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1 Introduction.
This thesis consists of three parts.

• PartⅠ (Sections 2 – 8 and Appendix A). Strong minuscule elements in the finite Weyl groups.
• PartⅡ (Sections 9 – 13). Game positions of Multiple Hook Removing Game.
• Part Ⅲ (Sections 14 – 18 and Appendix B). Infinite pre-dominant integral weights and general-
izations of MacMahon’s identity.

1.1 Introduction to PartⅠ: Strong minuscule elements in the finite Weyl groups.

The notion of (dominant) minuscule elements in a Weyl group was introduced by D. Peterson in order
to study the number of reduced expressions for an element in the Weyl group; for the definition of
(dominant) minuscule elements, see Definition 3.1 below. In this part, we study the following special
class of dominant minuscule elements in the Weyl group for a finite-dimensional simple Lie algebra g; a
dominant minuscule element w in the Weyl group of g is called a strong minuscule element if there exists
a unique dominant integral weight Λ (which we denote by Λw) such that w is Λ-minuscule. We denote
by SM the set of strong minuscule elements. The following (Theorems 1.1, 1.2, and 1.3) are the main
results in this part, which are stated also in Section 5 (for g of classical type) and Appendix A (for g
of exceptional type); we prove all of these statements in the case that g is of exceptional type by using
computer programs due to Kawai and Tada [4]. Let {αi}i∈I be the set of simple roots for g; in this part,
all simple roots in the simply-laced cases are treated as short roots.

Theorem 1.1. It holds that
SM =

⊔
i∈K

SMi,

where K := {i ∈ I | αi is short}, and SMi = {w ∈ SM | Λw = Λi} for i ∈ K.

In order to prove Theorem 1.1, we introduce a special element vi ∈W for each i ∈ K in Definition 6.3
(for g of classical type) and Table 1 in Appendix A (for g of exceptional type). Using this element, we
show (in Lemma 6.4) that if w ∈ SM, and w = si1 · · · sir is a reduced expression of w, then w ∈ SMir .
In fact, Theorem 1.1 follows immediately from this fact.
Now, fix i ∈ K. Let Ji := {sj}j∈I \ {si}, where sj ∈ W is the simple reflection in the simple root αj

for j ∈ I, and WJi the parabolic subgroup of W generated by Ji. Let W
Ji be the set of minimal-length

coset representatives for cosets in W /WJi
. In Proposition 7.3, we show that SMi ⊂ W Ji for i ∈ K.

Then, by using the description of W Ji due to Stumbo [21], we prove the following theorem.

Theorem 1.2. Assume that g is of classical type, and let i ∈ K.

(i) If g is of type An, then #SMi =
(
n−1
i−1

)
for 1 ≤ i ≤ n.

(ii) If g is of type Bn, then #SM1 = 2n−1.
(iii) If g is of type Cn, then #SMi =

(
n−1
i−2

)
for 2 ≤ i ≤ n− 1, and #SMn = n.

(iv) If g is of type Dn, then #SM1 = #SM2 = 2n−2 − 1, #SMi =
(
n−2
i−3

)
for 3 ≤ i ≤ n − 1, and

#SMn = n− 1.

In the case that g is of exceptional type, #SMi is given by Table 2 in Appendix A, which is obtained
by use of computer.
Furthermore, we describe SMi in terms of a Bruhat interval for i ∈ K such that Λi is a minuscule

weight. Let w0 (resp., wJi,0) be the longest element of W (resp., of WJi
), and set wJi

0 := w0wJi,0. For
x, y ∈ W Ji , we set [x, y]Ji := {w ∈ W Ji | x ≤ w ≤ y}, where ≤ is the Bruhat order. Recall that vi,
i ∈ K, is defined in Definition 6.3 and Table 1 in Appendix A.

Theorem 1.3. Let i ∈ K be such that Λi is a minuscule weight.
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(i’) If g is of type An, then SMi = [vi, w
Ji
0 ]Ji for 1 ≤ i ≤ n.

(ii’) If g is of type Bn, then SM1 = [v1, w
J1
0 ]J1 .

(iii’) If g is of type Cn, then SMn = [vn, w
Jn
0 ]Jn \ {wJn

0 }.
(iv’) If g is of type Dn, then SM1 = [v1, w

J1
0 ]J1 , SM2 = [v2, w

J2
0 ]J2 , and SMn = [vn, w

Jn
0 ]Jn \ {wJn

0 }.

Also in the case that g is of exceptional type, SMi is identical to [vi, w
Ji
0 ]Ji for each i ∈ K such that

Λi is a minuscule weight (see Appendix A).
As an application of Theorems 1.2 and 1.3 (and the theory of Lakshmibai-Seshadri paths due to

Littelmann [6]), we obtain the following dimension formula for a Demazure module. We set vi :=
w0viwJi,0.

Corollary 1.4. Let i ∈ K be such that Λi is a minuscule weight. It hold that

dimEvi(Λi) =



(
n−1
i−1

)
(1 ≤ i ≤ n in type An),

2n−1 (i = 1 in type Bn),

n+ 1 (i = n in type Cn),

2n−2 − 1 (i = 1, 2 in type Dn),

n (i = n in type Dn),

16 (i = 1, 5 in type E6),

43 (i = 6 in type E7),

where Evi(Λi) := U(n+)L(Λi)vi(Λi) is the Demazure module of lowest weight vi(Λi) in the finite-
dimensional irreducible g-module L(Λi) of highest weight Λi.

PartⅠ is organized as follows. In Section 2, we fix our notation for Lie algebras. In Section 3, we recall
the definition of minuscule elements. In Section 4, we introduce the notion of strong minuscule elements,
which is the main object in this part, and prove its basic property (Proposition 4.2). In Section 5, we
state our main results (Theorems 1.1, 1.2, and 1.3 above) in this part in the case that g is of classical type.
In Section 6, we introduce the special element vi, and then prove Theorem 1.1 above. In Section 7, we
prove Theorem 1.2 above by using the description of the set W Ji of minimal-length coset representatives
due to Stumbo. In Section 8, we prove Theorem 1.3 above. Then, as an application of our results, we
give a dimension formula for certain Demazure modules (Corollary 1.4 above). In Appendix A, by use
of computer, we prove statements similar to Theorems 1.1, 1.2, 1.3, and Corollary 1.4 in the case that g
is of exceptional type.

1.2 Introduction to PartⅡ : Game positions of Multiple Hook Removing Game.

The Sato-Welter game is an impartial game studied by Welter [24] and Sato [18], independently. This
game is played in terms of Young diagrams. The rule is given as follows:

(i) The starting position is a Young diagram Y .
(ii) Assume that a Young diagram Y ′ appears as a game position. A player chooses a box (i, j) ∈ Y ′,

and moves game position from Y ′ to Y ′〈i, j〉, where Y ′〈i, j〉 is the Young diagram which is obtained
by removing the hook at (i, j) from Y ′ and filling the gap between two diagrams (see Figure 1
below).

(iii) The (unique) ending position is the empty Young diagram ∅. The winner is the player who makes
∅ after his/her operation (ii).

Kawanaka [5] introduced the notion of a plain game, as a generalization of the Sato-Welter game. A plain
game is played in terms of d-complete posets which was introduced and classified by Proctor [15, 16],
and can be thought of as a generalization of Young diagrams. It is known that d-complete posets are
closely related to not only the combinatorial game theory, but also the representation theory and the
algebraic geometry associated with simply-laced finite-dimensional simple Lie algebras. For example, the
weight system of a minuscule representation (which is identical to the Weyl group orbit of a minuscule
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fundamental weight) for a simply-laced finite-dimensional simple Lie algebra can be described in terms
of a d-complete poset. Applying the “folding” technique to this fact for the simply-laced case, Tada
[23] described the Weyl group orbits of some fundamental weights for multiply-laced finite-dimensional
simple Lie algebras in terms of d-complete posets with “colorings”.

d-complete poset

with a “coloring”
multiply-laced

[23]

plain game
[5]

d-complete poset simply-laced

folding“folding”

Young diagram

generalization

Sato-Welter game
[24, 18]

type A

special case

Young diagram
with the unimodal numberingMHRG

[1]
types B and C

Based on [23], Abuku and Tada [1] introduced a new impartial game, named Multiple Hook Removing
Game (MHRG for short). MHRG is played in terms of Young diagrams with the unimodal numbering;
for the definition of unimodal numbering, see Section 10. Let us explain the rule of MHRG. We fix
positive integers m,n ∈ N such that m ≤ n. Let Ym,n := {(i, j) ∈ N2 | 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the
rectangular Young diagram of size m×n. We denote by F(Ym,n) the set of all Young diagrams contained
in the rectangular Young diagram Ym,n. For a game position G of an impartial game, we denote by O(G)
the set of all options of G. The rule of MHRG is given as follows:

(1) All game positions are some Young diagrams contained in F(Ym,n) with the unimodal numbering.
The starting position is the rectangular Young diagram Ym,n.

(2) Assume that Y ∈ F(Ym,n) appears as a game position. If Y 6= ∅ (the empty Young diagram), then
a player chooses a box (i, j) ∈ Y , and remove the hook at (i, j) in Y . We denote by Y 〈i, j〉 the
resulting Young diagram. Then we know from [1] (see also Lemma 11.4 below) that f := #{(i′, j′) ∈
Y 〈i, j〉 | HY ⟨i,j⟩(i

′, j′) = HY (i, j) (as multisets)} ≤ 1 ,where HY (i, j) (resp., HY ⟨i,j⟩(i
′, j′)) is the

numbering multiset for the hook at (i, j) ∈ Y (resp., (i′, j′) ∈ Y 〈i, j〉); see Section 10. If f = 0, then
a player moves Y to Y 〈i, j〉 ∈ O(Y ). If f = 1, then a player moves Y to (Y 〈i, j〉)〈i′, j′〉 ∈ O(Y ),
where (i′, j′) ∈ Y 〈i, j〉 is the unique element such that HY ⟨i,j⟩(i

′, j′) = HY (i, j).
(3) The (unique) ending position is the empty Young diagram ∅. The winner is the player who makes ∅

after his/her operation (2).

In general, not all Young diagrams in F(Ym,n) appear as game positions of MHRG (see Example 11.3).
The goal of this paper is to give a characterization of the set of all game positions in MHRG. Let us

explain our results more precisely. Let
(
[1,m+n]

m

)
denote the set of all subsets of [1,m + n] := {x ∈ N |

1 ≤ x ≤ m + n} having m elements. Then there exists a bijection I from F(Ym,n) onto
(
[1,m+n]

m

)
(see

Subsection 9.1 below). Let Y D denote the dual Young diagram of Y in Ym,n (see Subsection 9.1). We
set c := (m+ n− 1 + χ) / 2, where χ = 0 (resp., χ = 1) if m+ n is odd (resp., even). For Y ∈ F(Ym,n),
we set IR(Y ) := I(Y ) ∩ [c + 1 − χ,m + n]. We denote by S(Ym,n) the set of all those Young diagrams
in F(Ym,n) which appear as game positions of MHRG (with Ym,n the starting position).

Theorem 1.5 (= Theorem 12.1). Let Y ∈ F(Ym,n), and λ = (λ1, . . . , λm) the partition corresponding
to Y . The following (Ⅰ), (Ⅱ), (Ⅲ), and (Ⅳ) are equivalent.
(Ⅰ) Y ∈ S(Ym,n). (Ⅱ) Y D ∈ S(Ym,n). (Ⅲ) IR(Y ) ∩ IR(Y D) = ∅.
(Ⅳ) λi + λj 6= n−m+ i+ j − 1 for all 1 ≤ i ≤ j ≤ m.
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Theorem 1.6 (= Theorem 13.1). Let t ∈ N0 and m,n ∈ N such that t ≤ m ≤ n. For a Young diagram
Y having at most t rows, Y ∈ S(Ym,n) if and only if Y ∈ S(Yt,n−m+t). Moreover, the Grundy value of
Y as an element of S(Ym,n) is equal to the Grundy value of Y as an element of S(Yt,n−m+t).

In [22], Tada proves that there exists a bijection between the set of all game positions of MHRG and
the set of Young diagrams, which corresponds to the Weyl group orbit of the weight in types B and C;
as an application of Theorem 1.5, he also gives a description of the Weyl group orbit of the weight (in
types B and C).
PartⅡ is organized as follows. In Section 9, we fix our notation for Young diagrams, and recall some

basic facts on the combinatorial game theory. In Section 10, we recall the definition of the unimodal
numbering and the diagonal expression for Young diagrams. In Section 11, we recall the rule of MHRG,
and a basic property (Lemma 11.4). In Sections 12 and 13, we prove Theorems 1.5 and 1.6 above,
respectively.

1.3 Introduction to PartⅢ : Infinite pre-dominant integral weights and generalizations of

MacMahon’s identity.

Let g be a Kac-Moody algebra with {αi}i∈I the set of simple roots (possibly, the index set I is an infinite
set); for simplicity of notation, we assume that g is simply-laced, that is, the off-diagonal entries of the
Cartan matrix of g are all 0 or −1. An integral weight Λ of g is said to be pre-dominant if 〈Λ, β∨〉 ≥ −1
for all positive real roots β ∈ Φ+, where β

∨ is the coroot of β. For a pre-dominant integral weight Λ, we
set D(Λ) = {α ∈ Φ+ | 〈Λ, α∨〉 = −1}, and define a partial order ≤ on D(Λ) by: for α, β ∈ D(Λ), α ≥ β
if α− β ∈

∑
i∈I N0αi. Then the poset (D(Λ),≤) can be regarded as a generalization of Young diagrams

in the sense of [13, Remark 6.11]. A pre-dominant integral weight Λ is said to be finite (resp., infinite)
if #D(Λ) <∞ (resp., #D(Λ) = ∞).
In [13], Nakada proved the following multivariable q-hook formula for the generalized Young diagram

D(Λ) for a finite pre-dominant integral weight Λ for a Kac-Moody algebra:

T (D(Λ),≤) =
∏

β∈D(Λ)

1

1− qHΛ(β)
. (1.1)

Here, T (D(Λ),≤) is the trace generating function of (D(Λ),≤) (see [13, Section 2]) corresponding to
the coloring cΛ : D(Λ) → I in [13, Definition 6.4]. Also, HΛ(β) is the hook at β in the diagram D(Λ)
which is defined as the intersection of D(Λ) and the inversion set Φ(sβ) of the reflection sβ in β, and

qHΛ(β) :=
∏

γ∈HΛ(β) qcΛ(γ). Taking the specialization qi → q, we obtain

U(D(Λ),≤) := T (D(Λ),≤)|qi→q =
∏

β∈D(Λ)

1

1− q#HΛ(β)
. (1.2)

Moreover, Nakada proved the same formula as (1.1) and (1.2) for a certain infinite pre-dominant integral
weight in the case that g is of type A∞. In particular, in the case of type A∞, by applying the formula
(1.2) to the case of Λ = −Λ0, we obtain MacMahon’s identity ([7]):

U(D(−Λ0),≤∗) =

∞∏
n=1

(
1

1− qn

)n

,

where ≤∗ is the dual order of ≤.
In Part Ⅲ, based on comments in [10, 12], we treat a more general pre-dominant integral weight Λλ

for A∞ and D∞ associated to a partition or strict partition λ; we see that Λc
λ := −Λλ is an infinite

pre-dominant integral weight. In Theorem 16.4 (resp., Theorem 16.6), we prove that there exists an
order-preserving (resp., order-reversing) isomorphism from the diagram D(Λλ) (resp., D(Λc

λ)) of a finite
(resp., infinite) pre-dominant integral weight Λλ (resp., Λc

λ) onto the corresponding Young diagram Yλ
(resp., complementary Young diagram Y c

λ ; see Definition 15.1) which preserves the hooks in type A∞. In
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[25], Wildon found a “complementary” relation between the hook length sequence of a Young diagram
Y and the hook length sequence of its dual Young diagram Y D in a rectangular Young diagram of finite
size. In PartⅢ, we generalize this result to the case that Y c is defined in the “rectangular Young diagram
of infinite size” (see Example 15.2). Combining these results, we give another proof for a generalized
MacMahon’s identity for type A∞ (Corollary 18.1) which was obtained in [17, Theorem 2.1]. Also, in type
D∞, we obtain a similar formula by the same argument as for type A∞, with Young diagrams replaced by
shifted Young diagrams (Corollary B.10); this formula is slightly different from [17, Theorem 3.1] since
our formulation is motivated by the pre-dominant integral weights Λλ and Λc

λ, while the formulation in
[17] is natural from the view point of the weight system of g.
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Tomoaki Abuku, Ryuta Hiasa, Ryo Kawai, and Ryusuke Sugawara for thier advice.
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Part I

2 Preliminaries.
Let N0 denote the set of nonnegative integers. Throughout this part, except for Appendix A, g is the
finite-dimensional classical simple Lie algebra of type An, Bn, Cn, or Dn over C; the Dynkin diagram
for g is as follows.

type An : •
1

•
2

· · · •
n− 1

•
n

type Bn : •
1

•oo

2
· · · •

n− 1
•
n

type Cn : •
1

•//

2
· · · •

n− 1
•
n

type Dn : •
n

•
n− 1

· · · •
3

•oooooo 2

•
OOO

OOO

1

Let (aij)i,j∈I be the Cartan matrix of g, where I = {1, 2, . . . , n}. Let h be the Cartan subalgebra of g, and
set h∗ := HomC(h,C). We denote by 〈·, ·〉 : h∗ × h → C the standard pairing. Denote by Π = {αi | i ∈ I}
(resp., Π∨ = {α∨

i | i ∈ I}) the set of simple roots (resp., simple coroots); note that 〈αj , α
∨
i 〉 = aij .

