberry Pi camera. Under the hood,

it executes “$ raspiyuv –timeout 0 –timelapse 0” to get raw frames. This

module was created to avoid the dependency on GoCV12 to access the camera

on a Raspberry Pi to do real-time face detection (Listing 6). A detailed docu-

mentation of this module is presented at the reference site (https://pkg.go.

dev/github.com/cgxeiji/picam).

9Superuser account in Unix and Linux systems used for administrative purposes.
10An isolated container inside a computer that can execute a virtual machine with an

specific configuration.
11Utility program from Raspberry Pi to acquire raw images of a camera.
12Go implementation of the OpenCV image processing library.

https://pkg.go.dev/github.com/cgxeiji/ring
https://pkg.go.dev/github.com/cgxeiji/ring
https://pkg.go.dev/github.com/cgxeiji/picam
https://pkg.go.dev/github.com/cgxeiji/picam

4.2. Open Source Modules 53

1 package main

2
3 import (

4 ...

5 "github.com/cgxeiji/ring"

6)

7
8 func main() {

9 // Initialize the ring.

10 r, err := ring.New(&ring.Options{

11 LedCount: 12, // adjust this to the number of LEDs you have

12 MaxBrightness: 180, // value from 0 to 255

13 })

14 r.Offset(-math.Pi / 3) // you can set a rotation offset for the ring

15 if err != nil { log.Fatal(err) }

16 defer r.Close() // Make sure to properly close the ring.

17 // Create a new layer. This will be a static white background.

18 bg, err := ring.NewLayer(&ring.LayerOptions{ Resolution: 1, ContentMode: ring.ContentScale })

19 if err != nil { log.Fatal(err) }

20 bg.SetAll(color.White) // Set all pixels of the layer to white.

21 r.AddLayer(bg) // Add the layer to the ring.

22 // Create a mask layer. This will fade the background.

23 bgMask, err := ring.NewLayer(&ring.LayerOptions{ Resolution: 1 })

24 if err != nil { log.Fatal(err) }

25 r.AddLayer(bgMask)

26 if err := r.Render(); err != nil { log.Fatal(err) } // Render the ring.

27 /* ANIMATION SETUP */

28 done := make(chan struct{}) // this will cancel all animations

29 render := make(chan struct{}) // this will request a concurrent-safe render

30 var ws sync.WaitGroup // this makes sure we close all goroutines

31 /* render goroutine */

32 ws.Add(1)

33 go func() {

34 defer ws.Done()

35 for {

36 select {

37 case <-done:

38 return

39 case <-render:

40 if err := r.Render(); err != nil { log.Fatal(err) }

41 }

42 }

43 }()

44 /* fading goroutine */

45 ws.Add(1)

46 go func() {

47 defer ws.Done()

48 c := color.NRGBA{0, 0, 0, 0}

49 step := uint8(5)

50 for {

51 for a := uint8(0); a < 255; a += step {

52 c.A = a

53 bgMask.SetAll(c)

54 select {

55 case <-done:

56 return

57 case render <- struct{}{}:

58 }

59 time.Sleep(20 * time.Millisecond)

60 }

61 for a := uint8(255); a > 0; a -= step {

62 c.A = a

63 bgMask.SetAll(c)

64 select {

65 case <-done:

66 return

67 case render <- struct{}{}:

68 }

69 time.Sleep(20 * time.Millisecond)

70 }

71 }

72 }()

73 fmt.Println("Press [ENTER] to exit")

74 stdin := bufio.NewReader(os.Stdin)

75 stdin.ReadString('\n')

76 close(done) // Stop all animations

77 ws.Wait() // Wait for goroutines to exit

78 }

LISTING 5: Example of the ring module with several layers
(abbreviated due to space).

54 Chapter 4. Software Development

Currently, three image formats are available:

• picam.YUV

• picam.RGB

• picam.Gray

The time between frames, measured on a Raspberry Pi Zero W, is be-

tween 180 ms to 210 ms for a 640 × 480 pixels image. It is possible to test the

acquisition speed by running:

$ cd $(go env GOPATH)/src/github.com/cgxeiji/picam

$ go test -bench . -benchtime=10x

codes of line on a Linux based machine. This will take 10 frames and output

the average time between each frame. Changing -benchtime=10x to 100x or

Nx will change the number of frames to test.

4.2. Open Source Modules 55

1 package main

2

3 import (

4 "fmt"

5 "io/ioutil"

6 "log"

7 "github.com/cgxeiji/picam"

8 pigo "github.com/esimov/pigo/core"

9)

10

11 func main() {

12 cam, err := picam.New(640, 480, picam.Gray)

13 if err != nil { log.Fatal(err) }

14 defer cam.Close()

15 cParams := pigo.CascadeParams{

16 MinSize: 90,

17 MaxSize: 200,

18 ShiftFactor: 0.1,

19 ScaleFactor: 1.1,

20 ImageParams: pigo.ImageParams{

21 Rows: cam.Height,

22 Cols: cam.Width,

23 Dim: cam.Width,

24 },

25 }

26 classifierFile, err := ioutil.ReadFile("./facefinder")

27 if err != nil { log.Fatal(err) }

28 p := pigo.NewPigo()

29 classifier, err := p.Unpack(classifierFile)

30 if err != nil { log.Fatal(err) }

31 fmt.Println("Starting face detection")

32 fmt.Println("Press Ctrl+C to stop")

33 for {

34 cParams.Pixels = cam.ReadUint8()

35 faces := classifier.RunCascade(cParams, 0.0) // 0.0 is the angle

36 faces = classifier.ClusterDetections(faces, 0.1)

37 // Get the face with the highest confidence level

38 var maxQ float32

39 index := 0

40 for i, face := range faces {

41 if face.Q > maxQ {

42 maxQ = face.Q

43 index = i

44 }

45 }

46 face := pigo.Detection{}

47 if index < len(faces) {

48 face = faces[index]

49 }

50 if face.Scale == 0 {

51 // no face detected

52 fmt.Printf("\rno face detected")

53 continue

54 }

55 x := face.Col - cam.Width/2

56 y := -face.Row + cam.Height/2 // y is flipped

57 fmt.Printf("\rface is (%d, %d) pixels from the center", x, y)

58 }

59 }

LISTING 6: Example of the PiCam module to do real-time face
detection on a Raspberry Pi.

57

Chapter 5

Smart Bracelet

This section includes the electronics and development process of the smart

bracelet used to measure physiological information for this study. It also

presents the open source modules created to control its sensors, and ends

with a validation of its measurements.

58 Chapter 5. Smart Bracelet

FIGURE 5.1: Custom made smart bracelet to record physiologi-
cal data during the experiment.

Source: own.

5.1 Electronic Development

To measure physiological data for this research, the open-source portable

measuring device, shown in Figure 5.1, was developed that could record data

autonomously.

The schematic of the main part of the bracelet is presented in Figure 5.2.

This part of the bracelet housed a SSD1306 OLED display, a Raspberry Pi

Zero W (Raspberry Pi Foundation, 2018), a 3.7 V@400 mA · h Lithium Ion

battery with an USB-C Micro-Lipo Charger (Adafruit Industries, 2021a) to

charge it and a PowerBoost 500 Basic (Adafruit Industries, 2021d) to trans-

form the voltage from 3.7 V to 5 V, and USB-C female connectors.

To design a future-proof flexible device with swappable sensors, each sen-

sor was connected using a USB-C cable and communicates with I2C serial

interface with the main controller. Three types of sensor were required for

this study: a heart-rate sensor to measure the heart-rate of participants, a

galvanic skin response sensor to measure electrodermal activity (EDA), and

an inertial sensor to measure hand movement.

5.1. Electronic Development 59

F
IG

U
R

E
5

.2
:

S
ch

em
at

ic
o

f
th

e
sm

ar
t

b
ra

ce
le

t.
S

ou
rc

e:
ow

n
.

60 Chapter 5. Smart Bracelet

FIGURE 5.3: MAX301022: pulse oximeter and heart-rate sensor.
Source: HiLetgo (2019).

5.1.1 Heart-Rate: MAX30102

Heart-rate is measured with a MAX30102 pulse oximeter and heart-rate sen-

sor from Maxim Integrated (2020). This sensor includes a red and infrared

LED photodetectors with a sampling resolution of 16-bits. It operates at 3.3 V

and can communicate with an I2C1 serial interface. The module presented in

Figure 5.3 was used during development.

5.1.2 Electrodermal Activity Sensor: Grove GSR

EDA3 is measured with the GSR Sensor4 module from Seeed Technology Inc.

(2014). This sensor, shown in Figure 5.4, measures the electrical conductance

of the skin using two contact points made out of nickel and calculates the

resistance between those probes. It has an operating voltage of 3.3 V and 5 V

and outputs an analog signal relative to the resistance of the probes.

The analog signal is connected to an ADS1015 ADC5 module from Adafruit

Industries (2021b), which transforms the signal into digital information at a

1I2C: Inter-Integrated Circuit, a two wire serial communication interface.
2While the text on the circuit board says “MAX3010”, the actual sensor placed on the

circuit board is the “MAX30102”.
3EDA: Electrodermal Activity
4GSR: Galvanic Skin Response.
5ADC: Analog-Digital Converter.

5.1. Electronic Development 61

FIGURE 5.4: Galvanic skin response sensor.
Source: Seeed Technology Inc. (2014).

FIGURE 5.5: LSM6DS33 6-degree IMU Module.
Source: Pololu (2021).

resolution of 12-bits. This module has an operating range of 2 V to 5.5 V and

uses I2C to transfer data.

5.1.3 Motion Sensor: LSM6DS33

To synchronize the timing of events when recording the information, the

LSM6DS33 6-degree IMU6 module from Pololu (2021) was used. This mod-

ule, presented in Figure 6.4, has a 3-axis accelerometer and 3-axis gyroscope

integrated, which provide movement information. It has an operating range

of 2.5 V to 5.5 V and uses both I2C and SPI7 interfaces to transfer data.

6IMU: Inertial Measurement Unit.
7SPI: Serial Peripheral Interface.

62 Chapter 5. Smart Bracelet

5.2 Software Development

Several open source modules were developed to use the sensors on the Rasp-

berry Pi platform using the programming language Go8. Figure 5.6 shows a

flowchart of how each module is interconnected in the smart bracelet. The

main module of the bracelet is located at the top (Appendix D.7). This mod-

ules uses the ads1x15 module (Appendix D.8) to control the skin conduc-

tance board, the lsm6 module (Appendix D.9) to control the IMU sensor, the

max3010x module (Appendix D.10) to control the heart-rate sensor, and the

public modules image (Go, 2021) and periph (The Periph Authors, 2021) as

a low-level interface for the Raspberry Pi. Each developed module uses the

serial module (Appendix D.11) to communicate using I2C with the periph-

erals.

5.2.1 ads1x15

ads1x15 is a wrapper of periph (The Periph Authors, 2021) specialized in

controlling ADS1015 and ADS1115 analog to digital converter devices. This

module streamlines the acquisition of analog measurements with helper func-

tions that can be called asynchronously. A detailed documentation of this

module is presented at the reference site (https://pkg.go.dev/github.com/

cgxeiji/ads1x15).

5.2.2 lsm6

lsm6 is a wrapper of periph (The Periph Authors, 2021) specialized in con-

trolling LSM6DS3 inertial measurement units. This module streamlines the

acquisition of accelerometer and gyroscope readings with helper functions

8See Section 4.1 for more information about why this programming language was used.

https://pkg.go.dev/github.com/cgxeiji/ads1x15
https://pkg.go.dev/github.com/cgxeiji/ads1x15

5.2. Software Development 63

F
IG

U
R

E
5

.6
:

M
o

d
u

le
s

u
se

d
an

d
d

ev
el

o
p

ed
in

G
o

fo
r

th
e

b
ra

ce
le

t.
S

ou
rc

e:
ow

n
.

64 Chapter 5. Smart Bracelet

1 func main() {

2 sensor, err := max3010x.New()

3 if err != nil {

4 log.Fatal(err)

5 }

6 defer sensor.Close()

7
8 // Detect the heart rate

9 hr, err := sensor.HeartRate()

10 if errors.Is(err, max3010x.ErrNotDetected) {

11 hr = 0

12 } else if err != nil {

13 log.Fatal(err)

14 }

15 fmt.Println("Heart rate:", hr)

16
17 // Detect the SpO2 level

18 spO2, err := sensor.SpO2()

19 if errors.Is(err, max3010x.ErrNotDetected) {

20 spO2 = 0

21 } else if err != nil {

22 log.Fatal(err)

23 }

24 fmt.Println("SpO2:", spO2)

25 }

LISTING 7: Example of the max3010x module to read heart-rate
and SpO2 information.

that can be called asynchronously. A detailed documentation of this module

is presented at the reference site (https://pkg.go.dev/github.com/cgxeiji/

lsm6).

5.2.3 max3010x

lsm6 is a wrapper of periph (The Periph Authors, 2021) specialized in read-

ing heart-rate and SpO2 information from the MAX3010x sensor family. A

detailed documentation of this module is presented at the reference site (https:

//pkg.go.dev/github.com/cgxeiji/max3010x). An example of how to use

his module is presented in Listing 7. An max3010x.ErrNotDetected error

code will be returned when trying to read the heart-rate or SpO2 values when

the sensor is not in contact with a person. Moreover, an option to access low-

level features of the sensor is presented in Listing 8.

https://pkg.go.dev/github.com/cgxeiji/lsm6
https://pkg.go.dev/github.com/cgxeiji/lsm6
https://pkg.go.dev/github.com/cgxeiji/max3010x
https://pkg.go.dev/github.com/cgxeiji/max3010x

5.2. Software Development 65

1 func main() {

2 sensor, err := max3010x.New()

3 if err != nil {

4 log.Fatal(err)

5 }

6
7 defer sensor.Close()

8 device, err := sensor.ToMax30102()

9 if errors.Is(err, max3010x.ErrWrongDevice) {

10 fmt.Println("device is not MAX30102")

11 return

12 } else if err != nil {

13 log.Fatal(err)

14 }

15
16 // Get the values for the IR and red LEDs.

17 ir, red, err := device.IRRed()

18 if err != nil {

19 log.Fatal(err)

20 }

21 }

LISTING 8: Example of the max3010x module to read raw in-
formation from the red and IR LEDs.

5.2.4 Validation

Two simple tests were conducted to check if the device could record move-

ments and physiological information correctly. The first one was a motion

test, where the motion sensor was placed over the thumb and 5 simples ges-

tures were done in consecutive order. Each gesture was repeated three times,

with a delay of 1 s between each movement. This information was then plot-

ted and visually compared with video footage, as shown in Figure 5.7.

The second test was a mock experiment where both the device and the

tablet were synchronized. The participants were asked to keep their hand

with the smart bracelet relaxed on top of the table to avoid inducing too

much noisy into the electrodermal and heart-rate sensors. A sample record-

ing of the mock experiment is presented in Figure 5.8. The first two graphs

from the top show the accelerometer and gyroscope information respectively.

The middle graph show the data from the red and infrared LEDs. The next

graph is the information from the electrodermal sensor. Finally, the last graph

shows the times when a suggestion and an action was taken on the maze.

66 Chapter 5. Smart Bracelet

FIGURE 5.7: Sample measurement to verify that each sensor is
correctly recoding the data of the participant.

Source: own.

FIGURE 5.8: Sample measurement to verify that each sensor is
correctly recoding the data of the participant.

Source: own.

67

Chapter 6

Animated Eye

This chapters includes the redesign of the eye of the robot, and how each

animation was created. It also presents the validation study done to test the

effect of LED animations on the emotional feedback of the spherical robot. It

ends with a discussion of the results obtained.

68 Chapter 6. Animated Eye

6.1 Research Motivation

Among the different mediums of non-verbal communication that can be used

to express information in robots, movement, light, and sound can be used to

convey information (Löffler, Schmidt, and Tscharn, 2018). To find the mini-

mal means to create engagement, instead of adding all possible elements to

a robot, this study aims to explore each modality, one by one, adding ex-

tra features only when needed. The previous research by Onchi and Lee

(2019) focused on the study of motion to express emotion-like information.

Adding upon that research and based on the findings of Onchi, Saakes, and

Lee (2020), the goal of this research is to validate if having simple light ani-

mations can enhance the information being express by the spherical robot.

Our working hypothesis is that, by adding lights that resemble the iris of

the eye, it will be possible to simulate the emotional information expressed

through the eyelids (Ekman, Friesen, and Ellsworth, 1972), without the need

to add a physical mechanism which may add upon the complexity of the

robot.

6.2. Design 69

FIGURE 6.1: Robot facing to the front with LED fully bright.
Source: own.

6.2 Design

Light animation was added to the robot as part of the iris on the main eye. A

12 LED ring 5 was placed behind the 3D printed iris 4 . A semi-transparent

black plastic film was glued in front of the iris to cover 3 the LED ring and

smooth the output of the LEDs.

6.2.1 LED Ring: NeoPixel 12 × 5050 RGB

The animations from the eye were done with a NeoPixel Ring 12 × 5050 RGB

LED (Adafruit Industries, 2021c). This ring uses a series of WS2812B RGB

LEDs which have an integrated driver that can control the intensity of the

LED with only one data cable. These drives require a specific communication

timing in order to correctly read the information, thus the custom made ring

module was developed (see Section 4.2.3 for a detailed explanation of this

module).

70 Chapter 6. Animated Eye

FIGURE 6.2: Explosion view of the robot’s Eye. 1 Eye Rim |
2 Cornea | 3 Iris Cover | 4 Iris | 5 LED Ring |

Source: own.

FIGURE 6.3: Original version of the robot’s Eye.
1 Eye Rim | 2 Cornea | 3 Iris |

Source: own.

FIGURE 6.4: NeoPixel ring 12 × 5050 RGB LED with integrated
drivers.

Source: Adafruit Industries (2021c).

6.3. Animations 71

FIGURE 6.5: Motion and LED variations. Front facing full eye
opened (left), downward facing upper eyelid closed (middle),

and upward facing bottom eyelid closed (right).
Source: own.

6.3 Animations

The animation of the body and blinking patterns were based on how actors

and digital animators show emotions (Thomas and Johnston, 1981). There

was no brow present, and the directional focus was coupled with a whole-

body movement of the robot. To express more complex shapes without a

brow, different arc lengths were displayed with the LED rings as shown in

Figure 6.5. Moreover, subtle eye saccades were replaced with bigger move-

ments and body jerks. The color of the LED can affect the emotion being con-

veyed (Hyeon, Pan, and Yoo, 2019; Kim, Kim, and Jo, 2020). In this regard,

a correlation between color and emotion can be made based on Plutchik’s
Wheel of Emotions (Terada, Yamauchi, and Ito, 2012). Thus, to control for

the effect of the color of the LED, the color of the iris was set to a constant

hue of 203 (#009CFF, Deep Sky Blue) to give a neutral impression and the

brightness to the maximum value. Only the shape of the LED ring was mod-

ulated and the brightness was gradually adjusted between transitions (e.g.

blinking) to make the animations smoother. From there, building upon the

results of Onchi and Lee (2019), the following animations were designed:

72 Chapter 6. Animated Eye

FIGURE 6.6: Animation timeline of happy state. Times are
shown in milliseconds.

Source: Onchi, Cornet, and Lee (2021).

FIGURE 6.7: Animation timeline of surprise state. Times are
shown in milliseconds.

Source: Onchi, Cornet, and Lee (2021).

Happy (A) The expression of happiness is in the positive end of the emo-

tional valence scale. Depending on the level of arousal, this expression can

range from relaxation to excitement. To convey the emotion, the robot faces

upwards from an eye level position in 700 ms and then quickly moves left

and right, akin to a happy dog wagging its tail. The bottom half of the LED

ring is turned off to simulate the effect of raised cheeks. The timeline of the

animation is presented in Figure 6.6.

Fear/Surprise (B) Fear is a highly aroused state with a negative valence,

while surprise is a highly aroused state with a neutral valence (Posner, Rus-

sell, and Peterson, 2005). To visually represent this state in the robot, the LED

ring is completely shown and several fast blinks are added to indicate disbe-

lieve. The attentional focus of the robot goes from the person to an upwards

position in around 1 s, and quickly moves left and right while blinking. The

timeline of the animation is presented in Figure 6.7.

6.3. Animations 73

FIGURE 6.8: Animation timeline of sadness state. Times are
shown in milliseconds.

Source: Onchi, Cornet, and Lee (2021).

FIGURE 6.9: Animation timeline of anger state. Times are
shown in milliseconds.

Source: Onchi, Cornet, and Lee (2021).

Sadness (C) Sadness is described as an unpleasant, low aroused emotion (Pos-

ner, Russell, and Peterson, 2005). A slow-paced downward motion can be

used to show this state (Onchi and Lee, 2019). To heighten the effect of look-

ing down and give the illusion of sobbing, the top half of the LED ring is

turned off and the bottom two LEDs change intensity during the animation.

This change is synchronized with the robot slowly moving in small ovals.

The timeline of the animation is presented in Figure 6.8.

Disgust/Anger (D) Both disgust and anger are associated with low valence

and high arousal (Posner, Russell, and Peterson, 2005). Usually, an intense

glare with tighten brows accompany these emotions (Ekman and Friesen,

2003). To simulate the squeeze of the brows, only the bottom middle part of

the LED ring is lighted. At the same time, the robot does a fast-paced up-

wards movement, quickly moves down, and slowly returns up. The timeline

of the animation is presented in Figure 6.9.

74 Chapter 6. Animated Eye

FIGURE 6.10: Animation timeline of confusion state. Times are
shown in milliseconds.

Source: Onchi, Cornet, and Lee (2021).

FIGURE 6.11: Animation timeline of assertion and negation
states. Times are shown in milliseconds.

Source: Onchi, Cornet, and Lee (2021).

Confusion (E) The expression of confusion is not necessarily attached to

an emotional valence or arousal, but still conveys useful information during

communication. To mimic a perplexed gaze, the robot moves slightly up-

wards with all lights in the LED ring fully brightened. Then, a single blink is

shown. After 1 s, the robot blinks twice fast. The timeline of the animation is

presented in Figure 6.10.

Assertion (F) and Negation (G) During communication between two peo-

ple, upwards and downwards gaze aversion can signal a cognitive effort (An-

drist et al., 2014). Based on that, these animations were designed with an

initial downwards motion to convey a thinking process. To express disagree-

ment, the robot looks up and slowly moves left and right with all LED in

the ring turned on, whereas, for agreement, the robot looks up and swiftly

moves left and right with the bottom half of the LED ring turned off. The

timeline of the assertion animation and the one for negation animation are

shown in Figure 6.11.

6.4. Experiment 75

6.4 Experiment

6.4.1 Methodology

A within-subjects experiment with 8 design students (4F / median age: 20–

32) from the University of Tsukuba was conducted between the robot show-

ing only motion feedback (control) and motion with LED feedback (LED).

Participants were asked to sit in front of a 14 inch laptop and watch 28

video clips of a researcher interacting with the robot, while the robot replies

with a specific feedback. To avoid order bias (Furnham, 1986; Krosnick and

Alwin, 1987), the presentation of each video clip was randomized following

the Fisher-Yates shuffling algorithm, which is a randomization scheme that

produces unbiased permutations (Knuth, 1998, p. 145). Each video sample

was muted to avoid any possible context bias caused by stimuli other than

the movement and the LED feedback (Lee, Yang, and Lee, 2019).

After watching one video sample, the participants evaluated the emo-

tional impression of the interaction using the Self-Assessment Manikin (SAM)

(see Subsection 2.5.2). Then, they were asked to write an imaginary dialog or

context, in English, that describes the interaction between the instructor and

the robot. In particular, they were asked:

• “What did the person possibly say to the robot? (You can imagine any situa-

tion)”

• “How did the robot possibly react? (You can imagine any reply)”

The participants could take as much time as necessary to fill the ques-

tionnaires and take breaks in between if required. This survey was pro-

grammed using the Godot game engine. The length of the whole experiment

was around 40 minutes.

76 Chapter 6. Animated Eye

FIGURE 6.12: Video samples showing the robot with and with-
out LED animations.

Source: own.

6.4.1.1 Video Samples

Each video sample was recorded from behind a male and female instructor

doing the same hand gesture and their facial expressions are not shown to

keep a neutral context. Then, the robot replied with an animation with the

LED ring on (target group) or off (control group). Video samples of the ani-

mations were used instead of direct interaction to ensure the consistency of

the animations among the participants.

Given the seven animations presented in Section 6.3, a total of 28 video

samples were recorded (2male/ f emale × 2control/LED × 7animations = 28).

6.5 Results

The results presented are two fold: the emotional scoring of each video sam-

ple, and text analysis of the animations.

6.5. Results 77

TABLE 6.1: Shapiro-Wilk’s Normality Test of SAM Scores

Type Animation Valence Arousal Dominance

Control Angry 0.173 *0.021 0.119
Control Assertion *0.037 *0.017 0.246
Control Confused *0.017 *0.035 0.347
Control Happy 0.188 0.153 *0.073
Control Negation *0.025 0.255 *0.025
Control Sad *0.019 *0.048 *0.044
Control Surprised 0.426 *0.035 *0.049

LED Angry 0.326 *0.039 0.162
LED Assertion *0.039 *0.023 0.066
LED Confused *0.039 *0.023 0.446
LED Happy 0.314 0.066 0.122
LED Negation *0.046 0.095 0.051
LED Sad *0.027 0.516 *0.012
LED Surprised *0.008 *0.012 0.195

*significance level at 0.05

6.5.1 SAM

A Shapiro-Wilk’s normality test, presented in Table 6.1, was performed to

check the normality of the SAM scoring. This highlighted that several sample

scores did not pass the normality test. Therefore, it was decided that the

analysis of the data will be done using a Wilcoxon signed-rank test, rather

than paired t-test, as this test does not assume that the samples are normally

distributed, is capable to work with small sample sizes, and does not require

continuous data.

A Wilcoxon signed rank test (Table 6.2) was conducted to compare the

valence, arousal, and dominance scores of SAM with the control and LED

conditions. The results suggests that the effect of LED (M = 5.0, SD = 1.6)

over the control (M = 4.1, SD = 1.5) condition on the emotional valence is

positive and statistically significant; V = 2658.5, p < 0.001. Also, the effect

of LED (M = 5.7, SD = 1.7) over the control (M = 4.4, SD = 1.7) condition

on the emotional arousal is positive and statistically significant; V = 3392.5,

78 Chapter 6. Animated Eye

TABLE 6.2: Wilcoxon Signed Rank Test of SAM by LED

SAM X̄control (SD) X̄LED (SD) V p

valence 4.1 (1.5) 5.0 (1.6) 2658.5 *0.000
arousal 4.4 (1.7) 5.7 (1.7) 3392.5 *0.000

dominance 4.7 (1.7) 5.1 (1.6) 2422.5 *0.049

*significance level at 0.05

TABLE 6.3: Wilcoxon Signed Rank Test of Valence by LED

Valence X̄control (SD) X̄LED (SD) V p

angry 4.4 (1.4) 5.0 (1.5) 45 0.301
assertion 4.4 (1.2) 5.1 (1.7) 48 0.191
confused 3.8 (1.6) 5.4 (1.1) 55 *0.005

happy 4.1 (1.3) 5.4 (1.9) 64 *0.048
negation 3.8 (1.1) 4.5 (1.2) 69 0.100
sadness 3.3 (1.6) 3.4 (1.5) 68 0.645

surprised 5.2 (1.6) 5.9 (1.5) 52 0.305

*significance level at 0.05

p < 0.001. Finally, the effect of LED (M = 5.1, SD = 1.6) over the control

(M = 4.7, SD = 1.7) condition on the emotional dominance is positive and

statistically significant; V = 2422.5, p = 0.049.

A detailed analysis into the difference of each animation (Figure 6.13)

showed that some animations changed more than others. A Wilcoxon signed

rank test on the valence scores of each animation (Table 6.3) evidenced posi-

tive, statistically significant differences for happycontrol (M = 4.1, SD = 1.3)

and happyLED (M = 5.4, SD = 1.9) conditions (V = 64, p = 0.048); and

confusedcontrol (M = 3.8, SD = 1.6) and confusedLED (M = 5.4, SD = 1.1)

conditions (V = 55, p = 0.005).

In the same manner, a Wilcoxon signed rank test on the arousal scores of

each animation (Table 6.4) evidenced positive, statistically significant differ-

ences for angrycontrol (M = 4.2, SD = 1.3) and angryLED (M = 5.8, SD = 1.7)

conditions (V = 86, p = 0.034); assertioncontrol (M = 4.6, SD = 1.7) and

6.5. Results 79

TABLE 6.4: Wilcoxon Signed Rank Test of Arousal by LED

Arousal X̄control (SD) X̄LED (SD) V p

angry 4.2 (1.3) 5.8 (1.7) 86 *0.034
assertion 4.6 (1.7) 6.5 (1.4) 98 *0.004
confused 2.9 (1.5) 5.3 (1.5) 91 *0.002

happy 5.7 (1.5) 5.9 (1.7) 45 0.661
negation 4.4 (1.5) 5.3 (1.3) 86 *0.037
sadness 4.1 (1.5) 4.3 (1.4) 30 0.797

surprised 4.6 (2.1) 6.4 (0.9) 84 *0.007

*significance level at 0.05

TABLE 6.5: Wilcoxon Signed Rank Test of Dominance by LED

Dominance X̄control (SD) X̄LED (SD) V p

angry 4.5 (1.9) 5.1 (1.6) 64 0.466
assertion 4.4 (1.8) 6.1 (1.3) 100 *0.002
confused 4.1 (1.5) 4.9 (1.4) 51 0.116

happy 6.2 (1.4) 5.5 (1.5) 32 0.183
negation 5.2 (1.6) 4.8 (1.2) 25 0.282
sadness 4.1 (1.4) 3.9 (2.0) 36 0.811

surprised 4.3 (1.4) 5.5 (1.5) 60 *0.017

*significance level at 0.05

assertionLED (M = 6.5, SD = 1.4) conditions (V = 98, p = 0.004); con-

fusedcontrol (M = 2.9, SD = 1.5) and confusedLED (M = 5.3, SD = 1.5)

conditions (V = 91, p = 0.002); negationcontrol (M = 4.4, SD = 1.5) and

negationLED (M = 5.3, SD = 1.3) conditions (V = 86, p = 0.037); and sur-

prisedcontrol (M = 4.6, SD = 2.1) and surprisedLED (M = 6.4, SD = 0.9)

conditions (V = 84, p = 0.007).

Finally, a Wilcoxon signed rank test on the dominance scores of each an-

imation (Table 6.5) showed positive, statistically significant differences for

assertioncontrol (M = 4.4, SD = 1.8) and assertionLED (M = 6.1, SD = 1.3)

conditions (V = 100, p = 0.002); and surprisedcontrol (M = 4.3, SD = 1.4)

and surprisedLED (M = 5.5, SD = 1.5) conditions (V = 60, p = 0.017).

80 Chapter 6. Animated Eye

FIGURE 6.13: Box-plot of the scores of SAM on the emotional
impression of each animation.

Source: own.

6.5. Results 81

TABLE 6.6: Most Common Unique Words per Animation

Animation Control LED

angry can, look, shopping, think,
no

find, think, wired, you,
maybe

assertion like, question, joke, think-
ing, wait

let, think, cat, do, like

confused ok, answer, ah, under-
stand, yes

idea, let, like, maybe, the

happy question, thing, answer,
do, like

question, something,
think, happy, look

negation question, negative, no,
show, sorry

look, question, no, sur-
prised, thinking

sadness yes, answer, difficult, terri-
ble, sad

sad, sorry, embarrassed,
promise, seemed

surprised activated, surprised, can,
like, reacted

like, task, want, excited,
wow

6.5.2 Text Analysis

Each participant was asked to write a short imaginary dialog between the

person and the robot after watching each sample video. Different adjectives

and nouns were used to describe each interaction. These dialogues were

evaluated using the NRC Valence, Arousal, and Dominance (NRC-VAD) lexi-

con (Mohammad, 2018; Mohammad, 2020), available from the textdata pack-

age (Hvitfeldt and Silge, 2020) of R Studio. This lexicon contains a list of

words scored from 0.0 (lowest VAD) to 1.0 (highest VAD). The participants

were free to write any type of dialog. The following text is an example of the

dialog created for the LED Surprised animation:

• Person: “See! There is a monkey running on the road.”

• Robot: “Where? Where?”

The dialogues were tokenized, and English stop words cleaned, using the

tm (Feinerer, Hornik, and Artifex Software, Inc., 2020) and stopwords (Benoit,

Muhr, and Watanabe, 2021) packages from R Studio. The most common

82 Chapter 6. Animated Eye

words across all video samples were “I”, “asked”, “robot”, “person”, and “know”.

The five most common unique words per animation are presented in Ta-

ble 6.6. Missing scores of sentences that did not contain any words from

the NRC-VAD lexicon were assumed to be neutral in valence, arousal, and

dominance. These sentences were assigned a score of 0.5 for each dimension.

The general scoring of each animation is presented in Figure 6.14. A paired

samples t-test was conducted to compare the score of NRC-VAD in control

and LED conditions. There were no statistically significant differences in the

emotional evaluation of the texts, except for the valence value of assertion

control (M = 0.54, SD = 0.15) and assertion LED (M = 0.63, SD = 0.13)

conditions; t(15) = 3.44, p = 0.004. A discussion of these results is presented

in Section 6.6.

6.5. Results 83

FIGURE 6.14: Box-plot of the scores of NRC-VAD on the context
of each animation.

Source: own.

84 Chapter 6. Animated Eye

6.6 Discussion

The results showed that, in general, adding light feedback raises the emo-

tional valence and arousal of the emotion being expressed. Also, some of the

animations’ dominance increased if light feedback is added.

When looking at each animation in detail, adding the LED ring raised the

valence of happy and confused animations, from negative to slightly positive

scores. On the other hand, the arousal level of all animations increased by 0.9

points or more, except for happy and sad animations. Finally, the emotional

dominance for surprised and assertion increased.

Because of the nature of the Circumplex Model of Affection1, an exact cat-

egorization of an emotion to a numerical value on the valence-arousal scale

cannot be made. However, it is possible to show tendencies toward a type of

emotion. According to Russell (1980), anger tends toward a slightly negative

valence and slightly high arousal, happiness tends toward positive valence

and slightly high arousal, sadness tends toward a negative valence and neu-

tral arousal, and surprise tends toward a slightly positive valence and high

arousal2.

When comparing the average SAM scores of the emotions expressed by

the robot (Tables 6.3 and 6.4) and the placement on the Circumplex Model

of Affection suggested by Russell (1980), it is possible to see that the angry

animation is closer the expected valence-arousal state when the LED is used,

while the sad animation is closer to the expected valence-arousal state for the

control robot. An interesting effect of the LED can be seen for the surprised

animation, which participants considered to be closer to excited, while the

happy animation seemed to be closer to astonished.

1See Section 2.5.1 for more details.
2See Section 2.5.1 for a visual representation of this scale.

6.6. Discussion 85

These results go in line with studies about light in human-robot commu-

nication (Baraka, Paiva, and Veloso, 2015; Funakoshi et al., 2008; Song and

Yamada, 2017) in which lights and colors are used to increase non-verbal ex-

pressions. It is worth noting that there was no significant change in the emo-

tional impression of sadness, which could imply that slow paced negative

motions are not affected by adding LED feedback. What is more, light feed-

back made informational movements (confusion, assertion, and negation)

express more neutral valences, making it less likely to misunderstand those

motions as negative emotions. In other words, it is possible to include light

animations to adjust the intensity of an emotion and to create mixed emo-

tional states within robots. Having a variable output other than just move-

ment may increase the animacy perceived, thus creating a more engaging

experience.

In summary, this study evaluated the effects of adding light animation

feedback to the movements of a single-eyed spherical robot. The results indi-

cated that adding an LED changes the emotional impression of the robot. It is

possible to use this stimulus to modulate the valence and arousal of the emo-

tion being expressed and create a tool to dynamically change the emotion of

a non-humanoid robot using movement, light, and animations.

Some of the limitations of this study is the restricted number of partici-

pants and the limited interaction they had with the robot to evaluate the an-

imations. It is possible that forming a long-term bond with the robot might

change or reinforce the information that the robot is trying to express. More

research is needed in this regard.

87

Chapter 7

Human-Robot Interaction

This chapters starts with the design of the cooperative game used on the

study on human-robot interaction. It has a section on the development and

validation of the smart bracelet used to measure physiological data. A dis-

cussion of the results is presented at the end of the chapter.

88 Chapter 7. Human-Robot Interaction

7.1 Research Motivation

After identifying the minimal means to express acceptable non-verbal infor-

mation, the next goal is to verify if those elements can be used to create en-

gagement in human-robot interactions. As presented in Section 2.6.3, a kind

of interaction that promotes collaboration between people and other agents

is a cooperative game. These activities have been used in Human-Robot In-

teraction research (Lee and Hwang, 2008; Wainer et al., 2013; Jeri et al., 2017;

Paetzel, Perugia, and Castellano, 2020) and it was deemed fitting to study

how the interaction experience with the robot compares to interacting with a

computer and a person.

Our working hypothesis is that the interaction experience with the robot

will be in between interacting with a person and a computer. This research

also aims to verify the interaction on a subjective and biological level by using

validated questionnaires1 and biometric sensors2.

7.2 Cooperative Game Design

In this research, a cooperative maze solving game3, developed in the Godot

Game Engine (Godot, 2021), was used in which a person (Player A) and a

game partner (Player B) cooperate with each other to escape a randomly

generated maze. In particular, Player B is randomly selected between the

spherical robot, a computer, or a person (research instructor) to study how

the impression of Player A changes when playing the game with different

partners.

1SAM (Section 2.5.2) and WAI (Section 2.6.1)
2Using the smart bracelet (Chapter 5).
3Section 2.6.3 has a detailed explanation about cooperative games.

7.2. Cooperative Game Design 89

This collaborative maze solving game consisted of three sessions with five

stages. Each stage had one ideal path leading to the exit with several dead

ends along the way (Figure 7.2). Two players (Player A and Player B) collab-

orate to solve the maze in the least amount of steps possible. The challenge

consisted in that Player A could only decide which way to go, but did not

have any information about the maze (Figure 7.5), while Player B was only

aware of the general direction of the exit but was not aware of which path

was the correct one (Figure 7.3). During the experiment, it was up to Player

A to decide whether to follow Player B’s guidance or not.

To control for unwanted effects caused by the decision making process of

the robot, computer, and human, the same underlying algorithm was used

regardless of who was Player B. During the game, Player B suggested the

correct path 4 out of 5 times. The suggested path was randomized using the

Fisher-Yates shuffling algorithm (Knuth, 1998, p. 145). The decision time of

Player B was kept between 1 s and 3 s.

90 Chapter 7. Human-Robot Interaction

FIGURE 7.1: Layout of the collaborative game.
Source: own

FIGURE 7.2: Randomly generated maze showing the correct
path from the entrance (green) leading to the exit (red), and sev-

eral dead ends attached along the way.
Source: own

7.2. Cooperative Game Design 91

FIGURE 7.3: Screen seen by Player B, showing the general di-
rection of the exit of the maze.

Source: own

FIGURE 7.4: Thinking animation shown to Player A while wait-
ing for Player B to maze a suggestion

Source: own

FIGURE 7.5: Selection screen seen by Player A, showing the
direction suggested by Player B.

Source: own

92 Chapter 7. Human-Robot Interaction

7.3 Methodology

To research the difference when people interact with a sociable robot, com-

pared to a computer or human, a within-subjects experiment with 24 partic-

ipants (12F / medianage = 25–29) from the University of Tsukuba was con-

ducted. The purpose of this study was to use a collaborative game-based

interaction to measure the trust and emotional changes of a person toward

human and non-human partners. In particular, this study focused on the

robot’s motion and light feedback to see if the person’s trust in the robot can

be improved.

7.3.1 Experimental Procedure

The procedure of the experiment was be divided in four major parts, shown

in the flowchart of Figure 7.6. From the top, during the orientation phase, an

explanation of the research and its procedure was read aloud to the partici-

pant either in Japanese (Appendix B.2) or English (Appendix B.3). Then, the

participant could choose to take part or not in the experiment. After signing

the Agreement Form (in Japanese Appendix B.4 or English Appendix B.5),

the participant was asked to complete the RoSAS survey (see more at Sec-

tion 2.6.2).

During the familiarization phase, a detailed explanation on the use of

the tablet was given. The instructor explained how to solve the maze with

a partner, and placed the smart bracelet (see more at Section 5) on the non-

dominant hand of the participant. After that, the participant had a practice

period to get familiar with the system. During this practice session, the per-

son solved the maze with the instructor until they felt comfortable.

7.3. Methodology 93

Orientation

Familiarization

Cooperative Maze Game

Robot PartnerComputer Partner Person Partner

Debriefing

START

Explanation of the research

Sign the Agreement Form

Fill RoSAS

Explain how to solve the maze

Practice Session

Give a name and gender to the robot

Maze Solving

Fill SAM, and WAI

Present the computer

Maze Solving

Fill SAM, and WAI

Present the name of person

Maze Solving

Fill SAM, and WAI

Fill RoSAS

Fill demography form

Interview the participant

END

FIGURE 7.6: Flow of the interaction experiment.
Source: own

94 Chapter 7. Human-Robot Interaction

Once the participant got used to the interface, the collaborative maze

phase began. A random partner (i.e. person, robot, or computer) was as-

signed to solve the maze together with the participant. The participant was

asked to solve this maze five times with each partner. In general, the par-

ticipants took less than 5 min to solve the maze five times with each partner.

After each session was completed, the participant was asked to fill SAM and

WAI keeping in mind what they experienced during the session (see Sec-

tions 2.5.2 and 2.6.1 to know more about SAM and WAI respectively). The

participant was asked if they required to take a small break to rest before

proceeding to the next session.

After solving the maze with all partners, the debriefing phase started. The

participant was asked to fill the RoSAS questionnaire once again. Finally,

they filled a demography form, followed by an interview. The demographic

survey was asked at the end of the experiment to avoid any stereotype bias

caused by gender or ethnicity (Shih, Pittinsky, and Ambady, 1999; Gibson,

Losee, and Vitiello, 2014). Age was retrieved as a range to decrease the level

of personal information collected.

7.3.2 Robot Interaction

The spherical robot was programmed with the seven animations studied in

Chapter 6. These animations were shown during the thinking time of the

robot, before it made a suggestion. To ensure that no hint regarding the maze

was given by the robot, the animation was randomly chosen. These anima-

tions were used because they provided a combination of emotion-like expres-

sions and informational expressions. In this sense, the participants were free

to attach any meaning to the reaction presented by the robot.

On the other hand, previous researches have shown that people tend to

7.3. Methodology 95

unconsciously anthropomorphize computers and apply social rules (Nass

and Moon, 2000), while names and genders closer to the user’s inner group

change the perception toward the robot (Eyssel and Kuchenbrandt, 2011;

Eyssel et al., 2012). In this regard, participants were asked to give a name

and gender of their liking to the robot before interacting with it to study

their first impressions toward it. Moreover, this approach was also used by

Onchi and Lee (2019) to study motion in the spherical robot. Similarly, when

interacting with the other partners, the participants addressed the person by

their first name, while referring to the computer as ‘computer’.

7.3.3 Physiological Data Measurement

The participant was asked to wear a custom-developed smart bracelet (see

Section 5) to measure the heart-rate, electrodermal activity (EDA), and the

movement of the hand. This information was used to validate the subjec-

tive surveys with unconscious reactions from the participant. In particular,

this data was used to analyze the changes in arousal4 over time during the

activity.

