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1 Introduction.
This thesis consists of three parts.

e Part I (Sections 2 — 8 and Appendix A). Strong minuscule elements in the finite Weyl groups.

e Part I (Sections 9 — 13). Game positions of Multiple Hook Removing Game.

e Part IIl (Sections 14 — 18 and Appendix B). Infinite pre-dominant integral weights and general-
izations of MacMahon’s identity.

1.1 Introduction to Part | : Strong minuscule elements in the finite Weyl groups.

The notion of (dominant) minuscule elements in a Weyl group was introduced by D. Peterson in order
to study the number of reduced expressions for an element in the Weyl group; for the definition of
(dominant) minuscule elements, see Definition 3.1 below. In this part, we study the following special
class of dominant minuscule elements in the Weyl group for a finite-dimensional simple Lie algebra g; a
dominant minuscule element w in the Weyl group of g is called a strong minuscule element if there exists
a unique dominant integral weight A (which we denote by A,,) such that w is A-minuscule. We denote
by SM the set of strong minuscule elements. The following (Theorems 1.1, 1.2, and 1.3) are the main
results in this part, which are stated also in Section 5 (for g of classical type) and Appendix A (for g
of exceptional type); we prove all of these statements in the case that g is of exceptional type by using
computer programs due to Kawai and Tada [4]. Let {a; }ier be the set of simple roots for g; in this part,
all simple roots in the simply-laced cases are treated as short roots.

Theorem 1.1. It holds that
SM=| | sSM;,

ieK
where K = {i € I | a; is short}, and SM; = {w € SM | A, = A;} fori € K.

In order to prove Theorem 1.1, we introduce a special element v; € W for each ¢ € K in Definition 6.3
(for g of classical type) and Table 1 in Appendix A (for g of exceptional type). Using this element, we
show (in Lemma 6.4) that if w € SM, and w = s;, - -+ 5;, is a reduced expression of w, then w € SM,, .
In fact, Theorem 1.1 follows immediately from this fact.

Now, fix i € K. Let J; == {s;};er \ {si}, where s; € W is the simple reflection in the simple root «;
for j € I, and Wy, the parabolic subgroup of W generated by J;. Let Wi be the set of minimal-length
coset representatives for cosets in W /W .. In Proposition 7.3, we show that SM; C Wi for i € K.
Then, by using the description of Wi due to Stumbo [21], we prove the following theorem.

Theorem 1.2. Assume that g is of classical type, and let i € K.

(i) If g is of type A,,, then #SM; = (?:11) for 1 <i<n.
(i) If g is of type By, then #SM; = 2771,
(iii) If g is of type C,,, then #SM; = (?:21) for 2<i<n-—1, and #SM,, = n.
(iv) If g is of type D,,, then #SM; = #SMy = 22 — 1, #SM; = (?:32) for 3 <i<mn-—1, and
H#SM,, =n—1.

In the case that g is of exceptional type, #SM; is given by Table 2 in Appendix A, which is obtained
by use of computer.

Furthermore, we describe SM; in terms of a Bruhat interval for ¢ € K such that A; is a minuscule
weight. Let wq (resp., wy,,0) be the longest element of W (resp., of W), and set w‘oji = wowy, 0. For
z,y € Wi we set [x,y]”i == {w € W’i | 2 < w < y}, where < is the Bruhat order. Recall that v;,
1 € K, is defined in Definition 6.3 and Table 1 in Appendix A.

Theorem 1.3. Let i € K be such that A; is a minuscule weight.



(i) If g is of type A, then SM,; = [vlv,w(‘)]ﬂ]i forl1 <i<n.

(it’) If g is of type By, then SM; = [v1,wy']’t.

(ii’) If g is of type C,, then SM,, = [v,, wy" ] \ {wy"}.

(iv’) If g is of type D,,, then SM; = [vy, w]']”", SMy = [vg, w?]”2, and SM,, = [v,, wi"]" \ {wy"}.

Also in the case that g is of exceptional type, SM; is identical to [v;, wg"]‘]i for each ¢ € K such that
A; is a minuscule weight (see Appendix A).

As an application of Theorems 1.2 and 1.3 (and the theory of Lakshmibai-Seshadri paths due to
Littelmann [6]), we obtain the following dimension formula for a Demazure module. We set 7; =
WoV;Wj;,0-

Corollary 1.4. Let i € K be such that A; is a minuscule weight. It hold that

()

2n—1

(1 <i<nintype A,),
(i =1 in type B,),
n+1 (i = n in type C,,),
dim Ew(A;) =< 22 —1 (i =1,2in type D,,),
(
(
(

n i = n in type D,,),
16

43

~

~

= 1,5 in type Eg),

= 6 in type E7),

~

where E;(A;) = U(ng)L(Ai)w;(a,) is the Demazure module of lowest weight 73(A;) in the finite-
dimensional irreducible g-module L(A;) of highest weight A;.

Part I is organized as follows. In Section 2, we fix our notation for Lie algebras. In Section 3, we recall
the definition of minuscule elements. In Section 4, we introduce the notion of strong minuscule elements,
which is the main object in this part, and prove its basic property (Proposition 4.2). In Section 5, we
state our main results (Theorems 1.1, 1.2, and 1.3 above) in this part in the case that g is of classical type.
In Section 6, we introduce the special element v;, and then prove Theorem 1.1 above. In Section 7, we
prove Theorem 1.2 above by using the description of the set W/ of minimal-length coset representatives
due to Stumbo. In Section 8, we prove Theorem 1.3 above. Then, as an application of our results, we
give a dimension formula for certain Demazure modules (Corollary 1.4 above). In Appendix A, by use
of computer, we prove statements similar to Theorems 1.1, 1.2, 1.3, and Corollary 1.4 in the case that g
is of exceptional type.

1.2 Introduction to Part Il : Game positions of Multiple Hook Removing Game.

The Sato-Welter game is an impartial game studied by Welter [24] and Sato [18], independently. This
game is played in terms of Young diagrams. The rule is given as follows:

(i) The starting position is a Young diagram Y.
(ii) Assume that a Young diagram Y’ appears as a game position. A player chooses a box (i,5) € Y/,
and moves game position from Y’ to Y’ (i, j), where Y'(i, j) is the Young diagram which is obtained
by removing the hook at (i,7) from Y’ and filling the gap between two diagrams (see Figure 1
below).
(iii) The (unique) ending position is the empty Young diagram (). The winner is the player who makes
() after his/her operation (ii).

Kawanaka [5] introduced the notion of a plain game, as a generalization of the Sato-Welter game. A plain
game is played in terms of d-complete posets which was introduced and classified by Proctor [15, 16],
and can be thought of as a generalization of Young diagrams. It is known that d-complete posets are
closely related to not only the combinatorial game theory, but also the representation theory and the
algebraic geometry associated with simply-laced finite-dimensional simple Lie algebras. For example, the
weight system of a minuscule representation (which is identical to the Weyl group orbit of a minuscule



fundamental weight) for a simply-laced finite-dimensional simple Lie algebra can be described in terms
of a d-complete poset. Applying the “folding” technique to this fact for the simply-laced case, Tada
[23] described the Weyl group orbits of some fundamental weights for multiply-laced finite-dimensional
simple Lie algebras in terms of d-complete posets with “colorings”.

24, 18
Sato-Welter game H Young diagram <«——  type A

J generalization

: [5] ,
plain game <————— d-complete poset «—— simply-laced
J “folding” J folding
d-complete poset [23]

with a “coloring” multiply-laced

l special case

(1] Young diagram

MHRG with the unilgnoda% numbering ¢ types Band C

Based on [23], Abuku and Tada [1] introduced a new impartial game, named Multiple Hook Removing
Game (MHRG for short). MHRG is played in terms of Young diagrams with the unimodal numbering;
for the definition of unimodal numbering, see Section 10. Let us explain the rule of MHRG. We fix
positive integers m,n € N such that m < n. Let Y, ,, :== {(i,j) € N> | 1 <i <m, 1 < j < n} be the
rectangular Young diagram of size m x n. We denote by F(Y;, ») the set of all Young diagrams contained
in the rectangular Young diagram Y, . For a game position G of an impartial game, we denote by O(G)
the set of all options of G. The rule of MHRG is given as follows:

(1) All game positions are some Young diagrams contained in F(Y;, ) with the unimodal numbering.
The starting position is the rectangular Young diagram Y, ,,.

(2) Assume that Y € F(Y,, ) appears as a game position. If Y # () (the empty Young diagram), then
a player chooses a box (i,j) € Y, and remove the hook at (¢,7) in Y. We denote by Y (i, j) the
resulting Young diagram. Then we know from [1] (see also Lemma 11.4 below) that f = #{(i',j’) €
Y(i,5) | Hyuz (@', 5") = Hy(4,5) (as multisets)} < 1 ,where Hy (,5) (resp., Hy i jy(i',5")) is the
numbering multiset for the hook at (i,5) € Y (resp., (¢, 5) € Y (3, j)); see Section 10. If f = 0, then
a player moves Y to Y (i,j) € O(Y). If f = 1, then a player moves Y to (Y (i,5)){i,j") € O(Y),
where (', j') € Y (i, j) is the unique element such that Hy ; ; (7', ") = Hy (i, 7).

(3) The (unique) ending position is the empty Young diagram (). The winner is the player who makes ()
after his/her operation (2).

In general, not all Young diagrams in F(Y,,, ,,) appear as game positions of MHRG (see Example 11.3).
The goal of this paper is to give a characterization of the set of all game positions in MHRG. Let us
explain our results more precisely. Let ([1’7;:*'"}) denote the set of all subsets of [1,m + n] == {z € N |

1 <z < m+ n} having m elements. Then there exists a bijection I from F(Y;,,,) onto ([1"fn+"]) (see
Subsection 9.1 below). Let Y2 denote the dual Young diagram of Y in Y,,,, (see Subsection 9.1). We
set c:=(m+n—1+x)/2, where x =0 (resp., x = 1) if m +n is odd (resp., even). For Y € F(Y,,.),
we set Ip(Y) =I(Y) N [c+1—x,m+n]. We denote by S(Y,,,) the set of all those Young diagrams
in F(Yy,,n) which appear as game positions of MHRG (with Y,,, ,, the starting position).

Theorem 1.5 (= Theorem 12.1). Let Y € F(Y,,.,), and A = (A1,..., \,) the partition corresponding
to Y. The following (I), (II), (III), and (IV) are equivalent.

(I)Y € S(Ymn)- (I YP € S(Ym.n)- (I) Ir(Y)NIr(YP) =9.

MW AN+X#n—m+i+j—1lforalll <i<j<m.



Theorem 1.6 (= Theorem 13.1). Let ¢t € Ny and m,n € N such that ¢ < m < n. For a Young diagram
Y having at most ¢ rows, ¥ € S(Yy,,,,) if and only if YV € S(Y; n—m+t). Moreover, the Grundy value of
Y as an element of S(V;,,,,) is equal to the Grundy value of Y as an element of S(Y; —m+t)-

In [22], Tada proves that there exists a bijection between the set of all game positions of MHRG and
the set of Young diagrams, which corresponds to the Weyl group orbit of the weight in types B and C;
as an application of Theorem 1.5, he also gives a description of the Weyl group orbit of the weight (in
types B and C).

Part II is organized as follows. In Section 9, we fix our notation for Young diagrams, and recall some
basic facts on the combinatorial game theory. In Section 10, we recall the definition of the unimodal
numbering and the diagonal expression for Young diagrams. In Section 11, we recall the rule of MHRG,
and a basic property (Lemma 11.4). In Sections 12 and 13, we prove Theorems 1.5 and 1.6 above,
respectively.

1.3 Introduction to Partlll : Infinite pre-dominant integral weights and generalizations of
MacMahon's identity.

Let g be a Kac-Moody algebra with {a; };cs the set of simple roots (possibly, the index set I is an infinite
set); for simplicity of notation, we assume that g is simply-laced, that is, the off-diagonal entries of the
Cartan matrix of g are all 0 or —1. An integral weight A of g is said to be pre-dominant if (A, 8Y) > —1
for all positive real roots 3 € ®,, where 8" is the coroot of 3. For a pre-dominant integral weight A, we
set D(A) = {a € &, | (A,a") = —1}, and define a partial order < on D(A) by: for o, € D(A), a > 3
if o — B €} ,c;Noay. Then the poset (D(A), <) can be regarded as a generalization of Young diagrams
in the sense of [13, Remark 6.11]. A pre-dominant integral weight A is said to be finite (resp., infinite)
if #D(A) < oo (resp., #D(A) = o0).

In [13], Nakada proved the following multivariable g-hook formula for the generalized Young diagram
D(A) for a finite pre-dominant integral weight A for a Kac-Moody algebra:

1
T(D(A), <) = H 1_afn ()" (L.1)
pepmy 4

Here, T(D(A), <) is the trace generating function of (D(A), <) (see [13, Section 2]) corresponding to
the coloring cp: D(A) — I in [13, Definition 6.4]. Also, H(f) is the hook at 8 in the diagram D(A)
which is defined as the intersection of D(A) and the inversion set ®(sg) of the reflection sg in 8, and
qHa8) = H'YGHA(B) Gea(v)- Taking the specialization g; — ¢, we obtain

U(D(A)7 S) = T(D(A)7 S)

1
BeD(A)

Moreover, Nakada proved the same formula as (1.1) and (1.2) for a certain infinite pre-dominant integral
weight in the case that g is of type Ao,. In particular, in the case of type A, by applying the formula
(1.2) to the case of A = —Ag, we obtain MacMahon’s identity ([7]):

DDA <) = ][ (=)

n=1

where <* is the dual order of <.