Let P =
⊕

i∈I ZΛi (resp., P
+ =

∑
i∈I N0Λi) be the set of integral weights (resp., dominant integral

weights), where Λi is the fundamental weight for i ∈ I. We denote by W = 〈si | i ∈ I〉 ⊂ GL(h∗) the
Weyl group of g, where si is the simple reflection in αi, and denote by ℓ : W → N0 the length function
on W . Denote by Φ (resp., Φ+) the set of roots (resp., positive roots) for g. For β ∈ Φ, β∨ denotes the
coroot of β.
Let K be the subset of I = {1, 2, . . . , n} given as follows:

K :=


I if type An or Dn,

{1} if type Bn,

I \ {1} if type Cn.

(2.1)

Namely, the set K is identical to I if g is of type An or Dn, and to {i ∈ I | αi is a short simple root} if
g is of type Bn or Cn. For i ∈ I, we set

adj(i) := {j ∈ I | aij 6= 0, 2}, adjs(i) := {j ∈ adj(i) | aij = −1},
adjℓ(i) := adj(i) \ adjs(i) = {j ∈ adj(i) | aij = −2}.

3 Minuscule elements in the Weyl group.
Definition 3.1 (see, e.g., [15], [20]). Let Λ ∈ P . A Weyl group element w ∈W is said to be Λ-minuscule
if there exists a reduced expression w = si1 · · · sir such that

〈sip+1 · · · sir (Λ), α∨
ip〉 = 1 for all 1 ≤ p ≤ r. (3.1)

If w ∈ W is Λ-minuscule for some integral weight Λ ∈ P (resp., dominant integral weight Λ ∈ P+),
then we say that w is minuscule (resp., dominant minuscule). The set of minuscule (resp., dominant
minuscule) elements in W is denoted by M (resp., M+).

8



Remark 3.2 ([20, Proposition 2.1]). Let Λ ∈ P , and w ∈W . If condition (3.1) holds for some reduced
expression of w, then it holds for every reduced expression of w. Hence the definition of a Λ-minuscule
element is independent of the choice of a reduced expression.

4 Strong minuscule elements.
Definition 4.1. A dominant minuscule element w ∈ W is said to be strong minuscule if there exists a
unique dominant integral weight Λ ∈ P+ (which we denote by Λw) such that w is Λ-minuscule. The set
of strong minuscule elements in W is denoted by SM.

The following is a basic property of strong minuscule elements.

Proposition 4.2. Let w ∈ SM, and w = si1 · · · sir a reduced expression of w. Then, #{1 ≤ p ≤ r |
ip = i} ≥ 1 for each i ∈ I. Namely, each of the simple reflections appears at least once in each reduced
expression of w.

Proof. Suppose, for a contradiction, that sj does not appear in the reduced expression w = si1 · · · sir for
some j ∈ I. In this case, since sip+1

· · · sir (Λj) = Λj and 〈Λj , α
∨
ip
〉 = 0 for all 1 ≤ p ≤ r, we see that w is

also (Λw + Λj)-minuscule. Because Λw + Λj ∈ P+, this contradicts the assumption that w ∈ SM.

5 Main results.
Assume that g is of classical type; for the case that g is of exceptional type, see Appendix A below.

Theorem 5.1 (will be proved in Section 6). It holds that

SM =
⊔
i∈K

SMi,

where SMi := {w ∈ SM | Λw = Λi} for i ∈ K.

Theorem 5.2 (will be proved in Section 7). Let i ∈ K.

(i) If g is of type An, then #SMi =
(
n−1
i−1

)
for 1 ≤ i ≤ n.

(ii) If g is of type Bn, then #SM1 = 2n−1.
(iii) If g is of type Cn, then #SMi =

(
n−1
i−2

)
for 2 ≤ i ≤ n− 1, and #SMn = n.

(iv) If g is of type Dn, then #SM1 = #SM2 = 2n−2 − 1, #SMi =
(
n−2
i−3

)
for 3 ≤ i ≤ n − 1, and

#SMn = n− 1.

Recall that the Weyl groupW of g is generated by S := {s1, . . . , sn}. For J ⊂ S, letWJ be the parabolic
subgroup of W generated by J . Let W J ∼= W /WJ be the set of minimal-length coset representatives
for cosets in W /WJ (see [2, Corollary 2.4.5]). We denote by ≤ the Bruhat order on W (see, e.g.,
[2, Chapter 2]). For u,w ∈ W , we set [u,w] := {v ∈ W | u ≤ v ≤ w}. For u,w ∈ W J , we set
[u,w]J := [u,w] ∩ W J . Denote by w0 (resp., wJ,0) the longest element in W (resp., WJ); note that
w ≤ w0 (resp., w ≤ wJ,0) for all w ∈W (resp., w ∈WJ). Define wJ

0 = w0wJ,0 ∈W J . Note that w ≤ wJ
0

for all w ∈W J (see [2, Section 2.5]).

Theorem 5.3 (will be proved in Section 8). Let i ∈ K be such that Λi is a minuscule weight in the sense
that 〈Λi, β

∨〉 ∈ {0,±1} for all β ∈ Φ. Define vi ∈W as Definition 6.3 below, and set Ji := S \ {si} ⊂ S.

(i’) If g is of type An, then SMi = [vi, w
Ji
0 ]Ji for 1 ≤ i ≤ n.

(ii’) If g is of type Bn, then SM1 = [v1, w
J1
0 ]J1 .

(iii’) If g is of type Cn, then SMn = [vn, w
Jn
0 ]Jn \ {wJn

0 }.
(iv’) If g is of type Dn, then SM1 = [v1, w

J1
0 ]J1 , SM2 = [v2, w

J2
0 ]J2 , and SMn = [vn, w

Jn
0 ]Jn \ {wJn

0 }.
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6 Proof of Theorem 5.1.
Lemma 6.1 ([20, Proposition 2.5]). Let w ∈ M+, and fix a reduced expression w = si1 · · · sir of w. Fix
i ∈ I, and set a := max {1 ≤ p ≤ r | ip = i}. Then,

#{a+ 1 ≤ p ≤ r | ip ∈ adjs(i)} ≤ 1, (6.1)

#{a+ 1 ≤ p ≤ r | ip ∈ adjℓ(i)} = 0. (6.2)

Remark 6.2. Let w ∈ M+, and w = si1 · · · sir be a reduced expression of w. We claim that if ir ∈ I \K,
then w /∈ SM. Indeed, suppose, for a contradiction, that w ∈ SM. By Proposition 4.2, there exists
1 ≤ p ≤ r − 1 such that ir ∈ adjℓ(ip). This contradicts (6.2).

Definition 6.3. Recall that K is as (2.1). For i ∈ K, we define vi ∈ W as follows (note that ℓ(vi) = n
in all cases).

(a) If g is of type An, then vi := snsn−1 · · · si+1s1s2 · · · si−1si for i ∈ K = I.
(b) If g is of type Bn, then v1 := snsn−1 · · · s2s1.
(c) If g is of type Cn, then vi := snsn−1 · · · si+1s1s2 · · · si−1si for i ∈ K = I \ {1}.
(d) If g is of type Dn, then v1 := s2snsn−1 · · · s3s1, v2 := s1snsn−1 · · · s3s2, and

vi := snsn−1 · · · si+1s1s2s3 · · · si−1si for i ∈ K \ {1, 2} = I \ {1, 2}.

Lemma 6.4. Let w ∈ M, and let w = si1 · · · sir be a reduced expression of w. Set k := ir ∈ I. Then,
w is a strong minuscule element if and only if k ∈ K and there exists u ∈ W such that w = uvk and
ℓ(w) = ℓ(u) + n. Moreover, it holds that Λw = Λk in this case.

Proof. We give a proof only for the cases of type An, Bn, or Cn; the proof for the case of type Dn is
similar. Assume that w ∈ SM; in particular, w ∈ M+. It follows from Remark 6.2 that k ∈ K. First,
we show by (descending) induction on 1 ≤ p ≤ k (starting from p = k) that w has a reduced expression
of the form

w = · · · spsp+1 · · · sk−1sk. (6.3)

If p = k, then the assertion is obvious by assumption. Assume that 1 < p ≤ k; by the induction
hypothesis, we have a reduced expression for w of the form:

w = · · · spsp+1 · · · sk−1sk. (6.4)

By Proposition 4.2, sp−1 appears in this reduced expression. Let us take the right-most one:

w = · · · sp−1 · · ·︸︷︷︸
(∗)

spsp+1 · · · sk−1sk; (6.5)

there is no sp−1 in (∗). Also, by (6.1), neither sp nor sp−2 appears in (∗), which implies that every simple
reflection in (∗) commutes with sp−1. Hence, we get a reduced expression for w of the form:

w = · · · sp−1spsp+1 · · · sk−1sk, (6.6)

as desired. In particular, we obtain a reduced expression of the form

w = · · · s1s2 · · · sk−1sk. (6.7)

Similarly, we can show by induction on k ≤ q ≤ n that w has a reduced expression of the form:

w = · · · sq · · · sk+2sk+1s1s2 · · · sk−1sk.

In particular, we obtain a reduced expression of the form

w = · · ·︸︷︷︸
=:u

snsn−1 · · · sk+2sk+1s1s2 · · · sk−1sk︸ ︷︷ ︸
=vk

. (6.8)
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If we set u := wv−1
k , then we have w = uvk with ℓ(w) = ℓ(u) + n, as desired.

Conversely, assume that (w ∈ M, and) there exists u ∈ W such that w = uvk with ℓ(w) = ℓ(u) + n;
note that w has a reduced expression of the form (6.8). Let Λ ∈ P be such that w is Λ-minuscule, and
write it Λ as: Λ =

∑n
i=1 ciΛi with ci ∈ Z. Since 〈Λ, α∨

k 〉 = 1 by the assumption that w is Λ-minuscule
(see also Remark 3.2), we get ck = 1. Also, we see that 〈Λ − αk, α

∨
k−1〉 = 1 and k ∈ adjs(k − 1), which

implies that ck−1 = 0. Repeating this argument, we get ck−1 = ck−2 = · · · = c1 = 0. Similarly, we see
that 〈Λ− αk − αk−1 − · · · − α1, α

∨
k+1〉 = 1 and k ∈ adjs(k + 1), which implies that ck+1 = 0. Repeating

this argument, we get ck+2 = ck+3 = · · · = cn = 0. Therefore, we conclude that Λ = Λk ∈ P+; in
paticular, w is dominant minuscule. Furthermore, the argument above shows the uniqueness of Λ ∈ P+

such that w is Λ-minuscule. Thus we have proved Lemma 6.4.

Theorem 5.1 follows immediately from Lemma 6.4 and the definition of strong minuscule elements.

7 Proof of Theorem 5.2.
For j ∈ I, we define wj ∈W as follows.

(a’) If g is of type An, then wj := s1s2 · · · sj−1sj for j ∈ I.
(b’) If g is of type Bn, then wj := snsn−1 · · · s2s1s2 · · · sj−1sj for j ∈ I.
(c’) If g is of type Cn, then wj := snsn−1 · · · s2s1s2 · · · sj−1sj for j ∈ I.
(d’) If g is of type Dn, then w1 := snsn−1 · · · s4s3s1, w2 := snsn−1 · · · s4s3s2, and

wj := snsn−1 · · · s3s1s2s3 · · · sj−1sj for j ∈ I \ {1, 2}.

For j ∈ I and 0 ≤ l ≤ ℓ(wj), define wj(l) to be the product of l simple reflections from the right in the
expression of wj above, except for the case that g is of type Dn, j ∈ I \{1, 2}, and l = j−1. When g is of
type Dn, and j ∈ I \ {1, 2}, the element wj(j− 1) represents both s1s3 · · · sj and s2s3 · · · sj ; for example,
the sentence “a proposition holds for wj(j − 1)” means that the proposition holds for both s1s3 · · · sj
and s2s3 · · · sj .

Proposition 7.1 ([21, Theorems 2 and 6]). Assume that g is of type An, Bn, or Cn. For i ∈ I, it holds
that

W Ji = {wn(ln)wn−1(ln−1) · · ·wi(li) | li, . . . , ln−1, ln satisfy condition (#)}, (7.1)

where condition (#) is given by (A) (resp., (BC1), (BC2), and (BC3)) below if g is of type An (resp., of
type Bn or Cn).

(A) 0 ≤ ln ≤ ln−1 ≤ · · · ≤ li ≤ i;
(BC1) 0 ≤ lj ≤ j + i− 1,
(BC2) lj+1 ≤ lj + 1, and
(BC3) if lj ≤ j − 1, then lj+1 ≤ lj .

Moreover, for each element wn(ln)wn−1(ln−1) · · ·wi(li) of the right-hand side of (7.1), it holds that

ℓ(wn(ln)wn−1(ln−1) · · ·wi(li)) = ℓ(wn(ln)) + ℓ(wn−1(ln−1)) + · · ·+ ℓ(wi(li)).

Proposition 7.2 ([21, Theorem 4]). Assume that g is of type Dn. For i ∈ I \ {1, 2}, it holds that

W Ji = {wn(ln)wn−1(ln−1) · · ·wi(li) | li, . . . , ln−1, ln satisfy conditions (D1)–(D4)}, (7.2)

where

(D1) 0 ≤ lj ≤ j + i− 2,
(D2) lj+1 ≤ lj + 1,
(D3) if lj ≤ j − 2, then lj+1 ≤ lj , and
(D4) if lj+1 = lj + 1 = j, then wj(lj) and wj+1(lj+1) must be chosen in such a way that the one has s1

as the left-most simple reflection, and the other has s2.

11



Moreover, for each element wn(ln)wn−1(ln−1) · · ·wi(li) of the right-hand side of (7.2), it holds that

ℓ(wn(ln)wn−1(ln−1) · · ·wi(li)) = ℓ(wn(ln)) + ℓ(wn−1(ln−1)) + · · ·+ ℓ(wi(li)).

For i = 1, it holds that

W J1 = {w 3+(−1)h

2

(lh)w 3+(−1)h−1

2

(lh−1) · · ·w2(l4)w1(l3)w2(l2)w1(l1) |

0 ≤ h ≤ n− 1, 1 ≤ lh < lh−1 < · · · < l1 ≤ n− 1}.
(7.3)

For i = 2, W J2 is given by the same formula as (7.3) with w1 and w2 interchanged. Moreover, the
“length additivity” holds also for the cases that i = 1 and i = 2.

Proposition 7.3. For i ∈ K, the set SMi = {w ∈ SM | Λw = Λi} (see Theorem 5.1) is contained in
W Ji . If g is of type An, Bn, or Cn, then it holds that

SMi = {wn(ln) · · ·wi+1(li+1)wi(li) | li, . . . ln−1, ln satisfy condition (⋆)}, (7.4)

where condition (⋆) is given by (SA) (resp., (SB), (SC)) below if g is of type An (resp., of type Bn, of
type Cn).

(SA) Condition (A) in Proposition 7.1, and li = i, ln 6= 0;
(SB) Conditions (BC1)–(BC3) (with i = 1) and ln 6= 0;
(SC) If 2 ≤ i ≤ n − 1, then i ≤ li ≤ 2i − 2 and 1 ≤ ln ≤ · · · ≤ li+1 ≤ 2i − li − 1. If i = n, then

n ≤ ln ≤ 2n− 1.

Also, if g is of type Dn, then it holds that

SM1 = {w 3+(−1)h

2

(lh)w 3+(−1)h−1

2

(lh−1) · · ·w2(l4)w1(l3)w2(l2)w1(l1) |

2 ≤ h ≤ n− 1, 1 ≤ lh < lh−1 < · · · < l2 < l1 = n− 1}.
(7.5)

For i = 2, SM2 is given by the same formula as (7.5) with w1 and w2 interchanged. Moreover, SMi,
3 ≤ i ≤ n− 1, and SMn are given as follows:

SMi = {wn(ln) · · ·wi(li) | i ≤ li ≤ 2i− 3 , 1 ≤ ln ≤ · · · ≤ li+1 ≤ 2i− li − 2}, (7.6)

SMn = {wn(ln) | n ≤ ln ≤ 2n− 2}. (7.7)

The following lemma will be used in proof of Proposition 7.3.

Lemma 7.4. Let w ∈ SMi, and w = si1 · · · sir be a reduced expression of w; recall that ir = i. For
each 1 ≤ p ≤ r − 1, we set up := #{p+ 1 ≤ a ≤ r | ia ∈ adjs(ip)}. Then,

up ∈ 2N0 if ip = i, (7.8)

up ∈ 2N0 + 1 if ip 6= i. (7.9)

Proof. By (3.1), we have 〈Λi−αir −· · ·−αip+1
, α∨

ip
〉 = 1 for all 1 ≤ p ≤ r, and hence δi,ip − aip,ir −· · ·−

aip,ip+1
= 1. Now, we set tp := #{p + 1 ≤ a ≤ r | ia ∈ adjℓ(ip)} and qp := #{p + 1 ≤ a ≤ r | ia = ip}.

If ip = i, then 1 − up − 2tp + 2qp = 1. Therefore, we obtain up = 2(qp − tp) ∈ 2N0. If ip 6= i, then
−up − 2tp + 2qp = 1. Hence we have up = 2(qp − tp)− 1 ∈ 2N0 + 1.

