Combinatorial realizations of the crystal bases for
extremal weight modules over quantized hyperbolic

Kac-Moody algebras of rank 2

Ryuta Hiasa

February 2022






Combinatorial realizations of the crystal bases for
extremal weight modules over quantized hyperbolic

Kac-Moody algebras of rank 2

Ryuta Hiasa
Doctoral Program in Mathematics

Submitted to the Graduate School of
Pure and Applied Sciences
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in
Science

at the
University of Tsukuba






Contents

1

2

Introduction. 1
Preliminaries. 4
2.1 Kac-Moody algebras. . . . . . . . . .. L e 4
2.2 Crystal bases and crystals. . . . . . . . .. L Lo 4
2.3 Crystal bases of extremal weight modules. . . . . . . .. ... ... ... ... ..... 4
2.4 Realizations of B(£oo) and B(gp). . . . . . . . ... 5
2.5 Lakshmibai-Seshadri paths. . . . . . . .. .. ... 8
Main results. 10
Weyl group orbit O satisfying O N (PTuU—P*) = (. 12
4.1 Proof of Theorem 3.1 (1). . . . . . . .. ... 12
4.2 Proofs of Theorem 3.1 (2) and (3). . . . . . . . . .. ... ... 14
Connectedness of the crystals of LS paths. 15
5.1 Hasse diagram of WA. . . . . . . . . 15
5.2 Proof of Proposition 5.1. . . . . . . . . ... 16
5.3 Proof of Proposition 5.2. . . . . . . ... L 17
5.4 Proof of Proposition 5.3. . . . . . . . .. .. 22
Relationship between the crystal of LS paths and the crystal basis of extremal

weight modules. 27
6.1 Polyhedral realization of B(+00) in the rank 2 case. . . . ... ... ... ... ..., 27
6.2 Proof of Theorem 3.3. . . . . . . . . . . 28
6.3 Proof of Theorem 3.4. . . . . . . . . . . . e 36
Polyhedral realization of B(\). 38
7.1 Some propositions and corollary. . . . . . . . ... 38
7.2 Proof of Theorem 3.6. . . . . . . . . . . . . . . . e 40
7.3 Proof of Theorem 3.7. . . . . . . . . . . e 41

A Action of Fj, on Z,[)]. 46



1 Introduction.

Let A = (aij)ijer be a symmetrizable generalized Cartan matrix, where I is the index set. Let
g = g(A) be the Kac-Moody algebra associated to A over C, and U,(g) the quantized universal
enveloping algebra over C(q) associated to g. We denote by W the Weyl group of g. Let P be an
integral weight lattice of g, and PT (resp., —P™) the set of dominant (resp., antidominant) integral
weights in P. Let u € P be an arbitrary integral weight. The extremal weight module V(u) of
extremal weight p is the integrable Uy(g)-module generated by a single element v, with the defining
relation that v, is an extremal weight vector of weight 4 in the sense of [6, Definition 8.1.1]. This
module was introduced by Kashiwara [6] as a natural generalization of integrable highest (or lowest)
weight modules; in fact, if u € Pt (resp., u € —P71), then the extremal weight module of extremal
weight p is isomorphic, as a U,(g)-module, to the integrable highest (resp., lowest) weight module of
highest (resp., lowest) weight p. Also, Kashiwara proved that V(u) has a crystal basis B(u) for all
p € P; let u,, denote the element of B(u) corresponding to v, € V(p). We know from [6, Proposition
8.2.2 (iv) and (v)] that V(u) = V(wp) as Uy(g)-modules, and B(p) = B(wp) as crystals for all p € P
and w € W. Hence we are interested in the case that p is an integral weight such that

Wpn(PTU—-PT)=0. (1.1)

If g is of finite type, then Wy N P+ # () for all 4 € P. Assume that g is of affine type. Then,
Wpn (PtU—P%) =0 if and only if (1 # 0, and) p is of level-zero. In this case, Naito and Sagaki
proved in [11] and [12] that if x is a positive integer multiple of a level-zero fundamental weight, then
the crystal basis B(u) of the extremal weight module V(1) is isomorphic, as a crystal, to the crystal
B(u) of Lakshmibai-Seshadri (LS for short) paths, which was introduced by Littelmann in [9] and [10].
Then, Ishii, Naito, and Sagaki [4] introduced the notion of semi-infinite LS paths of shape p for a
level-zero dominant integral weight p, and proved that the crystal basis B(u) of the extremal weight
module V(u) is isomorphic, as a crystal, to the crystal IB%%(M) of semi-infinite LS paths of shape pu.
On the other hand, in the case that g is of indefinite type, there are few studies on the combinatorial
realization of the crystal basis B(u) (for p € P satisfying (1.1)). As a special case (which is one of
most fundamental and interesting cases), let us assume that g is the hyperbolic Kac-Moody algebra
associated to the generalized Cartan matrix

A= ( 2a _gl> , where a1, as € Z>1 with ajas > 4. (1.2)
—ay >

Sagaki and Yu [15] proved that if p = Ay — Ay (A1, Ay are the fundamental weights of g) then the

crystal basis B(u) is isomorphic, as a crystal, to the crystal B(u) of LS paths in the case that a1, ag > 2;

note that = A; — Ag does not satisfy condition (1.1) if a; = 1 or ag = 1 (see [16, Remark 3.1.2]).
In this thesis, we classify the integral weights satisfying condition (1.1) as follows.

Theorem 1.1 (=Theorem 3.1). Let O := {Wpu | u € P} be the set of W-orbits in P.

(1) Assume that ay,as > 2. Then, O € Q satisfies condition (1.1), that is, O N (PT U —P%) =0 if
and only if O contains an integral weight X of the form either (i) or (ii):

(1) A =kiA1 — koo for some ki, ko € Zso such that ky < k1 < (a1 — 1)ko;
(il) A = k1A1 — koo for some ki, ko € Zso such that k1 < ka < (ag — 1)ky.

(2) Assume that ay = 1. Then, O € Q satisfies condition (1.1) if and only if O contains an integral
weight A Of the form A= k1A1 - kQAQ fOT some kl, kg S Z>0 such that le S kQ S (ag - 2)k1.

(3) Assume that ag = 1. Then, O € O satisfies condition (1.1) if and only if O contains an integral
weight X of the form A = ki A1 — koo for some ki, ko € Z~g such that 2ko < k1 < (a1 — 2)ks.



Let A = k1A1 — kaAo € P be an integral weight of the form mentioned in Theorem 3.1 above. As
a further study after [15, 16], we study the crystal structure of the crystal B(A) of LS paths, and its
relationship to the crystal basis B(\) of extremal weight module V().

Theorem 1.2 (=Theorem 3.2). The crystal graph of B(\) is connected if and only if k1 =1 or kg = 1.
Otherwise, the crystal graph of B(X\) has infinitely many connected components.

Theorem 1.3 (=Theorem 3.3). Let Bo(\) (resp., Bo(\)) be the connected component of B(X) (resp.,
B(X)) containing the “straight line” my = (X;0,1) (resp., uy). There ezists an isomorphism Bo(\) —
Bo(X\) of crystals that sends 7y to wy.

Theorem 1.4 (=Corollary 3.5). If k1 =1 or ko = 1, then there exists an isomorphism B(\) — B()\)
of crystals that sends wy to uy.

Again, let us assume that g is a general Kac-Moody algebra, and p is an arbitrary integral weight
of g. In the latter half of this thesis, we introduce and use the following embedding of the crystal basis
B(p) for the extremal weight module V' (p) into an infinite Z-lattice. Let B(co) (resp., B(—o0)) be the
crystal basis of the negative (resp., positive) part of U,(g). Nakashima and Zelevinsky [13] introduced
an embedding ¥, : B(oo) — Zi80+ of crystals, where T is an infinite sequence of elements in the

N
+oo
>0,

0 for k > 0} is the semi-infinite Z-lattice together with a crystal structure associated to t*. Assuming
a certain positivity condition on ¢+, they gave a combinatorial description of B(oco) (which is called

a polyhedral realization of B(c0)) as a polyhedral convex cone in Z;Siﬂ“' Namely, they found the set

Z,+ of linear functions on RT such that the image Im (¥}, ) = B(co) is identical to the set

index set I satisfying a certain condition, and Z ={(.., k..., 22,21) | Tk € Z>p and xp, =

{z € Zigoﬁ | p(2) >0 for all p € E,+}. (1.3)
Similarly, there exists an embedding W _ : B(—o00) < Z_, _ of crystals, where ¢~ is an infinite sequence
of elements in the index set I satisfying a certain condition, and Z_7° _ = {(z0, -1, ..., Zk,...) | T} €

Z<p and zp, = 0 for k < 0} is the semi-infinite Z-lattice together with a crystal structure associated
to ¢~. Hence there exists an embedding

Wi Boo) @ Ty @ B(—o00) = 215, @ T, @ L5, =: Zu(p)

>0, <0,

of crystals, where 7, is the crystal consisting of a single element of weight p, and ¢ := (vF,07).
Now, in [6, Proposition 8.2.2 (and Theorem 3.1.1)], Kashiwara showed that B(u) is isomorphic, as a
crystal, to the subcrystal {b € B(oco) ® T, ® B(—o0) | b* is extremal} of B(oco) ® T, ® B(—0o0), where
*: B(oo) ® T, ® B(—00) = B(00) ® T, ® B(—00) is the x-operation (see [6, Theorem 4.3.2]). Therefore
the crystal basis B(u) is isomorphic, as a crystal, to the subcrystal {# € Im(¥}") | * is extremal} of
Im (V') = Im(¥) ® 7, ® Im(¥ ) = B(oo) ® T, @ B(—00).

We return to be the case that A is as (1.2). The next purpose of this thesis is to give a polyhedral
realization (such as (1.3)) of B(\) — Im(¥}) for A = kjA; — kaAy € P of the form mentioned in
Theorem 3.1 above. Let ¢ = (¢7,07) with ¢ = (..., 49,71) := (...,2,1,2,1) and ¢~ = (ig,i—1,...) :=
(2,1,2,1,...). For k € Z, we define the linear function (; € (R*)* by (x(¥) := z for Z = (..., x2,21)®
th ® (zo,z—-1,...) € R, and set

=N ={vopo + 0% — ¢, mpr + G — 1}
U {pr — Ck» TCk — St Vht1Pht1 — Pr + Ck — Vet1Crpr | B> 1}
U{pk + Ckr Co1 — WChy» Ve—1Pk—1 — Pr + Yh—1Ch—1 — G | £ < 0},

where the numbers v, € R\ Q, k € Z, are defined by (3.3), and the sequence {py, }mez are defined by
(3.1) and (3.2). We set

SN ={Z€Z,\) | o(Z) >0 for all p € E,[\]}.



Theorem 1.5 (=Theorem 3.6). The set ¥,()\) is a subcrystal of Tm(¥?).

Theorem 1.6 (=Theorem 3.7). The equality ¥,(\) = {# € Im(¥}) | Z* is extremal} holds. Therefore,
Y. (N\) is isomorphic, as a crystal, to the crystal basis B(\) of the extremal weight module V(\) of
extremal weight X.

This paper is organized as follows. In §2, we fix our notation, and recall some basic facts about
extremal weight modules and their crystal bases. Also, we recall the definition of LS paths. In §4,
we prove Theorem 1.1. In §5, we prove Theorem 1.2. In §6, we prove Theorems 1.3 and 1.4. In §7,
we prove Theorems 1.5 and 1.6. In Appendix A, we give some formulas of the operators Fj, (which is
defined in §7.2) on =,[A].
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2 Preliminaries.

2.1 Kac-Moody algebras.

Let A = (a4j)ijer be a symmetrizable generalized Cartan matrix, and g = g(A4) the Kac-Moody
algebra associated to A over C. We denote by h the Cartan subalgebra of g, {a;}ier C b* the set of
simple roots, and { }icr C b the set of simple coroots. Let s; be the simple reflection with respect
to v for i € I, and let W = (s; | i € I) be the Weyl group of g. Let A denote the set of positive
real roots. For a positive real root 8 € A, we denote by 8" the dual root of 8, and by sz € W the
reflection with respect to 5. Let {A;}icr C b* be the fundamental weights for g, i.e., (Ai,a}/> = 0;j
for i,j € I, where (-,-) : h* x h — C is the canonical pairing of h* and h. We take an integral weight
lattice P containing «; and A; for all 7 € I. We denote by PT (resp., —P%) the set of dominant
(resp., antidominant) integral weights in P.

Let Uy(g) be the quantized universal enveloping algebra over C(q) associated to g, and let U, (g)
(vesp., U, (g)) be the positive (resp., negative) part of Uy(g), that is, C(g)-subalgebra generated by
the Chevalley generators E; (resp., F;) of U,(g) corresponding to the positive (resp., negative) simple
roots «; (resp., —«;) for i € I.

2.2 Crystal bases and crystals.

For details on crystal bases and crystals, we refer the reader to [7] and [1]. Let B(oo) (resp., B(—o0))
be the crystal basis of U, (g) (resp., U/ (g)), and let uo, € B(00) (resp., u—oo € B(—00)) be the element
corresponding to 1 € U, (g) (resp., 1 € U (g)). Denote by * : B(d00) — B(+00) the *-operation on
B(+o0); see [5, Theorem 2.1.1] and [7, §8.3]. For u € P, let 7, = {t,} be the crystal consisting of a
single element ¢, such that

wt(ty) =p, €ty = fitu =0, &(ty) =pi(ty) =—occforiel,

where 0 is an extra element not contained in any crystal.
Let B be a normal crystal in the sense of [6, §1.5]. We know from [6, §7] (see also [7, Theorem
11.1]) that B has the following action of the Weyl group W. For ¢ € I and b € B, we set

FOeDy i (wt(b), a)) > 0,
<0.

Sibi=¢"" y
& Dy it (wi(b), a))

Then, for w € W, we set Sy, = S;, ---S;, if w=s5;, ---s;,. Notice that wt(Sy,b)= wwt(b) for w € W
and b € B.
Definition 2.1. An element b of a normal crystal B is said to be extremal if for each w € W and
1 €1,

€i(Swb) = 0 if (wt(Sy,b),a)’) > 0,

fi(Swb) = 0 if (wt(Sywb), ) < 0.
Let B be a normal crystal. For b € B and ¢ € I, we set

€;" b = éfi(b)b and  flexp = f;.“pi(b)b.

2.3 Crystal bases of extremal weight modules.

Let pu € P be an arbitrary integral weight. The extremal weight module V(i) of extremal weight
v is, by definition, the integrable U,(g)-module generated by a single element v, with the defining
relation that v, is an extremal weight vector of weight y in the sense of [6, Definition 8.1.1]. We know
from [6, Proposition 8.2.2] that V(u) has a crystal basis B(u). Let w, denote the element of B(1u)
corresponding to v,.



Remark 2.2. We see from [6, Proposition 8.2.2 (iv) and (v)] that V(u) = V(wpn) as Uy(g)-modules,
and B(p) = B(wp) as crystals for all p € P and w € W. Also, we know from the comment at the
end of [6, §8.2] that if u € PT (resp., u € —P%), then V(p) is isomorphic, as a U,(g)-module, to
the integrable highest (resp., lowest) weight module of highest (resp., lowest) weight p, and B(u) is
isomorphic, as a crystal, to its crystal basis. So, we focus on those 1 € P satisfying the condition that

Wupn(PTuU—PT) =10. (2.1)
The crystal basis B(u) of V(u) can be realized (as a crystal) as follows. We set

B:= | | B() ® T, @ B(—o0);

neP

in fact, B is isomorphic, as a crystal, to the crystal basis B(U, 4(g9)) of the modified quantized universal
enveloping algebra U, (g) associated to g (see [6, Theorem 3.1. 1]) Denote by * : B — B the x-operation
on B (see [6, Theorem 4.3.2]); we know from [6, Corollary 4.3.3] that for b; € B(o0), ba € B(—o0), and
pe P,

(b1 ® tu ® 52)* = bf ® t—u—wt(bl)—wt(bz) ® b; (2'2)

Remark 2.3. The weight of (b ® t, ® ba)* is equal to —p for all by € B(co) and by € B(—00) since
wt(b}) = wt(b1) and wt(b3) = wt(b2).

Because B is a normal crystal by [6, §2.1 and Theorem 3.1.1], B has the action of the Weyl group
W (see §2.2). We know the following theorem from [6, Proposition 8.2.2 (and Theorem 3.1.1)].

Theorem 2.4. For i € P, the set {b € B(oco) ® T, ® B(—00) | b* is extremal} is a subcrystal of
B(c0) @ T, @ B(—00), and is isomorphic, as a crystal, to the crystal basis B(p) of the extremal weight
module V(i) of extremal weight p. In particular, us ®t, @ u_o € B(00) ® T, ® B(—00) is contained
in the set above, and corresponds to u, € B(u) under this isomorphism.

2.4 Realizations of B(+oo) and B(u).

Let us recall realizations of B(£oo) from [13]. We fix an infinite sequence ¢+ = (..., i, ..., i2,i1) of
elements of I such that iy # ix4q for k € Z>1, and #{k € Z>; | i = i} = oo for each i € I. Similarly,
we fix an infinite sequence ¢~ = (ig,9—1,...,,...) of elements of I such that i # i1 for k € Z<o,

and #{k € Z<o | i, = i} = oo for each i € I. We set

Z‘Z“’O = {(.. yeees T2, 1) | T € Z>o and x, = 0 for k> 0},
2y = {(xo,x Lyeeey Thy---) | Tk € Z<o and zp, = 0 for k < 0}.