In Part III, based on comments in [10, 12], we treat a more general pre-dominant integral weight A,
for A, and D, associated to a partition or strict partition A; we see that A§ := —A) is an infinite
pre-dominant integral weight. In Theorem 16.4 (resp., Theorem 16.6), we prove that there exists an
order-preserving (resp., order-reversing) isomorphism from the diagram D(Ay) (resp., D(A$)) of a finite
(resp., infinite) pre-dominant integral weight Ay (resp., A§) onto the corresponding Young diagram Y)
(resp., complementary Young diagram YY; see Definition 15.1) which preserves the hooks in type A. In



[25], Wildon found a “complementary” relation between the hook length sequence of a Young diagram
Y and the hook length sequence of its dual Young diagram Y? in a rectangular Young diagram of finite
size. In Part III, we generalize this result to the case that Y ¢ is defined in the “rectangular Young diagram
of infinite size” (see Example 15.2). Combining these results, we give another proof for a generalized
MacMahon’s identity for type A, (Corollary 18.1) which was obtained in [17, Theorem 2.1]. Also, in type
Do, we obtain a similar formula by the same argument as for type A, with Young diagrams replaced by
shifted Young diagrams (Corollary B.10); this formula is slightly different from [17, Theorem 3.1] since
our formulation is motivated by the pre-dominant integral weights Ay and A, while the formulation in
[17] is natural from the view point of the weight system of g.
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Part |

2  Preliminaries.

Let Ny denote the set of nonnegative integers. Throughout this part, except for Appendix A, g is the
finite-dimensional classical simple Lie algebra of type A,,, B,, C,, or D,, over C; the Dynkin diagram
for g is as follows.

type A, : o ° ° .
1 2 n—1 n

type B, : ¢ —=— ° °
1 2 n—1 n

type Cr, © @ —=—— o . °
1 2 n—1

[ )
type D, : o ° ./2
n—1 3\.

1

Let (a;j)i jer be the Cartan matrix of g, where I = {1,2,...,n}. Let h be the Cartan subalgebra of g, and
set h* := Homc(h, C). We denote by (-,-): h* x h — C the standard pairing. Denote by II = {«; | i € I}
(resp., IIV = {a) | i € I}) the set of simple roots (resp., simple coroots); note that (o, o)) = a;j.

Let P = @, ; ZA; (resp., P* = 3., NgA;) be the set of integral weights (resp., dominant integral
weights), where A; is the fundamental weight for ¢ € I. We denote by W = (s; | i € I) C GL(h*) the
Weyl group of g, where s; is the simple reflection in «a;, and denote by £: W — Ny the length function
on W. Denote by ® (resp., @) the set of roots (resp., positive roots) for g. For 8 € ®, 3" denotes the
coroot of 3.

Let K be the subset of I = {1,2,...,n} given as follows:

I if type A, or D,,,
K = {1} if type B,,, (2.1)
I\ {1} if type C,.

Namely, the set K is identical to I if g is of type A, or Dy, and to {i € I | «; is a short simple root} if
g is of type B,, or C,,. For i € I, we set

adj(i) ={j €I | a;; #0,2}, adj, (i) == {j € adj(i) | a;; = —1},
adj, (i) = adj() \ adj, (i) = {j € adj(i) | a;; = —2}.

3 Minuscule elements in the Weyl group.
Definition 3.1 (see, e.g., [15], [20]). Let A € P. A Weyl group element w € W is said to be A-minuscule
if there exists a reduced expression w = s;, - - - s;,. such that

(Sipir 8, (A), ) = 1foralll <p <. (3.1)

If w € W is A-minuscule for some integral weight A € P (resp., dominant integral weight A € PT),
then we say that w is minuscule (resp., dominant minuscule). The set of minuscule (resp., dominant
minuscule) elements in W is denoted by M (resp., M™).



Remark 3.2 ([20, Proposition 2.1]). Let A € P, and w € W. If condition (3.1) holds for some reduced
expression of w, then it holds for every reduced expression of w. Hence the definition of a A-minuscule
element is independent of the choice of a reduced expression.

4 Strong minuscule elements.

Definition 4.1. A dominant minuscule element w € W is said to be strong minuscule if there exists a
unique dominant integral weight A € P (which we denote by A,,) such that w is A-minuscule. The set
of strong minuscule elements in W is denoted by SM.

The following is a basic property of strong minuscule elements.

Proposition 4.2. Let w € SM, and w = s;, -+ s;, a reduced expression of w. Then, #{1 < p < r |
ip =i} > 1 for each ¢ € I. Namely, each of the simple reflections appears at least once in each reduced
expression of w.

Proof. Suppose, for a contradiction, that s; does not appear in the reduced expression w = s;, - - - s;, for
some j € I. In this case, since s;,,, -~ 5; (A;) = A; and <Aj,aivp> =0for all 1 <p <r, we see that w is
also (Ay + Aj)-minuscule. Because A,, + A; € P, this contradicts the assumption that w € SM. O

5 Main results.
Assume that g is of classical type; for the case that g is of exceptional type, see Appendix A below.

Theorem 5.1 (will be proved in Section 6). It holds that

SM=| | sSM;,

€K
where SM; ={w e SM | A, =A\;} forie K.
Theorem 5.2 (will be proved in Section 7). Let i € K.

(i) If g is of type A,, then #SM,; = (7;:11) for 1 <i<n.

(i) If g is of type By, then #SM; = 2"~1.

(iii) If g is of type C,,, then #SM; = (7;__21) for2<i¢<n-1, and #SM,, = n.

(iv) If g is of type D, then #SM; = #SMy = 2772 — 1, #SM; = (?73) for 3 <i < n—1, and
#SM,, =n—1.

Recall that the Weyl group W of g is generated by S := {s1,...,s,}. For J C S, let W be the parabolic
subgroup of W generated by J. Let W/ = W /W be the set of minimal-length coset representatives
for cosets in W /Wy (see [2, Corollary 2.4.5]). We denote by < the Bruhat order on W (see, e.g.,
[2, Chapter 2]). For u,w € W, we set [u,w] = {v € W | u < v < w}. For u,w € W/, we set
[u,w]” = [u,w] N W7. Denote by wy (resp., w,;o) the longest element in W (resp., W,); note that
w < wy (resp., w < wyy) for all w € W (resp., w € Wy). Define wy = wowso € W7. Note that w < wy

for all w € W (see [2, Section 2.5]).

Theorem 5.3 (will be proved in Section 8). Let ¢ € K be such that A; is a minuscule weight in the sense
that (A;, 8Y) € {0,£1} for all 8 € ®. Define v; € W as Definition 6.3 below, and set J; == S\ {s;} C S.

(i) If g is of type A,, then SM,; = [vi,w(‘)]ﬂ]i forl1 <i<n.
(it’) If g is of type By, then SM; = [v1,wy']’t.
i)

)

(ii’) If g is of type C,,, then SM,, = [v,, wy" ] \ {wy"}.
(iv’) If g is of type D,,, then SM; = [vy, wi']”t, SMy = [vg, w?]”2, and SM,, = [v,, wy"]" \ {wy"}.



6 Proof of Theorem 5.1.

Lemma 6.1 ([20, Proposition 2.5]). Let w € M™, and fix a reduced expression w = s;, - -+ s;, of w. Fix
i €1, and set a == max {1l <p <r|i, =1} Then,

#la+1<p<rlipecadj(i} <1, (6.1)
#la+1<p<rlip€adj(i)} =0. (6.2)

Remark 6.2. Let w € M™, and w = s;, - - - 5;, be a reduced expression of w. We claim that if i, € I'\ K,
then w ¢ SM. Indeed, suppose, for a contradiction, that w € SM. By Proposition 4.2, there exists
1 <p <r—1 such that i, € adj,(ip). This contradicts (6.2).

Definition 6.3. Recall that K is as (2.1). For ¢ € K, we define v; € W as follows (note that ¢(v;) = n
in all cases).

(a) If g is of type A, then v; == 8,81 8115182 $;_18; for i € K = 1.
(b) If g is of type B,,, then vy := $,,8,—1 - - S251.

c) If g is of type C,,, then v; := 5,851+ Si415182 -+ s;_18; for i € K =1\ {1}.
d) If g is of type Dy, then vy = $98,8,—1 - 8381, V2 = $18p8,—1 - * - $382, and

V; = SpSn—1"""S8i+1515253 " Si—15; forie K \ {1,2} = [\ {1,2}.

(
(

Lemma 6.4. Let w € M, and let w = s;, - -+ s, be a reduced expression of w. Set k := 4, € I. Then,
w is a strong minuscule element if and only if £k € K and there exists © € W such that w = wv, and
(w) = £(u) + n. Moreover, it holds that A,, = A in this case.

Proof. We give a proof only for the cases of type A,,, B,, or C,; the proof for the case of type D,, is
similar. Assume that w € SM; in particular, w € M™. It follows from Remark 6.2 that k € K. First,
we show by (descending) induction on 1 < p < k (starting from p = k) that w has a reduced expression
of the form

W=+ SpSpi1- " Sk—15k- (6.3)

If p = k, then the assertion is obvious by assumption. Assume that 1 < p < k; by the induction
hypothesis, we have a reduced expression for w of the form:

W=""SpSpt1 """ Sk—15k- (6.4)

By Proposition 4.2, s, appears in this reduced expression. Let us take the right-most one:

w:...8p71 SpSerl"'Skflsk; (65)
(%)

there is no s,_1 in (*). Also, by (6.1), neither s, nor s,_o» appears in (x), which implies that every simple
reflection in (x) commutes with s,_;. Hence, we get a reduced expression for w of the form:

W =" Sp_18pSp+1 - - Sk—15k, (6.6)
as desired. In particular, we obtain a reduced expression of the form
W=-+-5189 " Sk_15k- (6.7)
Similarly, we can show by induction on k < ¢ < n that w has a reduced expression of the form:

w = '"Sq'"Sk+28k+18182”'8k718k'

In particular, we obtain a reduced expression of the form

W= - SpSp_1"" Sk+12Skt115152 " Sk_1Sk - (6.8)

=u

=V

10



If we set u == wvj, ', then we have w = uvy with £(w) = £(u) + n, as desired.

Conversely, assume that (w € M, and) there exists u € W such that w = wvy, with {(w) = £(u) + n;
note that w has a reduced expression of the form (6.8). Let A € P be such that w is A-minuscule, and
write it A as: A = >"" | ¢;A; with ¢; € Z. Since (A, o)) = 1 by the assumption that w is A-minuscule
(see also Remark 3.2), we get ¢ = 1. Also, we see that (A — ag,a)_;) =1 and k € adj,(k — 1), which
implies that cx_; = 0. Repeating this argument, we get cy_1 = cx—2 = --- = ¢; = 0. Similarly, we see
that (A — ap — ag—1 — -+ — aq, az+1> =1 and k € adj (k + 1), which implies that cx11 = 0. Repeating
this argument, we get cry2 = cky3 = -+ = ¢, = 0. Therefore, we conclude that A = A, € PT; in
paticular, w is dominant minuscule. Furthermore, the argument above shows the uniqueness of A € PT
such that w is A-minuscule. Thus we have proved Lemma 6.4. O

Theorem 5.1 follows immediately from Lemma 6.4 and the definition of strong minuscule elements.

7 Proof of Theorem 5.2.

For j € I, we define w; € W as follows.

(a’) If g is of type A,,, then w; == s182---s;_15; for j € I.
(b’) If g is of type By, then w; == s,5,—1--- 528182+ sj_18; for j € I.
(¢) If g is of type Cy,, then w; == s,8,—1- - 525152 --5j_15; for j € I.
(d) If g is of type Dy, then wy == 8,851+ - - $48351, W2 = SpSn—1 - - S48352, and

Wj = SpSn—1--- 83815283 - - Sj_18; for j € T\ {1,2}.
For j € I and 0 <1 < ¢(wjy), define w;(I) to be the product of [ simple reflections from the right in the
expression of w; above, except for the case that g is of type Dy, j € I'\{1,2}, and [ = j—1. When g is of
type Dy,, and j € I'\ {1, 2}, the element w;(j — 1) represents both ss3---s; and sas3 - - - s;; for example,
the sentence “a proposition holds for w;(j — 1)” means that the proposition holds for both sys3---s;
and s253-- - 5;.

Proposition 7.1 ([21, Theorems 2 and 6]). Assume that g is of type A,,, B,,, or C,,. For i € I, it holds
that

W = {w, (L) wn—1(ln—1) - wi(ls) | lis ..., ln_1, 1, satisfy condition (#)}, (7.1)
where condition (#) is given by (A) (resp., (BC1), (BC2), and (BC3)) below if g is of type A,, (resp., of
type B, or C,).

BCl o< <j+i—1,
(BCQ) lj+1 S lj + ]., and
(BC3) if lj S ] — ]., then l]‘+1 S lj.

Moreover, for each element wy, (1, )wy—1(ln—1) - - - w;(l;) of the right-hand side of (7.1), it holds that
C(wn (ln)wn—1(ln—1) - wi(l;)) = L(wn(ln)) + l(wp-1(ln—1)) + -+ - + L(wi(l;))-

Proposition 7.2 ([21, Theorem 4]). Assume that g is of type D,,. For ¢ € T\ {1,2}, it holds that

W = {w, (L) wn—1(In—1) - wi(ls) | lis .., ln_1, 1, satisfy conditions (D1)—(D4)}, (7.2)
where

(D2) ljp1 <1+ 1,

(D3) if lj S ] — 2, then lj+1 S lj, and

(D4) if l;41 =1; +1 = j, then w;(l;) and wj;1(l;4+1) must be chosen in such a way that the one has s;
as the left-most simple reflection, and the other has ss.
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Moreover, for each element wy, (I )wyn—1(ln—1) - - - w;(l;) of the right-hand side of (7.2), it holds that

E(wn (ln)wp—1(ln-1) - - wi(ls)) = Lwn(ln)) + Lwp—1(In-1)) + - + L(wi(ls)).

For ¢ =1, it holds that

W = {wyr oy (In)was -t (lno1) -+ wa(la)wy (Is)wa (l2)wi (1) |
2 2

0§h§n—1,1§lh<lh_1<~-<11§n—1}.

(7.3)

For i = 2, W72 is given by the same formula as (7.3) with w; and wy interchanged. Moreover, the
“length additivity” holds also for the cases that i =1 and 7 = 2.

Proposition 7.3. For i € K, the set SM; = {w € SM | A, = A;} (see Theorem 5.1) is contained in
Wi, If g is of type A, B, or C,, then it holds that

SM; = {wn(ln) s wi+1(li+1)wi(li) | liy...ln—1,l, satisfy condition (*)}, (74)
where condition (x) is given by (SA) (resp., (SB), (SC)) below if g is of type A,, (resp., of type B,,, of

type Cp).

(SA) Condition (A) in Proposition 7.1, and I; = 14, {,, # 0;

(SB) Conditions (BC1)-(BC3) (with ¢ =1) and [,, # 0;

(SC)f2<i<n-—1,theni<l; <2i—2and1 <1, < -+ <41 <2i—1;—1. If i =n, then
n<l,<2n-—1.

Also, if g is of type D,,, then it holds that

SMy = {ws—iyr (In)Wsgpnyp—1 (Ih-1) - - - wa(la)wi (I3)wa(l2)wi (I1) | 75)
2<h<n—1,1<l<lp1<---<lp<lj=n—1} '

For i = 2, SM5 is given by the same formula as (7.5) with w; and ws interchanged. Moreover, SM;,
3<i<n-—1,and SM, are given as follows:
SM,, ={w,(ln) | n <1, <2n-—2}. (7.7)

The following lemma will be used in proof of Proposition 7.3.