Proof of Proposition 7.3. We give a proof only (7.6); the proofs for (7.4), (7.5), and (7.7) are similar and
simpler. In order to show the inclusion ⊂, let w ∈ SMi. By Lemma 6.4, in any reduced expression of
w, the right-most generator is si. Hence, we have w ∈W Ji by [2, Lemma 2.4.3]. By Proposition 7.2, we
can write w as

w = wn(ln) · · ·wi(li) (7.10)
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for some li, . . . , ln−1, ln satisfying conditions (D1)–(D4). If lj = 0 for some i ≤ j ≤ n, then ln =
ln−1 = · · · = lj+1 = 0, which implies that sn does not appear in (7.10). However, this contradicts
Proposition 4.2. Thus we obtain lj ≥ 1 for all i ≤ j ≤ n. Let w = sjr · · · sj1 be a reduced expression of
w obtained by the product of reduced expressions of each wj(lj) in (7.10). Suppose, for a contradiction,
that li = 2i− 2. Since li+1 ≥ 1 and j2i−1 = i+1 6= i, this contradicts (7.9) because u2i−1 = 2 /∈ 2N0 +1.
Hence we have li ≤ 2i−3. Next, let us show that i ≤ li. If li ≤ i−1, then we have li = i−1 and li+1 = i
because both s1 and s2 appear in (7.10) by Proposition 4.2. Since j2i−1 = 1 6= i (or j2i−1 = 2 6= i),
this contradicts (7.9) because u2i−1 = 2 /∈ 2N0 + 1. Therefore, we have i ≤ li ≤ 2i − 3. Suppose, for a
contradiction, that li+1 ≥ 2i− li − 1. Since j2i−1 = li − i− 3, it follows that u2i−1 = 4 /∈ 2N0 + 1 (resp.,
u2i−1 = 3 /∈ 2N0) if i ≤ li ≤ 2i−4 (resp., li = 2i−3). This contradicts (7.9) (resp., (7.8)). Hence we have
li+1 ≤ 2i−li−2. Recall from (D2) that lj+1 ≤ lj+1 for all i+1 ≤ j ≤ n−1. Suppose, for a contradiction,
that lj+1 = lj +1 for some i+1 ≤ j ≤ n− 1. If we set m := min {i+1 ≤ j ≤ n− 1 | lj+1 = lj +1}, then
lm ≤ lm−1 ≤ · · · ≤ li+1. By direct computation, we obtain

uM =


2lm if lm ≤ m− i+ 1,

2(m− i) + 1 if lm = m− i+ 1,

2(m− i+ 1) if lm ≥ m− i+ 1,

where M := lm+1 + lm + · · · + li; remark that lm = m − i + 1 if and only if jM = i. This contradicts
(7.8) and (7.9). Therefore we obtain 1 ≤ ln ≤ ln−1 ≤ · · · ≤ li+1 ≤ 2i− li − 2, as desired. Thus we have
shown the inclusion ⊂.
Next, let us show the reverse inclusion ⊃. Let 3 ≤ i ≤ n − 1, and let w = wn(ln) · · ·wi(li) with

i ≤ li ≤ 2i − 3 and 1 ≤ ln ≤ · · · ≤ li+1 ≤ 2i − li − 2. Set ki := li − i + 2; note that 2 ≤ ki ≤ i − 1.
Take εi ∈ h∗, i ∈ I, such that α1 = ε2 + ε1, αj = εj − εj−1 for 2 ≤ j ≤ n, Λ1 = (ε1 + ε2 + · · ·+ εn) / 2,
Λ2 = (−ε1 + ε2 + · · ·+ εn) / 2 and Λj = εj + εj+1 + · · ·+ εn for 3 ≤ j ≤ n. Then, we compute

wi(li)Λi = ski
· · · s3s1s2s3 · · · si−1 si(εn + εn−1 + · · ·+ εi+1 + εi)︸ ︷︷ ︸

(εn+···+εi+1+εi,εi−εi−1)=1

= ski
· · · s3s1s2s3 · · · si−1(εn + εn−1 + · · ·+ εi+1 + εi−1)︸ ︷︷ ︸

(εn+···+εi+1+εi−1,εi−1−εi−2)=1

= · · · · · · · · · · · ·
= ski

· · · s3 s1(εn + εn−1 + · · ·+ εi+1 + ε1)︸ ︷︷ ︸
(εn+···+εi+1+ε1,ε2+ε1)=1

= ski
· · · s3(εn + εn−1 + · · ·+ εi+1 − ε2)︸ ︷︷ ︸

(εn+···+εi+1−ε2,ε3−ε2)=1

= · · · · · · · · · · · ·
= ski

(εn + εn−1 + · · ·+ εi+1 − εki−1)︸ ︷︷ ︸
(εn+···+εi+1−εki−1,εki

−εki−1)=1

= εn + εn−1 + · · ·+ εi+1 − εki
.

Since 1 ≤ ln ≤ · · · ≤ li+1 ≤ 2i− li − 2 ≤ i− 2, we can write wj(lj) as wj(lj) = spj
spj+1 · · · sj−1sj , where

pj := j − lj + 1 for i + 1 ≤ j ≤ n; remark that pj ≤ j and ki + 1 < pi+1 < pi+2 < · · · < pn ≤ n. We
compute

wi+1(li+1)(εn + · · ·+ εi+1 − εki
) = spi+1

spi+1+1 · · · si si+1(εn + · · ·+ εi+1 − εki
)︸ ︷︷ ︸

(εn+···+εi+1−εki
,εi+1−εi)=1

= spi+1
spi+1+1 · · · si(εn + · · ·+ εi+2 + εi − εki

)︸ ︷︷ ︸
(εn+···+εi+2+εi−εki

,εi−εi−1)=1

= · · · · · · · · · · · ·
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= spi+1(εn + · · ·+ εi+2 + εpi+1 − εki)︸ ︷︷ ︸
(εn+···+εi+2+εpi+1

−εki
,εpi+1

−εpi+1−1)=1

= εn + · · ·+ εi+2 + εpi+1−1 − εki
,

which implies that wi+1(lj+1)wi(li) is Λi-minuscule. Similarly, we see that for i+ 1 ≤ j ≤ n− 2,

wj+1(lj+1)(εn + · · ·+ εj+1 + εpj−1 + εpj−1−1 + · · ·+ εpi+1−1 − εki)

= εn + · · ·+ εj+2 + εpj+1−1 + εpj−1 + · · ·+ εpi+1−1 − εki ,

and hence wj+1(lj+1) · · ·wi+1(li+1)wi(li) is Λi-minuscule. Then,

wn(ln)(εn + εpn−1−1 + · · ·+ εpi+1−1 − εki)

= spn
spn+1 · · · sn−1 sn(εn + εpn−1−1 + · · ·+ εpi+1−1 − εki

)︸ ︷︷ ︸
(εn+εpn−1−1+···+εpi+1−1−εki

,εn−εn−1)=1

= · · · · · · · · · · · ·
= spn(εpn + εpn−1−1 + · · ·+ εpi+1−1 − εki)︸ ︷︷ ︸

(εpn+εpn−1−1+···+εpi+1−1−εki
,εpn−εpn−1)=1

,

which implies w = wn(ln) · · ·wi+1(li+1)wi(li) is Λi-minuscule.
Finally, let us show that w = wn(ln) · · ·wi+1(li+1)wi(li) is a strong minuscule element. In the expres-

sion w = wn(ln) · · ·wi+1(li+1)wi(li), we move the right-most sj in each wj(lj) to the right position, by
using the commutation relation spsq = sqsp for 3 ≤ p, q ≤ n with |p− q| ≥ 2, as follows:

wn(ln)=︷ ︸︸ ︷
sn−ln+1 · · · sn−1sn

wn−1(ln−1)=︷ ︸︸ ︷
s(n−1)−ln−1+1 · · · sn−2︸ ︷︷ ︸
these commute with sn

sn−1 wn−2(ln−2) · · ·wi(li)

= (wn(ln)sn)(wn−1(ln−1)sn−1)snsn−1

wn−2(ln−2)=︷ ︸︸ ︷
s(n−2)−ln−2+1 · · · sn−3︸ ︷︷ ︸
these commute with snsn−1

sn−2 · · ·wi(li)

= (wn(ln)sn)(wn−1(ln−1)sn−1)(wn−2(ln−2)sn−2)snsn−1sn−2wn−3(ln−3) · · ·wi(li)

= · · · · · · · · · · · ·
= (wn(ln)sn)(wn−1(ln−1)sn−1) · · · (wi+1(li+1)si+1)︸ ︷︷ ︸

=:u′

sn · · · si+1wi(li)

= u′sn · · · si+1 ski
· · · s3︸ ︷︷ ︸

these commute with sn···si+1

s1s2s3 · · · si

= u′ski · · · s3︸ ︷︷ ︸
=:u

sn · · · si+1s1s2s3 · · · si︸ ︷︷ ︸
=vi

;

remark that if i = 3, then u = e. Therefore it follows from Lemma 6.4 that w = wn(ln) · · ·wi+1(li+1)wi(li)
is a strong minuscule element. This completes the proof of Proposition 7.3.

Proof of Theorem 5.2. We give proofs only for the cases of type Bn and type Cn; the proofs for the
other cases are similar or simpler. In this proof, we denote by W (Bn) the Weyl group of type Bn,

and set J
(n)
i := {s1, . . . , sn} \ {si}. In the case of type Bn, we see from Proposition 7.3 that SM1 =

{wn(ln) · · ·w1(l1) | ln, . . . , l1 satisfy ln 6= 0 and (BC1)–(BC3)}. It is easy to see by Proposition 7.1 that

#{wn(ln) · · ·w1(l1) | ln, . . . , l1 satisfy ln = 0 and (BC1)–(BC3)} = #W (Bn−1)
J

(n−1)
1 .

Therefore, we obtain

#SM1 = #W (Bn)
J

(n)
1 −#W (Bn−1)

J
(n−1)
1 =

#W (Bn)

#W (Bn)J(n)
1

− #W (Bn−1)

#W (Bn−1)J(n−1)
1
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=
n!× 2n

n!
− (n− 1)!× 2n−1

(n− 1)!
= 2n − 2n−1 = 2n−1,

as desired.
In the case of type Cn with 2 ≤ i ≤ n− 1, we see from Proposition 7.3 that SMi = {wn(ln) · · ·wi(li) |

i ≤ li ≤ 2i− 2 , 1 ≤ ln ≤ · · · ≤ li+1 ≤ 2i− li − 1}. Hence we have

#SMi =

2i−2∑
li=i

(
n+ i− 2− li

n− i

)
=

(
n− 2

n− i

)
+

(
n− 3

n− i

)
+ · · ·+

(
n− i

n− i

)
=

(
n

i− 1

)
−
(
n− 1

i− 1

)
=

(
n− 1

i− 2

)
;

remark that
(
n
r

)
=

∑n−1
k=r−1

(
k

r−1

)
and

(
n
r

)
=

(
n−1
r

)
+
(
n−1
r−1

)
.

8 Proof of Theorem 5.3.
Proof of Theorem 5.3. We give a proof only for the case of type An; the proofs for the other cases are
similar or simpler. Let w ∈ SMi. By Proposition 7.3, we have w ∈ W Ji , and hence w ≤ wJi

0 . By
Lemma 6.4, there exists u ∈ W such that w = uvi with ℓ(w) = ℓ(u) + ℓ(vi). Hence, by the subword
property of the Bruhat order (see, e.g., [2, Theorem 2.2.2]), we have vi ≤ w. Therefore, we conclude that

w ∈ [vi, w
Ji
0 ]Ji .

Conversely, let w ∈ [vi, w
Ji
0 ]Ji = [vi, w

Ji
0 ] ∩W Ji . By Proposition 7.1, there exist 0 ≤ pn ≤ · · · ≤ pi ≤ i

such that w = wn(pn) · · ·wi(pi). Since vi ≤ w by assumption, it follows from the subword property that
both s1 and sn appear in any reduced expression for w. Observe that for i < j ≤ n, the element wj(pj)
does not have a reduced expression in which s1 appears, and that the element wi(pi) has a reduced
expression in which s1 appears if and only if pi = i. Thus we conclude that pi = i. Also, observe that
for i ≤ j < n, the element wj(pj) does not have a reduced expression in which sn appears, and that the
element wn(pn) has a reduced expression in which sn appears if and only if pn ≥ 1. Thus we conclude
that pn ≥ 1. Therefore, by Proposition 7.3, we have w ∈ SMi, as desired.

Remark 8.1. In general, [vi, w
Ji
0 ]Ji ⊊ [vi, w

Ji
0 ]. Indeed, in the Weyl group of type A4, we see that

s2v3 = s2s1s2s4s3 ∈ [v3, w
J3
0 ] \ [v3, wJ3

0 ]J3 ; note that this element is not a minuscule element, and hence
Lemma 6.4 is not valid for this element.

For Λ ∈ P+, let L(Λ) denote the finite-dimensional irreducible g-module of highest weight Λ, with
L(Λ) =

⊕
µ∈P L(Λ)µ the weight space decomposition; recall that dimL(Λ)τ(Λ) = 1 for all τ ∈W . Denote

by n+ the subalgebra of g generated by the root spaces corresponding to positive roots. For τ ∈ W , we
denote by Eτ (Λ) the n+-submodule of L(Λ) generated by L(Λ)τ(Λ), which we call the Demazure module
of lowest weight τ(Λ).

Remark 8.2. For i ∈ I, we assume that Λ = Λi is a minuscule weight. In this case, the dimension of
the Demazure module Eτ (Λ) for τ ∈ W Ji is equal to [e, τ ]Ji (this fact follows from, for example, the
theory of Lakshmibai-Seshadri paths; see [6, Theorem 5.2]).

Let and fix i ∈ I. For τ ∈ W Ji , we set τ̄ := w0τwJi,0, where wJi,0 ∈ WJi is the longest element of
WJi

. Then we see by [2, Proposition 2.5.4] that τ̄ ∈ W Ji , and that the map · : W Ji → W Ji , τ 7→ τ̄ , is
an order-reversing involution on W Ji .

Corollary 8.3. Let i ∈ K be such that Λi is a minuscule weight. It hold that

(1) If g is of type An, then dimEvi(Λi) =
(
n−1
i−1

)
for each i ∈ I.

(2) If g is of type Bn, then dimEv1(Λ1) = 2n−1.
(3) If g is of type Cn, then dimEvn(Λn) = n+ 1.
(4) If g is of type Dn, then dimEv1(Λ1) = dimEv2(Λ2) = 2n−2 − 1, and dimEvn(Λn) = n.
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Proof. We see that

[vi, w
Ji
0 ]Ji = [wJi

0 , vi]
Ji = [w0w

Ji
0 wJi,0, vi]

Ji = [w2
0, vi]

Ji = [e, vi]
Ji .

Hence, #[vi, w
Ji
0 ]Ji = #[e, vi]

Ji . Because we have #[vi, w
Ji
0 ]Ji = #SMi or #[vi, w

Ji
0 ]Ji = #SMi + 1 by

Theorems 5.2 and 5.3, we conclude by using Remark 8.2 that dimEvi(Λi) = #[e, vi]
Ji = #[vi, w

Ji
0 ]Ji =

#SMi or #SMi + 1, as desired.
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Part II

9 Preliminaries.

9.1 Young diagrams.

Let N denote the set of positive intgers. For a, b ∈ Z, we set [a, b] := {x ∈ Z | a ≤ x ≤ b}. Throughout
this part, we fix m,n ∈ N such that m ≤ n. For a positive integer x ∈ N, we set x := m + n + 1 − x.
Let Ym(m + n) be the set of partitions λ = (λ1, . . . , λm) of length at most m such that n ≥ λ1 ≥
· · · ≥ λm ≥ 0. We can identify λ = (λ1, . . . , λm) ∈ Ym(m + n) with the Young diagram Yλ := {(i, j) ∈
N2 = N × N | 1 ≤ i ≤ m, 1 ≤ j ≤ λi} of shape λ; if λ = (0, 0, . . . , 0) ∈ Ym(m + n), then we denote
Yλ by ∅, and call it the empty Young diagram. We identify (i, j) ∈ Yλ with the square in R2 whose
vertices are (i − 1, j − 1), (i − 1, j), (i, j − 1), and (i, j); elements in Yλ are called boxes in Yλ. Let
Ym,n := {(i, j) ∈ N2 | 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the rectangular Young diagram of size m × n, which
corresponds to (n, n, . . . , n) ∈ Ym(m + n). Set F(Ym,n) := {Yλ | λ ∈ Ym(m + n)}; notice that F(Ym,n)
is identical to the set of all Young diagrams contained in the rectangular Young diagram Ym,n. We set
λD := (n − λm, . . . , n − λ1) ∈ Ym(m + n). The Young diagram Y D

λ := YλD is called the dual Young
diagram of Yλ (in Ym,n).

Ym,n =

(0, 0) 1

1

2

2

j

i

•
•

•
•

. . .

• •m

n

•
•

•

=

j

i

m

n

Yλ

Y
D
λ

Let
(
[1,m+n]

m

)
denote the set of all subsets of [1,m + n] having m elements. For λ = (λ1, . . . , λm) ∈

Ym(m+ n), we set i′t := λm−t+1 + t for 1 ≤ t ≤ m; observe that Iλ := {i′1 < · · · < i′m} ∈
(
[1,m+n]

m

)
. It is

well-known that the map λ 7→ Iλ is a bijection from Ym(m + n) onto
(
[1,m+n]

m

)
. By the composition of

this bijection and the inverse of the bijection Ym(m + n) → F(Ym,n), λ 7→ Yλ, we obtain a bijection I

from F(Ym,n) onto
(
[1,m+n]

m

)
. Let Y ∈ F(Ym,n). For (i, j) ∈ Y , we set HY (i, j) := {(i, j)} ∪ {(i, j′) ∈ Y |

j < j′} ∪ {(i′, j) ∈ Y | i < i′}, and call it the hook at (i, j) in Y . Also, for (i, j) ∈ Y , we set

Y 〈i, j〉 := {(i′, j′) | (i′, j′) ∈ Y, and i′ < i or j′ < j}
∪ {(i′ − 1, j′ − 1) | (i′, j′) ∈ Y, i′ > i and j′ > j}.