We endow ZJZFSO and Z;SO with crystal structures as follows. Let 27 = (..., zg,...,22,21) € Z‘;O and
27 = (o, x_1...,7p...) € Z_g" . For k > 1, we set
=Tk + Z Qs ZL'],
J>k

and for k£ < 0, we set

o, (27) = -z — Z(ai].,axc)xj;

j<k



since z; = 0 for |j| > 0, we see that o (2%) is well-defined, and o (%) = 0 for |k| > 0. For i € I, we
set J?;.)(.@Jr) = max{o} (&%) | k > 1,ix =i} and 0 (&7) = max{o, (27) | k < 0,1 = i}, and define
My = M
My =M
Note that ;) (#%) > 0, and that M7 = Mg
the maps &, f; : Z1° — ZLF U {0} and &, fi : Z23° — Z_5° U {0} by

(@) = {k | k> Lix = i,07 (%) = o) (27)},

(#7) = {k | k < 0,ix = i, 05 (37) = 0, (&)}

(#7F) is a finite set if and only if o(iz.) (%) > 0. We define

’ roo : roa_ e 4/
. (o @hy. .., ah, @) with 2, ==z, — (5k7maxM<+_) if a(i)(xJ“) > 0,
61'.%' = i
0 if a(t) (@t) =0,
Fat / ro . ro
fizT = (.. 2y, ..., 29, x7) With z}, ==z, + 6k,minM(+i)’
~ A o / . /.
éit” = (xg,x_q,..., Xy, ...) wWith a}, = xp — 5k,maxM(>,
fA_ (g, x’q,... 2, ...) with 2 = $k+5k,minM(_.) if O'(;.)(SAU_) > 0,
L = ‘
0 if o7 (#7) =0,

respectively. Moreover, we define

Wt(ﬂﬁ) = ijoéij, Ei(fff+) = U(t-)(:iﬂ, <P1;(33"+) = €z‘(50+) + <Wt(iﬁ+)70¢y>,
i>1

wt(Z7) = — ijaij, wi(Z7) = 0(_1.)(3?:_), gi(27) = i(@7) — (wt(27), o).
J<0

These maps make Zl’g" (resp., Z_7°) into a crystal for g; we denote this crystal by Zigob + (resp., Z_°_).

Theorem 2.5 ([13, Theorem 2.5)). There exists an embedding U, : B(co) < Z;’goﬁ of crystals
which sends uoo € B(00) t0 200 = (...,0...,0,0) € Zigoﬁ. Similarly, there exists an embedding
U B(—00) — Z;gi_ of crystals which sends u_, € B(—00) to z_ = (0,0,...,0,...) € Z;gi_.

We define the x-operations on Im(\I/fft) by the following commutative diagram:

B(+oo) —— B(£0)
‘I’Liil l\l/f:i
Im(¥5) —— Im(TH).
We know the following proposition from [13, Remark in §2.4].
Proposition 2.6. Keep the notation and setting above; recall that .* = (... i2,41) and ™ = (ig,i_1,...).

(1) Let & =(...,x9,21) € Z—;fﬁ' Then, & € Im(V7,) if and only if

0= ei (fi 7 fiit? - 200)
for all k > 1. Furthermore, if T € Im(‘Il:;), then T* = Ji’ilﬁ? 200, N

Tl — ~; ~. ~
MLl eT2eni )

LTk = 87f'k (eik_l 12 11

fork > 1.



(2) Let z = (xg,x-1,...) € Z;gi,. Then, & € Im(V¥ _) if and only if

“Tg—1 x—Tk—-2

O_wlk( Zk 1 e’Lk 2 : .Z_Oo)

for all k < 0. Furthermore, if & € Im(V "), then &* = é ¢, xl Yz o, and

r— r—Tr_1 p— ~
—Tp = @ik(finH T fz‘j ' iowox*)
for k <0.

We set ¢t == (17,07), and Z,(p) = Z+8°L+ QT ® Z<8°, for 4 € P. By the tensor product rule of

crystals, we can describe the crystal structure of Z, () as follows. Let & = &7 ®t, ® &~ € Z,(p1) with

2t = (..., 29,11 GZ';OLJr and &~ = (zo,2_1, ... )€Z<8°L For k € Z, we set

o (87) ifk>1,
o, (%) =
o, (27) — (wt(d), o) if k <0.
For i € I, we set 0(;)(¥) == max{oy(Z) | k € Z, i = i}, and
My = M) (%) = {k | i, = i,00(Z) = 03 (Z)}. (2.3)

Then we see that

> wj0u; (@) =06)(@); @il@) = eil@) + (wi(d), o))
JEZ

if ;(¥) = 0, then &;,& = 0; if &;(Z) > 0, then

éif ( .. ,IL’IQ, IL’ll) X tu (=) (:136, th . ) with x;{: =T — 6k,maxM(i);
if ;(Z) =0, then f;Z = 0; if (&) > 0, then

fi# = (. ah, ) @ty @ (20,274, ..) with 2, == 2k + Op,min .- (2.4)
The next corollary follows immediately from Theorem 2.5.

Corollary 2.7. For each p € P, there ewists an embedding V! = \Ilj; ®id®@ ¥ _ : B(oo) ® T, ®
B(—00) < Z,(1t) of crystals which sends o ®@t, @U_oe € B(00)@T,@B(—00) t0 2, i= 206 @1, Q200 €
Zy(1)-

We also define the -operation on Im(¥{") = Im(¥7 ) ® 7, @ Im(¥ ") by the following commutative
diagram:

B(0) ® T, @ B(—00) ——  B(oo) ® T, ® B(—o0)
v | o
Im(¥H) @ T, @ Im(¥_) —— Im(¥) @ T, ® Im(¥").
We see by (2.2) that if z; € Im(‘ll+ ) and 22 € Im(¥_), then
(21 @t ®22)" = 2] ® by wi(z1)—wt(zz) ® 22 (2.5)
The next corollary is a consequence of Theorem 2.4 and Corollary 2.7.

Corollary 2.8. For u € P, the set {Z € Im(¥}") | #* is extremal} is a subcrystal of Im(¥}'), and
is isomorphic, as a crystal, to the crystal basis B(u) of the extremal weight module V(i) of extremal
weight L.



2.5 Lakshmibai-Seshadri paths.

We recall Lakshmibai-Seshadri paths from [10, §2 and §4]. In this subsection, we fix an integral weight
we P.

Definition 2.9. For v,/ € Wy, we write v > v/ if there exist a sequence v = vg,vy,..., vy = V/
of elements in Wy and a sequence f31, B2, ..., B, of positive real roots such that v, = sg, (v4,—1) and
(vk—1,B8)) <0 for each k =1,2,...,u. If v > 1/, then we define dist(r,7’) to be the maximal length
u of all possible such sequences v = vg, v1,...,1, = V.

Remark 2.10. For v,/ € Wy such that v > v/ and dist(v, V') = 1, there exists a unique positive real
root 8 € Af; such that v/ = sz(v).

The Hasse diagram of W is, by definition, the A/ -labeled, directed graph with vertex set W, and

edges of the following form: v LV for v, € Wy and 8 € Al such that v > 1/ with dist(v,v/) = 1
and v/ = sg(v).

Definition 2.11. Let v,/ € Wy with v > v/, and let 0 < o < 1 be a rational number. A o-
chain for (v,v') is a sequence v = vy, ...,v, = v/ of elements of Wy such that dist(vg_1,v;) = 1
and a(yk_l,ﬁ,j) € Zeg for all k = 1,2,...,u, where (i is the unique positive real root satisfying
v = 88, (Vie—1)-

Definition 2.12. Let v; > --- > v, be a finite sequence of elements in Wy, and let 0 = g9 < -+ - <
o, = 1 be a finite sequence of rational numbers. The pair 7 = (v1,...,Vy;00,...,0,) is called a

Lakshmibai-Seshadri (LS for short) path of shape v if there exists a og-chain for (v, vky1) for each
k=1,...,u—1. We denote by B(u) the set of LS paths of shape p.

Let [0,1] ={t € R| 0 <t <1}. We identify 7 = (v1,...,;00,...,04) € B(u) with the following
piecewise-linear continuous map 7 : [0,1] - R ®z P:

j—1
TI'(t) = Z(Uk — O’kfl)l/k + (t — O’j_l)l/j for oj—1 <t<ojy, 1<5 <.
k=1

We endow B(u) with a crystal structure as follows. First, we define wt(7) = 7(1) for 7 € B(u);
we know from [10, Lemma 4.5 (a)] that m(1) € P. Next, for 7 € B(u) and ¢ € I,

HT(t) = (r(t),o)) for0<t <1,

(2

my =min{H] (t) | 0 <t < 1}. (2.6)
From [10, Lemma 4.5 (d)], we know that

all local minimum values of H] (t) are integers; (2.7)

T

in particular, m] € Z<o and H (1) — m] € Z>o. We define é;m as follows. If m] = 0, then we set

e;m = 0. If mI < —1, then we set

t1 =min{t € [0,1] | H (t) = m] }, (2.8)
to == max{t € [0,t1] | H(t) =m] + 1};

we see by (2.7) that

HJ () is strictly decreasing on [to,1]. (2.10)
We define
(t) if 0 <t<to,
(&m)(t) = Q si(m(t) — m(to)) + w(to) iftg <t <ty
m(t) + ift <t <1



we know from [10, §4] that é;7 € B(p). Similarly, we define fir as follows. If HT (1) —mf = 0, then
we set fim:=0. If HT (1) —m[ > 1, then we set
to = max{t € [0,1] | H] (t) = m] }, (2.11)
t1 == min{t € [to, 1] | HT (t) = m] + 1}; (2.12)

7

we see by (2.7) that H[ (t) is strictly increasing on [to,t1]. We define

0 if 0 <t < to,
(fim)(t) = { si(m(t) — 7(to)) + w(to) ifto <t <ti,
m(t) — ift1 <t<1;

we know from [10, §4] that fim € B(u). We set 0 = f;0 := 0 for i € I. Finally, for 7 € B(x) and
1 € 1, we set

ei(m) == max{k € Z>o | &Fr # 0}, (7)== max{k € Z>q | ffn #0}.
We know from [10, Lemma 2.1 (c)| that

wi(m) = H (1) —m]. (2.13)

€i(7r) = -—m] i

7

Theorem 2.13 ([10, §2, §4]). The set B(y), together with the maps wt : B(p) — P, &, fi : B(u) —
B(u) U{0}, i €I, and ¢;,¢; : B(n) = Z>o, i € I, is a crystal.

For m = (v1,...,vu;00,...,04) € B(u), we set ¢(m) =1y and k(7)== v,,. For m € B(u) and i € I,

smax, . €i(m) fmax, ._ Fi(m)
we set €' = ¢, 'm and f"% 7 = f7 .

Lemma 2.14 ([10, Proposition 4.7]). Let 7 € B(u), and i € I. If (t(7),af) < 0, then ((&F*m) =
sit(m). If (k(m), ) > 0, then k() = s;k(m).



3 Main results.

In what follows, we assume that the generalized Cartan matrix A is
2 —aq .
A= , where a1, a9 € Z>1 with ajas > 4.
—a9 2 -
Let A1, Ao denote the fundamental weights for g = g(A); note that P = ZA1BZAs and a1 = 2A1—agAs,
ag = —ai1A1 + 2As.
Theorem 3.1 (will be proved in §4). Let O := {Wu | u € P} be the set of W-orbits in P.
(1) Assume that ai,ay > 2. Then, O € O satisfies condition (2.1), that is, ON (Pt U—-P%) =0 if
and only if O contains an integral weight X of the form either (i) or (ii):
(i) XA = k1Ay — kaAs for some ki, ko € Z~q such that ke < k1 < (a1 — 1)ks;
(ii) A= klAl — kQAQ f07” some kl, ko € Z>0 such that k1 < ko < (CLQ — 1)k‘1.

(2) Assume that ay = 1. Then, O € Q satisfies condition (2.1) if and only if O contains an integral
weight X of the form A = k1 A1 — koo for some ki, ko € Z~g such that 2ky < ko < (ag — 2)k;.

(3) Assume that ag = 1. Then, O € O satisfies condition (2.1) if and only if O contains an integral
weight X of the form A = k1 Ay — koo for some ki, ky € Z~o such that 2ko < k1 < (a1 — 2)ks.
Let A = k1A — koAs € P be an integral weight of the form mentioned in Theorem 3.1 above.

Theorem 3.2 (will be proved in §5). The crystal graph of B(\) is connected if and only if k1 =1 or
ko = 1. Otherwise, the crystal graph of B(\) has infinitely many connected components.

Let Bo(A) (resp., By(A)) be the connected component of B(A) (resp., B()\)) containing ) := (\;0, 1)
(resp., uy).
Theorem 3.3 (will be proved in §6.2). There exists an isomorphism Bo(\) — Bo(\) of crystals that
sends wy to uy.
Theorem 3.4 (will be proved in §6.3). Assume that ki = 1 or ky = 1. For b € B(A), there exist
i1,y ...,0 € I such that b= f; --- fiyun or b= ¢, ---é;,ux. In particular, the crystal graph of B(\) is
connected.

If k1 =1 or ko = 1, then we see by Theorem 3.4 (resp., Theorem 3.2) that B(\) = By(\) (resp.,
B(A) = Bo()A)). Therefore, by Theorem 3.3, we obtain the following corollary.

Corollary 3.5. If ki = 1 or ko = 1, then there exists an isomorphism B(A) — B(\) of crystals that
sends my to u).

We define the sequence {py, }mez of integers by the following recursive formulas: for m > 0,

a9Pm+1 — Pm  if m is even
po = ko, p1: =k, pmi2= " T 7 (3.1)
a1Pm+1 — Pm  if m is odd;
for m < 0,
a — if m is even,
Do = 2Pm+1 — Pm+2 ‘ . (3.2)
a1Pm+1 — Pm+2  if m is odd.
We assume that ¢ = (0F,07) with «+ = (... i2,41) = (...,2,1,2,1) and = = (ig,i-1,...) =

(2,1,2,1,...). We set

_ajaz + \/a%a% —4dajas . aias + \/a%a% —4ajas
b - b

2a9 2a1
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and

B if kis odd

for k € Z; note that o, 5 € R\ Q and «, 8 > 0. By the definition, we have

«a if k is even,
Tk = (3.3)

1
— V41 = Qi (34)
Tk

We regard R* == {7 = (..., 22,21) ®t)\ ® (x0,2_1,...) | 1 € R and z; = 0 for |k| > 0} as an infinite
dimensional vector space over R; note that Z,(A) C R*. Let (R*)* := Homg(R*,R) be its dual
space. For k € Z, we define the linear function (i € (R*)* by (x(Z) ==z for £ = (..., x2,71) ® 1\ ®
(xo,_1,...) € R®. Set

E(N) ={Z € Z,\) | p(@) >0 for all ¢ € E,[\]},
where

EA] ={yopo + 0% — ¢, M1 +Co — G}
U{pk =G> Yk — Cht1> Vht1Pht1 — Pk + Ck — Ye1Chs1 | K > 1}
U{pk + Cs Coo1 — Y%Chs Ve—1Pk—1 — Pk + Ye—1Ck—1 — G | K < 0}

Theorem 3.6 (will be proved in §7.2). The set ¥,()\) is a subcrystal of Im(¥?}).

Theorem 3.7 (will be proved in §7.3). The equality ¥,(\) = {Z € Im(¥}) | Z* is extremal} holds.
Therefore, ¥,(\) is isomorphic, as a crystal, to the crystal basis B(\) of the extremal weight module
V(X) of extremal weight A.
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4 Weyl group orbit O satisfying O N (PTU—P") = (.

4.1 Proof of Theorem 3.1 (1).

Lemma 4.1. An orbit O € O contains \ € P of the form either (i) or (ii) in Theorem 3.1 (1) if and
only if O contains \' € P of the form either (a)—(d):

a) N = kA, — kAy for some k € Z~y;

(a)

(b) N = kA1 — (ag — 1)kAs for some k € Z~g;

(¢) N =kAy — 1Ay for some k,l € Z~q such that | < k < (a1 — 1)I;
)

(d) N = kA — Ay for some k,l € Z~q such that k <1 < (ag — 1)k.

Proof. The “only if” part is obvious. We show the “if” part. If X" is of the form (c) (resp., (d)), then
it is obvious that A is of the form (i) (resp., (ii)). Assume that )\ is of the form (a). If a; > 3, then
A is of the form (i). If a; = 2, then we see that as > 3 and O contains s159\ = s152(kA; — kAg) =
kA1 — (a2 — 1)kAg, which is of the form (ii). Assume that X is of the form (b). If ag > 3, then X is
of the form (ii). If ay = 2, then we see that a3 > 3 and X = kA1 — (a2 — 1)kAy = kA — kAsg is of the
form (i). Thus we have proved the lemma. O

For A € P of the form A = kA; — [Ay with k,l € Z, we define the sequence {p,, } mez of integers by
the following recursive formulas: For m > 0,

a9Pm+1 — Pm  if m is even,

po=1, p1=k,  Dmny2= { (4.1)

a1Pm+1 — Pm  if m is odd;

for m < 0,

(4.2)

a2Pm+1 — Pm+2  if m is even,
Pm = . .
1Pm+1 — Pm+2  if m is odd.

For m € Z, we set
(s251)" it m = 2n with n € Z>y,

si(s2s1)” i m=2n+1 with n € Z>o,
(s182)~
82(8182)_n ifm=2n—1withn € Zgo;

Wy =
m " if m = 2n with n € Z<,

note that W = {w, | m € Z}. By induction on |m|, we can show the following lemma.

Lemma 4.2. Form € Z,

W\ — {pm+1A1 — Pml\o if m is even, (4.3)

—pmA1 + pma1Ae  if mis odd.

Corollary 4.3. Let A = kA1 — Ay € P be an integral weight. The Weyl group orbit WA € Q satisfies
condition (2.1) if and only if py, > 0 for allm € Z or p,, <0 for all m € Z.