Lemma 7.4. Let w € SM;, and w = s;, --- 8;, be a reduced expression of wj; recall that i, = 4. For
eachl1<p<r—1,wesetu,:=#{p+1<a<r]i, €adj(ip)}. Then,

up € 2Ny if i, =1, (7.8)
up € 2Ng + 1 if i, £ 1. (7.9)
Proof. By (3.1), we have (A; —ay, —-+-—a,,,,a; ) = 1forall 1 <p <r, and hence d;;, — a;,;, =+ —

@i, = 1. Now, we set t), = #{p+1<a<r|i, €adj(ip)} and ¢ = #{p+1<a <7 |iqg=ip}.
If 4, = i, then 1 — u, — 2t, + 2¢q, = 1. Therefore, we obtain u, = 2(¢g, — tp) € 2Ng. If i, # i, then
—uy, — 2t, + 2q, = 1. Hence we have u, = 2(g, —t,) — 1 € 2Ny + 1. O

Proof of Proposition 7.3. We give a proof only (7.6); the proofs for (7.4), (7.5), and (7.7) are similar and
simpler. In order to show the inclusion C, let w € SM;. By Lemma 6.4, in any reduced expression of
w, the right-most generator is s;. Hence, we have w € Wi by [2, Lemma 2.4.3]. By Proposition 7.2, we
can write w as

w = wn(ln) - wi(l;) (7.10)
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for some I;,...,l,—1,l, satisfying conditions (D1)-(D4). If I; = 0 for some i < j < n, then [, =
ln-1 = -+ = lj;1 = 0, which implies that s, does not appear in (7.10). However, this contradicts
Proposition 4.2. Thus we obtain I; > 1 for all 7 < j < n. Let w = s, ---5;, be a reduced expression of
w obtained by the product of reduced expressions of each w;(l;) in (7.10). Suppose, for a contradiction,
that I; = 2i — 2. Since l;41 > 1 and jo;—1 = i+ 1 # ¢, this contradicts (7.9) because ug;—1 = 2 ¢ 2Ng + 1.
Hence we have I; < 2i —3. Next, let us show that ¢ <I;. If [; <¢—1, then we have [; =¢—1 and ;41 =1
because both s; and sy appear in (7.10) by Proposition 4.2. Since jo;—1 = 1 # @ (or jo;—1 = 2 # 1),
this contradicts (7.9) because ug;—1 = 2 ¢ 2Ny + 1. Therefore, we have i < I; < 2i — 3. Suppose, for a
contradiction, that l;1; > 2i —l; — 1. Since jo;—1 = I; — i — 3, it follows that ug;—1 =4 ¢ 2Ny + 1 (resp.,
ugi—1 = 3 ¢ 2Np) if ¢ < 1; < 2i—4 (resp., l; = 20— 3). This contradicts (7.9) (resp., (7.8)). Hence we have
liy1 < 2i—1;—2. Recall from (D2) that [;41 <l;+1foralli+1 < j <n—1. Suppose, for a contradiction,
that [;;1 =0;+1forsomei+1<j<n—-1 Ifwesetm:=min{i+1<j<n-1]|l 1 =1[+1}, then
I <lp—1 <--- <ljy1. By direct computation, we obtain

2, if I, <m-—i4+1,
Up = 2(m—i)+l if l,,=m-—1i+1,
Q(m—i—‘rl) if I, >m—1i+1,

where M = l,,41 + Uy + - -+ + [;; remark that [,, = m — i + 1 if and only if jp; = ¢. This contradicts
(7.8) and (7.9). Therefore we obtain 1 <1, <l,_1 <--- <l;11 < 2i—1; — 2, as desired. Thus we have
shown the inclusion C.

Next, let us show the reverse inclusion D. Let 3 < i < n — 1, and let w = wy(l,) - - w;(l;) with
1<l <2—3and 1<, < - <ljy1 <20—1; —2. Set k; :=1; — i+ 2; note that 2 < k; < i — 1.
Take ¢; € h*, i € I, such that a1 =ea+e1, a; =¢; —¢gj_1for2<j<n, Ay =(e1+e2+ - +¢,)/2,
Ay =(—e1+e2+--+ep)/2and Aj =¢j +¢ej41+ -+, for 3<j <n. Then, we compute

wl(lz)A1 = Sk, 83818283 "+ Si—1 Si(En +ép—1+ - t+Eig1+ Ei)

(ent-teir1tei,ei—ei—1)=1

-+ 53515283+ Si—1(En +Ene1 + - FEip1 +Eim1)

(ent-teir1tei—1,6i—1—€i—2)=1

co8381(En +En—1 o+ Eip1 1)

Il
»
x>

(en+---teip1ter,eater)=1
=Sk, - 83(6n + 1+ FEip1 —€2)

(en+-+eip1—e2,63—€2)=1

=sp,(en+en—1+ -+ €41 —Ex—1)

(Ent-deit1—€k;—1,6k; —Ek;—1)=1
=&ptEp_1+ -t Eip1 — €k,
Since 1 <1, < -+ <lipy <2i—1; —2 <i—2, we can write w;(l;) as w;(lj) = sp,8p,41 - 55185, where

pj=j—1lj+1fori+1 <7 < n;remark that p; < jand k; +1 < pip1 < pige < - < pp <n. We
compute

Wit1(lit1)(En + -+ Eip1 — k) = Sp, 1 Spiga+1 - Si Si1(En + 00+ Eip1 — Exy)

(ent++eit1—€r; €it1—€:)=1

= Spiy1Spig1+l si(gn +--Feipate — Eki)

(en+-teivetei—en,;,ci—€i—1)=1



= Sp,;+1(5n+"’+5i+2 +€Pi+1 *é”ki)

(Entteitatep, 1 —€k;sEp; 1 —Epsqq—1)=1
=E&n + e + Ei+2 + Ep.H,l*l - Eki7
which implies that w;41(lj4+1)w;(l;) is A;-minuscule. Similarly, we see that for i +1 < j <n —2,
wj+1(lj+1)(5n +--- €j+1 + Epjfl + Epj7171 +---+ €pi+171 — Eki)
=én+t - +E542 +€Pj+l—1 + Ep;—1 + ot Epip—1 — €k,
and hence w;11(lj41) -+ - wip1(lig1)wi(l;) is A;-minuscule. Then,
wn(ln)(sn + Epp_1—1 + €pit1—1 — 5161‘)

= SppSpn+1°" " Sn—1 Sn(gn +Ep,i—1 T+ Epiy1—1 — Eki)

(entep, -1t tep; 1 —1—Ck;En—En—1)=1

= Sp, (Spn + Epp_1—1 +oeee At Epiy1—1 — Eki)’

(EPn +5Pn71*1+”'+5}71‘+1*175ki Epn 761711*1):1

which implies w = wy, (1) - - - wir1 (li1)w;i(l;) is A;-minuscule.

Finally, let us show that w = w,(l;,) - - - wi1(lir1)w; (I;) is a strong minuscule element. In the expres-
sion w = wy(ln) - - - wit1(lig1)wi(l;), we move the right-most s; in each w;(l;) to the right position, by
using the commutation relation spsq = s4sp, for 3 < p,q < n with [p — ¢| > 2, as follows:

wn(ln): wnfl(lnfl):

Sn—lp+1"" " Sn—15n S(n—1)—lp,_14+1 """ Sn—-2Sn—1 wn72(ln72) ce wi(li)

these commute with s,
Wn—2(ln—2)=

= (wn(ln)sn)(wn—l(ln—l)sn—l)snsn—l S(n—2)—ly_o+1 """ Sn—3 Sn—2""" wz(lz)

these commute with s, 8,1

= (wn(ln)sn)(wnfl(lnfl)Snfl)(wn72(ln72)Sn72)3n5n715n72wn73(ln73) e wl(ll)

Y(Wn—1(ln—1)Sn—1) - - (Wit1(li41)Sit1) Sn - - - Siprwi(li)

=’

|
—

g
3
—

=
3
N

Y2l
3

!
_usn.'.sl—‘rlskq."83818253’..51
———
these commute with s, 541

I .
= U'Sp, - 838p - Si41515283 1+ S5

=u =v;

remark that if ¢ = 3, then u = e. Therefore it follows from Lemma 6.4 that w = w,, (I,,) - - - wi1 (Li1)w; (1)
is a strong minuscule element. This completes the proof of Proposition 7.3. O

Proof of Theorem 5.2. We give proofs only for the cases of type B,, and type C,; the proofs for the
other cases are similar or simpler. In this proof, we denote by W (B,,) the Weyl group of type B,,
and set Ji(") = {s1,...,8,} \ {s:}. In the case of type B,,, we see from Proposition 7.3 that SM; =
{wn (1) -~ wi(ly) | I, - .., 11 satisty 1, # 0 and (BC1)—(BC3)}. It is easy to see by Proposition 7.1 that

H#0wn (1) - w1 (L) | Ly - -, 1y satisty I, = 0 and (BC1)(BC3)} = #W (Bp_1)”t"

Therefore, we obtain

Joen  #W(B,) #W (B1)

— i _ _
#SMl - #W(Bn) #W(Bn—l) #W(Bn)‘]in) #W(anl)(]fnfl)
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_nlx2m (n—1)! x 271 _gn g1 _gn-t
n! (n—1)!

as desired.
In the case of type C,, with 2 < i < n— 1, we see from Proposition 7.3 that SM; = {w,(I,,) - - - w;(;) |
1<10;<20—2,1<1, <---<ljy1 <2i—1; —1}. Hence we have

212

n+i—2—1; n—2 n—3 n—1
#SMZ:Z( n—i )Z (n_i>+<n—z’>+"'+<n—i>

li=1

(M- - ()

remark that (1) = 02!, () and () = (7)) + (7). 0

r—1

8 Proof of Theorem 5.3.

Proof of Theorem 5.3. We give a proof only for the case of type A,; the proofs for the other cases are
similar or simpler. Let w € SM;. By Proposition 7.3, we have w € Wi, and hence w < w(‘)]i. By
Lemma 6.4, there exists u € W such that w = uwv; with ¢(w) = €(u) + ¢(v;). Hence, by the subword
property of the Bruhat order (see, e.g., [2, Theorem 2.2.2]), we have v; < w. Therefore, we conclude that
w € [vg, wy']”.

Conversely, let w € [Ui,w(‘)]i}‘]i = [vi,w(‘)]i] N Wi, By Proposition 7.1, there exist 0 < p, <--- < p; <1
such that w = w,(p,) - - - wi(p;). Since v; < w by assumption, it follows from the subword property that
both s; and s, appear in any reduced expression for w. Observe that for i < j < n, the element w;(p;)
does not have a reduced expression in which s; appears, and that the element w;(p;) has a reduced
expression in which s; appears if and only if p; = i. Thus we conclude that p; = i. Also, observe that
for ¢ < j < n, the element w;(p;) does not have a reduced expression in which s, appears, and that the
element wy,(p,) has a reduced expression in which s, appears if and only if p,, > 1. Thus we conclude
that p, > 1. Therefore, by Proposition 7.3, we have w € SM;, as desired. O

Remark 8.1. In general, [vi,w(‘)]i]‘]i - [vi,w(‘)]i]. Indeed, in the Weyl group of type A4, we see that

S9U3 = S$281828483 € [vs, w(')]3] \ [vs, w(')]3]‘]3; note that this element is not a minuscule element, and hence

Lemma 6.4 is not valid for this element.

For A € P*, let L(A) denote the finite-dimensional irreducible g-module of highest weight A, with
L(A) = @,,cp L(A),, the weight space decomposition; recall that dim L(A), () = 1 for all 7 € W. Denote
by n; the subalgebra of g generated by the root spaces corresponding to positive roots. For 7 € W, we
denote by E.(A) the ny-submodule of L(A) generated by L(A), (), which we call the Demazure module
of lowest weight 7(A).

Remark 8.2. For i € I, we assume that A = A; is a minuscule weight. In this case, the dimension of
the Demazure module E,(A) for 7 € W is equal to [e,7]7i (this fact follows from, for example, the
theory of Lakshmibai-Seshadri paths; see [6, Theorem 5.2]).

Let and fix i € I. For 7 € Wi, we set 7 := woTWj, 0, Where wy, o € Wy, is the longest element of
Wj;.. Then we see by [2, Proposition 2.5.4] that 7 € Wi and that the map ~: W7/i — Wi 7 7 is
an order-reversing involution on W,

Corollary 8.3. Let i € K be such that A; is a minuscule weight. It hold that
(1) If g is of type A, then dim F(A;) = (7;__11) for each i € I.
If g is of type B, then dim F(A;) = 2771,

(2)
(3) If g is of type C,,, then dim E7—(A,) = n+ 1.
(4) If g is of type Dy, then dim Fyr(A1) = dim Egz(Ag) = 2772 — 1, and dim Fy—(A,,) = n.
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Proof. We see that

J.

['Uivwi)i]‘]i = 6]17171]J7 = [wOw(‘)Iini,O’Fi]Ji = [wg’E]J1 = [evFi]Ji'

Hence, #[vi,w(‘)]i]Ji = #[e, 7;]7. Because we have #[vi,w(‘)]i}‘]i = #SM; or #[vi,w(‘)j"]h =#SM; + 1 by

Theorems 5.2 and 5.3, we conclude by using Remark 8.2 that dim Ey-(A;) = #[e, 77]7 = #[vi, wi*]” =
#SM,; or #SM; + 1, as desired. O
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Part Il

9 Preliminaries.

9.1 Young diagrams.

Let N denote the set of positive intgers. For a,b € Z, we set [a,b] = {x € Z | a < z < b}. Throughout
this part, we fix m,n € N such that m < n. For a positive integer € N, we set T :=m+n+1—z.
Let Y (m + n) be the set of partitions A = (Aq,...,\;,) of length at most m such that n > Ay >
<o > Ay = 0. We can identify A = (A1,..., A\m) € Ym(m + n) with the Young diagram Yy = {(3,]) €
N2=NxN|1<i<m,1<j <N} ofshape ); if A = (0,0,...,0) € Vyu(m + n), then we denote
Y, by 0, and call it the empty Young diagram. We identify (i,j) € Y, with the square in R? whose
vertices are (i — 1,7 — 1),(i — 1,5),(¢,5 — 1), and (¢,4); elements in Y, are called bozes in Y). Let
Yin = {(i,j) € N> |1 <i<m,1<j<n} be the rectangular Young diagram of size m x n, which
corresponds to (n,n,...,n) € Yym(m+n). Set F(Yinn) = {Yx | XA € Vin(m + n)}; notice that F(Vy,.1)
is identical to the set of all Young diagrams contained in the rectangular Young diagram Y, ,,. We set
AP = (n— Apy...;n — A1) € Viu(m + n). The Young diagram Y, := Yo is called the dual Young
diagram of Yy (in Y, ).