To keep the information collected by the smart bracelet as clean as pos-

sible, the experimental room had curtains that blocked the view to outside

distractions. Furthermore, the participants were asked to wear the device on

their non-dominant hand and place it on top of the table in a relaxed manner.

The participants wore the device during the practice session to get accus-

tomed to it and the data collected during this period was used to calibrate

the device. Finally, the time between interactions was filled with the survey,

which allowed the biometric data to settle to baseline levels. Nevertheless,

4See Section 2.5.3 for more details on the relationship between arousal and physiological
measurements.

96 Chapter 7. Human-Robot Interaction

FIGURE 7.7: Participant interacting with the robot while solv-
ing the collaborative maze game.

Source: own

external factors outside the control of the researchers made some of the data

too noisy to be analyzed. This is addressed in Section 8.4: Limitations.

7.3.4 Health Considerations

Because the experiment was conducted during the pandemic of COVID-

19, several measures to prevent the spread of pandemic diseases were con-

ducted, according to the guidelines of the University of Tsukuba (2021).

First, the instructor measured the temperature of the participant to ensure

that it was within the accepted body temperature range. Also, the experi-

ment was conducted in a well ventilated room, and a distance of 2 m was

kept between the instructor and the participant at all times. All the equip-

ment and furniture used during the experiment was properly disinfected

with alcohol before and after the experiments. Both the participant and the

instructor wore facial masks throughout the whole experiment.

7.4. Results 97

FIGURE 7.8: Types of names and genders given to the robot.
Source: own.

7.4 Results

As introduced in Section 7.3, each participant was asked to play a cooperative

game with a person, a computer, and the robot to study how the interaction

with a minimalistic robot compares to those other agents. The person and the

computer were used as extreme baselines for a complete living agent and an

inanimate agent respectively. In particular, the aim was to see how engaging

the interaction with the robot was.

7.4.1 Subjective Impressions

In the experiment, participants were asked to name the robot and give it a

gender before doing the cooperative game. This was done without any prior

knowledge of the robot to test the first impression cause by the design of the

robot.

Among the names given to the robot 12% were related to the color of the

robot. 17% referred to the geometry or shape of the robot as in being round

or spherical. Another 25% took elements familiar with popular characters

from animated series or video games and used those names. Finally, 42%

98 Chapter 7. Human-Robot Interaction

(A) Wheatley (B) Medama Oyaji (C) Boku-kun

(D) Yatora (E) EVE

FIGURE 7.9: Example of the characters used when naming the
robot. (A) character from the video game “Portal 2”. (B) char-
acter from the franchise “GeGeGe no Kitaro”. (C) character from
the video game “My Summer Vacation”. (D) character from the
franchise “Blue Period”. (E) character from the movie “Wall-E”.

Source: (A) Combine Overwiki (2011), (B) GeGeGe no Kitaro Wiki (2021),
(C) Denshinbashira (2016), (D) KODANSHA (2021),

(E) Pixar Wiki (2021)

used a nickname either based on the perceived gender of the robot or an

acquaintance of the participant.

Regarding the perceived gender of the robot, 21% thought of the robot as

female, citing reasons like “she looks curious and looks around all the time” or

“the shape and material (plastic) are really soft, which makes me think of a girl”. On

the other hand, 71% of the participants thought of the robot as male, stating

that “his eye is blue, which is the color of boys” and “he is so energetic, moving

around like a little boy”. Finally, a 8% of the surveyed thought of the robot as

gender neutral because “robots don’t have gender” or “I don’t think we can assign

a gender, everyone is gender neutral these days”.

7.4. Results 99

TABLE 7.1: Name and Gender of the Robot

Gender Name Category Notes

female シロちゃん
(Shiro-chan)

color shiro is Japanese for white and
chan is a Japanese suffix denot-
ing endearment

female アオちゃん
(Ao-chan)

color ao is Japanese for blue and chan
is a Japanese suffix denoting en-
dearment

female あい (Ai) name ai is Japanese for love
female 小熊 (Xiaoxiong) name Xiaoxiong is Chinese for little bear
female ロロちゃん

(Roro-chan)
name Roro is a Japanese nickname and

chan is a Japanese suffix denot-
ing endearment

male Mr. Ball geometry based on the shape of the robot
male まるくん

(Maru-kun)
geometry maru is Japanese for round and

kun is a Japanese suffix denoting
endearment

male タマちゃん
(Tama-chan)

geometry tama is Japanese for round and
chan is a Japanese suffix denot-
ing endearment

male White Ball color/geometry based on the shape and color of
the robot

male Wheatley character based on a video game character
(see Figure 7.9a)

male 目玉おやじ
(Medama Oyaji)

character based on an animated character
(see Figure 7.9b)

male ボクくん
(Boku-kun)

character based on video game character
(see Figure 7.9c)

male 八虎
(Yatora)

character based on an animated character
(see Figure 7.9d)

male EVE character based on a video game character
(see Figure 7.9e)

male Park name Park is an Korean surname
male Andrea name Andrea is an Italian name
male Bob name Bob is an American name
male Li name Li is a common Chinese name

for males
male 太郎

(Tarou)
name Tarou is a common Japanese

name for males
male アキオ

(Akio)
name Akio is a Japanese name

neutral しろ (Shiro) color shiro is Japanese for white

neutral Bubbles geometry based on the shape

100 Chapter 7. Human-Robot Interaction

TABLE 7.2: Shapiro-Wilk’s Normality Test of RoSAS Scores

Score W p

competencebefore 0.98 0.846
competenceafter 0.96 0.440

warmthbefore 0.97 0.674
warmthafter 0.97 0.629

discomfortbefore 0.96 0.453
discomfortafter 0.92 0.067

*significance level at 0.05

7.4.2 Robotic Social Attributes Scale

The Robotic Social Attributes Scale (RoSAS)5 measures the social attributes

of robots in three dimensions: competence, warmth, and discomfort.

A standardized Cronbach’s α was calculated per dimension to verify the

reliability of the survey. According to Carpinella et al. (2017), the reliability

of RoSAS per factor is 0.84 for competence, 0.91 for warmth, and 0.82 for dis-

comfort. The reliability calculated in this experiment showed a Cronbach’s α

of 0.85 for competence, 0.74 for warmth, and 0.75 for discomfort. Given that

these values were within the acceptable range of 0.70 to 0.95 (Tavakol and

Dennick, 2011), this survey was considered reliable for this thesis.

A Shapiro-Wilk’s normality test, presented in Table 7.2, was performed to

check the normality of the RoSAS scoring. The results did not reject the null

hypothesis, therefore the scores were considered to be normally distributed.

A paired t-test (Table 7.3) was conducted to compare the competence,

warmth, and discomfort scores of RoSAS before and after interacting with

the robot. There was a positive, medium, and statistically significant differ-

ence in the perceived warmth toward the robot before (X̄ = 4.0, SD = 0.9)

and after (X̄ = 4.0, SD = 0.9) interacting with it (∆means = 0.42, 95% CI

[0.1, 0.8], t23 = 2.43, p = 0.023 Cohen’s d = 0.51, 95% CI [0.07, 0.94]). No

5Check Section 2.6.2 for more details on this survey.

7.4. Results 101

TABLE 7.3: Paired T-Test of RoSAS when Interacting with the
Robot

RoSAS X̄before (SD) X̄after (SD) t(23) p

competence 4.5 (1.0) 4.8 (1.1) 1.71 0.100
warmth 4.0 (0.9) 4.4 (0.9) 2.43 *0.023

discomfort 2.5 (1.0) 2.3 (1.0) -1.51 0.144

*significance level at 0.05

FIGURE 7.10: Box-plot of the scores of RoSAS on the social im-
pression of the robot before and after the experiment.

Source: own.

significant differences were found for the other dimension. A visual compar-

ison of the results is presented in Figure 7.10 and the effect size was labeled

following Cohen (1988) recommendations.

7.4.3 Robot Gender and RoSAS

To check if the initial impression of the participant had and effect on the per-

ceived gender of the robot, a t-test (Table 7.4) was conducted to compare

the competence, warmth, and discomfort scores of RoSAS for the female and

102 Chapter 7. Human-Robot Interaction

TABLE 7.4: T-Test of RoSAS by Gender Before Interacting with
the Robot

RoSAS X̄female (SD) X̄male (SD) t(8) p

competence 4.2 (0.9) 4.6 (1.0) -0.85 0.419
warmth 3.3 (0.8) 4.1 (0.9) -1.88 0.098

discomfort 2.1 (0.7) 2.6 (1.1) -1.23 0.245

*significance level at 0.05

FIGURE 7.11: Box-plot of the scores of RoSAS on the social im-
pression of the robot by gender before the experiment.

Source: own.

male robot gender before interacting with it. Neutral gender was omitted

because of the low number of participants that thought of the robot as gen-

der neutral. No significant differences were found for the scores of RoSAS. A

visual comparison of the results is presented in Figure 7.11.

A similar result can be seen after the participants interacted with the

robot. A t-test (Table 7.5) was conducted to compare the competence, warmth,

and discomfort scores of RoSAS for the female and male robot gender after

interacting with it. Neutral gender was omitted because of the low number

7.4. Results 103

TABLE 7.5: T-Test of RoSAS by Gender After Interacting with
the Robot

RoSAS X̄female (SD) X̄male (SD) t(8) p

competence 4.9 (1.0) 4.6 (1.2) 0.62 0.552
warmth 4.3 (0.7) 4.4 (1.0) -0.28 0.782

discomfort 1.9 (0.6) 2.4 (1.1) -1.34 0.204

*significance level at 0.05

FIGURE 7.12: Box-plot of the scores of RoSAS on the social im-
pression of the robot by gender after the experiment.

Source: own.

of participants that thought of the robot as gender neutral. No significant

differences were found for the scores of RoSAS. A visual comparison of the

results is presented in Figure 7.12.

Finally, a statistical analysis of the scores of RoSAS by robot name cate-

gory was not conclusive because of the diverse number of categories and low

number of participants in each category.

104 Chapter 7. Human-Robot Interaction

FIGURE 7.13: Box-plot of the valence during the interaction
with different partners.

Source: own.

7.4.4 Self-Assessment Manikin

7.4.4.1 Valence

A Linear Mixed Model6 (estimated using REML7 and nloptwrap8 optimizer)

using the R package lmer4 (Bates et al., 2015) was fitted to predict the ef-

fects of the partner on the valence of the interaction. The specification of the

model was: Valence ~ Partner + (1|Participant). Standardized param-

eters were obtained by fitting the model on a standardized version of the

dataset, while confidence intervals and p-values were computed using the

Wald approximation.

The model’s total explanatory power is substantial (R2
conditional = 0.330)

and the part related to the fixed effects alone is R2
marginal = 0.123. The model’s

intercept, corresponding to when the partner was the computer is estimate =

5.46 (95% CI [4.78, 6.14], t = 15.96, p < 0.001). There were positive and

statistically significant main effects when the partner was a person (β = 1.13,

95% CI [0.28, 1.97], t = 2.66, p = 0.010) and when the partner was the robot

(β = 1.46, 95% CI [0.61, 2.30], t = 3.45, p = 0.001). A summary of the analysis

is presented in Table 7.6 and its corresponding box-plot in Figure 7.13.

6See Section 2.7.1 for more details about this analysis method.
7REML: method for estimating variance in models with random effects.
8Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

7.4. Results 105

TABLE 7.6: LMM of Valence by Partner

Predictors Estimate CI p

computer (intercept) 5.46 4.78–6.14 <0.001
person 1.13 0.28–1.97 *0.010
robot 1.46 0.61–2.30 *0.001

Random Effects

σ2 2.14
τ00 0.66
ICC 0.24
R2

marginal/R2
conditional 0.123 / 0.330

*significance level at 0.05

TABLE 7.7: Pairwise Comparison of Valence by Partner

Contrasts ∆mean SE CI pa

person - computer 1.1 0.4 0.1–2.2 *0.032
robot - computer 1.5 0.4 0.4–2.5 *0.004
robot - person 0.3 0.4 -0.7–1.4 1.000

*significance level at 0.05
a Bonferroni adjustment

A post hoc analysis to test pairwise comparisons with Bonferroni ad-

justment using the R package lsmeans (Lenth, 2016) evidenced that there

were statistically significant differences between interacting with the robot

(LSM = 6.9, SE = 0.3, CI [6.2, 7.6]) compared to the computer (LSM = 5.5,

SE = 0.3, CI [4.8, 6.1]) on the valence (p = 0.004); and the person (LSM = 6.6,

SE = 0.3, CI [5.9, 7.3]) compared to the computer (LSM = 5.5, SE = 0.3, CI

[4.8, 6.1]) on the valence (p = 0.032). No significant differences were found

for the other combinations. Table 7.7 presents a summary of the analysis.

106 Chapter 7. Human-Robot Interaction

FIGURE 7.14: Box-plot of the arousal during the interaction
with different partners.

Source: own.

7.4.4.2 Arousal

A Linear Mixed Model9 (estimated using REML10 and nloptwrap11 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict

the effects of the partner on the arousal of the interaction. The specification

of the model was: Arousal ~ Partner + (1|Participant). Standardized

parameters were obtained by fitting the model on a standardized version of

the dataset, while confidence intervals and p-values were computed using

the Wald approximation.

The model’s total explanatory power is substantial (R2
conditional = 0.596)

and the part related to the fixed effects alone is R2
marginal = 0.016. The model’s

intercept, corresponding to when the partner was the computer is estimate =

4.42 (95% CI [3.42, 5.42], t = 8.81, p < 0.001). There were positive and statis-

tically non-significant main effects when the partner was a person (β = 0.42,

95% CI [−0.49, 1.32], t = 0.92, p = 0.362) and when the partner was the robot

(β = 0.75, 95% CI [−0.16, 1.66], t = 1.65, p = 0.103). A summary of the anal-

ysis is presented in Table 7.8 and its corresponding box-plot in Figure 7.14.

9See Section 2.7.1 for more details about this analysis method.
10REML: method for estimating variance in models with random effects.
11Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

7.4. Results 107

TABLE 7.8: LMM of Arousal by Partner

Predictors Estimate CI p

computer (intercept) 4.42 3.42–5.42 <0.001
person 0.42 -0.49–1.32 0.362
robot 0.75 -0.16–1.66 0.103

Random Effects

σ2 2.48
τ00 3.56
ICC 0.59
R2

marginal/R2
conditional 0.016 / 0.596

*significance level at 0.05

7.4.4.3 Dominance

A Linear Mixed Model12 (estimated using REML13 and nloptwrap14 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict the

effects of the partner on the dominance of the interaction. The specification

of the model was: Dominance ~ Partner + (1|Participant). Standardized

parameters were obtained by fitting the model on a standardized version of

the dataset, while confidence intervals and p-values were computed using

the Wald approximation.

The model’s total explanatory power is substantial (R2
conditional = 0.325)

and the part related to the fixed effects alone is R2
marginal = 0.023. The model’s

intercept, corresponding to when the partner was the computer is estimate =

5.08 (95% CI [4.30, 5.86], t = 13.01, p < 0.001). There were negative and

statistically non-significant main effects when the partner was a person (β =

−0.71, 95% CI [−1.63, 0.21], t = −1.54, p = 0.128) and when the partner

was the robot (β = −0.25, 95% CI [−1.17, 0.67], t = −0.54, p = 0.588). A

12See Section 2.7.1 for more details about this analysis method.
13REML: method for estimating variance in models with random effects.
14Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

108 Chapter 7. Human-Robot Interaction

FIGURE 7.15: Box-plot of the dominance during the interaction
with different partners.

Source: own.

TABLE 7.9: LMM of Dominance by Partner

Predictors Estimate CI p

computer (intercept) 5.08 4.30–5.86 <0.001
person -0.71 -1.63–0.21 0.128
robot -0.25 -1.17–0.67 0.588

Random Effects

σ2 2.53
τ00 1.13
ICC 0.31
R2

marginal/R2
conditional 0.023 / 0.325

*significance level at 0.05

summary of the analysis is presented in Table 7.9 and its corresponding box-

plot in Figure 7.15.

7.4. Results 109

FIGURE 7.16: Box-plot of the task during the interaction with
different partners.

Source: own.

7.4.5 Working Alliance Inventory

7.4.5.1 Task

A Linear Mixed Model15 (estimated using REML16 and nloptwrap17 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict the

effects of the partner on the task of the interaction. The specification of the

model was: Task ~ Partner + (1|Participant). Standardized parameters

were obtained by fitting the model on a standardized version of the dataset,

while confidence intervals and p-values were computed using the Wald ap-

proximation.

The model’s total explanatory power is substantial (R2
conditional = 0.547)

and the part related to the fixed effects alone is R2
marginal = 0.060. The model’s

intercept, corresponding to when the partner was the computer is estimate =

13.25 (95% CI [11.98, 14.52], t = 20.84, p < 0.001). There were positive and

statistically significant main effects when the partner was a person (β = 1.92,

95% CI [0.67, 3.16], t = 3.07, p = 0.003) and positive and statistically non-

significant main effects when the partner was the robot (β = 1.08, 95% CI

[−0.16, 2.33], t = 1.74, p = 0.087). A summary of the analysis is presented in

Table 7.10 and its corresponding box-plot in Figure 7.16.

15See Section 2.7.1 for more details about this analysis method.
16REML: method for estimating variance in models with random effects.
17Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

110 Chapter 7. Human-Robot Interaction

TABLE 7.10: LMM of Task by Partner

Predictors Estimate CI p

computer (intercept) 13.25 11.98–14.52 <0.001
person 1.92 0.67–3.16 *0.003
robot 1.08 -0.16–2.33 0.087

Random Effects

σ2 4.67
τ00 5.02
ICC 0.52
R2

marginal/R2
conditional 0.060 / 0.547

*significance level at 0.05

TABLE 7.11: Pairwise Comparison of Task by Partner

Contrasts ∆mean SE CI pa

person - computer 1.9 0.6 0.4–3.5 *0.011
robot - computer 1.1 0.6 -0.5–2.6 0.268
robot - person -0.8 0.6 -2.4–0.7 0.565

*significance level at 0.05
a Bonferroni adjustment

A post hoc analysis to test pairwise comparisons with Bonferroni ad-

justment using the R package lsmeans (Lenth, 2016) evidenced that there

were statistically significant differences between interacting with the per-

son (LSM = 15.2, SE = 0.6, CI [13.9, 16.4]) compared to the computer

(LSM = 13.3, SE = 0.6, CI [12.0, 14.5]) on the task (p = 0.011). No signifi-

cant differences were found for the other combinations. Table 7.11 presents a

summary of the analysis.

7.4. Results 111

FIGURE 7.17: Box-plot of the goal during the interaction with
different partners.

Source: own.

7.4.5.2 Goal

A Linear Mixed Model18 (estimated using REML19 and nloptwrap20 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict the

effects of the partner on the goal of the interaction. The specification of the

model was: Goal ~ Partner + (1|Participant). Standardized parameters

were obtained by fitting the model on a standardized version of the dataset,

while confidence intervals and p-values were computed using the Wald ap-

proximation.

The model’s total explanatory power is substantial (R2
conditional = 0.527)

and the part related to the fixed effects alone is R2
marginal = 0.083. The model’s

intercept, corresponding to when the partner was the computer is estimate =

12.96 (95% CI [11.92, 14.00], t = 24.84, p < 0.001). There were positive and

statistically significant main effects when the partner was a person (β = 1.79,

95% CI [0.73, 2.85], t = 3.38, p = 0.001) and when the partner was the robot

(β = 1.37, 95% CI [0.32, 2.43], t = 2.59, p = 0.012). A summary of the analysis

is presented in Table 7.12 and its corresponding box-plot in Figure 7.17.

A post hoc analysis to test pairwise comparisons with Bonferroni ad-

justment using the R package lsmeans (Lenth, 2016) evidenced that there

were statistically significant differences between interacting with the robot

18See Section 2.7.1 for more details about this analysis method.
19REML: method for estimating variance in models with random effects.
20Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

112 Chapter 7. Human-Robot Interaction

TABLE 7.12: LMM of Goal by Partner

Predictors Estimate CI p

computer (intercept) 12.96 11.92–14.00 <0.001
person 1.79 0.73–2.85 *0.001
robot 1.37 0.32–2.43 *0.012

Random Effects

σ2 3.37
τ00 3.16
ICC 0.48
R2

marginal/R2
conditional 0.083 / 0.527

*significance level at 0.05

TABLE 7.13: Pairwise Comparison of Goal by Partner

Contrasts ∆mean SE CI pa

person - computer 1.8 0.5 0.5–3.1 *0.004
robot - computer 1.4 0.5 0.1–2.7 *0.038
robot - person -0.4 0.5 -1.7–0.9 1.000

*significance level at 0.05
a Bonferroni adjustment

(LSM = 14.3, SE = 0.5, CI [13.3, 15.4]) compared to the computer (LSM =

13.0, SE = 0.5, CI [11.9, 14.0]) on the goal (p = 0.038); and the person (LSM =

14.8, SE = 0.5, CI [13.7, 15.8]) compared to the computer (LSM = 13.0,

SE = 0.5, CI [11.9, 14.0]) on the goal (p = 0.004). No significant differences

were found for the other combinations. Table 7.13 presents a summary of the

analysis.

7.4.5.3 Bond

A Linear Mixed Model21 (estimated using REML22 and nloptwrap23 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict the

effects of the partner on the bond of the interaction. The specification of the

21See Section 2.7.1 for more details about this analysis method.
22REML: method for estimating variance in models with random effects.
23Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

7.4. Results 113

FIGURE 7.18: Box-plot of the bond during the interaction with
different partners.

Source: own.

TABLE 7.14: LMM of Bond by Partner

Predictors Estimate CI p

computer (intercept) 11.54 10.42–12.66 <0.001
person 2.96 1.74–4.18 *0.000
robot 2.71 1.49–3.93 *0.000

Random Effects

σ2 4.48
τ00 3.09
ICC 0.41
R2

marginal/R2
conditional 0.194 / 0.523

*significance level at 0.05

model was: Bond ~ Partner + (1|Participant). Standardized parameters

were obtained by fitting the model on a standardized version of the dataset,

while confidence intervals and p-values were computed using the Wald ap-

proximation.

The model’s total explanatory power is substantial (R2
conditional = 0.523)

and the part related to the fixed effects alone is R2
marginal = 0.194. The model’s

intercept, corresponding to when the partner was the computer is estimate =

11.54 (95% CI [10.42, 12.66], t = 20.55, p < 0.001). There were positive and

statistically significant main effects when the partner was a person (β = 2.96,

95% CI [1.74, 4.18], t = 4.84, p = 0.000) and when the partner was the robot

(β = 2.71, 95% CI [1.49, 3.93], t = 4.43, p = 0.000). A summary of the analysis

is presented in Table 7.14 and its corresponding box-plot in Figure 7.18.

114 Chapter 7. Human-Robot Interaction

TABLE 7.15: Pairwise Comparison of Bond by Partner

Contrasts ∆mean SE CI pa

person - computer 3.0 0.6 1.4–4.5 *0.000
robot - computer 2.7 0.6 1.2–4.2 *0.000
robot - person -0.2 0.6 -1.8–1.3 1.000

*significance level at 0.05
a Bonferroni adjustment

A post hoc analysis to test pairwise comparisons with Bonferroni ad-

justment using the R package lsmeans (Lenth, 2016) evidenced that there

were statistically significant differences between interacting with the robot

(LSM = 14.2, SE = 0.6, CI [13.1, 15.4]) compared to the computer (LSM =

11.5, SE = 0.6, CI [10.4, 12.7]) on the bond (p = 0.000); and the person

(LSM = 14.5, SE = 0.6, CI [13.4, 15.6]) compared to the computer (LSM =

11.5, SE = 0.6, CI [10.4, 12.7]) on the bond (p = 0.000). No significant differ-

ences were found for the other combinations. Table 7.15 presents a summary

of the analysis.

7.4.6 Decision Making

7.4.6.1 Decision Time

A Linear Mixed Model24 (estimated using REML25 and nloptwrap26 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict

the effects of the partner on the decision time of the interaction. The spec-

ification of the model was: Decision Time ~ Partner + (1|Participant).

Standardized parameters were obtained by fitting the model on a standard-

ized version of the dataset, while confidence intervals and p-values were

computed using the Wald approximation.

24See Section 2.7.1 for more details about this analysis method.
25REML: method for estimating variance in models with random effects.
26Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

7.4. Results 115

FIGURE 7.19: Box-plot of the decision time during the interac-
tion with different partners.

Source: own.

TABLE 7.16: LMM of Decision Time by Partner

Predictors Estimate CI p

computer (intercept) 1.64 1.47–1.82 <0.001
person 0.02 -0.14–0.18 0.811
robot 0.22 0.06–0.38 *0.007

Random Effects

σ2 0.08
τ00 0.11
ICC 0.59
R2

marginal/R2
conditional 0.052 / 0.608

*significance level at 0.05

The model’s total explanatory power is substantial (R2
conditional = 0.608)

and the part related to the fixed effects alone is R2
marginal = 0.052. The model’s

intercept, corresponding to when the partner was the computer is estimate =

1.64 (95% CI [1.47, 1.82], t = 18.60, p < 0.001). There were positive and

statistically non-significant main effects when the partner was a person (β =

0.02, 95% CI [−0.14, 0.18], t = 0.24, p = 0.811) and positive and statistically

significant main effects when the partner was the robot (β = 0.22, 95% CI

[0.06, 0.38], t = 2.77, p = 0.007). A summary of the analysis is presented in

Table 7.16 and its corresponding box-plot in Figure 7.19.

A post hoc analysis to test pairwise comparisons with Bonferroni ad-

justment using the R package lsmeans (Lenth, 2016) evidenced that there

were statistically significant differences between interacting with the robot

(LSM = 1.9, SE = 0.1, CI [1.7, 2.0]) compared to the computer (LSM = 1.6,

116 Chapter 7. Human-Robot Interaction

TABLE 7.17: Pairwise Comparison of Decision Time by Partner

Contrasts ∆mean SE CI pa

person - computer 0.0 0.1 -0.2–0.2 1.000
robot - computer 0.2 0.1 0.0–0.4 *0.024
robot - person 0.2 0.1 0.0–0.4 *0.045

*significance level at 0.05
a Bonferroni adjustment

SE = 0.1, CI [1.5, 1.8]) on the decision time (p = 0.024); and the robot

(LSM = 1.9, SE = 0.1, CI [1.7, 2.0]) compared to the person (LSM = 1.7,

SE = 0.1, CI [1.5, 1.8]) on the decision time (p = 0.045). No significant differ-

ences were found for the other combinations. Table 7.17 presents a summary

of the analysis.

7.4.6.2 Follow Rate

A Linear Mixed Model27 (estimated using REML28 and nloptwrap29 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict the

effects of the partner on the follow rate of the interaction. The specification of

the model was: Follow Rate ~ Partner + (1|Participant). Standardized

parameters were obtained by fitting the model on a standardized version of

the dataset, while confidence intervals and p-values were computed using

the Wald approximation.

The model’s total explanatory power is moderate (R2
conditional = 0.210)

and the part related to the fixed effects alone is R2
marginal = 0.032. The model’s

intercept, corresponding to when the partner was the computer is estimate =

86.80 (95% CI [84.77, 88.83], t = 85.25, p < 0.001). There were negative and

statistically non-significant main effects when the partner was a person (β =

−0.48, 95% CI [−3.07, 2.12], t = −0.37, p = 0.715) and when the partner

27See Section 2.7.1 for more details about this analysis method.
28REML: method for estimating variance in models with random effects.
29Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

7.4. Results 117

FIGURE 7.20: Box-plot of the follow rate during the interaction
with different partners.

Source: own.

TABLE 7.18: LMM of Follow Rate by Partner

Predictors Estimate CI p

computer (intercept) 86.80 84.77–88.83 <0.001
person -0.48 -3.07–2.12 0.715
robot -2.11 -4.70–0.49 0.110

Random Effects

σ2 20.32
τ00 4.56
ICC 0.18
R2

marginal/R2
conditional 0.032 / 0.210

*significance level at 0.05

was the robot (β = −2.11, 95% CI [−4.70, 0.49], t = −1.62, p = 0.110). A

summary of the analysis is presented in Table 7.18 and its corresponding

box-plot in Figure 7.20.

7.4.7 Physiological Data

7.4.7.1 Heart-Rate

A Linear Mixed Model30 (estimated using REML31 and nloptwrap32 opti-

mizer) using the R package lmer4 (Bates et al., 2015) was fitted to predict the

effects of the partner on the heart-rate of the interaction. The specification of

the model was: Heart-Rate ~ Partner + (1|Participant). Standardized

30See Section 2.7.1 for more details about this analysis method.
31REML: method for estimating variance in models with random effects.
32Alternative nonlinear optimizers from the nloptr package (Ypma et al., 2020).

118 Chapter 7. Human-Robot Interaction

FIGURE 7.21: Box-plot of the heart-rate during the interaction
with different partners.

Source: own.

TABLE 7.19: LMM of Heart-Rate by Partner

Predictors Estimate CI p

computer (intercept) 89.80 85.25–94.35 <0.001
person -1.13 -3.48–1.22 0.340
robot 1.88 -0.47–4.23 0.116

Random Effects

σ2 16.65
τ00 108.23
ICC 0.87
R2

marginal/R2
conditional 0.012 / 0.868

*significance level at 0.05

parameters were obtained by fitting the model on a standardized version of

the dataset, while confidence intervals and p-values were computed using

the Wald approximation.

The model’s total explanatory power is substantial (R2
conditional = 0.868)

and the part related to the fixed effects alone is R2
marginal = 0.012. The model’s

intercept, corresponding to when the partner was the computer is estimate =

89.80 (95% CI [85.25, 94.35], t = 39.37, p < 0.001). There were negative

and statistically non-significant main effects when the partner was a per-

son (β = −1.13, 95% CI [−3.48, 1.22], t = −0.96, p = 0.340) and positive

and statistically non-significant main effects when the partner was the robot

(β = 1.88, 95% CI [−0.47, 4.23], t = 1.59, p = 0.116). A summary of the anal-

ysis is presented in Table 7.19 and its corresponding box-plot in Figure 7.21.

7.4. Results 119

TABLE 7.20: Pairwise Comparison of Heart-Rate by Partner

Contrasts ∆mean SE CI pa

person - computer -1.1 1.2 -4.1–1.8 1.000
robot - computer 1.9 1.2 -1.0–4.8 0.353
robot - person 3.0 1.2 0.1–5.9 *0.042

*significance level at 0.05
a Bonferroni adjustment

A post hoc analysis to test pairwise comparisons with Bonferroni ad-

justment using the R package lsmeans (Lenth, 2016) evidenced that there

were statistically significant differences between interacting with the robot

(LSM = 91.7, SE = 2.3, CI [87.0, 96.4]) compared to the person (LSM = 88.7,

SE = 2.3, CI [84.0, 93.3]) on the heart-rate (p = 0.042). No significant differ-

ences were found for the other combinations. Table 7.20 presents a summary

of the analysis.

7.4.7.2 Electrodermal Activity

In this research, there were two main questions regarding changes in EDA33:

“how does the conductance change during the interaction?” and “does following

instructions from different partners affect the arousal of people?”.

To answer the first question, “how does the conductance change during the

interaction?”, the tonic component of EDA was extracted using the NeuroKit2

toolbox for Python (Makowski et al., 2021). The interaction with each partner

was isolated and each time series was interpolated to a length of 250 s to

analyze the change in SCL34 over the time of the interaction. Then, the mean

of all the time series was calculated.

Figure 7.22 shows the average change in SCL over the whole interaction

with each partner. Each value was time normalized to the shortest interaction

33EDA: Electrodermal activity.
34SCL: Skin Conductance Level.

120 Chapter 7. Human-Robot Interaction

FIGURE 7.22: Change in skin conductance level when interact-
ing with different partners.

Source: own.

time (around 4 minutes) to have a comparable range between participants

and interactions. In other words, these signals represent the average of all 5

attempts to solve the maze with each partner. As seen in Figure 7.22, when

participants interacted with the computer, their SCL did not show much vari-

ation and steadily went from 12.80 ţS to 10.04 ţS. When participants inter-

acted with the person, their SCL slowly went from 14.07 ţS to 11.57 ţS, which

could suggest a decrease in arousal over time. Finally, when participants in-

teracted with the robot, their SCL went from 16.81 ţS to 9.32 ţS at a faster pace

than when interacting with the person or computer. This might indicate that

the majority of participants had an initial interest in the robot, thus creating

high arousal, that faded over time once the novelty subdued.

To answer the second question, “does following instructions from different

partners affect the arousal of people?”, the skin conductance response (SCR) of

the participants was analyzed. A window of 1 s before the epoch and 2 s after

the epoch was extracted from the data. The epoch was defined as the instant

when the suggested path from the partner was presented on the screen to

7.4. Results 121

the participant. The phasic component of EDA was extracted using the Neu-

roKit2 toolbox for Python (Makowski et al., 2021).

A closer look to the SCR of participants when they received the suggested

direction evidenced that there were no major reactions whether the inter-

action was with the robot, the person, or the computer (Figures 7.23, 7.24,

and 7.25 respectively). The same can be said for the occasions when the par-

ticipants chose a different path than what was suggested by their partners

(Figures 7.26, 7.27, and 7.28). While each person had some specific reactions

to the interaction (see Appendix C for the EDA analysis of each individual

participant), noise recorded during the experiment and individual factors

made it difficult to correctly assess a particular reaction to those events.

122 Chapter 7. Human-Robot Interaction

FIGURE 7.23: Change in skin conductance response when fol-
lowing the instructions of the robot. The epoch is the moment

when the robot shows the suggestion on the screen.
Source: own.

FIGURE 7.24: Change in skin conductance response when fol-
lowing the instructions of the person. The epoch is the moment

when the person shows the suggestion on the screen.
Source: own.

FIGURE 7.25: Change in skin conductance response when fol-
lowing the instructions of the computer. The epoch is the mo-
ment when the computer shows the suggestion on the screen.

Source: own.

7.4. Results 123

FIGURE 7.26: Change in skin conductance response when not
following the instructions of the robot. The epoch is the mo-

ment when the robot shows the suggestion on the screen.
Source: own.

FIGURE 7.27: Change in skin conductance response when not
following the instructions of the person. The epoch is the mo-

ment when the person shows the suggestion on the screen.
Source: own.

FIGURE 7.28: Change in skin conductance response when
not following the instructions of the computer. The epoch is
the moment when the computer shows the suggestion on the

screen.
Source: own.

124 Chapter 7. Human-Robot Interaction

7.5 Discussion

This section divides into subsections several discussion points made from the

results obtained in this experiment.

7.5.1 Social Robot

Before the participants interacted with the robot, they were asked to provide

a name and a gender to the robot. While most of the participants suggested

a name based on the robot’s physical appearance (e.g. color, shape), some

named it after a robotic character. These participants stated that they remem-

bered watching or playing games that included robots, thus they provided

that name. Indeed, it seems that one’s own experience plays an important

role on how people will interact with the robot.

On the other hand, some participants thought of the robot as male due to

the color of its eye (Deep Sky Blue), while some others thought of the robot

as female for the same reason. Likewise, some participants thought that the

robot was male because of its “quick and energetic movements”, while some

others gave the same reason to say it was female. Finally, some participants

considered the robot to be gender neutral because “robots do not have gender”,

or “everyone is gender neutral these days”. Therefore, a robot that does not

show any significant detail regarding its gender is subject to the person’s

own experience regarding of what constitutes a behavior expected to that

gender.

The results from the Robotic Social Attributes Scale (RoSAS) showed

that the first impression toward the robot was that it was somewhat com-

petent (X̄ = 4.5, SD = 1.0), with a neutral warmth (X̄ = 4.0, SD = 0.9),

and caused low discomfort (X̄ = 2.5, SD = 1.0). This impression did not

7.5. Discussion 125

change much after interacting with the robot, although slight statistically

significant increase in warmth (∆means = 0.42), and a slight statistically non-

significant increase in competence (∆means = 0.28) and a slight statistically

non-significant decrease in discomfort (∆means = −0.21) did appear, from be-

fore the interaction to after the interaction. It might be possible that the more

time people spend with the robot, the more used to and comfortable they

will feel. These changes follow the same trend observed by Paetzel, Perugia,

and Castellano (2020), where repeated interactions with a social robot in a

collaborative game setting lowered the perceived discomfort and thread of

the robot.

However, the results from RoSAS should be treated with care. It is pos-

sible that this evaluation fails to categorize robots that are non-humanoid

in shape. As evidenced by the Cronbach’s α (0.85 for competence, 0.74 for

warmth, and 0.75 for discomfort), the reliability of the survey was lower that

the original study by Carpinella et al. (2017) (see Section 7.4.2). Furthermore,

there were items inside each category that were complete opposite to the

other items of the same factor. For example, discomfort included strange as

one of the items. Most of the participants regarded the robot as “strange” due

to its unique shape, but did not feel discomfort toward it. Although Stroess-

ner and Benitez (2018) showed high reliability of this test35 when evaluating

“machine-like” robots, the results from this thesis highlighted the opposite.

7.5.2 Emotional Impressions

If we imagine playing collaborative games with a person, a computer, and

a robot, it seems clear that different partners will give us different experi-

ences. However, is this difference significant when all partners use the same

35competence: α = .82 − .93, warmth: α = .89 − .93, and discomfort: α = .82 − .90

126 Chapter 7. Human-Robot Interaction

collaborative strategy and the only variable is who we think we are playing

against?

The Self-Assessment Manikin (SAM) survey showed that the emotional

valence of the participants changed when interacting with different partners

(see Section 7.4.4.1). In particular, participants evaluated the interaction with

the computer as neutral (LSM = 5.5, SE = 0.3, CI [4.8, 6.1]). In contrast,

when the participants interacted with the robot (LSM = 6.9, SE = 0.3, CI

[6.2, 7.6]) and the person (LSM = 6.6, SE = 0.3, CI [5.9, 7.3]), they felt a

slight positive experience. This positive valence of the participants when

interacting with the robot and the person were statistically the same, with the

robot getting a higher average score, meaning that an interactive social robot

can provide a similar positive experience as a person. During the interview,

some participants commented that they could not believe how much of a

difference they felt when playing against the computer and the robot. Even

though “both are programmed machines”, the robot created a more pleasant

experience and they felt engaged during the activity.

In contrast, the perceived arousal of the interaction was the same for

all partners, scoring around 5 points (neutrally aroused) on the SAM scale

(see Section 7.4.4.2). While the subjective impression did not show any dif-

ference, a contrasting picture can be seen on the EDA during the activity

(see Section 7.4.7.2). Following on the research that link skin conductance

to arousal (Pakarinen, Pietila, and Nieminen, 2019), it is possible to see that

the participants felt more aroused when interacting with the robot (SCL =

16.81 ţS) at the beginning of the game, compared to the person (SCL = 14.07 ţS)

and the computer (SCL = 12.80 ţS). When looking at the change in skin

conductance level over the course of the activity, this arousal decreased by

the end of the activity (robot: 9.32 ţS, person: 11.57 ţS, computer: 10.04 ţS),

which could mean that the participants felt initially excited to interact with

7.5. Discussion 127

the robot, as this was a unique experience for many of them, and later got

used to interacting with it. Thus, the initial spike could be due to the novelty

of the experience. On the other hand, the SAM was measured after the end of

each game, therefore it was a snapshot at the end of the activity, where par-

ticipants felt calmed and used to collaborating with each partner. This could

explain why there were no apparent differences in the arousal scores of the

Self-Assessment Manikin.

Likewise, the results from the heart-rate of the participants during the in-

teraction show that, in average, participants had a higher beats per minute

when interacting with the robot (LSM = 91.7, SE = 2.3, CI [87.0, 96.4]) com-

pared to the person (LSM = 88.7, SE = 2.3, CI [84.0, 93.3]) and computer

(LSM = 89.8, SE = 2.3, CI [85.1, 94.5]). Indeed, this increase in heart-rate

could be related to the changes in EDA during the activity, further corrobo-

rating that interacting with the robot created a novel experience for the par-

ticipants that caused arousal. Whether this increased arousal can be main-

tained or not in a long-term relationship with the robot will require a more

extensive research on long-term interactions with social robots, like the ones

from Kidd and Breazeal (2008).

Finally, the perceived dominance of the participant toward the partners

did not present any significant differences. Their scores were around a neu-

tral (5 points) dominance level.

7.5.3 Social Interaction

For the results related to the collaborative game, the WAI evidenced that

participants felt that the person was more aware of the task than the com-

puter (see Section 7.4.5.1). However, it was interesting to see that the scores

for the robot (LSM = 14.3, SE = 0.6, CI [13.1, 15.6]) covered the range of

128 Chapter 7. Human-Robot Interaction

both the person (LSM = 15.2, SE = 0.6, CI [13.9, 16.4]) and the computer

(LSM = 13.3, SE = 0.6, CI [12.0, 14.5]), which could signify that some par-

ticipants considered the robot to be as aware of the task as the person, while

some others felt that it was no different than the computer. Whether the robot

is considered the same as the computer or person depends on each partici-

pant.

An interesting result was found for the goal dimension between partners.

According to the survey, the participants felt that the robot (LSM = 14.3,

SE = 0.5, CI [13.3, 15.4]) and the person (LSM = 14.8, SE = 0.5, CI [13.7,

15.8]) had better awareness of the goal that the computer (LSM = 13.0,

SE = 0.5, CI [11.9, 14.0]). This was unexpected as the solving method36 for

the maze was the same regardless of which partner the participants played

with. The interesting part came from the interviews, where several partic-

ipants indicated that, even though all partners made mistakes during the

came, they expected that the computer would be correct all the time, thus

they felt strongly against its mistakes. In contrast, when the robot made a

mistake it was forgivable. Some participants felt that the mistake was even

on purpose because of “the playful nature of the robot”. The case where the

partner was the person, mistakes were understandable as both parties did

not have a complete awareness of the maze.

On the other hand, the bonding between the participant and each partner

showed the most change. While the participants felt neutral bonding with

the computer (LSM = 11.5, SE = 0.6, CI [10.4, 12.7]), both the robot (LSM =

14.2, SE = 0.6, CI [13.1, 15.4]) and the person (LSM = 14.5, SE = 0.6, CI [13.4,

15.6]) partners did create some bonding during the experience. A participant

even expressed that they “could not believe how much of a difference it would

36See Section 7.2 for a detailed explanation on the underlying algorithm used to solve the
maze.

7.5. Discussion 129

make playing the game with the robot and the computer”. It is worth mentioning

that the level of bonding with the robot and the person were almost the same.

This could imply that having an embodied agent giving non-verbal feedback

can create a similar connection as interacting with a person. Of course, the in-

teraction with both the person and robot should be considered as interacting

with someone met for the first time.

Finally, the participants took, on average, 0.2 s more time to make a deci-

sion when interacting with the robot compared to the person, and 0.2 s more

time compared to the computer. This delay could be due to the participants

trying to understand the meaning behind the actions of the robot after a sug-

gestion was made. As some participants stated, they “wanted to know if there

was any connection between how the robot behaved and the suggested path”. Re-

gardless of the time required to make a decision, the participants followed

the direction 86.3% of the time on average. This was expected as the mistake

rate when solving the maze was fixed at 20% regardless which partner was

giving the instructions.

131

Chapter 8

Conclusions

This chapter presents the final conclusions of this thesis. It divides the con-

clusions into the development of the robot, cooperative games with the robot,

and open source development. It finishes with the limitations of the study,

future work, and contributions to the scientific community.

132 Chapter 8. Conclusions

8.1 Robot Development

The goal of this thesis was to research what are the minimal means to design

a social robot that people feel engaged with. To that end, building upon the

robot developed by Onchi and Lee (2019), several improvements were made

and an interaction study was conducted.