Lemma 4.4. Let A = kA1 — [Ay € P.
(1) If there exists n' € Z>o such that 0 < p,y < ppr41, then 0 < pp < ppy1 for alln >n'.

(2) If there exists n' € Z<1 such that 0 < ppr < pp—1, then 0 < pp, < pp—1 for alln < n'.
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Proof. We give a proof only for part (1); the proof for part (2) is similar. We proceed by induction
on n. The assertion is trivial when n = n’/. Assume that n > n’. We set

/
a ‘=

a1 if n is even,
as if n is odd;

note that p,11 = a’pn, — pn_1. Then we compute
Pt — Do = (@'Pn = Pn1) = pn = (@' = 1)(pn — pn—1) + (¢’ = 2)pn_1.
Because o’ > 2, and p,, > p,—1 > 0 by the induction hypothesis, we obtain p,11 > p, as desired. []

Proposition 4.5. Let A = kA1 — Aoy € P with k,1 > 0. If ppy # Pma1 for any m € Z, then the
following are equivalent.

(1) The Weyl group orbit WX satisfies condition (2.1), or equivalently, py,, > 0 for all m € Z by
Corollary 4.3 and the assumption that k,1 > 0.

(2) There exists an element N = kK'Ay — "Ny in W satisfying the conditions that k',l' € Z~¢, and
I'<k <(ag =D or k' <l < (ag — 1)K

Proof. (1) = (2): Since p,, is a positive integer for every m € Z by the assumption in (1), and since
Dm 7# Dm+1 for any m € Z by the assumption, there exists n € Z such that p,—1 > p, < ppy1- lf n
is even, then we have (a1 — 1)pn, — pp+1 = Pn—1 — Pn > 0 by (4.1) and (4.2). Hence, \' = w,\ =
Prntr1M1 — ppAs satisfies the condition p, < pp+1 < (a1 — 1)p,. Similarly, if n is odd, then we have
(a2 — 1)pp, — Pn—1 = Pn+1 — Pn > 0 by (4.1) and (4.2). Hence, X = w,_1\ = p,A1 — pp—1As satisfies
the condition p, < pn—1 < (ag — 1)py.

(2) = (1): Assume that WA contains an element X\ of the form X' = k'A; — I'Ay € WA with
k' U € Z~g such that I’ < k' < (a1 — 1)U’ (resp., k' <1’ < (ag —1)k’). We define the sequence {p), }mez
for X' in the same manner as (4.1) and (4.2):

, ;e
/ ! / / / a2Pm+1 — Pm if m is even,
- l , = k y e
Po 7 Prmta {alp;nH —ph, if mis odd.
Since I' < k' < (a1 — 1)l (resp., k' < 1" < (ag — 1)k'), it is easy to check that p’ ; > p{, < p} (resp.,
Py > p} < ph). By Lemma 4.4, we obtain p!,, > 0 for all m € Z. Hence, we see from Corollary 4.3 that
WX = WA satisfies condition (2.1). Thus, we have proved the proposition. m

Remark 4.6. By Lemma 4.4 and the proof of Proposition 4.5, we see that if A is of the form (c)
(resp., (d)) in Lemma 4.1, then

e>pa>pe=Il<pr=k<py<--
(rtesp., =+ >p 1 >po=Il>pr=k<p2<---),

where the sequence {py, }mez is defined by the recursive formulas (4.1) and (4.2) for A.

Proof of Theorem 3.1 (1). By Lemma 4.1, it suffices to show that O satisfies condition (2.1) if and
only if O contains A € P of the form either (a)-(d) in Lemma 4.1.

First, we prove the “if” part. We know from [16, Proposition 3.1.1] that if u = A; — Ag, then
W satisfies condition (2.1). Hence, W (ku) also satisfies condition (2.1) for every k € Z\{0}. Since
s1(kA1 — (a2 —1)kA2) = —kAy + kAy = —kp, we see that for A of the form (b), WA satisfies condition
(2.1). Also, we see from (2) = (1) in Proposition 4.5 that for A of the form (c) or (d), WA satisfies
condition (2.1). Thus we have proved the “if” part.
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Next, we prove the “only if” part. Assume that O € O satisfies condition (2.1). By Lemma 4.2,
we see that O contains A = kA; — [Ay such that k,1 > 0. Then we define the sequence {py,}mez by
the recursive formulas (4.1) and (4.2) for this \. If p,, = pm41 for some m € Z, we see by Lemma
4.2 that O = WA contains p,, A1 — pmAa or —pp A1 + pmAa = s1(pmA1 — (a2 — 1)pmA2). Hence, WA
contains an integral weight of the form either (a) or (b). If py, # pm+1 for any m € Z, then we see
from (1) = (2) in Proposition 4.5 that O = WA contains an integral weight of the form (c) or (d).
Thus we have proved Theorem 3.1 (1). O

4.2 Proofs of Theorem 3.1 (2) and (3).

We give a proof only for part (3); the proof for part (2) is similar. For y = kA; — I[As € P, we define
the sequence {ph, }mez of integers by the following recursive formulas: for m > 0,

a1p,, 11 — Pm if m is odd;
for m <0,
b {@pfnﬂ —ph o if mis even, 45)
" \aph, g — Pl if mis odd; :
note that for m € Z,
gt = {pm;1A1 — ph Ao ?f m %s even, (46)
—pmA1 +ph, Ao if mis odd.

Lemma 4.7. Assume that a1 > 5 and as = 1. Let p € P.
(1) If there exists n € Z such that 0 < ph, < ph, o, then 0 < ph < ph. o for all m > n.

(2) If there exists n € Z such that 0 < ph, < ph o, then 0 <ph <ph o for allm <n.

Proof. We give a proof only for part (1); the proof for part (2) is similar. We proceed by induction
on m. If m = n, then the assertion is trivial. Assume that m > n. By (4.4) and (4.5), we have
pgm+2 - pgm = (al - 3) (pgm B pgmf2) + (al B 4)pl2‘m72‘ Since pgm - p§m72 > 0 and pgmfZ > 0 by the
induction hypothesis, we obtain pl 19— P, > 0. ]

Proof of Theorem 3.1 (3). Assume that O € O satisfies condition (2.1). We can take p = kA — A €
O such that k,1 > 0. Then we see by the assumption and (4.6) that pl, > 0 for all m € Z. Hence it
follows from Lemma 4.7 that there exists n € Z such that

2 pgn—él > pgn—2 > pgn < pgn—s—Q < pgn+4 <l (47)
By (44) and (45)7 we have pgn—2 _pgn = (al - Q)pgn _pgn—i-l and pgn+2 _pgn = pgn—‘rl - 2p§n Hence
we see by (4.7) that 2ph, < ph ., < (a1 — 2)ph,. Then, A := wanpu = ph, A1 — ph, A2 € Wp = O
satisfies the desired condition.

Let A = k1 A1 — koAg for some ki, ko € Z~ such that 2ky < k1 < (a1 —2)ko; we show that O := WA
satisfies condition (2.1). By (4.6), it suffices to show that p)\, > 0 for all m € Z. By (4.4), (4.5), and
the assumption that 2k < k1 < (a1 — 2)ke, we obtain p%‘ — pé = p{‘ — 2p(’} = k1 —2ky > 0 and
Py — 1) = (a1 — 2)p) — p} = (a1 — 2)ka — k1 > 0. Hence we see by Lemma 4.7 that p3,, > 0 for all
m € Z. Note that p3,, 1 = p3,,,o + D3, by (4.4) and (4.5). Since p3,,, P340 > 0 as seen above, we
get P31 = Poyio + Doy, > 0 for all m € Z. Thus we have proved Theorem 3.1 (3). O

Remark 4.8. By the argument above, we see that if A = kj A1 — koA satisfies 2k < k1 < (a1 — 2)ka,
then p3,, < p%‘mﬂ for all m € Z, and

P> =k <py<pp <---.

In particular, we have pa‘ < p;\L for all n € Z.
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5 Connectedness of the crystals of LS paths.

Throughout this section, we assume that A = k1A; — koA is of the form mentioned in Theorem 3.1.
Theorem 3.2 is a consequence of the following three propositions.

Proposition 5.1 (will be proved in §5.2). If ky = 1 or ke = 1, then the crystal graph of B(\) is
connected.

Proposition 5.2 (will be proved in §5.3). Assume that k1 and ko are relatively prime. If ky # 1 and
ko # 1, then the crystal graph of B(\) has infinitely many connected components.

Proposition 5.3 (will be proved in §5.4). If k; and ke are not relatively prime, then the crystal graph
of B(\) has infinitely many connected components.

5.1 Hasse diagram of WA.

We draw the Hasse diagram of WA (in the ordering of Definition 2.9). Recall that p,, > 0 for all
m € Z (by Corollary 4.3).

Proposition 5.4 (cf. [16, Proposition 3.2.5]). The Hasse diagram of WX is
---&wg)\&wl)\ﬁwo)\&w,l)\&w,g)\g~- .

Proof. For m € Z, we set

) 2 if m is even,
1 =
1 if m is odd.

Since s;wmA = wp—1A and (WA, o)) = —pp, < 0 for every m € Z by Lemma 4.2, we have w, A >
wy,_1A. Hence, we have
S > WA > WA > WA > WA > W_oA > - (5.1)

it is obvious from (5.1) that dist(wm,A, wm—1A) = 1. Thus, we have proved the proposition. O

For each v € W, there exists unique m € Z such that v = wy,A. Then we define z(v) == m. By
the definition of LS paths and Proposition 5.4, we have z(v1) > z(v2) > -+ > z(v,) for

= (V1,V2, ..., Vy;00,01,...,04) € B(A).
We define the subset B (\) of B(\) by
Bi(A\) ={(v1,...,vu;00,...,0u) €EBN) | 2(1n) — 2(vpy1) =1lforv=1,...,u—1}.

Remark 5.5. Let 7 = (11,12, ...,Vs;00,01,-..,0s) € B1(A). By Lemma 4.2, we see that the function

HT(t) for ¢ € I attains its minimal and maximal values at t = o,,, u = 0,1, ..., s, alternately. Namely,
if HT(t) for i € I attains a minimal (resp., maximal) value at ¢t = o, then H[ () attains a minimal
(resp., maximal) value at ¢ = oy, for all w = 0,1,..., s such that « = v mod 2.

Proposition 5.6. Let 7 € B1(A\), and i € I. If é&m # 0, then ém € Bi(A). If fim # 0, then
fim € B1(X). Therefore, B1(\) is a subcrystal of B(N).

Proof. Let m = (v1,...,Vy4;00,...,04) € B1(\) with u > 1. We show that é;7 € B1(\) if é;m # 0. Take
t1 and to as (2.8) and (2.9), respectively; note that t; = o), for some 1 < n < u. Since (vp, @) <0
by the definition of ¢;, we see from Lemma 4.2 that z(1,) is odd if i« = 1 and even if i = 2. Hence we
have

SiVn = Siwz(yn))\ = wz(un)—l)" (5.2)
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If wu=1, then n = 1. By (5.2),

B (Vl,wz(ul),l/\;o,to,l) if 0 < to,
e, m =
(’wz(yl)_l)\; 0, 1) if 0 = ¢,

and hence é;m € B;(\). Assume that u > 2. If n < u—1, then it follows from the definition if By (\) that
Vntl = Wy(y,, A = Wa(p,)—1A- By (5.2), we obtain s;v,, = vpy1. If n > 2, then we see by Remark 5.5
that H (0,—2) attains a minimal value. By the definition of ¢, we have H] (0,—2) > H] (0y,). Since
HT(0y),H (0p—2) € Z by (2.7), we obtain H] (0,—2) > H[ (0,) + 1. Hence we see by Remark 5.5
that o,_1 < tg. Therefore,

(1/1,...,Vu;O'O,t0,0'Q,...,O'u) if n=1and 0 < tg,
s (V2. . V300,02, ..., 04) ifn=1and 0 = tg,
Y s i 005 Oty b0, Oty o) A2 <0< u— 1,

(V15 Vs Wa() =1 A 005 - -+ Ou—1, b0, 00) i n=u,

and hence &m € By(\). Similarly, we can show that f; € By()\) if fim # 0. Thus we have proved the
proposition. O

Remark 5.7. The element 7, = (\;0,1) is contained in B;(\). Hence, by Proposition 5.6, it follows
that ]BO()\) C Bl()\)
5.2 Proof of Proposition 5.1.

Lemma 5.8 (cf. [16, Lemma 4.1.1, Theorem 4.1.2]). Assume that A = kiA; — kaAa € P is as in
Theorem 3.1. In addition, assume that k1 and ko are relatively prime.

(1) For every m € Z, the numbers pn, and pmy1 (defined by (3.1) and (3.2) for X) are relatively prime.

(2) Let 0 < 0 < 1 be a rational number, and let p,v € WX be such that p > v. If p = po > p1 >
o> s = v is a o-chain for (u,v), then s = 1.

(3) An LS path m of shape X is of the form
(wm+5_1)\, cee 7wm+1)\7 wm)‘v 00,01y, 08)7

where m € Z, s >0, and 0 = 09 < 01 < --- < g5 = 1 satisfy the condition that ppyys—yoy, € Z for
1<v<s—1.

Proof. Part (1) can be easily shown by induction on |m)|.

Let us show part (2). Suppose, for a contradiction, that s > 2. Since dist(p,—1, py) = 1 for every
v=1,2,...,s by the definition of a o-chain, it follows from Proposition 5.4 that there exists m € Z
such that p, = wym_yA forv=0,1,...,s. We set

] {2 if m is even, ) {1 if m is even,
1 = ¥ =

1 if m is odd, 2 if m is odd.

By Lemma 4.2, we see that (w,\, o)) = —pm, (Wn-1A,af) = —pp—1. Since —py, and —pp,—1 are
relatively prime by part (1), there does not exist 0 < o < 1 such that o(w,\, o) = —opm € Z<p and
O (Wm—1A, a}’) = —0Pm—1 € Z~g. This contradicts the assumption that the sequence is a o-chain.

Part (3) follows immediately from the definition of an LS path and part (2). O
Remark 5.9. Assume that k; and ko are relatively prime. We see from Lemma 5.8 (3) that By () =
B(A). In particular, we see from Remark 5.5 that for 7 = (v1,10,...,vs;00,01,...,05) € B(\), the
function H (t) for i € I attains its minimal and maximal values at t = 0y, v = 0,1, ..., s, alternately.
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In the remainder of this subsection, we give a proof of Proposition 5.1 for the case that ks = 1; the
proof for the case that k1 = 1 is similar. Our proof is essentially the same as [16, Proof of Theorem
3.2.1].

Proposition 5.10. Let 7 € B(\), and write it as (see Lemma 5.8 (3)):
T = (WA, Win—1 A, .« ., Wy 1A, W A; 00y« -+, Omp—nt1) (5.3)
for somen<m and 0 =09 < -+ < om_n+1 = 1. Then, either 0 <n <m orn <m < —1 holds.

Proof. Suppose, for a contradiction, that m > 0 and n < —1. By the definition of an LS path,
there exists a op41-chain for (A\,w_;\). It follows from Proposition 5.4 that dist(A\,w_1\) = 1

and seA = w_1A. Thus, we obtain <)\,04¥> = —ko = —1 and 0 < o1 < 1, which contradicts
om+1{\, ay) € Z. O
Theorem 5.11. For eachm € B(\), 7 = fi -+ fi,mx or m = &, --- &,y for some iy, ... i, € I, where

mx = (A;0,1). In particular, the crystal graph of B(\) is connected (which proves Proposition 5.1).

Proof. Write m € B(\) as (5.3). By Proposition 5.10, either 0 < n < m orn <m < —1 holds. We
show by induction on m that if 0 < n < m, then 7 = f;_ --- fi;m) for some ¢1,...,4, € I. If m =0,
then n = 0, and hence # = 7). Thus the claim is obvious. Assume that m > 0. We set

) 2 if m is even,
1=
1 if m is odd;

note that (wnA\,a)) < 0 and s;wmA\ = wp,_1A by Proposition 5.4. By Lemma 2.14, we see that

erdxr e B(N) satisfies ¢(€"**71) = s;u(m) = s;wmA = wym—1A. Hence, by the induction hypothesis,

e = fiT---f}lm\ for some i1,...,%, € I. Hence, we obtain m = ﬁ-ei(ﬂ)ﬁT~'-ﬁl7r>\, as desired.
Similarly, we can show that if n < m < —1, then m = ¢;,---€;, 7y for some i1,...,%, € I. Thus we
have proved Theorem 5.11. O

5.3 Proof of Proposition 5.2.

We give a proof of Proposition 5.2 only for the case that ko < ki; the proof for the case that k1 < ks is
similar. It follows from Theorem 3.1 and the assumption of Proposition 5.2 that either (5.4) or (5.5)
holds:

ar,a0 > 2 and 1< ky <k < (al — 1)k2; (5.4)
a1 >5,a2 =1 and 2 <2ky <k < (a1 —2)/€2.

There exists a (unique) integer ¢ € {1,2,...,k; — 1} such that

c 1 c+1

— < —< 5.6
ki ke k1 (5.6)
Then we define the sequence {gm }mez of integers by the following recursive formula:
a2Gm+1 — qm if m is even,
0=1, q=c¢ qny2= A (5.7)
a1¢m+1 — ¢m if m is odd.

Recall that {p, }mez is defined by the recursive formulas (3.1) and (3.2).

Lemma 5.12. It hold that 0 < @m < DPm and gmPm+1 — Gm+1Pm = k1 — koc for allm € Z. In
particular, we have 0 < Gm+1/Pm+1 < @m/Pm < 1 for all m € Z.
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Proof. Recall that either (5.4) or (5.5) holds.

