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1 Introduction.

Let A = (aij)i,j∈I be a symmetrizable generalized Cartan matrix, where I is the index set. Let
g = g(A) be the Kac-Moody algebra associated to A over C, and Uq(g) the quantized universal
enveloping algebra over C(q) associated to g. We denote by W the Weyl group of g. Let P be an
integral weight lattice of g, and P+ (resp., −P+) the set of dominant (resp., antidominant) integral
weights in P . Let µ ∈ P be an arbitrary integral weight. The extremal weight module V (µ) of
extremal weight µ is the integrable Uq(g)-module generated by a single element vµ with the defining
relation that vµ is an extremal weight vector of weight µ in the sense of [6, Definition 8.1.1]. This
module was introduced by Kashiwara [6] as a natural generalization of integrable highest (or lowest)
weight modules; in fact, if µ ∈ P+ (resp., µ ∈ −P+), then the extremal weight module of extremal
weight µ is isomorphic, as a Uq(g)-module, to the integrable highest (resp., lowest) weight module of
highest (resp., lowest) weight µ. Also, Kashiwara proved that V (µ) has a crystal basis B(µ) for all
µ ∈ P ; let uµ denote the element of B(µ) corresponding to vµ ∈ V (µ). We know from [6, Proposition
8.2.2 (iv) and (v)] that V (µ) ∼= V (wµ) as Uq(g)-modules, and B(µ) ∼= B(wµ) as crystals for all µ ∈ P
and w ∈W . Hence we are interested in the case that µ is an integral weight such that

Wµ ∩ (P+ ∪ −P+) = ∅. (1.1)

If g is of finite type, then Wµ ∩ P+ 6= ∅ for all µ ∈ P . Assume that g is of affine type. Then,
Wµ ∩ (P+ ∪ −P+) = ∅ if and only if (µ 6= 0, and) µ is of level-zero. In this case, Naito and Sagaki
proved in [11] and [12] that if µ is a positive integer multiple of a level-zero fundamental weight, then
the crystal basis B(µ) of the extremal weight module V (µ) is isomorphic, as a crystal, to the crystal
B(µ) of Lakshmibai-Seshadri (LS for short) paths, which was introduced by Littelmann in [9] and [10].
Then, Ishii, Naito, and Sagaki [4] introduced the notion of semi-infinite LS paths of shape µ for a
level-zero dominant integral weight µ, and proved that the crystal basis B(µ) of the extremal weight
module V (µ) is isomorphic, as a crystal, to the crystal B

∞
2 (µ) of semi-infinite LS paths of shape µ.

On the other hand, in the case that g is of indefinite type, there are few studies on the combinatorial
realization of the crystal basis B(µ) (for µ ∈ P satisfying (1.1)). As a special case (which is one of
most fundamental and interesting cases), let us assume that g is the hyperbolic Kac-Moody algebra
associated to the generalized Cartan matrix

A =

(
2 −a1
−a2 2

)
, where a1, a2 ∈ Z≥1 with a1a2 > 4. (1.2)

Sagaki and Yu [15] proved that if µ = Λ1 − Λ2 (Λ1,Λ2 are the fundamental weights of g) then the
crystal basis B(µ) is isomorphic, as a crystal, to the crystal B(µ) of LS paths in the case that a1, a2 ≥ 2;
note that µ = Λ1 − Λ2 does not satisfy condition (1.1) if a1 = 1 or a2 = 1 (see [16, Remark 3.1.2]).

In this thesis, we classify the integral weights satisfying condition (1.1) as follows.

Theorem 1.1 (=Theorem 3.1). Let O := {Wµ | µ ∈ P} be the set of W -orbits in P .

(1) Assume that a1, a2 ≥ 2. Then, O ∈ O satisfies condition (1.1), that is, O ∩ (P+ ∪ −P+) = ∅ if
and only if O contains an integral weight λ of the form either (i) or (ii):

(i) λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that k2 ≤ k1 < (a1 − 1)k2;

(ii) λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that k1 < k2 ≤ (a2 − 1)k1.

(2) Assume that a1 = 1. Then, O ∈ O satisfies condition (1.1) if and only if O contains an integral
weight λ of the form λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that 2k1 ≤ k2 ≤ (a2 − 2)k1.

(3) Assume that a2 = 1. Then, O ∈ O satisfies condition (1.1) if and only if O contains an integral
weight λ of the form λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that 2k2 ≤ k1 ≤ (a1 − 2)k2.
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Let λ = k1Λ1 − k2Λ2 ∈ P be an integral weight of the form mentioned in Theorem 3.1 above. As
a further study after [15, 16], we study the crystal structure of the crystal B(λ) of LS paths, and its
relationship to the crystal basis B(λ) of extremal weight module V (λ).