8.1.1 Light Animations

The single-eyed spherical robot created by Onchi and Lee (2019) showed that

emotion-like feedback using only movement is capable of expressing a wide

range of emotions and this motion feedback on non-humanoid robots can

improve the training session compared to training a static robot.

From there, this research studied how adding light animations affected

the emotion understood. As mentioned in Section 6.6, adding light anima-

tions raised the emotional valence of the behavior of the robot. Moreover, it

also raised the perceived arousal of the robot. This means we can use lights to

regulate the arousal and valence of the emotion being expressed more gran-

ularly.

Therefore, rather than using a display to show detailed animations, it is

possible to create interactive robots and change their expressions using sim-

pler and economic methods like an array of colored LED.

8.2 Human-Robot Interaction

The second part of the study focused on how the robot compared to other in-

teracting agents, like humans or computers. As discussed in Section 7.5, the

overall results evidenced that people prefer to interact with physical beings

8.2. Human-Robot Interaction 133

that can express some type of feedback during the interaction. The perfor-

mance of the robot was comparatively similar to when people interacted with

another person, while the interaction with the computer was categorized as

emotionally neutral and no social bonding happened.

This highlighted the importance of creating physical agents as the social

gateway to technology. Instead of using a technology as an inert tool, it is

possible to use a minimalistic proxy, like a non-humanoid robot, that can re-

act according to the inner state of the device. This interaction can be extended

to virtual assistants that, up till now, are designed as disembodied voices.

This agent does not require to have complex mechanics to still be considered

as a social agent. Indeed, simple movements and light animations can ele-

vate the social impression of a computer to that of a person. However, the

animacy of the robot developed in this thesis was increased by its ability to

maintain eye contact, through facial tracking, with the person. Although the

tracking algorithm did not have high reliability, this side-effect played in fa-

vor in the social level of the robot. People did not felt like they were being

watched as the robot only kept eye contact for a short time before shifting

its focus to other fake positives. In addition, these unexpected movements

helped increase the curiosity toward the robot, as it made it seem like an

energetic pet that was aware of its surroundings.

Moreover, by designing a non-humanoid robot, people tended to treat the

robot as a pet, rather than a scary device. This avoided the aversion from the

Uncanny Valley, and encourage people to be more compassionate toward the

robot. Likewise, adding a name to the robot may have created a higher level

of bonding. Some people even used familiar names to consciously create a

better connection with the robot. This connection and metal image of the

robot as a pet led to people forgiving mistakes made by the robot, or consid-

ering those mistakes as joking behavior from the robot.

134 Chapter 8. Conclusions

8.3 Open Source

The robot and measuring tools developed for this research used technology

relatively young in the robotic community. While this technology has been

modernized to take advantage of the current computing capabilities, it was

necessary to create the necessary software to make it work correctly. This led

to several open source modules being developed.

In this regard, six Go modules optimized for the Raspberry Pi platform

were created. Half of them focused on controlling electronic sensors, while

the other half made controlling peripherals easier. To the best of the authors’

knowledge, no previous modules were available for Raspberry Pi that could

use the Go programming environment to control those devices. At the time

of publication of this thesis, some of the modules have been used by other

developers for their own projects.

8.4 Limitations

Recording physiological data is useful to acquire unbiased information about

the emotional state of a person. However, its analysis assume that the data

collected is noise free. The smart bracelet developed to measure these data

worked well in most of the cases, but it was prone to capture noisy signals

due to the unexpected movement of the participants, which made some of

the collected data unreliable to be analyzed. Better sensors might be required

for a more in depth study of the physiological reaction of people when in-

teracting with social robots, but, for this thesis, the data collected provided

reasonable insights on the trends in the change of emotional state.

Furthermore, the information collected through the surveys assumed that

the participants were honest in their answers and that they understood the

8.5. Contributions 135

questions being asked. It is possible that some participants found the task

repetitive or were tired after doing the tasks, which may have affected the

final results of the survey. To minimize this, each participant had a random-

ized order of partners. Likewise, there was an implicit trust on the language

ability of the participants and they were free to choose between a Japanese

or English version of the questionnaires. Moreover, the participants of this

research belonged to a Japanese university context, which means that they

had a higher degree of education and were exposed to advanced technolo-

gies. Therefore, the results of this research may be representative for a target

group similar to university students or alumni.

On the other hand, this research was conducted during the onset of a

global pandemic, which made face-to-face interactions challenging. This

meant that some experiments had to be revised for online evaluation, while

others had to be postponed until the state of emergency was lifted. Never-

theless, especial care was taken when conducting the experiments following

the guidelines of the University of Tsukuba for the prevention of infectious

diseases (University of Tsukuba, 2021).

8.5 Contributions

This research generated not only insights in the area of Human-Robot Inter-

action, but also useful tools available to the scientific and programming com-

munity. In particular, the following open source libraries were developed:

• ads1x15: which controls analog-to-digital converters (see Section 5.2.1).

• lsm6: which controls inertial motion unit sensors (see Section 5.2.2).

• max3010x: which controls heart-rate and SpO2 sensors (see Section 5.2.3).

• PiCam: which enables continues sampling of a camera from a Raspberry

Pi (see Section 4.2.4).

136 Chapter 8. Conclusions

• ring: which controls RGB LEDs in a ring shape and adds layered ani-

mation functionality (see Section 4.2.3).

• servo: which controls several servo motors asynchronously on a Rasp-

berry Pi (see Section 4.2.2).

The source code of the robot, as well as the developed modules, are re-

leased under the MIT License1 to contribute to the literature in Social Robotics

and for further use in the development of similar technologies. These source

codes are shared under GitHub2 and a printed version is attached to the Ap-

pendix (D.2–D.11) of this thesis.

8.6 Future Work

The following research studied how using non-verbal light animations in a

spherical robot affected the emotion-like information being conveyed. The

results go in line with previous studies on non-verbal expressions in robots

(Terada, Yamauchi, and Ito, 2012; Terada, Takeuchi, and Ito, 2013; Wilms and

Oberfeld, 2018). In particular, the idea that using light animations to control

the level of arousal (Wilms and Oberfeld, 2018) and valence (Kaya and Epps,

2004) was supported. On the other hand, compared to previous studies, this

research mainly focused on the visual shape of the light animation and did

not test color changes. Because the relationship between emotional meaning

of color is a broad one, it was out of the scope for this research. Therefore,

a future research on color variation may provide more insights on how to

control emotion-like expressions.

Likewise, this thesis studied how interacting with the spherical robot

compared to interacting with a person and a computer. From the results,

1A permissive free license with very limited restrictions.
2https://github.com/cgxeiji

8.6. Future Work 137

it was possible to see that people preferred interacting with the robot and

the persons instead of the computer, even though all partners use the same

method when giving instructions. This supports the idea that having a phys-

ical body can influence how people perceive the interacting agent (Scholl and

Tremoulet, 2000; Bartneck et al., 2009a). Furthermore, it was possible to see

that the perception of the robot changed after interacting with it, which could

support the idea that familiarity with a robotic agent will change how people

regard that particular agent (Paetzel, Perugia, and Castellano, 2020). While

the comparison of the spherical robot with a human agent and a computer

agent gave insights in the performance of the robot, future research is need

in contrasting how this design compares to other social robots designed with

a minimalistic approach. Nevertheless, there is still room for improvement

in the design of the physical appearance, the inner mechanisms, and the in-

teracting behavior of the spherical robot.

The author of this thesis hopes to design a version of the robot that could

be used inside households and could make the upcoming technology more

intuitive to use. Therefore, other manufacturing techniques, as well as medi-

ums to express emotions, need to be researched. It is important to find the in-

tersection between complexity and the information provided to create robots

that are easy to use, without colliding with the Uncanny Valley or increasing

its development cost.

139

Appendix A

Surveys

【資料 5.1】SAM（英語版）

140 Appendix A. Surveys

A.1 Self-Assessment Manikin: English Version

【資料 5.2】SAM（日本語版）

A.2. Self-Assessment Manikin: Japanese Version 141

A.2 Self-Assessment Manikin: Japanese Version

【資料 4.1】RoSAS（英語版）

142 Appendix A. Surveys

A.3 Robotic Social Attributes Scale: English Ver-

sion

【資料 4.2】RoSAS（日本語版）

A.4. Robotic Social Attributes Scale: Japanese Version 143

A.4 Robotic Social Attributes Scale: Japanese Ver-

sion

【資料 6.1】WAI（英語版）

144 Appendix A. Surveys

A.5 Working Alliance Inventory: English Version

【資料 6.1】WAI（英語版）

A.5. Working Alliance Inventory: English Version 145

【資料 6.2】WAI（日本語版）

146 Appendix A. Surveys

A.6 Working Alliance Inventory: Japanese Version

【資料 6.2】WAI（日本語版）

A.6. Working Alliance Inventory: Japanese Version 147

149

Appendix B

Ethics

150 Appendix B. Ethics

B.1 Ethics Approval

【資料 2.1】研究についての説明（日本語版）

研究についての説明

① 研究の説明
ア. 本研究の目的は、動きと光でフィードバックを表現できる球体型・片目ロボッ

トを訓練することによって、ロボットが人に与える信頼度と感情の変化の研究
です。

イ. 最初に、ロボットに対する不安の程度を調べる RoSAS（Robotic Social Attributes
Scale）の調査を行います。

ウ. 試験中のインタラクションを記録するために、手の動きと心拍数と電気皮膚反応を
計測するスマートブレスレットを装着していただきます。スマートブレスレットの
装着に違和感がある場合は、装着しないように申し出ることが可能です。

エ. 本実験の課題は、人、コンピュータ、ロボットの３者で一緒に迷路を解くことです。
タブレットを用いて、迷路の道を選択するゲームです。本実験の前に十分な練習の
時間があります。

オ. 課題は、５回の 3 セットで迷路を共同解決します。相手はセットごとにランダムに
割り当てられます。解決相手は出口の位置を大まかに知っているだけで、あなたを
出口まで案内しようとします。 受け取った指示に従うかどうかはあなた次第です。
各セットの所要時間は約 5 分です。

カ. 各セット後に 2 つの評価を行います。ロボットとのインタラクションにおけるあな
たの感情を測る SAM（Self-Assessment Manikin）や、ロボットとあなたの共同作業
への満足度を測る WAI（Working Alliance Inventory）などのテストを行います。

キ. 最後に、もう一度 RoSAS（Robotic Social Attributes Scale）の調査を行います。又
は、国籍、年齢、性別などについて回答してもらいます。

ク. その後、実験についての意見を聞かせてもらいます。
ケ. 休憩を取りたい、実験をやめたいという場合は、いつでも実験を中止すること

ができますので研究分担者にお声かけください。
② 感染症拡大防止対策に関すること

ア. 感染症予防のため、実験前に検温を行います。
イ. 実験は換気の良い部屋で行い、研究協力者との間には常に 2m の距離を保ちます。
ウ. 実験に使用するデバイスや家具はすべて消毒し、研究協力者と研究分担者は常にマ

スク及びフェイスシールドを着用します。
③ 倫理的配慮に関すること

ア. 実験への同意の有無および得られた結果に関わらず、研究協力者が不利益を被るこ
とはありません。

④ 本人の自由意思による同意であること
ア. 研究協力者は、実験に協力しない自由があります。

⑤ 同意後も不利益を受けず随時撤回できること
ア. 研究協力者は実験実施中でもいつでも実験協力の同意を撤回することができます。

それによって、研究協力者が不利益を被ることはありません。

B.2. Research Instructions: Japanese Version 151

B.2 Research Instructions: Japanese Version

【資料 2.1】研究についての説明（日本語版）

⑥ 同意しない場合でも不利益を受けないこと
ア. 研究協力者は実験協力に同意しない場合でも、研究協力者が特に不利益を被ること

はありません。
⑦ 個人情報は保護されること

ア. データは第三者によっては各個人を特定できない形で扱います。
イ. 個人を特定できるような形でデータを公表することはありません。

 説明者 所属 人間総合科学研究科 感性認知脳科学専攻
 氏名 ONCHI SUGUIMITZU Diego Eiji ㊞

 連絡先 s1930389@s.tsukuba.ac.jp
 研究責任者 所属 芸術系

 氏名 李昇姫 ㊞
 連絡先 lee.seunghee.gn@u.tsukuba.ac.jp

 この研究は筑波大学芸術系研究倫理委員会の承認を得て、研究協力者の皆様に不利益がない
よう万全の注意を払って行われています。研究への協力に際してご意見ご質問などございまし
たら、気軽に研究責任者にお尋ね下さい。あるいは、芸術系研究倫理委員会までご相談下さい。

【 電 話 ： 029-853-2571 （ 体 育 芸 術 エ リ ア 支 援 室 研 究 支 援 ）
e-mail ： tg-kenkyurinri@un.tsukuba.ac.jp 】

152 Appendix B. Ethics

【資料 2.2】研究についての説明（英語版）

Research Instructions

① About the research
a. The purpose of this research is to study how a single-eyed spherical robot that can

express feedback with movement and lights affects the interaction between humans
and robots during interaction.

b. First, you will be asked to fill the Robotic Social Attributes Scale (RoSAS), a survey that
measures how comfortable you are interacting with robots.

c. You will be asked to wear a hand-motion, heart rate, and galvanic skin response smart-
bracelet to record how you interact with the robot. If you feel uncomfortable wearing
the smart-bracelet, you can request not to wear it.

d. The task for this experiment is to solve a maze together with a person, computer, and
the robot. You will use a tablet to solve the maze. You can practice this until you feel
comfortable.

e. You will solve the maze in 3 sets of 5 rounds. Your partner will be randomly assigned
for each set. Your partner only has a general idea of where the exit is and will try to
guide you to the exit. It is up to you if you want to follow the instructions you receive.
Each set will take around 5 minutes to complete.

f. After finishing each set, you will be asked to fill 2 surveys: (1) Self-Assessment Manikin
(SAM), a survey that measures your emotional impression about the interaction using
pictures, and (2) Working Alliance Inventory (WAI), a survey that measures how good
you think the interaction was.

g. Finally, you will be asked to fill the Robotic Social Attributes Scale (RoSAS) once more.
You will also be asked about your nationality, age, and gender.

h. Once the experiment is over, we will talk about the experience.
i. Feel free to ask, at any time, if you would like to take a rest, or stop the experiment.

② Health considerations
a. As a measure to prevent the spread of infectious diseases, we will measure your body

temperature before starting the experiment.
b. The experiment will be conducted in a well-ventilated room and a distance of 2m will

be kept between you and the instructor at all times.
c. All devices and furniture used in the experiment will be disinfected and both you and

the instructor will wear a mask and face-shield at all times.
③ Ethical considerations

a. You will not suffer any disadvantages from the results obtained in the experiment and
whether you agree to participate in the experiment.

④ Agreeing to participate is completely voluntary
a. You are free to decide whether you want to participate or not without suffering any

negative consequences.

B.3. Research Instructions: English Version 153

B.3 Research Instructions: English Version

【資料 2.2】研究についての説明（英語版）

⑤ Cancellation of the agreement will not cause any penalties
a. You can stop the experiment and cancel your participation at any time without any

negative consequences.
⑥ If you decide not to participate, there are no penalties

a. You can decide not to participate without any negative consequences.
⑦ Your personal information is protected

a. The data collected is not linked with any identifying information about you.
b. We do not collect any personal information that can identify you.

 Explained by Department Comprehensive Human Sciences
 Kansei, Behavioral, and Brain Sciences

 Name ONCHI SUGUIMITZU Diego Eiji ㊞
 Contact s1930389@s.tsukuba.ac.jp

 Researcher Responsible Faculty Art and Design

 Name LEE Seung Hee ㊞
 Contact lee.seunghee.gn@u.tsukuba.ac.jp

This research is carried out with the utmost care so that there is no disadvantage to the

participants, with the approval of the Research Ethics Committee of Art and Design, University of
Tsukuba. If you have any comments or questions concerning your participation in the research, feel
free to ask the researcher. Alternatively, please consult with the Research Ethics Committee of Art
and Design.

【 Tel: 029-853-2571 (Research Support Office of Sports and Art Area)
e-mail: tg-kenkyurinri@un.tsukuba.ac.jp】

154 Appendix B. Ethics

【資料 3.1】同意書（日本語版）

同 意 書

筑波大学芸術系長 殿

私は、「人間とロボットのインタラクションにおける非言語フィードバックの評
価」の研究について、その目的、方法、その成果及び危険性とその対処法について
充分な説明を受けました。また、本研究への協力に同意しなくても何ら不利益を受
けないことも確認した上で、被験者になることに 同意します。

ただし、この同意は、あくまでも私自身の自由意思によるものであり、不利益を
受けず、随時撤回できるものであることを確認します。

令和 年 月 日

氏 名

（自筆署名又は記名押印）

「人間とロボットのインタラクションにおける非言語フィードバックの評価」の
研究について、書面及び口頭により令和 年 月 日に説明を行い、上記の
とおり同意を得ました。

 研究責任者 所属 芸術系

 氏名 李昇姫 ㊞

 連絡先 lee.seunghee.gn@u.tsukuba.ac.jp

 説明者 所属 人間総合科学研究科 感性認知脳科学専攻

 氏名 ONCHI SUGUIMITZU Diego Eiji ㊞

 連絡先 s1930389@s.tsukuba.ac.jp

B.4. Agreement Form: Japanese Version 155

B.4 Agreement Form: Japanese Version

【資料 3.2】同意書（英語版）

Agreement Form

To Director of Art and Design, University of Tsukuba,

I agree that I have received an adequate explanation about the objective,

methodology, results, risks, and coping methods about the study: EFFECTS OF NON-

VERBAL FEEDBACK DURING HUMAN-ROBOT INTERACTION. Also, I agree to

become a participant after understanding that I will not suffer any disadvantages if I

decide not to cooperate in this research.

Nevertheless, this agreement is based upon my own free will, and I understand that

it can be withdrawn at any time without suffering any disadvantages.

Date (YYYY/MM/DD):

 ________/____/____

NAME: _________________________________

（Signature or Seal）

I received the aforementioned agreement after giving a textual and verbal

explanation about the study: EFFECTS OF NON-VERBAL FEEDBACK DURING

HUMAN-ROBOT INTERACTION on _____/____/____.

 Researcher Responsible Faculty Art and Design

 Name LEE Seung Hee ㊞

 Contact lee.seunghee.gn@u.tsukuba.ac.jp

 Explained by Department Comprehensive Human Sciences

 Kansei, Behavioral, and Brain Sciences

 Name ONCHI SUGUIMITZU Diego Eiji ㊞

 Contact s1930389@s.tsukuba.ac.jp

156 Appendix B. Ethics

B.5 Agreement Form: English Version

157

Appendix C

Electrodermal Analysis per

Participant

158 Appendix C. Electrodermal Analysis per Participant

C.1 EDA of Participant 1

FIGURE C.1: Electrodermal analysis of participant 001 when
interacting with the robot.

Source: own.

FIGURE C.2: Electrodermal analysis of participant 001 when
interacting with the person.

Source: own.

FIGURE C.3: Electrodermal analysis of participant 001 when
interacting with the computer.

Source: own.

C.2. EDA of Participant 2 159

C.2 EDA of Participant 2

FIGURE C.4: Electrodermal analysis of participant 002 when
interacting with the robot.

Source: own.

FIGURE C.5: Electrodermal analysis of participant 002 when
interacting with the person.

Source: own.

FIGURE C.6: Electrodermal analysis of participant 002 when
interacting with the computer.

Source: own.

160 Appendix C. Electrodermal Analysis per Participant

C.3 EDA of Participant 3

FIGURE C.7: Electrodermal analysis of participant 003 when
interacting with the robot.

Source: own.

FIGURE C.8: Electrodermal analysis of participant 003 when
interacting with the person.

Source: own.

FIGURE C.9: Electrodermal analysis of participant 003 when
interacting with the computer.

Source: own.

C.4. EDA of Participant 4 161

C.4 EDA of Participant 4

FIGURE C.10: Electrodermal analysis of participant 004 when
interacting with the robot.

Source: own.

FIGURE C.11: Electrodermal analysis of participant 004 when
interacting with the person.

Source: own.

FIGURE C.12: Electrodermal analysis of participant 004 when
interacting with the computer.

Source: own.

162 Appendix C. Electrodermal Analysis per Participant

C.5 EDA of Participant 5

FIGURE C.13: Electrodermal analysis of participant 005 when
interacting with the robot.

Source: own.

FIGURE C.14: Electrodermal analysis of participant 005 when
interacting with the person.

Source: own.

FIGURE C.15: Electrodermal analysis of participant 005 when
interacting with the computer.

Source: own.

C.6. EDA of Participant 6 163

C.6 EDA of Participant 6

FIGURE C.16: Electrodermal analysis of participant 006 when
interacting with the robot.

Source: own.

FIGURE C.17: Electrodermal analysis of participant 006 when
interacting with the person.

Source: own.

FIGURE C.18: Electrodermal analysis of participant 006 when
interacting with the computer.

Source: own.

164 Appendix C. Electrodermal Analysis per Participant

C.7 EDA of Participant 7

FIGURE C.19: Electrodermal analysis of participant 007 when
interacting with the robot.

Source: own.

FIGURE C.20: Electrodermal analysis of participant 007 when
interacting with the person.

Source: own.

FIGURE C.21: Electrodermal analysis of participant 007 when
interacting with the computer.

Source: own.

C.8. EDA of Participant 8 165

C.8 EDA of Participant 8

Electrodermal analysis of this participant when interacting with the com-

puter was not available due to too much noise when recording.

FIGURE C.22: Electrodermal analysis of participant 008 when
interacting with the robot.

Source: own.

FIGURE C.23: Electrodermal analysis of participant 008 when
interacting with the person.

Source: own.

166 Appendix C. Electrodermal Analysis per Participant

C.9 EDA of Participant 9

FIGURE C.24: Electrodermal analysis of participant 009 when
interacting with the robot.

Source: own.

FIGURE C.25: Electrodermal analysis of participant 009 when
interacting with the person.

Source: own.

FIGURE C.26: Electrodermal analysis of participant 009 when
interacting with the computer.

Source: own.

C.10. EDA of Participant 10 167

C.10 EDA of Participant 10

Electrodermal analysis of this participant when interacting with the robot

was not available due to too much noise when recording. Electrodermal

analysis of this participant when interacting with the computer was not avail-

able due to too much noise when recording.

FIGURE C.27: Electrodermal analysis of participant 010 when
interacting with the person.

Source: own.

168 Appendix C. Electrodermal Analysis per Participant

C.11 EDA of Participant 11

FIGURE C.28: Electrodermal analysis of participant 011 when
interacting with the robot.

Source: own.

FIGURE C.29: Electrodermal analysis of participant 011 when
interacting with the person.

Source: own.

FIGURE C.30: Electrodermal analysis of participant 011 when
interacting with the computer.

Source: own.

C.12. EDA of Participant 12 169

C.12 EDA of Participant 12

Electrodermal analysis of this participant when interacting with the com-

puter was not available due to too much noise when recording.

FIGURE C.31: Electrodermal analysis of participant 012 when
interacting with the robot.

Source: own.

FIGURE C.32: Electrodermal analysis of participant 012 when
interacting with the person.

Source: own.

170 Appendix C. Electrodermal Analysis per Participant

C.13 EDA of Participant 13

FIGURE C.33: Electrodermal analysis of participant 013 when
interacting with the robot.

Source: own.

FIGURE C.34: Electrodermal analysis of participant 013 when
interacting with the person.

Source: own.

FIGURE C.35: Electrodermal analysis of participant 013 when
interacting with the computer.

Source: own.

C.14. EDA of Participant 14 171

C.14 EDA of Participant 14

FIGURE C.36: Electrodermal analysis of participant 014 when
interacting with the robot.

Source: own.

FIGURE C.37: Electrodermal analysis of participant 014 when
interacting with the person.

Source: own.

FIGURE C.38: Electrodermal analysis of participant 014 when
interacting with the computer.

Source: own.

172 Appendix C. Electrodermal Analysis per Participant

C.15 EDA of Participant 15

FIGURE C.39: Electrodermal analysis of participant 015 when
interacting with the robot.

Source: own.

FIGURE C.40: Electrodermal analysis of participant 015 when
interacting with the person.

Source: own.

FIGURE C.41: Electrodermal analysis of participant 015 when
interacting with the computer.

Source: own.

C.16. EDA of Participant 16 173

C.16 EDA of Participant 16

FIGURE C.42: Electrodermal analysis of participant 016 when
interacting with the robot.

Source: own.

FIGURE C.43: Electrodermal analysis of participant 016 when
interacting with the person.

Source: own.

FIGURE C.44: Electrodermal analysis of participant 016 when
interacting with the computer.

Source: own.

174 Appendix C. Electrodermal Analysis per Participant

C.17 EDA of Participant 17

Electrodermal analysis of this participant when interacting with the person

was not available due to too much noise when recording.

FIGURE C.45: Electrodermal analysis of participant 017 when
interacting with the robot.

Source: own.

FIGURE C.46: Electrodermal analysis of participant 017 when
interacting with the computer.

Source: own.

C.18. EDA of Participant 18 175

C.18 EDA of Participant 18

Electrodermal analysis of this participant when interacting with the person

was not available due to too much noise when recording. Electrodermal anal-

ysis of this participant when interacting with the computer was not available

due to too much noise when recording.

FIGURE C.47: Electrodermal analysis of participant 018 when
interacting with the robot.

Source: own.

176 Appendix C. Electrodermal Analysis per Participant

C.19 EDA of Participant 19

Electrodermal analysis of this participant when interacting with the robot

was not available due to too much noise when recording.

FIGURE C.48: Electrodermal analysis of participant 019 when
interacting with the person.

Source: own.

FIGURE C.49: Electrodermal analysis of participant 019 when
interacting with the computer.

Source: own.

C.20. EDA of Participant 20 177

C.20 EDA of Participant 20

FIGURE C.50: Electrodermal analysis of participant 020 when
interacting with the robot.

Source: own.

FIGURE C.51: Electrodermal analysis of participant 020 when
interacting with the person.

Source: own.

FIGURE C.52: Electrodermal analysis of participant 020 when
interacting with the computer.

Source: own.

178 Appendix C. Electrodermal Analysis per Participant

C.21 EDA of Participant 21

FIGURE C.53: Electrodermal analysis of participant 021 when
interacting with the robot.

Source: own.

FIGURE C.54: Electrodermal analysis of participant 021 when
interacting with the person.

Source: own.

FIGURE C.55: Electrodermal analysis of participant 021 when
interacting with the computer.

Source: own.

C.22. EDA of Participant 22 179

C.22 EDA of Participant 22

FIGURE C.56: Electrodermal analysis of participant 022 when
interacting with the robot.

Source: own.

FIGURE C.57: Electrodermal analysis of participant 022 when
interacting with the person.

Source: own.

FIGURE C.58: Electrodermal analysis of participant 022 when
interacting with the computer.

Source: own.

180 Appendix C. Electrodermal Analysis per Participant

C.23 EDA of Participant 23

FIGURE C.59: Electrodermal analysis of participant 023 when
interacting with the robot.

Source: own.

FIGURE C.60: Electrodermal analysis of participant 023 when
interacting with the person.

Source: own.

FIGURE C.61: Electrodermal analysis of participant 023 when
interacting with the computer.

Source: own.

C.24. EDA of Participant 24 181

C.24 EDA of Participant 24

FIGURE C.62: Electrodermal analysis of participant 024 when
interacting with the robot.

Source: own.

FIGURE C.63: Electrodermal analysis of participant 024 when
interacting with the person.

Source: own.

FIGURE C.64: Electrodermal analysis of participant 024 when
interacting with the computer.

Source: own.

183

Appendix D

Source Code

184 Appendix D. Source Code

D.1 Module: robot

D.1.1 License

MIT License

Copyright (c) 2021 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.1.2 robot/robot.go

1 package main

2
3 import (

4 "bufio"

5 "context"

6 "encoding/json"

7 "fmt"

8 "image"

9 "image/color"

10 "image/jpeg"

11 "log"

12 "math"

13 "math/rand"

14 "os"

15 "sync"

16 "time"

17
18 "net/http"

19
20 "module/anim"

21 "module/body"

22 "module/eye"

23 "module/tracker.git"

24)

25
26 func main() {

27 e, err := eye.New()

28 if err != nil {

29 log.Fatal(err)

30 }

31 defer e.Close()

32
33 b, err := body.New(14, 15)

34 if err != nil {

35 log.Fatal(err)

36 }

37 defer b.Close()

38
39 cIdle := color.CMYK{255, 0, 0, 150}

40 cWake := color.CMYK{255, 0, 0, 10}

41 cStand := color.CMYK{255, 0, 0, 65}

42 e.Color(cIdle)

43 e.Offset(b.Angle() - 0.72)

44
45 anim.Eye = e

46 anim.Body = b

47 list, err := anim.ReadFile("./anim.yaml")

48 if err != nil {

49 log.Fatal(err)

50 }

51 fmt.Println("loaded animations:")

52 fmt.Printf("list = %+v\n", list)

D.1. Module: robot 185

53
54 w, err := anim.Play("think")

55 if err != nil {

56 log.Fatal(err)

57 }

58 w.Wait()

59
60 b.SetSpeed(0.2)

61
62 var ws sync.WaitGroup

63 done := make(chan struct{})

64 ws.Add(1)

65 go func() {

66 defer ws.Done()

67 t := time.NewTicker(20 * time.Millisecond)

68 for {

69 select {

70 case <-done:

71 return

72 case <-t.C:

73 }

74 e.Offset(b.Angle() - 0.72)

75 }

76 }()

77
78 tracker, err := tracker.New(640, 480)

79 if err != nil {

80 panic(err)

81 }

82 defer tracker.Close()

83
84 fmt.Println("Press [ENTER] to close")

85
86 reqImg := make(chan struct{})

87 resImg := make(chan image.Image)

88
89 pause := make(chan struct{})

90 pauseOut := make(chan struct{})

91
92 colorIdle := cIdle

93 faceFound := make(chan struct{})

94 faceGo := make(chan struct{})

95 ws.Add(1)

96 go func() {

97 defer ws.Done()

98 for {

99 select {

100 case <-done:

101 return

102 case <-pause:

103 <-pauseOut

104 continue

105 default:

106 start := time.Now()

107 angle := math.Pi - b.Angle()

108 x, y, found := tracker.Detect(angle)

109 select {

110 case <-reqImg:

111 img := tracker.Image()

112 resImg <- img

113 default:

114 }

115
116 if found {

117 x /= 6

118 y /= 6

119 y += 0.01

120
121 select {

122 case <-done:

123 return

124 case <-pause:

125 <-pauseOut

126 continue

127 case faceFound <- struct{}{}:

128 }

129
130 select {

131 case <-done:

132 return

133 case <-pause:

134 <-pauseOut

135 continue

136 case <-faceGo:

137 }

138 b.Move(x, y, body.MoveRelative)

139 } else {

140 e.Color(colorIdle)

141 }

142
143 select {

144 case <-done:

145 return

186 Appendix D. Source Code

146 case <-pause:

147 <-pauseOut

148 continue

149 default:

150 }

151
152 clear()

153 fmt.Printf("face (%v): %.2f, %.2f (angle: %.2f)", found, x, y, b.Angle()/math.Pi*180)

154
155 elapsed := time.Now().Sub(start)

156 fps := 1.0 / elapsed.Seconds()

157 fmt.Printf("(%v, %.0f fps)", elapsed, fps)

158 }

159
160 }

161 }()

162
163 ws.Add(1)

164 go func() {

165 defer ws.Done()

166 for {

167 select {

168 case <-done:

169 return

170 case <-pause:

171 <-pauseOut

172 case <-time.After(10 * time.Second):

173 clear()

174 fmt.Printf("recentering")

175 b.Move(0, 0, body.MoveAbsolute)

176 colorIdle = cIdle

177 case <-faceFound:

178 colorIdle = cStand

179 e.Color(cWake)

180 select {

181 case <-done:

182 return

183 case faceGo <- struct{}{}:

184 }

185 }

186 }

187 }()

188
189 ws.Add(1)

190 go func() {

191 defer ws.Done()

192 for {

193 t := time.NewTicker(time.Duration(rand.Intn(7500)+2857) * time.Millisecond)

194 select {

195 case <-done:

196 return

197 case <-pause:

198 <-pauseOut

199 case <-t.C:

200 }

201 t.Stop()

202 e.Blink(1.0)

203 }

204 }()

205
206 openRequests := func(handler func(w http.ResponseWriter, r *http.Request)) func(w http.ResponseWriter, r

*http.Request) {→֒

207 return func(w http.ResponseWriter, r *http.Request) {

208 w.Header().Set("Access-Control-Allow-Origin", "*")

209 w.Header().Set("Access-Control-Allow-Credentials", "true")

210 w.Header().Set("Access-Control-Allow-Headers", "Authorization, Content-Type")

211 w.Header().Set("Access-Control-Allow-Method", "GET, POST")

212
213 handler(w, r)

214 }

215 }

216
217 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

218 reqImg <- struct{}{}

219 img := <-resImg

220 if err := jpeg.Encode(w, img, &jpeg.Options{Quality: 30}); err != nil {

221 panic(err)

222 }

223 })

224
225 lightOn := true

226 lightHandler := func(w http.ResponseWriter, r *http.Request) {

227 lightOn = !lightOn

228 e.TurnOn(lightOn)

229
230 w.WriteHeader(http.StatusOK)

231 }

232 http.HandleFunc("/light", openRequests(lightHandler))

233
234 thinkHandler := func(w http.ResponseWriter, r *http.Request) {

235 for i := 0; i < 3; i++ {

236 pause <- struct{}{}

237 }

D.1. Module: robot 187

238 n := rand.Intn(len(list))

239 fmt.Printf("playing = %+v\n", list[n])

240 wait, err := anim.Play(list[n])

241 if err != nil {

242 log.Fatal(err)

243 }

244 wait.Wait()

245 for i := 0; i < 6; i++ {

246 select {

247 case pauseOut <- struct{}{}:

248 continue

249 default:

250 }

251 }

252 time.Sleep(1 * time.Second)

253
254 w.WriteHeader(http.StatusOK)

255 }

256 http.HandleFunc("/think", openRequests(thinkHandler))

257
258 posHandler := func(w http.ResponseWriter, r *http.Request) {

259 x, y := b.Position()

260 b, err := json.Marshal(struct {

261 X float64 `json:"x"`

262 Y float64 `json:"y"`

263 }{

264 X: x,

265 Y: y,

266 })

267 if err != nil {

268 panic(err)

269 }

270
271 w.Write(b)

272 }

273 http.HandleFunc("/position", openRequests(posHandler))

274
275 srv := http.Server{

276 Addr: ":8080",

277 }

278 ws.Add(1)

279 go func() {

280 defer ws.Done()

281 fmt.Println("Listening on port: 8080")

282 if err := srv.ListenAndServe(); err != http.ErrServerClosed {

283 panic(err)

284 }

285 }()

286
287 bufio.NewReader(os.Stdin).ReadString('\n')

288 fmt.Println("closing")

289 close(done)

290 if err := srv.Shutdown(context.Background()); err != nil {

291 panic(err)

292 }

293 ws.Wait()

294 e.Color(color.NRGBA{255, 0, 0, 255})

295 time.Sleep(500 * time.Millisecond)

296 }

297
298 func clear() {

299 fmt.Printf("\r \r")

300 }

188 Appendix D. Source Code

D.2 Module: servo

D.2.1 License

The MIT License (MIT)

Copyright ľ 2019 Eiji Onchi <eiji@onchi.me>

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

D.2.2 servo/servo.go

1 package servo

2
3 import (

4 "fmt"

5 "strings"

6 "sync"

7 "time"

8)

9
10 type flag uint8

11
12 // is check if the given bits are set in the flag.

13 func (f flag) is(bits flag) bool {

14 return f&bits != 0

15 }

16
17 // String implements the Stringer interface.

18 func (f flag) String() string {

19 if f == 0 {

20 return "(NONE)"

21 }

22
23 s := new(strings.Builder)

24
25 fmt.Fprintf(s, "(")

26
27 if f.is(Centered) {

28 fmt.Fprintf(s, " Centered")

29 }

30 if f.is(Normalized) {

31 fmt.Fprintf(s, " Normalized")

32 }

33
34 fmt.Fprintf(s, ")")

35
36 return s.String()

37 }

38
39 const (

40 // Centered sets the range of the servo from -90 to 90 degrees.

41 // Together with Normalized, the range of the servo is set to -1 to 1.

42 Centered flag = (1 << iota)

43 // Normalized sets the range of the servo from 0 to 2.

44 // Together with Centered, the range of the servo is set to -1 to 1.

45 Normalized

46)

47
48 // Servo is a struct that holds all the information necessary to control a

49 // servo motor. Use the function servo.New(gpio) for correct

50 // initialization. Servo is designed to be concurrent-safe.

51 type Servo struct {

52 // pin is the GPIO pin number of the Raspberry Pi. Check that the pin is

D.2. Module: servo 189

53 // controllable with pi-blaster.

54 //

55 // CAUTION: Incorrect pin assignment might cause damage to your Raspberry

56 // Pi.

57 pin gpio

58 // Name is an optional value to assign a meaningful name to the servo.

59 Name string

60 // Flags is a bit flag that sets various configuration parameters.

61 //

62 // servo.Centered sets the range of the servo from -90 to 90 degrees.

63 //

64 // servo.Normalized sets the range of the servo from 0 to 2.

65 // Together with servo.Centered, the range of the servo is set to -1 to 1.

66 Flags flag

67
68 // MinPulse is the minimum pwm pulse of the servo. (default 0.05 s)

69 // MaxPulse is the maximum pwm pulse of the servo. (default 0.25 s)

70 // These calibration variables should be immutables once the servo is

71 // connected..

72 MinPulse, MaxPulse float64

73
74 target, position float64

75 deltaT time.Time

76 lastPWM pwm

77
78 step, maxStep float64

79
80 idle bool

81 finished *sync.Cond

82 lock *sync.RWMutex

83 }

84
85 // updateRate is set to 3ms/degree, an approximate on 0.19s/60degrees.

86
87 // String implements the Stringer interface.

88 // It returns a string in the following format:

89 //

90 // servo "NAME" connected to gpio(GPIO_PIN) [flags: (FLAGS_SET)]

91 //

92 // where NAME is the verbose name (default: fmt.Sprintf("Servo%d", GPIO)),

93 // GPIO_PIN is the connection pin of the servo, and FLAGS_SET is the list of

94 // flags set (default: NONE).

95 func (s *Servo) String() string {

96 return fmt.Sprintf("servo %q connected to gpio(%d) [flags: %v]", s.Name, s.pin, s.Flags)

97 }

98
99 // New creates a new Servo struct with default values, connected at a GPIO pin

100 // of the Raspberry Pi. You should check that the pin is controllable with pi-blaster.

101 //

102 // CAUTION: Incorrect pin assignment might cause damage to your Raspberry

103 // Pi.

104 func New(GPIO int) (s *Servo) {

105 // maxS is the maximun degrees/s for a tipical servo of speed

106 // 0.19s/60degrees.

107 const maxS = 315.7

108
109 s = &Servo{

110 pin: gpio(GPIO),

111 Name: fmt.Sprintf("Servo%d", GPIO),

112 maxStep: maxS,

113 step: maxS,

114 MinPulse: 0.05,

115 MaxPulse: 0.25,

116
117 idle: true,

118 finished: sync.NewCond(&sync.Mutex{}),

119 lock: new(sync.RWMutex),

120 }

121
122 return s

123 }

124
125 // Connect connects the servo to the pi-blaster daemon.

126 func (s *Servo) Connect() error {

127 _blaster.subscribe(s)

128
129 return nil

130 }

131
132 // Close cleans up the state of the servo and deactivates the corresponding

133 // GPIO pin.

134 func (s *Servo) Close() {

135 _blaster.unsubscribe(s)

136 }

137
138 // Position returns the current angle of the servo, adjusted for its Flags.

139 func (s *Servo) Position() float64 {

140 s.lock.RLock()

141 defer s.lock.RUnlock()

142
143 p := s.position

144 if s.Flags.is(Centered) {

145 p -= 90

190 Appendix D. Source Code

146 }

147 if s.Flags.is(Normalized) {

148 p /= 90

149 }

150
151 return p

152 }

153
154 // Waiter implements the Wait function.

155 type Waiter interface {

156 // Wait waits for the servo to finish moving.

157 Wait()

158 }

159
160 // MoveTo sets a target angle for the servo to move. The magnitude of the target

161 // depends on the servo's Flags. The target is automatically clamped to the set

162 // range. If called concurrently, the target position is overridden by the last

163 // goroutine (usually non-deterministic).

164 func (s *Servo) MoveTo(target float64) (wait Waiter) {

165 s.moveTo(target)

166 return s

167 }

168
169 func (s *Servo) moveTo(target float64) {

170 if s.Flags.is(Normalized) {

171 target *= 90

172 }

173 if s.Flags.is(Centered) {

174 target += 90

175 }

176
177 s.lock.Lock()

178 defer s.lock.Unlock()

179
180 if s.step == 0.0 {

181 s.target = s.position

182 } else {

183 s.target = clamp(target, 0, 180)

184 }

185 s.deltaT = time.Now()

186 s.idle = false

187 }

188
189 // SetSpeed changes the speed of the servo from (still) 0.0 to 1.0 (max speed).

190 // Setting a speed of 0.0 effectively sets the target position to the current

191 // position and the servo will not move.

192 func (s *Servo) SetSpeed(percentage float64) {

193 s.lock.Lock()

194 defer s.lock.Unlock()

195
196 s.step = s.maxStep * clamp(percentage, 0.0, 1.0)

197 }

198
199 // Stop stops moving the servo. This effectively sets the target position to

200 // the stopped position of the servo.

201 func (s *Servo) Stop() {

202 s.lock.Lock()

203 defer s.lock.Unlock()

204
205 s.target = s.position

206 s.idle = true

207 s.finished.L.Lock()

208 s.finished.Broadcast()

209 s.finished.L.Unlock()

210 }

211
212 // SetPosition immediately sets the angle the servo.

213 func (s *Servo) SetPosition(position float64) {

214 if s.Flags.is(Normalized) {

215 position *= 90

216 }

217 if s.Flags.is(Centered) {

218 position += 90

219 }

220
221 s.lock.Lock()

222 defer s.lock.Unlock()

223
224 s.position = clamp(position, 0, 180)

225 s.target = s.position

226 s.idle = false

227 }

228
229 // pwm linearly interpolates an angle based on the start, finish, and

230 // duration of the movement, and returns the gpio pin and adjusted pwm for the

231 // current time.

232 func (s *Servo) pwm() (gpio, pwm) {

233 ok := false

234 s.lock.RLock()

235 p := s.position

236 _pwm := s.lastPWM

237
238 defer func() {

D.2. Module: servo 191

239 if !ok {

240 s.lock.Lock()

241 s.position = p

242 s.lastPWM = _pwm

243 s.deltaT = time.Now()

244
245 if p == s.target {

246 s.idle = true

247 s.finished.L.Lock()

248 s.finished.Broadcast()

249 s.finished.L.Unlock()

250 }

251 s.lock.Unlock()

252 }

253 }()

254 defer s.lock.RUnlock()

255
256 if s.position == s.target && s.idle {

257 ok = true

258 return s.pin, _pwm

259 }

260
261 delta := time.Since(s.deltaT).Seconds() * s.step

262 if s.target < s.position {

263 p = s.position - delta

264 if p <= s.target {

265 p = s.target

266 }

267 } else {

268 p = s.position + delta

269 if p >= s.target {

270 p = s.target

271 }

272 }

273
274 _pwm = pwm(remap(p, 0, 180, s.MinPulse, s.MaxPulse))

275
276 return s.pin, _pwm

277 }

278
279 // isIdle checks if the servo is not moving.