The procedure which obtains Y 〈i, j〉 from Y is called removing the hook at (i, j) from Y (see Figure 1
below).

9.2 Combinatrial game theory.

For the general theory of combinatorial games, we refer the reader to [19, Chapters 1 and 2]. In this
subsection, we fix an impartial game in normal play whose game positions are all short (in the sense of
[19, pages 4 and 9]).

Definition 9.1. A game position of an impartial game is called an N -position (resp., a P-position) if
the next player (resp., the previous player) has a winning strategy.

Definition 9.2. For a (proper) subset X of N0, we set mexX := min (N0 \X).

For a game position G of an impartial game, we denote by O(G) the set of all options of G.

17



Y =

(i, j)

HY (i, j)

remove HY (i, j)

from Y

{(i′, j′) ∈ Y | i′ < i or j′ < j}

{(i′, j′) ∈ Y | i′ > i and j′ > j}

fill the gap

between
two diagrams

= Y 〈i, j〉

Figure 1. Removing the hook at (i, j) from Y .

Definition 9.3. Let G be a game position. The Grundy value G(G) of G is defined by

G(G) :=

{
0 if G is an ending position,

mex {G(P ) | P ∈ O(G)} if G is not an ending position.

Recall from [19, page 6] that each game position of an impartial game is either an N -position or a
P-position. The following result is well-known in the combinatorial game theory.

Theorem 9.4 ([19, Theorem 2.1]). A game position G is a P-position if and only if G(G) = 0.

10 Unimodal numbering on Young diagrams.
Let Y ∈ F(Ym,n). For each box (i, j) ∈ Y , we write c (i, j) := min (j− i+m, i− j+n) on it; we call this
numbering on Y the unimodal numbering on Y .

Example 10.1. Assume that m = 3 and n = 5. The Young diagram Y = Y(4,4,2) ∈ F(Y3,5) with the
unimodal numbering is as follows:

j

i

3 4 3 2

2 3 4 3

1 2

It can be easily checked that c := (m + n − 1 + χ) / 2 is the maximum number appearing in the
moutainous numbering, where

χ :=

{
1 if m+ n ∈ 2N,
0 if m+ n ∈ 2N+ 1.
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We define Dm,n ⊂ Nm+n+1
0 by

Dm,n := {(a1, a2, a3, . . . , am+n−1, am+n, am+n+1) ∈ Nm+n+1
0 |

a1 = am+n+1 = 0 , 0 ≤ ak − ak−1 ≤ 1 for 2 ≤ k ≤ m+ 1,

0 ≤ ak − ak+1 ≤ 1 for m+ 1 ≤ k ≤ m+ n}.

For Y ∈ F(Ym,n), we set dk = dk(Y ) := #{(i, j) ∈ Y | j − i = −m− 1 + k} for each 1 ≤ k ≤ m+ n+ 1;
note that d1 = dm+n+1 = 0. We know from [1, Proposition 3.6] that

Dm,n(Y ) := (d1, d2, d3, . . . , dm+n−1, dm+n, dm+n+1)

is an element of Dm,n. Thus we obtain the map Dm,n : F(Ym,n) → Dm,n, Y 7→ Dm,n(Y ). An element
Dm,n(Y ) ∈ Dm,n is called the diagonal expression of Y . For simplicity of notation, we denote Dm,n by
D.

Example 10.2. Assume that m = 3 and n = 5. Let λ = (4, 3, 1) ∈ Y3(8). Then we have D3,5(Yλ) =
(0, 1, 1, 2, 2, 1, 1, 0, 0) ∈ D3,5.

Proposition 10.3 ([1, Proposition 3.6]). The map Dm,n : F(Ym,n) → Dm,n is bijective.

Here we recall from [1, Subsection 3.3] the relation between “removing a hook” (see Figure 1) and the
diagonal expression (see Example 10.5 below). For a subset S of Y ∈ F(Ym,n), we define HY (S) to be
the multiset consisting of c (i, j) for (i, j) ∈ S. The multiset HY (S) is called the numbering multiset for
S. In particular, if S = HY (i, j) for some (i, j) ∈ Y , then we denote HY (S) by HY (i, j). We deduce that
HY (Y ) = HY (Y 〈i, j〉)∪HY (i, j) (the union of multisets). Now, let Y ∈ F(Ym,n), and fix (i, j) ∈ Y . Let
i′ (resp., j′) be such that (i′, j) ∈ Y and (i′ + 1, j) /∈ Y (resp., (i, j′) ∈ Y and (i, j′ + 1) /∈ Y ).

j

i

(i′, j)

(i, j′)
(i, j)

· · · · · · · · ·
...

Then we see that

#{(x, y) ∈ Y | y − x = −m+ k} −#{(x, y) ∈ Y 〈i, j〉 | y − x = −m+ k}

=

{
1 if m+ j − i′ ≤ k ≤ m+ j′ − i,

0 otherwise.

Therefore, if

D(Y ) = (d1, . . . , dm+j−i′ , dm+j−i′+1, dm+j−i′+2, . . . ,

dm+j′−i, dm+j′−i+1, dm+j′−i+2, . . . , dm+n+1),

then

D(Y 〈i, j〉) = (d1, . . . , dm+j−i′ , dm+j−i′+1 − 1, dm+j−i′+2 − 1 . . . ,

dm+j′−i − 1, dm+j′−i+1 − 1, dm+j′−i+2 . . . , dm+n+1).

Thus, if we remove a hook from Y ∈ F(Ym,n), then 1 is subtracted from some consecutive entries in D(Y );
in the case above, the consecutive entries are dl, dl+1, . . . , dr, with l = m+j−i′+1 and r = m+j′−i+1.
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Definition 10.4. Let a = (a1, a2, . . . , am+n, am+n+1) ∈ Dm,n; recall that a1 = am+n+1 = 0. For

2 ≤ l ≤ r ≤ m+ n, we write a
l,r−→ a′ if ak ≥ 1 for all l ≤ k ≤ r, and a′ = (a1, a2, . . . , al−1, al − 1, al+1 −

1, . . . , ar−1 − 1, ar − 1, ar+1, . . . , am+n, am+n+1) ∈ Nm+n+1
0 .

Recall that the map D = Dm,n : F(Ym,n) → Dm,n is bijective. Let a,a′ ∈ Dm,n, and set Y :=

D−1(a), Y ′ := D−1(a′). If a
l,r−→ a′ for some 2 ≤ l ≤ r ≤ m+ n, then we write Y

l,r−→ Y ′.

Example 10.5. Keep the notation and setting in Example 10.2. It follows that Yλ〈2, 1〉 =

{(1, 1), (1, 2), (1, 3), (1, 4)}, and hence D(Yλ〈2, 1〉) = (0, 0, 0, 1, 1, 1, 1, 0, 0). Thus we have D(Yλ)
2,5−−→

D(Yλ〈2, 1〉) (and hence Yλ
2,5−−→ Yλ〈2, 1〉).

11 Multiple Hook Removing Game.
Abuku and Tada [1] introduced an impartial game, named Multiple Hook Removing Game (MHRG for
short), whose rule is given as follows; recall that m and n are fixed positive integers such that m ≤ n:

(1) All game positions are some Young diagrams contained in F(Ym,n) with the unimodal numbering.
The starting position is the rectangular Young diagram Ym,n.

(2) Assume that Y ∈ F(Ym,n) appears as a game position. If Y 6= ∅ (the empty Young diagram), then
a player chooses a box (i, j) ∈ Y , and remove the hook at (i, j) in Y ; recall from Subsection 9.1 that
the resulting Young diagram is Y 〈i, j〉. Then we know from [1, Lemma 3.15] (see also Lemma 11.4
below) that f := #{(i′, j′) ∈ Y 〈i, j〉 | HY ⟨i,j⟩(i

′, j′) = HY (i, j) (as multisets)} ≤ 1. If f = 0, then
a player moves Y to Y 〈i, j〉 ∈ O(Y ); we call this case and this operation (MHR 1). If f = 1, then
a player moves Y to (Y 〈i, j〉)〈i′, j′〉 ∈ O(Y ), where (i′, j′) ∈ Y 〈i, j〉 is the unique element such that
HY ⟨i,j⟩(i

′, j′) = HY (i, j); we call this case and this operation (MHR 2).
(3) The (unique) ending position is the empty Young diagram ∅. The winner is the player who makes ∅

after his/her operation (2).

Definition 11.1. We denote by S(Ym,n) the set of all those Young diagrams in F(Ym,n) which ap-
pear as game positions of MHRG (with Ym,n the starting position); in general, S(Ym,n) ⊊ F(Ym,n) as
Example 11.3 below shows.

Definition 11.2. Let Y ∈ S(Ym,n), and Y
′ ∈ O(Y ). If a player moves Y to Y ′ by operation (MHR 1)

(resp., (MHR 2)), then we write Y
(MHR 1)−−−−−−→ Y ′ (resp., Y

(MHR 2)−−−−−−→ Y ′).

Example 11.3. Assume that m = 2 and n = 3. The elements of S(Y2,3) are

2 2 1
1 2 2

2 2 1
1

2 2

(MHR 1) or (MHR 2)

(MHR 2)

∅
(MHR 1) or (MHR 2)

(MHR 1)

or (MHR 2)

(MHR 1)

or (MHR 2)
(MHR 2)

The following elements of F(Y2,3) are not contained in S(Y2,3):

2 2 1
1 2

, 2 2
1 2

, 2 2
1

, 2 2 1 , 2
1
, 2 .
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Lemma 11.4 ([1, Lemma 3.15]). Let Y ∈ F(Ym,n), and (i, j) ∈ Y . Assume that there exists a box

(i′, j′) ∈ Y 〈i, j〉 such that HY ⟨i,j⟩(i
′, j′) = HY (i, j) (as multisets). If Y

l,r−→ Y 〈i, j〉, then Y 〈i, j〉 r−1,l−1−−−−−→
(Y 〈i, j〉)〈i′, j′〉. In particular, #{(i′, j′) ∈ Y 〈i, j〉 | HY ⟨i,j⟩(i

′, j′) = HY (i, j) (as multisets)} ≤ 1.

Remark 11.5. In fact, the following holds (see [1, Lemma 3.15]), although we do not use these facts in
this thesis.

(1) Keep the notation and setting in Lemma 11.4. There does not exist (i′′, j′′) ∈ (Y 〈i, j〉)〈i′, j′〉 such
that H(Y ⟨i,j⟩)⟨i′,j′⟩(i

′′, j′′) = HY (i, j).
(2) Let (i, j), (k, l) ∈ Y . Assume that HY (i, j) = HY (k, l). If there exists a box (i′, j′) ∈ Y 〈i, j〉

such that HY ⟨i,j⟩(i
′, j′) = HY (i, j), then there exists a (unique) box (k′, l′) ∈ Y 〈k, l〉 such that

HY ⟨k,l⟩(k
′, l′) = HY (i, j). Moreover, in this case, we have (Y 〈i, j〉)〈i′, j′〉 = (Y 〈k, l〉)〈k′, l′〉.

12 Description of S(Ym,n).
Recall that m,n ∈ N are such that m ≤ n, and that c = max {c (i, j) | (i, j) ∈ Ym,n} is equal to
(m+ n− 1 + χ) / 2, where χ = 0 (resp., χ = 1) if m+ n is odd (resp., even). Also, we have a canonical

bijection I : F(Ym,n) →
(
[1,m+n]

m

)
(see Subsection 9.1).

Let Y ∈ F(Ym,n). We set IR(Y ) := I(Y )∩ [c+1−χ,m+n]; note that c+ 1− χ = m+n+1−(c+1−χ) =
c+ 1 ≥ c+ 1− χ.

Theorem 12.1. Let Y ∈ F(Ym,n), and λ = (λ1, . . . , λm) the partition corresponding to Y , that is,
Y = Yλ. The following (Ⅰ), (Ⅱ), (Ⅲ), and (Ⅳ) are equivalent.
(Ⅰ) Y ∈ S(Ym,n). (Ⅱ) Y D ∈ S(Ym,n). (Ⅲ) IR(Y ) ∩ IR(Y D) = ∅.
(Ⅳ) λi + λj 6= n−m+ i+ j − 1 for all 1 ≤ i, j ≤ m.

The rest of this section is devoted to a proof of Theorem 12.1. We can easily show the following lemma.

Lemma 12.2. (A) It holds that I(Y D) = {i = m+ n+ 1− i | i ∈ I(Y )} = I(Y ) for Y ∈ F(Ym,n).
(B) Let Y ∈ F(Ym,n), and let l, r ∈ [2,m + n] such that l ≤ r. Then, l − 1 /∈ I(Y ) and r ∈ I(Y ) if

and only if there exists a (unique) box (i, j) ∈ Y such that Y
l,r−→ Y 〈i, j〉; in this case, I(Y 〈i, j〉) =

(I(Y ) \ {r}) ∪ {l − 1} and I(Y 〈i, j〉D) = (I(Y D) \ {r}) ∪ {l − 1}.

Remark 12.3. Let Y ∈ F(Ym,n), and (i, j) ∈ Y . Let 2 ≤ l ≤ r ≤ m+n be such that Y
l,r−→ Y 〈i, j〉. By

Lemmas 11.4 and 12.2 (B), it follows that r /∈ I(Y 〈i, j〉) and l − 1 ∈ I(Y 〈i, j〉) if and only if there exists

a (unique) box (i′, j′) ∈ Y 〈i, j〉 such that Y 〈i, j〉 r−1,l−1−−−−−→ (Y 〈i, j〉)〈i′, j′〉; in particular, in this case, it
holds that HY ⟨i,j⟩(i

′, j′) = HY (i, j) (as multisets).

We first show (Ⅰ) ⇒ (Ⅲ). Since Y ∈ S(Ym,n) by (Ⅰ), there exists a sequence of game positions of the
form

Ym,n = Y0
t1−→ Y1

t2−→ Y2
t3−→ · · · tp−→ Yp = Y,

where ti is either (MHR 1) or (MHR 2) for each 1 ≤ i ≤ p. For 1 ≤ i ≤ p such that ti is (MHR 2), we

see from Lemmas 11.4 and 12.2 (B) that Yi−1
li,ri−−−→ Y ′

i
ri−1,li−1−−−−−−→ Yi for some 2 ≤ li ≤ ri ≤ m + n with

li − 1 /∈ I(Yi−1), ri ∈ I(Yi−1), and Y
′
i ∈ F(Ym,n). Similarly, for 1 ≤ i ≤ p such that ti is (MHR 1), there

exists 2 ≤ li ≤ ri ≤ m+n with li − 1 /∈ I(Yi−1) and ri ∈ I(Yi−1) such that Yi−1
li,ri−−−→ Yi; we set Y ′

i := Yi
by convention. We show by induction on p that IR(Yp) ∩ IR(Y D

p ) = ∅. If p = 0, then it is obvious that

IR(Ym,n) ∩ IR(Y D
m,n) = ∅, since IR(Ym,n) = {n+ 1, n+ 2, . . . ,m+ n} and

IR(Y
D
m,n) = IR(∅) =

{
∅ if m < n,

{m} if m = n.
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Assume that p > 0; by the induction hypothesis,

IR(Yp−1) ∩ IR(Y D
p−1) = ∅. (12.1)

By Lemma 12.2 (B), we have

IR(Y
′
p) \ {lp − 1} = IR(Yp−1) \ {rp}, (12.2)

IR(Y
′D
p ) \ {lp − 1} = IR(Y

D
p−1) \ {rp}. (12.3)

Lemma 12.4. It holds that IR(Y
′
p)∩IR(Y ′D

p ) 6= ∅ if and only if lp − 1 ∈ I(Yp−1)\{rp} or lp−1 = lp − 1;

notice that lp − 1 = lp − 1 if and only if χ = 0 and lp − 1 = c+ 1.

Proof. Assume first that lp − 1 < c+ 1− χ; recall that lp − 1 > c+ 1− χ = c+ 1 ≥ c+ 1− χ. It follows
from (12.2) and (12.3) that

IR(Y
′
p) = IR(Yp−1) \ {rp} , IR(Y

′D
p ) = (IR(Y

D
p−1) \ {rp}) ∪ {lp − 1}.

Because IR(Yp−1) ∩ IR(Y D
p−1) = ∅ by the induction hypothesis, we see that IR(Y

′
p) ∩ IR(Y ′D

p ) 6= ∅ if and

only if lp − 1 ∈ IR(Yp−1) \ {rp}. Assume next that lp − 1 ≥ c+ 1− χ. It follows from (12.2) and (12.3)
that

IR(Y
′
p) = (IR(Yp−1) \ {rp}) ∪ {lp − 1},

IR(Y
′D
p ) =

{
IR(Y

D
p−1) \ {rp} if lp − 1 < c+ 1− χ,

(IR(Y
D
p−1) \ {rp}) ∪ {lp − 1} if lp − 1 ≥ c+ 1− χ.

Here we note that lp − 1 ∈ I(Yp−1) \ {rp} if and only if lp − 1 ∈ I(Y D
p−1) \ {rp} by Lemma 12.2 (A). If

lp − 1 < c + 1 − χ (resp., lp − 1 ≥ c + 1 − χ), then it holds that IR(Y
′
p) ∩ IR(Y ′D

p ) 6= ∅ if and only if

lp − 1 ∈ I(Yp−1) \ {rp} (resp., lp − 1 ∈ IR(Yp−1) \ {rp} or lp − 1 = lp − 1). Thus we have proved the
lemma.