Case 1. Assume that (5.4) holds. First, let us show that ¢, > 0 for all m € Z. Since ¢; = ¢ >
1 = qo, we see by the same argument as Lemma 4.4 (1) that ¢,+1 > g for all m > 0; in particular,
gm > 0 for all m > 0. Since ki/ka < a1 — 1 by (5.4), and ¢ < k1/k2 by (5.6), we see that
k k
q—1—qo=(a1—0)—1=(a1—1)—62?1—?120,
2 2
and hence g_; > qp. By the same argument as Lemma 4.4 (2), we see that g,,—1 > g, for all m < —1;
in particular, g,, > 0 for all m < —1.
Next, let us show that g, < p,, for all m € Z. If we set d,, == py — g, for m € Z, then we have

agdm+1 — dmy, i m is even,

do=po—qo, di=p1—q, dmiz=
0 =Po —4qo 1=P1—q1 +2 {a1dm+1—dm i mis odd.

By the same argument as above, it suffices to show that d; > dp and dy < d_;. First, we show that
dy —do = (k1 —c¢) — (k2 — 1) > 0. Since ¢ < k;/ka by (5.6), and ka2 < k1 by (5.4), we have

k 1 1
(ki—c)—(ko—1)> ki —— —ho+1=k (1—— ) —ko+1>k(1—— ) —ky+1=0.
> ko >

Next, we show that d_1—dy = (a1ke—k1—ai;+c)—(ka—1) > 0. Note that (5.4) implies (k1 +k2)/k2 < a1,
and (5.6) implies (k1 — k2)/k2 < c. Then we compute

(ale—kl—al—i—c)—(kg—l):al(k2—1)—k1+c—k2+1
k14 ko k1 — ko
> kQ k2

(/{2—1)—]{14- —ky+1=-1.
Because d_; — dy is an integer, it follows that d_; > dp.

Finally, the equality ¢mpm+1 — @mr1Pm = k1 — kac for m € Z can be easily shown by induction on
Im|.

Case 2. Assume that (5.5) holds. First, let us show that ¢, > 0 for all m € Z. By the
same argument as for p), in the proof of Theorem 3.1 (3), we see that the assertion follows from
g—2 > qo < q2. Since k1/ko > 2 by (5.5), and ¢ > k1/ka — 1 by (5.6), we see that

k
CI2¢I0=(61)1262><I€11>2>212:1.
2

Because g2 — qp is an integer, we have ga > qo. Similarly, since ki /ko < a1 —2 by (5.5), and ¢ < ki /ko

by (5.6), we see that
ki ki
q-2—qo = (a1 — 2) > T E Y
and hence g_o > qo.

Next, let us show that ¢, < p,, for all m € Z. If we set d,, ‘== pm — g for m € Z, then we have

p p p asdmy1 — dpy,  if m is even,
0 — Po0 — 4o, 1=P1 — (41, 2 = . .
Po—4 pr—da mE a1dmy1 — dpy,  if m is odd.

By the same argument as above, it suffices to show that do > dg < d_o. We first show that do — dy =
k1 —2ky —c+2 > 0. Since ¢ < ki /ko by (5.6), and 2ky < k1 by (5.5), we have

1 1
k1—2k2—6+2>k‘1—2k2—ﬁ+2:k‘1 1—— ) =2k +2>2ky (1 — — | —2ks +2=0.
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Hence we obtain dy > dy. We next show that d_o — dg > 0. Since (k1 + 2k2)/ko < a1 by (5.5), and
(k1 — k2)/k2 < ¢ by (5.6), we have

d_g—doz(a1—2)k2—k1—a1+2+c
:al(kg—l)—2k:2—k1—|—2—|—c
k1 + 2ko

> o

k1 — ko
ko

(ky — 1) — 2ky — k1 + 2+ = 1.

Because d_o — dj is an integer, it follows that d_s > dp.
Finally, the equality ¢mpm+1 — @mr1Pm = k1 — kac for m € Z can be easily shown by induction on

|m. O
For m € Z and n € Z>1, we say that 7 = (v1,v,...14;00,01,...,0,) € B()\) satisfies the
condition C(m,n) if u > 2n + 1, and there exists v € Z such that n < v <u —n+1, v, = wyA, and
Ovts = Qm—s/Pm—s for s = —n,—n+1,...,n — 1; in this case, we see from Lemma 5.8 (3), along with
Vy = wm A, that
Vpis = Wp_sA for v+s=1,2,... u. (5.8)
Thus, 7 is of the form
™= (wm—i-v—l)\a wm+v—2)\7 R 7wm+v—u)\§
dm+n dm+4n—1 dm—n+1 )
00,01y-+-30p—n—1, 5 yoe ey s Ov4ny , Oy |-
Pm+n Pm+n—1 Pm—n+1
We set
) 2 if m is even, i 1 if m is even,
j= . j = . (5.9)
1 if m is odd, 2 if m is odd;
note that
—Dmto—p if h =v mod 2,
<wm+v—h>\va;'/> = e . (5'10)
Pm+v—h+1 if h §é v mod 2
by (5.8) and Lemma 4.2.
Lemma 5.13. If 7 = (Wimtv—1 A Wintv—2A, « « « , Winpo—uX; 00, 01, - . ., 0y) € B(A) satisfies the condition

C(m,n), then for eachr =v—n,v—n+1,...,04+n—1,
(1) Hf(or) = HJ (0v) € Z if r = v mod 2,
(2) H](0v) < H(0y) < H] (o) +1 if r # v mod 2;

in particular, {HT () | o0y—n <t < 0yin_1} C [H] (04), H] (o) +1), where [a,b) :={t € R [a <t < b}
for a,b e R.

Proof. Assume that 7 = (Wppo—1 A, Winto—2A, -, Wintv—u; 00,01, . -.,0y) € B(A) satisfies the con-
dition C(m,n). Forh=v—n+1,v—n+2,...,v+n — 1, we see that

a(h) = H}T(U}J — H;-r(O'hfl)
= (H] (0h-1) + (Wmgv—nX, ) Y(on — on_1)) — Hf (0n-1)

= <wm+v—h)\a O‘;‘/>(Jh - Uh—l)'
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By (5.10) and the assumption that 7 satisfies the condition C(m,n), we obtain

S <Qm+vh _ Qm+vh+1> if h = v mod 2’
p - p -
a(h) _ m+v—h 'm+v—h+1 (511)

Prto—htl <Qm+v—h _ Qm+v—h+1> if h 5_'5 v mod 2.
Pm+v—nh Pm+v—h+1

We see from Lemma 5.12 that

k1 —k k1 —k
D, <Qz _ qZ+1) _M 2¢ nd Pri1 (QZ _ QZ+1> _m 2€ (5.12)
Pz DPz4+1 Pz+1 Pz DPz+1 Y22

for each z € Z. Here we recall form Remark 4.6 that p, > py = k2 (see also Remark 4.8). By (5.6),
we have

k‘l —k‘QC S k‘l —kQC

<1 5.13
Pz Pbo ( )

for all z € Z. Combining (5.11)—(5.13), we deduce that
0<a(h)<lifh#Zvmod?2, and —1<a(h)<0if h=wvmod 2. (5.14)

Let M ={z € Z]|v—n <z <wv+n—1}; note that {v — 1,0} C M for all n € Z>;. Let
r € M be such that 7 = v mod 2. We see from Remark 5.9 and (2.7) that H7(0,) € Z. lf r +2 € M
(resp., r —2 € M), then we see by (5.14) that [HT (0y42) — HT (07)| = |a(r + 1) +a(r +2)] < 1
(vesp., |HT (07) — Hf (0r—2)| = |a(r — 1) +a(r)| < 1). We see by (2.7) that HT (0,) = HJ (0r12) (resp.,
H¥(or) = HJ (0y—2)). Hence, we obtain HT (0,) = HJ (0y) for all r € M such that r = v mod 2. Thus
we have shown part (1).

Let » € M be such that » # v mod 2. If r+1 € M (resp., r — 1 € M), then we see that
H]:(ar) = H7(0r11) —a(r + 17r) (resp., H;:(ar) = HJ(0y—1) + a(r)). By part (1), v&;e obtain Hg(ar) =
H7(oy) —a(r + 1) (vesp., HT(0,) = HJ (o) + a(r)). We see by (5.14) that H] (0,) < HJ (o) <
H¥(0y) + 1 for all 7 € M such that 7 # v mod 2. Thus we have shown part (2), thereby completing
the proof of Lemma 5.13. 0

Proposition 5.14. Fizn > 1. Assume that m € B()) satisfies the condition C(m,n) for some m € Z.
Let i € I. If & # 0, then é;m satisfies the condition C(m,n) or C(m — 1,n). If fiw # 0, then fim
satisfies the condition C(m,n) or C(m + 1,n).

Proof. For simplicity, we prove the assertion only for the case of n = 2. Define j and j' as (5.9).
Now, assume that f‘ﬂr = 0; we show that fjw satisfies the condition C(m,2). For this, it suffices
to show that (f;7)(t) = m(t) or (fjm)(t) = 7(t) — aj for t € (0y_3,0042) = {t ER | 0p_3 <t < Tpya}.
By Lemma 5.13, we have HT (0y—2) = HJ (0y), H] (0y—2) < H[ (0y—1) < HJ (0y—2) +1, and HT (o) <
H]’T(JUH) < H]’T(av) + 1. Note that there exists 0,11 < t' < 0,49 such that H}T(av_g) = H7(0y) =

HT(t') since (vpy2,af) < 0 and Hf (0y42) € Z by Remark 5.9 and (2.7); see Figure 1. Let tf) and t;
be as (2.11) and (2.12), respectively; note that tg = oy for some 0 < s’ < u. By Lemma 5.13 and the
definition of y, we obtain ty < g,_3 or g,42 < tg. Let m7 be as (2.6). If u =5, then we obtain v = 3
since 2 =n <v <u—n+1=4. Hence, we see that m7 = HY (05), which contradicts the assumption
that ijr # 0. Therefore we obtain u > 6. If 0,49 < %o, then it is obvious from the definition of fj
that (f;m)(t) = 7(t) for t € (0y_3,0042). If tg < 03, then HT(oy—2) > HJ(to) = mj] € Z by the
definition of tg. Note that H] (0,—2) € Z by (2.7), and hence H (0,—2) > HJ (to)+1 = mj+1. Because
HF (0y—3) > HJ (0y—2) > m] + 1, we see that t; < 0,_3. Therefore we obtain (f;m)(t) = 7(t) — a; for
t € (0y—3,0u+2) by the definition of f;.

Assume that é;7 # 0; we show that é;7 satisfies the condition C'(m,2) or C(m — 1,2). Take t;
and to as (2.8) and (2.9), respectively; note that t; = oy for some 0 < s’ < u. By the definition
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Figure 1.

of t; and Lemma 5.13, we obtain t; < o,_3, gy42 < t1, or t1 = oy—2. If t1 < 0y—3, then it is
obvious by the definition of é; that (é;m)(t) = m(t) + o for t € (0,—3,0442), and hence ;7 satisfies
the condition C(m,2). If o,19 < ti, then H}T(JUH) > H;-r(tl) = mj € Z by the definition of
t1. Note that HI(oyt+2) € Z by (2.7), and hence HT(0y42) > HJ(t1) +1 = mj + 1. Because
HF(oyt3) > HJ(0ut2) > mj + 1, we see that oy43 < to. Therefore we obtain (&;m)(t) = =(t)

J
for t € (0y—3,0042), and hence é;m satisfies the condition C(m,2). Assume that t; = o,492. Since

HT (o) = HI(t') > HJ(t1) = m] € Z by the definition of ¢1, we see that HT (t') > HT (t1) + 1. Hence,
we obtain ¢’ < tg. Therefore, we have

~ (1/17"'7Vu7wm73)‘;001"'7Uv+17t071) ifU:u—Qv

€;m =

/ (V1o s V3 00y ooy Opg 15 105 Opg 3y« ooy 0y) M0 < u—2,
which satisfies the condition C(m,2). Assume that ¢t; = o,_9. If v = 3, then it is obvious that
00 = 0y—3 < to; note that 0,3 = to if and only if H7(01) = —1. If v > 3, then HJ (0y—4) > HT (t1) =
mj € Z by the definition of ¢;. Note that H (oy—4) € Z by (2.7), and hence H (0y—4) > HJ (t1)+1 =
mj + 1. Because H}r(o’v,g) > H;’(av,4) >mj + 1, we see that 0,3 < ?o. Therefore we see that

S (V2,13 ... Uy 00,02,08,...,0y) if v=3and HJ (01) = —1,
3T = .
Vlyeo oy Vi 005 -« Oyp—3,t0,0p—1,...,0,) oOtherwise.

Also, we see by HT (0y,—2) = HJ (t') and the definition of ¢1 that ¢’ = 0,15. Since HT (0,) = HT (0v+2),
we have
a(v+1) = Hf (0y41) — HJ (0u12). (5.15)

Here we can rewrite (5.15) as

<Qm—1 Qm) _ ( Qm—1>
Pm - =Pm—-2 | Ov+2 — .
Pm—1 Pm Pm—1
By (3.1), (3.2), and (5.7), we see that

1 ((pm + pmf2)mel ) _ Gm-—2
—dm
Pm—2 Pm—1

Oyp+2 = .
Pm—2

Since y42 = ¢m—2/Pm—2 < 1 by Lemma 5.12, we obtain v + 2 < u. Write é;7 as:

~ A /
€T = (V1. s Vi 00,y Or)-
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If v =3 and Hj(01) = —1, then W =u—10V, =ve for s =1,...4/, and o) = 0, 0, = 0541
for s = 1,...u'. We set v := v. Then we obtain 2 < v < v —1, v, = wp_1A, and o, =
q(m—1)—s/P(m—1)—s for s = —=2,—1,0,1. Hence we see that é;7 satisfies the condition C(m — 1,2). If

v >3, 0orv=3and Hf (01) # —1, then v’ = u,v; = vs for s = 1,...4/, and 0,_» = to, o, = 05 for

s=1,...,v-3,v—1,...,u". Hence, we see that é;m satisfies the condition C(m—1,2) with v = v+1.
Similarly, we can show that if é;m # 0 (resp., fym # 0), then it satisfies the condition C(m,2)
(resp., C(m,2) or C(m +1,2)). Thus we have proved Proposition 5.14. O

Now, for each n € Z>1, we define

) w0 WA, W, -« W A,
QRPN LS P S — =
Pn P1 Po b1 P—n+1
the inequalities in ¢ follow from Lemma 5.12. We see that (" = (v, () is an LS path of

shape \ satisfying the condition C'(0,n). We denote by B(\;7(™)) the connected component of B(\)
containing 7(™); note that an element of B(\; 7("™) satisfies the condition C(m,n) for some m € Z by
Proposition 5.14.

Corollary 5.15. If n # n/, then B(\; 7)) N B(\; 7)) = 0. In particular, the crystal graph of B(\)
has infinitely many connected components (which proves Proposition 5.2).

Proof. We may assume that n’ < n. Suppose, for a contradiction, that B(\; 7)) = B(X\;7(")).
For m = (v1,...,4;00,...,04) € B(\), we define ¢(7) := u. By Proposition 5.14, we see that if
7 € B(A;7(™), then ¢(7) > 2n+ 1. Hence, we have £(7(")) > 2n+1 since 7(") € B(\; 7). However,
we have £(7(")) = 2n/ +1 < 2n + 1 by the definition of 7(") and n’ < n, which is a contradiction.
Thus we have proved Corollary 5.15. O

5.4 Proof of Proposition 5.3.

Assume that k1 and ko are not relatively prime. Let d > 2 be the greatest common divisor of k1 and
ko. We set k| == k1/d, kb == ko/d, and X := (1/d)\ = Kk} A1 — kb, As € P. Define the sequence {py, }mez
by (3.1) and (3.2) for X"

/ / a2Pm+1 — Pm  if m is even,
po=Fky, pr=ki, Pmiz2= e
a1Pm+1 — Ppm  if m is odd.

Then we see from Lemma 5.8 (1) that p,, and pp,41 are relatively prime for all m € Z. Note that

(5.16)

N dpm+1A1 — dpmAs if m is even,
wm =
—dpmA1 + dpma1Ae  if m is odd,

for m € Z.

We first show that the proof of Proposition 5.3 is reduced to the case that d = 2, i.e., A = 2)\’. For
this purpose, we recall the concatenation of LS paths (in a general setting). Let u € P be an arbitrary
integral weight, and m € Z>y. For my,m2,..., ™y € B(1), we define a concatenation my % g * - - - % 7y,
of them by:

k—1
(71 % g % -+ kT ) (1) = Z?Tl(l) + mp(mt —k+1)
=1

k—1 k
Sté*,
m m

for 1<k <m,
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and set
B(p)*™ = B(p) % -« B(p) = {my % %m0 | mp € B(p), 1 <k <m}.

Ve
m times

We endow B(u)*™ with a crystal structure as follows. Let m = my * -+ % mp, € B(u)*. First, we
define wt(m) == 7(1) = m1(1) + - - + mn(1); notice that 7(1) € P since mx(1) € P for all 1 < k < m.
Next, for i € I, we define &7 and f;7 in exactly the same way as for elements in B(u) (see §2.5);
notice that the condition (2.7) holds for every element in B(u)*™. We deduce that if ém # 0,
then é;m = my % --- % &mg * -+ *x m,, for some 1 < k < m; the same holds also for fz Therefore
the set B(p)*™ U {0} is stable under the action of & and f; for i € I. Finally, for i € I, we set
gi(m) == max{n > 0 | &7 # 0} and p;(7) == max{n > 0 | f*m # 0}. We know the following
proposition from [10, §2].

Proposition 5.16. Let u € P be an arbitrary integral weight, and m € Z>1. The set B(u)*™ together
with the maps wt : B(u)*™ — P, &, fi : B(u)™™ — B(u)*™ U{0}, i € I, and &;, i : B(u)*"" — Z>o,
1 €1, is a crystal. Moreover, the map

B(p) ™ — B(u)®™, i 4T = T @ -+ @ Ty,
18 an isomorphism of crystals.