280 func (s *Servo) isIdle() bool {

281 s.lock.RLock()

282 defer s.lock.RUnlock()

283
284 return s.idle

285 }

286
287 // Wait waits for the servo to stop moving. It is concurrent-safe.

288 func (s *Servo) Wait() {

289 s.finished.L.Lock()

290 defer s.finished.L.Unlock()

291
292 for !s.isIdle() {

293 s.finished.Wait()

294 }

295 }

296
297 func clamp(value, min, max float64) float64 {

298 if value < min {

299 value = min

300 }

301 if value > max {

302 value = max

303 }

304 return value

305 }

306
307 func remap(value, min, max, toMin, toMax float64) float64 {

308 return (value-min)/(max-min)*(toMax-toMin) + toMin

309 }

D.2.3 servo/blaster.go

1 package servo

2
3 import (

4 "fmt"

5 "io/ioutil"

6 "log"

7 "math"

8 "os"

9 "os/exec"

10 "strings"

11 "sync"

12 "time"

13)

192 Appendix D. Source Code

14
15 type blaster struct {

16 disabled bool

17 buffer chan string

18 done chan struct{}

19 servos chan servoPkg

20 _servos map[gpio]*Servo

21
22 rate chan time.Duration

23
24 ws *sync.WaitGroup

25 }

26
27 var _blaster *blaster

28
29 type gpio int

30 type pwm float64

31
32 type servoPkg struct {

33 servo *Servo

34 add bool

35 }

36
37 func init() {

38 _blaster = &blaster{

39 buffer: make(chan string),

40 done: make(chan struct{}),

41 servos: make(chan servoPkg),

42 rate: make(chan time.Duration),

43 _servos: make(map[gpio]*Servo),

44 }

45
46 if err := _blaster.start(); err != nil {

47 if err == errPiBlasterNotFound {

48 log.Println("WARNING:", err, "\n\t(servo will continue with pi-blaster disabled)")

49 noPiBlaster()

50 if err := _blaster.start(); err != nil {

51 panic(err)

52 }

53 } else {

54 panic(err)

55 }

56 }

57 }

58
59 // noPiBlaster stops this package from sending text to /dev/pi-blaster. Useful

60 // for debugging in devices without pi-blaster installed.

61 func noPiBlaster() {

62 _blaster.disabled = true

63 }

64
65 // hasBlaster checks if pi-blaster is running in the system. It depends on

66 // /bin/sh and pgrep.

67 func hasBlaster() bool {

68 cmd := exec.Command("/bin/sh", "-c", "pgrep pi-blaster")

69 if err := cmd.Run(); err != nil {

70 return false

71 }

72 return true

73 }

74
75 var (

76 // errPiBlasterNotFound is thrown when an instance of pi-blaster could not

77 // be found on the system.

78 errPiBlasterNotFound = fmt.Errorf("pi-blaster was not found running: start pi-blaster to avoid this error")

79)

80
81 // start runs a goroutine to send data to pi-blaster. If NoPiBlaster was

82 // called, the data is sent to ioutil.Discard.

83 func (b *blaster) start() error {

84 if !b.disabled && !hasBlaster() {

85 return errPiBlasterNotFound

86 }

87
88 b.manager(b.done)

89
90 return nil

91 }

92
93 // manager keeps track of changes to servos and flushes the data to pi-blaster.

94 // The flush will happen only if there was a change in the servos data.

95 // Everytime the data is flushed, the variable is emptied.

96 func (b *blaster) manager(done <-chan struct{}) {

97 data := make(map[gpio]pwm)

98
99 updateCh := time.NewTicker(3 * time.Millisecond)

100 flushCh := time.NewTicker(40 * time.Millisecond)

101
102 var ws sync.WaitGroup

103 b.ws = &ws

104 b.ws.Add(1)

105
106 go func() {

D.2. Module: servo 193

107 defer b.ws.Done()

108 for {

109 select {

110 case <-done:

111 return

112 case pkg := <-b.servos:

113 servo := pkg.servo

114 if pkg.add {

115 b._servos[servo.pin] = servo

116 } else {

117 delete(b._servos, servo.pin)

118 data[servo.pin] = 0.0

119 }

120 updateCh.Stop()

121 factor := math.Log10(float64(len(b._servos)+1))*3 + 1

122 updateCh = time.NewTicker(time.Duration(factor) * 3 * time.Millisecond)

123 case <-updateCh.C:

124 for _, servo := range b._servos {

125 if !servo.isIdle() {

126 pin, pwm := servo.pwm()

127 data[pin] = pwm

128 }

129 }

130 case rate := <-b.rate:

131 flushCh.Stop()

132 flushCh = time.NewTicker(rate)

133 case <-flushCh.C:

134 if len(data) != 0 {

135 b.flush(data)

136 data = make(map[gpio]pwm)

137 }

138 }

139 }

140 }()

141 }

142
143 // subscribe adds a Servo reference to the manager.

144 func (b *blaster) subscribe(servo *Servo) {

145 b.servos <- servoPkg{servo, true}

146 }

147
148 // unsubscribe removes a Servo reference from the manager.

149 func (b *blaster) unsubscribe(servo *Servo) {

150 b.servos <- servoPkg{servo, false}

151 }

152
153 // Rate changes the rate that data is flushed to pi-blaster (default: 40ms).

154 // This can be changed on-the-fly.

155 func Rate(r time.Duration) {

156 _blaster.rate <- r

157 }

158
159 // Close cleans up the servo package. Make sure to call this in your main

160 // goroutine.

161 func Close() {

162 if _blaster == nil {

163 return

164 }

165 _blaster.close()

166 }

167
168 // close stops blaster if it was started.

169 func (b *blaster) close() {

170 b.write("*=0.0")

171 close(b.done)

172 b.ws.Wait()

173 }

174
175 // flush parses the data into "PIN=PWM PIN=PWM" format.

176 func (b *blaster) flush(data map[gpio]pwm) {

177 s := new(strings.Builder)

178
179 for pin, pwm := range data {

180 fmt.Fprintf(s, " %d=%.6f", pin, pwm)

181 }

182
183 if s.Len() == 0 {

184 return

185 }

186
187 b.write(s.String())

188 }

189
190 // write sends a string s to the designated io.Writer.

191 func (b *blaster) write(s string) {

192 w := ioutil.Discard

193
194 if !b.disabled {

195 const pipepath = "/dev/pi-blaster"

196 f, err := os.OpenFile(pipepath,

197 os.O_WRONLY, os.ModeNamedPipe)

198 if err != nil {

199 panic(err)

194 Appendix D. Source Code

200 }

201 defer f.Close()

202 w = f

203 }

204
205 fmt.Fprintf(w, "%s\n", s)

206 //fmt.Fprintf(os.Stdout, "%s\n", s)

207 }

D.2.4 servo/servo_test.go

1 // +build !live

2
3 package servo

4
5 import (

6 "fmt"

7 "sync"

8 "testing"

9 "time"

10)

11
12 func init() {

13 if hasBlaster() {

14 fmt.Println("Found pi-blaster running.")

15 fmt.Println("The test will not send anything to pi-blaster.")

16 noPiBlaster()

17 }

18 }

19
20 func TestServo(t *testing.T) {

21 s := &Servo{

22 Flags: Centered | Normalized,

23 }

24
25 if !s.Flags.is(Centered) {

26 t.Error("Flags was not set to Centered")

27 }

28 if !s.Flags.is(Normalized) {

29 t.Error("Flags was not set to Normalized")

30 }

31 }

32
33 func TestConnect(t *testing.T) {

34 const gpio = 99

35 s := New(gpio)

36 err := s.Connect()

37 if err != nil {

38 t.Fatal(err)

39 }

40 defer s.Close()

41
42 if s.pin != gpio {

43 t.Errorf("GPIO does not match, got: %d, want: %d", s.pin, gpio)

44 }

45 name := fmt.Sprintf("Servo%d", gpio)

46 if s.Name != name {

47 t.Errorf("Name does not match, got: %q, want: %q", s.Name, name)

48 }

49 }

50
51 func TestServo_Position(t *testing.T) {

52 const gpio = 99

53 s := New(gpio)

54 err := s.Connect()

55 if err != nil {

56 t.Fatal(err)

57 }

58 defer s.Close()

59
60 const want = 59.6

61 s.position = want

62 got := s.Position()

63 if got != want {

64 t.Errorf("positions do not match, got: %.2f, want: %.2f", got, want)

65 }

66
67 t.Run("Centered", func(t *testing.T) {

68 s.Flags = Centered

69 got := s.Position()

70 if got != want-90 {

71 t.Errorf("positions do not match, got: %.2f, want: %.2f", got, want-90)

72 }

73 })

74
75 t.Run("Normalized", func(t *testing.T) {

76 s.Flags = Normalized

D.2. Module: servo 195

77 got := s.Position()

78 if got != want/90 {

79 t.Errorf("positions do not match, got: %.2f, want: %.2f", got, want/90)

80 }

81 })

82
83 t.Run("Centered | Normalized", func(t *testing.T) {

84 s.Flags = Centered | Normalized

85 got := s.Position()

86 if got != (want-90)/90 {

87 t.Errorf("positions do not match, got: %.2f, want: %.2f", got, (want-90)/90)

88 }

89 })

90 }

91
92 func TestServo_MoveTo(t *testing.T) {

93 // map[input]want

94 tests := map[float64]float64{

95 0: 0,

96 10: 10,

97 200: 180,

98 -200: 0,

99 }

100
101 const gpio = 99

102 s := New(gpio)

103 err := s.Connect()

104 if err != nil {

105 t.Fatal(err)

106 }

107 defer s.Close()

108
109 for input, want := range tests {

110 s.moveTo(input)

111 got := s.target

112 if got != want {

113 t.Errorf("Servo.moveTo(%.2f) -> got: %.2f, want: %.2f", input, got, want)

114 }

115 }

116
117 t.Run("Concurrent", func(t *testing.T) {

118 var wg sync.WaitGroup

119
120 wg.Add(5)

121 for i := 0; i < 5; i++ {

122 go func(i int) {

123 defer wg.Done()

124 for j := 0; j < 30; j++ {

125 s.moveTo(float64(i + j))

126 }

127 }(i)

128
129 }

130 wg.Wait()

131 })

132 }

133
134 func TestServo_Reach(t *testing.T) {

135 const gpio = 99

136 s := New(gpio)

137 err := s.Connect()

138 if err != nil {

139 t.Fatal(err)

140 }

141 defer s.Close()

142 done := make(chan struct{})

143
144 // Move to 180 degrees, but override concurrently to 0 when it reaches 110

145 // degrees.

146 s.moveTo(180)

147
148 var wg sync.WaitGroup

149
150 wg.Add(1)

151 go func() {

152 defer wg.Done()

153 defer close(done)

154 s.Wait()

155 }()

156
157 wg.Add(1)

158 go func() {

159 defer wg.Done()

160 b := true

161 for {

162 select {

163 case <-done:

164 want := 0.0

165 got := s.Position()

166 if got != want {

167 t.Errorf("Servo.moveTo(%.2f) -> got: %.2f, want: %.2f", 0.0, got, want)

168 }

169 return

196 Appendix D. Source Code

170 default:

171 if b && s.Position() >= 110 {

172 s.moveTo(0)

173 b = false

174 }

175 }

176 }

177 }()

178
179 <-done

180 wg.Wait()

181 }

182
183 func BenchmarkServo_Reach(b *testing.B) {

184 n := 100

185 degrees := 2.0

186 servos := make([]*Servo, 0, n)

187
188 for i := 0; i < n; i++ {

189 s := New(i)

190 err := s.Connect()

191 if err != nil {

192 b.Fatalf("servos[%d] -> %v", i, err)

193 }

194 defer s.Close()

195 servos = append(servos, s)

196 }

197
198 var wg sync.WaitGroup

199 wg.Add(n)

200
201 b.Logf("This benchmark should read aprox %.0f ns/op", 0.19/60.0*degrees*float64(time.Second))

202
203 b.ResetTimer()

204 for j := 0; j < n; j++ {

205 go func(j int) {

206 defer wg.Done()

207
208 for i := 0; i < b.N; i++ {

209 servos[j].position = 0

210 servos[j].moveTo(degrees)

211 servos[j].Wait()

212 }

213 }(j)

214 }

215 wg.Wait()

216 }

217
218 func BenchmarkServo_PWM(b *testing.B) {

219 servo := New(1)

220 err := servo.Connect()

221 if err != nil {

222 b.Fatalf("%v -> %v", servo, err)

223 }

224 defer servo.Close()

225
226 servo.position = 0

227 servo.moveTo(180)

228
229 var wg sync.WaitGroup

230 wg.Add(100)

231
232 b.ResetTimer()

233 for j := 0; j < 100; j++ {

234 go func(j int) {

235 defer wg.Done()

236
237 for i := 0; i < b.N; i++ {

238 servo.pwm()

239 }

240 }(j)

241 }

242 wg.Wait()

243
244 }

245
246 func TestServo_Stop(t *testing.T) {

247 const gpio = 99

248 s := New(gpio)

249 err := s.Connect()

250 if err != nil {

251 t.Fatal(err)

252 }

253 defer s.Close()

254 done := make(chan struct{})

255
256 // Move to 180 degrees, but override concurrently to 0 when it reaches 110

257 // degrees.

258 s.moveTo(180)

259
260 var wg sync.WaitGroup

261
262 wg.Add(1)

D.2. Module: servo 197

263 go func() {

264 defer wg.Done()

265 defer close(done)

266 s.Wait()

267 }()

268
269 wg.Add(1)

270 go func() {

271 defer wg.Done()

272 b := true

273 for {

274 select {

275 case <-done:

276 got := s.Position()

277 if got == 180 {

278 t.Errorf("Servo.Stop() failed to stop -> got: %.2f", got)

279 }

280 t.Logf("Servo.Stop() stopped at: %.2f (requested: %.2f)", got, 110.0)

281 return

282 default:

283 if b && s.Position() >= 110 {

284 s.Stop()

285 b = false

286 }

287 }

288 }

289 }()

290
291 <-done

292 wg.Wait()

293 }

294
295 func TestServo_Wait(t *testing.T) {

296 const gpio = 99

297 s := New(gpio)

298 err := s.Connect()

299 if err != nil {

300 t.Fatal(err)

301 }

302 defer s.Close()

303
304 // Move to 180 degrees and wait until finished.

305 degrees := 180.0

306 s.moveTo(degrees)

307
308 var wg sync.WaitGroup

309
310 wg.Add(1)

311 // Test a concurrent waiter.

312 go func() {

313 defer wg.Done()

314 s.Wait()

315 }()

316
317 start := time.Now()

318 s.Wait()

319 elapsed := time.Since(start)

320
321 _t := time.Duration(degrees/s.step*1000) * time.Millisecond

322 const tolerance = 50 * time.Millisecond

323 min := _t - tolerance

324 max := _t + tolerance

325 if elapsed < min || elapsed > max {

326 t.Errorf("it should take between %v and %v to move %.2f degrees, got: %v", min, max, degrees, elapsed)

327 }

328
329 wg.Wait()

330
331 done := make(chan struct{})

332
333 go func() {

334 defer close(done)

335 s.moveTo(degrees)

336 <-time.After(500 * time.Millisecond)

337 s.Wait()

338 }()

339
340 select {

341 case <-time.After(1 * time.Second):

342 t.Errorf("Wait timeout after 1 second")

343 case <-done:

344 }

345 }

346
347 func TestClamp(t *testing.T) {

348 // map[input]want

349 tests := map[float64]float64{

350 0: 0,

351 10: 1,

352 -10: -1,

353 0.5: 0.5,

354 }

355

198 Appendix D. Source Code

356 for input, want := range tests {

357 got := clamp(input, -1, 1)

358 if got != want {

359 t.Errorf("clam(%.2f, -1, 1) -> got: %.2f, want: %.2f", input, got, want)

360 }

361 }

362 }

D.2.5 servo/blaster.go

1 package servo

2
3 import (

4 "fmt"

5 "io/ioutil"

6 "log"

7 "math"

8 "os"

9 "os/exec"

10 "strings"

11 "sync"

12 "time"

13)

14
15 type blaster struct {

16 disabled bool

17 buffer chan string

18 done chan struct{}

19 servos chan servoPkg

20 _servos map[gpio]*Servo

21
22 rate chan time.Duration

23
24 ws *sync.WaitGroup

25 }

26
27 var _blaster *blaster

28
29 type gpio int

30 type pwm float64

31
32 type servoPkg struct {

33 servo *Servo

34 add bool

35 }

36
37 func init() {

38 _blaster = &blaster{

39 buffer: make(chan string),

40 done: make(chan struct{}),

41 servos: make(chan servoPkg),

42 rate: make(chan time.Duration),

43 _servos: make(map[gpio]*Servo),

44 }

45
46 if err := _blaster.start(); err != nil {

47 if err == errPiBlasterNotFound {

48 log.Println("WARNING:", err, "\n\t(servo will continue with pi-blaster disabled)")

49 noPiBlaster()

50 if err := _blaster.start(); err != nil {

51 panic(err)

52 }

53 } else {

54 panic(err)

55 }

56 }

57 }

58
59 // noPiBlaster stops this package from sending text to /dev/pi-blaster. Useful

60 // for debugging in devices without pi-blaster installed.

61 func noPiBlaster() {

62 _blaster.disabled = true

63 }

64
65 // hasBlaster checks if pi-blaster is running in the system. It depends on

66 // /bin/sh and pgrep.

67 func hasBlaster() bool {

68 cmd := exec.Command("/bin/sh", "-c", "pgrep pi-blaster")

69 if err := cmd.Run(); err != nil {

70 return false

71 }

72 return true

73 }

74
75 var (

76 // errPiBlasterNotFound is thrown when an instance of pi-blaster could not

77 // be found on the system.

D.2. Module: servo 199

78 errPiBlasterNotFound = fmt.Errorf("pi-blaster was not found running: start pi-blaster to avoid this error")

79)

80
81 // start runs a goroutine to send data to pi-blaster. If NoPiBlaster was

82 // called, the data is sent to ioutil.Discard.

83 func (b *blaster) start() error {

84 if !b.disabled && !hasBlaster() {

85 return errPiBlasterNotFound

86 }

87
88 b.manager(b.done)

89
90 return nil

91 }

92
93 // manager keeps track of changes to servos and flushes the data to pi-blaster.

94 // The flush will happen only if there was a change in the servos data.

95 // Everytime the data is flushed, the variable is emptied.

96 func (b *blaster) manager(done <-chan struct{}) {

97 data := make(map[gpio]pwm)

98
99 updateCh := time.NewTicker(3 * time.Millisecond)

100 flushCh := time.NewTicker(40 * time.Millisecond)

101
102 var ws sync.WaitGroup

103 b.ws = &ws

104 b.ws.Add(1)

105
106 go func() {

107 defer b.ws.Done()

108 for {

109 select {

110 case <-done:

111 return

112 case pkg := <-b.servos:

113 servo := pkg.servo

114 if pkg.add {

115 b._servos[servo.pin] = servo

116 } else {

117 delete(b._servos, servo.pin)

118 data[servo.pin] = 0.0

119 }

120 updateCh.Stop()

121 factor := math.Log10(float64(len(b._servos)+1))*3 + 1

122 updateCh = time.NewTicker(time.Duration(factor) * 3 * time.Millisecond)

123 case <-updateCh.C:

124 for _, servo := range b._servos {

125 if !servo.isIdle() {

126 pin, pwm := servo.pwm()

127 data[pin] = pwm

128 }

129 }

130 case rate := <-b.rate:

131 flushCh.Stop()

132 flushCh = time.NewTicker(rate)

133 case <-flushCh.C:

134 if len(data) != 0 {

135 b.flush(data)

136 data = make(map[gpio]pwm)

137 }

138 }

139 }

140 }()

141 }

142
143 // subscribe adds a Servo reference to the manager.

144 func (b *blaster) subscribe(servo *Servo) {

145 b.servos <- servoPkg{servo, true}

146 }

147
148 // unsubscribe removes a Servo reference from the manager.

149 func (b *blaster) unsubscribe(servo *Servo) {

150 b.servos <- servoPkg{servo, false}

151 }

152
153 // Rate changes the rate that data is flushed to pi-blaster (default: 40ms).

154 // This can be changed on-the-fly.

155 func Rate(r time.Duration) {

156 _blaster.rate <- r

157 }

158
159 // Close cleans up the servo package. Make sure to call this in your main

160 // goroutine.

161 func Close() {

162 if _blaster == nil {

163 return

164 }

165 _blaster.close()

166 }

167
168 // close stops blaster if it was started.

169 func (b *blaster) close() {

170 b.write("*=0.0")

200 Appendix D. Source Code

171 close(b.done)

172 b.ws.Wait()

173 }

174
175 // flush parses the data into "PIN=PWM PIN=PWM" format.

176 func (b *blaster) flush(data map[gpio]pwm) {

177 s := new(strings.Builder)

178
179 for pin, pwm := range data {

180 fmt.Fprintf(s, " %d=%.6f", pin, pwm)

181 }

182
183 if s.Len() == 0 {

184 return

185 }

186
187 b.write(s.String())

188 }

189
190 // write sends a string s to the designated io.Writer.

191 func (b *blaster) write(s string) {

192 w := ioutil.Discard

193
194 if !b.disabled {

195 const pipepath = "/dev/pi-blaster"

196 f, err := os.OpenFile(pipepath,

197 os.O_WRONLY, os.ModeNamedPipe)

198 if err != nil {

199 panic(err)

200 }

201 defer f.Close()

202 w = f

203 }

204
205 fmt.Fprintf(w, "%s\n", s)

206 //fmt.Fprintf(os.Stdout, "%s\n", s)

207 }

D.2.6 servo/example_test.go

1 //+build !live

2
3 package servo_test

4
5 import (

6 "fmt"

7 "log"

8
9 "github.com/cgxeiji/servo"

10)

11
12 func Example() {

13 // Use servo.Close() to close the connection of all servos and pi-blaster.

14 defer servo.Close()

15
16 // If you want to move the servos, make sure that pi-blaster is running.

17 // For example, start pi-blaster as:

18 // $ sudo pi-blaster --gpio 14 --pcm

19
20 // Create a new servo connected to gpio 14.

21 myServo := servo.New(14)

22 // (optional) Initialize the servo with your preferred values.

23 // myServo.Flags = servo.Normalized | servo.Centered

24 myServo.MinPulse = 0.05 // Set the minimum pwm pulse width (default: 0.05).

25 myServo.MaxPulse = 0.25 // Set the maximum pwm pulse width (default: 0.25).

26 myServo.SetPosition(90) // Set the initial position to 90 degrees.

27 myServo.SetSpeed(0.2) // Set the speed to 20% (default: 1.0).

28 // NOTE: The maximum speed of the servo is 0.19s/60degrees.

29 // (optional) Set a verbose name.

30 myServo.Name = "My Servo"

31
32 // Print the information of the servo.

33 fmt.Println(myServo)

34
35 // Connect the servo to the daemon.

36 err := myServo.Connect()

37 if err != nil {

38 log.Fatal(err)

39 }

40
41 // (optional) Use myServo.Close() to close the connection to a specific

42 // servo. You still need to close the connection to pi-blaster with

43 // `servo.Close()`.

44 defer myServo.Close()

45
46 myServo.SetSpeed(0.5) // Set the speed to half. This is concurrent-safe.

47 myServo.MoveTo(180) // This is a non-blocking call.

D.2. Module: servo 201

48
49 /* do some work */

50
51 myServo.Wait() // Call Wait() to sync with the servo.

52
53 // MoveTo() returns a Waiter interface that can be used to move and wait on

54 // the same line.

55 myServo.MoveTo(0).Wait() // This is a blocking call.

56
57 // Output:

58 // servo "My Servo" connected to gpio(14) [flags: (NONE)]

59 }

D.2.7 servo/package_test.go

1 // +build !live

2
3 package servo_test

4
5 import (

6 "sync"

7 "testing"

8 "time"

9
10 "github.com/cgxeiji/servo"

11)

12
13 func initServo(t *testing.T) *servo.Servo {

14 s := servo.New(99)

15 err := s.Connect()

16 if err != nil {

17 t.Fatal(err)

18 }

19
20 s.Name = "Tester"

21 return s

22 }

23
24 func TestExportConnect(t *testing.T) {

25 s := initServo(t)

26 defer s.Close()

27
28 want := `servo "Tester" connected to gpio(99) [flags: (NONE)]`

29 got := s.String()

30
31 if got != want {

32 t.Errorf("error connecting servo\ngot:\n%v\nwant:\n%v", got, want)

33 }

34 }

35
36 func TestExportServo_MoveTo(t *testing.T) {

37 s := initServo(t)

38 defer s.Close()

39
40 var wg sync.WaitGroup

41
42 // Move to 180 degrees and wait until finished.

43 degrees := 180.0

44 s.MoveTo(degrees)

45
46 wg.Add(1)

47 // Test a concurrent waiter.

48 go func() {

49 defer wg.Done()

50 s.Wait()

51 }()

52
53 start := time.Now()

54 s.Wait()

55 elapsed := time.Since(start)

56
57 _t := time.Duration(degrees/315.7*1000) * time.Millisecond

58 const tolerance = 50 * time.Millisecond

59 min := _t - tolerance

60 max := _t + tolerance

61
62 if elapsed < min || elapsed > max {

63 t.Errorf("it should take between %v and %v to move %.2f degrees, got: %v", min, max, degrees, elapsed)

64 }

65
66 got := s.Position()

67 if got != degrees {

68 t.Errorf("did not move to %.2f, got: %.2f", degrees, got)

69 }

70
71 wg.Wait()

72 }

202 Appendix D. Source Code

D.2.8 servo/live_test.go

1 // +build live

2
3 package servo_test

4
5 import (

6 "testing"

7 "time"

8
9 "github.com/cgxeiji/servo"

10)

11
12 func init() {

13 if !servo.HasBlaster() {

14 panic("start pi-blaster before running the live test!")

15 }

16 }

17
18 func TestLive(t *testing.T) {

19 test, err := servo.Connect(14)

20 if err != nil {

21 t.Fatalf("Could not connect servo to pin 14, got:\n%v", err)

22 }

23 defer func() {

24 test.Speed(0.05)

25 test.MoveTo(90)

26 test.Wait()

27 test.Close()

28 }()

29
30 test.MoveTo(180)

31 start := time.Now()

32 test.Wait()

33 elapsed := time.Since(start)

34
35 _t := time.Duration(570) * time.Millisecond

36 const tolerance = 50 * time.Millisecond

37 min := _t - tolerance

38 max := _t + tolerance

39
40 t.Logf("took %v to move %.2f degrees", elapsed, 180.0)

41 if elapsed < min || elapsed > max {

42 t.Errorf("it should take between %v and %v to move %.2f degrees, got: %v", min, max, 180.0, elapsed)

43 }

44 if test.Position() != 180 {

45 t.Errorf("servo position got: %.2f, want: %.2f", test.Position(), 180.0)

46 }

47
48 time.Sleep(500 * time.Millisecond)

49 test.Speed(0.5)

50
51 test.MoveTo(0)

52 test.MoveTo(90)

53 test.MoveTo(0)

54 test.Wait()

55 if test.Position() != 0 {

56 t.Errorf("servo position got: %.2f, want: %.2f", test.Position(), 0.0)

57 }

58 time.Sleep(500 * time.Millisecond)

59 }

60
61 func TestLive2(t *testing.T) {

62 test, err := servo.Connect(15)

63 if err != nil {

64 t.Fatalf("Could not connect servo to pin 15, got:\n%v", err)

65 }

66 defer func() {

67 test.Speed(0.05)

68 test.MoveTo(90)

69 test.Wait()

70 test.Close()

71 }()

72
73 test.Speed(0.5)

74 test.MoveTo(180)

75 start := time.Now()

76 test.Wait()

77 elapsed := time.Since(start)

78
79 _t := time.Duration(570*2) * time.Millisecond

80 const tolerance = 50 * time.Millisecond

81 min := _t - tolerance

82 max := _t + tolerance

83
84 t.Logf("took %v to move %.2f degrees", elapsed, 180.0)

85 if elapsed < min || elapsed > max {

86 t.Errorf("it should take between %v and %v to move %.2f degrees, got: %v", min, max, 180.0, elapsed)

87 }

88 if test.Position() != 180 {

89 t.Errorf("servo position got: %.2f, want: %.2f", test.Position(), 180.0)

D.2. Module: servo 203

90 }

91
92 time.Sleep(500 * time.Millisecond)

93 test.Speed(0.25)

94
95 test.MoveTo(0)

96 test.MoveTo(90)

97 test.MoveTo(0)

98 test.Wait()

99 if test.Position() != 0 {

100 t.Errorf("servo position got: %.2f, want: %.2f", test.Position(), 0.0)

101 }

102 time.Sleep(500 * time.Millisecond)

103 }

D.2.9 servo/export_test.go

1 package servo

2
3 var HasBlaster = hasBlaster

D.2.10 servo/stress_test.go

1 // +build !race,!live

2
3 package servo

4
5 import (

6 "fmt"

7 "sync"

8 "testing"

9 "time"

10)

11
12 func TestStress(t *testing.T) {

13 degrees := 180.0

14 _t := time.Duration(degrees/315.7*1000) * time.Millisecond

15 const tolerance = 50 * time.Millisecond

16 min := _t - tolerance

17 max := _t + tolerance

18
19 for n := 100; n <= 10000; n *= 10 {

20 t.Run(fmt.Sprintf("%dServos", n), func(t *testing.T) {

21 servos := make([]*Servo, 0, n)

22 times := make([]time.Duration, 0, n)

23
24 for i := 0; i < n; i++ {

25 s := New(i)

26 err := s.Connect()

27 if err != nil {

28 t.Fatalf("servos[%d] -> %v", i, err)

29 }

30 defer s.Close()

31 servos = append(servos, s)

32 }

33
34 var wg sync.WaitGroup

35 timeout := make(chan time.Duration)

36
37 wg.Add(n)

38
39 for i := 0; i < n; i++ {

40 go func(i int) {

41 defer wg.Done()

42 times := make([]time.Duration, 0, 3)

43 tests := []float64{180, 0, 180}

44
45 for _, d := range tests {

46 start := time.Now()

47 servos[i].moveTo(d)

48 servos[i].Wait()

49 elapsed := time.Since(start)

50 if elapsed < min || elapsed > max {

51 times = append(times, elapsed)

52 }

53 }

54 var sum time.Duration

55 for _, t := range times {

56 sum += t

57 }

58 if sum > 0 {

59 timeout <- sum / time.Duration(len(times))

204 Appendix D. Source Code

60 }

61 }(i)

62 }

63
64 go func() {

65 wg.Wait()

66 close(timeout)

67 }()

68
69 for t := range timeout {

70 times = append(times, t)

71 }

72
73 fn := len(times)

74
75 if fn != 0 {

76 sum := time.Duration(0)

77 for _, t := range times {

78 sum += t

79 }

80 mean := sum / time.Duration(fn)

81
82 ratio := float64(fn) / float64(n)

83 if n > 100 {

84 t.Logf("%d out of %d (%.2f%%) servos failed with a mean time of %v (it should take

between %v and %v to move %.2f degrees)",→֒

85 fn, n, ratio*100.0, mean, min, max, degrees)

86 } else {

87 t.Errorf("%d out of %d (%.2f%%) servos failed with a mean time of %v (it should take

between %v and %v to move %.2f degrees)",→֒

88 fn, n, ratio*100.0, mean, min, max, degrees)

89 }

90 }

91 })

92 }

93 }

D.3. Module: ring 205

D.3 Module: ring

D.3.1 License

MIT License

Copyright (c) 2020 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.3.2 ring/ring.go

1 package ring

2
3 import (

4 "fmt"

5 "image/color"

6 "math"

7 "os"

8
9 ws2811 "github.com/rpi-ws281x/rpi-ws281x-go"

10)

11
12 // Ring represents the WS2811 LED device.

13 type Ring struct {

14 device *ws2811.WS2811

15 layers []Pixeler

16 ledArc float64

17 ledOffset int

18 offset float64

19 opt *Options

20 }

21
22 // Pixeler is an interface that returns the color of a pixel at a specific

23 // location, with a set resolution.

24 type Pixeler interface {

25 Pixel(int) color.Color

26 Options() *LayerOptions

27 }

28
29 // Options is the list of ring options.

30 type Options struct {

31 // LedCount is the number of LEDs in the ring.

32 LedCount int

33 // MinBrightness is the minimum output of the LED> Goes from 0 to 255

34 // (default: 0).

35 // MaxBrightness is the maximum output of the LED. Goes from 0 to 255

36 // (default: 64).

37 //

38 // The color will be scaled to these values. For example, color.RGBA{255,

39 // 255, 255, 255} will output led(R: 128, G: 128, B: 128) if MaxBrightness

40 // is set to 128, and color.RGBA(0, 0, 0, 0) will output led(R: 10, G: 10,

41 // B: 10) if MinBrightness is set to 10.

42 MinBrightness, MaxBrightness int

43 // GpioPin is the GPIO pin on the Raspberry Pi with PWM output (default:

44 // GPIO 18). *Do not confuse with the physical pin number*

45 GpioPin int

46 }

47
48 // New creates a new LED ring with given options.

49 func New(options *Options) (*Ring, error) {

50 if os.Getuid() != 0 {

51 return nil, fmt.Errorf("ring: rpi-ws281x needs root permissions (try running as sudo)")

52 }

206 Appendix D. Source Code

53
54 opt := ws2811.DefaultOptions

55 if options.LedCount != 0 {

56 opt.Channels[0].LedCount = options.LedCount

57 }

58 if options.MaxBrightness != 0 {

59 opt.Channels[0].Brightness = options.MaxBrightness

60 }

61 if options.GpioPin != 0 {

62 opt.Channels[0].GpioPin = options.GpioPin

63 }

64
65 dev, err := ws2811.MakeWS2811(&opt)

66 if err != nil {

67 return nil, fmt.Errorf("ring: could not create ws2811 device: %w", err)

68 }

69
70 r := &Ring{

71 device: dev,

72 ledArc: 2 * math.Pi / float64(options.LedCount),

73 opt: options,

74 }

75
76 if err := r.device.Init(); err != nil {

77 return nil, fmt.Errorf("ring: could not start ws2811 device: %w", err)

78 }

79
80 return r, nil

81 }

82
83 // Render updates the LED ring.

84 func (r *Ring) Render() error {

85 pixels := make([]color.Color, r.Size())

86 pixel := make([]color.Color, len(r.layers))

87
88 for i := range r.device.Leds(0) {

89 for j, l := range r.layers {

90 switch l.Options().ContentMode {

91 case ContentTile:

92 pixel[j] = l.Pixel(i)

93 case ContentCrop:

94 if i < l.Options().Resolution {

95 pixel[j] = l.Pixel(i)

96 } else {

97 pixel[j] = color.Transparent

98 }

99 case ContentScale:

100 pixel[j] = l.Pixel(scale(i, r.Size(), l.Options().Resolution))

101 }

102 }

103 pixels[i] = blendOver(pixel...)

104 }

105 rotInt := math.Floor(r.offset)

106 rotFloat := r.offset - rotInt

107 for i := range r.device.Leds(0) {

108 r.device.Leds(0)[i] = serialize(lerp(int(rotInt)+i, pixels, rotFloat))

109 }

110
111 if err := r.device.Render(); err != nil {

112 return err

113 }

114
115 return nil

116 }

117
118 func lerp(i int, pixels []color.Color, alpha float64) color.Color {

119 return blendLerp(pixels[mod(i, len(pixels))], pixels[mod(i+1, len(pixels))], alpha)

120 }

121
122 // AddLayer adds a drawable layer to the ring.

123 func (r *Ring) AddLayer(l Pixeler) {

124 r.layers = append(r.layers, l)

125 }

126
127 // Close turns off the LED ring and closes the device.

128 func (r *Ring) Close() {

129 r.TurnOff()

130 r.device.Fini()

131 }

132
133 // TurnOff tuns off the LED ring without closing the device.

134 func (r *Ring) TurnOff() {

135 for i := range r.device.Leds(0) {

136 r.device.Leds(0)[i] = 0

137 }

138 r.device.Render()

139 }

140
141 // Size returns the total number of LEDs of the ring.

142 func (r *Ring) Size() int {

143 return r.opt.LedCount

144 }

145

D.3. Module: ring 207

146 // Offset sets an angular offset (in radians) to render the layers.

147 // A positive angle rotates counter-clockwise.

148 func (r *Ring) Offset(rotation float64) {

149 if rotation < 0 {

150 r.ledOffset = int(math.Ceil(rotation / r.ledArc))

151 } else {

152 r.ledOffset = int(math.Floor(rotation / r.ledArc))

153 }

154 r.offset = rotation / r.ledArc

155 }

156
157 func scale(v, fmax, tmax int) int {

158 return v * tmax / fmax

159 }

D.3.3 ring/layer.go

1 package ring

2
3 import (

4 "errors"

5 "image/color"

6 "math"

7 "sync"

8)

9
10 // Layer represents a drawable layer of the LED ring.

11 type Layer struct {

12 pixels []color.Color

13
14 pixArc float64 // pixel arc in radians

15 rotFloat float64 // float part of rotation in radians

16 rotInt int // integer part of rotation in radians

17
18 opt *LayerOptions

19 buffer []color.Color

20 lock *sync.RWMutex

21 }

22
23 // LayerOptions is the list of options of a layer.

24 type LayerOptions struct {

25 // Resolution sets the number of pixels a layer has. Usually, this is set

26 // to the same number of LEDs the ring has.

27 Resolution int

28 // ContentMode sets how the layer will be rendered (default: Tile).

29 ContentMode ContentMode

30 }

31
32 // ContentMode defines how the layer will be rendered.

33 type ContentMode uint8

34
35 const (

36 // ContentTile sets the layer to crop its content if it is larger that the ring

37 // and to repeat the content.

38 ContentTile ContentMode = iota

39 // ContentCrop sets the layer to crop its content if it is larger than the ring

40 // and does not repeat the content.

41 ContentCrop

42 // ContentScale sets the layer to scale up or down its content to fit the ring.

43 ContentScale

44)

45
46 var (

47 // ErrZeroResolution defines the error when a layer is initialized with

48 // resolution 0.

49 ErrZeroResolution = errors.New("ring: resolution of new layer is 0")

50)

51
52 // NewLayer creates a new drawable layer.

53 func NewLayer(options *LayerOptions) (*Layer, error) {

54 if options.Resolution == 0 {

55 return nil, ErrZeroResolution

56 }

57
58 l := &Layer{

59 pixels: make([]color.Color, options.Resolution),

60 buffer: make([]color.Color, options.Resolution),

61 pixArc: 2 * math.Pi / float64(options.Resolution),

62 opt: options,

63 lock: new(sync.RWMutex),

64 }

65 l.SetAll(color.Transparent)

66 l.update()

67
68 return l, nil

69 }

70

208 Appendix D. Source Code

71 // SetAll sets all the pixels of a layer to an uniform color.

72 func (l *Layer) SetAll(c color.Color) {

73 for i := range l.pixels {

74 l.pixels[i] = c

75 }

76 l.update()

77 }

78
79 // SetPixel sets the color of a single pixel in the layer.

80 func (l *Layer) SetPixel(i int, c color.Color) {

81 l.pixels[i] = c

82 l.update()

83 }

84
85 // Rotate sets the rotation of the layer. A positive angle makes a counter-clockwise rotation.

86 func (l *Layer) Rotate(angle float64) {

87 rotArc := angle / l.pixArc

88 rotInt := math.Floor(rotArc)

89 l.rotFloat = rotArc - rotInt

90 l.rotInt = int(rotInt)

91
92 l.update()

93 }

94
95 // pixelRotated returns the color of the pixel at position i adjusted for the

96 // rotation of the layer.

97 func (l *Layer) pixelRotated(i int) (c color.Color) {

98 i += l.rotInt

99 c = blendLerp(l.pixelRaw(i), l.pixelRaw(i+1), l.rotFloat)

100
101 return c

102 }

103
104 // Pixel returns the color of the pixel at position i, with layer

105 // transformations.

106 func (l *Layer) Pixel(i int) (c color.Color) {

107 l.lock.RLock()

108 defer l.lock.RUnlock()

109 return l.buffer[mod(i, l.opt.Resolution)]

110 }

111
112 // Options returns the options of the layer.

113 func (l *Layer) Options() *LayerOptions {

114 return l.opt

115 }

116
117 func (l *Layer) update() {

118 l.lock.Lock()

119 defer l.lock.Unlock()

120 for i := range l.pixels {

121 l.buffer[i] = l.pixelRotated(i)

122 }

123 }

124
125 // pixelRaw returns the color of the pixelRaw at position i.

126 func (l *Layer) pixelRaw(i int) (c color.Color) {

127 return l.pixels[mod(i, l.opt.Resolution)]

128 }

129
130 func mod(p, n int) (r int) {

131 r = p % n

132 if r < 0 {

133 r += n

134 }

135
136 return r

137 }

D.3.4 ring/color.go

1 package ring

2
3 import (

4 "image/color"

5)

6
7 // serialize transforms color information to uint32 with the shape 0x00RRGGBB

8 func serialize(c color.Color) uint32 {

9 r, g, b, _ := c.RGBA()

10
11 return ((r >> 8) << 16) |

12 ((g >> 8) << 8) |

13 (b >> 8)

14 }

15
16 // blendOver blends multiple colors using the over operator and returns an

17 // alpha pre-multiplied color. The first color is considered to be at the

D.3. Module: ring 209

18 // bottom and the last color is considered to be at the top.

19 func blendOver(cs ...color.Color) (blend *color.RGBA) {

20 over := func(a, b, delta uint32) uint8 {

21 return uint8((a + b*delta/0xFFFF) >> 8)

22 }

23 blend = &color.RGBA{0, 0, 0, 0}

24 for _, c := range cs {

25 r, g, b, a := c.RGBA()

26 bR, bG, bB, bA := blend.RGBA()

27 delta := (0xFFFF - a)

28
29 blend.R = over(r, bR, delta)

30 blend.G = over(g, bG, delta)

31 blend.B = over(b, bB, delta)

32 blend.A = over(a, bA, delta)

33 }

34
35 return blend

36 }

37
38 // blendLerp blends two colors by linearly interpolating between them given the

39 // amount l: (0.0 to 1.0) -> (a to b).