0,0 1 2 n . n .
0.0) > J > J

1

2 "

Ym,n = =
ak
m m
1 1
Let ([1’7;Lj"]) denote the set of all subsets of [1,m + n] having m elements. For A = (A\y,...,Ay,) €

Vm(m +n), we set i} = A\py_¢41 +t for 1 <t < m; observe that I == {i} <--- < il } € ([1’”7?"]). Tt is

well-known that the map A — Iy is a bijection from Y, (m + n) onto (") By the composition of

this bijection and the inverse of the bijection V,,(m 4+ n) — F(Yi,.n), A — Y, we obtain a bijection I
from F(Y,,,,) onto ([1’7;?"]). Let Y € F(Y,,). For (i,7) € Y, we set Hy (4,7) == {(4, )} U{(i,5/) € Y|
7 <7 YU{(',j) €Y |i< i}, and call it the hook at (i,7) in Y. Also, for (i,7) € Y, we set
Y(i,7) ={(,j") | (7,5) €Y, and i’ <iorj <j}
U{( — 1, = 1) | (7,f) €Y. ¥ > iand j' > j}.

The procedure which obtains Y (i, j) from Y is called removing the hook at (i,7) from Y (see Figure 1
below).

9.2 Combinatrial game theory.

For the general theory of combinatorial games, we refer the reader to [19, Chapters 1 and 2]. In this
subsection, we fix an impartial game in normal play whose game positions are all short (in the sense of
[19, pages 4 and 9]).

Definition 9.1. A game position of an impartial game is called an A -position (resp., a P-position) if
the next player (resp., the previous player) has a winning strategy.

Definition 9.2. For a (proper) subset X of Ny, we set mex X := min (Ng \ X).

For a game position G of an impartial game, we denote by O(G) the set of all options of G.
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(", €Y i <iorj <j}

\ \
r 4
(4,9)
] NN
Y = remove Hy (i, j)
T rom ¥ A
from Y
< ~ A{(,5) €Y |i' >iandj > j}
\
L4
fill the gap
_—
between

two diagrams

R

Figure 1. Removing the hook at (4,7) from Y.

Definition 9.3. Let G be a game position. The Grundy value G(G) of G is defined by

G(G) = 0 if G is an ending position,
" | mex{G(P) | P € O(G)} if G is not an ending position.
Recall from [19, page 6] that each game position of an impartial game is either an N -position or a

P-position. The following result is well-known in the combinatorial game theory.

Theorem 9.4 ([19, Theorem 2.1]). A game position G is a P-position if and only if G(G) = 0.

10 Unimodal numbering on Young diagrams.

Let Y € F(Yinn). For each box (i,5) € Y, we write ¢ (¢,5) :== min (j — i+ m,i— j+n) on it; we call this
numbering on Y the unimodal numbering on Y.

Example 10.1. Assume that m = 3 and n = 5. The Young diagram Y = Y{449) € F(Y35) with the
unimodal numbering is as follows:

.
314132 i~
23143

5

7

It can be easily checked that ¢ := (m +n — 1+ x)/2 is the maximum number appearing in the
moutainous numbering, where

)1 ifm+ne?2N,
XTY0 ifmtneaNt1.
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We define D, ,, ¢ Nj* "+ by

. 1

]D)m,n — {(0,170,2,0,3, ey am+n—1aam+naam+n+1) S N6n+n+ |
a1 = Amint1 =0,0< ap —ag—1 <1lfor2<k<m+1,
0<ar—agt1 <lform+1<k<m+n}.

ForY € F(Yin), weset d, = dp(Y) = #{(i,j) €Y |j—i=—-m—1+k}foreach 1 <k <m+n+1,
note that dy = dy4nt+1 = 0. We know from [1, Proposition 3.6] that

Dm,n(Y) = (dh an d37 e 7dm+n—1a dm+na dm+n+1)

is an element of D,, ,. Thus we obtain the map D, n: F(Yinn) = D, Y — Dy, o (Y). An element
Dy (Y) € Dy, is called the diagonal expression of Y. For simplicity of notation, we denote Dy, ,, by
D.

Example 10.2. Assume that m = 3 and n = 5. Let A = (4,3,1) € Y3(8). Then we have D3 5(Y)) =
(0,1,1,2,2,1,1,0,0) € Dy 5.

Proposition 10.3 ([1, Proposition 3.6]). The map Dy, »: F(Y;.n) = Di, p is bijective.

Here we recall from [1, Subsection 3.3] the relation between “removing a hook” (see Figure 1) and the
diagonal expression (see Example 10.5 below). For a subset S of Y € F(Y,,.n), we define Hy (S) to be
the multiset consisting of ¢ (i, ) for (i,7) € S. The multiset Hy (S) is called the numbering multiset for
S. In particular, if S = Hy (4, 7) for some (4, j) € Y, then we denote Hy (S) by Hy (i, 7). We deduce that
Hy (Y) =Hy (Y (i,5)) UHy (i,7) (the union of multisets). Now, let Y € F (Y, n), and fix (¢,7) € Y. Let
i’ (resp., j') be such that (¢/,5) € Y and (¢/ +1,5) ¢ Y (resp., (4,5') € Y and (4,5 +1) ¢ Y).

Then we see that

#{(my) €Y [y—z=—m+k}— #{(2,9) € Y(i,4) |y — 2 = —m+k}
{1 fmtj—i' <k<m-+j —i,

0 otherwise.

Therefore, if
DY) =(d1,...,dmtj—irs dmtj—ir41, dmj—ir+2, - - -
it j'—is Amt i/ —ip 1, Amyjr —ig2s -+ gmg1),
then
DY (i,5)) = (du;- -, dmtj—irs dmtj—ir+1 — Lidmpj_irga — 1.,
dimtjr—i = Lidmyjr—iv1 — Lidmyjr—iv2 - dmynt1)-
Thus, if we remove a hook from Y € F(Y,,, »,), then 1 is subtracted from some consecutive entries in D(Y);

in the case above, the consecutive entries are dj, djy1,...,d,, withl =m+j—¢+1andr =m+j —i+1.
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Definition 10.4. Let a = (a1,a2,...,Amtn, Gmint1) € D p; recall that a1 = amynyr = 0. For

. L, .
2<I<r<m+n, wewritea—>a ifa,>1foralll <k<r, anda = (a1,az2,...,a1-1,a; — 1,441 —
1
1,...,a-1—Lar — 1,041, oy Gimgny Gmgnt1) € Ng”’”r .

Recall that the map D = D, F(Yin) — Dy is bijective. Let a,a’ € Dy, ,, and set ¥V =
D™ '(a),Y"=D"!(a'). If a L% &’ for some 2 <1l <r <m+n, then we write YV Lroyr

Example 10.5. Keep the notation and setting in Example 10.2. It follows that Y)(2,1) =
{(1,1),(1,2), (1,3), (1,4)}, and hence D(Yx(2,1)) = (0,0,0,1,1,1,1,0,0). Thus we have D(Yy) =2
D(Yx(2,1)) (and hence Yy 22 Y3(2,1)).

11 Multiple Hook Removing Game.

Abuku and Tada [1] introduced an impartial game, named Multiple Hook Removing Game (MHRG for
short), whose rule is given as follows; recall that m and n are fixed positive integers such that m < n:

(1) All game positions are some Young diagrams contained in F (Y}, ) with the unimodal numbering.
The starting position is the rectangular Young diagram Y, ,,.

(2) Assume that Y € F(Y,,.,) appears as a game position. If Y # () (the empty Young diagram), then
a player chooses a box (i,j) € Y, and remove the hook at (¢,7) in Y; recall from Subsection 9.1 that
the resulting Young diagram is Y (i, j). Then we know from [1, Lemma 3.15] (see also Lemma 11.4
below) that f = #{(i',j") € Y(i,7) | Hy . (@',j") = Hy(i,j) (as multisets)} < 1. If f = 0, then
a player moves Y to Y (i,j) € O(Y); we call this case and this operation (MHR 1). If f = 1, then
a player moves Y to (Y (i, 5))(i,j’) € O(Y), where (¢, ') € Y(i,7) is the unique element such that
Hy i)', 7") = Hy (i, 7); we call this case and this operation (MHR 2).

(3) The (unique) ending position is the empty Young diagram (). The winner is the player who makes ()
after his/her operation (2).

Definition 11.1. We denote by S(Y,,,n) the set of all those Young diagrams in F(Y;, ) which ap-
pear as game positions of MHRG (with Y, ,, the starting position); in general, S(Y,,.n) € F(Yinn) as
Example 11.3 below shows.

Definition 11.2. Let Y € S(Y},,,,), and Y’ € O(Y). If a player moves Y to Y’ by operation (MHR 1)
(resp., (MHR 2)), then we write YV (MHR D,y (resp., Y (MHR 2), Y.

Example 11.3. Assume that m = 2 and n = 3. The elements of S(Y2 3) are

2121
1122

(MHR 1) or (MHR Qy

(MHR 1)
22‘1‘ or (MHR 2)

(MHR 2)

(MHR 1)
or (MHR 2)

(MHR 1) or (MHR QN

The following elements of F(Y2 3) are not contained in S(¥2 3):

2 2
e, Bk

0

2[2]1] [2]2
2] [1]2)°

‘»—Aw
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Lemma 11.4 ([1, Lemma 3.15]). Let Y € F(Y,,), and (¢,7) € Y. Assume that there exists a box

(i',5") € Y{(i,j) such that Hy(; ;(7',j') = Hy (i,7) (as multisets). If ¥’ Lr, Y (i, j), then Y (i, j) oL
(Y(i,4))(i’, ") In particular, #{(7', j') € Y(i,7) | Hy ;@' j") = Hy (i,7) (as multisets)} < 1.

Remark 11.5. In fact, the following holds (see [1, Lemma 3.15]), although we do not use these facts in
this thesis.

(1) Keep the notation and setting in Lemma 11.4. There does not exist (i", ;") € (Y (4,4)){(i, j') such
that H(y (i )5 (0", 3") = Hy (i, )

(2) Let (i,4),(k,1) € Y. Assume that Hy(i,5) = Hy(k,l). If there exists a box (i,5") € Y (i)
such that Hy ;. jy(i',j') = Hy (i, ), then there exists a (unique) box (k',l') € Y (k,I) such that
Hy iy (K',1") = Hy (4, j). Moreover, in this case, we have (Y (i, 7))(i’, ") = (Y (k,0))(K',I').

12 Description of S(Y,.).

Recall that m,n € N are such that m < n, and that ¢ = max{c(i,5) | (4,5) € Yin} is equal to
(m+mn—1+4x)/2, where x =0 (resp., x = 1) if m + n is odd (resp., even). Also, we have a canonical
bijection I: F(Yy,n) — (“’TJ"}) (see Subsection 9.1).

Let Y € F(Yimn). Weset Ig(Y) :=I(Y)N[c+1—x, m+n]; note that c + 1 — x = m+n+1—(c+1—x) =
c+1>c+1—x.

Theorem 12.1. Let Y € F(Y,, ), and A = (A1,...,A,,) the partition corresponding to Y, that is,
Y =Y. The following (I), (II), (III), and (IV) are equivalent.

(DY € SYmn)- () YP € SYonn)- (I Ir(Y)NIr(YP) = 0.

MW AN+X#n—m+i+j—1forall<ij<m.

The rest of this section is devoted to a proof of Theorem 12.1. We can easily show the following lemma.

Lemma 12.2. (A) It holds that I(YP)={i=m+n+1—i|i€ [(Y)}=1(Y) for Y € F(Yimn)-
(B) Let Y € F(Yiu,n), and let I,7 € [2,m + n] such that [ < r. Then, | —1 ¢ I(Y) and r € I(Y) if

and only if there exists a (unique) box (7,7) € Y such that YV Lr, Y (i,7); in this case, I(Y (i,5)) =

I\ {rp) U{l =1} and I(Y'(i, 5)7) = (LY )\ {7}) U{l — 1}.

Remark 12.3. Let Y € F(Y,,,), and (4,5) € Y. Let 2 <1 <r < m+mn be such that ¥’ Lr, Y (i, j). By
Lemmas 11.4 and 12.2 (B), it follows that ¥ ¢ I(Y (i,7)) and [ — 1 € I(Y (i, j)) if and only if there exists

a (unique) box (i, j") € Y (4,4) such that Y(i, j) Ui (Y (i, 5))(¢',7"); in particular, in this case, it

holds that Hy (; jy(i',7') = Hy (i, j) (as multisets).

We first show (I) = (III). Since Y € S(Y;,,,n) by (I), there exists a sequence of game positions of the
form

t t t t
Ym,n:YO_1>Y1_2>Y2_3>_p>Y;1:Y7

where t; is either (MHR 1) or (MHR 2) for each 1 < i <p. For 1 <4i < p such that ¢; is (MHR 2), we
see from Lemmas 11.4 and 12.2 (B) that ¥;_; Y; for some 2 < I; < 7; < m+n with

Li,ri

}/i, ’I"ifl}lifl
li—1¢1(Y;_1), m € I(Y;—1), and Y/ € F(Y,,,,). Similarly, for 1 <4 < p such that ¢; is (MHR 1), there
exists 2 <l; <r; <m+nwithl; —1¢ I(Y;—1) and r; € I(Y;—1) such that ¥;_; Loy Yi; we set Y/ =Y
by convention. We show by induction on p that Ir(Y,) N IR(YPD) = (). If p = 0, then it is obvious that
IR(Ymn) NIg(Y,E,) =0, since Ip(Ymn) ={n+1,n+2,...,m+n} and

0 if m <n,

{m} ifm=n.

Ir(Yy,) = Ir(0) = {
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Assume that p > 0; by the induction hypothesis,

Ir(Yp—1) NIR(Y,2,) = 0. (12.1)

By Lemma 12.2 (B), we have
IR\ {lp = 1} = Tr(Yp—1) \ {rp}, (12.2)
Ir(Y,P)\{lp, = 1} = In(Y,21) \ {75} (12.3)

Lemma 12.4. It holds that Ir(Y,)NIr(Y,P) # 0 if and only if I, — 1 € I(Y,_1)\{rp} or [, =1 =1, — 1;
notice that [, —1=1[, —1lifand onlyif y =0and l, -1 =c+ 1.