Proposition 12.5. (1) The operation tp is (MHR 1) if and only if either of the following (a) or (b)
holds.
(a) lp − 1 /∈ I(Yp−1) and lp − 1 6= lp − 1.

(b) lp − 1 = rp (notice that lp − 1 6= lp − 1 also in this case since lp − 1 6= rp = lp − 1).

(2) The operation tp is (MHR 2) if and only if lp − 1 ∈ I(Yp−1) \ {rp} or lp − 1 = lp − 1.

Proof. It suffices to show only part (2). We first show the “only if” part of (2). Assume that tp is

(MHR 2); recall that Yp−1
lp,rp−−−→ Y ′

p

rp−1,lp−1−−−−−−−→ Yp. It follows from Lemma 12.2 (B) (applied to Y = Y ′
p

and Y 〈i, j〉 = Yp) that lp − 1 ∈ I(Y ′
p) = (I(Yp−1) \ {rp})∪{lp− 1}. Thus we have lp − 1 ∈ I(Yp−1) \ {rp}

or lp − 1 = lp − 1. We next show the “if” part of (2); by Remark 12.3, and Lemmas 11.4 and 12.2 (B),

it suffices to show that rp /∈ I(Y ′
p) and lp − 1 ∈ I(Y ′

p). Because I(Y ′
p) = (I(Yp−1) \ {rp}) ∪ {lp − 1},

it is obvious from the assumption that lp − 1 ∈ I(Y ′
p). Let us show that rp /∈ I(Y ′

p). Suppose, for a
contradiction, that rp ∈ I(Y ′

p). Since I(Y ′
p) = (I(Yp−1) \ {rp}) ∪ {lp − 1}, and since rp 6= lp − 1, we

have rp ∈ I(Yp−1) \ {rp} ⊂ I(Yp−1), and hence rp ∈ I(Y D
p−1) by Lemma 12.2 (A). If c + 1 − χ ≤ rp,

then rp ∈ IR(Y
D
p−1). Since rp ∈ IR(Yp−1) by Lemma 12.2 (B) (applied to Yp−1

lp,rp−−−→ Y ′
p), we get

rp ∈ IR(Yp−1) ∩ IR(Y D
p−1), which contradicts the induction hypothesis (12.1). If c + 1 − χ > rp, then

c + 1 − χ ≤ c + 1 = c+ 1− χ < rp, which implies that rp ∈ IR(Yp−1). Since rp ∈ I(Yp−1), we have
rp ∈ IR(Y

D
p−1) by Lemma 12.2 (A). Hence we get rp ∈ IR(Yp−1) ∩ IR(Y

D
p−1), which contradicts the

induction hypothesis (12.1). Therefore we obtain rp /∈ I(Y ′
p), as desired. Thus we have proved the

proposition.
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If tp is (MHR 1) (recall that Y ′
p = Yp and Y D′

p = Y D
p in this case), then we see by Lemma 12.4

and Proposition 12.5 (1) that IR(Yp) ∩ IR(Y
D
p ) = ∅. Assume that tp is (MHR 2), or equivalently,

lp − 1 ∈ I(Yp−1) \ {rp} or lp − 1 = lp − 1 by Proposition 12.5 (2). Because Yp−1
lp,rp−−−→ Y ′

p

rp−1,lp−1−−−−−−−→ Yp
in this case, it follows from Lemma 12.2 (B) that

IR(Yp) \ {rp, lp − 1} = IR(Yp−1) \ {rp, lp − 1}, (12.4)

IR(Y
D
p ) \ {rp, lp − 1} = IR(Y

D
p−1) \ {rp, lp − 1}. (12.5)

Hence, by (12.4) and (12.5), together with the induction hypothesis (12.1), we obtain IR(Yp)∩IR(Y D
p ) =

∅. Thus we have proved (Ⅰ) ⇒ (Ⅲ) in Theorem 12.1.
Conversely, we prove (Ⅲ)⇒ (Ⅰ), that is, Y ∈ S(Ym,n) if IR(Y )∩IR(Y D) = ∅. We show by (descending)

induction on 〈I(Y )〉 :=
∑

i∈I(Y ) i. It is obvious that Ym,n ∈ S(Ym,n). Assume that 〈I(Y )〉 < 〈I(Ym,n)〉.
Since I(Ym,n) = [n + 1,m + n], and I(Y ) 6= I(Ym,n) with #I(Y ) = m, there exists r /∈ I(Y ) such
that n + 1 ≤ r. Also, there exists l ≤ r such that l − 1 ∈ I(Y ); note that l − 1 < r. Here we
show that l − 1 /∈ I(Y ). Suppose, for a contradiction, that l − 1 ∈ I(Y ). If c + 1 − χ ≥ l − 1,
then c + 1 − χ ≤ c + 1 = c+ 1− χ ≤ l − 1, and hence l − 1 ∈ IR(Y ). By Lemma 12.2 (A) applied
to l − 1 ∈ I(Y ), it follows that l − 1 ∈ IR(Y

D). Thus we obtain l − 1 ∈ IR(Y ) ∩ IR(Y
D), which

contradicts the assumption that IR(Y )∩ IR(Y D) = ∅. If c+ 1− χ < l− 1, then l− 1 ∈ IR(Y
D) because

l − 1 ∈ I(Y ). Since l − 1 ∈ IR(Y ), we get l − 1 ∈ IR(Y ) ∩ IR(Y D), which contradicts the assumption
that IR(Y ) ∩ IR(Y D) = ∅. Therefore we obtain l − 1 /∈ I(Y ).

Proposition 12.6. Keep the setting above.

(1) If r /∈ I(Y ) or r = l − 1, then there exists a (unique) Young diagram Y ′ such that I(Y ′) = (I(Y ) \
{l−1})∪{r} and I(Y ′D) = (I(Y D)\{l − 1})∪{r}. Furthermore, Y ′ ∈ S(Ym,n), and Y

′ (MHR 1)−−−−−−→ Y .
(2) If r ∈ I(Y ) and r 6= l − 1, then there exists a (unique) Young diagram Y ′′ such that I(Y ′′) =

(I(Y )\{r, l−1})∪{r, l − 1} and I(Y ′′D) = (I(Y D)\{r, l − 1})∪{r, l−1}. Furthermore, Y ′′ ∈ S(Ym,n),

and Y ′′ (MHR 2)−−−−−−→ Y .

Proof. (1) Recall that l − 1 ∈ I(Y ) and r /∈ I(Y ), which implies that (I(Y ) \ {l − 1}) ∪ {r} ∈
(
[1,m+n]

m

)
.

Since I : F(Ym,n) →
(
[1,m+n]

m

)
is a bijection, there exists unique Y ′ ∈ F(Ym,n) such that I(Y ′) =

(I(Y ) \ {l − 1}) ∪ {r}; note that I(Y ′D) = (I(Y D) \ {l − 1}) ∪ {r} by Lemma 12.2 (A). Then it follows

from Lemma 12.2 (B) that Y ′ l,r−→ Y . Because r /∈ I(Y ) or r = l − 1 by the assumption of (1), and
IR(Y )∩ IR(Y D) = ∅ by assumption, it can be easily verified that IR(Y

′)∩ IR(Y ′D) = ∅. Since l− 1 < r,
we have 〈I(Y ′)〉 > 〈I(Y )〉, and hence Y ′ ∈ S(Ym,n) by the induction hypothesis. Because l − 1 /∈ I(Y ),

we see from Remark 12.3 that there does not exist a box (i, j) ∈ Y such that Y
r−1,l−1−−−−−→ Y 〈i, j〉. Thus

we obtain Y ′ (MHR 1)−−−−−−→ Y , as desired.
(2) Let Y ′ be as in the proof of part (1). Since r ∈ I(Y ) and r 6= l − 1 by the assumption of (2), and
l − 1 /∈ I(Y ) as seen above,

(I(Y ′) \ {r}) ∪ {l − 1} = (I(Y ) \ {r, l − 1}) ∪ {r, l − 1} ∈
(
[1,m+ n]

m

)
.

Thus there exists Y ′′ ∈ F(Ym,n) such that I(Y ′′) = (I(Y ) \ {r, l − 1}) ∪ {r, l − 1}; note that I(Y ′′D) =

(I(Y D) \ {r, l − 1}) ∪ {r, l − 1} by Lemma 12.2 (A). It follows from Lemma 12.2 (B) that Y ′′ r−1,l−1−−−−−→
Y ′ l,r−→ Y . Because r ∈ I(Y ) and r 6= l − 1 by the assumption of (2), and IR(Y ) ∩ IR(Y

D) = ∅ by
assumption, it can be easily verified that IR(Y

′′)∩ IR(Y ′′D) = ∅. Since l− 1 < r and l − 1 > r, we have
〈I(Y ′′)〉 > 〈I(Y )〉, and hence Y ′′ ∈ S(Ym,n) by the induction hypothesis. We see from Lemma 11.4 that

Y ′′ (MHR 2)−−−−−−→ Y , as desired.
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By Proposition 12.6, we obtain Y ∈ S(Ym,n). This completes the proof of (Ⅲ) ⇒ (Ⅰ), and hence (Ⅰ) ⇔
(Ⅲ). The equivalence (Ⅱ) ⇔ (Ⅲ) follows from the equivalence (Ⅰ) ⇔ (Ⅲ) since IR(Y

D)∩ IR((Y D)D) =
IR(Y ) ∩ IR(Y D).
Finally, let us show the equivalence (Ⅲ) ⇔ (Ⅳ). Let Y ∈ F(Ym,n), and λ = (λ1, . . . , λm) ∈ Ym(m+n)

be such that Y = Yλ. We first show (Ⅳ) ⇒ (Ⅲ). Obviously, if IR(Y )∩IR(Y D) 6= ∅, then I(Y )∩I(Y D) 6=
∅. It follows from Subsection 9.1 that

I(Y ) = {λp +m− p+ 1 | 1 ≤ p ≤ m},
I(Y D) = {n− λq + q | 1 ≤ q ≤ m}.

Hence, I(Y )∩I(Y D) 6= ∅ if and only if λi+m−i+1 = n−λj+j (or equivalently, λi+λj = n−m+i+j−1)
for some 1 ≤ i, j ≤ m. Thus we have shown (Ⅳ) ⇒ (Ⅲ).

We next show (Ⅲ) ⇒ (Ⅳ). Assume that λi + λj = n−m+ i+ j − 1 for some 1 ≤ i, j ≤ m; we may
assume that i ≤ j. As seen above, we have λi+m− i+1 ∈ I(Y )∩ I(Y D). Hence it suffices to show that
if λi+λj = n−m+ i+j−1, then λi+m− i+1 ∈ [c+1−χ,m+n]. Indeed, suppose, for a contradiction,
that λi +m− i+ 1 /∈ [c+ 1− χ,m+ n]. Then, λi +m− i+ 1 < c+ 1− χ or m+ n < λi +m− i+ 1.
Because λi +m− i + 1 ≤ n +m− i + 1 ≤ n +m, we get λi +m− i + 1 < c + 1 − χ. Since i ≤ j (and
hence λi ≥ λj) and λi < c −m − χ + i, we have λi + λj ≤ 2λi < (m + n − 1 + χ) − 2m − 2χ + 2i =
n−m− χ+ 2i− 1 ≤ n−m+ i+ j − 1 = λi + λj , which is a contradiction. Therefore, we conclude that
λi +m− i+ 1 ∈ [c+ 1− χ,m + n]. Thus we have shown (Ⅲ) ⇒ (Ⅳ), thereby completing the proof of
(Ⅲ) ⇔ (Ⅳ).

13 Application.
Let t ∈ N0 and m,n ∈ N such that t ≤ m ≤ n. For (λ1, . . . , λt) ∈ Yt(t+ n), we set

Jλ1, . . . , λtK := (λ1, . . . , λt, λt+1, . . . , λm) ∈ Ym(m+ n),

with λk := 0 for t+ 1 ≤ k ≤ m.

Theorem 13.1. Under the notation and setting above, YJλ1,...,λtK ∈ S(Ym,n) if and only if Y(λ1,...,λt) ∈
S(Yt,n−m+t). Moreover, the Grundy value of YJλ1,...,λtK ∈ S(Ym,n) is equal to the Grundy value of
Y(λ1,...,λt) ∈ S(Yt,n−m+t).

Proof. Since λk = 0 for t + 1 ≤ k ≤ m, it follows from Theorem 12.1 that YJλ1,...,λtK ∈ S(Ym,n) if and
only if λi + λj 6= n−m+ i+ j − 1 for all 1 ≤ i ≤ j ≤ t and

λs 6= n−m+ s+ k − 1 for all 1 ≤ s ≤ t and t+ 1 ≤ k ≤ m; (13.1)

note that 0 6= n−m+k+ l−1 for all t+1 ≤ k, l ≤ m since m ≤ n. Also, notice that (13.1) is equivalent
to λ1 ≤ n−m+t. Therefore, we deduce that YJλ1,...,λtK ∈ S(Ym,n) if and only if Y(λ1,...,λt) ∈ S(Yt,n−m+t).
Next, we show the assertion on the Grundy values. Assume that Y(λ1,...,λt) ∈ S(Yt,n−m+t), or equiva-

lently, YJλ1,...,λtK ∈ S(Ym,n). If t = 0 or λ1 = 0, then YJλ1,...,λtK = Y(λ1,...,λt) = ∅ (the empty Young dia-
gram). Thus, both the Grundy value of YJλ1,...,λtK = ∅ in S(Ym,n) and the Grundy value of Y(λ1,...,λt) = ∅
in S(Yt,n−m+t) are equal to 0. Assume that 1 ≤ t and 1 ≤ λ1. Since m ≤ n and 1 ≤ t, we get
m−t+1 ≤ n+t−1. Hence, we have c (t, 1) = min (1−t+m, t−1+n) = m−t+1. Sincem−t+1 ≤ m+λ1−1,
and since λ1 ≤ n −m + t as seen above, we have c (1, λ1) = min (λ1 − 1 +m, 1 − λ1 + n) ≥ m − t + 1.
Thus, we obtain min {c(p, q) | (p, q) ∈ YJλ1,...,λtK} ≥ m− t+ 1:
We notice that

(i) in YJλ1,...,λtK ∈ S(Ym,n) with the unimodal numbering c (p, q) for (p, q) ∈ YJλ1,...,λtK, if we replace
c (p, q) by c (p, q)−m+ t, then we get Y(λ1,...,λt) ∈ S(Yt,n−m+t) with the unimodal numbering;

(ii) in Y(λ1,...,λt) ∈ S(Yt,n−m+t) with the unimodal numbering c′ (p, q) for (p, q) ∈ Y(λ1,...,λt), if we
replace c′ (p, q) by c′ (p, q)+m− t, then we get YJλ1,...,λtK ∈ S(Ym,n) with the unimodal numbering.
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n

m

t
m− t+ 1 < · · ·

<

...

<

m < · · · < c > · · · > c (1, λ1)

>...

if λ1 > c−m+ 1

j

i

n

m

t
m− t+ 1 < · · ·

<

...

<

m < · · · · · · < c (1, λ1)

<...

if λ1 ≤ c−m+ 1

Figure 2. Numbering of YJλ1,...,λtK in S(Ym,n).

Here we give an example. Let m = 3, n = 5, and t = 2. Let λ = (3, 2, 0) ∈ Y3(8). In YJ3,2K ∈ S(Y3,5)
(resp., Y(3,2) ∈ S(Y2,4)) with the unimodal numbering c (p, q) for (p, q) ∈ YJ3,2K (resp., c′ (p, q) for (p, q) ∈
Y(3,2)), if we replace c (p, q) by c (p, q) − 1 (resp., c′ (p, q) by c′ (p, q) + 1), then we get Y(3,2) ∈ S(Y2,4)
(resp., YJ3,2K ∈ S(Y3,5)) with the unimodal numbering:

j

i

3 4 3

2 3

replace the numbering

c (p, q) by c (p, q)− 1

replace the numbering

c′ (p, q) by c′ (p, q) + 1

j

i

2 3 2

1 2

It is obvious that the operation (i) is the inverse of the operation (ii). Moreover, there exists a natural
bijection between O(YJλ1,...,λtK) ⊂ S(Ym,n) and O(Y(λ1,...,λt)) ⊂ S(Yt,n−m+t). Then the inductive argu-
ment shows that the Grundy value of YJλ1,...,λtK in S(Ym,n) is equal to the Grundy value of Y(λ1,...,λt) in
S(Yt,n−m+t). This completes the proof of Theorem 13.1.

Assume that m = 2. Set ci(q) := c+ i+4q for i ∈ Z and q ≥ 0. We know from [1, Theorem 4.13] that
a Young diagram Yλ ∈ S(Y2,n) with λ = (λ1, λ2) is a P-position if and only if

λ ∈



C ∪ {(c1(q), c0(q)), (c2(q), c1(q)) | 0 ≤ q ≤ (p− 1) / 2} if n− 2 = 4p,

C ∪ {(c2(q), c1(q)), (c3(q), c2(q)) | 0 ≤ q ≤ (p− 1) / 2} if n− 2 = 4p+ 1,

C ∪ {(c0(q), c−1(q)), (c1(q), c0(q)) | 0 ≤ q ≤ p / 2} if n− 2 = 4p+ 2,

C ∪ {(2p+ 4, 2p+ 2), (2p+ 5, 2p+ 4)}
∪ {(c1(q), c0(q)), (c2(q), c1(q)) | 1 ≤ q ≤ p / 2} if n− 2 = 4p+ 3,

(13.2)

where p ∈ N0, and C = C(p) := {(2q, 2q) | 0 ≤ q ≤ p}.
The following is an immediate consequence of Theorem 13.1 and (13.2).