40 func blendLerp(a, b color.Color, l float64) (blend *color.RGBA) {

41 lerp := func(a, b, l uint32) uint8 {

42 return uint8((a - (a-b)*l/0xFFFF) >> 8)

43 }

44
45 aR, aG, aB, aA := a.RGBA()

46 bR, bG, bB, bA := b.RGBA()

47
48 l16 := uint32(l * 0xFFFF)

49
50 blend = &color.RGBA{

51 R: lerp(aR, bR, l16),

52 G: lerp(aG, bG, l16),

53 B: lerp(aB, bB, l16),

54 A: lerp(aA, bA, l16),

55 }

56
57 return blend

58 }

D.3.5 ring/color_test.go

1 package ring

2
3 import (

4 "fmt"

5 "image/color"

6 "testing"

7)

8
9 func TestMod(t *testing.T) {

10 const n = 12

11 tests := []struct {

12 idx int

13 want int

14 }{

15 {

16 1,

17 1,

18 },

19 {

20 12,

21 0,

22 },

23 {

24 13,

25 1,

26 },

27 {

28 -1,

29 11,

30 },

31 }

32
33 for _, ts := range tests {

34 t.Run(fmt.Sprintf("%d", ts.idx), func(t *testing.T) {

35 got := mod(ts.idx, n)

36 if got != ts.want {

37 t.Errorf("got: %#v, want: %#v", got, ts.want)

38 }

39 })

40 }

41 }

42
43 func TestSerialize(t *testing.T) {

210 Appendix D. Source Code

44 tests := []struct {

45 name string

46 color color.Color

47 want uint32

48 }{

49 {

50 "rgb",

51 color.NRGBA{0x16, 0x16, 0x16, 0xFF},

52 0x161616,

53 },

54 {

55 "alpha",

56 color.NRGBA{0xFF, 0xFF, 0xFF, 0x32},

57 0x323232,

58 },

59 {

60 "16bit",

61 color.NRGBA64{0x3214, 0x1234, 0x00FF, 0xFFFF},

62 0x321200,

63 },

64 {

65 "gray",

66 color.Gray{0x10},

67 0x101010,

68 },

69 }

70
71 for _, ts := range tests {

72 t.Run(ts.name, func(t *testing.T) {

73 got := serialize(ts.color)

74 if got != ts.want {

75 t.Errorf("got: %#v, want: %#v", got, ts.want)

76 }

77 })

78 }

79 }

80
81 func TestBlendOver(t *testing.T) {

82 tests := []struct {

83 name string

84 colors []color.Color

85 want color.RGBA

86 }{

87 {

88 "single",

89 []color.Color{

90 color.RGBA{0x15, 0x16, 0x17, 0x18},

91 },

92 color.RGBA{0x15, 0x16, 0x17, 0x18},

93 },

94 {

95 "white over black",

96 []color.Color{

97 color.RGBA{0x00, 0x00, 0x00, 0xFF},

98 color.RGBA{0xFF, 0xFF, 0xFF, 0xFF},

99 },

100 color.RGBA{0xFF, 0xFF, 0xFF, 0xFF},

101 },

102 {

103 "black over white",

104 []color.Color{

105 color.RGBA{0xFF, 0xFF, 0xFF, 0xFF},

106 color.RGBA{0x00, 0x00, 0x00, 0xFF},

107 },

108 color.RGBA{0x00, 0x00, 0x00, 0xFF},

109 },

110 {

111 "red over green",

112 []color.Color{

113 color.NRGBA{0x00, 0x80, 0x00, 0xFF},

114 color.NRGBA{0x80, 0x00, 0x00, 0xA1},

115 },

116 color.RGBA{0x51, 0x2F, 0x00, 0xFF},

117 },

118 }

119
120 for _, ts := range tests {

121 t.Run(ts.name, func(t *testing.T) {

122 got := *blendOver(ts.colors...)

123 if got != ts.want {

124 t.Errorf("got: %#v, want: %#v", got, ts.want)

125 }

126 })

127 }

128 }

129
130 func TestBlendLerp(t *testing.T) {

131 tests := []struct {

132 name string

133 colorA color.Color

134 colorB color.Color

135 l float64

136 want color.RGBA

D.3. Module: ring 211

137 }{

138 {

139 "fullA",

140 color.RGBA{128, 128, 0, 128},

141 color.RGBA{0, 255, 255, 255},

142 0.0,

143 color.RGBA{128, 128, 0, 128},

144 },

145 {

146 "fullB",

147 color.RGBA{128, 128, 0, 128},

148 color.RGBA{0, 255, 255, 255},

149 1.0,

150 color.RGBA{0, 255, 255, 255},

151 },

152 {

153 "half",

154 color.RGBA{128, 128, 0, 128},

155 color.RGBA{0, 255, 255, 255},

156 0.5,

157 color.RGBA{64, 192, 127, 192},

158 },

159 {

160 "quater",

161 color.RGBA{128, 128, 0, 128},

162 color.RGBA{0, 255, 255, 255},

163 0.75,

164 color.RGBA{32, 224, 191, 224},

165 },

166 }

167
168 for _, ts := range tests {

169 t.Run(ts.name, func(t *testing.T) {

170 got := *blendLerp(ts.colorA, ts.colorB, ts.l)

171 if got != ts.want {

172 t.Errorf("got: %v, want: %v", got, ts.want)

173 }

174 })

175 }

176 }

D.3.6 ring/example_test.go

1 package ring_test

2
3 import (

4 "bufio"

5 "fmt"

6 "image/color"

7 "log"

8 "math"

9 "os"

10 "sync"

11 "time"

12
13 "github.com/cgxeiji/ring"

14)

15
16 func Example() {

17 // Initialize the ring.

18 r, err := ring.New(&ring.Options{

19 LedCount: 12, // adjust this to the number of LEDs you have

20 MaxBrightness: 180, // value from 0 to 255

21 })

22 r.Offset(-math.Pi / 3) // you can set a rotation offset for the ring

23 if err != nil {

24 log.Fatal(err)

25 }

26 // Make sure to properly close the ring.

27 defer r.Close()

28
29 // Create a new layer. This will be a static white background.

30 bg, err := ring.NewLayer(&ring.LayerOptions{

31 Resolution: 1, // set to 1 pixel because it is a uniform color background

32 ContentMode: ring.ContentScale, // this scales the pixel to the whole ring

33 })

34 if err != nil {

35 log.Fatal(err)

36 }

37 // Set all pixels of the layer to white.

38 bg.SetAll(color.White)

39 // Add the layer to the ring.

40 r.AddLayer(bg)

41
42 // Create a mask layer. This will fade the background.

43 bgMask, err := ring.NewLayer(&ring.LayerOptions{

44 Resolution: 1, // set to 1 pixel because it is a uniform mask

212 Appendix D. Source Code

45 })

46 if err != nil {

47 log.Fatal(err)

48 }

49 r.AddLayer(bgMask)

50
51 // Render the ring.

52 if err := r.Render(); err != nil {

53 log.Fatal(err)

54 }

55
56 // Wait for 1 second to see the beauty of the freshly rendered layer.

57 time.Sleep(1 * time.Second)

58
59 // Create another layer. This will set 3 pixels to red, green and blue,

60 // and a hidden purple pixel with transparency of 200, that rotate

61 // counter-clockwise.

62 triRotate, err := ring.NewLayer(&ring.LayerOptions{

63 Resolution: 48,

64 })

65 if err != nil {

66 log.Fatal(err)

67 }

68 // We can immediately add the layer to the ring. By default, new layers

69 // are initialized with transparent pixels. The new layer is added on top

70 // of the previous layers.

71 r.AddLayer(triRotate)

72
73 // Set the colors.

74 triRotate.SetPixel(0, color.NRGBA{128, 0, 0, 200}) // dark red

75 triRotate.SetPixel(3, color.NRGBA{0, 128, 0, 200}) // dark green

76 triRotate.SetPixel(6, color.NRGBA{0, 0, 128, 200}) // dark blue

77 triRotate.SetPixel(24, color.NRGBA{128, 0, 255, 200}) // purple

78 // Render the ring.

79 if err := r.Render(); err != nil {

80 log.Fatal(err)

81 }

82
83 // Wait for 1 second to see the beauty of both layers.

84 time.Sleep(1 * time.Second)

85
86 // Create another layer. This will set a pixel that will blink every 500ms.

87 blink, err := ring.NewLayer(&ring.LayerOptions{

88 Resolution: 3, // we are going to set the 3rd pixel (index: 2) to blink

89 ContentMode: ring.ContentCrop, // this crops the layer to avoid repetition

90 })

91 if err != nil {

92 log.Fatal(err)

93 }

94 // Add the layer to the ring. This will be on top of the previous two

95 // layers.

96 r.AddLayer(blink)

97
98 // Set the color. We can use any variable that implements the color.Color

99 // interface.

100 blink.SetPixel(2, color.CMYK{255, 0, 0, 0})

101 // Render the ring.

102 if err := r.Render(); err != nil {

103 log.Fatal(err)

104 }

105
106 // Wait for 1 second and enjoy the view.

107 time.Sleep(1 * time.Second)

108
109 /* ANIMATION SETUP */

110 done := make(chan struct{}) // this will cancel all animations

111 render := make(chan struct{}) // this will request a concurrent-safe render

112 var ws sync.WaitGroup // this makes sure we close all goroutines

113
114 /* render goroutine */

115 ws.Add(1)

116 go func() {

117 defer ws.Done()

118 for {

119 select {

120 case <-done:

121 return

122 case <-render:

123 if err := r.Render(); err != nil {

124 log.Fatal(err)

125 }

126 }

127 }

128 }()

129
130 /* fading goroutine */

131 ws.Add(1)

132 go func() {

133 defer ws.Done()

134 c := color.NRGBA{0, 0, 0, 0}

135 step := uint8(5)

136 for {

137 for a := uint8(0); a < 255; a += step {

D.3. Module: ring 213

138 c.A = a

139 bgMask.SetAll(c)

140 select {

141 case <-done:

142 return

143 case render <- struct{}{}:

144 }

145 time.Sleep(20 * time.Millisecond)

146 }

147 for a := uint8(255); a > 0; a -= step {

148 c.A = a

149 bgMask.SetAll(c)

150 select {

151 case <-done:

152 return

153 case render <- struct{}{}:

154 }

155 time.Sleep(20 * time.Millisecond)

156 }

157 }

158 }()

159
160 /* rotation goroutine */

161 ws.Add(1)

162 go func() {

163 defer ws.Done()

164 for {

165 for a := 0.0; a < math.Pi*2; a += 0.01 {

166 triRotate.Rotate(a)

167 select {

168 case <-done:

169 return

170 case render <- struct{}{}:

171 }

172 time.Sleep(20 * time.Millisecond)

173 }

174 }

175 }()

176
177 /* blinking goroutine */

178 ws.Add(1)

179 go func() {

180 defer ws.Done()

181 c := color.CMYK{255, 0, 0, 0}

182 timer := time.NewTicker(500 * time.Millisecond)

183 on := true

184 for {

185 select {

186 case <-done:

187 return

188 case <-timer.C:

189 if on {

190 blink.SetPixel(2, color.Transparent)

191 on = false

192 } else {

193 blink.SetPixel(2, c)

194 on = true

195 }

196 select {

197 case <-done:

198 return

199 case render <- struct{}{}:

200 }

201 }

202 }

203 }()

204
205 fmt.Println("Press [ENTER] to exit")

206 stdin := bufio.NewReader(os.Stdin)

207 stdin.ReadString('\n')

208
209 // Stop all animations

210 close(done)

211 // Wait for goroutines to exit

212 ws.Wait()

213
214 // Remember that we called a defer `r.Close()` at the beginning of the

215 // code. This will turn off the LEDs and clean up the resources used by the

216 // ring before exiting. Otherwise, the ring will stay on with the latest

217 // render.

218 }

214 Appendix D. Source Code

D.4 Module: PiCam

D.4.1 License

MIT License

Copyright (c) 2020 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.4.2 picam/bench_test.go

1 package picam

2
3 import (

4 "fmt"

5 "testing"

6)

7
8 func BenchmarkPicam(b *testing.B) {

9 benchmarks := []struct {

10 format Format

11 }{

12 {YUV},

13 {RGB},

14 {Gray},

15 }

16
17 for _, bm := range benchmarks {

18 b.Run(fmt.Sprintf("%s", bm.format), func(b *testing.B) {

19 cam, err := New(640, 480, bm.format)

20 if err != nil {

21 b.Fatal(err)

22 }

23 defer cam.Close()

24 _ = cam.ReadUint8()

25
26 b.ResetTimer()

27 for i := 0; i < b.N; i++ {

28 _ = cam.ReadUint8()

29 }

30 })

31 }

32 }

D.4.3 picam/example_save_test.go

1 package picam_test

2
3 import (

4 "image/png"

5 "log"

6 "os"

7
8 "github.com/cgxeiji/picam"

9)

10
11 func Example_save() {

D.4. Module: PiCam 215

12 cam, err := picam.New(640, 480, picam.YUV)

13 if err != nil {

14 log.Fatal(err)

15 }

16 defer cam.Close()

17
18 img := cam.Read()

19
20 f, err := os.Create("./image.png")

21 if err != nil {

22 log.Fatal(err)

23 }

24 defer f.Close()

25
26 err = png.Encode(f, img)

27 if err != nil {

28 log.Fatal(err)

29 }

30 }

D.4.4 picam/example_test.go

1 package picam_test

2
3 import (

4 "fmt"

5 "log"

6
7 "github.com/cgxeiji/picam"

8)

9
10 func Example() {

11 cam, err := picam.New(640, 480, picam.YUV)

12 if err != nil {

13 log.Fatal(err)

14 }

15 defer cam.Close()

16
17 nFrames := 5

18 fmt.Println("Reading", nFrames, "frames:")

19
20 for i := 0; i < nFrames; i++ {

21 // Get an image.Image

22 img := cam.Read()

23
24 /* do something with img */

25 fmt.Println("got", img.Bounds().Size())

26
27 // Or get a raw []uint8 slice

28 raw := cam.ReadUint8()

29
30 /* do something with img */

31 fmt.Println("read", len(raw), "bytes")

32 }

33
34 // Output:

35 // Reading 5 frames:

36 // got (640,480)

37 // read 460800 bytes

38 // got (640,480)

39 // read 460800 bytes

40 // got (640,480)

41 // read 460800 bytes

42 // got (640,480)

43 // read 460800 bytes

44 // got (640,480)

45 // read 460800 bytes

46 }

D.4.5 picam/format_string.go

1 // Code generated by "stringer -type=Format"; DO NOT EDIT.

2
3 package picam

4
5 import "strconv"

6
7 func _() {

8 // An "invalid array index" compiler error signifies that the constant values have changed.

9 // Re-run the stringer command to generate them again.

10 var x [1]struct{}

11 _ = x[YUV-0]

216 Appendix D. Source Code

12 _ = x[RGB-1]

13 _ = x[Gray-2]

14 }

15
16 const _Format_name = "YUVRGBGray"

17
18 var _Format_index = [...]uint8{0, 3, 6, 10}

19
20 func (i Format) String() string {

21 if i >= Format(len(_Format_index)-1) {

22 return "Format(" + strconv.FormatInt(int64(i), 10) + ")"

23 }

24 return _Format_name[_Format_index[i]:_Format_index[i+1]]

25 }

D.4.6 picam/info.go

1 // Package picam is a Go wrapper to `raspiyuv` to get `[]uint8` and `image.Image` data of

2 // the latests frame captured by the Raspberry Pi camera.

3 //

4 // Under the hood, it executes:

5 // $ raspiyuv --timeout 0 --timelapse 0

6 // to get raw frames.

7 //

8 // Currently, three image formats are available:

9 // * picam.YUV

10 // * picam.RGB

11 // * picam.Gray

12 //

13 // The time between frames, measured on a Raspberry Pi Zero W, is between `180ms` to

14 // `210ms` for a `640x480` pixels image.

15 //

16 // If you want to test the speed in your system, run:

17 // $ cd $(go env GOPATH)/src/github.com/cgxeiji/picam

18 // $ go test -bench . -benchtime=10x

19 //

20 // This will take 10 frames and output the average time between each frame. Change

21 // `-benchtime=10x` to `100x` or `Nx` to change the number of frames to test.

22 package picam

D.4.7 picam/picam.go

1 package picam

2
3 import (

4 "bufio"

5 "fmt"

6 "image"

7 "io"

8 "math"

9 "os/exec"

10 "strconv"

11 "sync"

12)

13
14 // Camera is a struct that stores camera information.

15 type Camera struct {

16 cmd *exec.Cmd

17 // Width sets the width of the image

18 // Height sets the height of the image

19 Width, Height int

20 frame <-chan []uint8

21 format Format

22 done chan struct{}

23 ws *sync.WaitGroup

24 }

25
26 // Format is the type of image that picam will output.

27 type Format uint8

28
29 //go:generate stringer -type=Format

30 const (

31 // YUV 420 color format.

32 YUV Format = iota

33 // RGB color format.

34 RGB

35 // Gray color format.

36 Gray

37)

38
39 // New initializes and starts a raspiyuv process to capture RGB frames.

40 func New(width, height int, format Format) (*Camera, error) {

D.4. Module: PiCam 217

41 args := []string{

42 "--burst",

43 "--width", strconv.Itoa(width),

44 "--height", strconv.Itoa(height),

45 "--timeout", "0",

46 "--timelapse", "0",

47 "--nopreview",

48 }

49
50 var img []uint8

51 switch format {

52 case RGB:

53 args = append(args, "--rgb")

54 img = make([]uint8, width*height*3)

55 case Gray:

56 args = append(args, "--luma")

57 img = make([]uint8, width*height)

58 default:

59 w, h := roundUp(width, 32), roundUp(height, 16)

60 img = make([]uint8, w*h+w*h/2)

61 }

62
63 args = append(args, []string{"--output", "-"}...)

64
65 cmd := exec.Command("raspiyuv", args...)

66
67 out, err := cmd.StdoutPipe()

68 if err != nil {

69 return nil, fmt.Errorf("picam: cannot create out pipe: %w", err)

70 }

71
72 err = cmd.Start()

73 if err != nil {

74 return nil, fmt.Errorf("picam: unable to start picam: %w", err)

75 }

76
77 frame := make(chan []uint8)

78 done := make(chan struct{})

79 var ws sync.WaitGroup

80 ws.Add(1)

81 go func() {

82 defer ws.Done()

83 defer close(frame)

84 defer cmd.Process.Kill()

85 r := bufio.NewReader(out)

86 for {

87 _, _ = io.ReadFull(r, img)

88 select {

89 case <-done:

90 return

91 case frame <- img:

92 default:

93 }

94 }

95 }()

96
97 return &Camera{

98 Width: width,

99 Height: height,

100 cmd: cmd,

101 frame: frame,

102 format: format,

103 done: done,

104 ws: &ws,

105 }, nil

106 }

107
108 // Close closes picam.

109 func (c *Camera) Close() {

110 close(c.done)

111 c.ws.Wait()

112 }

113
114 // Read returns an image.Image interface of the last frame.

115 //

116 // cam, _ := picam.New(width, height, format)

117 // img := cam.Read()

118 //

119 // The type returned depends on the format passed at picam.New():

120 //

121 // format type(img)

122 // ---------- ---------------

123 // picam.YUV -> image.YCbCr 420

124 // picam.RGB -> image.NRGBA

125 // picam.Gray -> image.Gray

126 func (c *Camera) Read() (img image.Image) {

127 size := image.Rect(0, 0, c.Width, c.Height)

128 switch c.format {

129 case RGB:

130 rgba := image.NewNRGBA(size)

131 pixels := make([]uint8, c.Width*c.Height*4)

132 rgb := <-c.frame

133 for i, idx := 0, 0; i < len(rgb); i++ {

218 Appendix D. Source Code

134 pixels[idx] = rgb[i]

135 idx++

136 if i%3 == 2 {

137 pixels[idx] = 255

138 idx++

139 }

140 }

141 rgba.Pix = pixels

142 img = rgba

143 case Gray:

144 gray := image.NewGray(size)

145 gray.Pix = <-c.frame

146 img = gray

147 default:

148 yuv := image.NewYCbCr(size, image.YCbCrSubsampleRatio420)

149
150 yRange := roundUp(c.Width, 32) * roundUp(c.Height, 16)

151 uvRange := yRange / 4

152
153 frame := <-c.frame

154 yuv.Y = frame[0:yRange]

155 yuv.Cb = frame[yRange : uvRange+yRange]

156 yuv.Cr = frame[yRange+uvRange : uvRange*2+yRange]

157 img = yuv

158 }

159
160 return img

161 }

162
163 func roundUp(value, multiple int) int {

164 return int(math.Ceil(float64(value)/float64(multiple))) * multiple

165 }

166
167 // ReadUint8 returns the raw uint8 values of the last frame.

168 //

169 // cam, _ := picam.New(width, height, format)

170 // raw := cam.ReadUint8()

171 //

172 // The size of the slice returned depends on the format and dimensions passed at picam.New():

173 //

174 // format len(raw)

175 // ---------- --

176 // picam.YUV -> roundUpMultiple32(width) * roundUpMultiple16(height) * 1.5

177 // picam.RGB -> (width * height) * 3

178 // picam.Gray -> width * height

179 func (c *Camera) ReadUint8() (img []uint8) {

180 return <-c.frame

181 }

D.4.8 picam/picam_test.go

1 package picam

2
3 import (

4 "fmt"

5 "image"

6 "image/color"

7 "testing"

8)

9
10 func TestNew(t *testing.T) {

11 cam, err := New(640, 480, YUV)

12 if err != nil {

13 t.Fatal(err)

14 }

15 defer cam.Close()

16
17 }

18
19 func TestRead(t *testing.T) {

20 c := color.RGBA{}

21 tests := []struct {

22 format Format

23 want color.Color

24 }{

25 {YUV, color.YCbCrModel.Convert(c)},

26 {RGB, color.NRGBAModel.Convert(c)},

27 {Gray, color.GrayModel.Convert(c)},

28 }

29
30 for _, ts := range tests {

31 t.Run(fmt.Sprintf("%s", ts.format), func(t *testing.T) {

32 cam, err := New(640, 480, ts.format)

33 if err != nil {

34 t.Fatal(err)

35 }

36 defer cam.Close()

D.4. Module: PiCam 219

37
38 img := cam.Read()

39
40 got := img.ColorModel().Convert(c)

41 if got != ts.want {

42 t.Errorf("got: %T, want: %T", got, ts.want)

43 }

44 })

45 }

46 }

47
48 func TestReadUint8(t *testing.T) {

49 w, h := 640, 480

50 tests := []struct {

51 format Format

52 want int // byte size

53 }{

54 {YUV, w*h + w*h/2},

55 {RGB, w * h * 3},

56 {Gray, w * h},

57 }

58
59 for _, ts := range tests {

60 t.Run(fmt.Sprintf("%s", ts.format), func(t *testing.T) {

61 cam, err := New(640, 480, ts.format)

62 if err != nil {

63 t.Fatal(err)

64 }

65 defer cam.Close()

66
67 img := cam.ReadUint8()

68
69 got := len(img)

70 if got != ts.want {

71 t.Errorf("got: %d, want: %d", got, ts.want)

72 }

73 })

74 }

75 }

76
77 func TestReadUint8_Sizes(t *testing.T) {

78 tests := []struct {

79 format Format

80 width, height int

81 want int // byte size

82 }{

83 {

84 YUV,

85 320, 240,

86 320*240 + 320*240/2,

87 },

88 {

89 YUV,

90 100, 100,

91 128*112 + 128*112/2,

92 },

93 {

94 RGB,

95 320, 240,

96 320 * 240 * 3,

97 },

98 {

99 Gray,

100 320, 240,

101 320 * 240,

102 },

103 }

104
105 for _, ts := range tests {

106 t.Run(fmt.Sprintf("%s (%d,%d)", ts.format, ts.width, ts.height), func(t *testing.T) {

107 cam, err := New(ts.width, ts.height, ts.format)

108 if err != nil {

109 t.Fatal(err)

110 }

111 defer cam.Close()

112
113 raw := cam.ReadUint8()

114
115 got := len(raw)

116 if got != ts.want {

117 t.Errorf("got: %d, want: %d", got, ts.want)

118 }

119
120 img := cam.Read()

121 gotP := img.Bounds().Size()

122 wantP := image.Point{ts.width, ts.height}

123 if gotP != wantP {

124 t.Errorf("got: %+v, want: %+v", gotP, wantP)

125 }

126 })

127 }

128 }

220 Appendix D. Source Code

D.5 Module: anim

D.5.1 License

MIT License

Copyright (c) 2021 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.5.2 anim/anim.go

1 package anim

2
3 import (

4 "fmt"

5 "io/ioutil"

6 "sync"

7
8 "module/body"

9 "module/eye"

10
11 "gopkg.in/yaml.v2"

12)

13
14 type data struct {

15 loaded bool

16 Playlist []string `yaml:"playlist"`

17 Eye map[string][]eyeFrame `yaml:"eye.data,flow"`

18 Body map[string][]bodyFrame `yaml:"body.data,flow"`

19 ws *sync.WaitGroup

20 }

21
22 // Internal variable to load the animations.

23 var animation data

24
25 // Eye represents a global Eye object.

26 var Eye *eye.Eye

27
28 // Body represents a global Eye object.

29 var Body *body.Body

30
31 // ReadFile loads the animation file to be played and returns a string set of

32 // animations.

33 func ReadFile(filename string) ([]string, error) {

34 d, err := ioutil.ReadFile(filename)

35 if err != nil {

36 return nil, fmt.Errorf("anim: could not read file %s: %w", filename, err)

37 }

38 if err := yaml.Unmarshal(d, &animation); err != nil {

39 return nil, fmt.Errorf("anim: could not unmarshal yaml file %s: %w", filename, err)

40 }

41
42 var ws sync.WaitGroup

43 animation.ws = &ws

44
45 animation.loaded = true

46
47 return animation.Playlist, nil

48 }

49
50 // Play plays a named animation. If the name of the animation is not found in

51 // the animation playlist, it returns an ErrAnimationNotFound error.

52 func Play(name string) (wait Waiter, err error) {

D.5. Module: anim 221

53 return animation.play(name)

54 }

55
56 // Waiter implements the Wait function.

57 type Waiter interface {

58 // Wait waits for the current animation to complete.

59 Wait()

60 }

61
62 // Wait implements the Waiter interface.

63 func (a *data) Wait() {

64 a.ws.Wait()

65 }

66
67 type syncer func()

68
69 func (a *data) play(name string) (wait Waiter, err error) {

70 if !a.loaded {

71 return nil, fmt.Errorf("anim: no animation file was loaded")

72 }

73
74 ef, ok := a.Eye[name]

75 if !ok {

76 return nil, fmt.Errorf("anim: eye animation \"%s\": %w", name, ErrAnimationNotFound)

77 }

78
79 bf, ok := a.Body[name]

80 if !ok {

81 return nil, fmt.Errorf("anim: body animation \"%s\": %w", name, ErrAnimationNotFound)

82 }

83
84 sCh := make(chan struct{}, 1)

85 resume := make(chan struct{})

86 var s syncer = func() {

87 select {

88 case sCh <- struct{}{}:

89 <-resume

90 default:

91 // fmt.Println("syncing")

92 for i := 0; i < cap(sCh); i++ {

93 <-sCh

94 resume <- struct{}{}

95 }

96 // fmt.Println("done")

97 }

98 }

99
100 a.ws.Add(1)

101 go func(f []eyeFrame) {

102 defer a.ws.Done()

103 for i := range f {

104 f[i].play(s)

105 }

106 }(ef)

107
108 a.ws.Add(1)

109 go func(f []bodyFrame) {

110 defer a.ws.Done()

111 for i := range f {

112 f[i].play(s)

113 }

114 }(bf)

115
116 // fmt.Printf("ef = %+v\n", ef)

117 // fmt.Printf("bf = %+v\n", bf)

118
119 return a, nil

120 }

D.5.3 anim/body.go

1 package anim

2
3 import (

4 "fmt"

5 "strconv"

6 "strings"

7 "sync"

8 "time"

9
10 "module/body"

11)

12
13 type bodyFrame struct {

14 Body string

15 }

16

222 Appendix D. Source Code

17 const (

18 idxX int = iota

19 idxY

20 idxBT

21 idxSpeed

22)

23
24 func (b *bodyFrame) play(s syncer) {

25 if Body == nil {

26 return

27 }

28
29 // fmt.Printf("b.Body = %+v\n", b.Body)

30
31 if strings.HasPrefix(b.Body, "sync") {

32 s()

33 }

34
35 f := strings.TrimPrefix(b.Body, "sync")

36
37 args := strings.Split(f, ",")

38 for i := range args {

39 args[i] = strings.TrimSpace(args[i])

40 }

41
42 x, err := strconv.ParseFloat(args[idxX], 64)

43 if err != nil {

44 fmt.Printf("err = %+v\n", err)

45 return

46 }

47 y, err := strconv.ParseFloat(args[idxY], 64)

48 if err != nil {

49 fmt.Printf("err = %+v\n", err)

50 return

51 }

52 t, err := strconv.ParseInt(args[idxBT], 10, 0)

53 if err != nil {

54 fmt.Printf("err = %+v\n", err)

55 return

56 }

57 speed, err := strconv.ParseFloat(args[idxSpeed], 64)

58 if err != nil {

59 fmt.Printf("err = %+v\n", err)

60 return

61 }

62
63 var ws sync.WaitGroup

64
65 ws.Add(1)

66 go func() {

67 defer ws.Done()

68 Body.SetSpeed(speed)

69 Body.Move(x, y, body.MoveAbsolute).Wait()

70 time.Sleep(time.Duration(t) * time.Millisecond)

71 }()

72
73 ws.Wait()

74
75 return

76 }

D.5.4 anim/errors.go

1 package anim

2
3 import "fmt"

4
5 // Errors

6 var (

7 ErrAnimationNotFound = fmt.Errorf("animation not found")

8)

D.5.5 anim/eye.go

1 package anim

2
3 import (

4 "fmt"

5 "image/color"

6 "math"

7 "strconv"

8 "strings"

D.5. Module: anim 223

9 "sync"

10 "time"

11)

12
13 type eyeFrame struct {

14 Eye string

15 Rotation string

16 Shine string

17 }

18
19 const (

20 idxTop int = iota

21 idxBottom

22 idxDelay

23 idxAlpha

24)

25
26 const (

27 idxRot int = iota

28 idxRotDelay

29)

30
31 func (e *eyeFrame) play(s syncer) {

32 if Eye == nil {

33 return

34 }

35
36 // fmt.Printf("e.Eye = %+v\n", e.Eye)

37
38 if strings.HasPrefix(e.Eye, "sync") {

39 s()

40 }

41
42 f := strings.TrimPrefix(e.Eye, "sync")

43
44 args := strings.Split(f, ",")

45 for i := range args {

46 args[i] = strings.TrimSpace(args[i])

47 }

48
49 top, err := strconv.ParseFloat(args[idxTop], 64)

50 if err != nil {

51 fmt.Printf("err = %+v\n", err)

52 return

53 }

54 bottom, err := strconv.ParseFloat(args[idxBottom], 64)

55 if err != nil {

56 fmt.Printf("err = %+v\n", err)

57 return

58 }

59 t, err := strconv.ParseInt(args[idxDelay], 10, 0)

60 if err != nil {

61 fmt.Printf("err = %+v\n", err)

62 return

63 }

64 alpha, err := strconv.ParseFloat(args[idxAlpha], 64)

65 if err != nil {

66 fmt.Printf("err = %+v\n", err)

67 return

68 }

69
70 var ws sync.WaitGroup

71
72 Eye.Color(color.CMYK{255, 0, 0, uint8((1-alpha)*245 + 10)})

73
74 ws.Add(1)

75 go func() {

76 defer ws.Done()

77 Eye.Eyelids(top, bottom, time.Duration(t)*time.Millisecond)

78 }()

79
80 if e.Rotation != "" {

81 fmt.Printf("e.Rotation = %+v\n", e.Rotation)

82 args = strings.Split(e.Rotation, ",")

83 for i := range args {

84 args[i] = strings.TrimSpace(args[i])

85 }

86 rot, err := strconv.ParseFloat(args[idxRot], 64)

87 if err != nil {

88 fmt.Printf("err = %+v\n", err)

89 return

90 }

91 rot = rot/180*math.Pi + Body.Angle() - 0.72

92 var rotT int64

93 if len(args) > 1 {

94 rotT, err = strconv.ParseInt(args[idxRotDelay], 10, 0)

95 if err != nil {

96 fmt.Printf("err = %+v\n", err)

97 return

98 }

99 }

100 ws.Add(1)

101 go func() {

224 Appendix D. Source Code

102 defer ws.Done()

103 Eye.LerpOffset(rot, time.Duration(rotT)*time.Millisecond)

104 }()

105 }

106
107 ws.Wait()

108
109 return

110 }

D.5. Module: anim 225

D.5.6 anim/anim.yaml

1 # For now, the animation being played is 'test'.

2 # To add a frame, add a line with the following information:

3 # anim:

4 # - eye: top, bot, time(ms), alpha

5 # shine: angle, alpha <- this is optional

6 # rotation: angle(degrees) <- this is optional

7 #

8 # - body: x, y, hold_time(ms), speed

9 #

10 # top, bot, alpha, and speed have values from 0.0 to 1.0

11 # x and y have values from -1.0 to 1.0

12 #

13 # Put the keyword 'sync' after eye and body to synchronize those two frames.

14 # eye.data:

15 # anim:

16 # - eye: sync top, bot, time(ms), alpha

17 # body.data:

18 # anim:

19 # - body: sync x, y, hold_time(ms), speed

20 #

21 #

22 # You can choose which animations will be played using the playlist:

23 # playlist:

24 # - anim1

25 # - anim2

26 # - anim3

27 #

28 # The animations can be repeated. The robot will return to the default

29 # animation after playing all the animations. There is a 2 seconds interval

30 # between each animation.

31

32 playlist:

33 - think

34 - anim1

35 - anim2

36 - anim3

37 - anim4

38

39 eye.data:

40 think:

41 - eye: sync 1.0, 0.0, 500, 1.0

42 - eye: sync 1.0, 0.0, 500, 1.0

43 # shake

44 - eye: sync 0.7, 0.2, 200, 1.0

45 - eye: 0.8, 0.1, 200, 1.0

46 - eye: 0.7, 0.2, 200, 1.0

47 - eye: sync 0.8, 0.1, 200, 1.0

48 # return

49 - eye: sync 1.0, 0.0, 500, 1.0

50 anim1:

51 - eye: sync 0.5, 0.0, 500, 1.0

52 - eye: sync 1.0, 0.0, 500, 1.0

53 anim1:

54 - eye: sync 0.9, 0.1, 500, 1.0

55 - eye: sync 1.0, 0.0, 500, 1.0

56 anim1:

57 - eye: sync 1.0, 0.3, 500, 1.0

58 - eye: sync 1.0, 0.0, 500, 1.0

59 anim1:

60 - eye: sync 1.0, 0.0, 500, 1.0

61 - eye: 0.3, 0.3, 100, 1.0

62 - eye: 1.0, 0.0, 200, 1.0

63 - eye: sync 1.0, 0.0, 500, 1.0

64

65 body.data:

226 Appendix D. Source Code

66 think:

67 - body: sync 0, 0.5, 0, 1.0

68 - body: sync 0, 0.5, 0, 1.0

69 # shake

70 - body: sync 0, 0.6, 0, 1.0

71 - body: 0, 0.5, 0, 1.0

72 - body: 0, 0.6, 0, 1.0

73 - body: sync 0, 0.5, 0, 1.0

74 # return

75 - body: sync 0, 0, 0, 1.0

76 anim1:

77 - body: sync 0.1, 0.1, 0, 1.0

78 - body: -0.1, -0.1, 0, 1.0

79 - body: 0.1, 0.1, 0, 1.0

80 - body: -0.1, -0.1, 0, 1.0

81 - body: sync 0, 0, 0, 1.0

82 anim2:

83 - body: sync 0.2, 0.0, 200, 1.0

84 - body: -0.2, 0.0, 200, 1.0

85 - body: 0.2, 0.0, 200, 1.0

86 - body: sync 0, 0, 0, 1.0

87 anim3:

88 - body: sync 0, 0.5, 0, 1.0

89 - body: 0.1, 0.6, 0, 1.0

90 - body: 0.0, 0.5, 0, 1.0

91 - body: 0.1, 0.6, 0, 1.0

92 - body: 0.0, 0.5, 0, 1.0

93 - body: sync 0, 0, 0, 1.0

94 anim4:

95 - body: sync 0, 0.2, 0, 1.0

96 - body: 0.1, 0.2, 0, 1.0

97 - body: 0.0, 0.2, 0, 1.0

98 - body: sync 0, 0, 0, 1.0

D.6. Module: tracker 227

D.6 Module: tracker

D.6.1 License

MIT License

Copyright (c) 2021 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.6.2 tracker/tracker.go

1 package tracker

2
3 import (

4 "fmt"

5 "image"

6 "io/ioutil"

7 "math"

8 "sync"

9
10 "github.com/cgxeiji/picam"

11 pigo "github.com/esimov/pigo/core"

12)

13
14 // Face defines a face tracker.

15 type Face struct {

16 classifier *pigo.Pigo

17 camera *picam.Camera

18 cParams pigo.CascadeParams

19 track chan float64

20 face chan pigo.Detection

21 img chan []uint8

22
23 scale float64

24
25 done chan struct{}

26 ws *sync.WaitGroup

27 }

28
29 // New creates a new face tracker.

30 func New(width, height int) (*Face, error) {

31 file, err := ioutil.ReadFile("/home/pi/sandbox/facefinder")

32 if err != nil {

33 return nil, fmt.Errorf("tracker: could not load classifier: %w", err)

34 }

35
36 classifier, err := pigo.NewPigo().Unpack(file)

37 if err != nil {

38 return nil, fmt.Errorf("tracker: could not unpack classifier: %w", err)

39 }

40
41 camera, err := picam.New(width, height, picam.Gray)

42 if err != nil {

43 return nil, fmt.Errorf("tracker: could not load camera: %w", err)

44 }

45
46 cParams := pigo.CascadeParams{

47 MinSize: 90,

48 MaxSize: 200,

49 ShiftFactor: 0.1,

50 ScaleFactor: 1.1,

51 ImageParams: pigo.ImageParams{

52 Rows: camera.Height,

228 Appendix D. Source Code

53 Cols: camera.Width,

54 Dim: camera.Width,

55 },

56 }

57
58 done := make(chan struct{})

59 var ws sync.WaitGroup

60
61 t := &Face{

62 classifier: classifier,

63 camera: camera,

64 cParams: cParams,

65 track: make(chan float64),

66 face: make(chan pigo.Detection),

67 img: make(chan []uint8, 1),

68
69 scale: math.Min(float64(camera.Height), float64(camera.Width)),

70
71 done: done,

72 ws: &ws,

73 }

74
75 ws.Add(1)

76 go func() {

77 defer ws.Done()

78 for {

79 select {

80 case <-done:

81 close(t.face)

82 return

83 case angle := <-t.track:

84 t.cParams.Pixels = t.camera.ReadUint8()

85 select {

86 case t.img <- t.cParams.Pixels:

87 default:

88 }

89 faces := t.classifier.ClusterDetections(

90 t.classifier.RunCascade(t.cParams, angle), 0.1)

91
92 idx := 0

93 for i := range faces {

94 if faces[i].Q > faces[idx].Q {

95 idx = i

96 }

97 }

98
99 if idx < len(faces) {

100 t.face <- faces[idx]

101 } else {

102 t.face <- pigo.Detection{}

103 }

104 }

105 }

106 }()

107
108 return t, nil

109 }

110
111 // Close stops the tracker and cleans after itself.

112 func (f *Face) Close() {

113 close(f.done)

114 f.ws.Wait()

115 f.camera.Close()

116 }

117
118 // Detect returns the normalized position of the face from the center if found,

119 // given a detection angle in radians.

120 func (f *Face) Detect(angle float64) (x, y float64, found bool) {

121 f.track <- angle / (math.Pi * 2)

122 face := <-f.face

123
124 if face.Scale == 0 {

125 return 0, 0, false

126 }

127
128 fx := float64(face.Col)/float64(f.cParams.Cols)*2 - 1

129 fy := 1 - float64(face.Row)/float64(f.cParams.Rows)*2

130
131 angle *= -1

132 s, c := math.Sin(angle), math.Cos(angle)

133
134 x = s*fy - c*fx

135 y = s*fx + c*fy

136
137 return x, y, true

138 }

139
140 // Image returns a uint8 vector with the latest processed image.

141 func (f *Face) Image() *image.Gray {

142 img := <-f.img

143 i := make([]uint8, len(img))

144 copy(i, img)

145 gray := image.NewGray(image.Rect(0, 0, f.cParams.Cols, f.cParams.Rows))

D.6. Module: tracker 229

146 gray.Pix = i

147
148 return gray

149 }

230 Appendix D. Source Code

D.7 Module: bracelet

D.7.1 License

MIT License

Copyright (c) 2021 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.7.2 bracelet/console.go

1 package main

2
3 import (

4 "image"

5 "strings"

6
7 "golang.org/x/image/font"

8 "golang.org/x/image/font/inconsolata"

9 "golang.org/x/image/math/fixed"

10 "periph.io/x/periph/conn/i2c"

11 "periph.io/x/periph/conn/i2c/i2creg"

12 "periph.io/x/periph/devices/ssd1306"

13 "periph.io/x/periph/devices/ssd1306/image1bit"

14 "periph.io/x/periph/host"

15)

16
17 type console struct {

18 dev *ssd1306.Dev

19 bus i2c.BusCloser

20
21 buffer []string

22 drawer font.Drawer

23 cursor int

24 bounds image.Rectangle

25 }

26
27 func newConsole() (*console, error) {

28 f := inconsolata.Regular8x16

29
30 if _, err := host.Init(); err != nil {

31 return nil, err

32 }

33
34 bus, err := i2creg.Open("")

35 if err != nil {

36 return nil, err

37 }

38
39 dev, err := ssd1306.NewI2C(bus, &ssd1306.DefaultOpts)

40 if err != nil {

41 return nil, err

42 }

43
44 drawer := font.Drawer{

45 Src: &image.Uniform{image1bit.On},

46 Face: f,

47 Dot: fixed.P(0, 0),

48 }

49
50 m := drawer.Face.Metrics()

51 h := m.Height.Round()

52 lines := dev.Bounds().Dy() / h

D.7. Module: bracelet 231

53
54 return &console{

55 dev: dev,

56 bus: bus,

57
58 buffer: make([]string, lines),

59 drawer: drawer,

60 bounds: dev.Bounds(),

61 }, nil

62 }

63
64 func (c *console) close() {

65 c.bus.Close()

66 }

67
68 func (c *console) println(s string) {

69 for i := 0; i < len(c.buffer)-1; i++ {

70 c.buffer[i] = c.buffer[i+1]

71 }

72
73 c.buffer[len(c.buffer)-1] = s

74 }

75
76 func (c *console) clear() {

77 for i := 0; i < len(c.buffer); i++ {

78 c.buffer[i] = ""

79 }

80 }

81
82 func (c *console) render() error {

83 c.drawer.Dst = image1bit.NewVerticalLSB(c.bounds)

84
85 m := c.drawer.Face.Metrics()

86
87 for i, s := range c.buffer {

88 c.drawer.Dot = fixed.P(0, m.Height.Round()*i+m.Ascent.Round()-4)

89 c.drawer.DrawString(s)

90 }

91
92 return c.dev.Draw(c.bounds, c.drawer.Dst, image.Point{})

93 }

94
95 func (c *console) Write(p []byte) (n int, err error) {

96 var b strings.Builder

97
98 b.Write(p)

99 strs := strings.Split(b.String(), "\n")

100
101 for _, s := range strs {

102 c.println(s)

103 }

104
105 return len(p), nil

106 }

D.7.3 bracelet/main.go

1 package main

2
3 import (

4 "fmt"

5 "log"

6 "os"

7 "sandbox/ads1x15"

8 "sync"

9 "time"

10
11 "github.com/cgxeiji/lsm6"

12 "github.com/cgxeiji/max3010x"

13)

14
15 func main() {

16 fmt.Println("loading")

17 fn := time.Now().Format("20060102150405")

18 _, err := os.Stat(fmt.Sprintf("./logs/%s.log", fn))

19
20 for err == nil {

21 fn += "a"

22 _, err = os.Stat(fmt.Sprintf("./logs/%s.log", fn))

23 }

24
25 f, err := os.OpenFile(fmt.Sprintf("./logs/%s.log", fn), os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)

26 if err != nil {

27 log.Fatalf("error opening log file: %v", err)

28 }

29 defer f.Close()

30 log.SetFlags(log.LstdFlags | log.Lmicroseconds)

232 Appendix D. Source Code

31 log.SetOutput(f)

32
33 log.Println("Starting device")

34
35 done := make(chan struct{})

36 var wg sync.WaitGroup

37
38 console, err := newConsole()

39 if err != nil {

40 log.Fatal(err)

41 }

42
43 renderCh := make(chan struct{}, 1)

44
45 type dateS struct {

46 date string

47 time string

48 }

49
50 timeCh := make(chan dateS)

51
52 type ag struct {

53 ax float64

54 ay float64

55 az float64

56
57 gx float64

58 gy float64

59 gz float64

60 }

61
62 wg.Add(1)

63 go func() {

64 defer wg.Done()

65 t := time.NewTicker(1 * time.Second)

66 for {

67 select {

68 case <-done:

69 return

70 case <-t.C:

71 }

72
73 date := time.Now().Format("Jan-02")

74 hour := time.Now().Format("15:04:05")

75
76 select {

77 case <-done:

78 return

79 case timeCh <- dateS{

80 date: date,

81 time: hour,

82 }:

83 }

84 }

85 }()

86
87 wg.Add(1)

88 go func() {

89 defer wg.Done()

90 t := time.NewTicker(4 * time.Millisecond)

91 for {

92 select {

93 case <-done:

94 return

95 case <-t.C:

96 }

97
98 select {

99 case <-done:

100 return

101 case renderCh <- struct{}{}:

102 }

103 }

104 }()

105
106 hrCh := hrInit()

107 imuCh := imuInit()

108 adsCh := adsInit()

109
110 wg.Add(2)

111 go func() {

112 defer wg.Done()

113 date := dateS{}

114 hr := hrch{}

115 imu := imuch{}

116 ads := adsch{}

117
118 render := make(chan struct{})

119 go func() {

120 defer wg.Done()

121 for {

122 select {

123 case <-done:

D.7. Module: bracelet 233

124 return

125 case <-render:

126 }

127 //fmt.Fprintf(console, " %s", date.date)

128 fmt.Fprintf(console, " %s", date.time)

129 fmt.Fprintf(console, " %.2f s: %d", imu.ax, ads.ads)

130 //fmt.Fprintf(console, " LEELAB")

131 fmt.Fprintf(console, " h: %.2f", hr.red)

132 //fmt.Fprintf(console, " OSAD")

133 fmt.Fprintf(console, "")

134
135 if err := console.render(); err != nil {

136 log.Fatal(err)

137 }

138 }

139 }()

140
141 for {

142 select {

143 case <-done:

144 return

145 case <-renderCh:

146 }

147
148 select {

149 case date = <-timeCh:

150 default:

151 }

152 select {

153 case hr = <-hrCh:

154 default:

155 }

156 select {

157 case date = <-timeCh:

158 default:

159 }

160 select {

161 case imu = <-imuCh:

162 default:

163 }

164 select {

165 case ads = <-adsCh:

166 default:

167 }

168
169 if hr.valid {

170 log.Printf("[HR]: %.8f %.8f\n", hr.red, hr.ir)

171 }

172
173 if imu.valid {

174 log.Printf("[IMU]: %f %f %f %f %f %f\n", imu.ax, imu.ay, imu.az, imu.gx, imu.gy, imu.gz)

175 }

176
177 if ads.valid {

178 log.Printf("[ADS]: %v\n", ads.ads)

179 }

180
181 select {

182 case render <- struct{}{}:

183 default:

184 }

185
186 //time.Sleep(100 * time.Millisecond)

187 }

188 }()

189
190 select {

191 case <-done:

192 }

193 //fmt.Println("Press [ENTER] to exit.")