Let m# = (v1,v9,...,V4;00,01,...,04) € B(mpu). For each 1 < k < m, let s,s be such that
051 < (k—1)/m < o5 and o0y_1 < k/m < oy, respectively. We set

1 1 1
Ty = (1/5, —Vsily..., —Vg;0,mos —k+1,mog1 —k+1,...,mog_1 —k+1, 1) .
m - m m

By the definition of LS paths and the assumption that = € B(mu), we deduce that 7, € B(u).
Moreover, it is easy to check that m = my * - - - % 7, since

o) = 7 <1t + H) _x (T) for t € [0, 1].

Therefore, it follows that B(myu) is contained in B(p)*™, and hence is a subcrystal of B(pu)*™ = B(u)®™
consisting of the elements m ® T ® - - - ® 7y, such that x(mp) > ¢(mp41) forall 1 <p <m —1.
Now, we return to the proof of Proposition 5.3. The map

B(X)®d - B()‘/)®27 T MR- Qg = T & Ty,

induces a surjective map ® from B(d)\) C B(\)*? = B(X)2? to B(2)\) c B(X)*2 = B()\)®2; note that
® is not necessarily a morphism of crystals. It follows that the inverse image ®~1(C) C B(d\') of a
connected component C of B(2)\) is a subcrystal of B(d\'). This shows that if B(2)\') has infinitely
many connected components, then so does B(d)\'). Therefore our proof of Proposition 5.3 is reduced
to the case that d = 2, i.e., A = 2)\'. We can prove Proposition 5.3 with d = 2 in exactly the same way
as the main result in [14], which proved that the crystal graph of B(2A; — 2A9) has infinitely many
connected components. However, since [14] is written in Japanese, we write the proof also here for
completion.

Lemma 5.17. Assume that d = 2. Let m,n € Z be such that m —n > 2, and let 0 < 0 < 1 be a
rational number. There exists a o-chain for (WA, wyA) if and only if o = 1/2.

Proof. Assume that there exists a o-chain w,A =19 > vy > -+ > v, = wu A for (WA, wy\). We see
from Proposition 5.4 that v, = w,,_A for v =0,1,...,m —n. We set

] 2 if m is even, ] 1 if m is even,
1= =
1 if m is odd, J 2 if m is odd.
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By (5.16), it follows that o(wy, A, o) = —20py, and o(wy—1A, af) = —20p,—1. By the definition of
a o-chain and the assumption that m —n > 2, both —20p,,, and —20p,,_1 are integers. Since p,, and
Pm—1 are relatively prime, we obtain o = 1/2.

Conversely, we assume that ¢ = 1/2. By Proposition 5.4 and (5.16), it is obvious that the sequence
WA, Wip—1 A, . . ., Wyt 1A, wp A becomes a o-chain for (wp, A, w, ). O

Lemma 5.18. Assume that d =2. Then w(1/2) € P for every m € B(\).

Proof. Let m = (V1,...,Vs—1,Vsy -« s V00 ,05—1,0s,...,04) € B(A), and assume that os_1 <
1/2 < o5. Then we compute

v=1
s—1 1

= ZUU(U’U — Uyt1) + SVs:
v=1

Since there exists a o,-chain for (v, v,+1) for each 1 < v < s—1, we deduce that ij;ﬁ op(Vy —Vpt1) €
P (see [10, §4]). Moreover, (5.16) implies (1/2)vs € P. Thus we obtain 7(1/2) € P, as desired. O

For r > 2, we set
B, (A) :=={m = (v1,...,vu;00,...,04) € B(X\) | 7 satisfies the condition (I) or (II)},
where

(I) : There exists 1 < s < u — 1 such that z(vs) — 2(Vsy1) = 2r — 2;
(IT) : There exists 1 < s < u — 1 such that z(vs) — z2(vs+1) = 2r — 1.

Remark 5.19. Assume that d = 2. Let (v1,...,1y;00,...,04) € B(A). Assume that there exists 1 <
s < u—1 such that z(vs) — 2(vsy1) > 2. We see by Lemma 5.17 that o5 = 1/2 and z(vy) — 2(vp41) =1
for each v=1,2,...,s —1,s+1,...,u — 1. Hence, we obtain B(\) =| | B, (A).

r€l>1 T
Proposition 5.3 with d = 2 is a corollary of the following theorem and Remark 5.19.

Theorem 5.20. Assume thatd =2. Letr € Z>1, T € B,.(\), andi € I. If é;m # 0, then ém € B,.(\).
If fim # 0, then fim € B.(\). Therefore, B, () is a subcrystal of B(A) for each r € Z>.

Proof. The proof is divided into three cases.
Case 1. Assume that r = 1. We have shown the assertion in Proposition 5.6.

Case 2. Assume that r > 2, and ©m = (v1,...,v;00,...,04) € B(\) satisfies the condition (I).
We set z(vs) = m, z(vsy1) = n; note that m —n = 2r — 2. We set

. if m is even, )1 if m is even,
P71 itmisodd, 7 T )2 ifmis odd.

Then we see by (5.16) that (vs, /) < 0 and (vs,a,) > 0. Moreover, we see that (vsy1,a]) <0 and
(Vst1, ) > 0 because m —n € 2Z.

First, let us show that é;7 € B,(\) if éjm # 0. Take t; and ¢y as (2.8) and (2.9), respectively
(with 7 replaced by j); note that ¢; = o, for some 0 < v < u. Since (vs5,) < 0 and (vsi1,a)) <0
as seen above, the function H;r(t) does not attain its minimum value at ¢t = o5_1,05 (see the left
figure in Figure 2). Thus we obtain ¢; # 0s_1,0s. If t; < 0s_1, then the assertion is obvious by the
definition of é; and Remark 5.19. Assume that t; > os41. Since H (05) > HJ (t1) = m] € Z by
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Figure 2.

the definition of ¢1, and since H7 (0s) = HJ(1/2) € Z by Lemma 5.18 and Remark 5.19, we see that
H¥(0s) > HJ (t1) + 1. Therefore, we have to > o, by the definition of ty. If ¢y > o5, then it is obvious
by the definition of €; and Remark 5.19 that é;7 € B,.(\). If ty = o, then we deduce by the definition
of €; that €;m is of the form

G {(Vl,...,VS,SjVS+1;O'0,...,O'S,O'u) ifs=u—1oru-—2,
=

VlyeooyVsy SjlUsily v s Vi 00y« -3 O, Ost2, .., 0y) if s <u—3.

Since sjVg1 = SjwpA = wp—1A and m — (n — 1) = 2r — 1, we obtain é;m € B,()).

Next, let us show that éym € B,(\) if éym # 0. Take t; and ¢y as (2.8) and (2.9), respectively
(with 4 replaced by j’). Since <I/S,Oé;-//> > 0 and (VS+1,04]V,> > 0 as seen above, the function H7 (1)
does not attain its minimum value at ¢ = oy, 0541 (see the right figure in Figure 2). Thus we obtain
t1 # 05,0441. If t1 < 051, then the assertion is obvious by the definition of €5 and Remark 5.19. If
t1 > 0s19, then Hj“,(asfl) > H} (t1) = mj, € L by the definition of ¢;. Notice that Hjﬂ,(aS,l) € Z by
(2.7), and hence H7(05-1) > HJ(t1) +1 = mj, + 1. Because H (0541) > H](05-1) > m], + 1, we see
that 0541 < to. Therefore, €7 € B, (\) by the definition of é;; and Remark 5.19.

Similarly, we can show (in Case 2) that if fim # 0 for i € I, then fiw € B,.(\).

Case 3. Assume that » > 2, and 7 = (v1,...,v;00,...,04) € B.(\) satisfies the condition (II).
We set z(vs) = m, z(vsy1) = n; note that m —n = 2r — 1. We set

. if m is even, 1 if m is even,
T 7Y1 ifmis odd, 2 if m is odd.

Then we see by (5.16) that (vs, /) < 0 and (vs,a,) > 0. Moreover, we see that (vsy1,a]) > 0 and
(Vst1, ) < 0 because m —n € 2Z + 1.

First, let us show that é;m € B,.(\) if é;m # 0. Take t; and ty as (2.8) and (2.9), respectively (with 4
replaced by 7). Since (vs, ) < 0and (vsy1,a) > 0 as seen above, the function HT (t) does not attain
its minimum value at t = 05_1,0541 (see the left figure in Figure 3). Thus we obtain t; # 0s_1, 0s41.
If t1 < 05—1, then the assertion is obvious by the definition of €; and Remark 5.19. If ¢; > 0,11, then
H¥(0os) > H7(t1) = m] € Z by the definition of ¢;. Notice that H7(os) € Z by (2.7), and hence
H7(os) > HF(t1) + 1 = mj + 1. Because H (0541) > HJ(05) > m] + 1, we see that o511 < fo.
Therefore, é;m € B,(\) by the definition of é; and Remark 5.19. Assume that ¢; = o,. If s =1, i.e,,
0s—1 = 0, then it is obvious that tg > os_1. If s > 1, then we see that H;-T(os_g) > H]’-r(tl) € 7Z by
the definition of ;. Notice that HT(0s—2) € Z by (2.7) and hence HT (05-2) > H] (t1) + 1 =m] + 1.
Since Hf (05-1) > Hf(05-2) > m} + 1 by (vs-1,)) > 0 (see (5.16) and Remark 5.19), we see that
0s—1 < to by the definition of ¢5. Then we deduce by the definition of €; that €;m is of the form

. (SjVss Vstlys ey Vui 005 -+, Oy) if tog = os_1,
] - .
Vlyeoy Vs, SjlVsy Vsily oo Vi 00, - ooy Os—1,10, Osq1,. .. 0y)  if tg > 0s_1.
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Since sjvs = $jwWmA = wym—1A and (m — 1) —n = 2r — 2, we obtain é;m € B,(\).

Next, let us show that éym € B,(\) if éym # 0. Take t; and ¢y as (2.8) and (2.9), respectively
(with 7 replaced by j'). Since (vs,a,) > 0 and (Vs41, ) < 0 as seen above, the function HF(t) does
not attain its minimum value at ¢ = o4 (see the right figure in Figure 3). Thus we see that t; # os.
If t; < 041, the assertion is obvious by the definition of €;; and Remark 5.19. If 0,11 < 1, then
H (0s-1) > H7(t1) = mj, € Z by the definition of ¢;. Notice that H (5s—1) € Z by (2.7), and hence
H7(0s-1) > Hf (1) +1 = m], +1. Because H,(05) > HJ(05-1) > mj, +1, we see that o5 <. Then
éjm € B, () by the definition of é;; and Remark 5.19.

Similarly, we can show (in Case 3) that if fiw # 0 for i € I, then fyw € B,()).

Thus we have proved Theorem 5.20. O
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6 Relationship between the crystal of LS paths and the crystal basis
of extremal weight modules.

Throughout this section, let « = (+1,.7) be as in §3, and A = k;A; — koAs € P as in Theorem 3.1.
6.1 Polyhedral realization of B(+c0) in the rank 2 case.
We define the sequences {c;};>0 and {c}};>o of integers by the following recursive formulas: for j > 0,

aicjy1 —cj if j is even,
co =0, =1, ¢jr2:= e

azcjy1 —c¢; if jis odd;
if j is even,

if j is odd;

~ o~

/
asCi 4 — ¢
=0, =1, cjq:= { f+1
we can show by the same argument as Lemmas 4.4 and 4.7 that ¢; > 0 and c;- >0 for all j > 1. By [2,

Corollary 4.7] and the fact that 1/8 = (ajas — \/a%a3 — 4ajaz)/2as, we obtain the following lemma.
Lemma 6.1. The following sequences are strictly decreasing, and converge to o and 3, respectively:

/ / / /
(&) C Cy4 C C C3 C Cs
Z>35> 255550 2>2>d525...58
C
4

¢y oc3 N N

Applying [13, Theorem 4.1] to our rank 2 case, we obtain the following explicit descriptions of the
images of the maps ‘I/jjr: B(c0) — Z;Fgob+ and U : B(—00) = Z_°_.

Proposition 6.2. It hold that

Im(UH) ={(...,z2,m1) € Zggo | cjzj —cj1xjp1 > 0 for j > 1},

(V") = {(x0,2-1,...) € Z_5° | ¢_jq25 — ¢_jwj1 <0 for j <0}

L

Recall that the sequence {pm}mez is defined by the recursive formulas (3.1) and (3.2). The
following lemma will be needed in §6.2.

Lemma 6.3. Let m,n € Z be such that n < m, and let gn41,Gn+2,- .., qm € Z be such that 0 < q; < p;
forn+1<j<m, and gj+1/pj+1 < gqj/pj forn+1<j<m—1.

1) If0 <m, then (...,0,pm,...,D2,p1) € Im(\I/jjr).

2) If 0 <n <m, then ...,O,qm,...,qn+2,qn+1,pn,...,pg,p1)EIm(\I/j;).

4) Ifn < 0=m, then (qo — Po,q-1 — P-1, -+ qn+1 — Pn+1,0,...) € Im(¥ _).

5 If n <m <0, then

(

(2) (

(3) Ifn=0<m, then (...,0,Gm,...,q2,q1) € Im(\I/jl)

(4) (

(5) (=P0s =P—15 - +s =Pm+1,Gm = Pms - - s Gnt+1 — Pnt1,0,...) € Im(¥ ).
(6) Ifn <0, then (—po, —p-1,---, —Pn+1,0,...) € Im(¥ ).

Proof. We give proofs only for parts (2) and (5); the proofs for the other cases are easier than these
cases.
First, we show part (2). By Proposition 6.2, it suffices to show that

cjpj — ¢j—1pj+1 >0 for 1 <j<n—1, (6.1)
¢jpj — ¢j—1¢j+1 = 0 for j =n,
cjqj — Ccj—1¢j+1 >0 forn+1<j<m—1.
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We can easily see by induction on j that
Cjpj — Cj—1Pj+1 = 0 forj>1. (6.4)

Thus we get (6.1). Since ¢p+1/pn+1 < 1, we see that ¢,pp, — cp—1Gn+1 > CnPn — Cn—1Pn+1. Combining
this inequality and (6.4), we obtain (6.2). For n+1 < j < m — 1, we see that ¢jq; — ¢j—1¢j4+1 >

¢j(gj+1P;/Pj+1) = ¢i-19i+1 = (gj+1/Pj+1)(¢ipsj — ¢j-1pjt1) since gj1/pjpa < g;/pj. Combining this
inequality and (6.4), we obtain (6.3). Thus we have proved part (2).
Next, we show part (5). It suffices to show that

j(=pjy1) = j_1(=p;) <0 form+1<j<-1, (6.5)
j(=pjr1) —j_1(qj —pj) <0 for j =m,
(g1 —pjs1) — ¢ 1(¢s—p;) SO forn+1<j<m-—1.
We can easily see by induction on j that
cj(=pjr1) = j_1(=pj) <0 for j < 1. (6.8)

Thus we get (6.5). We see that ¢, (=pm+1) — ¢ 1(@m — Pm) = ¢ (=Pm+1) — i1 (=Pm) —
c_,—19m. Combining this equality and (6.8), we obtain (6.6). For n +1 < j <m — 1, we see that

(g1 —pj1) — 15— ps) = g0 — 105 — ¢pj1 + ¢ 1pj

4jPj+1
< Cl_j <Jpj> — C,_j_lqj + (—Cl_jpj+1 + Cl_j_lpj)
J

a;
= (1 - ]> (—c_jpjr1 + cj_1pj)
pj

since ¢j+1/pj+1 < gj/pj. Combining this inequality and (6.8), we obtain (6.7). Thus we have proved
part (5). O
6.2 Proof of Theorem 3.3.

We see by (4.3) (and the fact that p,, > 0 for all m € Z) that an element = € B;(\) is of the form

T = <wm)\,wm_1)\, ce e, WA 0, q—m, qm;l, ey dnt , 1),
Pm Pm-—1 Pn+1

where n < m, and ¢, Gm—1, - - -, qn+1 are integers satisfying

%—+1<@f0rn+1§j§m—1.
Pj+1 Py

We define a map @ from B;(A\) U {0} to Im(¥}) U {0} as follows. First, we set ®}(0) := 0. Let

0<g;<pjforn+1<j<m, and

T = (wm)\, Win—1A, .« . ., WpA; 0, q—m, dm-1 ey nt1 , 1> € By(\N), (6.9)
Pm Pm-1 Pn+1
where n < m, and ¢m, @m-1,...,qnt+1 are integers satisfying 0 < ¢; < pj forn +1 < 57 < m and
gj+1/Pj+1 < qj/p;j for n+1 < j <m —1. We set
qr ifl<kandn+1<k<m,
Dk if 1 <kandk <n,
e=2k(m) =S qr—pr Hk<Oandn+1<k<m, (6.10)
— Dk if k<Oand m+1<k,
0 otherwise

for k € Z, and then define ®) () := (..., 20,21) @ty ® (20, 2_1,...) € Z,(N).
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Remark 6.4. More explicitly, we can describe <I>f‘(7r) as follows:
(i) if n =m = 0, that is, 7 = 7y, then ®)(7) = (...,0,0) ® t, ® (0,0,...);
(ii) if 0 < n = m, then ®M7) = (...,0,pm,...,p2,p1) @ty ®(0,0,...);
(iii) if 0 < n < m, then ®N7) = (..., 0,Gm, - -+ Gni2; Gnil, Py - -, D2, 1) @ Ly @ (0,0,...);

)
)
)
(iv) if n =0 < m, then ®N7) = (..., 0,qm,---,q2,q1) @ tx @ (0,0,...);
)
)
)

(v) ifn <0 < m, then ®}7) = (-..,0,qm, -, q2, q1) RtrD(q0—P0, §—1—DP—15 - - s Gnt1—Pnt1,0, - .. );
(vi) if n <m =0, then ®)(7) = (...,0,0) @ tx @ (g0 — P0sG—1 — P—1»- - >qn+1 — Pnt1,0,...);
(vii) ifn < m < 0, then ®M7) = (...,0,0)RtAR(—D0s —DP—1, - - s —Prmt1s Gm—Pm> Gr1—Prm—1s - - - » Qi1 —
Prt1,0,...);
(viii) if n =m <0, then ®)7) = (...,0,0) @t @ (—Po;s —P—1s- -+ —Pns1,0,...).