Corollary 13.2. We set di(q) := c−m+2+ i+4q for i ∈ Z and q ≥ 0. A Young diagram Yλ ∈ S(Ym,n)
having at most two rows is a P-position if and only if

λ ∈



D ∪ {Jd1(q), d0(q)K, Jd2(q), d1(q)K | 0 ≤ q ≤ (p− 1) / 2} if n−m = 4p,

D ∪ {Jd2(q), d1(q)K, Jd3(q), d2(q)K | 0 ≤ q ≤ (p− 1) / 2} if n−m = 4p+ 1,

D ∪ {Jd0(q), d−1(q)K, Jd1(q), d0(q)K | 0 ≤ q ≤ p / 2} if n−m = 4p+ 2,

D ∪ {J2p+ 4, 2p+ 2K, J2p+ 5, 2p+ 4K}
∪ {Jd1(q), d0(q)K, Jd2(q), d1(q)K | 1 ≤ q ≤ p / 2} if n−m = 4p+ 3,

where p ∈ N0, and D = D(p) := {J2q, 2qK | 0 ≤ q ≤ p}.
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Part III

14 Preliminaries.

14.1 Basic notation.

For a, b ∈ Z, we set (−∞, b] := {x ∈ Z | x ≤ b} and [a,∞) := {x ∈ Z | a ≤ x}. Let c ∈ N. For a subset
X of Z, we set X − c := {x − c | x ∈ X}. For a poset P = (P,≤), we denote by P ∗ = (P,≤∗) the dual
poset of P . Namely, P ∗ = P as sets, and ≤∗ is defined by: u ≤∗ v if u ≥ v for u, v ∈ P ∗ = P .

14.2 Pre-dominant integral weights.

In Appendix, g is the infinite rank affine Lie algebra of type A∞ over C associated to the following
Dynkin diagram (see [3, Exercise 4.14]):

· · · •
−2

•
−1

•
0

•
1

•
2

· · ·

Let h be the Cartan subalgebra of g, Π∨ = {α∨
i | i ∈ Z} ⊂ h the set of simple coroots of g, and

Π = {αi | i ∈ Z} ⊂ h∗ := HomC(h,C) the set of simple roots of g; recall that h = ⊕i∈Z Cαi, and that
〈αj , α

∨
i 〉 = aij for i, j ∈ Z, where

aij :=

 2 if i = j,
−1 if |i− j| = 1,
0 otherwise.

For each i ∈ Z, define Λi ∈ h∗ by: 〈Λi, α
∨
j 〉 = δij for j ∈ Z. We denote by W = 〈si | i ∈ Z〉 ⊂ GL(h∗) the

Weyl group of g. Denote by Φ+ the set of positive roots for g; recall that Φ+ = {αp,q := αp+αp+1+ · · ·+
αq | p ≤ q}. For β ∈ Φ+, β

∨ ∈ h denotes the coroot of β; note that α∨
p,q = α∨

p + α∨
p+1 + · · ·+ α∨

q−1 + α∨
q

for p ≤ q. For each β ∈ Φ+, we define sβ ∈ W by: sβ(µ) = µ − 〈µ, β∨〉β for µ ∈ h∗. For each w ∈ W ,
we set Φ(w) := {γ ∈ Φ+ | −w−1(γ) ∈ Φ+}.

Remark 14.1 ([9, Chapter 5]). If w = si1 · · · sid is a reduced expression of w ∈ W , then Φ(w) =
{αi1 , si1(αi2), . . . , si1 · · · sid−1

(αid)}.

Definition 14.2 ([11, Definitions 1 and 2]). An integral weight Λ is said to be pre-dominant if 〈Λ, β∨〉 ≥
−1 for all β ∈ Φ+. The set of pre-dominant integral weights is denoted by P≥−1. For Λ ∈ P≥−1, the
set D(Λ) := {β ∈ Φ+ | 〈Λ, β∨〉 = −1} is called the diagram of Λ. We say that a pre-dominant integral
weight Λ is finite (resp., infinite) if #D(Λ) < ∞ (resp., #D(Λ) = ∞). The set of finite (resp., infinite)
pre-dominant integral weights is denoted by P fin

≥−1 (resp., P inf
≥−1).

Definition 14.3 ([11, Definition 6]). For Λ ∈ P≥−1 and β ∈ D(Λ), the set HΛ(β) := D(Λ) ∩ Φ(sβ) is
called the hook at β (in the diagram D(Λ)). The number #HΛ(β) is called the hook length at β (in the
diagram D(Λ)).

Remark 14.4. Define a partial order ≤ on h∗ by: α ≤ β if β − α ∈
∑

i∈Z N0 αi. We regard D(Λ) and
HΛ(β) as subposets of (h

∗,≤).

15 Complementary Young diagrams and hooks.

15.1 Complementary Young diagrams.

We define a partial order � on the set N2 = N × N by: (i, j) � (i′, j′) if i ≥ i′ and j ≥ j′. For
each partition λ, the Young diagram Yλ is regarded as a subposet of N2 in this partial order � (see
Subsection 9.1 and Example 15.2 below).
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Definition 15.1. The poset Y c
λ := (N2 \ Yλ,�) is called the complementary Young diagram of Yλ.

Example 15.2. If λ = (4, 4, 2), then Yλ and Y c
λ are as follows:

j

i

Yλ

Y c
λ

15.2 Hooks.

Definition 15.3. Let λ be a partition, and Yλ the corresponding Young diagram. For (i, j) ∈ Yλ, we
set

ArmYλ
(i, j) := {(i, j′) ∈ Yλ | j < j′}, LegYλ

(i, j) := {(i′, j) ∈ Yλ | i < i′};

note that HYλ
(i, j) = {(i, j)} t ArmYλ

(i, j) t LegYλ
(i, j). The number hYλ

(i, j) := #HYλ
(i, j) is called

the hook length at (i, j) in Yλ. For a subset A of Yλ, we define H̃Yλ
(A) to be the multiset consisting of

hYλ
(i, j) for (i, j) ∈ A (see Example 15.5 below).

Definition 15.4. Let λ be a partition, Yλ the corresponding Young diagram, and Y c
λ = N2 \ Yλ the

complementary Young diagram of Yλ. For (i, j) ∈ Y c
λ , we set

ArmY c
λ
(i, j) := {(i, j′) ∈ Y c

λ | j′ < j}, LegY c
λ
(i, j) := {(i′, j) ∈ Y c

λ | i′ < i},
HY c

λ
(i, j) := {(i, j)} tArmY c

λ
(i, j) t LegY c

λ
(i, j).

The subset HY c
λ
(i, j) of Y c

λ is called the hook at (i, j) in Y c
λ , and the number hY c

λ
(i, j) := #HY c

λ
(i, j)

is called the hook length at (i, j) in Y c
λ . For a subset B of Y c

λ , we define H̃Y c
λ
(B) to be the multiset

consisting of hY c
λ
(i, j) for (i, j) ∈ B (see Example 15.5 below).

Example 15.5. If λ = (4, 4, 2), then

H̃Yλ
(Yλ) = {1, 1, 2, 2, 2, 3, 4, 5, 5, 6},

H̃Y c
λ
(Y c

λ ) = {1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, . . .}.

j

i

6 5 3 2

5 4 2 1

2 1

j

i

1 2 3 4

2 3 4 5

1 2 5 6 7 8

1 2 4 5 8 9 10 11

2 3 5 6 9 10 11 12

3 4 6 7 10 11 12 13
...

· · ·
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16 Description of the diagrams for pre-dominant integral weights.
Here we employ the notation in Subsection 9.1. Fix p ≤ q. Let λ ∈ Yp(q). Recall from Subsection 9.1

that there exists a bijection I from F(Yp,q−p) onto
(
[1,q]
p

)
. We set i′t := λp−t+1 + t for 1 ≤ t ≤ p. Then

we get Iλ = I(Yλ) = {i′1 < · · · < i′p} ∈
(
[1,q]
p

)
.

Remark 16.1 (see Example 16.2 below). We set Jλ := [1, q] \ Iλ. It is obvious that

Jλ =

p+1⊔
t=1

[i′t−1 + 1, i′t − 1],

where we set i′0 := 0 and i′p+1 := q+1 for convention; note that if i′t = i′t−1+1, then [i′t−1+1, i′t−1] = ∅.
By definition, we have [i′t−1 + 1, i′t − 1] = [λp−t+2 + t, λp−t+1 + t − 1] for 1 ≤ t ≤ p + 1, where we set
λ0 := q−p and λp+1 := 0 for convention. Notice that #[i′t−1+1, i′t− 1] = #[λp−t+2+ t, λp−t+1+ t− 1] is
equal to the difference of the number of boxes in the (p−t+1)-th row (from the top) in the Young diagram
Yλ and that in the (p− t+ 2)-th row in the Young diagram Yλ. In particular, for 1 ≤ a ≤ q − p = #Jλ,
if the a-th smallest element in Jλ is less than or equal to i′b − 1 for some 1 ≤ b ≤ p+ 1, then

a ≤
b∑

u=1

#[i′u−1 + 1, i′u − 1] =

b∑
u=1

(λp−u+1 − λp−u+2) = λp−b+1. (16.1)

Similarly, if the a-th smallest element in Jλ is more than i′p−b+1 for some 1 ≤ b ≤ p+ 1, then

a >

p∑
u=b

#[i′p−u + 1, i′p−u+1 − 1] =

p∑
u=b

(λu − λu+1) = λb. (16.2)

Example 16.2. Assume that p = 3 and q = 7. Let λ = (4, 4, 2) ∈ Y3(7). Then we have Iλ = {i′1 =
3, i′2 = 6, i′3 = 7}, and Jλ = [1, 7] \ Iλ = {1, 2, 4, 5}.

j

i

Yλ

#[i′0 + 1, i′1 − 1]

#[i′1 + 1, i′2 − 1]

[i′2 + 1, i′3 − 1] = ∅

q − p = 4

p = 3

Now, fix k ∈ N, and a partition λ = (λ1, . . . , λk) such that λk > 0. Consider the following composition
of bijections:

Yk(λ1 + k) −→
(
[1, λ1 + k]

k

)
−k−→

(
[1− k, λ1]

k

)
, µ 7→ Iµ 7→ Iµ − k. (16.3)

Note that λ ∈ Yk(λ1 + k). Let Ĩλ := Iλ − k be the element in
(
[1−k,λ1]

k

)
corresponding to λ under the

bijection above, and write it as: Ĩλ = {i1 < · · · < ik}. We set J̃λ := [1− k, λ1] \ Ĩλ = Jλ − k, and write it

as: J̃λ = {j1 < j2 < · · · < jλ1
}. Note that ik = λ1 ∈ Ĩλ and j1 = 1−k ∈ J̃λ. For each 1−k ≤ j ≤ λ1−1,
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we set

bj :=

{
−1 if j ∈ Ĩλ − 1,

0 if j ∈ J̃λ − 1,
cj :=

{
1 if j ∈ Ĩλ,

0 if j ∈ J̃λ.
(16.4)

We put

Λλ = Λ−k +

λ1−1∑
j=1−k

(bj + cj)Λj + Λλ1
;

we can easily check that Λλ ∈ P fin
≥−1.

Lemma 16.3. Keep the notation and setting above. It holds that

D(Λλ) = {αp,q | p ∈ J̃λ, q ∈ Ĩλ − 1, p ≤ q}. (16.5)

Proof. Remark that if 1 − k ≤ i ≤ λ1 − 2, then bi + ci+1 = 0. For p ∈ J̃λ, q ∈ Ĩλ − 1 such that
(1− k ≤) p ≤ q (≤ λ1 − 1), we have cp = 0, bq = −1. Hence it follows that

〈Λλ, α
∨
p,q〉 = (bp + cp) + (bp+1 + cp+1) + · · ·+ (bq + cq)

= cp + (bp + cp+1)︸ ︷︷ ︸
=0

+ · · ·+ (bq−1 + cq)︸ ︷︷ ︸
=0

+bq

= −1.

Conversely, asssume that β = αi,j ∈ D(Λλ) for i ≤ j. If i ≤ −k or λ1 ≤ j, then 〈Λλ, β
∨〉 ≥ 0, which

contradicts the assumption that β ∈ D(Λλ). Thus we get 1− k ≤ i ≤ j ≤ λ1 − 1. It follows that

−1 = 〈Λλ, β
∨〉 = (bi + ci) + · · ·+ (bj + cj) = ci + bj ,

and hence ci = 0 and bj = −1. Therefore, by (16.4), we obtain i ∈ J̃λ and j ∈ Ĩλ − 1, as desired.

We define a map φ : D(Λλ) → Yλ as follows. Let αp,q ∈ D(Λλ). Recall that Ĩλ = {i1 < i2 < · · · < ik}
denotes the element Iλ − k in

(
[1−k,λ1]

k

)
corresponding to λ under the bijection in (16.3), and that

J̃λ = [1 − k, λ1] \ Ĩλ = {j1 < j2 < · · · < jλ1
}. It follows from Lemma 16.3 that p = js for some

1 ≤ s ≤ λ1 and q = it − 1 for some 1 ≤ t ≤ k, with js = p ≤ q = it − 1. Then we set φ(αp,q) =
φ(αjs,it−1) := (k − t + 1, s) ∈ N2. We claim that (k − t + 1, s) ∈ Yλ. Indeed, since 1 ≤ t ≤ k, it follows
that 1 ≤ k− t+1 ≤ k. We show that 1 ≤ s ≤ λk−t+1. Notice that Iλ = {i1 + k < i2 + k < · · · < ik + k}
and Jλ = [1, λ1 + k] \ Iλ, and that js + k is the s-th smallest element in Jλ. Because js + k ≤ it + k− 1,
we deduce from (16.1) that 1 ≤ s ≤ λk−t+1.

Theorem 16.4. The map φ : D(Λλ) → Yλ, αjs,it−1 7→ (k − t + 1, s), is an order isomorphism, and
preserves the hooks in the sense that

φ(HΛλ
(β)) = HYλ

(φ(β)) for all β ∈ D(Λλ).

Proof. First we prove that φ : D(Λλ) → Yλ, αjs,it−1 7→ (k− t+1, s), is an order isomorphism, that is, φ
is bijective, and for α, β ∈ D(Λλ), α ≤ β if and only if φ(α) � φ(β). For the bijectivity of φ, since it is
obvious that φ is injective, it suffices to show that #D(Λλ) = |λ| (= #Yλ). We compute

#D(Λλ) = #{αp,q | p ∈ J̃λ, q ∈ Ĩλ − 1, p ≤ q}

=

k∑
j=1

#(J̃λ ∩ [1− k, ij − 1]) =

k∑
j=1

#([1− k, ij − 1]\{i1, i2, . . . , ij−1})

=

k∑
j=1

{(ij − 1)− (1− k) + 1− (j − 1)} =

k∑
j=1

(ij + k − j)
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=

k∑
j=1

λk−j+1 = |λ|.

Let us show that φ preserves the orderings. Let α, β ∈ D(Λλ), and write them as α = αjs,it−1 and
β = αju,iv−1, respectively. Then,

αjs,it−1 ≤ αju,iv−1 ⇐⇒ ju ≤ js and it ≤ iv

⇐⇒ u ≤ s and t ≤ v ⇐⇒ u ≤ s and k − v + 1 ≤ k − t+ 1

⇐⇒ φ(αjs,it−1) = (k − t+ 1, s) � (k − v + 1, u) = φ(αju,iv−1).

Thus, we have proved that φ is an order isomorphism.
We prove that φ preserves the hooks. By Remark 14.1, we get

HΛλ
(αjs,it−1) = D(Λλ) ∩ Φ(sαjs,it−1)

= D(Λλ) ∩ {αjs,js , αjs,js+1, . . . , αjs,it−2︸ ︷︷ ︸
=:L

, αjs,it−1,

αit−1,it−1, αit−2,it−1, . . . , αjs+1,it−1︸ ︷︷ ︸
=:A

}.

We show that φ(D(Λλ) ∩ L) = LegYλ
(k − t+ 1, s). If β ∈ D(Λλ) ∩ L, then it follows from Lemma 16.3

that β = αjs,iu−1 for some 1 ≤ u < t with js ≤ iu − 1. In this case, φ(β) = (k − u + 1, s) ∈ Yλ by
the definition of φ : D(Λλ) → Yλ. Since k − u + 1 > k − t + 1, we obtain φ(β) ∈ LegYλ

(k − t + 1, s).
Hence, φ(D(Λλ) ∩ L) ⊂ LegYλ

(k − t + 1, s). For the reverse inclusion, let (x, y) ∈ LegYλ
(k − t + 1, s).

Then we have y = s, and x = k − u+ 1 for some 1 ≤ u < t. Because φ : D(Λλ) → Yλ is bijective, there
exists unique γ ∈ D(Λλ) such that φ(γ) = (x, y) = (k − u + 1, s). If we write γ = αja,ib−1 for some

ja ∈ J̃λ and ib − 1 ∈ Ĩλ − 1 such that ja ≤ ib − 1 (see Lemma 16.3), then we have φ(γ) = (k − b+ 1, a).
Thus we get b = u and a = s, and hence γ = αjs,iu−1 with js = ja ≤ ib − 1 = iu − 1, which implies
that γ ∈ L. Therefore, we obtain γ ∈ D(Λλ) ∩ L, and hence (x, y) = φ(γ) ∈ φ(D(Λλ) ∩ L). This
proves φ(D(Λλ) ∩ L) ⊃ LegYλ

(k − t + 1, s), and hence φ(D(Λλ) ∩ L) = LegYλ
(k − t + 1, s). Similarly,

we can show that φ(D(Λλ) ∩A) = ArmYλ
(k − t+ 1, s). Therefore we conclude that φ(HΛλ

(αjs,it−1)) =
φ(D(Λλ)∩Φ(sαjs,it−1)) = φ(D(Λλ)∩L)tφ(D(Λλ)∩{αjs,it−1})tφ(D(Λλ)∩A) = LegYλ

(k− t+1, s)t
{(k − t+ 1, s)} t ArmYλ

(k − t+ 1, s) = HYλ
(k − t+ 1, s) = HYλ

(φ(αjs,it−1)). This completes the proof
of Theorem 16.4.