Proof. Assume first that I, —1 <c+1—x;recall that [, —1>c+1—x=c+1>c+1—x. It follows
from (12.2) and (12.3) that

Tr(Yy) = Tr(Yp-) \ {rp},  Tr(Y,”) = (Ir(V,2 )\ {7} U {l, — 1}.

Because Ir(Y,_1) N Ir(Y,2 ) = 0 by the induction hypothesis, we see that Ir(Y,) N Ir(Y,") # 0 if and

only if I, — 1 € Ig(Yp—1) \ {rp}. Assume next that i, —1>c+1— x. It follows from (1 2. ) and (12.3)
that

IR(Y;;) = (IR(Ypfl) \ {rp}) U {lp — 1},

(YD) = Ir(Y,2 )\ {7} ifl,—1<c+1-y,
" IrR(P NN U, =1} ifl,—1>c+1—x

Here we note that I, =1 € I(Y,_1) \ {rp} if and only if I, — 1 € I(Y,?,) \ {75} by Lemma 12.2 (A). If
lp—1<c+1~—x (resp., I, =1 > ¢+ 1~ x), then it holds that Ir(Y,) N IR(YZD) # () if and only if
lp—1 € I(Yp_1)\ {rp} (vesp., I, —1 € Ig(Yp—1) \ {rp} or I, — 1 =1, —1). Thus we have proved the

lemma. O

Proposition 12.5. (1) The operation ¢, is (MHR 1) if and only if either of the following (a) or (b)
holds.
(@) I, —1¢ I(Y,_q1) and [, — 1 # 1, — 1.
(b) 1, — 1 =7, (notice that I, — 1 # [, — 1 also in this case since I, — 1 #r, =, — 1).

(2) The operation t, is (MHR 2) if and only ifl, —1€I(Yp_1)\ {rp} orl,—1=1,—1

Proof. Tt suffices to show only part (2). We first show the “only if” part of (2). Assume that ¢, is

(MHR 2); recall that Y, 1 % v/ ==Ly, Tt follows from Lemma 12.2 (B) (applied to ¥ = V7
and Y (i, j) = Y,) that [, — 1 € I(Y})) = (I(Yp—1) \ {rp}) U{l, —1}. Thus we have [, — 1 € I(Y,_1) \ {r,}
or [, —1 =1, —1. We next show the “if” part of (2); by Remark 12.3, and Lemmas 11.4 and 12.2 (B),
it suffices to show that 7, ¢ I(Y,) and I, — 1 € I(Y,). Because I(Y,)) = (I(Y,—1) \ {rp}) U{l, — 1},
it is obvious from the assumption that [, —1 € I(Y}). Let us show that 7, ¢ I(Y,). Suppose, for a
contradiction, that 7, € I(Y,). Since I(Y)) = (I(Yp-1) \ {rp}) U {l, — 1}, and since 7, # [, — 1, we
have 7, € I(Y,—1) \ {rp} C I(Y,—1), and hence r, € I( 21) by Lemma 12.2 (A). If c+1 — x < rp,
then r, € Ig(Y,?,). Since r, € Ir(Y,_1) by Lemma 12.2 (B) (applied to Y, ; KIEN Y,), we get
rp € Ir(Yp—1) N Ir(Y,2 ), which contradicts the induction hypothesis (12.1). If ¢+ 1 — x > r,, then
c+1—-—x<c+1=c+1—-x <7y, which implies that 7, € Ig(Y,—1). Since r, € I(Y,_1), we have
7y € Ig(Y,?,) by Lemma 12.2 (A). Hence we get 7, € Ir(Y,—1) N Ir(Y,”,), which contradicts the
induction hypothesis (12.1). Therefore we obtain 7, ¢ I(Y,), as desired. Thus we have proved the
proposition. O
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If ¢, is (MHR 1) (recall that Y] = Y, and Y,”” = Y, in this case), then we see by Lemma 12.4
and Proposition 12.5 (1) that Ir(Y,) N Ir(Y,”) = 0. Assume that ¢, is (MHR 2), or equivalently,

l,—1€I(Yy,—1)\{rp}orl,—1=1,—1 by Proposition 12.5 (2). Because Y,_; T Y, e Y,
in this case, it follows from Lemma 12.2 (B) that

Tr(Yp) \ATp; lp = 1} = Ir(Yp—1) \ {rp, p — 1}, (12.4)

IR(Y,O)\ Arp by — 1} = Ir(Y,21) \ {7, 1, — 1} (12.5)

Hence, by (12.4) and (12.5), together with the induction hypothesis (12.1), we obtain I (Y,) NIr(Y,") =
(). Thus we have proved (I) = (III) in Theorem 12.1.

Conversely, we prove (Il1) = (I), thatis, Y € S(Yin.») if Ir(Y)NIR(YP) = 0. We show by (descending)
induction on (I(Y)) == >Z,cr(yy ¢ It is obvious that Yi, , € S(Yin,5). Assume that (I(Y)) < (I(Yin,n))-
Since I(Yin) = [n+ 1,m +n], and I(Y) # (Vi) with #1(Y ) = m, there exists r ¢ I(Y) such
that n + 1 < r. Also, there exists | < r such that I —1 € I(Y); note that I — 1 < r. Here we
show that [ —1 ¢ I(Y). Suppose, for a contradiction, that [ — 1 E IY), If c+1—-—x >1-1,
thenc+1—-—x <c+1=c+1—x <I-1, and hence [ =1 € Ig(Y). By Lemma 12.2 (A) applied
tol —1 € I(Y), it follows that [ —1 € Ir(YP). Thus we obtain [ —1 € Iz(Y) N Ir(YP), which
contradicts the assumption that Ir(Y)NIg(YP)=0. Iff c+1—x <l—1, then [ —1 € Ig(Y?) because
I—1€I(Y). Sincel —1 € Ig(Y), we get | — 1 € Ig(Y) N Ir(YP), which contradicts the assumption
that Ir(Y) N Ig(YP) = 0. Therefore we obtain [ — 1 ¢ I(Y).

Proposition 12.6. Keep the setting above.
(1) If7¢ I(Y) or T = [ — 1, then there exists a (unique) Young diagram Y such that I(Y") = (I(Y) \
{1—1})U{r} and I(Y'P) = (I(YP)\ {T— 1})U{7}. Furthermore, Y’ € S(¥;.), and Y’ XED, v
(2) 7 € I(Y) and T # | — 1, then there exists a (unique) Young diagram Y such that I(Y") =
(IY)\{7, 1=1})U{r,l =1} and I(Y"P) = (I(YP)\{r,l — 1})U{7,1—1}. Furthermore, Y € S(Yy.n),
., (MHR 2)
and V' —=> Y.

Proof. (1) Recall that I —1 € I(Y) and r ¢ I(Y'), which implies that (I(Y)\{I —1}) U{r} € ([1’77'?'"]).
Since I: F(Ymn) — ([an*'"]) is a bijection, there exists unique Y’ € F(Y,,,) such that I(Y') =
(I(Y)\ {l — 1}) U {r}; note that I(Y'P) = (I(YP)\ {I = 1}) U {F} by Lemma 12.2 (A). Then it follows
from Lemma 12.2 (B) that Y’ L7 ¥. Because T ¢ I(Y) or 7 =1 — 1 by the assumption of (1), and
IR(Y)NIg(YP) = 0 by assumption, it can be easily verified that Ip(Y’)NIz(Y'P) = 0. Since [ -1 <7,
we have (I(Y')) > (I(Y)), and hence Y’ € §(Y,,,,,) by the induction hypothesis. Because | — 1 ¢ I(Y),

we see from Remark 12.3 that there does not exist a box (i,7) € Y such that YV L) Y {(i,7). Thus

we obtain Y’ m Y, as desired.

(2) Let Y’ be as in the proof of part (1). Since 7 € I(Y) and 7 # [ — 1 by the assumption of (2), and
[ —1¢ I(Y) as seen above,

I\ FH U= T} = IO\ {7l - 1) Ufr T T} € (H’mw: n]).

Thus there exists Y € F(Yy,,) such that I(Y") = (I(Y) \ {F,1 — 1}) U {r,l — 1}; note that I(Y"P) =
(I(YP)\ {r,l =1}) U {F,1 — 1} by Lemma 12.2 (A). It follows from Lemma 12.2 (B) that Y b
v' Y V. Because T € I(Y) and 7 # | — 1 by the assumption of (2), and Ir(Y) N Izr(Y?) = 0 by

assumption, it can be easily verified that Ir(Y")NIz(Y"P) = (. Since l —1 < r and [ — 1 > 7, we have
(I(Y")) > (I(Y)), and hence Y" € S(Y,,,,») by the induction hypothesis. We see from Lemma 11.4 that

Y M) Y, as desired. O
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By Proposition 12.6, we obtain Y € S(Y,,, ). This completes the proof of (IIl) = (I), and hence (I) <
(IIT). The equivalence (II) < (II) follows from the equivalence (I) < (1) since Ir(YP)NIR((YP)P) =
IR(Y) n IR(YD)

Finally, let us show the equivalence (IIl) < (IV). Let Y € F(Yi,n), and A = (A1, ..., Am) € YVin(m+n)
be such that Y = Yy. We first show (IV) = (II). Obviously, if Ir(Y)NIr(YP) # 0, then I(Y)NI(YP) #
(. Tt follows from Subsection 9.1 that

IY)={N+m—p+1]|1<p<m},
IYP)={n-X+q|l1<qg<m}

Hence, I(Y)NI(YP) # 0 if and only if \i+m—i+1 = n—\;+j (or equivalently, \;+\; = n—m+i+j—1)
for some 1 <4,j < m. Thus we have shown (IV) = (III).

We next show (III) = (IV). Assume that \; + A\; =n—m+ i+ j — 1 for some 1 < ,j < m; we may
assume that i < j. As seen above, we have \; +m—i+1 € I(Y)NI(YP). Hence it suffices to show that
if \i+Xj =n—m+i+j—1, then \y+m—i+1 € [c+1—x,m+n]. Indeed, suppose, for a contradiction,
that \;+m—i+1¢[c+1—x,m+n]. Then, \; +m—i+1l<c+l—yxorm+n<+m—i+1.
Because \j + m—i+1<n+m—i+1<n+m,weget \; +m—i+1<c+1—yx. Sincei < j (and
hence A\; > A;j) and \; <c—m —x+1¢, we have A, + A <2\ < (m+n—1+4+x) —2m —2x +2i =
n—m-—-x+2i—1<n—-m+i+j—1= A+ \;, which is a contradiction. Therefore, we conclude that
Xi+m—i+1¢€[c+1—x,m+n]. Thus we have shown (III) = (IV), thereby completing the proof of
(I) < (IV).

13 Application.

Let t € Ng and m,n € N such that t <m < n. For (A1,...,A) € V(t + n), we set

[Alw"?/\t]] = (Al,...,At,At+1,...,Am) Eym(m—l—n),
with A\, =0fort+1<k<m.

Theorem 13.1. Under the notation and setting above, Y[z, .. x,] € SV n) if and only if Yo, €
S(Yin—m+t). Moreover, the Grundy value of Y[y, . ] € S(Yinn) is equal to the Grundy value of
Y()\hm)\t,) € S(Y;ﬁ,n*ert)'

Proof. Since A\ = 0 for t +1 < k < m, it follows from Theorem 12.1 that Y[y, . x,] € S(Yi,n) if and
onlyif i +Aj#n—m+i+j—1forall<i<j<tand

AsF#Fn—m+s+k—1lforalll<s<tandt+1<k<m; (13.1)

note that 0 Zn—m+k—+1—1forallt+1 <k, I < m since m < n. Also, notice that (13.1) is equivalent
to A < n—m+t. Therefore, we deduce that Yy, .. x,] € S(Yin,n) if and only if V{5, . x,) € S(Yen—m+t)-
Next, we show the assertion on the Grundy values. Assume that Y5, . ) € S(Y:n—m+¢), Or equiva-
lently, Yx, .2 € SVmn)- It =0o0r Ay =0, then Y, ] = Yr,,...a,) = 0 (the empty Young dia-
gram). Thus, both the Grundy value of Yy, . x,j = 0 in S(Yy,») and the Grundy value of Y(,, . ) =0
in S(Yin—m+t) are equal to 0. Assume that 1 < ¢ and 1 < A\;. Since m < n and 1 < ¢, we get
m—t+1 < n+t—1. Hence, we have ¢ (¢t,1) = min (1—t+m,t—1+4n) = m—t+1. Since m—t+1 < m+A;—1,
and since \; < n —m +t as seen above, we have ¢(1,\;) =min (A\; —1+m,1 — A +n) >m —t+ 1.
Thus, we obtain min {c(p,q) | (p,q) € Y[r,,..a )} =m —t+1:
We notice that

(i) in Y, € S(Yin,n) with the unimodal numbering ¢ (p,q) for (p,q) € Y[x,,... x,], if we replace
c(p,q) by c(p,q) —m +t, then we get Y, ) € S(Yen—m4¢) with the unimodal numbering;

(ii) in Y{a,,.a) € S(Yin—m+¢) with the unimodal numbering ¢’ (p,q) for (p,q) € Y, x,), if we
replace ¢’ (p, q) by ¢’ (p,q) +m —t, then we get Y[, .. x,] € S(Yin,n) with the unimodal numbering.

.....