194 //bufio.NewReader(os.Stdin).ReadString('\n')

195 //close(done)

196 //wg.Wait()

197 }

198
199 type hrch struct {

200 red float64

201 ir float64

202 valid bool

203 }

204
205 func hrInit() <-chan hrch {

206 //done := make(chan struct{})

207 hrCh := make(chan hrch)

208
209 device, err := max3010x.New()

210 fmt.Println("hr loaded")

211
212 go func() {

213 defer device.Close()

214 toSend := hrch{}

215 for {

216 hrCh <- toSend

234 Appendix D. Source Code

217 if device != nil && err == nil {

218 sensor, err := device.ToMax30102()

219 if err != nil {

220 toSend = hrch{}

221 continue

222 }

223 ir, red, err := sensor.IRRed()

224 if err != nil {

225 toSend = hrch{}

226 continue

227 }

228 toSend = hrch{

229 red: red,

230 ir: ir,

231 valid: true,

232 }

233 } else {

234 time.Sleep(1 * time.Second)

235 device, err = max3010x.New()

236 toSend = hrch{}

237 }

238 }

239 }()

240
241 return hrCh

242 }

243
244 type imuch struct {

245 ax float64

246 ay float64

247 az float64

248 gx float64

249 gy float64

250 gz float64

251 valid bool

252 }

253
254 func imuInit() <-chan imuch {

255 imuCh := make(chan imuch)

256
257 sensor, err := lsm6.New("", 0)

258 fmt.Println("imu loaded")

259
260 go func() {

261 defer sensor.Close()

262 imuCh <- imuch{}

263 for {

264 if sensor != nil && err == nil {

265 ax, ay, az, err := sensor.Acc()

266 if err != nil {

267 imuCh <- imuch{}

268 log.Println(err)

269 sensor = nil

270 continue

271 }

272 gx, gy, gz, err := sensor.Gyro()

273 if err != nil {

274 imuCh <- imuch{}

275 log.Println(err)

276 sensor = nil

277 continue

278 }

279 imuCh <- imuch{

280 ax: ax,

281 ay: ay,

282 az: az,

283 gx: gx,

284 gy: gy,

285 gz: gz,

286 valid: true,

287 }

288 } else {

289 sensor, err = lsm6.New("", 0)

290 }

291 }

292 }()

293
294 return imuCh

295 }

296
297 type adsch struct {

298 ads int

299 valid bool

300 }

301
302 func adsInit() <-chan adsch {

303 adsCh := make(chan adsch)

304
305 sensor, err := ads1x15.New("", ads1x15.AddrGND)

306 fmt.Println("skin loaded")

307
308 go func() {

309 defer sensor.Close()

D.7. Module: bracelet 235

310 adsCh <- adsch{}

311 for {

312 if sensor != nil && err == nil {

313 v, err := sensor.ReadSingle(0)

314 if err != nil {

315 adsCh <- adsch{}

316 log.Println(err)

317 sensor = nil

318 continue

319 }

320 adsCh <- adsch{

321 ads: v,

322 valid: true,

323 }

324 } else {

325 sensor, err = ads1x15.New("", ads1x15.AddrGND)

326 }

327 }

328 }()

329
330 return adsCh

331 }

236 Appendix D. Source Code

D.8 Module: ads1x15

D.8.1 License

MIT License

Copyright (c) 2021 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.8.2 ads1x15/ads1x15.go

1 package ads1x15

2
3 import (

4 "fmt"

5
6 "github.com/cgxeiji/serial"

7)

8
9 // Device defines a ADS1x15 device.

10 type Device struct {

11 i2c *serial.I2C

12 }

13
14 // New returns a new ADS1x15 device.

15 func New(busName string, addr uint16) (*Device, error) {

16 if addr == 0 {

17 addr = Addr

18 }

19
20 i2c, err := serial.NewI2C(busName, addr)

21 if err != nil {

22 return nil, fmt.Errorf("ads1x15: could not initialize I2C: %w", err)

23 }

24
25 d := &Device{

26 i2c: i2c,

27 }

28
29 // default options

30 d.Options(

31 DisableComparator(),

32 NonLatch(),

33 LowPolarity(),

34 TraditionalMode(),

35 SingleShot(),

36 Rate(SPS1600),

37 Gain(FS6v144),

38)

39
40 return d, nil

41 }

42
43 // Close closes the device and cleans after itself.

44 func (d *Device) Close() {

45 d.i2c.Close()

46 }

47
48 // ReadSingle returns the single ended result of the ADC on the requested

49 // channel.

50 func (d *Device) ReadSingle(channel int) (int, error) {

51 if channel > 3 || channel < 0 {

52 return 0, fmt.Errorf("ads1x15: channel outside the allowed range: (want: [0-3], got: %d)", channel)

D.8. Module: ads1x15 237

53 }

54
55 var err error

56 switch channel {

57 case 0:

58 _, err = d.Options(Mux(Mux0))

59 case 1:

60 _, err = d.Options(Mux(Mux1))

61 case 2:

62 _, err = d.Options(Mux(Mux2))

63 case 3:

64 _, err = d.Options(Mux(Mux3))

65 }

66 if err != nil {

67 return 0, fmt.Errorf("ads1x15: could not select channel: %w", err)

68 }

69
70 if err := d.singleConv(); err != nil {

71 return 0, fmt.Errorf("ads1x15: could not read channel %d: %w", channel, err)

72 }

73
74 if err := d.waitUntil(CfgAddr, OSMask, 1); err != nil {

75 return 0, fmt.Errorf("ads1x15: could not read channel %d: %w", channel, err)

76 }

77
78 value, err := d.i2c.ReadBytes(ConvAddr, 2)

79 if err != nil {

80 return 0, fmt.Errorf("ads1x15: could not read channel %d: %w", channel, err)

81 }

82
83 v := (uint16(value[0])<<8 | uint16(value[1])) >> 4

84 if v > 0x07FF {

85 v |= 0xF000

86 }

87
88 return int(v), nil

89 }

90
91 // GetChannel returns a Channel struct attached to a specific multiplexer setting.

92 func (d *Device) GetChannel(channel MuxSetting) *Channel {

93 return &Channel{

94 d: d,

95 mux: channel,

96 }

97 }

98
99 func (d *Device) singleConv() error {

100 _, err := d.config(CfgAddr, OSMask, SingleConv)

101 return err

102 }

103
104 func (d *Device) waitUntil(reg byte, flag uint16, bit byte) error {

105 switch bit {

106 case 1:

107 for {

108 state, err := d.i2c.ReadBytes(reg, 2)

109 s := uint16(state[0])<<8 | uint16(state[1])

110 if err != nil {

111 return fmt.Errorf("could not wait for %#b in %#b to be %v", flag, reg, bit)

112 } else if s&flag != 0 {

113 return nil

114 }

115 }

116 case 0:

117 for {

118 state, err := d.i2c.ReadBytes(reg, 2)

119 s := uint16(state[0])<<8 | uint16(state[1])

120 if err != nil {

121 return fmt.Errorf("could not wait for %#b in %#b to be %v", flag, reg, bit)

122 } else if s&flag == 0 {

123 return nil

124 }

125 }

126 }

127
128 return fmt.Errorf("invalid bit %v, it should be 1 or 0", bit)

129 }

130
131 // Read reads a single byte from a register.

132 func (d *Device) Read(reg byte) (byte, error) {

133 return d.i2c.Read(reg)

134 }

135
136 // ReadBytes reads n bytes from a register.

137 func (d *Device) ReadBytes(reg byte, n int) ([]byte, error) {

138 return d.i2c.ReadBytes(reg, n)

139 }

140
141 // Write writes a byte or bytes to a register.

142 func (d *Device) Write(reg byte, data ...byte) error {

143 return d.i2c.Write(reg, data...)

144 }

238 Appendix D. Source Code

D.8.3 ads1x15/channel.go

1 package ads1x15

2
3 import "fmt"

4
5 // Channel returns a Channel struct attached to a specific multiplexer setting.

6 type Channel struct {

7 d *Device

8 mux MuxSetting

9 }

10
11 func (c *Channel) Read() (int, error) {

12 old, err := c.d.Options(Mux(c.mux))

13 if err != nil {

14 return 0, fmt.Errorf("channel %v: could not select channel: %w", c.mux, err)

15 }

16
17 if err := c.d.singleConv(); err != nil {

18 return 0, fmt.Errorf("channel %v: could not read channel: %w", c.mux, err)

19 }

20 if err := c.d.waitUntil(CfgAddr, OSMask, 1); err != nil {

21 return 0, fmt.Errorf("channel %v: could not wait for channel: %w", c.mux, err)

22 }

23
24 value, err := c.d.i2c.ReadBytes(ConvAddr, 2)

25 if err != nil {

26 return 0, fmt.Errorf("channel %v: could not get value: %w", c.mux, err)

27 }

28
29 v := (uint16(value[0])<<8 | uint16(value[1])) >> 4

30 if v > 0x07FF {

31 v |= 0xF000

32 }

33
34 _, err = c.d.Options(old)

35 if err != nil {

36 return 0, fmt.Errorf("channel %v: could not return to previous configuration: %w", c.mux, err)

37 }

38
39 return int(v), nil

40 }

D.8.4 ads1x15/const.go

1 package ads1x15

2
3 // Register addresses

4 const (

5 ConvAddr = 0b00

6 CfgAddr = 0b01

7 LoThresh = 0b10

8 HiThresh = 0b11

9)

10
11 // Operational Status

12 const (

13 SingleConv uint16 = (1 << 15)

14 OSMask uint16 = (1 << 15)

15)

16
17 // MuxSetting defines a multiplexer settings type.

18 type MuxSetting uint16

19
20 // Input Multiplexer

21 const (

22 Mux0_1 MuxSetting = (iota << 12)

23 Mux0_3

24 Mux1_3

25 Mux2_3

26 Mux0

27 Mux1

28 Mux2

29 Mux3

30
31 MuxMask uint16 = (0b111 << 12)

32)

33
34 // Programmable Gain Amplifier

35 const (

36 FS6v144 uint16 = (iota << 9)

37 FS4v096

38 FS2v048

39 FS1v024

40 FS0v512

D.8. Module: ads1x15 239

41 FS0v256

42
43 PGAMask uint16 = (0b111 << 9)

44)

45
46 // Mode

47 const (

48 ModeContinuous uint16 = (iota << 8)

49 ModeSingleShot

50
51 ModeMask uint16 = (1 << 8)

52)

53
54 // Data Rate

55 const (

56 SPS128 uint16 = (iota << 5)

57 SPS250

58 SPS490

59 SPS920

60 SPS1600

61 SPS2400

62 SPS3300

63
64 DRMask uint16 = (0b111 << 5)

65)

66
67 // Comparator Mode

68 const (

69 CompTrad uint16 = (iota << 4)

70 CompWindow

71
72 CompModeMask uint16 = (1 << 4)

73)

74
75 // Comparator Polarity

76 const (

77 ActiveLow uint16 = (iota << 3)

78 ActiveHigh

79
80 CompPolMask uint16 = (1 << 3)

81)

82
83 // Latch Comparator

84 const (

85 CompNonLatch uint16 = (iota << 2)

86 CompLatch

87
88 CompLatchMask uint16 = (1 << 2)

89)

90
91 // Comparator Queue

92 const (

93 OneConv uint16 = (iota << 0)

94 TwoConv

95 FourConv

96 DisableComp

97
98 CompQueMask uint16 = (0b11 << 0)

99)

100
101 // Device constants

102 const (

103 Addr = 0x48

104 AddrGND = 0x48

105 AddrVDD = 0x49

106 AddrSDA = 0x4A

107 AddrSCL = 0x4B

108)

D.8.5 ads1x15/muxsetting_string.go

1 // Code generated by "stringer -type=MuxSetting"; DO NOT EDIT.

2
3 package ads1x15

4
5 import "strconv"

6
7 func _() {

8 // An "invalid array index" compiler error signifies that the constant values have changed.

9 // Re-run the stringer command to generate them again.

10 var x [1]struct{}

11 _ = x[Mux0_1-0]

12 _ = x[Mux0_3-4096]

13 _ = x[Mux1_3-8192]

14 _ = x[Mux2_3-12288]

15 _ = x[Mux0-16384]

16 _ = x[Mux1-20480]

240 Appendix D. Source Code

17 _ = x[Mux2-24576]

18 _ = x[Mux3-28672]

19 }

20
21 const (

22 _MuxSetting_name_0 = "channel 0-1"

23 _MuxSetting_name_1 = "channel 0-3"

24 _MuxSetting_name_2 = "channel 1-3"

25 _MuxSetting_name_3 = "channel 2-3"

26 _MuxSetting_name_4 = "channel 0"

27 _MuxSetting_name_5 = "channel 1"

28 _MuxSetting_name_6 = "channel 2"

29 _MuxSetting_name_7 = "channel 3"

30)

31
32 func (i MuxSetting) String() string {

33 switch {

34 case i == 0:

35 return _MuxSetting_name_0

36 case i == 4096:

37 return _MuxSetting_name_1

38 case i == 8192:

39 return _MuxSetting_name_2

40 case i == 12288:

41 return _MuxSetting_name_3

42 case i == 16384:

43 return _MuxSetting_name_4

44 case i == 20480:

45 return _MuxSetting_name_5

46 case i == 24576:

47 return _MuxSetting_name_6

48 case i == 28672:

49 return _MuxSetting_name_7

50 default:

51 return "MuxSetting(" + strconv.FormatInt(int64(i), 10) + ")"

52 }

53 }

D.8.6 ads1x15/options.go

1 package ads1x15

2
3 import "fmt"

4
5 // Option defines a functional option for the device.

6 type Option func(d *Device) (Option, error)

7
8 // Options sets different configuration options and returns thte previous value

9 // of the last option passed.

10 func (d *Device) Options(options ...Option) (last Option, err error) {

11 for _, opt := range options {

12 last, err = opt(d)

13 if err != nil {

14 return nil, err

15 }

16 }

17
18 return last, nil

19 }

20
21 func (d *Device) config(reg byte, mask, flag uint16) (uint16, error) {

22 cfg, err := d.ReadBytes(reg, 2)

23 if err != nil {

24 return 0, fmt.Errorf("could not get %#b from %#x: %w", mask, reg, err)

25 }

26 c := uint16(cfg[0])<<8 | uint16(cfg[1])

27
28 old := c & mask

29 c &= ^mask

30 flag = flag & mask

31 c |= flag

32 if err := d.Write(reg, byte(c>>8), byte(c&0xFF)); err != nil {

33 return 0, fmt.Errorf("could not set %#b from %#x: %w", flag, reg, err)

34 }

35
36 return old, nil

37 }

38
39 // Mux configures the input multiplexer.

40 func Mux(mode MuxSetting) Option {

41 return func(d *Device) (Option, error) {

42 old, err := d.config(CfgAddr, MuxMask, uint16(mode))

43 if err != nil {

44 return nil, fmt.Errorf("ads1x15: could not configure multiplexer %#x: %w", mode, err)

45 }

46 return Mux(MuxSetting(old)), nil

47 }

D.8. Module: ads1x15 241

48 }

49
50 // Gain configures the programmable gain amplifier.

51 func Gain(mode uint16) Option {

52 return func(d *Device) (Option, error) {

53 old, err := d.config(CfgAddr, PGAMask, mode)

54 if err != nil {

55 return nil, fmt.Errorf("ads1x15: could not configure gain amplifier %#x: %w", mode, err)

56 }

57 return Gain(old), nil

58 }

59 }

60
61 // Rate configures the data rate.

62 func Rate(mode uint16) Option {

63 return func(d *Device) (Option, error) {

64 old, err := d.config(CfgAddr, DRMask, mode)

65 if err != nil {

66 return nil, fmt.Errorf("ads1x15: could not configure data rate %#x: %w", mode, err)

67 }

68 return Rate(old), nil

69 }

70 }

71
72 // TraditionalMode sets the comparator to traditional mode.

73 func TraditionalMode() Option {

74 return func(d *Device) (Option, error) {

75 old, err := d.config(CfgAddr, CompModeMask, CompTrad)

76 if err != nil {

77 return nil, fmt.Errorf("ads1x15: could not set comparator mode to 'traditional': %w", err)

78 }

79 switch old {

80 case CompTrad:

81 return TraditionalMode(), nil

82 case CompWindow:

83 return WindowMode(), nil

84 }

85 return nil, fmt.Errorf("ads1x15: invalid previous comparator mode: got %#x", old)

86 }

87 }

88
89 // WindowMode sets the comparator to traditional mode.

90 func WindowMode() Option {

91 return func(d *Device) (Option, error) {

92 old, err := d.config(CfgAddr, CompModeMask, CompWindow)

93 if err != nil {

94 return nil, fmt.Errorf("ads1x15: could not set comparator mode to 'window': %w", err)

95 }

96 switch old {

97 case CompTrad:

98 return TraditionalMode(), nil

99 case CompWindow:

100 return WindowMode(), nil

101 }

102 return nil, fmt.Errorf("ads1x15: invalid previous comparator mode: got %#x", old)

103 }

104 }

105
106 // LowPolarity sets the comparator to traditional mode.

107 func LowPolarity() Option {

108 return func(d *Device) (Option, error) {

109 old, err := d.config(CfgAddr, CompPolMask, ActiveLow)

110 if err != nil {

111 return nil, fmt.Errorf("ads1x15: could not set comparator polarity to 'active low': %w", err)

112 }

113 switch old {

114 case ActiveLow:

115 return LowPolarity(), nil

116 case ActiveHigh:

117 return HighPolarity(), nil

118 }

119 return nil, fmt.Errorf("ads1x15: invalid previous comparator polarity: got %#x", old)

120 }

121 }

122
123 // HighPolarity sets the comparator to traditional mode.

124 func HighPolarity() Option {

125 return func(d *Device) (Option, error) {

126 old, err := d.config(CfgAddr, CompPolMask, ActiveHigh)

127 if err != nil {

128 return nil, fmt.Errorf("ads1x15: could not set comparator polarity to 'active low': %w", err)

129 }

130 switch old {

131 case ActiveLow:

132 return LowPolarity(), nil

133 case ActiveHigh:

134 return HighPolarity(), nil

135 }

136 return nil, fmt.Errorf("ads1x15: invalid previous comparator polarity: got %#x", old)

137 }

138 }

139
140 // NonLatch sets the comparator to traditional mode.

242 Appendix D. Source Code

141 func NonLatch() Option {

142 return func(d *Device) (Option, error) {

143 old, err := d.config(CfgAddr, CompLatchMask, CompNonLatch)

144 if err != nil {

145 return nil, fmt.Errorf("ads1x15: could not set comparator latching mode to 'non-latching': %w", err)

146 }

147 switch old {

148 case CompNonLatch:

149 return NonLatch(), nil

150 case CompLatch:

151 return Latch(), nil

152 }

153 return nil, fmt.Errorf("ads1x15: invalid previous comparator latching mode: got %#x", old)

154 }

155 }

156
157 // Latch sets the comparator to traditional mode.

158 func Latch() Option {

159 return func(d *Device) (Option, error) {

160 old, err := d.config(CfgAddr, CompLatchMask, CompLatch)

161 if err != nil {

162 return nil, fmt.Errorf("ads1x15: could not set comparator latching mode to 'latching': %w", err)

163 }

164 switch old {

165 case CompNonLatch:

166 return NonLatch(), nil

167 case CompLatch:

168 return Latch(), nil

169 }

170 return nil, fmt.Errorf("ads1x15: invalid previous comparator latching mode: got %#x", old)

171 }

172 }

173
174 // Queue configures the comparator queue.

175 func Queue(mode uint16) Option {

176 return func(d *Device) (Option, error) {

177 old, err := d.config(CfgAddr, CompQueMask, mode)

178 if err != nil {

179 return nil, fmt.Errorf("ads1x15: could not configure comparator queue %#x: %w", mode, err)

180 }

181 return Queue(old), nil

182 }

183 }

184
185 // DisableComparator disables the comparator.

186 func DisableComparator() Option {

187 return func(d *Device) (Option, error) {

188 old, err := Queue(DisableComp)(d)

189 if err != nil {

190 return nil, fmt.Errorf("ads1x15: could not configure disable comparator: %w", err)

191 }

192 return old, nil

193 }

194 }

195
196 // SingleShot sets the measurement mode to single shot.

197 func SingleShot() Option {

198 return func(d *Device) (Option, error) {

199 old, err := d.config(CfgAddr, ModeMask, ModeSingleShot)

200 if err != nil {

201 return nil, fmt.Errorf("ads1x15: could not set mode to 'single shot': %w", err)

202 }

203 switch old {

204 case ModeSingleShot:

205 return SingleShot(), nil

206 case ModeContinuous:

207 return Continuous(), nil

208 }

209 return nil, fmt.Errorf("ads1x15: invalid previous measurement mode: got %#x", old)

210 }

211 }

212
213 // Continuous sets the measurement mode to single shot.

214 func Continuous() Option {

215 return func(d *Device) (Option, error) {

216 old, err := d.config(CfgAddr, ModeMask, ModeContinuous)

217 if err != nil {

218 return nil, fmt.Errorf("ads1x15: could not set mode to 'continuous': %w", err)

219 }

220 switch old {

221 case ModeSingleShot:

222 return SingleShot(), nil

223 case ModeContinuous:

224 return Continuous(), nil

225 }

226 return nil, fmt.Errorf("ads1x15: invalid previous measurement mode: got %#x", old)

227 }

228 }

D.9. Module: lsm6 243

D.9 Module: lsm6

D.9.1 License

MIT License

Copyright (c) 2021 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.9.2 lsm6/const.go

1 package lsm6

2
3 // Register addresses

4 const (

5 FuncCfgAccess = 0x01

6
7 FIFOCtrl1 = 0x06

8 FIFOCtrl2 = 0x07

9 FIFOCtrl3 = 0x08

10 FIFOCtrl4 = 0x09

11 FIFOCtrl5 = 0x0A

12 OrientCfgG = 0x0B

13
14 Int1Ctrl = 0x0D

15 Int2Ctrl = 0x0E

16 WhoAmI = 0x0F

17 Ctrl1XL = 0x10

18 Ctrl2G = 0x11

19 Ctrl3C = 0x12

20 Ctrl4C = 0x13

21 Ctrl5C = 0x14

22 Ctrl6C = 0x15

23 Ctrl7G = 0x16

24 Ctrl8XL = 0x17

25 Ctrl9XL = 0x18

26 Ctrl10C = 0x19

27
28 WakeUpSrc = 0x1B

29 TapSrc = 0x1C

30 D6DSrc = 0x1D

31 StatusReg = 0x1E

32
33 OutTempL = 0x20

34 OutTempH = 0x21

35 OutXLG = 0x22

36 OutXHG = 0x23

37 OutYLG = 0x24

38 OutYHG = 0x25

39 OutZLG = 0x26

40 OutZHG = 0x27

41 OutXLXL = 0x28

42 OutXHXL = 0x29

43 OutYLXL = 0x2A

44 OutYHXL = 0x2B

45 OutZLXL = 0x2C

46 OutZHXL = 0x2D

47
48 FIFOStatus1 = 0x3A

49 FIFOStatus2 = 0x3B

50 FIFOStatus3 = 0x3C

51 FIFOStatus4 = 0x3D

52 FIFODataOutL = 0x3E

244 Appendix D. Source Code

53 FIFODataOutH = 0x3F

54 Timestamp0Reg = 0x40

55 Timestamp1Reg = 0x41

56 Timestamp2Reg = 0x42

57
58 StepTimestampL = 0x49

59 StepTimestampH = 0x4A

60 StepCounterL = 0x4B

61 StepCounterH = 0x4C

62
63 FuncSrc = 0x53

64
65 TapCfg = 0x58

66 TapThs6D = 0x59

67 IntDur2 = 0x5A

68 WakeUpThs = 0x5B

69 WakeUpDur = 0x5C

70 FreeFall = 0x5D

71 MD1Cfg = 0x5E

72 MD2Cfg = 0x5F

73)

74
75 // Device constants

76 const (

77 Addr = 0x6B

78)

79
80 const (

81 maxADC = (1 << 16) - 1

82 halfADC = (1 << 15) - 1

83)

D.9.3 lsm6/device.go

1 package lsm6

2
3 import (

4 "fmt"

5
6 "github.com/cgxeiji/serial"

7)

8
9 // Device defines a LSM6 device.

10 type Device struct {

11 i2c *serial.I2C

12
13 accScale float64

14 gyroScale float64

15 }

16
17 // New returns a new LSM6 device.

18 func New(bus string, addr uint16) (*Device, error) {

19 if addr == 0 {

20 addr = Addr

21 }

22
23 i2c, err := serial.NewI2C(bus, addr)

24 if err != nil {

25 return nil, fmt.Errorf("lsm6: could not initialize I2C: %w", err)

26 }

27
28 d := &Device{

29 i2c: i2c,

30 }

31
32 if err := d.i2c.Write(Ctrl1XL, 0x80); err != nil {

33 return nil, fmt.Errorf("lsm6: could not configure device: %w", err)

34 }

35 d.accScale = 2

36
37 if err := d.i2c.Write(Ctrl2G, 0x80); err != nil {

38 return nil, fmt.Errorf("lsm6: could not configure device: %w", err)

39 }

40 d.gyroScale = 245

41
42 if err := d.i2c.Write(Ctrl3C, 0x04); err != nil {

43 return nil, fmt.Errorf("lsm6: could not configure device: %w", err)

44 }

45
46 return d, nil

47 }

48
49 // Close closes the device and cleans after itself.

50 func (d *Device) Close() {

51 d.i2c.Close()

52 }

53

D.9. Module: lsm6 245

54 // Acc returns the values of the accelerometer.

55 func (d *Device) Acc() (x, y, z float64, err error) {

56 x, y, z, err = d.readPkg6(OutXLXL)

57 if err != nil {

58 return 0, 0, 0, fmt.Errorf("lsm6: could not read accelerometer: %w", err)

59 }

60
61 x *= d.accScale

62 y *= d.accScale

63 z *= d.accScale

64
65 return x, y, z, nil

66 }

67
68 // Gyro returs the values of the gyroscope.

69 func (d *Device) Gyro() (x, y, z float64, err error) {

70 x, y, z, err = d.readPkg6(OutXLG)

71 if err != nil {

72 return 0, 0, 0, fmt.Errorf("lsm6: could not read gyroscope: %w", err)

73 }

74
75 x *= d.gyroScale

76 y *= d.gyroScale

77 z *= d.gyroScale

78
79 return x, y, z, nil

80 }

81
82 func (d *Device) readPkg6(reg byte) (x, y, z float64, err error) {

83 b, err := d.i2c.ReadBytes(reg, 6)

84 if err != nil {

85 return 0, 0, 0, fmt.Errorf("lsm6: could not read %#x: %w", reg, err)

86 }

87
88 x = float64(

89 int16(b[1])<<8|

90 int16(b[0])) / halfADC

91 y = float64(

92 int16(b[3])<<8|

93 int16(b[2])) / halfADC

94 z = float64(

95 int16(b[5])<<8|

96 int16(b[4])) / halfADC

97
98 return x, y, z, nil

99 }

246 Appendix D. Source Code

D.10 Module: max3010x

D.10.1 License

MIT License

Copyright (c) 2020 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.10.2 max3010x/beat.go

1 package max3010x

2
3 type beat struct {

4 filterFIR *fir

5 signal struct {

6 dc movingAverage

7 ac struct {

8 max float64

9 min float64

10 prev float64

11 }

12 rising bool

13 }

14 }

15
16 func newBeat() *beat {

17 return &beat{

18 filterFIR: newFIR(),

19 }

20 }

21
22 // check receives a normalized (0.0 - 1.0) signal input and checks for

23 // beats. It returns true on rising edges (positive zero crossings) or false

24 // otherwise.

25 func (b *beat) check(signal float64) bool {

26 beat := false

27
28 b.signal.dc.add(signal)

29 ac := b.filterFIR.lowPass(signal - b.signal.dc.mean)

30
31 // Rising edge

32 if b.signal.ac.prev < 0 && ac >= 0 {

33 delta := b.signal.ac.max - b.signal.ac.min

34 if delta > 0.5 && delta < 50 {

35 beat = true

36 }

37
38 b.signal.rising = true

39 b.signal.ac.max = 0

40 }

41
42 // Falling edge

43 if b.signal.ac.prev > 0 && ac <= 0 {

44 b.signal.rising = false

45 b.signal.ac.min = 0

46 }

47
48 if b.signal.rising {

49 if ac > b.signal.ac.prev {

50 b.signal.ac.max = ac

51 }

52 } else {

D.10. Module: max3010x 247

53 if ac < b.signal.ac.prev {

54 b.signal.ac.min = ac

55 }

56 }

57
58 b.signal.ac.prev = ac

59
60 return beat

61 }

D.10.3 max3010x/const.go

1 package max3010x

2
3 const (

4 maxIntStatus = 0x00

5 maxIntEnable = 0x01

6 maxFifoWrPtr = 0x02

7 maxOvfCounter = 0x03

8 maxFifoRdPtr = 0x04

9 maxFifoData = 0x05

10 maxModeCfg = 0x06

11 maxSpO2Cfg = 0x07

12 maxLedCfg = 0x09

13 maxTempInt = 0x16

14 maxTempFrac = 0x17

15 maxRevID = 0xFE

16 maxPartID = 0xFF

17
18 maxID00 = 0x11

19 maxID02 = 0x15

20
21 maxAddr = 0x57

22)

23
24 const (

25 sr50 = iota

26 sr100

27 sr167

28 sr200

29 sr400

30 sr600

31 sr800

32 sr1000

33)

34
35 const (

36 modeHR = 0b0000010

37 modeSPO2 = 0b0000011

38 modeTemp = 0b0001000

39 modeRST = 0b0100000

40 modeSHDN = 0b1000000

41)

42
43 const (

44 pw200 = iota

45 pw400

46 pw800

47 pw1600

48)

49
50 const (

51 mA0 = iota

52 mA44

53 mA76

54 mA110

55 mA142

56 mA174

57 mA208

58 mA24

59 mA271

60 mA306

61 mA338

62 mA370

63 mA402

64 mA436

65 mA468

66 mA500

67)

248 Appendix D. Source Code

D.10.4 max3010x/fir.go

1 package max3010x

2
3 var firC = []float64{21.5, 40.125, 72.375, 115.875, 170.0, 232.25, 298.75, 364.5, 423.875, 471.0, 501.5, 512.0}

4
5 const firSize = 32

6
7 type fir struct {

8 buffer []float64

9 idx int

10 }

11
12 func newFIR() *fir {

13 return &fir{

14 buffer: make([]float64, firSize),

15 }

16 }

17
18 // lowPass applies a low pass FIR filter to a delta.

19 func (f *fir) lowPass(delta float64) float64 {

20 f.buffer[f.idx] = delta

21
22 z := firC[11] * f.buffer[(f.idx-11)&0x1F]

23
24 for i := 0; i < 11; i++ {

25 z += firC[i] * (f.buffer[(f.idx-i)&0x1F] + f.buffer[(f.idx-(firSize-10)+i)&0x1F])

26 }

27
28 f.idx++

29 f.idx %= firSize

30
31 return z

32 }

D.10.5 max3010x/heartrate.go

1 package max3010x

2
3 import (

4 "context"

5 "errors"

6 "fmt"

7 "time"

8)

9
10 // HeartRate returns the current heart rate. Heart rate is expected to be

11 // between 10 to 250 beats per minute. Values outside that range are considered

12 // invalid and the function will continue to sample until a valid bpm is found.

13 // If no contact is detect on the sensor, this function returns 0 with an

14 // ErrNotDetected error. If the sensor cannot detect a beat after 1s, it

15 // returns 0 with an ErrTooNoisy error.

16 func (d *Device) HeartRate() (float64, error) {

17 type beatPkg struct {

18 span float64

19 err error

20 }

21 beatCh := make(chan beatPkg)

22
23 ctx, cancel := context.WithTimeout(context.Background(), 7*time.Second)

24 defer cancel()

25
26 go func(ctx context.Context) {

27 if err := d.detectBeat(ctx); err != nil {

28 beatCh <- beatPkg{

29 err: err,

30 }

31 return

32 }

33 timer := time.Now()

34
35 for {

36 select {

37 case <-ctx.Done():

38 beatCh <- beatPkg{

39 err: ctx.Err(),

40 }

41 default:

42 }

43
44 if err := d.detectBeat(ctx); err != nil {

45 beatCh <- beatPkg{

46 err: err,

47 }

48 return

D.10. Module: max3010x 249

49 }

50 t := time.Since(timer)

51
52 if t > 6*time.Second { // less than 10 bpm

53 continue // invalid

54 }

55 if t < 238*time.Millisecond { // more than 250 bpm

56 continue // invalid

57 }

58
59 beatCh <- beatPkg{

60 span: float64(t.Milliseconds()),

61 }

62 break

63 }

64 }(ctx)

65
66 select {

67 case <-ctx.Done():

68 return 0, fmt.Errorf("max3010x: could not get heart rate: %w", ErrTooNoisy)

69
70 case b := <-beatCh:

71 if errors.Is(b.err, errLowValue) {

72 d.hr.reset()

73 return 0, fmt.Errorf("max3010x: could not get heart rate: %w", ErrNotDetected)

74 } else if b.err != nil {

75 d.hr.reset()

76 return 0, fmt.Errorf("max3010x: could not get heart rate: %w", b.err)

77 }

78
79 // if first measurement, pre-fill values.

80 if d.hr.mean == 0 {

81 d.hr.mean = b.span

82 }

83
84 d.hr.add(b.span)

85 }

86
87 return 60000 / d.hr.mean, nil

88 }

89
90 func (d *Device) detectBeat(ctx context.Context) error {

91 for {

92 select {

93 case <-ctx.Done():

94 return ctx.Err()

95 default:

96 }

97
98 err := d.ledsSingle()

99 if err != nil {

100 return fmt.Errorf("detectBeat: %w", err)

101 }

102 r := d.redLED.last()

103 if r < threshold {

104 return errLowValue

105 }

106 if d.beat.check(r) {

107 break

108 }

109 }

110
111 return nil

112 }

D.10.6 max3010x/max3010x.go

1 package max3010x

2
3 import (

4 "errors"

5 "fmt"

6
7 "github.com/cgxeiji/max3010x/max30102"

8)

9
10 var (

11 // ErrWrongDevice is thrown when trying to convert a max3010x.Device

12 // interface to the underlying *Device struct and the device does not match

13 // the PartID.

14 ErrWrongDevice = errors.New("wrong device")

15 // ErrNotDetected is thrown when trying to read a heart rate or SpO2 level

16 // and nothing is detected on the sensor (e.g. no finger is placed on the

17 // sensor when the function is called).

18 ErrNotDetected = errors.New("nothing detected on the sensor")

19 // ErrTooNoisy is thrown when trying to read data and has too much

20 // variation, therefore consistent measurements cannot be done (e.g.

250 Appendix D. Source Code

21 // ambient light, moving finger, etc.).

22 ErrTooNoisy = errors.New("data has too much noise")

23
24 errLowValue = errors.New("low value")

25)

26
27 // Device defines a MAX3010x device.

28 type Device struct {

29 sensor sensor

30 redLED *tSeries

31 irLED *tSeries

32 readCh chan struct{}

33
34 hr movingAverage

35 spo2 movingAverage

36
37 bus string

38 addr uint16

39
40 beat *beat

41
42 // PartID is the byte part ID as set by the manufacturer.

43 // MAX30100: 0x11 or max30100.PartID

44 // MAX30102: 0x15 or max30102.PartID

45 PartID byte

46 RevID byte

47 }

48
49 type sensor interface {

50 Temperature() (float64, error)

51 RevID() (byte, error)

52 Reset() error

53 Calibrate() error

54
55 IRRed() (float64, float64, error)

56 IRRedBatch() ([]float64, []float64, error)

57
58 Shutdown() error

59 Startup() error

60
61 Close()

62 }

63
64 const threshold = 0.10

65
66 // New returns a new MAX3010x device.

67 func New(options ...Option) (*Device, error) {

68 d := &Device{

69 readCh: make(chan struct{}, 1),

70 beat: newBeat(),

71 irLED: newTSeries(64),

72 redLED: newTSeries(64),

73 }

74
75 for _, option := range options {

76 option(d)

77 }

78
79 sensor, err := max30102.New(d.bus, d.addr)

80 if err != nil {

81 return nil, err

82 }

83 d.sensor = sensor

84
85 d.PartID = max30102.PartID

86
87 if d.RevID, err = d.sensor.RevID(); err != nil {

88 return nil, fmt.Errorf("max3010x: could not get revision ID: %w", err)

89 }

90
91 d.readCh <- struct{}{}

92
93 return d, nil

94 }

95
96 // Close closes the devices and cleans after itself.

97 func (d *Device) Close() {

98 d.sensor.Close()

99 }

100
101 // Calibrate calibrates the power of each LED.

102 func (d *Device) Calibrate() error {

103 return d.sensor.Calibrate()

104 }

105
106 // Temperature returns the current temperature of the device.

107 func (d *Device) Temperature() (float64, error) {

108 return d.sensor.Temperature()

109 }

110
111 // ToMax30102 converts a max3010x device to a max30102 device to access low

112 // level functions. Check the package max3010x/max30102 for detailed behavior.

113 func (d *Device) ToMax30102() (*max30102.Device, error) {

D.10. Module: max3010x 251

114 device, ok := d.sensor.(*max30102.Device)

115 if !ok {

116 return nil, ErrWrongDevice

117 }

118
119 return device, nil

120 }

121
122 // Shutdown sets the device into power-save mode.

123 func (d *Device) Shutdown() error {

124 return d.sensor.Shutdown()

125 }

126
127 // Startup wakes the device from power-save mode.

128 func (d *Device) Startup() error {

129 return d.sensor.Startup()

130 }

131
132 func (d *Device) leds() error {

133 select {

134 case <-d.readCh:

135 r, ir, err := d.sensor.IRRedBatch()

136 if err != nil {

137 return fmt.Errorf("could not get LEDs: %w", err)

138 }

139 d.redLED.add(r...)

140 d.irLED.add(ir...)

141 d.readCh <- struct{}{}

142
143 default:

144 select {

145 case <-d.readCh:

146 d.readCh <- struct{}{}

147 }

148 }

149 return nil

150 }

151
152 func (d *Device) ledsSingle() error {

153 select {

154 case <-d.readCh:

155 r, ir, err := d.sensor.IRRed()

156 if err != nil {

157 return fmt.Errorf("could not get LEDs: %w", err)

158 }

159 d.redLED.add(r)

160 d.irLED.add(ir)

161 d.readCh <- struct{}{}

162 }

163 return nil

164 }

D.10.7 max3010x/moving_average.go

1 package max3010x

2
3 // movingAverage stores an estimated moving average of the last 4 values.

4 type movingAverage struct {

5 mean float64

6 }

7
8 func (m *movingAverage) add(n float64) {

9 m.mean += (n - m.mean) / 4

10 }

11
12 func (m *movingAverage) reset() {

13 m.mean = 0

14 }

D.10.8 max3010x/options.go

1 package max3010x

2
3 // An Option configures a device.

4 type Option func(d *Device) Option

5
6 // OnBus can be used to specify IšC bus name

7 // ("/dev/i2c-2", "I2C2", "2"). By default, the bus name is "", which selects

8 // the first available bus.

9 func OnBus(name string) Option {

10 return func(d *Device) Option {

11 old := d.bus

252 Appendix D. Source Code

12 d.bus = name

13 return OnBus(old)

14 }

15 }

16
17 // OnAddr can be used to specify alternative IšC name.

18 // By default, the address is 0x57.

19 func OnAddr(addr uint16) Option {

20 return func(d *Device) Option {

21 old := d.addr

22 d.addr = addr

23 return OnAddr(old)

24 }

25 }

D.10.9 max3010x/spo2.go

1 package max3010x

2
3 import (

4 "errors"

5 "fmt"

6)

7
8 // SpO2 returns the SpO2 value in 100%.

9 func (d *Device) SpO2() (float64, error) {

10 r, err := d.rValue()

11 if errors.Is(err, errLowValue) {

12 d.spo2.reset()

13 return 0, fmt.Errorf("max3010x: could not get SpO2: %w", ErrNotDetected)

14 } else if err != nil {

15 d.spo2.reset()

16 return 0, fmt.Errorf("max3010x: could not get R value: %w", err)

17 }

18
19 spo2 := 104 - 17*r

20 if spo2 <= 0 {

21 return 0, nil

22 }

23
24 // if first measurement, pre-fill values.