We put Λc
λ = −Λλ; we can easily check that Λc

λ ∈ P inf
≥−1. Recall that Ĩλ = Iλ − k = {i1 < i2 <

· · · < ik}, and J̃λ = [1 − k, λ1] \ Ĩλ = {j1 < j2 < · · · < jλ1}. We set Irow := (−∞,−k] t Ĩλ and

Icol := [λ1,∞) t (J̃λ − 1), and write them as Irow = {x1 > x2 > · · · } and Icol = {y1 < y2 < · · · },
respectively; note that xs = ik−s+1 for 1 ≤ s ≤ k, yt = jt − 1 for 1 ≤ t ≤ λ1.

Lemma 16.5. It holds that

D(Λc
λ) = {αp,q | p ∈ Irow, q ∈ Icol, p ≤ q}. (16.6)

Proof. Note that c1−k = 0 and bλ1−1 = −1 since 1− k ∈ J̃λ and λ1 ∈ Ĩλ. Let us show that αp,q ∈ D(Λλ)

for p ∈ Irow and q ∈ Icol such that p ≤ q. We give a proof only for the case that p ∈ Ĩλ and q ∈ J̃λ − 1;
the proofs for the other cases are similar. Because p ≤ q, it follows that p 6= λ1 and q 6= −k. Since cp = 1
and bq = 0, we have 〈Λc

λ, α
∨
p,q〉 = −(cp + bq) = −1. Thus, αp,q ∈ D(Λλ).

Conversely, let us show that if β = αi,j ∈ D(Λc
λ) with i ≤ j, then i ∈ Irow and j ∈ Icol. We give a

proof only for the case that i ∈ [1 − k, λ1 − 1]; the proof for the case that i /∈ [1 − k, λ1 − 1] is simpler.
If j ∈ [1− k, λ1 − 1], then −1 = 〈Λc

λ, α
∨
i,j〉 = −(ci + bj). Hence we get ci = 1 and bj = 0. Therefore, we

have i ∈ Ĩλ ⊂ Irow and j ∈ J̃λ − 1 ⊂ Icol. If j ∈ [λ1,∞), then −1 = 〈Λc
λ, α

∨
i,j〉 = −(ci + bλ1−1)− 1 = −ci.

Hence we get ci = 1. Therefore, we have i ∈ Ĩλ ⊂ Irow and j ∈ [λ1,∞) ⊂ Icol. Thus we have proved the
lemma.
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Here we define a map φc : D(Λc
λ)

∗ → Y c
λ as follows. Let αp,q ∈ D(Λc

λ)
∗. Recall that Irow = {x1 >

x2 > · · · } and Icol = {y1 < y2 < · · · }. It follows from Lemma 16.5 that p = xs for some 1 ≤ s and
q = yt for some 1 ≤ t with xs = p ≤ q = yt. Then we set φc(αp,q) = φc(αxs,yt

) := (s, t) ∈ N2.
We claim that (s, t) ∈ Y c

λ . Indeed, observe that (s, t) ∈ Y c
λ if and only if s > k or t > λs. Hence it

suffices to show that if xs ≤ yt and 1 ≤ s ≤ k, then t > λs. Recall that Icol = [λ1,∞) t (J̃λ − 1). If

yt ∈ [λ1,∞), then it follows from #(J̃λ − 1) = λ1 that t > λ1 ≥ λs. Assume that yt ∈ J̃λ − 1. Since

1 ≤ s ≤ k and yt ∈ J̃λ − 1, we can write xs and yt as xs = ik−s+1 and yt = jt − 1. Notice that
Iλ = {i1 + k < · · · < ik + k} and Jλ = [1, λ1 + k] \ Iλ, and that jt + k is the t-th smallest element in Jλ.
Because jt + k = yt + 1 + k > xs + k = ik−s+1 + k, we deduce from (16.2) that t > λs.

Theorem 16.6. The map φc : D(Λc
λ)

∗ → Y c
λ , αxs,yt 7→ (s, t), is an order isomorphism, and preserves

the hooks in the sense that

φc(HΛc
λ
(β)∗) = HY c

λ
(φc(β)) for all β ∈ D(Λc

λ)
∗.

Proof. We prove that φc : D(Λc
λ)

∗ → Y c
λ , αxs,yt

7→ (s, t), is an order isomorphism, that is, φc is bijective,
and for α, β ∈ D(Λc

λ)
∗, α ≤∗ β if and only if φc(α) � φc(β). First, let us show that φc is bijective. It

is obvious that φc is injective. Hence, we show that φc is surjective. Let (s, t) ∈ Y c
λ . By Lemma 16.5

and the definition of the map φc, it suffices to show that xs ≤ yt. Recall that (s, t) ∈ Y c
λ if and only if

s > k or t > λs. If s > k, then it follows from #Ĩλ = k that xs ∈ (−∞,−k]. Since j1 − 1 = −k ≤ yt,
it follows that xs ≤ yt. Assume that 1 ≤ s ≤ k and t > λs. If yt ∈ [λ1,∞), then it is obvious that

xs ≤ yt. Assume that yt ∈ J̃λ − 1. Since 1 ≤ s ≤ k and yt ∈ J̃λ − 1, we can write xs and yt as
xs = ik−s+1 and yt = jt − 1. Suppose, for a contradiction, that xs > yt. Since ik−s+1 + k 6= jt + k, we
obtain ik−s+1 + k − 1 = xs + k − 1 ≥ yt + 1 + k = jt + k. Notice that Iλ = {i1 + k < · · · < ik + k}
and Jλ = [1, λ1 + k] \ Iλ = {j1 + k < · · · < jλ1

+ k}. By (16.1), we get λs ≥ t. This contradicts the
assumption that t > λs. Next, let us show that φc preserves the orderings. Let α, β ∈ D(Λc

λ)
∗, and write

them as α = αxs,yt
and β = αxu,yv

, respectively. Then,

αxs,yt
≤∗ αxu,yv

⇐⇒ αxs,yt
≥ αxu,yv

⇐⇒ xs ≤ xu and yt ≥ yv ⇐⇒ s ≥ u and t ≥ v

⇐⇒ φc(αxs,yt
) = (s, t) � (u, v) = φc(αxu,yv

).

Therefore, we have proved that φc is an order isomorphism.
We prove that φc preserves the hooks. By Remark 14.1, we get

HΛc
λ
(αxs,yt

)∗ = D(Λc
λ)

∗ ∩ Φ(sαxs,yt
)

= D(Λc
λ)

∗ ∩ {αxs,xs
, αxs,xs+1, . . . , αxs,yt−1︸ ︷︷ ︸

=:Ac

, αxs,yt
,

αyt,yt , αyt−1,yt , . . . , αxs+1,yt︸ ︷︷ ︸
=:Lc

}.

We show that φc(D(Λc
λ)

∗ ∩ Ac) = ArmY c
λ
(s, t). If β ∈ D(Λc

λ)
∗ ∩ Ac, then it follows from Lemma 16.5

that β = αxs,yu
for some 1 ≤ u < t with xs ≤ yu; in this case, φc(β) = (s, u) ∈ Y c

λ by the definition
of φc : D(Λc

λ)
∗ → Y c

λ . Since 1 ≤ u < t, we obtain φc(β) ∈ ArmY c
λ
(s, t). Hence, φc(D(Λc

λ)
∗ ∩ Ac) ⊂

ArmY c
λ
(s, t). For the reverse inclusion, let (x, y) ∈ ArmY c

λ
(s, t). Then we have x = s, and y = u for

some 1 ≤ u < t. Because φc : D(Λc
λ)

∗ → Y c
λ is bijective, there exists unique γ ∈ D(Λc

λ)
∗ such that

φc(γ) = (x, y) = (s, u). If we write γ = αxa,yb
for some xa ∈ Irow and yb ∈ Icol such that xa ≤ yb

(see Lemma 16.5), then we have φc(γ) = (a, b). Thus we get a = s and b = u, and hence γ = αxs,yu

with xs = xa ≤ yb = yu, which implies that γ ∈ Ac. Therefore, we obtain γ ∈ D(Λc
λ)

∗ ∩ Ac, and
hence (x, y) = φc(γ) ∈ φc(D(Λc

λ)
∗ ∩ Ac). This proves φc(D(Λc

λ)
∗ ∩ Ac) ⊃ ArmY c

λ
(s, t), and hence

φc(D(Λc
λ)

∗ ∩Ac) = ArmY c
λ
(s, t). Similarly, we can show that φc(D(Λc

λ)
∗ ∩ Lc) = LegY c

λ
(s, t). Therefore

we conclude that

φc(HΛλ
(αxs,yt

)∗) = φc(D(Λc
λ)

∗ ∩ Φ(sαxs,yt
))

31



= φc(D(Λc
λ)

∗ ∩ Ac) t φc(D(Λc
λ)

∗ ∩ {αxs,yt}) t φc(D(Λc
λ)

∗ ∩ Lc)

= ArmY c
λ
(s, t) t {(s, t)} t LegY c

λ
(s, t)

= HY c
λ
(s, t)

= HY c
λ
(φc(αxs,yt

)).

This completes the proof of Theorem 16.6.

17 Hook length sequences.
Definition 17.1. Let λ be a partition. For a subset A of Yλ (resp., Y c

λ ), the sequence (an)
∞
n=1 defined

by
an := #{(i, j) ∈ A | hYλ

(i, j) = n (resp., hY c
λ
(i, j) = n)}

is called the hook length sequence of A in Yλ (resp., in Y c
λ ).

Example 17.2. Let λ = (4, 4, 2). It can be easily seen that the hook length sequence of Yλ is
(2, 3, 1, 1, 2, 1, 0, 0, 0, . . .). Also, the hook length of each box in Y c

λ is given as follows:

j

i

1

2

3

4

5

2

3

4

5

6

1

4

5

6

7

8

2

5

6

7

8

9

1

2

5

8

9

10

11

12

2

3

6

9

10

11

12

13

3

4

7

10

11

12

13

14

4

5

8

11

12

13

14

15

· · ·

...

Therefore, the hook length sequence of Y c
λ is (3, 5, 4, 5, 7, 7, 7, 8, 9, . . .). If A = {(3, 8), (4, 1), (4, 4), (4, 5),

(5, 3), (7, 4)} ⊂ Y c
λ , then the hook length sequence of A (in Y c

λ ) is (1, 0, 0, 0, 2, 0, 0, 3, 0, . . .).

Theorem 17.3. Let (pn)
∞
n=1 be the hook length sequence of Yλ, and let (qn)

∞
n=1 be the hook length

sequence of Y c
λ . Then,

n+ pn = qn for all n, (17.1)

or equivalently,

E + (pn)
∞
n=1 = (qn)

∞
n=1, (17.2)

where E = (1, 2, 3, . . .) is the hook length sequence of Y c
∅ , where ∅ is the empty partition.

Example 17.4 (see Example 17.2). For λ = (4, 4, 2), we have

(1, 2, 3, 4, 5, 6, 7, 8, 9, . . .)︸ ︷︷ ︸
= E

+(2, 3, 1, 1, 2, 1, 0, 0, 0, . . .)︸ ︷︷ ︸
= (pn)∞n=1

= (3, 5, 4, 5, 7, 7, 7, 8, 9, . . .)︸ ︷︷ ︸
= (qn)∞n=1

.

Proof of Theorem 17.3. We can show (17.1) by induction on m := |λ| = #Yλ (showing some lemmas
in the proof). If m = 0, then (17.1) is obvious. Assume that m ≥ 0. Let Yλ′ be the Young diagram
obtained from Yλ by adding a box at (a, b). We set

R := {(a, j) | 1 ≤ j < b} , C := {(i, b) | 1 ≤ i < a},
Rc := {(a, j) | b < j} , Cc := {(i, b) | a < i}.
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j

i

(a, b)

Yλ

Y c
λ

R Rc

C

Cc

j

i

(a, b)

Yλ′

Y c
λ′

R Rc

C

Cc

Recall from Definitions 15.3 and 15.4 that H̃Yλ
(R), H̃Y c

λ′ (C
c), H̃Yλ

(C), and H̃Y c
λ′ (R

c) are the multisets of

hook lengths. We set H̃′ := H̃Yλ
(R)∪H̃Y c

λ′ (C
c) and H̃′′ := H̃Yλ

(C)∪H̃Y c
λ′ (R

c) (the unions of multisets).

Lemma 17.5. For each n ∈ N, the multiset H̃′ contains exactly one n. Similarly, the multiset H̃′′

contains exactly one n.

Proof. We give a proof only for the former assertion; the proof for the latter assertion is similar. We
put λ = (λ1, . . . , λk) with λk > 0. Set T := {(i, j) ∈ N × N | 1 ≤ i ≤ k + 2, 1 ≤ j ≤ b}. By [25,

Lemma 2], we have H̃Yλ
(R) ∪ H̃Y c

λ′ (C
c ∩ T ) = {1, 2, . . . , k − a + b + 1} = [1, k − a + b + 1]. Note

that if (i, j) ∈ Cc \ T , then hY c
λ′ (i, j) = hY c

λ′ (i − 1, j) + 1, and k − a + b + 1 ∈ H̃Y c
λ′ (C

c ∩ T ). Hence

we have H̃Y c
λ′ (C

c \ T ) = {k − a + b + 2, k − a + b + 3, . . .} = [k − a + b + 2,∞). It is obvious that

H̃Y c
λ′ (C

c) = H̃Y c
λ′ (C

c ∩ T ) ∪ H̃Y c
λ′ (C

c \ T ). Combining these equalities, we obtain

H̃Yλ
(R) ∪ H̃Y c

λ′ (C
c) = H̃Yλ

(R) ∪ (H̃Y c
λ′ (C

c ∩ T ) ∪ H̃Y c
λ′ (C

c \ T ))
= [1, k − a+ b+ 1] ∪ [k − a+ b+ 2,∞) = [1,∞) = N,

as desired.

Let (xn)
∞
n=1 (resp., (xcn)

∞
n=1) be the hook length sequence of R in Yλ (resp., Rc in Y c

λ ), and let (yn)
∞
n=1

(resp., (ycn)
∞
n=1) be the hook length sequence of C in Yλ (resp., Cc in Y c

λ ). We set Z := Yλ \ (R ∪ C)
and Zc := Y c

λ \ (Rc ∪Cc ∪ {(a, b)}). Let (zn)∞n=1 (resp., (zcn)
∞
n=1) be the hook length sequence of Z in Yλ

(resp., Zc in Y c
λ ). Observe that the hook length sequence of R in Yλ′ (resp., C in Yλ′ , Rc in Y c

λ′ , and Cc

in Y c
λ′) is equal to (xn−1)

∞
n=1 (resp., (yn−1)

∞
n=1, (x

c
n+1)

∞
n=1, and (ycn+1)

∞
n=1), where we set x0 := 0 and

y0 := 0 for convention.

Lemma 17.6. For each n ≥ 1, it holds that xn + yn + xcn+1 + ycn+1 = 2.

Proof. It is obvious from Lemma 17.5 that xn + ycn+1 = 1 and yn + xcn+1 = 1 for each n ≥ 1.

By definition, we have pn = xn+yn+zn and qn = xcn+y
c
n+z

c
n for n ≥ 2. Let (p′n)

∞
n=1 be the hook length

sequence of Yλ′ , and let (q′n)
∞
n=1 be the hook length sequence of Y c

λ′ . Notice that p′n = xn−1 + yn−1 + zn
and q′n = xcn+1 + ycn+1 + zcn for n ≥ 2. We show that q′n − p′n = n for all n ≥ 1. If n = 1, then we have
q′1 − p′1 = 1 because q′1 = 2 + #{t ∈ [1, k − 1] | λt 6= λt+1} and p′1 = 1 + #{t ∈ [1, k − 1] | λt 6= λt+1}.
Assume that n ≥ 2. By Lemma 17.6 and the induction hypothesis, we have

q′n − p′n = (xn + yn + xcn+1 + ycn+1)︸ ︷︷ ︸
=2

− (xn−1 + yn−1 + xcn + ycn)︸ ︷︷ ︸
=2

+(xcn + ycn + zcn)︸ ︷︷ ︸
=qn

− (xn + yn + zn)︸ ︷︷ ︸
=pn

= n.

This completes the proof of Theorem 17.3.
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18 Application.
By applying [13, Corollary 6.8] to the case of A∞, we have

U(D(Λ),≤) = T (D(Λ),≤)|qi→q =
∏

β∈D(Λ)

1

1− q#HΛ(β)
, (18.1)

where Λ is a finite pre-dominant integral weight, and T (D(Λ),≤) is the trace generating function of the
poset (D(Λ),≤) (see [13, Section 2]) corresponding to the coloring cΛ : D(Λ) → I in [13, Definition 6.4].
Also, in the case of A∞, the same formula as (18.1) holds for an infinite pre-dominant integral weight Λ
satisfying the following conditions: If we write Λ as Λ =

∑
i∈Z diΛi with di ∈ Z for i ∈ Z, then

(IP1) it holds that 1 ≤ #{i ∈ Z | di 6= 0} <∞;
(IP2) for all i ∈ Z, we have di ∈ {0,±1};
(IP3) for each i, j ∈ Z with i < j such that di = dj 6= 0, there exists i < m < j such that dm = −di = −dj ;
(IP4) if we set u := min {i ∈ Z | di 6= 0} and v := max {i ∈ Z | di 6= 0}, then du = −1 and dv = −1;
(IP5) it holds that

∑
i∈Z di · i = 0.