.....
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n., . n

—7 J — J
m< e <e> e >e(lh) [ me e < eLh) [
v A | v v |
z | ; |
v | v |
m-t+1 < l m-t+1 < |
t | t |
| |
m ,,,,,,,,,,,,,,,,, a4 m ,,,,,,,,,,,,,,,,,,,,, a4

v ~
ifAd>c—m+1 ifAM<e—m+1

Figure 2. Numbering of Y[, . a7 in S(Ymn)-

Here we give an example. Let m = 3,n =5, and t = 2. Let A = (3,2,0) € V3(8). In Y[39) € S(Y3,5)
(resp., Y(3,2) € S(Y2,4)) with the unimodal numbering ¢ (p, q) for (p, q) € Y32 (vesp., ¢’ (p,q) for (p,q) €
Y(3,2)), if we replace c(p,q) by ¢(p,q) — 1 (resp., ¢ (p,q) by ¢/ (p,q) + 1), then we get Y(32) € S(Y2,4)
(resp., Y327 € S(Y3,5)) with the unimodal numbering:

\j replace the numbering \]
34 3| b 0 e by e(p,g) —1 213 2| | ’
- = =1 -
—
23] o . L]2] )
| | | | h)
,,,,, oo replace the numbering
~ d(pa)bycd o+l ¥
) )

It is obvious that the operation (i) is the inverse of the operation (ii). Moreover, there exists a natural
bijection between O(Y[x,,...x,]) € S(Yinn) and O(Y(y,...x,)) € S(Yen—m+¢). Then the inductive argu-
ment shows that the Grundy value of Yy, .. x,] in S(Yin.n) is equal to the Grundy value of You,..a) in
S(Y:n—m+t). This completes the proof of Theorem 13.1. O

Assume that m = 2. Set ¢;(q) == c+i+4q for i € Z and ¢ > 0. We know from [1, Theorem 4.13] that
a Young diagram Yy € S(Ya,,) with A = (A1, A2) is a P-position if and only if

CU{(c1(9),c0(9)), (c2(q),c1(q)) 10 < g < (p—1)/2} ifn—2=dp,
CU{(c2(9),c1(9)); (c3(q),ca(q)) [0< g < (p—1)/2} ifn—-2=4p+1,
A€ CU{(co(q),c-1(q)), (c1(q),co(q)) | 0 < g <p/2} ifn—2=4p+2, (13.2)
CU{(2p+4,2p+2),(2p+5,2p+4)}
|1

U {(e1(a); co(9)), (e2(q), e1(q))

where p € Ny, and C = C(p) = {(2¢,2¢) | 0 < ¢ < p}.
The following is an immediate consequence of Theorem 13.1 and (13.2).

¢<p/2} ifn—2=4p+3,

Corollary 13.2. We set d;(q) :=c—m+2+i+4q fori € Z and ¢ > 0. A Young diagram Yy € S(Yin.n)
having at most two rows is a P-position if and only if

DU {[di(q),do(q)], [d2(q),d1(q)] |

D U {[d2(q),d1(q)], [d3(q),d2(q)] |

A€ ¢ DU{[do(q),d-1(q)]. [di(q),do(q)]
DU{[2p+4,2p+2],[2p+ 5,2p + 4]}

U {ld1(q), do(q)], [d2(q), d1(q)] |

where p € Ny, and D = D(p) = {[2q,2q] | 0 < ¢ < p}.

0<g<(p—1)/2} ifn—m=dp,
0<g<(p—1)/2} ifn—m=dp+1,
|0<qg<p/2} ifn—m=4p+2,

<qg<p/2} ifn—-m=4p+3,
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14  Preliminaries.

14.1 Basic notation.

For a,b € Z, we set (—oo0,b] :={z € Z |z <b} and [a,00) = {z € Z | a < x}. Let ¢ € N. For a subset
X of Z, weset X —c:={x—c|x € X}. For a poset P = (P, <), we denote by P* = (P, <*) the dual
poset of P. Namely, P* = P as sets, and <* is defined by: u <* v if u > v for u,v € P* = P.

14.2  Pre-dominant integral weights.

In Appendix, g is the infinite rank affine Lie algebra of type A, over C associated to the following
Dynkin diagram (see [3, Exercise 4.14]):

-2 -1 0 1 2

Let h be the Cartan subalgebra of g, IIY = {«) | i € Z} C b the set of simple coroots of g, and
IT ={o; | i € Z} C b* := Homg(h, C) the set of simple roots of g; recall that h = @;cz Cay, and that
(aj,a) = ayj for i,j € Z, where

2 if @ =7,
Q5 = -1 if |’L—]|:1,
0 otherwise.

For each i € Z, define A; € h* by: (A, ) = d;; for j € Z. We denote by W = (s; | i € Z) C GL(h*) the
Weyl group of g. Denote by @ the set of positive roots for g; recall that @4 = {a, 4 == ap+opy1+- -+
aq | p< g} For fe®,, 3Y € b denotes the coroot of §; note that o) , = oy + )y + -+ |+
for p < q. For each § € @, we define sg € W by: sg(u) = p— (u, 8Y)B for pn € h*. For each w € W,
we set ®(w) ={y€ &4 | —wl(y) € Dy}
Remark 14.1 ([9, Chapter 5]). If w = s, -+ s
{ail ) Siq (O‘iz)’ cees Sttt Sigy (aid)}'

Definition 14.2 ([11, Definitions 1 and 2]). An integral weight A is said to be pre-dominant if (A, 3V) >
—1 for all B € ;. The set of pre-dominant integral weights is denoted by P>_;. For A € P~_;, the
set D(A) = {B € &4 | (A,BY) = —1} is called the diagram of A. We say that a pre-dominant integral
weight A is finite (resp., infinite) it #D(A) < oo (resp., #D(A) = 00). The set of finite (resp., infinite)
pre-dominant integral weights is denoted by Pgril (resp., Piznfl).

Definition 14.3 ([11, Definition 6]). For A € P>_; and 8 € D(A), the set Hx(8) := D(A) N O(sp) is
called the hook at 8 (in the diagram D(A)). The number #Hx (B) is called the hook length at 8 (in the
diagram D(A)).

Remark 14.4. Define a partial order < on h* by: a < Bif 3 —a € ) ,., Noa;. We regard D(A) and
Ha () as subposets of (h*, <).

, is a reduced expression of w € W, then ®(w) =

15 Complementary Young diagrams and hooks.

15.1 Complementary Young diagrams.

We define a partial order < on the set N> = N x N by: (i,5) < (i/,5') if i > i’ and j > j'. For
each partition ), the Young diagram Y, is regarded as a subposet of N? in this partial order < (see
Subsection 9.1 and Example 15.2 below).
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Definition 15.1. The poset Yy := (N?\ Y}, <) is called the complementary Young diagram of Yy.
Example 15.2. If A = (4,4, 2), then Y} and Yy are as follows:

T T T T T >

| | | | |
Y, T Y

A 1 1 1 1 1
R

| ] 1 1 i i 1

] 1 1 1 1 1

it st il il fti el

[ T S B B |
Iy I

| | ! | 1 1 1 1 1

1

| | | | [ | |
"T_'|""":"l'_T"l"l"'l"

| | ! 0 1 1 1 1 1
pEaeaEebegeskesgtodsskodes

| | : 0 1 1 1 1 1

A &L LR S Y/\C
| | , | [ 1 | [
1 1 ! ; 1 1 1 l |

15.2  Hooks.
Definition 15.3. Let A be a partition, and Y the corresponding Young diagram. For (i,j) € Y, we

set

Army, (4,7) = {(i,j") € Ya | j <j'}, Legy, (i,7) = {(@,j) e YA |i < i'};
note that Hy, (,7) = {(,7)} U Army, (¢, 5) U Legy, (i, 7). The number hy, (4,7) = #Hy, (i, j) is called
the hook length at (i,j) in Y. For a subset A of Yy, we define Hy, (4) to be the multiset consisting of
hy, (i,7) for (i,7) € A (see Example 15.5 below).

Definition 15.4. Let A be a partition, Y, the corresponding Young diagram, and Y{ = N? \ Y, the
complementary Young diagram of Y. For (i,7) € Yy, we set

Arme(ivj) = {(Z’jl) € Y/\c | j'< .7}7 Lng;(iMj) = {(l/,j) € Y)\c | i’ < i},

Hyg(i,5) = A{(i,7)} U Armyg (i, j) U Legy (i, j).

The subset Hy(i,j) of Y is called the hook at (i,j) in Yy, and the number hyg(i,j) = #Hy¢(i, j)
is called the hook length at (i,j) in Y. For a subset B of Yy, we define ﬁy;(B) to be the multiset
consisting of hy (i, j) for (i,7) € B (see Example 15.5 below).
Example 15.5. If A = (4,4,2), then

Hy, (V) = {1,1,2,2,2,3,4,5,5,6},
HY;(Y)\C) = {17 17 1’ 27 27 2’ 27 2) 3737 33 374a47474a47 5) 57 57 57 57 5; 5767 .. }

J
J 1 2 3 4
61513]2 2 3 4 5
5042 125678
21 124589 1011
, 2 356 9 1011 12
! 34 6 7 1011 12 13
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16 Description of the diagrams for pre-dominant integral weights.

Here we employ the notation in Subsection 9.1. Fix p < ¢. Let A € V,(q). Recall from Subsection 9.1
that there exists a bijection I from F (Y}, ,—,) onto ([11’)‘1]). We set ;== Ap_y41 +t for 1 <t < p. Then
we get I = I(Y3) = {i} <--- < iy} e (h9).

Remark 16.1 (see Example 16.2 below). We set Jy := [1,q] \ I. It is obvious that

p+1
JA = |_| [igfl + 1522 - 1}7

t=1
where we set i := 0 and 4, ; = ¢+ 1 for convention; note that if 4, = 4;_; +1, then [i;_; + 1,4, — 1] = (.
By definition, we have [#j_; + 1,4, — 1] = [Ap—i42 + 6, Ap—yq1 +t — 1] for 1 < ¢ < p+ 1, where we set
Ao = g—p and A\pyq = 0 for convention. Notice that #[i;_, + 1,4, — 1] = #[Ap_t1o+E, Ap_sy1 +t—1] is
equal to the difference of the number of boxes in the (p—¢+1)-th row (from the top) in the Young diagram
Y, and that in the (p — ¢t + 2)-th row in the Young diagram Y). In particular, for 1 < a < q¢—p = #J),
if the a-th smallest element in J is less than or equal to i; — 1 for some 1 < b < p+ 1, then

b b
a< Z #[i;—l +1, Z; -1]= Z(/\p—u+1 = Ap—ut2) = Ap-pi1. (16.1)
u=1

u=1
Similarly, if the a-th smallest element in J) is more than i;)—b-',-l for some 1 < b < p+1, then

P

p
a> Y #iny+ L =1 =Y (A= Aug1) = M. (16.2)

u=b u=b

Example 16.2. Assume that p = 3 and ¢ = 7. Let A = (4,4,2) € Y3(7). Then we have I\ = {i| =
3,ih =6,i5 =7}, and Jy = [1,7]\ I, = {1,2,4,5}.

g—p=+4

Y\ [ih +1,i5—1] =10

#[ir + 1,d5 — 1]

A #lip+ 14 -1

Now, fix k € N, and a partition A = (A1,..., Ax) such that A\; > 0. Consider the following composition

of bijections:
1 _ 1-—
yk()\l-i-k) — <[ 7>\}€+ k]> —k> <[ :7)\1]) , NHIMHIM_k' (163)

Note that A € V(A + k). Let f)\ := I, — k be the element in ([1_2’/\11) corresponding to A under the
bijection above, and write it as: Iy = {i; < -+ < ip}. Weset Jy :=[1 =k, A\1]\ I = J\ — k, and write it
as: Jy = {j1 < Jo <--- <} Notethat iy =\ € [ and j; =1—k € Jy. Foreach 1—k <j < \; —1,
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we set

—1if jel,—1, 1 if jel,
b.:: 2 L= ~ 16.4
J {0 it jedy—1, {o it je (16-4)
We put
A1—1
A=A+ Y (bj+c)hj+ Ay
j=1—k

we can easily check that Ay € szl.

Lemma 16.3. Keep the notation and setting above. It holds that
D(Ay) = {apq | p € Tna€ I —1,p < g} (16.5)

Proof. Remark that if 1 — k < ¢ < Ay — 2, then b; + ¢;41 = 0. For p € j;w q € f)\ — 1 such that
(1-k<)p<q (<A —1), we have ¢, =0, by = —1. Hence it follows that

<A/\7041Y,q> = (bp + ¢p) + (bps1 + cpi1) + -+ (bg + ¢4)
cp+ (bp + cpp1) +- -+ (bg—1 + ¢¢) +bg
—_——— —_———

=0 =0

=1

Conversely, asssume that 3 = «; ; € D(Ay) for ¢ < j. If i < —k or Ay < j, then (Ay,5Y) > 0, which
contradicts the assumption that 8 € D(Ay). Thus we get 1 —k < i < j < \; — 1. It follows that

—1=(A\,BY) = (bi +ci) + -+ (b +¢) =i + by,
and hence ¢; = 0 and b; = —1. Therefore, by (16.4), we obtain ¢ € f)\ and j € INA — 1, as desired. O

We define a map ¢: D(Ay) — Y, as follows. Let ay, , € D(Ay). Recall that I = {i1 <ig < -+ <y}
denotes the element Iy — k in ([1_i’h]) corresponding to A under the bijection in (16.3), and that
Iy = [1— Kk, ]\ I, {j1 < ja < -+ < jxnt Tt follows from Lemma 16.3 that p = j, for some
1<s< A and g =14 —1for some 1 <t <k, with js =p < ¢ =14 —1. Then we set p(apq) =
o(aj,i,—1) = (k—t+1,s) € N°. We claim that (k —t +1,s) € Y). Indeed, since 1 <t < k, it follows
that 1 <k —¢+1<k. We show that 1 < s < Ag_s41. Notice that I = {i; +k <ia+k <- - <ir+k}
and Jy = [1, A1 + k] \ I, and that j, + & is the s-th smallest element in Jy. Because js +k < iz +k — 1,
we deduce from (16.1) that 1 < s < A\g_¢41.

Theorem 16.4. The map ¢: D(Ay) = Y, o, ;,—1 — (K —t+1,s), is an order isomorphism, and
preserves the hooks in the sense that

@(Ha, (B)) = Hy, (¢(8)) for all 3 € D(Ay).