25 if d.spo2.mean == 0 {

26 d.spo2.mean = spo2

27 }

28 d.spo2.add(spo2)

29
30 return d.spo2.mean, nil

31 }

32
33 func (d *Device) rValue() (float64, error) {

34 err := d.leds()

35 if err != nil {

36 return 0, err

37 }

38
39 if d.redLED.last() < threshold || d.irLED.last() < threshold {

40 return 0, errLowValue

41 }

42
43 irACDC := d.irLED.acdc()

44 if irACDC == 0 {

45 return 0, nil

46 }

47
48 return d.redLED.acdc() / irACDC, nil

49 }

D.10.10 max3010x/time_series.go

1 package max3010x

2
3 type tSeries struct {

4 buffer []float64

5 idx int

6
7 max float64

8 min float64

9 }

10
11 func newTSeries(size int) *tSeries {

12 return &tSeries{

13 buffer: make([]float64, size),

D.10. Module: max3010x 253

14 }

15 }

16
17 func (t *tSeries) add(entries ...float64) {

18 for _, e := range entries {

19 t.idx++

20 t.idx %= len(t.buffer)

21
22 old := t.buffer[t.idx]

23 t.buffer[t.idx] = e

24
25 if old == t.max || old == t.min {

26 t.max = e

27 t.min = e

28 for _, b := range t.buffer {

29 t.minmax(b)

30 }

31 } else {

32 t.minmax(e)

33 }

34 }

35
36 }

37
38 func (t *tSeries) minmax(v float64) {

39 if v > t.max {

40 t.max = v

41 }

42 if v < t.min {

43 t.min = v

44 }

45 }

46
47 func (t *tSeries) last() float64 {

48 return t.buffer[t.idx]

49 }

50
51 func (t *tSeries) acdc() float64 {

52 if t.min == 0 {

53 return 0

54 }

55
56 return (t.max - t.min) / t.min

57 }

D.10.11 max3010x/max3010x/main.go

1 package main

2
3 import (

4 "bufio"

5 "errors"

6 "fmt"

7 "log"

8 "os"

9 "sync"

10 "time"

11
12 "github.com/cgxeiji/max3010x"

13 "github.com/cgxeiji/max3010x/max30102"

14)

15
16 func main() {

17 sensor, err := max3010x.New()

18 if err != nil {

19 log.Fatal(err)

20 }

21 defer sensor.Close()

22
23 // Check which sensor is connected using the PartID.

24 switch sensor.PartID {

25 case 0x11: // TODO: test with MAX30100

26 fmt.Printf("MAX30100 rev.%d detected\n", sensor.RevID)

27 case max30102.PartID:

28 fmt.Printf("MAX30102 rev.%d detected\n", sensor.RevID)

29 }

30 fmt.Println("Press [ENTER] to exit")

31 fmt.Println("---------------------------")

32
33 done := make(chan struct{})

34 var wg sync.WaitGroup

35
36 // Read the heart rate every 200ms.

37 hrCh := make(chan float64)

38 wg.Add(1)

39 go func() {

40 defer wg.Done()

254 Appendix D. Source Code

41 t := time.NewTicker(200 * time.Millisecond)

42 for {

43 select {

44 case <-done:

45 return

46 case <-t.C:

47 hr, err := sensor.HeartRate()

48 if errors.Is(err, max3010x.ErrNotDetected) {

49 hr = 0

50 } else if errors.Is(err, max3010x.ErrTooNoisy) {

51 hr = -1

52 } else if err != nil {

53 log.Fatal(err)

54 }

55 select {

56 case hrCh <- hr:

57 case <-done:

58 }

59 }

60 }

61 }()

62
63 // Read the SpO2 every 200ms.

64 spO2Ch := make(chan float64)

65 wg.Add(1)

66 go func() {

67 defer wg.Done()

68 t := time.NewTicker(200 * time.Millisecond)

69 for {

70 select {

71 case <-done:

72 return

73 case <-t.C:

74 spO2, err := sensor.SpO2()

75 if errors.Is(err, max3010x.ErrNotDetected) {

76 spO2 = 0

77 } else if err != nil {

78 log.Fatal(err)

79 }

80 select {

81 case spO2Ch <- spO2:

82 case <-done:

83 }

84 }

85 }

86 }()

87
88 // Read the sensor's temperature every second.

89 tempCh := make(chan float64)

90 wg.Add(1)

91 go func() {

92 defer wg.Done()

93 t := time.NewTicker(1 * time.Second)

94 for {

95 select {

96 case <-done:

97 return

98 case <-t.C:

99 temp, err := sensor.Temperature()

100 if err != nil {

101 log.Fatal(temp)

102 }

103 select {

104 case tempCh <- temp:

105 case <-done:

106 }

107 }

108 }

109 }()

110
111 // Access the underlying device for low level functions.

112 // Read raw LED values as fast as possible.

113 rawCh := make(chan []float64)

114 wg.Add(1)

115 go func() {

116 defer wg.Done()

117 device, err := sensor.ToMax30102()

118 if errors.Is(err, max3010x.ErrWrongDevice) {

119 fmt.Println("device is not MAX30102")

120 return

121 } else if err != nil {

122 log.Fatal(err)

123 }

124 for {

125 select {

126 case <-done:

127 return

128 default:

129 }

130 ir, red, err := device.IRRed()

131 if err != nil {

132 log.Fatal(err)

133 }

D.10. Module: max3010x 255

134
135 // Adjusting raw value for visualization

136 ir -= 0.37

137 ir *= 300

138 if ir < 0 {

139 ir = 0

140 }

141
142 // Adjusting raw value for visualization

143 red -= 0.37

144 red *= 300

145 if red < 0 {

146 red = 0

147 }

148 select {

149 case rawCh <- []float64{red, ir}:

150 case <-done:

151 }

152 }

153 }()

154
155 wg.Add(1)

156 go func() {

157 defer wg.Done()

158 t := time.NewTicker(50 * time.Millisecond)

159 fmt.Printf("\n\n\n\n\n")

160
161 temp := 0.0

162 hr := 0.0

163 spO2 := 0.0

164 raw := make([]float64, 2)

165 for {

166 select {

167 case temp = <-tempCh:

168 case hr = <-hrCh:

169 case spO2 = <-spO2Ch:

170 case raw = <-rawCh:

171 case <-done:

172 return

173 }

174 fmt.Printf("\033[5F")

175 fmt.Printf("sensor temp\t: %2.1fC \n", temp)

176 switch hr {

177 case 0:

178 fmt.Printf("heart rate\t: -- \n")

179 case -1:

180 fmt.Printf("heart rate\t: too noisy \n")

181 default:

182 fmt.Printf("heart rate\t: %3.2fbpm \n", hr)

183 }

184 if spO2 == 0 {

185 fmt.Printf("SpO2\t\t: -- \n")

186 } else {

187 fmt.Printf("SpO2\t\t: %3.2f%% \n", spO2)

188 }

189 fmt.Printf("red LED\t\t: %s \n", float2bar(raw[0]))

190 fmt.Printf("IR LED\t\t: %s \n", float2bar(raw[1]))

191 <-t.C

192 }

193 }()

194
195 bufio.NewReader(os.Stdin).ReadString('\n')

196 close(done)

197 wg.Wait()

198 }

199
200 func float2bar(n float64) string {

201 block := []string{"", "", "", "", "", "", "", "", "", ""}

202 t := int(n)

203 s := ""

204 f := int((n - float64(t)) * 10)

205
206 for i := 0; i < t; i++ {

207 s += ""

208 }

209 s += block[f]

210
211 return s

212 }

D.10.12 max3010x/max30102/const.go

1 package max30102

2
3 // Register addresses

4 const (

5 IntStat1 = 0x00

256 Appendix D. Source Code

6 IntStat2 = 0x01

7 IntEna1 = 0x02

8 IntEna2 = 0x03

9 FIFOWrPtr = 0x04

10 OvfCount = 0x05

11 FIFORdPtr = 0x06

12 FIFOData = 0x07

13 FIFOCfg = 0x08

14 ModeCfg = 0x09

15 SpO2Cfg = 0x0A

16 Led1PA = 0x0C

17 Led2PA = 0x0D

18 MultiLedModeS2S1 = 0x11

19 MultiLedModeS4S3 = 0x12

20 TempInt = 0x1F

21 TempFrac = 0x20

22 TempCfg = 0x21

23 RegRevID = 0xFE

24 RegPartID = 0xFF

25)

26
27 // Interrupt flags

28 const (

29 // Status 1

30 AlmostFull byte = (1 << 7)

31 NewFIFOData byte = (1 << 6)

32 AmbientLightCancelOvf byte = (1 << 5)

33 PowerReady byte = (1 << 0)

34
35 // Status 2

36 DieTempReady byte = (1 << 1)

37)

38
39 // Device constants

40 const (

41 Addr = 0x57

42 PartID = 0x15

43)

44
45 // Settings

46 const (

47 TempEna byte = 0b0000_0001

48 ModeHR byte = 0b010

49 ModeSpO2 byte = 0b011

50 ModeMultiLed byte = 0b111

51 modeMask byte = 0b1111_1000

52 modeSHDN byte = (1 << 7)

53
54 ResetControl = 0b0100_0000

55)

56
57 // SpO2 Sample Rate Control

58 const (

59 SR50 = (iota << 2)

60 SR100

61 SR200

62 SR400

63 SR800

64 SR1000

65 SR1600

66 SR3200

67
68 srMask byte = 0b1_11_000_11

69)

70
71 // LED Pulse Width Control

72 const (

73 PW69 = iota

74 PW118

75 PW215

76 PW411

77
78 pwMask byte = 0b1_11_111_00

79)

80
81 // masks

82 const (

83 fifoFullMask byte = 0b111_1_0000

84)

85
86 const (

87 maxADC = (1 << 18) - 1

88 halfADC = (1 << 17) - 1

89)

D.10. Module: max3010x 257

D.10.13 max3010x/max30102/max30102.go

1 package max30102

2
3 import (

4 "errors"

5 "fmt"

6 "time"

7
8 "github.com/cgxeiji/serial"

9)

10
11 var (

12 // ErrNotDevice throws an error when the device part ID does not match a

13 // MAX30102 signature (0x15).

14 ErrNotDevice error = errors.New("max30102: part ID does not match (0x15)")

15)

16
17 // Device defines a MAX30102 device.

18 type Device struct {

19 i2c *serial.I2C

20 }

21
22 // New returns a new MAX30102 device. By default, this sets the LED pulse

23 // amplitude to 2.4mA, with a pulse width of 411us and a sample rate of 100

24 // samples/s.

25 //

26 // Argument "busName" can be used to specify the exact bus to use ("/dev/i2c-2", "I2C2", "2").

27 // Argument "addr" can be used to specify alternative address if default (0x57) is unavailable and changed.

28 // If "busName" argument is specified as an empty string "" the first available bus will be used.

29 func New(busName string, addr uint16) (*Device, error) {

30 if addr == 0 {

31 addr = Addr

32 }

33
34 i2c, err := serial.NewI2C(busName, addr)

35 if err != nil {

36 return nil, fmt.Errorf("max30102: could not initialize I2C: %w", err)

37 }

38
39 d := &Device{

40 i2c: i2c,

41 }

42
43 part, err := d.Read(RegPartID)

44 if err != nil {

45 return nil, fmt.Errorf("max30102: could not get part ID: %w", err)

46 }

47 if part != PartID {

48 return nil, ErrNotDevice

49 }

50
51 err = d.Reset()

52 if err != nil {

53 return nil, fmt.Errorf("max30102: could not reset device: %w", err)

54 }

55 if _, err = d.Options(

56 RedPulseAmp(2.8),

57 IRPulseAmp(2.8),

58 PulseWidth(PW411),

59 SampleRate(SR100),

60 InterruptEnable(NewFIFOData|AlmostFull),

61 AlmostFullValue(0),

62 Mode(ModeSpO2),

63); err != nil {

64 return nil, fmt.Errorf("max30102: could not initialize device: %w", err)

65 }

66 d.drain()

67
68 return d, nil

69 }

70
71 // Close closes the device and cleans after itself.

72 func (d *Device) Close() {

73 d.Shutdown()

74 d.i2c.Close()

75 }

76
77 // RevID returns the revision ID of the device.

78 func (d *Device) RevID() (byte, error) {

79 rev, err := d.Read(RegRevID)

80 if err != nil {

81 return 0, fmt.Errorf("max30102: could not get revision ID: %w", err)

82 }

83 return rev, nil

84 }

85
86 func (d *Device) waitUntil(reg, flag byte, bit byte) error {

87 switch bit {

88 case 1:

89 for {

258 Appendix D. Source Code

90 state, err := d.Read(reg)

91 if err != nil {

92 return fmt.Errorf("could not wait for %v in %v to be %v", flag, reg, bit)

93 } else if state&flag != 0 {

94 //fmt.Printf("%#x = %#b\n", reg, state)

95 return nil

96 }

97 }

98 case 0:

99 for {

100 if state, err := d.Read(reg); err != nil {

101 return fmt.Errorf("could not wait for %v in %v to be %v", flag, reg, bit)

102 } else if state&flag == 0 {

103 //fmt.Printf("%#x = %#b\n", reg, state)

104 return nil

105 }

106 }

107 }

108
109 return fmt.Errorf("invalid bit %v, it should be 1 or 0", bit)

110 }

111
112 func (d *Device) tempEnable() error {

113 if err := d.Write(TempCfg, TempEna); err != nil {

114 return fmt.Errorf("max30102: could not enable temperature: %w", err)

115 }

116 return nil

117 }

118
119 func (d *Device) tempReady() (bool, error) {

120 state, err := d.Read(TempCfg)

121 if err != nil {

122 return false, fmt.Errorf("max30102: could not read temperature state: %w", err)

123 }

124 return (state & TempEna) == 0, nil

125 }

126
127 // Temperature returns the current temperature of the device.

128 func (d *Device) Temperature() (float64, error) {

129 if err := d.tempEnable(); err != nil {

130 return 0, err

131 }

132 if err := d.waitUntil(TempCfg, TempEna, 0); err != nil {

133 return 0, err

134 }

135
136 i, err := d.Read(TempInt)

137 if err != nil {

138 return 0, fmt.Errorf("max30102: could not read integer part of temperature: %w", err)

139 }

140
141 f, err := d.Read(TempFrac)

142 if err != nil {

143 return 0, fmt.Errorf("max30102: could not read fractional part of temperature: %w", err)

144 }

145
146 return float64(int8(i)) + (float64(f) * 0.0625), nil

147 }

148
149 // Read reads a single byte from a register.

150 func (d *Device) Read(reg byte) (byte, error) {

151 return d.i2c.Read(reg)

152 }

153
154 // ReadBytes reads n bytes from a register.

155 func (d *Device) ReadBytes(reg byte, n int) ([]byte, error) {

156 return d.i2c.ReadBytes(reg, n)

157 }

158
159 // Write writes a byte to a register.

160 func (d *Device) Write(reg, data byte) error {

161 return d.i2c.Write(reg, data)

162 }

163
164 // Reset resets the device. All configurations, thresholds, and data registers

165 // are reset to their power-on state.

166 func (d *Device) Reset() error {

167 if err := d.Write(ModeCfg, ResetControl); err != nil {

168 return fmt.Errorf("max30102: could not reset: %w", err)

169 }

170 if err := d.waitUntil(ModeCfg, ResetControl, 0); err != nil {

171 return fmt.Errorf("max30102: could not reset: %w", err)

172 }

173
174 return nil

175 }

176
177 // IRRed returns the value of the red LED and IR LED. The values are normalized

178 // from 0.0 to 1.0.

179 func (d *Device) IRRed() (ir, red float64, err error) {

180 const msbMask byte = 0b0000_0011

181
182 err = d.waitUntil(IntStat1, NewFIFOData, 1)

D.10. Module: max3010x 259

183 if err != nil {

184 return 0, 0, err

185 }

186
187 bytes, err := d.ReadBytes(FIFOData, 6)

188 if err != nil {

189 return 0, 0, err

190 }

191
192 ir = float64(

193 int(bytes[3]&msbMask)<<16|

194 int(bytes[4])<<8|

195 int(bytes[5])) / maxADC

196 red = float64(

197 int(bytes[0]&msbMask)<<16|

198 int(bytes[1])<<8|

199 int(bytes[2])) / maxADC

200
201 return ir, red, nil

202 }

203
204 // IRRedBatch returns a batch of IR and red LED values based on the AlmostFull

205 // flag. The amount of data returned can be configured by setting the

206 // AlmostFullValue leftover value, which is set to 0 by default. Therefore,

207 // this function returns 32 samples by default.

208 func (d *Device) IRRedBatch() (ir, red []float64, err error) {

209 const maxADC = 262143

210 const msbMask byte = 0b0000_0011

211
212 err = d.drain()

213 if err != nil {

214 return nil, nil, fmt.Errorf("max30102: could not empty FIFO: %w", err)

215 }

216 err = d.waitUntil(IntStat1, AlmostFull, 1)

217 if err != nil {

218 return nil, nil, fmt.Errorf("max30102: error waiting for almost full interrupt: %w", err)

219 }

220
221 n, err := d.available()

222 if err != nil {

223 return nil, nil, fmt.Errorf("max30102: error reading available data: %w", err)

224 }

225
226 ir = make([]float64, n)

227 red = make([]float64, n)

228 for i := 0; i < n; i++ {

229 bytes, err := d.ReadBytes(FIFOData, 6)

230 if err != nil {

231 return nil, nil, err

232 }

233
234 irData := float64(

235 int(bytes[3]&msbMask)<<16|

236 int(bytes[4])<<8|

237 int(bytes[5])) / maxADC

238 redData := float64(

239 int(bytes[0]&msbMask)<<16|

240 int(bytes[1])<<8|

241 int(bytes[2])) / maxADC

242
243 ir[i] = irData

244 red[i] = redData

245 }

246
247 return ir, red, nil

248 }

249
250 func (d *Device) drain() error {

251 n, err := d.available()

252 if err != nil {

253 return err

254 }

255 for i := 0; i < n; i++ {

256 _, err := d.ReadBytes(FIFOData, 6)

257 if err != nil {

258 return err

259 }

260 }

261 return nil

262 }

263
264 func (d *Device) available() (int, error) {

265 wr, err := d.Read(FIFOWrPtr)

266 if err != nil {

267 return 0, nil

268 }

269 rd, err := d.Read(FIFORdPtr)

270 if err != nil {

271 return 0, nil

272 }

273
274 if wr == rd {

275 return 32, nil

260 Appendix D. Source Code

276 }

277 return (int(wr) + 32 - int(rd)) % 32, nil

278 }

279
280 // Calibrate auto-calibrates the current of each LED.

281 func (d *Device) Calibrate() error {

282 var ir []float64

283 var red []float64

284 var err error

285
286 irAmp := 0.0

287 redAmp := 0.0

288
289 if _, err = d.Options(

290 IRPulseAmp(irAmp),

291 RedPulseAmp(redAmp),

292); err != nil {

293 return fmt.Errorf("max30102: could not calibrate sensor: %w", err)

294 }

295
296 for mean(ir) < 0.4 {

297 if irAmp >= 5 {

298 break

299 }

300 irAmp += 0.5

301
302 if _, err = d.Options(

303 IRPulseAmp(irAmp),

304); err != nil {

305 return fmt.Errorf("max30102: could not calibrate sensor: %w", err)

306 }

307 time.Sleep(40 * time.Millisecond)

308
309 ir, red, err = d.IRRedBatch()

310 if err != nil {

311 return fmt.Errorf("max30102: could not calibrate sensor: %w", err)

312 }

313 }

314
315 for mean(red) < 0.4 {

316 if redAmp >= 5 {

317 break

318 }

319 redAmp += 0.5

320
321 if _, err = d.Options(

322 RedPulseAmp(redAmp),

323); err != nil {

324 return fmt.Errorf("max30102: could not calibrate sensor: %w", err)

325 }

326 time.Sleep(40 * time.Millisecond)

327
328 ir, red, err = d.IRRedBatch()

329 if err != nil {

330 return fmt.Errorf("max30102: could not calibrate sensor: %w", err)

331 }

332 }

333
334 fmt.Println("calibration:")

335 fmt.Printf(" irAmp = %.1fmA\n", irAmp)

336 fmt.Printf(" redAmp = %.1fmA\n", redAmp)

337
338 return nil

339 }

340
341 func mean(a []float64) float64 {

342 if len(a) == 0 {

343 return 0

344 }

345
346 r := 0.0

347 for _, v := range a {

348 r += v

349 }

350
351 return r / float64(len(a))

352 }

353
354 // Shutdown sets the device into power-save mode.

355 func (d *Device) Shutdown() error {

356 _, err := d.config(ModeCfg, ^modeSHDN, modeSHDN)

357
358 return err

359 }

360
361 // Startup wakes the device from power-save mode.

362 func (d *Device) Startup() error {

363 _, err := d.config(ModeCfg, ^modeSHDN, ^modeSHDN)

364
365 return err

366 }

367
368 func (d *Device) debugRegister(reg byte) {

D.10. Module: max3010x 261

369 b, _ := d.Read(reg)

370 fmt.Printf("%#x = %#x (%#b)\n", reg, b, b)

371 }

D.10.14 max3010x/max30102/options.go

1 package max30102

2
3 import "fmt"

4
5 // Option defines a functional option for the device.

6 type Option func(d *Device) (Option, error)

7
8 // Options sets different configuration options and returns the previous value

9 // of the last option passed.

10 func (d *Device) Options(options ...Option) (Option, error) {

11 var old Option

12 var err error

13 for _, opt := range options {

14 old, err = opt(d)

15 if err != nil {

16 return nil, err

17 }

18 }

19
20 return old, nil

21 }

22
23 func (d *Device) config(reg, mask, flag byte) (byte, error) {

24 cfg, err := d.Read(reg)

25 if err != nil {

26 return 0, fmt.Errorf("could not get %v from %v: %w", mask, reg, err)

27 }

28 old := cfg &^ mask

29 cfg &= mask

30 flag = flag &^ mask

31 cfg |= flag

32 if err := d.Write(reg, cfg); err != nil {

33 return 0, fmt.Errorf("could not set %v in %v: %w", flag, reg, err)

34 }

35
36 return old, nil

37 }

38
39 // Mode sets the operation mode of the device.

40 func Mode(mode byte) Option {

41 return func(d *Device) (Option, error) {

42 old, err := d.config(ModeCfg, modeMask, mode)

43 if err != nil {

44 return nil, fmt.Errorf("max30102: could not configure mode %#x: %w", mode, err)

45 }

46
47 if err = d.Write(FIFOWrPtr, 0); err != nil {

48 return nil, fmt.Errorf("max30102: could not configure mode %#x: %w", mode, err)

49 }

50 if err = d.Write(OvfCount, 0); err != nil {

51 return nil, fmt.Errorf("max30102: could not configure mode %#x: %w", mode, err)

52 }

53 if err = d.Write(FIFORdPtr, 0); err != nil {

54 return nil, fmt.Errorf("max30102: could not configure mode %#x: %w", mode, err)

55 }

56
57 return Mode(old), nil

58 }

59 }

60
61 // RedPulseAmp sets the pulse amplitude of the red LED. It accepts values

62 // from 0.0 to 51.0 mA and the value is rounded down to the nearest multiple of 0.2.

63 func RedPulseAmp(current float64) Option {

64 return func(d *Device) (Option, error) {

65 if current > 51 {

66 current = 51

67 }

68 if current < 0 {

69 current = 0

70 }

71 b := byte(current * 5)

72
73 old, err := d.config(Led1PA, 0, b)

74 if err != nil {

75 return nil, fmt.Errorf("max30102: could not configure red LED pulse amplitud: %w", err)

76 }

77
78 return RedPulseAmp(float64(old) / 5), nil

79 }

80 }

81

262 Appendix D. Source Code

82 // IRPulseAmp sets the pulse amplitude of the red LED. It accepts values

83 // from 0.0 to 51.0 mA and the value is rounded down to the nearest multiple of 0.2.

84 func IRPulseAmp(current float64) Option {

85 return func(d *Device) (Option, error) {

86 if current > 51 {

87 current = 51

88 }

89 if current < 0 {

90 current = 0

91 }

92 b := byte(current * 5)

93
94 old, err := d.config(Led2PA, 0, b)

95 if err != nil {

96 return nil, fmt.Errorf("max30102: could not configure IR LED pulse amplitud: %w", err)

97 }

98
99 return IRPulseAmp(float64(old) / 5), nil

100 }

101 }

102
103 // PulseWidth sets the pulse width of the device.

104 func PulseWidth(pw byte) Option {

105 return func(d *Device) (Option, error) {

106 old, err := d.config(SpO2Cfg, pwMask, pw)

107 if err != nil {

108 return nil, fmt.Errorf("max30102: could not configure pulse width: %w", err)

109 }

110
111 return PulseWidth(old), nil

112 }

113 }

114
115 // SampleRate sets the SpO2 sample rate control of the device.

116 func SampleRate(sr byte) Option {

117 return func(d *Device) (Option, error) {

118 old, err := d.config(SpO2Cfg, srMask, sr)

119 if err != nil {

120 return nil, fmt.Errorf("max30102: could not configure sample rate: %w", err)

121 }

122
123 return SampleRate(old), nil

124 }

125 }

126
127 // InterruptEnable enables interrupts.

128 func InterruptEnable(i byte) Option {

129 return func(d *Device) (Option, error) {

130 old, err := d.config(IntEna1, ^i, i)

131 if err != nil {

132 return nil, fmt.Errorf("max30102: could not configure interrupt flags: %w", err)

133 }

134
135 return InterruptEnable(old), nil

136 }

137 }

138
139 // AlmostFullValue sets when the AlmostFull interrupt should be triggered. It

140 // can take values from 0 to 15.

141 func AlmostFullValue(left byte) Option {

142 return func(d *Device) (Option, error) {

143 left &= ^fifoFullMask

144 old, err := d.config(FIFOCfg, fifoFullMask, left)

145 if err != nil {

146 return nil, fmt.Errorf("max30102: could not configure almost full value to %d: %w", left, err)

147 }

148
149 return AlmostFullValue(old), nil

150 }

151 }

D.11. Module: serial 263

D.11 Module: serial

D.11.1 License

MIT License

Copyright (c) 2021 Eiji Onchi

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

D.11.2 serial/serial.go

1 package serial

2
3 import (

4 "fmt"

5
6 "periph.io/x/periph/conn/i2c"

7 "periph.io/x/periph/conn/i2c/i2creg"

8 "periph.io/x/periph/host"

9)

10
11 // I2C defines an I2C type to read and write from/to registers.

12 type I2C struct {

13 dev *i2c.Dev

14 bus i2c.BusCloser

15 addr uint16

16 }

17
18 // NewI2C returns a new I2C interface at the specified bus and address.

19 // If `bus` is set to "", the first available bus is used. The address must

20 // always be specified.

21 func NewI2C(bus string, addr uint16) (*I2C, error) {

22 if _, err := host.Init(); err != nil {

23 return nil, fmt.Errorf("serial: could not initialize host: %w", err)

24 }

25
26 b, err := i2creg.Open(bus)

27 if err != nil {

28 return nil, fmt.Errorf("serial: could not open I2C bus: %w", err)

29 }

30
31 dev := &i2c.Dev{

32 Addr: addr,

33 Bus: b,

34 }

35
36 i2c := &I2C{

37 dev: dev,

38 bus: b,

39 addr: addr,

40 }

41
42 return i2c, nil

43 }

44
45 // Read reads a single byte from a register.

46 func (i *I2C) Read(reg byte) (byte, error) {

47 b := make([]byte, 1)

48 if err := i.dev.Tx([]byte{reg}, b); err != nil {

49 return 0, fmt.Errorf("serial: could not read byte from register %x at address %x: %w", reg, i.addr, err)

50 }

51
52 return b[0], nil

264 Appendix D. Source Code

53 }

54
55 // ReadBytes reads n bytes from a register.

56 func (i *I2C) ReadBytes(reg byte, n int) ([]byte, error) {

57 b := make([]byte, n)

58 if err := i.dev.Tx([]byte{reg}, b); err != nil {

59 return nil, fmt.Errorf("serial: could not read all %d bytes from register %x at address %x: %w", n, reg,

i.addr, err)→֒

60 }

61
62 return b, nil

63 }

64
65 // Write writes a byte or bytes to a register.

66 func (i *I2C) Write(reg byte, data ...byte) error {

67 n, err := i.dev.Write(append([]byte{reg}, data...))

68 if err != nil {

69 return fmt.Errorf("serial: could not write %x to register %x at address %x: %w", data, reg, i.addr, err)

70 }

71 n-- // remove register write

72 if n != len(data) {

73 return fmt.Errorf("serial: wrong number of bytes written: want %d, got %d", len(data), n)

74 }

75
76 return nil

77 }

78
79 // Close closes the bus used by I2C.

80 func (i *I2C) Close() {

81 i.bus.Close()

82 }

—

265

Bibliography

Adafruit Industries (2021a). Adafruit Micro-Lipo Charger for LiPoly Batt with

USB Type C Jack. URL: https://www.adafruit.com/product/4410 (visited

on 08/13/2021).

— (2021b). ADS1015 12-Bit ADC - 4 Channel with Programmable Gain Amplifier

: ID 1083 : $9.95 : Adafruit Industries, Unique & fun DIY electronics and kits.

URL: https://www.adafruit.com/product/1083 (visited on 09/14/2021).

— (2021c). NeoPixel Ring - 12 x 5050 RGB LED with Integrated Drivers. URL:

https://www.adafruit.com/product/1643 (visited on 09/25/2021).

— (2021d). PowerBoost 500 Basic - 5V USB Boost @ 500mA from 1.8V+. URL:

https://www.adafruit.com/product/1903 (visited on 08/13/2021).

— (2021e). Zero Spy Camera for Raspberry Pi Zero ID: 3508. URL: https://www.

adafruit.com/product/3508 (visited on 09/25/2021).

Admoni, Henny and Brian Scassellati (Mar. 1, 2017). “Social Eye Gaze in

Human-Robot Interaction: A Review”. In: Journal of Human-Robot Inter-

action 6.1, pp. 25–63. DOI: 10.5898/jhri.6.1.admoni.

Akash, Kumar et al. (Nov. 22, 2018). “A Classification Model for Sensing Hu-

man Trust in Machines Using EEG and GSR”. In: ACM Transactions on

Interactive Intelligent Systems 8.4, pp. 1–20. ISSN: 2160-6455. DOI: 10.1145/

3132743.

Amazon.com Inc (2021). Amazon.com: Alexa. URL: https://www.amazon.com/

b?node=21576558011 (visited on 09/22/2021).

https://www.adafruit.com/product/4410
https://www.adafruit.com/product/1083
https://www.adafruit.com/product/1643
https://www.adafruit.com/product/1903
https://www.adafruit.com/product/3508
https://www.adafruit.com/product/3508
https://doi.org/10.5898/jhri.6.1.admoni
https://doi.org/10.1145/3132743
https://doi.org/10.1145/3132743
https://www.amazon.com/b?node=21576558011
https://www.amazon.com/b?node=21576558011

266 Bibliography

Andreasson, Rebecca et al. (Dec. 1, 2017). “Affective Touch in Human–Robot

Interaction: Conveying Emotion to the Nao Robot”. In: International Jour-

nal of Social Robotics 10.4, pp. 473–491. ISSN: 1875-4791. DOI: 10 . 1007 /

s12369-017-0446-3.

Andrist, Sean et al. (2014). “Conversational gaze aversion for humanlike robots”.

In: Proceedings of the 2014 ACM/IEEE international conference on Human-

robot interaction - HRI ’14. DOI: 10.1145/2559636.2559666.

Appelhans, Bradley M. and Linda J. Luecken (Sept. 2006). “Heart Rate Vari-

ability as an Index of Regulated Emotional Responding”. In: Review of

General Psychology 10.3, pp. 229–240. ISSN: 1089-2680. DOI: 10.1037/1089-

2680.10.3.229.

Azarbarzin, Ali et al. (Apr. 1, 2014). “Relationship between Arousal Intensity

and Heart Rate Response to Arousal”. In: Sleep 37.4, pp. 645–653. ISSN:

0161-8105. DOI: 10.5665/sleep.3560.

Baldwin, Dare A. and Jodie A. Baird (Apr. 2001). “Discerning intentions in

dynamic human action”. In: Trends in Cognitive Sciences 5.4, pp. 171–178.

ISSN: 1364-6613. DOI: 10.1016/s1364-6613(00)01615-6.

Baraka, Kim, Ana Paiva, and Manuela Veloso (Dec. 2, 2015). “Expressive

Lights for Revealing Mobile Service Robot State”. In: Advances in Intel-

ligent Systems and Computing, pp. 107–119. ISSN: 978-3-319-27146-0. DOI:

10.1007/978-3-319-27146-0_9.

Baron-Cohen, Simon, Sally Wheelwright, and Therese Jolliffe (Sept. 1997).

“Is There a "Language of the Eyes"? Evidence from Normal Adults, and

Adults with Autism or Asperger Syndrome”. In: Visual Cognition 4.3, pp. 311–

331. ISSN: 1350-6285. DOI: 10.1080/713756761.

Bartneck, Christoph et al. (Feb. 19, 2009a). “Does the Design of a Robot In-

fluence Its Animacy and Perceived Intelligence?” In: International Journal

https://doi.org/10.1007/s12369-017-0446-3
https://doi.org/10.1007/s12369-017-0446-3
https://doi.org/10.1145/2559636.2559666
https://doi.org/10.1037/1089-2680.10.3.229
https://doi.org/10.1037/1089-2680.10.3.229
https://doi.org/10.5665/sleep.3560
https://doi.org/10.1016/s1364-6613(00)01615-6
https://doi.org/10.1007/978-3-319-27146-0_9
https://doi.org/10.1080/713756761

Bibliography 267

of Social Robotics 1.2, pp. 195–204. ISSN: 1875-4791. DOI: 10.1007/s12369-

009-0013-7.

Bartneck, Christoph et al. (Jan. 2009b). “Measurement Instruments for the

Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Per-

ceived Safety of Robots”. In: International Journal of Social Robotics 1.1,

pp. 71–81. ISSN: 1875-4791, 1875-4805. DOI: 10.1007/s12369-008-0001-3.

Bates, Douglas et al. (2015). “Fitting Linear Mixed-Effects Models Usinglme4”.

In: Journal of Statistical Software 67.1. ISSN: 1548-7660. DOI: 10.18637/jss.

v067.i01.

Bateson, Mary Catherine (Sept. 1975). “Mother-Infant Exchanges: The Epige-

nesis of Conversational Interaction”. In: Annals of the New York Academy of

Sciences 263 (1 Developmental), pp. 101–113. ISSN: 0077-8923, 1749-6632.

DOI: 10.1111/j.1749-6632.1975.tb41575.x.

Benoit, Kenneth, David Muhr, and Kohei Watanabe (Feb. 10, 2021). Package

’stopwords’. CRAN. 9 pp. URL: https : / / cran . r - project . org / web /

packages/stopwords/stopwords.pdf.

Bentivoglio, Anna Rita et al. (Nov. 1997). “Analysis of blink rate patterns in

normal subjects”. In: Movement Disorders 12.6, pp. 1028–1034. DOI: 10 .

1002/mds.870120629.

Betella, Alberto and Paul F. M. J. Verschure (Feb. 5, 2016). “The Affective

Slider: A Digital Self-Assessment Scale for the Measurement of Human

Emotions”. In: PLOS ONE 11.2. DOI: 10.1371/journal.pone.0148037.

Betella, Alberto and Paul F. M. J. Vershure (2016). The Sefl-Assessment Manikin

(SAM), adapted with permission from Bradley and Lang 1994. Figure. License:

CC BY 4.0. URL: https://www.researchgate.net/figure/The-Self-

Assessment-Manikin-SAM-adapted-with-permission-from-Bradley-

and-Lang-1994_fig5_293120723 (visited on 09/22/2021).

https://doi.org/10.1007/s12369-009-0013-7
https://doi.org/10.1007/s12369-009-0013-7
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/j.1749-6632.1975.tb41575.x
https://cran.r-project.org/web/packages/stopwords/stopwords.pdf
https://cran.r-project.org/web/packages/stopwords/stopwords.pdf
https://doi.org/10.1002/mds.870120629
https://doi.org/10.1002/mds.870120629
https://doi.org/10.1371/journal.pone.0148037
https://www.researchgate.net/figure/The-Self-Assessment-Manikin-SAM-adapted-with-permission-from-Bradley-and-Lang-1994_fig5_293120723
https://www.researchgate.net/figure/The-Self-Assessment-Manikin-SAM-adapted-with-permission-from-Bradley-and-Lang-1994_fig5_293120723
https://www.researchgate.net/figure/The-Self-Assessment-Manikin-SAM-adapted-with-permission-from-Bradley-and-Lang-1994_fig5_293120723

268 Bibliography

Bickmore, Timothy W. and Rosalind W. Picard (Apr. 24, 2004). “Towards Car-

ing Machines”. In: Extended Abstracts on Human Factors in Computing Sys-

tems. ACM Press, pp. 1489–1492. ISBN: 978-1-58113-703-3. DOI: 10.1145/

985921.986097.

Bordin, Edward S. (1979). “The generalizability of the psychoanalytic concept

of the working alliance.” In: Psychotherapy: Theory, Research & Practice 16.3,

pp. 252–260. DOI: 10.1037/h0085885.

Boston Dynamics (2021). Spot. URL: https://shop.bostondynamics.com/

spot?cclcl=en_US&pid=aDl6g000000XdpZCAS (visited on 09/14/2021).

Boucsein, Wolfram (2012). Electrodermal Activity. 2nd ed. US: Springer US.

ISBN: 978-1-4614-1125-3. DOI: 10.1007/978-1-4614-1126-0.

Bradley, Margaret M. and Peter J. Lang (Mar. 1994). “Measuring Emotion: The

Self-Assessment Manikin and the Semantic Differential”. In: Journal of Be-

havior Therapy and Experimental Psychiatry 25.1, pp. 49–59. ISSN: 00057916.

DOI: 10.1016/0005-7916(94)90063-9.

Breazeal, Cynthia L. (2002). Designing Sociable Robots. Intelligent robots and

autonomous agents. Cambridge, Mass: MIT Press. 263 pp. ISBN: 978-0-

262-02510-2.

Bynion, Teah-Marie and Matthew T. Feldner (2017). Self-Assessment Manikin.

Ed. by Virgil Zeigler-Hill and Todd K. Shackelford. Cham. DOI: 10.1007/

978-3-319-28099-8_77-1.

Carpinella, Colleen M. et al. (2017). “The Robotic Social Attributes Scale (RoSAS):

Development and Validation”. In: ACM Press, pp. 254–262. ISBN: 978-1-

4503-4336-7. DOI: 10.1145/2909824.3020208.

Cañigueral, Roser and Antonia F. de C. Hamilton (Mar. 15, 2019). “The Role

of Eye Gaze During Natural Social Interactions in Typical and Autistic

People”. In: Frontiers in Psychology 10. ISSN: 1664-1078. DOI: 10 . 3389 /

fpsyg.2019.00560.

https://doi.org/10.1145/985921.986097
https://doi.org/10.1145/985921.986097
https://doi.org/10.1037/h0085885
https://shop.bostondynamics.com/spot?cclcl=en_US&pid=aDl6g000000XdpZCAS
https://shop.bostondynamics.com/spot?cclcl=en_US&pid=aDl6g000000XdpZCAS
https://doi.org/10.1007/978-1-4614-1126-0
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1007/978-3-319-28099-8_77-1
https://doi.org/10.1007/978-3-319-28099-8_77-1
https://doi.org/10.1145/2909824.3020208
https://doi.org/10.3389/fpsyg.2019.00560
https://doi.org/10.3389/fpsyg.2019.00560

Bibliography 269

Chernova, Sonia and Andrea L. Thomaz (Apr. 30, 2014). “Robot Learning

from Human Teachers”. In: Synthesis Lectures on Artificial Intelligence and

Machine Learning 8.3, pp. 1–121. ISSN: 1939-4608, 1939-4616. DOI: 10.2200/

S00568ED1V01Y201402AIM028.

Christopoulos, George I., Marilyn A. Uy, and Wei Jie Yap (Dec. 8, 2016). “The

Body and the Brain: Measuring Skin Conductance Responses to Under-

stand the Emotional Experience”. In: Organizational Research Methods 22.1,

pp. 394–420. ISSN: 1094-4281. DOI: 10.1177/1094428116681073.

Cohen, Jacob (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed.

Routledge. ISBN: 0805802835.

Collins English Dictionary - Complete and Unabridged (2014). animacy. Dic-

tionary.

Combine Overwiki (May 1, 2011). In-game screenshot. Fair use. URL: https://

en.wikipedia.org/w/index.php?curid=31623959 (visited on 10/02/2021).

Creighton, Susan and Andrea Szymkowiak (Aug. 2014). “The Effects of Co-

operative and Competitive Games on Classroom Interaction Frequencies”.

In: Procedia - Social and Behavioral Sciences 140, pp. 155–163. ISSN: 1877-

0428. DOI: 10.1016/j.sbspro.2014.04.402.

Denshinbashira (Nov. 14, 2016). ｢ぼくのなつやすみ｣よりボクくん (Boku-

kun from ’My Summer Vacation’). Online. URL: http://denshinbashira.

blog76.fc2.com/blog-entry-28.html (visited on 10/02/2021).

Ekman, Paul and Wallace V. Friesen (2003). UNMASKING THE FACE: A Guide

to Recognizing Emotions from Facial Expressions. Malor Books. 212 pp. ISBN:

1-883536-36-7.

Ekman, Paul, Wallace V. Friesen, and PHOEBE Ellsworth (1972). “What Emo-

tion Categories Can Observers Judge from Facial Behavior?” In: Emotion

in the Human Face, pp. 57–65. DOI: 10.1016/b978-0-08-016643-8.50024-

0.

https://doi.org/10.2200/S00568ED1V01Y201402AIM028
https://doi.org/10.2200/S00568ED1V01Y201402AIM028
https://doi.org/10.1177/1094428116681073
https://en.wikipedia.org/w/index.php?curid=31623959
https://en.wikipedia.org/w/index.php?curid=31623959
https://doi.org/10.1016/j.sbspro.2014.04.402
http://denshinbashira.blog76.fc2.com/blog-entry-28.html
http://denshinbashira.blog76.fc2.com/blog-entry-28.html
https://doi.org/10.1016/b978-0-08-016643-8.50024-0
https://doi.org/10.1016/b978-0-08-016643-8.50024-0

270 Bibliography

Eyssel, Friederike and Dieta Kuchenbrandt (Nov. 21, 2011). “Social catego-

rization of social robots: Anthropomorphism as a function of robot group

membership”. In: British Journal of Social Psychology 51.4, pp. 724–731. ISSN:

0144-6665. DOI: 10.1111/j.2044-8309.2011.02082.x.

Eyssel, Friederike et al. (Mar. 2012). “’If you sound like me, you must be more

human’: On the Interplay of Robot and User Features on Human-Robot

Acceptance and Anthropomorphism”. In: Proceedings of the seventh annual

ACM/IEEE international conference on Human-Robot Interaction - HRI ’12.

IEEE. DOI: 10.1145/2157689.2157717.

Feinerer, Ingo, Kurt Hornik, and Artifex Software, Inc. (Nov. 18, 2020). Pack-

age ’tm’. CRAN. 64 pp. URL: https : / / cran . r - project . org / web /

packages/tm/tm.pdf.