Therefore, by Lemma 6.3, we deduce that ®(7) € Im(¥)) for 7 € By(\).
Theorem 6.5. The map &) : B1(\) — Im(¥?) is an embedding of crystals.
Assuming that Theorem 6.5 is true, we give a proof of Theorem 3.3.

Proof of Theorem 3.8 . Let Z(\) = {# € Im(¥}) | #* is extremal}. We know from Corollary 2.8 that
there exists an isomorphism ¥ : Z(\) — B(A) of crystals which sends z) = (...,0,0) ® ty ® (0,0,...)
to uy. Recall from Remark 5.7 that Bo(\) C Bi(\). Because ®) (1)) = 2\ € Z(\), we see that
®MBo(A)) C Z()\). Therefore it follows from Theorem 6.5 that X o (IDNBO o) is an isomorphism of

crystals from By(\) onto By(A). Thus we have proved Theorem 3.3. O
The rest of this subsection is devoted to a proof of Theorem 6.5.

Lemma 6.6. For k <1, it holds that

l

WA — WA = Z P
j=k+1

Proof. We proceed by induction on [; recall that [ > k. If [ = k, then the assertion is obvious. Assume
that [ > k. By the induction hypothesis, we have wi\ — w;_1 A = Zé_:lkﬂpjaij. We see by (4.3) that
WA = wi—1 A — pioy,. Therefore, we obtain

-1 !
WEA — WA = WA — Wi_1 A + proy, = Z pjti; + pioy, = Z Dy,
j=kt1 j=kt1

as desired. O

Proposition 6.7. Let m € B1(\) be as (6.9). Then,

wt(m) = wt(®)N(m)) = wad — D gjou;.
j=n+1
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Proof. First, we show by induction on m that wt(w) = w,A — Z;‘n:n-u gjou;; recall that m > n. If
m = n, then wt(7) = wyA since m = (wyA;0,1). Hence the assertion is obvious. Assume that m > n.
We see that

7= (wm_l)\,wm_g)\, e, WpA; 0, -1 Gm=2 dn+1 1)

) PR | )
Pm—-1 Pm—2 Pn+1

is also an element of B1()\). By the induction hypothesis, we obtain wt(7’') = w,\ — Z] 1 45
We see by the definition of wt that

wt(m) = wt(n') — m— 1wm 1)\+—wm>\+ (qm ! qm)wm 1A

Pm—1 Pm Pm—1 Pm
= wt(n') + q—m(wm)\ — Wp—1A).
m
By Lemma 6.6, we have w,\ — w1\ = —ppay, . Therefore we deduce that wt(7w) = w,A —

—1
ZT:nH qji; + (Gm/Pm)(—Pmi,,) = wp A — Z;'n:nJrl 45
Next, we show that wt(®) (7)) = w, A — >t a1 4jQi;- By the definition of wt, if 0 < n <m, then

n
((I))\ Z qj0i; — Zp]azjv
j=1

j=n+1

if n <0< m, then

m 0 m 0
Wt(‘bz\(ﬂ)) =A- Zq]'aij - Z (g —Pj)Oéz’j =A— Z qjc; + Z DjQ;;
j=1 j=n+1 j=n+1 j=n+1
if n <m <0, then
0 m m
wt(®MN7)) = A — Z —pj)o; — Z —pj)ai; = A+ Z pjou; — Z qj ;-
Jj=m+1 Jj=n+1 j=n+1 j=n+1

It follows from Lemma 6.6 that

D e
A3 i, ifn <0,

Therefore we obtain wt(®} (7)) = w,A — > jns1 @i, for mym € Z such that n < m. Thus we have
proved the proposition. O

Lemma 6.8. Let m € B1(\) be as (6.9). Then, for k € Z,

0 itm+1<kEk,
O-k(q)f\(ﬂ-)) =49+ Z;n:k+1<aij7a;2>Qj ifn+1 <k< m,
7<Wt(<1>2\(7r)),oz;2> if k <n.

Proof. First, we assume that 0 < n < m. Then, ®)(7) € Im(¥}) is of the form ®}7) = b @ t) ®
(0,0,...) with

bl - ( .. 707 dmy---yqn+2,4n+1,Pns - - - 7]327p1)=
where we understand by = (...,0,ppm, ..., p2,p1) (resp., (-..,0,q¢m,-..,q2,q1))if 0 < n =m (resp., n =
0 <m). If n+1 <k, then we have o3(®}'(7)) = o} (b1). Hence the assertion is obvious by the
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definition of ;. Assume that 1 < k < n. By Proposition 6.7, it suffices to show that oy (®} (7)) =
—(wp s o) + 370, 4 (g, )g;. We see by the definition of o that

op(@)(m) = ol (b)) =pe+ Y (i, 0 )pi+ > (o, 00l)g. (6.11)

j=k+1 j=n+1
It follows from Lemma 6.6 that wpA — w, A = Z?:k 11D Therefore,

n

—(wp, ) = —(wpA, o)) + Z (g, 0 )pj = pi + Z v, 00 VD (6.12)
j=k+1 j=k+1

since (wiA, o} ) = —py, by (4.3). Combining (6.11) and (6.12), we obtain the desired equality. If k <0,
then we have o4 (®) (7)) = o ((0,0,...)) — <Wt(<1>f‘(7r)),ozx€> = —<Wt(<bf‘(7r)),ax€>.

Next, we assume that n < 0 < m. Then, ®}(7) € Im(¥}) is of the form ®}7) = by ® t\ @ by
with b1 = (...,0,Gm,---,q2,q1) and b2 = (g0 — Po,g—1 — P—1, -+ qn+1 — Pn+1,0,...). If 1 < k, then
0 (®) () = o} (b1). Hence the assertion is obvious by the definition of o} . Assume that n+1 < k < 0.

We see by the definition of o, that

(b2) (qr — pr) Z (ij, o ) (g5 — pj)
Jj=n+1
k-1
= —qx +Pr — <aZ]7 q; + Z ai]’ ik
jentl j=nt1

By Proposition 6.7, we have (wt(®} (7)), o) = (wn A, o)) — Y0 (@i, o) )qj. Hence,

1k

k(@ (1)) = o3, (b2) — (Wt (@7 (), o, )

k—1
= —qi +Z Qi 0 )G+ ok Y (g, 00 )py — (wak, o). (6.13)
j=n+1
Because (i, , ;) = 2, we obtain
m m
—qi + Z (i, 00 )5 = —aqe + (i, o) gk + Y i, af)g = ar+ Y (i, 00)g. (6.14)
j=k+1 j=k+1

It follows from Lemma 6.6 that —w, A + wipA + Z?:nJrl pji; = 0, and hence,

k
0= —(wpA, a7 ) + (W, o)) + Z (ai;, ) )p;
Jj=n+1

k-1

j=n+1

since (wi A, af ) = —pg and (a;,, ;) = 2. By (6.13)-(6.15), we obtain o (®Nm)) = QD (i,
as desired. If k < n, then o} (b2) = 0, which implies that oy (®} (7)) = o}, (b2) — <Wt(@f‘(ﬂ')),0¢l\~2> =
—(wt(®} (7)), o).
Finally, we assume that n < m < 0. Then, ®}(7) € Im(¥}) is of the form ®}(7) = (...,0,0) ®
ty ® by with
ba = (=po, =P—1,- -+ —Pm+1,qm — Pms - - Gn+1 — Pnt1,0, .. .),
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where we understand bs = (qo—po, ¢—1—P-15 - - - y Gn+1—Pn+1,0, .. .) (resp., b2 = (—=po, ..., —Pn+1,0,...))
if n <m =0 (resp., n =m < 0). If 1 <k, then it is obvious that o4 (®} 7)) = o} (b1) = 0. Assume
that m +1 < k < 0. We see that

k—1 m
oy, (ba) = =(=pr) = > Al 05)(=pj) = Y (i) (g5 — py)
j=m+1 j=n+1
k—1 m
j=n+1 J=n+1
By Proposition 6.7, we have (wt(® (7)), ;) = (wa), i) — 0L 1 (i, o )gj. Hence,
k—1
(D) () = o (b2) — (WH(D) (), i) = P+ Y (e, gl )pj — (wak, o)), (6.16)
j=n+1

It follows from Lemma 6.6 that —w, A + wipA + Z?:nJrl pji; = 0, and hence,

k

0= —(wpA, ;) + (wpk, o)) + Z (ai;, ) )p;
j=n+1
k—1

j=n+1

since (wA, ;) = —py and (@, ;) = 2. By (6.16) and (6.17), we obtain or(PNm)) = o, (ba) —

(wt(®)N(7)), ) = 0, as desired. If & < m, then we can show the equality by the same argument as

in the case that n < 0 < m. Thus we have proved the lemma. ]

Now, we set

i) = i = 2 ?f k ?s even, 7 (k) = 1 ?f k %s even,
1 if k is odd, 2 if k is odd
for k € Z; note that
(ka,axkﬁ = —pr <0, (wpA, aiv,(k)) =pgy1 >0 (6.18)

by (4.3). Let us write m € B1(\) as (6.9). We see by (6.18) that

™ q ™
Hi, (p:) < 0= HJ,,(0). (6.19)

Moreover, if m + n is odd, then we see that (w,A, oz;/(m)) > 0, and hence

T Qn T
i(m) <pr::> < <Wt(7r),aiv(m)> = Hj,,(1). (6.20)

If m + n is even, then we see that (w,A, O‘z‘v/(m)> > 0, and hence

T qn+1 Vv ™
H —— | < (wt(m), 1)) = Higy (1) 6.21
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Lemma 6.9. Let m € B1(\) be as (6.9). If n+1 <k <m, then

- Hy (/o) if k—m € 22,
D DR CURCATTE 75 ) :
j=k+1 Hi/(m)(Qk/pk) it k—m+1e2Z.

Proof. We set ¢p,41 := 0 and ¢, = p, by convention. Assume that k¥ — m € 2Z. Then we obtain

- (@ TR
Hz(m) <) = Z (j -2 > <wj)‘7az\'/(m)>

Pk =k by Pj+1
45  9j+1 4j+1  qj+2 q
= > <(] - > (=pj) + (j, - >Pj+2> + 2 (—pm)
=k, k+2,...;,m—2 p;  Djn1 bj+1  DPj+2 Pm

= Z (—=qj + aim)@i+1 — @j+2) — dm by (3.1) and (3.2)
j=k,k+2,...m—2

= —qk + > (@i(m)Qj+1 — 2qj+2)
j=k,k+2,...,m—2
m

j=k+1

as desired.
Assume that kK — m + 1 € 2Z. Then we obtain

v Qk - q] q]-‘rl V
H =) = g = — = | (WA,
i'(m) (1%) (pj ) < J ( )>

= Pj+1

a;  gj+1 di+1  qj+2
- Z ((J - j) (—pj) + (j — == >pj+2>
jekktz.m—1 N \Pi Pyl Pi+1 Pj+2

= Z (—=qj + @ir(m)Qi+1 — gj+2) by (3.1) and (3.2)
Jj=k,k+2,....m—1

= —qr + Z (@ir(m)@j+1 = 2qj+2) + Qir(m)Gm — Gm+1
j=k,k+2,...m—3
m

= —qk — Z <a’L]7a;{(m)>q]7
j=k+1

as desired.
By Lemmas 6.8 and 6.9, we obtain the following proposition.

Proposition 6.10. Let 7 € B1(\) be as (6.9). Then,

ngm)(O) itk—me2Zand m+1<k,
H;Em)(qk/pk) itk—me2Zandn+1<k<m,
N _ H;Em)(l) itk—me€2Zand k <n,
~ok(®(m) = H 1 (0) ith-m+1le2Zandm+1<Fk,
Hi’,r(m)(qk/pk) ifk—m+1€2Zandn+1<k<m,
Hg(m)(l) itk—m+1¢€2Zand k < n.
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Proof of Theorem 6.5. By Remark 6.4, it is easy to check that the map <I>z\ is injective. We show that
®) is a morphism of crystals. Let 7 € By()\). We have wt(r) = wt(®} (7)) by Proposition 6.7. We
show that &;(7) = &;(®} (7)) and ®)(é;7) = &®)\(x) for i € I. Let us write 7 as (6.9).

Case 1. Assume that i = i(m ) and m +n is odd. Note that the function H(t) attains a minimal
value at t = qi/pr, k =m,m —2,...,n+1 (see Remark 5.5 and (6.18)). By (2.13),

Ei(ﬂ):—min{ ‘t {qm,qm_Q,...,an}}
Pm Pm-—2 Pn+1

:max{ ‘te{qm,me,...,q"H}}. (6.22)
Pm Pm—2 Pn+1

By the definition of £;(®} (7)), we have

£4(®)(7)) = max o () (W) = max_ (@) (m)). (6.23)

k=1 k—me2Z

We see from Proposition 6.10 that

max O_k(q))\(ﬂ_)) _ max{ 't c { Qm’ Qm—Q’H . Qn—i-l’l}}
k—me27Z Pm Pm—2 Pn+1
:max{ ‘t {Qm qm—2 ‘”’QnJrl}}’ (6.24)
Pm Pm-—2 Pn+1

where the second equality follows from (6.19) and (6.20). By (6.22)—(6.24), we obtain &;(w) =
£;(®Mn)), as desired. Next, we show that ®}(&;w) = &®}(r). Since both By(\) and Im(¥}) are
normal crystals, the equality &;(m) = &;(®} (7)) and the injectivity of ®} imply that

PMEm) =0 <= Em =0 <= g(n) =0 < &(PMNn)) =0 < &)(r)=0.

Assume that &7 # 0, or equivalently, &®}(7) # 0. By the definition of ®}, we have ®}(7) =
(o y2,51) @t ® (Y0,Y-1,---), where yp = 2x(m) (see (6.10)). Let M(; be as (2.3), and set &' =
max M;). Namely, k" is the largest integer k such that J(i)(CI)f‘(W)) = 01,(®)(7)) and k—m € 2Z. Then
we see by the definition of & that &®M7) = (..., v, ¥}) ® tA ® (Y}, ¥ 1,- ), where Y, = Yy — Ok -
Let t; and tg be as (2.8) and (2.9), respectively. By (6.22)—(6.24), we obtain t; = gy /prr. By (2.10)
and Remark 5.5, we have tg = t; — 1/(—(wir A, oY) = (g — 1)/prr. Assume that k' < m. By (2.10)
and Remark 5.5, we have qpy1/pr+1 < to. Suppose, for a contradiction, that qx11/prr+1 = to, that

is,
HT <q’““> HT ( > +1. (6.25)
Pr'+1 Py’

Then it follows from Remark 5.5 that H[(t) attains a minimal value at ¢t = gx42/pi/12, and hence
Hf(Qk’+2/pk’+2) €7 by (27) By (625), we obtain H@?T(Qk’+2/pk'+2) S H;T(qk//pk/), which contradicts
the definition of ¢;. Therefore we obtain qx/11/pr+1 < to and

’ /—1 /_
émr—(wmA,...,wk/)\...,wnA;O,%...,QkH g -1 q"“,l).

Pm Pl PR D=1 Pnil
If ¥ = m, then
1 g
WA, -+ wn\; 0, I ,qml,...,q"+1,1> i g > 1,
Pm Pm—1 Pn+1
€;
<wm1)\, , Wi A; 0, m— 1 ey dni , 1) if ¢, = 1.
Pm— 1 Pn+1
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Hence we see that

g — 1 if1<k=k

(g —1)—py k=K <0,

qr ifk#Kk,1<k, andn+1<k<m,
zk(€;m) = < pp if k#k,1<k, and k <n,

g — Pk ifk4K, k<0, andn+1<k<m,

s if k#k,k<0, and m+1<Ek,

0 otherwise,

= 2(m) — Ok

which implies that ®}(&;7) = &® (7).

Case 2. Assume that ¢ = i’(m) and m+n is even. Note that the function HT(t) attains a minimal
value at t = 0 and t = qx/px, k =m —1,m —3,...,n+ 1. As in Case 1, we deduce by Proposition
6.10 and (6.21) that

si(w):min{Hf(t)'tE{()? Im—1 Gm-3 qn+1}}

) ) )
Pm—-1 Pm-3 Pn+1

te {07 Qm—l’ Qm—3,”" dn+1 }}
Pm—1 Pm-3 Pn+1
= dMN7)) = gi(PMn)).
e o (@)() = 5(@) ()

= max {—H;T(t)

We can show that ®}(&;7) = &®) () in exactly the same way as Case 1.

Case 3. Assume that i = i(m) and m+n is even. Note that the function H] (¢) attains a minimal
value at t = qx/px, Kk =m,m —2,...,n+2and t = 1. As in Case 1, we deduce by Proposition 6.10
and (6.19) that

ei(w):—min{Hf(t)’te {q’” Im=2 . dnt2 1}}

) ) 9y )
Pm Pm—2 Pn+2

te {qm, Im=2 q”“,l}}
Pm Pm-2 Pn+2
_ A S W
- kE?nae)éZ Uk(q)L (7T>) = gl(q)L (71')) (626)

= max {Hgf(t)

We show that ®}(&;7) = &;®}r). If m = n, then 7 = (w,\;0,1). We see by definition of ®} that

(..s0,pp, ..., p2,01) @A ®(0,0,...) if n >0,
M) =14 (...,0,0) @ty ®(0,0,...) if n =0,
(...,0,0)®t)\®(—po,—p_l,...,—pn+1,0,...) if n < 0.