Proof. First we prove that ¢: D(Ay) = Y), ¢, 4,—1 — (k—t+1,s), is an order isomorphism, that is, ¢
is bijective, and for «, 8 € D(A)), a < 8 if and only if p(a) = ¢(8). For the bijectivity of ¢, since it is
obvious that ¢ is injective, it suffices to show that #D(Ay) = |A| (= #Y)). We compute

#D(Ay) = #{apq [p€ g€l —1,p<q}
k k
= Z#(jx N[ —ki;—1]) = Z#([l —kyij — 1\ {i1,42,...,05-1})
J; j= )
:Z{(ijf1)f(1fk)+1f(jf1)}:2(ij+kfj)

j=1
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k
=3 N = AL
j=1

Let us show that ¢ preserves the orderings. Let o, 8 € D(A,), and write them as o = «;, ;,—1 and
B8 = aj, i,—1, respectively. Then,
G ai—1 <0Gy iy —1 = Ju < Js and 1y <dy,
<— u<sandt<v<=u<sandk—v+1<k—-t+1
= ¢laj, 1) =(k—t+1:s) 2 (k—v+1u)=e(e,i-1)

Thus, we have proved that ¢ is an order isomorphism.
We prove that ¢ preserves the hooks. By Remark 14.1, we get

HAA (Oéjsyit_l) = D(A)\) N (I)(Sajs,it—l)

= D(AX) N {0y, jus Qo jat1s e oo s Qi —25 iy 15
=L
gy — 15, —1y Qg =2, —15+ - + 5 ajs+1,it—1}~
=A

We show that p(D(Ax) N L) = Legy, (k —t+1,s). If 3 € D(Ax) N L, then it follows from Lemma 16.3
that 8 = «;, ,—1 for some 1 < w < ¢ with j; < ¢, — 1. In this case, () = (k —u+1,s) € Y\ by
the definition of ¢: D(Ay) — Y. Since K —u +1 > k — ¢ + 1, we obtain ¢(8) € Legy, (k —t + 1,s).
Hence, ¢(D(Ax) N L) C Legy, (k —t + 1,s). For the reverse inclusion, let (z,y) € Legy, (k —t + 1,s).
Then we have y = s, and x = k — u + 1 for some 1 < u < t. Because ¢: D(A)) — Y) is bijective, there
exists unique v € D(Ay) such that ¢(y) = (z,y) = (k —u+1,s). If we write v = «;, ;,—1 for some
ja € Jy and iy — 1 € I — 1 such that j, < i, — 1 (see Lemma 16.3), then we have o(7) = (k — b+ 1,a).
Thus we get b = u and a = s, and hence v = o ;,—1 With js = jq < i — 1 = 4, — 1, which implies
that v € L. Therefore, we obtain v € D(A,) N L, and hence (z,y) = ¢(y) € ¢(D(Ax) N L). This
proves @(D(Ax) N L) D Legy, (k —t + 1,s), and hence (D(Ax) N L) = Legy, (k —t + 1,s). Similarly,
we can show that ¢(D(Ay) N A) = Army, (k —t + 1, s). Therefore we conclude that p(Ha, (aj, i,-1)) =
A(D(AN) N @(s,., ) = 2(D(AN) N L) Up(D(Ay) M s, 1D UG(D(AN) N A) = Legy, (b— 4+ 1,5) U
{(k—t+1,8)}UArmy, (k—t+1,8) = Hy,(k—t+1,s) = Hy, (¢(j, i,—1)). This completes the proof

of Theorem 16.4. O
We put A§ = —Ay; we can easily check that A§ € Piznfl. Recall that TA =L —k={ih <izx <
- < ik}, and j)\ = [1 —k,)q} \f)\ = {]1 < Jo < e < j>\1}' We set Lo == (—OO,—k} (] ’f,\ and
Io == [A1,00) U (Jx — 1), and write them as Liow = {21 > 22 > -} and Iq) = {11 < y2 < -},

respectively; note that zs = ig_s41 for 1 <s <k, y, =7 —1for 1 <t < Aj.
Lemma 16.5. It holds that

D(Ai) = {O‘p,q | p € Ir0w7q S [cohp S q} (166)

Proof. Note that ¢;_p =0 and by,_1 = —1since 1 —k € jA and A\ € fA. Let us show that oy, 4 € D(Ay)
for p € I.ow and g € I, such that p < q. We give a proof only for the case that p € I and ¢ € J) — 1;
the proofs for the other cases are similar. Because p < ¢, it follows that p # A1 and ¢ # —k. Since ¢, =1
and b, = 0, we have (A§, oy ) = —(c, +by) = —1. Thus, a;, , € D(Ay).

Conversely, let us show that if 8 = «; ; € D(A) with ¢ < j, then ¢ € Lo, and j € Io. We give a
proof only for the case that i € [l — k, A\; — 1]; the proof for the case that ¢ ¢ [1 — k, Ay — 1] is simpler.
If j € [1 -k, A\ — 1], then —1 = (A§, ;) = —(ci + ;). Hence we get ¢; = 1 and b; = 0. Therefore, we
have i € TA C Liow and j € j)\ —1C I If j €[\, 0), then —1 = (Ai,a%ﬁ =—(¢;+bx-1)—1=—c.
Hence we get ¢; = 1. Therefore, we have i € TA C Low and j € [A1,00) C I¢o1. Thus we have proved the
lemma. O
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Here we define a map ¢°: D(A§)* — Y as follows. Let a4 € D(AS)*. Recall that oy = {1 >
29 > -} and I = {1 < y2 < ---}. Tt follows from Lemma 16.5 that p = z; for some 1 < s and
q = y; for some 1 < t with z;, = p < ¢ = y;. Then we set p°(apq) = (. y,) = (s,t) € N2
We claim that (s,t) € Y. Indeed, observe that (s,t) € Y if and only if s > k or t > A;. Hence it
suffices to show that if x5 < y; and 1 < s < k, then ¢t > A;. Recall that I, = [A,00) U (j)\ —-1). If
yr € [A1,00), then it follows from #(jA — 1) = Ay that ¢t > Ay > A;. Assume that y; € j)\ — 1. Since
1 <s<kandy € j)\ — 1, we can write x5 and y; as ©s = ip_s+1 and y; = jy — 1. Notice that
In={in+k<--<ip+k}and Jy =[1,\; + k] \ I, and that j; + k is the ¢-th smallest element in J.
Because j: +k =y + 1+ k > x5+ k =ip_s+1 + k, we deduce from (16.2) that ¢ > As.

Theorem 16.6. The map ¢°: D(A)* — YY, ag, 4, — (s,t), is an order isomorphism, and preserves
the hooks in the sense that

¢ (Hag (8)") = Hyg (¢(8)) for all 5 € D(AS)".

Proof. We prove that ¢°: D(A§)* = Y, o, 4, — (s,t), is an order isomorphism, that is, ¢° is bijective,
and for o, 8 € D(A$)*, a <* § if and only if p°(a) < ¢°(8). First, let us show that ¢° is bijective. It
is obvious that ¢° is injective. Hence, we show that ¢° is surjective. Let (s,t) € Y. By Lemma 16.5
and the definition of the map ¢°, it suffices to show that x5 < y;. Recall that (s,t) € Y if and only if
s> kort> M\ If s>k, then it follows from #’Iv,\ = k that x5 € (—o0,—k]. Since j1 — 1 = —k < y,
it follows that z, < y;. Assume that 1 < s < k and ¢ > A;. If y+ € [A1,00), then it is obvious that
s < Y. Assume that y; € .7>\ — 1. Since 1 < s < k and y; € jA — 1, we can write x, and y; as
Ts = ip—st+1 and y = jr — 1. Suppose, for a contradiction, that zs > y;. Since ix_sy1 + &k # jr + k, we
obtain ig_sy1 +k—1=zs+k—-1>y +1+k=j;+k Notice that I, = {i1 + k < -+ < iy + k}
and Jy = [LLA + k| \Ix ={j1+k <--- < jx +k}. By (16.1), we get A\, > t. This contradicts the
assumption that ¢ > \;. Next, let us show that ¢° preserves the orderings. Let o, 8 € D(A%)*, and write
them as a = a;, 4, and 8 = oy, y,, respectively. Then,

Ay <5 Qg = Quyy > Oy gy,
< rs<zyandy >y,<<s>uandt>v
<~ wc(amsvyt) = (57t) j (u7v) = wc(azuvyv)'

Therefore, we have proved that ¢ is an order isomorphism.
We prove that ¢ preserves the hooks. By Remark 14.1, we get

Hpg (o, y,)" = D(AS)" N @(sa,, ,,)
= D(AS)" N {axs’xsvazs,zﬁrl, s Oy =1 Qo yes
=:A¢
Qyy iy Vy—1yes -+ aws+1,yt}-

=:L¢

We show that ¢°(D(A§)* N A°) = Armyg(s,t). If B € D(AS)* N A°, then it follows from Lemma 16.5
that 8 = ag, ,, for some 1 < u < ¢t with =5 < y,; in this case, ¢°(8) = (s,u) € Y{ by the definition
of p°: D(AS)* — YY. Since 1 < u < ¢, we obtain ¢°() € Armyg(s,t). Hence, p°(D(A§)* N A°) C
Armyg(s,t). For the reverse inclusion, let (z,y) € Armyg(s,t). Then we have r = s, and y = u for
some 1 < u < t. Because ¢°: D(AS)* — YY is bijective, there exists unique v € D(A$)* such that
©°(y) = (z,y) = (s,u). If we write v = g, 4, for some x, € Iow and y, € Ioo such that z, < yp
(see Lemma 16.5), then we have ¢°(y) = (a,b). Thus we get a = s and b = u, and hence v = ay, 4,
with ; = z, < Yy = yu, which implies that v € A°. Therefore, we obtain v € D(A§)* N A, and
hence (7,y) = ¢°(7) € ¢°(D(AS)" N A°). This proves p°(D(A§)* N A°) D Armyg(s,t), and hence
@°(D(AS)" N A°) = Armyg (s, t). Similarly, we can show that ¢°(D(AS)" N L¢) = Legy (s, t). Therefore
we conclude that

¢ (Hay(aa,,p,)") = @°(D(AS)" N (50, ,,))
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= " (D(A5)" N AU (D(AS)" N {aa, 4, }) U@ (D(AS)" N L)
= Armyg (s, 1) U{(s,t)} U Legy.(s, )

= Hye(s,t)

= Hy ¢ (¢(0, ,))-

This completes the proof of Theorem 16.6. O

17 Hook length sequences.

Definition 17.1. Let A be a partition. For a subset A of Yy (resp., YY), the sequence (a,);>; defined

by
an = #{(i,7) € A| hy, (i,j) = n (resp., hyg(i,j) = n)}

is called the hook length sequence of A in 'Yy (resp., in YY).

Example 17.2. Let A = (4,4,2). It can be easily seen that the hook length sequence of Y) is
(2,3,1,1,2,1,0,0,0,...). Also, the hook length of each box in Y is given as follows:

J

4
)

12
4 [5][8] 9 1011
[5] 6 9 101112

7 10 11 12 13

6
7[8]11 12 13 14
8

9 1213 14 15

1
2
)

o w N
- s w

O’Y%WMH

2
3
4
5
6

Therefore, the hook length sequence of YY is (3,5,4,5,7,7,7,8,9,...). If A={(3,8),(4,1),(4,4), (4,5),
(5,3),(7,4)} C YY, then the hook length sequence of A (in YY) is (1,0,0,0,2,0,0,3,0,...).

Theorem 17.3. Let (p,)22; be the hook length sequence of Y}, and let (¢,)52; be the hook length

sequence of Yy. Then,
n+p, =gq, foralln, (17.1)

or equivalently,
E+ (p7z)7oLO:1 = (QH)?LO:D (172)
where E = (1,2,3,...) is the hook length sequence of Yy, where () is the empty partition.
Example 17.4 (see Example 17.2). For A = (4,4, 2), we have
(1,2,3,4,5,6,7,8,9,...)+(2,3,1,1,2,1,0,0,0,...) = (3,5,4,5,7,7,7,8,9,...).

- E = (Pn)5%, = (gn)52,

Proof of Theorem 17.3. We can show (17.1) by induction on m = |A\| = #Y) (showing some lemmas
in the proof). If m = 0, then (17.1) is obvious. Assume that m > 0. Let Yy be the Young diagram
obtained from Y by adding a box at (a,b). We set
R={(a,j)|1<j<b}, C={(i,b) |1 <i<al,
R¢={(a,j) | b<j}, C°={(i,b) | a < i}.
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R (a,b) R¢ R (a,b) R¢
ce c ce c
Y)\ Y
i i

Recall from Definitions 15.3 and 15.4 that Hy, (R), ﬁy;/ (C°), Hy, (C), and ﬁy;, (R°) are the multisets of
hook lengths. We set H' := Hy, (R)U ﬁy;/ (C°) and H" = Hy, (C)U ﬁy;, (R°) (the unions of multisets).

Lemma 17.5. For each n € N, the multiset H' contains exactly one m. Similarly, the multiset H"
contains exactly one n.

Proof. We give a proof only for the former assertion; the proof for the latter assertion is similar. We
put A = (Ar,...,A,) with Ap > 0. Set T = {(i,j) e NxN |1 <i<k+21<j<0b}. By 25,
Lemma 2], we have My, (R) U Hy: (C°NT) = {1,2,....k —a+b+1} = [l,k—a+b+1]. Note
that if (i,7) € C°\ T, then hye (i,j) = hys, (i —1,j) + 1, and k —a+b+1 € Hy; (C°NT). Hence
we have Hy., (C\T) ={k—a+b+2,k—a+b+3,...} =[k—a+b+200). Itis obvious that
Hy, (C°) =Hy:, (C°NT)UHye, (C°\ T). Combining these equalities, we obtain

Hy, (R) Uy, (C°) = Hy, (R) U (Hyy, (C°NT) Uy, (C°\ T))
=[Lk—a+b+1]Uk—a+b+2,00) =[l,00) =N,

as desired. O

Let (z,,)22 (resp., (x£)52;) be the hook length sequence of R in Yy (resp., R¢ in YY), and let ()52
(resp., (¥5)52;) be the hook length sequence of C' in Yy (resp., C° in YY{). Weset Z := Yy \ (RUC)
and Z° =Y\ (R°UC°U{(a,b)}). Let (z,)5%; (resp., (25)ne,) be the hook length sequence of Z in Y
(resp., Z¢ in Y). Observe that the hook length sequence of R in Yy (resp., C in Yy, R°in Yy, and C°
in YY) is equal to (xn—1)p2; (resp., (Yn—1)n21, (@5 11)52y, and (y5,1)52,), where we set zo = 0 and
yo = 0 for convention.