Let λ = (λ1, . . . , λk) be a partition such that λk > 0; recall from Section 16 that Λc
λ = −Λ−k −∑λ1−1

i=1−k(bi + ci)Λ1 − Λλ1
. We can easily check that Λc

λ is an infinite pre-dominant integral weight
satisfying the conditions (IP1)–(IP4) above. Let us show that Λc

λ satisfies the condition (IP5) above.
Recall that c1−k = 0 and that bλ1−1 = −1, and if 1− k ≤ i ≤ λ1 − 2, then bi + ci+1 = 0. Thus we obtain

(−1) · (−k)−
λ1−1∑
i=1−k

(bi + ci) · i+ (−1) · λ1

= k −
{ λ1−1∑

i=1−k

bi · i+
λ1−1∑
i=1−k

ci · (i− 1) +

λ1−1∑
i=1−k

ci︸ ︷︷ ︸
=#(I\{λ1})

}
− λ1

= k −
{ λ1−2∑

i=1−k

(bi + ci+1)︸ ︷︷ ︸
=0

· i+ bλ1−1︸ ︷︷ ︸
=−1

· (λ1 − 1) + (k − 1)

}
− λ1

= 0,

as desired. In particular, −Λ0 satisfies the conditions above, and its diagram is D(−Λ0) = {αi,j | i ≤
0 ≤ j}. We can easily check that the map ψ′ : D(−Λ0)

∗ → Y c
∅ = N2, αi,j 7→ (−i+ 1, j + 1), is an order

isomorphism, and preserves the hooks in the sense that ψ′(H−Λ0
(β)∗) = HY c

∅
(ψ′(β)) for all β ∈ D(−Λ0)

∗.

Hence we deduce by (18.1) that

U(N2,�∗) = U(D(−Λ0),≤) =
∏

i≤0≤j

1

1− qj−i+1
=

∞∏
n=1

(
1

1− qn

)n

, (18.2)

which is known as MacMahon’s identity (see [8] and also [7, Chapter 1, Section 5, Example 13(c)]). The
following formula includes MacMahon’s identity as a special case where λ = ∅.

Corollary 18.1 (see also [17, Theorem 2.1]). For any partition λ, it holds that

U(Y c
λ ,�∗)

U(Yλ,�)
=

∞∏
n=1

(
1

1− qn

)n

. (18.3)

In particular, the left-hand side is independent of λ.
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Proof. If λ = ∅, then the formula (18.3) is obvious from (18.2) and U(Yλ,�) = 1. Assume that λ 6= ∅.
Let (pn)

∞
n=1 (resp., (qn)

∞
n=1) be the hook length sequence of Yλ (resp., Y c

λ ). By Theorems 16.4 and 16.6,
together with (18.1), we have

U(Yλ,�) = U(D(Λλ),≤) =

∞∏
n=1

(
1

1− qn

)pn

,

U(Y c
λ ,�∗) = U(D(Λc

λ),≤) =

∞∏
n=1

(
1

1− qn

)qn

.

By Theorem 17.3, we obtain

U(Y c
λ ,�∗)

U(Yλ,�)
=

∞∏
n=1

(
1

1− qn

)qn−pn

=

∞∏
n=1

(
1

1− qn

)n

,

as desired.
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A Appendix to PartⅠ.
In Appendix A, we assume that g is the exceptional finite-dimensional simple Lie algebra of type E6, E7,
E8, F4, or G2. The Dynkin diagram for g and K ⊂ I are given as follows.

type E6 : •
1

•
2

•
3

• 6

•
4

•
5

K := I

type E7 : •
1

•
2

•
3

• 7

•
4

•
5

•
6

K := I

type E8 : •
1

•
2

•
3

• 8

•
4

•
5

•
6

•
7

K := I

type F4 : •
1

•
2

•//

3
•
4

K := {3, 4}

type G2 : •
1

•oo

2

K := {1}

Also for g of exceptional type, we can show statements similar to Theorems 5.1, 5.2, 5.3, and Corollary 8.3,
as seen below; we prove them by using computer programs due to Kawai and Tada [4].
Define vi ∈ W for i ∈ K as Table 1 below. Then we deduce that the same statement as Lemma 6.4

holds also in these exceptional cases; in particular, we have

SM =
⊔
i∈K

SMi,

where SMi = {w ∈ SM | Λw = Λi} for i ∈ K. Then we see that #SMi is given as Table 2
below. Let i ∈ K be such that Λi is a minuscule weight; in this case, g is of type E6 and i = 1 or 5,
or g is of type E7 and i = 6. If g is of type E6, then SM1 = [v1, w

J1
0 ]J1 , SM5 = [v5, w

J5
0 ]J5 , and

dimEv1(Λ1) = dimEv5(Λ5) = 16. If g is of type E7, then SM6 = [v6, w
J6
0 ]J6 , and dimEv6(Λ6) = 43.
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vi E6 E7 E8 F4 G2

i = 1 s6s5s4s3s2s1 s7s6s5s4s3s2s1 s8s7s6s5s4s3s2s1 – s2s1
i = 2 s6s5s4s3s1s2 s7s6s5s4s3s1s2 s8s7s6s5s4s3s1s2 – –
i = 3 s6s5s4s1s2s3 s7s6s5s4s1s2s3 s8s7s6s5s4s1s2s3 s1s2s4s3
i = 4 s6s5s1s2s3s4 s7s6s5s1s2s3s4 s8s7s6s5s1s2s3s4 s1s2s3s4
i = 5 s6s1s2s3s4s5 s7s6s1s2s3s4s5 s8s7s6s1s2s3s4s5
i = 6 s1s2s5s4s3s6 s7s1s2s3s4s5s6 s8s7s1s2s3s4s5s6
i = 7 s1s2s6s5s4s3s7 s8s1s2s3s4s5s6s7
i = 8 s1s2s7s6s5s4s3s8

Table 1. Definition of vi ∈W .

#SMi E6 E7 E8 F4 G2

i = 1 16 35 71 – 1
i = 2 4 5 6 – –

i = 3 1 1 1 1

i = 4 4 5 6 6

i = 5 16 11 16

i = 6 12 43 27

i = 7 20 105

i = 8 30

Table 2. The number of strong minuscule elements in SMi.

B Appendix to Part Ⅲ.

B.1 Description of the diagrams.

In Appendix B, we assume that g is the infinite rank affine Lie algebra of type D∞ over C associated to
the following Dynkin diagram (see [3, Exercise 4.14]):

· · · •
3

•
2

•
1

•oooooo 0

•
OOO

OOO

0

We use the same notation as for type A∞ (see Subsection 14.2), with I = Z replaced by I = N0 ∪ {0̄}.
We set

αi,j := αi + αi−1 + · · ·+ αj+1 + αj for i ≥ j ≥ 0 , θi := αi,1 for i ≥ 1,

βi,j := αi,j+1 + 2θj + α0 + α0̄ = αi + · · ·+ αj+1 + 2αj + · · ·+ 2α1 + α0 + α0̄ for i > j ≥ 1,

γ0 := α0̄ , γi := θi + α0̄ for i ≥ 1 , δi := θi + α0 + α0̄ for i ≥ 1;

we note that Φ+ = {αi,j | i ≥ j ≥ 0} t {βi,j | i > j ≥ 1} t {γi | i ≥ 0} t {δi | i ≥ 1}.

Definition B.1 (cf. Subsection 9.1). Let k ∈ N. A partition λ = (λ1, . . . , λk) is said to be strict if
λ1 > λ2 > · · · > λk. For a strict partition λ = (λ1, . . . , λk), we set

Sλ := {(i, j) ∈ N2 | 1 ≤ i ≤ k, i ≤ j ≤ λi + i− 1}.

We identify (i, j) ∈ Sλ with the square in R2 whose vertices are (i − 1, j − 1), (i − 1, j), (i, j − 1), and
(i, j); elements in Sλ are called boxes in Sλ. The set Sλ is called the shifted Young diagram associated
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to a strict partition λ. For (i, j) ∈ Sλ, we set

ArmSλ
(i, j) := {(i, j′) ∈ Sλ | j < j′} , LegSλ

(i, j) := {(i′, j) ∈ Sλ | i < i′},
TailSλ

(i, j) := {(j + 1, j′) ∈ Sλ | j < j′} , HSλ
(i, j) := {(i, j)} tArmSλ

(i, j) t LegSλ
(i, j) t TailSλ

(i, j).

The subset HSλ
(i, j) of Sλ is called the hook at (i, j) in Sλ, and the number hSλ

(i, j) := #HSλ
(i, j) is

called the hook length at (i, j) in Sλ.

Example B.2. If λ = (6, 4, 2, 1), then Sλ and the hook at (1, 2) ∈ Sλ (grayed boxes) are as follows:

j

i

Definition B.3. A sequence ν = (νn)
∞
n=1 is called an infinite strict partition if νi < νi+1 for all i ≥ 1,

and there exists j ≥ 1 such that νi+1 = νi + 1 for all i ≥ j. For an infinite strict partition ν = (νn)
∞
n=1,

we set s(ν) = s := min {j ≥ 1 | νi+1 = νi + 1 for all i ≥ j}, and

S∞
ν := {(i, j) ∈ N2 | 1 ≤ i, νs − νi + i− s+ 1 ≤ j ≤ νs + i− s}.

We identify (i, j) ∈ S∞
ν with the square in R2 whose vertices are (i − 1, j − 1), (i − 1, j), (i, j − 1), and

(i, j); elements in S∞
ν are called boxes in S∞

ν . The set S∞
ν is called the infinite shifted Young diagram

associated to an infinite strict partition ν = (νn)
∞
n=1 (see Example B.4 below). For (i, j) ∈ S∞

ν , we set

ArmS∞
ν
(i, j) := {(i, j′) ∈ S∞

ν | j′ < j} , LegS∞
ν
(i, j) := {(i′, j) ∈ S∞

ν | i′ < i} ,
TailS∞

ν
(i, j) := {(s− νs + j − 1, j′) ∈ S∞

ν | j′ < j} ,
HS∞

ν
(i, j) := {(i, j)} tArmS∞

ν
(i, j) t LegS∞

ν
(i, j) t TailS∞

ν
(i, j).

The subset HS∞
ν
(i, j) of S∞

ν is called the hook at (i, j) in S∞
ν , and the number hS∞

ν
(i, j) := #HS∞

ν
(i, j)

is called the hook length at (i, j) in S∞
ν .

Example B.4. A sequence ν = (1, 2, 5, 6, 7, 8, 9, . . .) is an infinite strict partition with s(ν) = s = 3.
The infinite shifted Young diagram S∞

ν and the hook at (4, 5) ∈ S∞
ν (grayed boxes) are as follows:

j

i

Recall from Subsection 15.1 that the set (N2,�) is a poset. For each strict partition λ (resp., infinite
strict partition ν), the shifted Young diagram Sλ (resp., the infinite shifted Young diagram S∞

ν ) is
regarded as a subposet of N2 in the partial order �.
Now, fix k ∈ N, and a strict partition λ = (λk, λk−1, . . . , λ1) such that λ1 > 0. We can easily check

that λp := (λk − k+1, λk−1 − k+2, . . . , λ2 − 1, λ1) ∈ Yk(λk +1). Recall from Subsecction 9.1 that there

exists a bijection from Yk(λk +1) onto
(
[1,λk+1]

k

)
. Let U be the element in

(
[1,λk+1]

k

)
corresponding to λp
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under this bijection, and write it as: U = {u′1 < · · · < u′k}. We set V := [1, λk + 1] \ U , and write it as:
V = {v′1 < · · · < v′λk−k+1}. For each 0 ≤ j ≤ λk − 1, we set

b̃j :=

{
−1 if j ∈ U − 2,
0 if j ∈ V − 2.

We set c̃0 := b̃0 + 1, and for each 1 ≤ j ≤ λk − 1, we set

c̃j :=

{
1 if j ∈ U − 1,
0 if j ∈ V − 1.

We put

Λ̃λ = Λλk
+

λk−1∑
j=0

(̃bj + c̃j)Λj ;

we can easily check that Λ̃λ ∈ P fin
≥−1. We can prove the following lemma in exactly the same way as

Lemma 16.3 and Theorem 16.4 for type A∞.

Lemma B.5. Keep the notation and setting above.

(1) If λ1 = 1, then D(Λ̃λ) = {αp,q | p ∈ U − 2, q ∈ V − 1, p ≥ q} t {βp,q | p, q ∈ U − 2, p > q ≥ 1} t {δp |
p ∈ U − 2, p ≥ 1}.

(2) If λ1 > 1, then D(Λ̃λ) = {αp,q | p ∈ U − 2, q ∈ (V \ {1}) − 1, p ≥ q} t {βp,q | p, q ∈ U − 2, p >
q} t {γp | p ∈ U − 2}.

Moreover, the map ψ : D(Λ̃λ) → Sλ,
αu′

i−2,v′
j−1 7→ (k − i+ 1, k + j − 1),

βu′
i−2,u′

j−2 7→ (k − i+ 1, k − j),

γu′
i−2 7→ (k − i+ 1, k),

δu′
i−2 7→ (k − i+ 1, k − 1),

is an order isomorphism, and preserves the hooks in the sense that

ψ(HΛ̃λ
(β)) = HSλ

(ψ(β)) for all β ∈ D(Λ̃λ).

Definition B.6. Let λ = (λk, . . . , λ1) be a strict partition. We set Mλ := N \ {λ1, . . . , λk} (⊂ N), and
write it as: Mλ = {m1 < m2 < · · · }. We set λc := (mn)

∞
n=1; note that λc is an infinite strict partition.

The infinite shifted Young diagram Sc
λ := S∞

λc is called the complemetary shifted Young diagram of Sλ.

Example B.7. If λ = (6, 4, 2, 1), then Mλ = N \ {1, 2, 4, 6} = {3 < 5 < 7 < 8 < 9 < 10 < · · · }.
Therefore, we get λc = (3, 5, 7, 8, 9, 10, . . .).

We put Λ̃c
λ = −Λ̃λ; we can easily check that Λ̃c

λ ∈ P inf
≥−1. Let U = {u′1 < · · · < u′k}, and V =

[1, λk + 1] \ U = {v′1 < · · · < v′λk−k+1} as above. We set Ṽ := (V − 2) t [λk,∞), and write them as

Ṽ = {ṽ1 < ṽ2 < · · · }. We can prove the following lemma in exactly the same way as Lemma 16.5 and
Theorem 16.6 for type A∞.

Lemma B.8. Keep the notation and setting above.

(1’) If λ1 = 1, then D(Λ̃c
λ) = {αp,q | p ∈ Ṽ \{ṽ1}, q ∈ U −1, p ≥ q}t{βp,q | p, q ∈ Ṽ \{ṽ1}, p > q}t{γp |

p ∈ Ṽ \ {ṽ1}}.
(2’) If λ1 > 1, then D(Λ̃c

λ) = {αp,q | p ∈ Ṽ , q ∈ (U − 1)∪ {0}, p ≥ q} t {βp,q | p, q ∈ Ṽ , p > q ≥ 1} t {δp |
p ∈ Ṽ , p ≥ 1};
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if λ1 > 1, then we set u′0 := 1 (and hence (U−1)∪{0} = {u′0−1 < u′1−1 < · · · < u′k−1}) for convention.
Moreover, the map ψc : D(Λ̃c

λ)
∗ → Sc

λ,
αṽi,u′

j−1 7→ (i− 1, k − j + 1),

βṽi,ṽj 7→ (i− 1, k + j),

γṽi 7→ (i− 1, k + 1),

δṽi 7→ (i− 1, k + 2),

is an order isomorphism, and preserves the hooks in the sense that

ψc(HΛ̃c
λ
(β)∗) = HSc

λ
(ψc(β)) for all β ∈ D(Λ̃c

λ)
∗.

B.2 Hook length sequences.

Definition B.9. Let λ be a strict partition. The sequence (an)
∞
n=1 defined by

an := #{(i, j) ∈ Sλ (resp., Sc
λ) | hSλ

(i, j) = n (resp., hSc
λ
(i, j) = n)}

is called the hook length sequence of Sλ (resp., Sc
λ).

Let λ = (λk, . . . , λ1) be a strict partition. We set

x̃i :=

{
1 if i ∈ {λ1, . . . , λk},
0 if i /∈ {λ1, . . . , λk},

ỹi :=

{
−1 if i ∈ {2λ1, . . . , 2λk},
0 if i /∈ {2λ1, . . . , 2λk},

(s̃n)
∞
n=1 := (x̃n)

∞
n=1+(ỹn)

∞
n=1.

We can show the following theorem by use of some facts mentioned in [14, Chapter 1, Section 4].

Theorem B.10. Let (p̃n)
∞
n=1 be the hook length sequence of Sλ, and let (q̃n)

∞
n=1 be the hook length

sequence of Sc
λ. Then,

q̃n − p̃n =
⌈ n
2

⌉
− s̃n for all n, (B.1)

where d·e is the ceiling function.

By Lemma B.8 and [17, Theorem 3.1], we have

U(D(Λ̃c
λ),≤) =

∏
β∈D(Λ̃c

λ)

1

1− q
#HΛ̃c

λ
(β)
. (B.2)

By the same argument as for Corollary 18.1, we obtain the following formula.

Corollary B.11. For any strict partition λ, it holds that

U(Sc
λ,�∗)

U(Sλ,�)
=

∞∏
n=1

(
1

1− qn

)dn
2 e−s̃n

.
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