Also, we see that

5 (WA, Wp—1X;0, (P, — 1) /pn, 1) if pp > 1,
G =
(wp—1X;0,1) if p, = 1.

Thus it is easy to verify that ®}(&n) = &® () in this case. Assume that m > n; by the assumption
that m +n is even, we have m > n + 2. Let M; be as (2.3), and set k" := max M. If &' € {m,m —
2,...,n+2}, then we can show in exactly the same way as Case 1 that ®}(&;(7)) = &®) (7). Otherwise,
we see by Proposition 6.10 and (6.26) that k' = n. Let ®M7) = (..., y2,y1) @A ® (Yo, Y_1, - - .), where
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yr = 2k(m). Then we see by the definition of & that &®MNm) = (..., y5,9}) @ tA @ (Yh, ¥ 1, ),
where y;, = yp — Okn. Let t1 and to be as (2.8) and (2.9), respectively. We see that t; = 1 and
to=1-1/(—(wp\, /) =1—1/py—1. By (2.10) and Remark 5.5, we have ¢,41/pn+1 < to. Suppose,
for a contradiction, that gn+1/pn+1 = to; note that HI (gn+1/pn+1) = HI (1) + 1. It follows from
Remark 5.5 that H](t) attains a minimal value at t = gn42/pn+t2, and hence H] (gn12/Pn+2) € Z by
(2.7). Therefore, we obtain H (¢n+2/pn+2) < HF (1), which contradicts the definition of ¢;. Therefore
we obtain ¢,11/pn+1 < to, which implies that

-1
ém:<wm)\,...,wn)\,wn_1)\;0,qm...,...,an,pn ,1).
Pm Pn+1 DPn

Therefore we see that

P — 1 ifl1<k=n,

(pn—1)—p, ifk=n<0,

qk ifk#n, 1<k, andn+1<k<m,
zi(€m) = < pi ifk#n,1<k, and k < n,

qr — Dk ifk#n, k<0, andn+1<k<m,

— Pk ifk#n, k<0, and m+1<Ek,

0 otherwise,

= 2(T) — O -

Hence we obtain &;(r) = &® (), as desired.

Case 4. Assume that ¢ = ¢/(m) and m+n is odd. Note that the function H (¢) attains a minimal
value at t =0,¢t =1, and t = qx/px, k =m —1,m —3,...,n+ 2. By Proposition 6.10, we get

HE (1) ‘t € {0, m-1 Am=s q"+2,1}}
Pm—1 Pm-3 Pn+2
= max{—Hf(t) ‘t € {0, qm_l, qm_g’“" qn+2,1}}
Pm—1 Pm-3 Pn+2
= &i(®)(7)).
We can show in exactly the same way as Case 3 that ®}(&;7) = &;®) ().
Let 7 € By()\), and i € I. Because wt(m) = wt(®} (7)) and e;(7) = &;(®) (7)), we have ¢;(7) =

i(PN(1)). Also, since both B1(\) and Im(¥}) are normal crystals, and since ®}(&;7) = & o} (1), we
see that ®)(f;7) = f;®) (). This completes the proof of Theorem 6.5. O

ei(r) = — min {

6.3 Proof of Theorem 3.4.

We can prove Theorem 3.4 in exactly the same way as [15, Theorem 3.2]; we give only a sketch of the
proof. In the following, we assume that ko = 1; the proof for the case that k1 = 1 is similar. Let us
identify B(X) with {b € B(oco) ® T, ® B(—00) | b* is extremal} by Theorem 2.4.

Lemma 6.11 (cf. [15, Lemmas 3.7 and 3.8]).

(1) Leti eI and b € B(\) be such that é;b # 0. If b is of the form b= b1 @ t) ® u_so with by # Ueo,
then €;b = €;b1 @ t)\ @ U_xo.

(2) Leti€ I and b € B()) be such that fib 0. If b is of the form b = use ® ty ® by with by # U_oo,
then fzb = Uso X\ D fibg.
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Proof. We give a proof only for part (1). Suppose, for a contradiction, that €;b = b ® t) ® €;u_oo.
We see by (2.2) that (&:0)" = b] ® t_x_wi(b1)—a; ® Eil—oo- Since @i((€:b)*) > wi(Eiu—o) = 1, it
follows from the tensor product rule of crystals that f;(&b)* # 0. Because &b € B()\), we see that
(€;b)* is an extremal element of weight —\. Since (wt(Siq(€;0)*),ay) = (=X, o)) = —k1 < 0, we
obtain fi(é;b)* = 0. Therefore we have i = 2 and (éb)* = b} ® t_A—wt(by)—as @ E2U_oo. Because
(wt(Sia(€2b0)*),ad) = (=X, ay) =1 >0, and (é2b)* is an extremal element of extremal weight —\, we
see that éa(é2b)* = 0, and hence e2((€2b)*) = 0. Since e2((é2b)*) > e2(b}), we have e2(b}) = 0, which
implies €1(b}) > 1 because b1 # u~. Hence,

©2(b] @ t_x_wi(br)—as) = P2(b]) + (=A — wt(b1) — az, o)
= (e2(b7) + (wt(b}), ag)) + (=X — wt(b1) — a2, 03 )
=e9(b}) + (=A — ag,ay) = —1.

By this equality and e3(€2u_oo) = p2(E2u—no) — (Wt(E2u_),y) = —1, it follows from the tensor
product rule of crystals that Sy(éxb)* = fa(€xb)* = b} ® t_A—wt(b1)—as ® U—oco- Since 1(b]) > 1, we
obtain ;b7 # 0. Therefore it follows from the tensor product rule of crystals that e;(S2(é2b)*) >
e1(by) > 1, that is, €1.52(é2b)* # 0. However, since (é2b)* is an extremal element of weight —\ and
(wt(Sa(€20)*), af) = (s2(=A),f) > 0, we see that €152(é20)* = 0, which is a contradiction. O

Lemma 6.11 implies the following proposition (see [15, Proposition 3.9]).
Proposition 6.12. It holds that B(\) C (B(00) ® tx ® U_oo) U (U @ ty @ B(—00)).

Here, we set |a| == >, ;|ci| for a = . ;cia; € @, Za;. By Proposition 6.12, we see that
b € B(\) is of the form either b = b; ® t) ® u_o with some by € B(c0) or b = us & t) ® by with some
by € B(—00). We deduce by induction on |wt(b;)| (resp., |wt(b2)|) that if b is of the form b ® ) ® u_oo
(resp., b = U @ty ® by), then b = f;, - '-filu,\ (resp., b = &;, - €;,uy) for some i1,...,i, (see [15,
Proof of Theorem 3.2]). Thus we have proved Theorem 3.4.
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7 Polyhedral realization of B(\).

Throughout this section, let © = (+7,.7) be as in §3, and A = k;A; — koAg € P as in Theorem 3.1.

7.1 Some propositions and corollary.

Let & =(...,x9,21) € Im(\I!er) be such that x,, < py, for all m € Z>,. For | > 1, we set

Zl(:iul) = ( -, L2,21,P0sP—15- - - ap—2l+27p—2l+1) S Z;gi-&ﬂ
ZQ(.CZ‘,Z) = (xgl —Poyy---, T2 —P2,21 —P1,0,0.. ) S Z;gi,.

Proposition 7.1. Let & = (..., z9,21) € Im(\I/;;) be such that x,, < pm for all m € Z>1, and let
[ > 1. The following are equivalent:

(1) z1(2,1) € Im(¥);

(2) cjwj_o —cj12j_9141 >0 forj > 20+ 1;

(3) 0= sij(fp.m ,..ﬁ_jﬁ{)%e*) for —214+1 <4 <0.

ij+1

Proof. (1) < (2): By Proposition 6.2, we see that z1(2,1) € Im(¥,) if and only if

CjPj—21 — Cj—1Pj—2+1 >0 for 1 <j<20—1, (7.1)
CjPj—2l — Cj—1T5-21+1 > 0 for _] = 2[,
CjTj_o] — Cj—1%j_2141 = 0 for2l4+1<y.

Therefore it is obvious that (1) implies (2). Assume that (2) holds; we need to show that (7.1) and
(7.2). We can easily see by induction on j that

¢jpj—21 — Cj—1pj—21+1 > 0 for j > 1. (7.3)

In particular, we get (7.1). Since x1 < p1, we see that copy — coy_121 > coipo — coi—1p1- Combining
this inequality and (7.3), we obtain (7.2).

(1) & (3): By Proposition 2.6, together with the fact that is = i; if s = ¢ mod 2, we see that
21(2,1) € Im(¥},) if and only if

0= gij(ff;ilfg';j:; e fENROFI R a) for — 2041 <5 <0,
0=cey,(f7 fi0 200) for j > 1.
Since & € Im(¥}), we have &* = Nfil 2322 “+Zoo and 0 = Ezj(ﬂmjfllﬁizz -+ Zoo) for j > 1. Therefore
(1) is equivalent to (3).
Thus we have proved the proposition. O

By using Propositions 2.6 and 6.2, together with the fact that i; = iy if s =t mod 2, we can prove
the following proposition in exactly the same way as Proposition 7.1.

Proposition 7.2. Let & = (..., z9,21) € Im(\I’;Sr) be such that Tp, < pm for all m € Z>1, and let
Il > 1. The following are equivalent:

(1) zo(2,1) € Im(¥,_);
(2) ji1(@ja — pjra) — € j(Tj2-1 = Pjr2-1) <0 for =20 +2 < j < —1;

(8) 0= s, (€))7 @l Ty ) for 1 < 5 < 2.

ij1 io i
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Proposition 7.3. Let & = (..., z9,71) € Im(\Il:;) be such that Ty < pm for all m € Z>1, and let
k > 1. The following are equivalent:

(1) crto17r — Chg21-1Tk41 > 0 for 1 >1;
(2) mrr — Tpg1 > 0.

Proof. Assume that (2) holds. By Lemma 6.1, together with (3.3), we have cgio > VpCpyo—1 for
[ > 1. Hence, cx191Tk — Ckt21-1Tk+1 > Ck+21—1(VkZk — Tp4+1). By the assumption, we obtain (1).
Assume that (1) holds; note that xx > 0. If z; = 0, then we have —cpi9_ 12541 > 0. Since
Ch+o1—1 > 0, we see that zy41 = 0, which gives v — xx+1 = 0. Assume that x; > 0. By the
assumption, we obtain cyyo;/cryoi—1 > xp41/xy for I > 1. Since the sequence {cpi;/crt21—1}i>1 is
strictly decreasing, and converges to 7 by Lemma 6.1, we see that xp11/xp < v, which is equivalent
to (2). O

Proposition 7.4. Let & = (...,z2,21) € Im(\I/;i) be such that x,, < pp for all m € Z>1, and let
k > 1. The following are equivalent:

(1) Copi, (@1 = Phrr) = g1 (@ —pk) <O for 1> 1;
(2) Vet1Pk+1 — Pk + Tk — Ve+1Zk4+1 > 0.

Proof. Assume that (2) holds. By Lemma 6.1, we have ¢y, > Yg1¢y,, ; for I > 1. Since
Tra1 — Pr+1 < 0, we see that

/ / /
021+¢k($k+1 — Dky1) — 021+¢k—1(9€k —pr) < 021+ik—1(%+1$k+1 = Yk+1Pk+1 — Tk + pg) <0.
N——

>0 <0 by assumption

Assume that (1) holds; note that (0 <) zx41 < pry1. If Tp11 = pr41, then we have —c’2l+ik_1(xk —
pr) < 0. Since C’QIH-]F1 > 0, we obtain xp = pg, which gives ygr10k+1 — Pk + Tt — Vi+12k+1 = O.
Assume that zr11 < pra1. By the assumption, we obtain C/2l+ik/c/2l+ik—1 > (zr — pr)/(The1 — Plt1)-

Since the sequence {6/21+ik/cl21+ik—1}l21 is decreasing and converges to ;41 by Lemma 6.1, we obtain
(xx — pr)/(Thtr1 — Pr+1) < Yk+1, which is equivalent to (2). O

By Propositions 7.1 — 7.4, we obtain the following corollary.
Corollary 7.5. Let & = (...,x9,21) € Im(\Ifﬁ) be such that x,m, < pm for allm € Z>.

(1) vgxr — 21 > 0 for all k > 1 if and only if

e, (f 4! R aT) = 0
for all 7 <0.
(2) Ye+1Pk+1 — Pk + Tk — Ye+1Zk+1 > 0 for all k > 1 if and only if
o LT ) =

forall j > 1.
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7.2 Proof of Theorem 3.6.
Lemma 7.6. It holds that ¥,()\) C Im(T)).

Proof. Let Z = (...,2z2,21) @ty ® (z0,2_1,...) € X,(A\). By Proposition 6.2, it suffices to show that

Cilj — Cj—1Tj+1 > 0 for j > 1, (74)
c’,jH:l:j — c',jxj_l <0 forj<Oo. (7.5)
First, we verify (7.4). If j = 1, then the assertion is obvious because ¢; = 1 and ¢j—; = 0.

Assume that j > 1; note that ¢j_; > 0. It follows from Lemma 6.1 that v; < ¢j/cj—1. Also, we have
(7G5 — Gj+1)(Z) = vjz; — xj41 > 0 by the definition of 3,(\). Hence,

c:
CjTj = Cj—1Tj+1 = Cj-1 <C]xﬂ - ﬂ?j+1> > ¢j-1(7%5 = Tj41) 2 0.
j—1
Next, we verify (7.5). If j = 0, then the assertion is obvious because ¢’ ;,; = 1 and ¢’ ; = 0.
Assume that j < 0; note that ¢_; > 0. It follows from Lemma 6.1 that v; < c_;,,/c’ ;. Also, we have
(j—1 —vj¢)(Z) = xj—1 — vjxj; > 0 by the definition of 3,(\). Hence,

/

C .

/ ) Do —j+t ) / e )

C_jp1%j — C_;Tj—1 = C_j ( 7 Ty — 5‘73—1) < C—j(’YJxJ —xj-1) <0.
—j

Thus we have proved the lemma. ]

For k € Z, we set k) := k + 2 and k(-) := k — 2. Also, we define the function fj: R™® — R by

3 —<>\70622> + Ck — @i, Cry1 + Crg2 ifk=-1,0,
k= )
Ck — @i Cy1 + Chg2 otherwise;

note that B¢ (%) = o (¥) — o4+ (F). Moreover, for k € Z, we define the operator F}, on {e+> 1z 901G |
c, g1 € R} as follows: for ¢ = c+ Y, di1§ with ¢, ¢ € R, we set

¢ — oiBysr if ¢ >0,

F = _
H) {¢—¢kﬁk<> if ¢y, < 0;

note that Fj(¢) = ¢ if ¢ = 0.

Lemma 7.7. Let = be a subset of {c+ > 1c, ¢1G | ¢, ¢ € R}. Assume that

Fr(@) € > RxoG+ Y Rxo(—¢) + Y Reot) (7.6)

i>1 <0 Yes
forall € E and k € Z. Then, ¥ = {Z € Z,(\) | ¢(Z&) > 0 for all ¢ € Z} is a subcrystal of Z,(N).

Proof. This lemma can be shown similarly to [3, Lemma 4.3]. Let & € ¥. We show that if fi# £ 0,
then f;7 € ¥, that is, gi)(ﬁf) > 0 for all ¢ € Z. Let us write ¢ = c+ > _;.;, ¢1( with ¢, ¢; € R. Define
My = M;(Z) as (2.3), and set k := min M;). We see by (2.4) that O(fi®) = &(Z) + dp. If ¢ > 0,
then the assertion is obvious because ¢(fiZ) = ¢(Z) + ¢ > ¢(F) > 0. Assume that ¢ < 0. By the
definition of M(;) and the fact that i, = ip, if K = m mod 2, we have o4 (Z) > op—2,(7) for all n € Z>1.
In particular, oy (Z) > o) (Z). Since By (Z) = o4 (Z) — 0k (Z) € Z, we deduce that [ (%) < —1.
It follows that }
P(fi) = () + O = H(F) — i) () = (Fiu(9))(F).
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By assumption (7.6), we see that Fj(¢) is of the form Fy(¢) = >_,51 G+ 5<0ti(=C) + D yez ty ¥,
where t,t, € R>g. Since & € ¥, we have ¥(Z) > 0 for any ¢ € E. Therefore we see that

S(fif) > (F(@) (@) =D _t; @ + Y ti(—wj) + tw@ > 0,

RS S RO veE g

and hence f;Z € . Similarly, we can show that &% € ¥ if &% # 0. Thus we have proved the
lemma. O

Proof of Theorem 3.6. By Lemmas 7.6 and 7.7, it suffices to show that

Fr(d) € Y RooGj+ > Rso(=()+ Y Rso (7.7)

i1 <0 Ve N

for all k € Z and ¢ € Z,[\]. Here we verify (7.7) for the case that ¢ = yopo + Y0lo — ¢1; for the other
cases, see Appendix A. If k # 0,1, then the assertion is trivial since Fj(¢) = ¢. Assume that k = 0.
We compute

Fo(¢) = (vopo + 700 — C1) — Y050
= (yopo + 0% — ¢1) — Y0(po + Co — a2C1 + (o)

=% ((az‘o - 1) G — Cz)
Y0

=v(71¢ —¢2) by (3.4).
—_———
€= N

Assume that £ = 1. We compute

Fi1(¢) = (vopo + 700 — ¢1) — (=1)B-1
= (yopo +70C0 — 1) + (—p1 +C1 —a—1(o + 1)
=ypo —P1+ (-1 + (0 —a-1)C

1
= Yopo — p1+ (-1 — ﬁCo by (3.4)

1 1
=—p_1+(1+—)po—p1+—-1p—1 —po+v-1(-1 — (o)
a1 V-1

(note that y_1 = 1)

1
=—p_1+a1po —p1+ 7(7—111—1 —po+7-1(-1—Co) by (3.4)

1
=0+ ;(7—110—1 —po+7-1(-1 —C) by (3.2).
€= A

Thus we have proved Theorem 3.6. O

7.3 Proof of Theorem 3.7.

Let 3,(\)’ be the subset of 3, () consisting of the elements of the form & ®t)® z_o with & € Im(¥7}).
Proposition 7.8. For T € ¥,(\)’, the element T* is extremal.