Lemma 17.6. For each n > 1, it holds that z,, +yn + 25 1 + Y51 = 2.
Proof. 1t is obvious from Lemma 17.5 that z,, +y5,,; = 1 and y, + zj,; = 1 for each n > 1. O

By definition, we have p,, = p+yn+2, and ¢, = &4y +2S for n > 2. Let (p!,)22; be the hook length
sequence of Yy, and let (¢},)5>; be the hook length sequence of YY,. Notice that p], = xp—1+ Yn—1 + 2n
and ¢, = x5 +y5q + 25 for n > 2. We show that ¢, — p), = n for all n > 1. If n = 1, then we have
q1 —py =1 because ¢y =2+ #{t € [Lk—1] | Ay # Aeya} and py = 1+ #{t € [Lk — 1] [ At # Ay}
Assume that n > 2. By Lemma 17.6 and the induction hypothesis, we have

G =Dy = @0 +yn + 2500 F Y1) = (@1 Y1+ 25, Fyn) (25, Fyn 4 25) = (B0 4+ yn + 20) =0

=2 =2 =qn =Pn

This completes the proof of Theorem 17.3. O
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18 Application.
By applying [13, Corollary 6.8] to the case of A, we have

V(DA <) = TOW. Do = ] =gy (18.1)

BeD(A)

where A is a finite pre-dominant integral weight, and T(D(A), <) is the trace generating function of the
poset (D(A), <) (see [13, Section 2]) corresponding to the coloring cp: D(A) — I in [13, Definition 6.4].
Also, in the case of Ay, the same formula as (18.1) holds for an infinite pre-dominant integral weight A
satisfying the following conditions: If we write A as A = >_._, d;A; with d; € Z for i € Z, then

(IP1) it holds that 1 < #{i € Z | d; # 0} < o0;

(IP2) for all ¢ € Z, we have d; € {0, £1};

(IP3) for each i, j € Z with ¢ < j such that d; = d; # 0, there exists ¢ < m < j such that d,,, = —d; = —dj;
(IP4)

(

<vA

IP4) if we set u:=min{i € Z | d; # 0} and v := max{i € Z | d; # 0}, then d,, = —1 and d,, = —1;
IP5) it holds that », , d;-i = 0.

Let A = (A1,...,Ar) be a partition such that Ay > 0; recall from Section 16 that A§ = —A_j —
ijll__lk(bl + ¢;)A1 — Ay, We can easily check that A§ is an infinite pre-dominant integral weight
satisfying the conditions (IP1)—(IP4) above. Let us show that A§ satisfies the condition (IP5) above.
Recall that ¢ = 0 and that by,—1 = —1, and if 1 — k < ¢ < Ay — 2, then b; + ¢;41 = 0. Thus we obtain

A1—1
(=1) - (=k) - Z (bi+e)i+(=1) -\
i=1—k
A—1 A1—1 A1—1
:k—{ Sobicit > a-(i-D+ D }—)\1
i=1—k i=1—k i=1—k

——
=#(I\{M})

)\172
—k{ Z (bi+ci+1)'i+b)\1—1' ()\11)+(k1)})\1
~——— b,_/

i=1—k > —

:O’

as desired. In particular, —A( satisfies the conditions above, and its diagram is D(—Ag) = {a,; | ¢ <
0 < j}. We can easily check that the map ¢ : D(—=Ag)* — Y = N?, o j — (—i+ 1,7 + 1), is an order
isomorphism, and preserves the hooks in the sense that ¢/'(H_5,(8)*) = Hy; (¢/(8)) for all 8 € D(—Ao)".
Hence we deduce by (18.1) that

UN?,2*) =U(D(-Ao), <) = ] H%:H (1 : ) ; (18.2)

—an
i<0<j n=1 q

which is known as MacMahon’s identity (see [8] and also [7, Chapter 1, Section 5, Example 13(c)]). The
following formula includes MacMahon’s identity as a special case where A = {).

Corollary 18.1 (see also [17, Theorem 2.1]). For any partition A, it holds that

UlYes =) 10 1 \"
7[](%75) _E(l_qn) . (18.3)

In particular, the left-hand side is independent of .
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Proof. If A = {), then the formula (18.3) is obvious from (18.2) and U(Y), <) = 1. Assume that A # 0.
Let (pn)pZy (resp., (gn)22,) be the hook length sequence of Yy (resp., YY). By Theorems 16.4 and 16.6,
together with (18.1), we have

v oo =1 (=) -

v =) =vmnn. 0 =11 (1)

By Theorem 17.3, we obtain

s () -1

as desired. 0

35



A Appendix to Part I.

In Appendix A, we assume that g is the exceptional finite-dimensional simple Lie algebra of type Eg, E~,
Es, Fy, or Gy. The Dynkin diagram for g and K C I are given as follows.

type Eg : o . . . . K=1I
1 2 3 4 5
L]
type E7 : o ° ° ° ° ° K=1
1 2 3 4 5 6
o 7
type Eg : o ° ° ° ° ° ° K=1
1 2 3 4 5 6 7
* g
type Fa: o oe———o ° K = {3»4}

type Go : ¢ =—=— o K ={1}
1 2

Also for g of exceptional type, we can show statements similar to Theorems 5.1, 5.2, 5.3, and Corollary 8.3,
as seen below; we prove them by using computer programs due to Kawai and Tada [4].

Define v; € W for ¢ € K as Table 1 below. Then we deduce that the same statement as Lemma 6.4
holds also in these exceptional cases; in particular, we have

SM=| | sM;,
ieK
where SM; = {w € SM | A, = A;} for i € K. Then we see that #SM; is given as Table 2
below. Let i € K be such that A; is a minuscule weight; in this case, g is of type Eg and i = 1 or 5,
or g is of type E7 and i = 6. If g is of type Eg, then SM; = [vl,w(‘)h]‘h, SMs = [115,1110‘]5]‘]5, and
dim Eyr(Ay) = dim Egz(As) = 16. If g is of type E7, then SMg = [vg, w®]”s, and dim Eyz(Ag) = 43.
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v; Es E7 Es Fy | G
1=1 S655548359S51 8786555483525 1 58857565554535251 - $281
1 =2 | SS5545351S2 S7565554535152 | S857S655545351S2 — —
1 =3 | S6S554515253 S78655545815253 | S8575655545152S3 | S1S254S53
i=4 565551525354 S57565551525354 8887565551525354 518283854
1=25 565152535485 8786515258354 S5 588575651525354S55
1=06 §182855453S8¢ 878182535455S8¢ 5885751525354S555¢
1= §18286555453S7 5§85152835455S86S7
1=28 518285756555453S58

Table 1. Definition of v; € W.

#SMi | Es | Br | Es | Fy | Gy
=1 16 35 71 — 1
=2 4 5 6 - -
1 =3 1 1 1 1
i=4
=29 16 11 16
1t =06 12 43 27
1=17 20 105
=8 30

Table 2. The number of strong minuscule elements in SM;.

B Appendix to Part Ill.

B.1 Description of the diagrams.

In Appendix B, we assume that g is the infinite rank affine Lie algebra of type Do, over C associated to
the following Dynkin diagram (see [3, Exercise 4.14]):

o/(.)
3 2 1N,
0

We use the same notation as for type A (see Subsection 14.2), with I = Z replaced by I = Ny U {0}.
We set

Ozid‘Z:(Jéi+ai71+"'+aj+1+04jfOI'iZjZO, eiI:Oéi’lfOI‘iZL

Bij =1 +20; +ag+ag=a;+ -+ ajp1+ 205+ + 201 +ag+ag fori > 5 >1,

Yo=a5, vi=0;+agfori>1, 6 :=0;+ap+ ag fori>1;
WenOtethat(p_i_:{OQJ|’LZ]ZO}H{B77]|’L>]ZI}H{’Y7‘220}u{57|121}

Definition B.1 (cf. Subsection 9.1). Let k¥ € N. A partition A = (A1,..., ;) is said to be strict if
A1 > Ay > -+ > . For a strict partition A = (Aq,..., Ag), we set

Sy={(i,j) EN?*|1<i<k,i<j<\+i—1}
We identify (i,) € Sy with the square in R? whose vertices are (i — 1,5 — 1), (i — 1,5), (i,j — 1), and

(i,7); elements in Sy are called bozes in Sy. The set Sy is called the shifted Young diagram associated
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to a strict partition A. For (i,j) € Sy, we set
Arms)\(i,j) = {(Z?J/) € S)\ |.] < ]/} 3 Legs)\(iaj) = {(l/aj) € S)\ | i < i/}a
TaﬂSA (27.7) = {(.7 + 17.j/) € Sy | Jj< ]l} ) HS/\ (’Laj) = {(Zvj)} U Arms)\(i,j) U Legsk(ivj) U Tails)\(i,j).

The subset Hg, (i,7) of Sy is called the hook at (i,7) in Sy, and the number hg, (i,5) = #Hg, (4,]) is
called the hook length at (i,7) in Sy.

Example B.2. If A = (6,4,2,1), then Sy and the hook at (1,2) € Sy (grayed boxes) are as follows:

J

1

Definition B.3. A sequence v = (v,,)22 is called an infinite strict partition if v; < v;4q for all ¢ > 1,
and there exists j > 1 such that v;41 = v; + 1 for all ¢ > j. For an infinite strict partition v = (v,,)%2 4,
we set s(v) =s=min{j > 1| v;41 =v; + 1 for all i > j}, and

S = {(i,j) EN* |1 <i,vs—vi+i—s+1<j<v,+i—s}

We identify (i,5) € S5° with the square in R? whose vertices are (i — 1,5 — 1), (i — 1,7), (4,5 — 1), and
(4,7); elements in S;° are called bozes in Sg°. The set S3° is called the infinite shifted Young diagram
associated to an infinite strict partition v = (v,)52; (see Example B.4 below). For (i,j) € S2°, we set

Armge (4, 7) = {(i,5') € S;° | ' <j} . Legge(i,j) = {(¢,j) € S;° | i <4},
Tailse (i,7) = {(s —vs +j = 1,5) € S7 | j' < j} ,

The subset Hge(4,7) of S3° is called the hook at (i,j) in SJ°, and the number hge(i,j) == #Hs= (4, )
is called the hook length at (i,7) in S°.

Example B.4. A sequence v = (1,2,5,6,7,8,9,...) is an infinite strict partition with s(v) = s = 3.
The infinite shifted Young diagram S;° and the hook at (4,5) € Sg° (grayed boxes) are as follows:

J

1

Recall from Subsection 15.1 that the set (N2, <) is a poset. For each strict partition A (resp., infinite
strict partition v), the shifted Young diagram Sy (resp., the infinite shifted Young diagram Sg°) is
regarded as a subposet of N? in the partial order <.

Now, fix k € N, and a strict partition A = (Ag, Ag—1,..., A1) such that Ay > 0. We can easily check
that AP := (Ap —k+ 1, g1 —k+2,..., 22 —1, A1) € Vi(Ar +1). Recall from Subsecction 9.1 that there
exists a bijection from Vj,(Ax + 1) onto (). Let U be the element in (1) corresponding to AP
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under this bijection, and write it as: U = {u} < --- <u)}. Weset V = [1, Ay + 1] \ U, and write it as:
V={uv< - <vi\k_k+1}. For each 0 < 5 < A\ — 1, we set

;o[ -lifjeu-2
7T 0 if jev -2

We set ¢y = 50 + 1, and for each 1 < j < A\ — 1, we set

N {1 if jeU-—1,

GTV 0 i jev-1.
We put
~ )\k71 ~
Ay = A)\k + Z (b] +Ej)Aj;
j=0

we can easily check that Ay € Pg”jl. We can prove the following lemma in exactly the same way as
Lemma 16.3 and Theorem 16.4 for type An.

Lemma B.5. Keep the notation and setting above.

(1) If Ay = 1, then D(Ay) = {apq |[peU—-2,g€V —1,p>q}U{Bpy |DgeU—2,p>q>1}0U{5, |
peU—-2p>1}

(2) If A&y > 1, then D(A)) ={apq P €U -2, (V\{1})—1,p > qtU{Bpg | P,g €U —-2,p >
gy U{n pelU -2}

Moreover, the map 9 : D(]\,\) — Sy,

au;—Q,v;—l = (k_7'+ 1ak+j - 1)7
ﬂu;—2,u;—2 = (k71+17k7t7)a
’Yu;72 = (k‘—Z—Fl,k)’

Bur o > (k—i+1k—1),

is an order isomorphism, and preserves the hooks in the sense that

Y(Hy, (8)) = Hs, ($(8)) for all 8 € D(A).

Definition B.6. Let A = (A,..., A1) be a strict partition. We set My := N\ {A1,..., At} (C N), and
write it as: My = {m1 < mg < ---}. We set \° := (m,,)?2;; note that \° is an infinite strict partition.
The infinite shifted Young diagram S5 := S5¢ is called the complemetary shifted Young diagram of Sy.
Example B.7. If A = (6,4,2,1), then My = N\ {1,2,4,6} = {3<5<7<8<9<10< --}.
Therefore, we get A¢ = (3,5,7,8,9,10,...).

We put A = —Ay; we can easily check that A§ e PR Let U = {uj < -+ < up}, and V =
(LA + 1\ U = {v] < <), 4} as above. We set V = (V —2) U [A, 00), and write them as

V ={t; < V3 < ---}. We can prove the following lemma in exactly the same way as Lemma 16.5 and
Theorem 16.6 for type A..

Lemma B.8. Keep the notation and setting above.

(1) If Ay =1, then D(AS) = {ap,q [p € V\{U1},a € U=1,p > q}U{Bpq | p.a € V\{U1},p > ¢} U{ |
peV\{u}}. B B

(27) If Ay > 1, then D(AS) ={apq peV,ge (U—-1)U{0}p>qtU{BpqlpgeV,p>q=11U{5 |
peV,pz1}
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if Ay > 1, then we set uj := 1 (and hence (U —1)U{0} = {uj—1 < uj—1 < --- < uj —1}) for convention.
Moreover, the map ¢: D(A$)* — S5,

aii,u;fl '_>(
/851',5_7' '_> (Z_l7k+.])’
Vo, '_>(
0z, = (i—-1,k+2),

is an order isomorphism, and preserves the hooks in the sense that

VO (Hy, (B)") = Hsg (¢°(8)) for all § € D(AS)".

B.2 Hook length sequences.
Definition B.9. Let A be a strict partition. The sequence (a, )2 defined by

An = #{(27]) € Sx (I‘eSp,, S/c\) | hSA(i’j) =n (resp., h5§ (27]) = n)}
is called the hook length sequence of Sy (resp., S%).
Let A = (Ag,..., A1) be a strict partition. We set

U 5 U T3 RN P VIRUUUD Y WUR (S NS ' R 5 VUUUUNS) Vi S U
xl'_{o g Db P00 i ig 2h. o2y, e T @)asat )iz

We can show the following theorem by use of some facts mentioned in [14, Chapter 1, Section 4].

Theorem B.10. Let (p,)22; be the hook length sequence of Sy, and let (¢;,)22; be the hook length

sequence of S§. Then,

Gn — Pn = [%—‘ — 3, for all n, (B.1)

where [-] is the ceiling function.

By Lemma B.8 and [17, Theorem 3.1], we have

~. 1
pep(rs) + 4
By the same argument as for Corollary 18.1, we obtain the following formula.

Corollary B.11. For any strict partition A, it holds that

(SSAA’,_ H (1—q7'>msn'
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