Figner, Bernd and Ryan O. Murphy (Jan. 2011). “Using skin conductance in

judgment and decision making research”. In: A handbook of process tracing

methods for decision research: A critical review and user’s guide. Ed. by M.

Schulte-Mecklenbeck, A. Kühberger, and R. Ranyard. Psychology Press,

pp. 163–184.

Fritzing (Sept. 24, 2021). fritzing: electronics made easy. URL: https://fritzing.

org/ (visited on 10/02/2021).

Funakoshi, Kotaro et al. (2008). “Smoothing human-robot speech interactions

by using a blinking-light as subtle expression”. In: Proceedings of the 10th

international conference on Multimodal interfaces - IMCI ’08. ACM Press,

pp. 293–296. ISBN: 9781605581989. DOI: 10.1145/1452392.1452452.

Furnham, Adrian (Jan. 1986). “Response bias, social desirability and dissim-

ulation”. In: Personality and Individual Differences 7.3, pp. 385–400. DOI:

10.1016/0191-8869(86)90014-0.

https://doi.org/10.1111/j.2044-8309.2011.02082.x
https://doi.org/10.1145/2157689.2157717
https://cran.r-project.org/web/packages/tm/tm.pdf
https://cran.r-project.org/web/packages/tm/tm.pdf
https://fritzing.org/
https://fritzing.org/
https://doi.org/10.1145/1452392.1452452
https://doi.org/10.1016/0191-8869(86)90014-0

Bibliography 271

Geethanjali, B. et al. (2017). “Emotion analysis using SAM (Self-Assessment

Manikin) scale”. In: Biomed Research (Special Issue), S18–S24. ISSN: 0970-

938X.

GeGeGe no Kitaro Wiki (2021). Tumblr p2s1tyuuwm1tnahllo5 500.png. Online.

URL: https://gegegenokitaro.fandom.com/wiki/Medama-Oyaji (visited

on 10/02/2021).

Gent, Paul van et al. (Oct. 2019). “HeartPy: A novel heart rate algorithm for

the analysis of noisy signals”. In: Transportation Research Part F: Traffic Psy-

chology and Behaviour 66, pp. 368–378. ISSN: 1369-8478. DOI: 10.1016/j.

trf.2019.09.015.

Gibson, Carolyn E., Joy Losee, and Christine Vitiello (May 2014). “A Repli-

cation Attempt of Stereotype Susceptibility (Shih, Pittinsky, & Ambady,

1999) - Identity Salience and Shifts in Quantitative Performance”. In: So-

cial Psychology 45.3. DOI: 10.1027/1864-9335/a000184.

Go (2021). The Go Programming Language. URL: https://golang.org/ (visited

on 08/10/2021).

Godot (2021). Godot Engine - Free and open source 2D and 3D game engine. URL:

https://godotengine.org/ (visited on 09/14/2021).

Goldman, Susan R., Arthur C. Graesser, and Paul van den Broek, eds. (Aug. 1,

1999). Narrative Comprehension, Causality, and Coherence. 1st ed. Routledge.

ISBN: 9781410603135.

Google Nest (2021). Nest Audio. URL: https : / / store . google . com / us /

product/nest_audio?hl=en-US (visited on 09/22/2021).

Gouaillier, David et al. (May 2009). “Mechatronic design of NAO humanoid”.

In: 2009 IEEE International Conference on Robotics and Automation. IEEE.

DOI: 10.1109/robot.2009.5152516.

https://gegegenokitaro.fandom.com/wiki/Medama-Oyaji
https://doi.org/10.1016/j.trf.2019.09.015
https://doi.org/10.1016/j.trf.2019.09.015
https://doi.org/10.1027/1864-9335/a000184
https://golang.org/
https://godotengine.org/
https://store.google.com/us/product/nest_audio?hl=en-US
https://store.google.com/us/product/nest_audio?hl=en-US
https://doi.org/10.1109/robot.2009.5152516

272 Bibliography

Graybiel, Ashton et al. (Apr. 1944). “Analysis of the electrocardiograms ob-

tained from 1000 young healthy aviators”. In: American Heart Journal 27.4,

pp. 524–549. ISSN: 0002-8703. DOI: 10.1016/s0002-8703(44)90546-6.

Greco, Alberto et al. (2016). “cvxEDA: a Convex Optimization Approach to

Electrodermal Activity Processing”. In: IEEE Transactions on Biomedical

Engineering 63.4, pp. 1–1. ISSN: 0018-9294. DOI: 10 . 1109 / tbme . 2015 .

2474131.

Han, JingGuang et al. (Dec. 2012). “Investigating the use of Non-verbal Cues

in Human-Robot Interaction with a Nao robot”. In: 2012 IEEE 3rd Interna-

tional Conference on Cognitive Infocommunications (CogInfoCom). IEEE. DOI:

10.1109/coginfocom.2012.6421937.

Hatcher, Robert L. and J. Arthur Gillaspy (Jan. 2006). “Development and val-

idation of a revised short version of the working alliance inventory”. In:

Psychotherapy Research 16.1, pp. 12–25. DOI: 10.1080/10503300500352500.

HiLetgo (May 2, 2019). HiLetgo MAX30102低電力心拍数クリックセンサー
ブレークアウトボードモジュール Arduinoパルスオキシメトリーソリ
ューション SpO2 MAX30100の交換. online. URL: https://www.amazon.

co.jp/dp/B07QC67KMQ/ (visited on 09/02/2021).

Hirst, Richard et al. (2013). pi-blaster. Computer software. URL: https : / /

github.com/sarfata/pi-blaster.

HobbyKing (2021). Towerpro MG996R Servo 10kg / 0.20sec / 55g. Photo. URL:

https://hobbyking.com/en_us/towerpro-mg996r-10kg-servo-10kg-0-

20sec-55g.html (visited on 09/20/2021).

Hoffman, Guy (Apr. 1, 2019). “Evaluating Fluency in Human-Robot Collab-

oration”. In: IEEE Transactions on Human-Machine Systems 49.3, pp. 209–

218. DOI: 10.1109/THMS.2019.2904558.

https://doi.org/10.1016/s0002-8703(44)90546-6
https://doi.org/10.1109/tbme.2015.2474131
https://doi.org/10.1109/tbme.2015.2474131
https://doi.org/10.1109/coginfocom.2012.6421937
https://doi.org/10.1080/10503300500352500
https://www.amazon.co.jp/dp/B07QC67KMQ/
https://www.amazon.co.jp/dp/B07QC67KMQ/
https://github.com/sarfata/pi-blaster
https://github.com/sarfata/pi-blaster
https://hobbyking.com/en_us/towerpro-mg996r-10kg-servo-10kg-0-20sec-55g.html
https://hobbyking.com/en_us/towerpro-mg996r-10kg-servo-10kg-0-20sec-55g.html
https://doi.org/10.1109/THMS.2019.2904558

Bibliography 273

Hogan, James L., Roger H. Fisher, and Bruce John Morrison (June 1, 1974).

“Social Feedback and Cooperative Game Behavior”. In: Psychological Re-

ports 34.3, pp. 1075–1082. ISSN: 0033-2941. DOI: 10.2466/pr0.1974.34.

3c.1075.

Holroyd, Aaron et al. (July 2011). “Generating connection events for human-

robot collaboration”. In: 2011 RO-MAN. DOI: 10 . 1109 / roman . 2011 .

6005245.

Horvath, Adam O. and Leslie S. Greenberg (1989). “Development and vali-

dation of the Working Alliance Inventory”. In: Journal of Counseling Psy-

chology 36.2, pp. 223–233. DOI: 10.1037/0022-0167.36.2.223.

Hu, Y. et al. (Apr. 25, 2018). “Neural control of sweat secretion: a review”. In:

British Journal of Dermatology 178.6, pp. 1246–1256. ISSN: 0007-0963. DOI:

10.1111/bjd.15808.

Hvitfeldt, Emil and Julia Silge (May 4, 2020). Package ’textdata’. CRAN. 25 pp.

URL: https://github.com/EmilHvitfeldt/textdata.

Hyeon, Yuna, Young-Hwan Pan, and Hoon-Sik Yoo (Sept. 30, 2019). “Anal-

ysis of Users’ Emotions on Lighting Effect of Artificial Intelligence De-

vices”. In: Korean Society for Emotion and Sensibility 22.3, pp. 35–46. ISSN:

1226-8593. DOI: 10.14695/kjsos.2018.22.3.35.

Hömke, Paul, Judith Holler, and Stephen C. Levinson (Dec. 12, 2018). “Eye

blinks are perceived as communicative signals in human face-to-face in-

teraction”. In: PLOS ONE 13.12. Ed. by Nicholas D. Duran, e0208030. ISSN:

1932-6203. DOI: 10.1371/journal.pone.0208030.

ITU Pictures (May 15, 2018). Sophia, First Robot Citizen at the AI for Good Global

Summit 2018. Digital. URL: https://www.flickr.com/photos/itupictures/

27254369347/.

Jack, RachaelăE., OliverăG.B. Garrod, and PhilippeăG. Schyns (Jan. 2014).

“Dynamic Facial Expressions of Emotion Transmit an Evolving Hierarchy

https://doi.org/10.2466/pr0.1974.34.3c.1075
https://doi.org/10.2466/pr0.1974.34.3c.1075
https://doi.org/10.1109/roman.2011.6005245
https://doi.org/10.1109/roman.2011.6005245
https://doi.org/10.1037/0022-0167.36.2.223
https://doi.org/10.1111/bjd.15808
https://github.com/EmilHvitfeldt/textdata
https://doi.org/10.14695/kjsos.2018.22.3.35
https://doi.org/10.1371/journal.pone.0208030
https://www.flickr.com/photos/itupictures/27254369347/
https://www.flickr.com/photos/itupictures/27254369347/

274 Bibliography

of Signals over Time”. In: Current Biology 24.2, pp. 187–192. ISSN: 0960-

9822. DOI: 10.1016/j.cub.2013.11.064.

Jaeger, Sara R. et al. (May 2019). “Valence, arousal and sentiment meanings

of 33 facial emoji: Insights for the use of emoji in consumer research”. In:

Food Research International 119, pp. 895–907. DOI: 10.1016/j.foodres.

2018.10.074.

Jeri, Petar et al. (Oct. 25, 2017). “The Effect of Emotions and Social Behav-

ior on Performance in a Collaborative Serious Game Between Humans

and Autonomous Robots”. In: International Journal of Social Robotics 10.1,

pp. 115–129. ISSN: 1875-4791. DOI: 10.1007/s12369-017-0437-4.

Johnson, Susan C. and Erica Ma (2005). “The Role of Agent Behavior in Men-

talistic Attributions by Observers”. In: ROMAN 2005. IEEE International

Workshop on Robot and Human Interactive Communication. ROMAN 2005.

IEEE International Workshop on Robot and Human Interactive Commu-

nication. Nashville, TN, USA: IEEE, pp. 723–728. ISBN: 978-0-7803-9274-8.

DOI: 10.1109/ROMAN.2005.1513865.

Johnson, Susan C., Su-Jeong Ok, and Yuyan Luo (Sept. 2007). “The Attribu-

tion of Attention: 9-Month-Olds’ Interpretation of Gaze as Goal-Directed

Action”. In: Developmental Science 10.5, pp. 530–537. ISSN: 1363-755X, 1467-

7687. DOI: 10.1111/j.1467-7687.2007.00606.x.

Jokinen, Kristiina and Graham Wilcock (Aug. 28, 2013). “Multimodal Open-

Domain Conversations with the Nao Robot”. In: Natural Interaction with

Robots, Knowbots and Smartphones, pp. 213–224. DOI: 10 . 1007 / 978 - 1 -

4614-8280-2_19.

Kaya, Naz and Helen H. Epps (2004). “Relationship between color and emo-

tion: a study of college students”. In: College Student Journal. Vol. 38. 3,

pp. 369–406.

https://doi.org/10.1016/j.cub.2013.11.064
https://doi.org/10.1016/j.foodres.2018.10.074
https://doi.org/10.1016/j.foodres.2018.10.074
https://doi.org/10.1007/s12369-017-0437-4
https://doi.org/10.1109/ROMAN.2005.1513865
https://doi.org/10.1111/j.1467-7687.2007.00606.x
https://doi.org/10.1007/978-1-4614-8280-2_19
https://doi.org/10.1007/978-1-4614-8280-2_19

Bibliography 275

Kendon, Adam (1967). “Some functions of gaze-direction in social interac-

tion”. In: Acta Psychologica 26, pp. 22–63. DOI: 10.1016/0001-6918(67)

90005-4.

Kidd, C.D. and C. Breazeal (Sept. 2008). “Robots at Home: Understanding

Long-Term Human-Robot Interaction”. In: IEEE, pp. 3230–3235. ISBN: 978-

1-4244-2057-5 978-1-4244-2058-2. DOI: 10.1109/IROS.2008.4651113.

Kim, Jejoong, Yur Kim, and Eunu Jo (Sept. 30, 2020). “Effect of Color and

Emotional Context on Processing Emotional Information of Biological Mo-

tion”. In: Korean Society for Emotion and Sensibility 23.3, pp. 63–78. ISSN:

1226-8593. DOI: 10.14695/kjsos.2020.23.3.63.

Kishi, T. et al. (Oct. 2012). “Development of Expressive Robotic Head for

Bipedal Humanoid Robot”. In: 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems. 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2012). Vilamoura-Algarve, Portu-

gal: IEEE, pp. 4584–4589. ISBN: 978-1-4673-1736-8 978-1-4673-1737-5 978-

1-4673-1735-1. DOI: 10.1109/IROS.2012.6386050.

Knuth, Donald Ervin (1998). The Art of Computer Programming. Seminumerical

algorithms. Vol. 2. 3rd ed. Addison-Wesley. 767 pp. ISBN: 978-0-201-89684-

8.

KODANSHA (2021).ブルーピリオド. URL: https://kc.kodansha.co.jp/

product?item=0000052420 (visited on 10/02/2021).

Kossmann, Charles E. (Dec. 1953). “The Normal Electrocardiogram”. In: Cir-

culation 8.6, pp. 920–936. ISSN: 0009-7322. DOI: 10.1161/01.cir.8.6.920.

Krauss, Robert M., Yihsiu Chen, and Purnima Chawla (1996). Nonverbal Be-

havior and Nonverbal Communication: What Do Conversational Hand Gestures

Tell Us? DOI: 10.1016/S0065-2601(08)60241-5.

https://doi.org/10.1016/0001-6918(67)90005-4
https://doi.org/10.1016/0001-6918(67)90005-4
https://doi.org/10.1109/IROS.2008.4651113
https://doi.org/10.14695/kjsos.2020.23.3.63
https://doi.org/10.1109/IROS.2012.6386050
https://kc.kodansha.co.jp/product?item=0000052420
https://kc.kodansha.co.jp/product?item=0000052420
https://doi.org/10.1161/01.cir.8.6.920
https://doi.org/10.1016/S0065-2601(08)60241-5

276 Bibliography

Krosnick, Jon A. and Duane F. Alwin (1987). “An Evaluation of a Cogni-

tive Theory of Response-Order Effects in Survey Measurement”. In: Public

Opinion Quarterly 51.2, pp. 201–219. DOI: 10.1086/269029.

Kuhn, Gustav, Benjamin W. Tatler, and Geoff G. Cole (Aug. 2009). “You look

where I look! Effect of gaze cues on overt and covert attention in mis-

direction”. In: Visual Cognition 17.6-7, pp. 925–944. ISSN: 1350-6285. DOI:

10.1080/13506280902826775.

Langton, Stephen R. H., Roger J. Watt, and Vicki Bruce (2000). “Cues to the

Direction of Social Attention”. In: Trends in Cognitive Sciences 4.2, pp. 50–

59.

Lee, Jeongsoo, Hyeonbo Yang, and Donghoon Lee (June 30, 2019). “Context

Modulation Effect by Affective Words Influencing on the Judgment of

Facial Emotio”. In: Korean Society for Emotion and Sensibility 22.2, pp. 37–

48. ISSN: 1226-8593. DOI: 10.14695/kjsos.2018.22.2.37.

Lee, Kang Woo and Jeong-Hoon Hwang (2008). “Human–Robot Interaction

as a Cooperative Game”. In: Lecture Notes in Electrical Engineering, pp. 91–

103. DOI: 10.1007/978-0-387-74935-8_6.

Lee, Seunghee, Akira Harada, and Pieter Jan Stappers (2002). “Design Based

on Kansei”. In: Pleasure with Products: Beyond Usability. Ed. by William S.

Green and Patrick W. Jordan. Taylor & Francis, pp. 212–222.

Lee, Seunghee, Toshikazu Kato, and Akira Harada (1997). “Kansei Evalua-

tion of Subjective Image by Iconic Abstraction”. In: 2nd Asian Design Con-

ference, pp. 127–135.

Lee, Seunghee and Pieter Jan Stappers (1999). “Extending of Design approach

based on Kansei by Dynamic Manipulation of 3D Objects”. In: Bulletin of

4th Asian Design Conference, pp. 686–693.

https://doi.org/10.1086/269029
https://doi.org/10.1080/13506280902826775
https://doi.org/10.14695/kjsos.2018.22.2.37
https://doi.org/10.1007/978-0-387-74935-8_6

Bibliography 277

Lee, Seunghee, Pieter Jan Stappers, and Akira Harada (2000). “Kansei Ap-

preciation of Observing 3D Objects”. In: Proceedings of XVI Congress of the

International Association of Empirical Aesthetics 2000, pp. 83–84.

Lenth, Russell V. (2016). “Least-Squares Means: TheRPackagelsmeans”. In:

Journal of Statistical Software 69.1, pp. 1–33. ISSN: 1548-7660. DOI: 10.18637/

jss.v069.i01.

Levenson, Robert W. (Jan. 24, 2006). “Blood, Sweat, and Fears”. In: Annals of

the New York Academy of Sciences 1000.1, pp. 348–366. ISSN: 0077-8923. DOI:

10.1196/annals.1280.016.

Levinson, Stephen C. (Jan. 2016). “Turn-taking in Human Communication –
Origins and Implications for Language Processing”. In: Trends in Cognitive

Sciences 20.1, pp. 6–14. ISSN: 1364-6613. DOI: 10.1016/j.tics.2015.10.

010.

Löffler, Diana, Nina Schmidt, and Robert Tscharn (2018). “Multimodal Ex-

pression of Artificial Emotion in Social Robots Using Color, Motion and

Sound”. In: Proceedings of the 2018 ACM/IEEE International Conference on

Human-Robot Interaction - HRI ’18. ACM, pp. 334–343. DOI: 10 . 1145 /

3171221.3171261.

Magezi, David A. (Jan. 22, 2015). “Linear mixed-effects models for within-

participant psychology experiments: an introductory tutorial and free,

graphical user interface (LMMgui)”. In: Frontiers in Psychology 6. ISSN:

1664-1078. DOI: 10.3389/fpsyg.2015.00002.

Makowski, Dominique et al. (Feb. 2, 2021). “NeuroKit2: A Python toolbox for

neurophysiological signal processing”. In: Behavior Research Methods 53.4,

pp. 1689–1696. ISSN: 1554-3528. DOI: 10.3758/s13428-020-01516-y.

Marku, Nenad et al. (Aug. 19, 2014). Object Detection with Pixel Intensity Com-

parisons Organized in Decision Trees. arXiv: 1305.4537 [cs.CV].

https://doi.org/10.18637/jss.v069.i01
https://doi.org/10.18637/jss.v069.i01
https://doi.org/10.1196/annals.1280.016
https://doi.org/10.1016/j.tics.2015.10.010
https://doi.org/10.1016/j.tics.2015.10.010
https://doi.org/10.1145/3171221.3171261
https://doi.org/10.1145/3171221.3171261
https://doi.org/10.3389/fpsyg.2015.00002
https://doi.org/10.3758/s13428-020-01516-y
https://arxiv.org/abs/1305.4537

278 Bibliography

Mathias, Charles W and Matthew S Stanford (July 2003). “Impulsiveness

and arousal: heart rate under conditions of rest and challenge in healthy

males”. In: Personality and Individual Differences 35.2, pp. 355–371. ISSN:

0191-8869. DOI: 10.1016/s0191-8869(02)00195-2.

Maxim Integrated (Feb. 13, 2020). MAX30102 High-Sensitivity Pulse Oximeter

and Heart-Rate Sensor for Wearable Health. URL: https://www.maximintegrated.

com/en/products/interface/sensor-interface/MAX30102.html (vis-

ited on 05/23/2021).

Mohammad, Saif (2018). “Obtaining Reliable Human Ratings of Valence, Arousal,

and Dominance for 20,000 English Words”. In: Proceedings of the 56th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Association for Computational Linguistics, pp. 174–184. DOI: 10.

18653/v1/p18-1017.

Mohammad, Saif M. (Dec. 9, 2020). Practical and Ethical Considerations in the

Effective use of Emotion and Sentiment Lexicons. arXiv: 2011.03492 [cs.CL].

Mori, Masahiro, Karl MacDorman, and Norri Kageki (June 2012). “The Un-

canny Valley [From the Field]”. In: IEEE Robotics & Automation Magazine

19.2, pp. 98–100. ISSN: 1070-9932. DOI: 10.1109/MRA.2012.2192811.

Morris, Robert R., Mira Dontcheva, and Elizabeth M. Gerber (Sept. 2012).

“Priming for Better Performance in Microtask Crowdsourcing Environ-

ments”. In: IEEE Internet Computing 16.5, pp. 13–19. ISSN: 1089-7801. DOI:

10.1109/mic.2012.68.

Nass, Clifford and Youngme Moon (Jan. 2000). “Machines and Mindlessness:

Social Responses to Computers”. In: Journal of Social Issues 56.1, pp. 81–

103. DOI: 10.1111/0022-4537.00153.

Noguchi, Yohei, Hiroko Kamide, and Fumihide Tanaka (Feb. 25, 2018). “Ef-

fects on Self-disclosure of Elderly Speakers by a Robot which Supports

https://doi.org/10.1016/s0191-8869(02)00195-2
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30102.html
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30102.html
https://doi.org/10.18653/v1/p18-1017
https://doi.org/10.18653/v1/p18-1017
https://arxiv.org/abs/2011.03492
https://doi.org/10.1109/MRA.2012.2192811
https://doi.org/10.1109/mic.2012.68
https://doi.org/10.1111/0022-4537.00153

Bibliography 279

Remote Communication”. ja. In: The Transactions of Human Interface Soci-

ety 20.1. ISSN: 1344-7262. DOI: 10.11184/his.20.1_67.

OmniVision Technologies Inc. (Jan. 8, 2009). OV5642 datasheet. datasheet. URL:

http://www.uctronics.com/download/cam_module/OV5642DS.pdf (vis-

ited on 10/02/2021).

Onchi, Eiji (Aug. 13, 2020). servo. Computer software. URL: https://github.

com/cgxeiji/servo.

Onchi, Eiji, Natanya Cornet, and SeungHee Lee (2021). “Effects of LED on

Emotion-Like Feedback of a Single-Eyed Spherical Robot”. In: Science of

Emotion and Sensibility 24.3. DOI: 10.14695/KJSOS.2021.24.3.109.

Onchi, Eiji and Seung Hee Lee (2019). “Design and Evaluation of a Spherical

Robot with Emotion-Like Feedback during Human-Robot Training”. In:

Transactions of Japan Society of Kansei Engineering 19.1, pp. 105–116. ISSN:

1884-0833. DOI: 10.5057/jjske.tjske-d-19-00036.

Onchi, Eiji, Daniel Saakes, and Seung Hee Lee (2020). “Emotional Meaning

of Eyelid Positions on a One-Eyed 2D Avatar”. In: International Symposium

on Affective Science and Engineering ISASE2020.0, pp. 1–4. ISSN: 2433-5428.

DOI: 10.5057//isase.2020-c000016.

Orozco, Lourdes and Jennifer Parker-Starbuck, eds. (2015). Performing Ani-

mality. 1. London: Palgrave Macmillan, p. 238. ISBN: 978-1-349-47646-6.

DOI: 10.1057/9781137373137.

Paetzel, Maike, Giulia Perugia, and Ginevra Castellano (Mar. 6, 2020). “The

Persistence of First Impressions”. In: Proceedings of the 2020 ACM/IEEE

International Conference on Human-Robot Interaction. ACM, pp. 73–82. DOI:

10.1145/3319502.3374786.

Pakarinen, Tomppa, Julia Pietila, and Hannu Nieminen (July 2019). “Predic-

tion of Self-Perceived Stress and Arousal Based on Electrodermal Activ-

ity”. In: 2019 41st Annual International Conference of the IEEE Engineering

https://doi.org/10.11184/his.20.1_67
http://www.uctronics.com/download/cam_module/OV5642DS.pdf
https://github.com/cgxeiji/servo
https://github.com/cgxeiji/servo
https://doi.org/10.14695/KJSOS.2021.24.3.109
https://doi.org/10.5057/jjske.tjske-d-19-00036
https://doi.org/10.5057//isase.2020-c000016
https://doi.org/10.1057/9781137373137
https://doi.org/10.1145/3319502.3374786

280 Bibliography

in Medicine and Biology Society (EMBC). IEEE. DOI: 10.1109/embc.2019.

8857621.

Pandey, Amit Kumar and Rodolphe Gelin (Sept. 2018). “A Mass-Produced

Sociable Humanoid Robot: Pepper: The First Machine of Its Kind”. In:

IEEE Robotics and Automation Magazine 25.3, pp. 40–48. ISSN: 1070-9932.

DOI: 10.1109/mra.2018.2833157.

Payrato, Lluis (2009). “Non-verbal communication”. In: Key Notions for Prag-

matics. Ed. by Jef Verschueren and Jan-Ola Ostman. Amsterdam: John

Benjamins, pp. 163–194. ISBN: 978 90 172 0778 4.

Pixar Wiki (2021). EVE. URL: https://pixar.fandom.com/wiki/EVE (visited

on 10/02/2021).

Pololu (2021). Pololu - LSM6DS33 3D Accelerometer and Gyro Carrier with Volt-

age Regulator. URL: https://www.pololu.com/product/2736 (visited on

09/14/2021).

Posner, Jonathan, James A. Russell, and Bradley S. Peterson (Sept. 2005). “The

circumplex model of affect: An integrative approach to affective neuro-

science, cognitive development, and psychopathology”. In: Development

and Psychopathology 17.03. DOI: 10.1017/s0954579405050340.

Raspberry Pi Foundation (May 2017). Raspberry Pi Zero W - Pi-Zero-w-Tilt-1-

1620x1080. Photo. URL: https://www.raspberrypi.org/app/uploads/

2017/05/Pi-Zero-W-Tilt-1-1620x1080.jpg (visited on 09/25/2021).

— (2018). Raspberry Pi Zero W - Raspberry Pi. URL: https://www.raspberrypi.

org/products/raspberry-pi-zero-w/ (visited on 11/19/2020).

Rethink Robotics (2021). Sawyer, the high performance collaborative robot | Re-

think Robotics. URL: https://www.rethinkrobotics.com/sawyer (visited

on 09/25/2021).

Russell, James A. (1980). “A circumplex model of affect”. In: Journal of Person-

ality and Social Psychology 39.6, pp. 1161–1178. DOI: 10.1037/h0077714.

https://doi.org/10.1109/embc.2019.8857621
https://doi.org/10.1109/embc.2019.8857621
https://doi.org/10.1109/mra.2018.2833157
https://pixar.fandom.com/wiki/EVE
https://www.pololu.com/product/2736
https://doi.org/10.1017/s0954579405050340
https://www.raspberrypi.org/app/uploads/2017/05/Pi-Zero-W-Tilt-1-1620x1080.jpg
https://www.raspberrypi.org/app/uploads/2017/05/Pi-Zero-W-Tilt-1-1620x1080.jpg
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.rethinkrobotics.com/sawyer
https://doi.org/10.1037/h0077714

Bibliography 281

Russell, James A. and Merry Bullock (Sept. 1986). “Fuzzy Concepts and the

Perception of Emotion in Facial Expressions”. In: Social Cognition 4.3, pp. 309–

341. ISSN: 0278-016X. DOI: 10.1521/soco.1986.4.3.309.

Scholl, Brian J and Patrice D Tremoulet (Aug. 2000). “Perceptual causality

and animacy”. In: Trends in Cognitive Sciences 4.8, pp. 299–309. ISSN: 1364-

6613. DOI: 10.1016/s1364-6613(00)01506-0.

Seeed Technology Inc. (July 31, 2014). Grove - GSR Sensor - Seeed Wiki. URL:

https://wiki.seeedstudio.com/Grove-GSR_Sensor/ (visited on 08/30/2021).

Seif El-Nasr, Magy et al. (Apr. 10, 2010). “Understanding and evaluating co-

operative games”. In: Proceedings of the 28th international conference on Hu-

man factors in computing systems - CHI ’10. ACM Press, pp. 253–262. DOI:

10.1145/1753326.1753363.

Shannon, C.E. (Jan. 1949). “Communication in the Presence of Noise”. In: Pro-

ceedings of the IRE 37.1, pp. 10–21. ISSN: 0096-8390. DOI: 10.1109/jrproc.

1949.232969.

Shih, Margaret, Todd L. Pittinsky, and Nalini Ambady (Jan. 1999). “Stereo-

type Susceptibility: Identity Salience and Shifts in Quantitative Perfor-

mance”. In: Psychological Science 10.1. DOI: 10.1111/1467-9280.00111.

Simo, Endre (May 9, 2020). pigo. v1.4.2. Computer software. URL: https://

github.com/esimov/pigo.

Society for Psychotherapy Research (2016). Downloads | Working Alliance In-

ventory. URL: https : / / wai . profhorvath . com / downloads (visited on

04/25/2021).

SoftBank Robotics (2021). Pepper the humanoid and programmable robot | Soft-

Bank Robotics. URL: https : / / www . softbankrobotics . com / emea / en /

pepper (visited on 09/14/2021).

Song, Sichao and Seiji Yamada (2017). “Expressing Emotions through Color,

Sound, and Vibration with an Appearance-Constrained Social Robot”. In:

https://doi.org/10.1521/soco.1986.4.3.309
https://doi.org/10.1016/s1364-6613(00)01506-0
https://wiki.seeedstudio.com/Grove-GSR_Sensor/
https://doi.org/10.1145/1753326.1753363
https://doi.org/10.1109/jrproc.1949.232969
https://doi.org/10.1109/jrproc.1949.232969
https://doi.org/10.1111/1467-9280.00111
https://github.com/esimov/pigo
https://github.com/esimov/pigo
https://wai.profhorvath.com/downloads
https://www.softbankrobotics.com/emea/en/pepper
https://www.softbankrobotics.com/emea/en/pepper

282 Bibliography

Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot

Interaction - HRI ’17. ACM, pp. 2–11. DOI: 10.1145/2909824.3020239.

Spodick, David H. et al. (May 1992). “Operational definition of normal sinus

heart rate”. In: The American Journal of Cardiology 69.14, pp. 1245–1246.

ISSN: 0002-9149. DOI: 10.1016/0002-9149(92)90947-w.

Stimson, Mike (Nov. 16, 2016). Raspberry Pi Zero (Reduced Schematics). Schematic.

URL: https://www.electronicsdatasheets.com/datasheet/RPI-ZERO-

V1_3_reduced.pdf (visited on 09/25/2021).

Stroessner, Steven J. and Jonathan Benitez (Nov. 8, 2018). “The Social Per-

ception of Humanoid and Non-Humanoid Robots: Effects of Gendered

and Machinelike Features”. In: International Journal of Social Robotics 11.2,

pp. 305–315. ISSN: 1875-4791. DOI: 10.1007/s12369-018-0502-7.

Sumioka, Hidenobu et al. (Mar. 2013). “Design of Human Likeness in HRI

from Uncanny Valley to Minimal Design”. In: 2013 8th ACM/IEEE Inter-

national Conference on Human-Robot Interaction (HRI). 2013 8th ACM/IEEE

International Conference on Human-Robot Interaction (HRI). Tokyo, Japan:

IEEE, pp. 433–434. ISBN: 978-1-4673-3101-2 978-1-4673-3099-2 978-1-4673-

3100-5. DOI: 10.1109/HRI.2013.6483633.

Supcik, Jacques et al. (Dec. 24, 2020). rpi-ws281x-go. Computer software. URL:

https://github.com/rpi-ws281x/rpi-ws281x-go.

Tapus, Adriana et al. (Dec. 19, 2012). “Children with autism social engage-

ment in interaction with Nao, an imitative robot”. In: Interaction Studies

13.3, pp. 315–347. ISSN: 1572-0373. DOI: 10.1075/is.13.3.01tap.

Tavakol, Mohsen and Reg Dennick (June 27, 2011). “Making sense of Cron-

bach’s alpha”. In: International Journal of Medical Education 2, pp. 53–55.

ISSN: 2042-6372. DOI: 10.5116/ijme.4dfb.8dfd.

https://doi.org/10.1145/2909824.3020239
https://doi.org/10.1016/0002-9149(92)90947-w
https://www.electronicsdatasheets.com/datasheet/RPI-ZERO-V1_3_reduced.pdf
https://www.electronicsdatasheets.com/datasheet/RPI-ZERO-V1_3_reduced.pdf
https://doi.org/10.1007/s12369-018-0502-7
https://doi.org/10.1109/HRI.2013.6483633
https://github.com/rpi-ws281x/rpi-ws281x-go
https://doi.org/10.1075/is.13.3.01tap
https://doi.org/10.5116/ijme.4dfb.8dfd

Bibliography 283

Terada, Kazunori, Chikara Takeuchi, and Akita Ito (Aug. 2013). “Effect of

Emotional Expression in Simple Line Drawings of a Face on Human Eco-

nomic Behavior”. In: 2013 IEEE RO-MAN. 2013 IEEE International Sym-

posium on Robot and Human Interactive Communication (RO-MAN).

Gyeongju: IEEE, pp. 51–56. ISBN: 978-1-4799-0509-6. DOI: 10.1109/ROMAN.

2013.6628530.

Terada, Kazunori, Atsushi Yamauchi, and Akira Ito (Sept. 2012). “Artificial

emotion expression for a robot by dynamic color change”. In: 2012 IEEE

RO-MAN: The 21st IEEE International Symposium on Robot and Human In-

teractive Communication. IEEE. ISBN: 9781467346061. DOI: 10.1109/roman.

2012.6343772.

The Periph Authors (2021). periph: Peripherals I/O in Go. URL: https://periph.

io/ (visited on 09/25/2021).

Thomas, Frank and Ollie Johnston (1981). The Illusion of Life: Disney Anima-

tion. 1st Hyperion ed. United States: Abbeville Press. 576 pp. ISBN: 0-7868-

6070-7.

Thomaz, Andrea L. and Cynthia Breazeal (Apr. 2008). “Teachable Robots:

Understanding Human Teaching Behavior to Build More Effective Robot

Learners”. In: Artificial Intelligence 172.6-7, pp. 716–737. ISSN: 00043702.

DOI: 10.1016/j.artint.2007.09.009.

Torq Pro and Tower Pro (2014). MG996R | Tower Pro. URL: http : / / www .

towerpro.com.tw/product/mg996r/ (visited on 10/02/2021).

Tracey, Terence J. and Anna M. Kokotovic (1989). “Factor structure of the

Working Alliance Inventory.” In: Psychological Assessment 1.3, pp. 207–210.

DOI: 10.1037/1040-3590.1.3.207.

ubahnverleih (July 3, 2016). Nao Robot (Robocup 2016). Digital. URL: https:

//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Nao_Robot_

%28Robocup_2016%29.jpg/800px-Nao_Robot_%28Robocup_2016%29.jpg.

https://doi.org/10.1109/ROMAN.2013.6628530
https://doi.org/10.1109/ROMAN.2013.6628530
https://doi.org/10.1109/roman.2012.6343772
https://doi.org/10.1109/roman.2012.6343772
https://periph.io/
https://periph.io/
https://doi.org/10.1016/j.artint.2007.09.009
http://www.towerpro.com.tw/product/mg996r/
http://www.towerpro.com.tw/product/mg996r/
https://doi.org/10.1037/1040-3590.1.3.207
https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Nao_Robot_%28Robocup_2016%29.jpg/800px-Nao_Robot_%28Robocup_2016%29.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Nao_Robot_%28Robocup_2016%29.jpg/800px-Nao_Robot_%28Robocup_2016%29.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Nao_Robot_%28Robocup_2016%29.jpg/800px-Nao_Robot_%28Robocup_2016%29.jpg

284 Bibliography

University of Tsukuba (2021). 新型コロナウイルス感染症への対応（ま
とめ）- 筑波大学. Japanese. (Response to the Novel Coronavirus Infec-

tions (Summary) - University of Tsukuba). URL: https://www.tsukuba.

ac.jp/about/antidisaster-crisismanagement/covid-19/ (visited on

08/12/2021).

Vatikiotis-Bateson, Eric et al. (Sept. 1998). “Eye Movement of Perceivers dur-

ing Audiovisualspeech Perception”. In: Perception & Psychophysics 60.6,

pp. 926–940. ISSN: 0031-5117, 1532-5962. DOI: 10.3758/BF03211929.

Wainer, Joshua et al. (Sept. 11, 2013). “A Pilot Study with a Novel Setup for

Collaborative Play of the Humanoid Robot KASPAR with Children with

Autism”. In: International Journal of Social Robotics 6.1, pp. 45–65. ISSN:

1875-4791. DOI: 10.1007/s12369-013-0195-x.

Wilms, Lisa and Daniel Oberfeld (2018). “Color and emotion: effects of hue,

saturation, and brightness”. In: Psychological Research 82.5, pp. 896–914.

ISSN: 0340-0727. DOI: 10.1007/s00426-017-0880-8.

Wilson, Jason R. et al. (Sept. 14, 2019). Developing Computational Models of So-

cial Assistance to Guide Socially Assistive Robots. arXiv: 1909.06510 [cs.HC].

Ypma, Jelmer et al. (Feb. 29, 2020). The NLopt nonlinear-optimization package. R

Package. URL: https://cran.r-project.org/web/packages/nloptr/

index.html.

https://www.tsukuba.ac.jp/about/antidisaster-crisismanagement/covid-19/
https://www.tsukuba.ac.jp/about/antidisaster-crisismanagement/covid-19/
https://doi.org/10.3758/BF03211929
https://doi.org/10.1007/s12369-013-0195-x
https://doi.org/10.1007/s00426-017-0880-8
https://arxiv.org/abs/1909.06510
https://cran.r-project.org/web/packages/nloptr/index.html
https://cran.r-project.org/web/packages/nloptr/index.html

	Abstract
	Acknowledgements
	Introduction
	Purpose of the Study
	Significance of the Study
	Structure of this Thesis
	Ethical Considerations

	Literature Review
	Interaction
	Human Interaction
	Human-Robot Interaction

	Non-Verbal Feedback
	Social Eye Gaze Feedback
	Blinking Information

	Emotional Expressions
	Universally Recognized Emotions
	Emotional Eyelids
	Emotional Expressions in Robots
	Uncanny Valley

	Expressing Emotions as Movement

	Aim of this Study
	Measuring Emotions
	Russell's Circumplex Model of Affection
	Self-Assessment Manikin (SAM)
	Physiological Data
	Heart-Rate
	Electrodermal Activity (EDA)

	Measuring Interactions
	Working Alliance Inventory Short Revised (WAI-SR)
	Robotic Social Attributes Scale (RoSAS)
	Cooperative Games

	Analyzing the Data
	Linear Mixed-Effects Model (LMM)

	Kansei Design

	Hardware Development
	Design Methodology
	Mechanical Components
	Top Beam
	Bottom Beam
	Inner Base
	Outer Base

	Electronic Components

	Software Development
	Programming Language
	The Go Programming Language

	Open Source Modules
	anim
	servo
	ring
	PiCam

	Smart Bracelet
	Electronic Development
	Heart-Rate: MAX30102
	Electrodermal Activity Sensor: Grove GSR
	Motion Sensor: LSM6DS33

	Software Development
	ads1x15
	lsm6
	max3010x
	Validation

	Animated Eye
	Research Motivation
	Design
	LED Ring: NeoPixel 12 5050 RGB

	Animations
	Experiment
	Methodology
	Video Samples

	Results
	SAM
	Text Analysis

	Discussion

	Human-Robot Interaction
	Research Motivation
	Cooperative Game Design
	Methodology
	Experimental Procedure
	Robot Interaction
	Physiological Data Measurement
	Health Considerations

	Results
	Subjective Impressions
	Robotic Social Attributes Scale
	Robot Gender and RoSAS
	Self-Assessment Manikin
	Valence
	Arousal
	Dominance

	Working Alliance Inventory
	Task
	Goal
	Bond

	Decision Making
	Decision Time
	Follow Rate

	Physiological Data
	Heart-Rate
	Electrodermal Activity

	Discussion
	Social Robot
	Emotional Impressions
	Social Interaction

	Conclusions
	Robot Development
	Light Animations

	Human-Robot Interaction
	Open Source
	Limitations
	Contributions
	Future Work

	Surveys
	Self-Assessment Manikin: English Version
	Self-Assessment Manikin: Japanese Version
	Robotic Social Attributes Scale: English Version
	Robotic Social Attributes Scale: Japanese Version
	Working Alliance Inventory: English Version
	Working Alliance Inventory: Japanese Version

	Ethics
	Ethics Approval
	Research Instructions: Japanese Version
	Research Instructions: English Version
	Agreement Form: Japanese Version
	Agreement Form: English Version

	Electrodermal Analysis per Participant
	EDA of Participant 1
	EDA of Participant 2
	EDA of Participant 3
	EDA of Participant 4
	EDA of Participant 5
	EDA of Participant 6
	EDA of Participant 7
	EDA of Participant 8
	EDA of Participant 9
	EDA of Participant 10
	EDA of Participant 11
	EDA of Participant 12
	EDA of Participant 13
	EDA of Participant 14
	EDA of Participant 15
	EDA of Participant 16
	EDA of Participant 17
	EDA of Participant 18
	EDA of Participant 19
	EDA of Participant 20
	EDA of Participant 21
	EDA of Participant 22
	EDA of Participant 23
	EDA of Participant 24

	Source Code
	Module: robot
	License
	robot/robot.go

	Module: servo
	License
	servo/servo.go
	servo/blaster.go
	servo/servo_test.go
	servo/blaster.go
	servo/example_test.go
	servo/package_test.go
	servo/live_test.go
	servo/export_test.go
	servo/stress_test.go

	Module: ring
	License
	ring/ring.go
	ring/layer.go
	ring/color.go
	ring/color_test.go
	ring/example_test.go

	Module: PiCam
	License
	picam/bench_test.go
	picam/example_save_test.go
	picam/example_test.go
	picam/format_string.go
	picam/info.go
	picam/picam.go
	picam/picam_test.go

	Module: anim
	License
	anim/anim.go
	anim/body.go
	anim/errors.go
	anim/eye.go
	anim/anim.yaml

	Module: tracker
	License
	tracker/tracker.go

	Module: bracelet
	License
	bracelet/console.go
	bracelet/main.go

	Module: ads1x15
	License
	ads1x15/ads1x15.go
	ads1x15/channel.go
	ads1x15/const.go
	ads1x15/muxsetting_string.go
	ads1x15/options.go

	Module: lsm6
	License
	lsm6/const.go
	lsm6/device.go

	Module: max3010x
	License
	max3010x/beat.go
	max3010x/const.go
	max3010x/fir.go
	max3010x/heartrate.go
	max3010x/max3010x.go
	max3010x/moving_average.go
	max3010x/options.go
	max3010x/spo2.go
	max3010x/time_series.go
	max3010x/max3010x/main.go
	max3010x/max30102/const.go
	max3010x/max30102/max30102.go
	max3010x/max30102/options.go

	Module: serial
	License
	serial/serial.go

	Bibliography