Proposition 7.9. Let §j € Im(U)). If §* is extremal, then there exist iy,...,i; € I and T € X,(\)
such that ¥ = f;, -~ fi,J.
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Assuming that Propositions 7.8 and 7.9 are true, we give a proof of Theorem 3.7.

Proof of Theorem 3.7. Set B = {Z € Im(\I')‘) | * is extremal}. First, we show that ¥,(\) C B. Let
T=13101) @2y € X,(N) with 21 € ZT° S0+ and &2 € Z_ . By Theorem 3.6, we have Iy € Im(W¥ ).
Since Im(¥ ) = B(—o0) as crystals, there exist 4y,...,7; such that ﬁ-llnax--- ;-I?axlfg = Z_oo. Then

we see by the tensor product rule of crystals that 3 := ;?mx e ﬁ‘;‘axf is an element of X, (\)’. Since
# € ¥, (N\) C Im(¥)), we see that 4 € Im(¥?}). Also, it follows from Proposition 7.8 that 7* is extremal.
Thus we obtain i € B. Since B is a subcrystal by Corollary 2.8, we obtain ¥ € B.

Next, we show that ¥,(\) D B. Let ¢ € Im(¥) be such that 7* is extremal. By Proposition 7.9,
there exist 4y, ...,4 € I such that f;, --- f;,7 € X,(\)’ C %,(\). Therefore, by Theorem 3.6, we obtain

y € 3,(A\). This completes the proof of Theorem 3.7. O

First, we prove Proposition 7.8. Let 7 = 21 ® ty ® 29 € Im(¥}). By the tensor product rule of
crystals (see also [8, Appendix B]), we see that

ei(2) = max{e;(21), pi(22) — (wt(2), ) }, (7.8)
¢i(%) = max{e;(21) + (wt(2), o), pi(22) }- (7.9)
Moreover,
éfl(z)i eEZ(zl)zl Rty ® €529, (7.10)
where ¢ = max{—e¢;(z1) + ¢i(22) — (wt(2), ), 0}. Since wt(Sy, Z*) = wewt(Z*) = —wyA, we see that
ifi =i,
(Wt(Su 2, a)) = 4" S (7.11)
—Pk+1 1= igq,
and hence
Su 2 = &F Sy, 2 ffjj:lﬁgwk+1 7+ (7.12)

Proposition 7.10. Let £ =& @ t) ® 2_00 € B,(N) with & = (..., x2,21). Then,

12 'Ll 12 11

fpk-',-l” plzfi(’)OA*®t ®Z_ lkaO,

. éfk’“ C€EN T ®t, ® ep’“ Thogbrmmghimil, o if k>0,

Sy
k41 1

where p == —\ — wt(z).

Proof. Since z € Im(\llzﬁr) by Lemma 7.6, it follows from Proposition 2.6 that

xj =g, (671 E2ENEY)  for j > 1. (7.13)

11 42 11

By the definition of 3,(\)’, we have pp —xx > 0, Yz — 2kt > 0, and Vi 1pkr1 — Pk + Tk —Ver1Tpr1 > 0
for all £k > 1. By Corollary 7.5, we see that

e, (f7 - FI ) =0 for j <0, (7.14)
Qplj(NZ] 11— j—1 . 51272—12611&—2:12_00) =0 forj>1. (7'15)

Now, we show the assertion by induction on |k|. If & = 0, then the assertion is obvious by (2.5).

Assume that k£ > 1. By the induction hypothesis, we obtain
S _’*—ézkil-- 5%2 571 4 *®t ®~pk 1= Tk—1 ~p2 T2 5P1—21

€.

w1 = Tg—1 2 21 Tp—1 22 i1 Z—00

We have (wt(Sw,_,7*), ) = —pr, < 0 by (7.11), eik(éf:z €327 3%) = xp by (7.13), and

i9 i1

~Pk—1"Tk—1 ~P2—x2 ~P1—T1 —
v, (€, el e M 20o) = 0
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by (7.15). Since ) < pi as seen above, we see by (7.10) and (7.12) that

—k ~Di ( ~Tk—1 572 5T1 4. ~Pk—1—Tk—1 ~p2 T2 ~p1—T1
kaa: = €, (eik—1 "€y €y T ®t,®e Cir_1 €iy € Z*OO)

_ 5Tk 5TE-1 ~To ~T1 A%k SPk—Zk sPk—1"Tk—1 = sP2—T25P1—T1
=€;7€, | e, T ®t, ® €i, i1 €, €, A

Assume that k < —1. By the induction hypothesis, we obtain

ka+1 fpk+2' fp ' po *®tﬂ®z*

k42

Since Sy, &* # 0, we see by (7.12) that

= PR L P @ @ g ) = PR L PP g @

k41 Tk+2 i—1 Yo Te+1 7 k42 i—1 Yo

Thus we have proved the proposition. ]

Proof of Proposition 7.8. Keep the notation and setting in Proposition 7.10. We show that z*
extremal; by (7.11), it suffices to show that &;, (Sw,Z*) = 0 and ¢, | (S, 7*) = 0 for all k € Z.

Step 1. Assume that £ > 0. We show that goz-kH(kaf*) = 0. We know from Proposition 7.10
that
5Tk 6902611 * ®t ®6Pk Tk ., ~P2 T2 5P1—T1

—% .
S, T =€;, €, € Z—oo

3k

By the same argument as in the proof of Proposition 7.10, we see that (wt(Sy, Z*), o) ) = —pr+1 <0,

k41
) ST ST2ST1 A%\ gPk Tk, gP2—T2 5P1—T1 _
£Zk+1(elk €6 T ) = Tpi1, ckaH( e ey Z—oo) = 0, and zgy1 < pry1. Thus, by

(7'9) @lk+1(5wk$ ) maX{xk+1 + ( pk‘—l-l)a 0} = 0.
Step 2. Assume that k£ > 0. We show that ¢;, (S, Z*) = 0. We have
Eig (Suy, T¥) = 5ik(é€:8wk—1f*) = €ij, (Swy_1 %) — Pi
= Piy, (ka—lf*) - (Wt(kaflf*%a;i) —Dk = @iy, (kaﬂf*)'

=—py, by (7.11)

Since @;, (Sw,_,@*) = 0 by Step 1, we obtain &;, (Sy, &*) = 0.
Step 3. Assume that k£ < 0. We show that ¢;, (S, Z*) = 0. We know from Proposition 7.10 that

FPk+1 p 1 pOA*
flk+1 -1 Jig ®t ® Z—oo

We have (wt (S, 7), ;) = px by (7.11) and ¢;, (fPrr.. fp ! po #*) = 0 by (7.14). Since ¢;, (z—00) =

k41

0, we see by (7.8) that ¢;, (Sy, ) = max{0,0 — px} = 0.
Step 4. Assume that k£ < 0. We show that ¢;, (S, Z*) = 0. We have

—k FPk+ 1 —%

Pirt1 (kax ) = Pipt (fzkﬂ Wi1 L ) = Pigi1 (ka+1 ) Pik+1

—k —k

= Cipt (ka+1f*) + <Wt(ka+1x )7 O‘XHJ —DPk+1 = 8ik+1(ka+1x )

=pr+1 by (7.11)

Since €, (Sw,,Z*) = 0 by Step 3, we obtain ¢, (S, 7*) = 0.

W41
This completes the proof of Proposition 7.8. O
Next, we prove Proposition 7.9. Let ¢ = 1 ®t\®72 € Im(¥)) with ¢; € Im(\Il:Sr) and g2 € Im(¥ _),
and assume that y* is extremal. Since Im(W _) = B(—o0) as crystals, there exist i1,...,4; such that
;‘fax . maxyg = Z_so- By the tensor product rule of crystals, if we set & := max fmaxgj’, then

Z is of the form ¥ = T R t\ ® z_ with z € Im(\IJ;); in order to prove Proposmon 7.9, it suffices
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to show that & € ¥,(\). Let us write 2 = (..., 22,21). By the definition of ¥,()\), we deduce that
T=(..,22,21) @ty ® 2_o0 € X,(N) if and only if

pr— x>0 for k > 1; (7.16)
VTl — Tkr1 > 0 for k > 1; (7.17)
Vk+1Pk+1 — Pk + Tk — Ve+1Tk+1 > 0 for k> 1 (7.18)
Yoro +70 -0 —x1 2 0; (7.19)
Y1p1 +0—m21 > 0. (7.20)

Assume that (7.16) holds. Then it is obvious that (7.20) holds. Moreover, we obtain yopg+70-0—x1 >
Yopo — p1- Recall that ajas > 4. Thus we obtain \/a%aQ 4ayias > aras — 3, and hence

y N aias + a1a2 —4ajas 2a1a2 - 3 3
0= g 1 —_—
a9 2&2 2&2

Assume that a;,as > 2. Then a;—3/2a3 > a;—1 > 0. By the definition of A, either pg < p; < (a1—1)po
or p1 < po < (a2 — 1)py holds. In both cases, we deduce that yopg — p1 > 0. Assume that a1 = 1
(resp., ag = 1). Then a1 — 3/2a2 > 1/2 (resp., a1 — 3/2a2 > a1 — 2). By the definition of A\, we have
2p1 < po < (ag — 2)py (resp., 2pg < p1 < (a1 — 2)po). Hence we deduce that yopg — p1 > 0. Thus we
get (7.19). Therefore, it remains to show that (7.16), (7.17), and (7.18).
Now, since {Z € Im(¥}) | Z* is extremal} is a subcrystal of Im(¥}), it follows that & € {Z €
Im(¥)) | 2* is extremal}. Also, by Proposition 2.6, we have
wj =g (€ - E2EEY) for j > 1. (7.21)

15—1 2 1

Proposition 7.11 (proof of (7.16)). Let T = & @ t\ ® z_oo € Im(V?), and write & = (..., x2,71). If

T* is extremal, then pp — xp > 0, and

—% STk ~T9 xl * SPk—Tk | zP2—%25P1—%1
S, =¢€;F 626187 @1, ® ¢} €, €, R0

for k> 1, where p = —X\ — wt(z).

Proof. We proceed by induction on k. Assume that £k = 1. Since ¥ = 2" ® t, ® z_, and
(wWt(2*), o)) = (=X, @) = —p1, we see by (7.8) and (7.21) that

e1(Z*) = max{z1,0 — (—p1)} = max{x1,p1 }. (7.22)

Because £* is extremal, the inequality (wt(Z*),o;)) = —p1 < 0 implies that 1(Z*) = p1. By (7.22),
we obtain p; = max{z1,p1}, and hence ;1 < p;. Also we see by (7.10) that S,,7* = éfllfi'* =
CHRE A= T A N

Let & > 2. By the induction hypothesis, we have

—: ~T T xro ~ xT
S x*_ekl' ewgez‘l *®t“®6pkl k-1 . P2 2 ~P1—T1

Wi —1 Th—1 12 11 The—1 22 621 Z—0c0

Hence we see by (7.21) that

~Pk—1"Tk—1 ~p1—21

SOzk( Zk 1 o 'eil Zfoo) - <Wt(5wk71x )’alk>}

Ll — 1”. x1 *)

Eix (Swy,_,T7) = max{e;, (&,

= max{x, my}.
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By (7.11), we have (wt(Sy,_,T*), @) ) = —pk. Since Z* is extremal, the inequality (wt(Sy, ,T*), @) ) =

Wg—1 1k
—pr, < 0 implies that &, (Sw,_, 7
(

= pi. Hence we obtain py = max{xzy, my}, which implies x < py.
Therefore we see by (7.10) and (7.12) that

Su @ = &S

Wi — 1
PRIl @, @ @I T L gy
— ézk . ef; ~’;v1 *® t,®é ~P: Tk, ~f22 x?éfll x1 2o
Thus we have proved the proposition. O

Proposition 7.12 (proof of (7.18)). Let £ = & @ t)y ® 2_oo € Im(¥}), and write & = (..., x9,x1). I
L

X" is extremal, then Yp+1Pp+1 — Pk + Tk — Ve+1Tk+1 > 0 for k> 1.

Proof. By Corollary 7.5, it suffices to show that ¢, (éi?:ll_xjfl ceETREN T 2 ) =0 forall j > 1.
Let j > 1. Since ¥* is extremal, and since (wt(S,. ,7*),a’) = —p; < 0 by (7.11), we see that

j—1 15 J
®i; (Sw,;_, @) = 0. We know from Proposition 7.11 that
Su; o éiBJ 1., g%25%1 4% ®t ~P3 1=Tj-1 . gh2—%2 5P1—T1
j—1

: €; Z_
1j—1 iz Gy 1j—1 2 i1 o0

We see by (7.9) that

0= Pi; (Swj 15?*)

_ max{&?z] J] 11 - éiitll@*) + <Wt(Swj_1f*) > i, I(ijj 11 -1 'éfll_mz—oo)}-

~Pj—1—Lj—1 ~P2—T2 ~P1—T
gPi- R T S )

i € 6 Because ¢;(2) > 0 for all i € I and

% e Z<0 _, we conclude that 0 = g%(ﬁvJ LTS gzmmzgiT i, ). Thus we have proved the
proposmon O]

Hence we obtain 0 > ¢; (€

ij_1 i2 i1

Proposition 7.13 (proof of (7.17)). Let T = & @ty ® z2_oo € Im(¥)), and write & = (..., xa,21). If

%

" is extremal, then vpxr — k11 > 0 for k> 1.

Proof. By Corollary 7.5, it suffices to show that 5i](fffllf5f22 . po #*)=0forall j <0. Let j <O0.

Since &* is extremal, and since (Wt(Swja_:”k),aivj) =p; > 0 by (7.11), we see that g;, (S, 7*) = 0. We
see by (7.12) that

— fPi+1 f fPOS — fPi+1 fp 1 pO(A*(X)t ® 2o )

’L+1 1541

Since Sy, " # 0, and since fiz—oo = 0 for all i € I, we see that

b PJ+1__ Fp—1 Po *
Swjx =fil i1 Jig BT QT ® 200

It follows from (7.8) that 0 = &;, (S, ") = max{e;, (f/*" -+ f=! f£°4*),0 — p;}. Since —p; < 0, and

ij41 i1 Jig
since g;(2) >0 foralli e I and 2 € Z;o,n“ we obtain

FDj+1 FPj+2 FP—1 ~ _
Elk(flji: fzJiLJ; te i_llx*) =0.

Thus we have proved the proposition. ]
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Appendix.
A Action of Fj, on = [)].

In this appendix, we compute Fy(¢), k € Z, for ¢ = c+ >, 01§ € E,[]; recall that Fj(¢) = ¢ for
k € Z such that ¢ = 0.

Fo(vopo + 0G0 — C1) = a(71¢1 — C2).

Fi(vopo + 7060 — C1) = ;(’Y—lp—l —po +7-1¢-1 — Co)-

Fo(mpr + ¢ —m) = é(%pz —p1+ G — ).
Fi(vip1 + G0 — 71¢1) = B(C=1 — 70Co0)-

For k > 1,
4 1 )
(€1 —0G0) + B(—Co) ifk=1,
1 .
Fi.(pr — Ck) = a(pl —C1) + (mp1 + ¢ —71G1) if k=2,
1 .
%(pk—l — Ch—1) + (Ve—1Pk—1 — Pr—2 + Ch—2 — Me—1Ck—1) if k> 3.

Fre (v = Cht1) = M (Ve+1Ck+1 — Chg2)-

1 .
a(%po +70G0 —¢1)  if k=1,

1 .
—— (Vh—1Pk—1 — ) if k> 2.
VE—1

Frop1 (Gl — Gr1) =

1
Fi(Ve+1Pr+1 — Pk + G — Ye+1Ckt1) = . (Ve+2Pk+2 — Ph+1 + Cor1 — Vie+2Ck+2)-
+

a(yp1 + ¢ — M) if k=1,

Frev1(Ve+1Pk+1 — Pr + Ck — Ve 1Ckt1) = _
Yiet1 (VP — Pro—1 + Gor1 — W) i k> 2.

For k£ <0,
( 1 )
&(_Cl) +(mG — ) if k=0,
1 .
Fie(pr + Ck) = E(P0+C0)+(Vopo+’YOCo—C1) if k=—1,
1 .
%(karl + Cht1) + (Ve41Pkt1 — Pra2 + Vet 1Crt1 — Grra) i b < =2

1 .
B(’hpl + G —m¢) ifk=0,

1 .
——(Ck — Vht1Chp1) if B < -1
Ve+1

Fr(Ce—1 — MCk) = M (Ch—2 — Yh—1Ck—1)-

Fr1(Cee1 — k) =

B(~opo + Yo% — 1) if k=0,

Fro1(Vk—1Pk—1 + Yh—1Ck—1 — P& + Ci) = )
Yie—1(VePk — Prt1 + Wl — Gror1)  if B < -1,

1
Fr(Ye—1Pk—1 + Ye—1Ch—1 — Pk + Ck) = T(’Yk—ka—Q — Pk—1 + Vk—2Ck—2 — Ch—1)-
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