Theorem 1.2 (=Theorem 3.2). The crystal graph of B(λ) is connected if and only if k1 = 1 or k2 = 1.
Otherwise, the crystal graph of B(λ) has infinitely many connected components.

Theorem 1.3 (=Theorem 3.3). Let B0(λ) (resp., B0(λ)) be the connected component of B(λ) (resp.,
B(λ)) containing the “straight line” πλ := (λ; 0, 1) (resp., uλ). There exists an isomorphism B0(λ)→
B0(λ) of crystals that sends πλ to uλ.

Theorem 1.4 (=Corollary 3.5). If k1 = 1 or k2 = 1, then there exists an isomorphism B(λ)→ B(λ)
of crystals that sends πλ to uλ.

Again, let us assume that g is a general Kac-Moody algebra, and µ is an arbitrary integral weight
of g. In the latter half of this thesis, we introduce and use the following embedding of the crystal basis
B(µ) for the extremal weight module V (µ) into an infinite Z-lattice. Let B(∞) (resp., B(−∞)) be the
crystal basis of the negative (resp., positive) part of Uq(g). Nakashima and Zelevinsky [13] introduced
an embedding Ψ+

ι+
: B(∞) ↪→ Z+∞

≥0,ι+
of crystals, where ι+ is an infinite sequence of elements in the

index set I satisfying a certain condition, and Z+∞
≥0,ι+

:= {(. . . , xk, . . . , x2, x1) | xk ∈ Z≥0 and xk =

0 for k � 0} is the semi-infinite Z-lattice together with a crystal structure associated to ι+. Assuming
a certain positivity condition on ι+, they gave a combinatorial description of B(∞) (which is called
a polyhedral realization of B(∞)) as a polyhedral convex cone in Z+∞

≥0,ι+
. Namely, they found the set

Ξι+ of linear functions on R+∞ such that the image Im(Ψ+
ι+
) ∼= B(∞) is identical to the set

{x̂ ∈ Z+∞
≥0,ι+

| φ(x̂) ≥ 0 for all φ ∈ Ξι+}. (1.3)

Similarly, there exists an embedding Ψ−
ι− : B(−∞) ↪→ Z−∞

≤0,ι− of crystals, where ι− is an infinite sequence

of elements in the index set I satisfying a certain condition, and Z−∞
≤0,ι− := {(x0, x−1, . . . , xk, . . .) | xk ∈

Z≤0 and xk = 0 for k � 0} is the semi-infinite Z-lattice together with a crystal structure associated
to ι−. Hence there exists an embedding

Ψµ
ι : B(∞)⊗ Tµ ⊗ B(−∞) ↪→ Z+∞

≥0,ι+
⊗ Tµ ⊗ Z−∞

≤0,ι− =: Zι(µ)

of crystals, where Tµ is the crystal consisting of a single element of weight µ, and ι := (ι+, ι−).
Now, in [6, Proposition 8.2.2 (and Theorem 3.1.1)], Kashiwara showed that B(µ) is isomorphic, as a
crystal, to the subcrystal {b ∈ B(∞) ⊗ Tµ ⊗ B(−∞) | b∗ is extremal} of B(∞) ⊗ Tµ ⊗ B(−∞), where
∗ : B(∞)⊗Tµ⊗B(−∞)→ B(∞)⊗Tµ⊗B(−∞) is the ∗-operation (see [6, Theorem 4.3.2]). Therefore
the crystal basis B(µ) is isomorphic, as a crystal, to the subcrystal {~x ∈ Im(Ψµ

ι ) | ~x∗ is extremal} of
Im(Ψµ

ι ) = Im(Ψ+
ι+
)⊗ Tµ ⊗ Im(Ψ−

ι−)
∼= B(∞)⊗ Tµ ⊗ B(−∞).

We return to be the case that A is as (1.2). The next purpose of this thesis is to give a polyhedral
realization (such as (1.3)) of B(λ) ↪→ Im(Ψλ

ι ) for λ = k1Λ1 − k2Λ2 ∈ P of the form mentioned in
Theorem 3.1 above. Let ι = (ι+, ι−) with ι+ = (. . . , i2, i1) := (. . . , 2, 1, 2, 1) and ι− = (i0, i−1, . . .) :=
(2, 1, 2, 1, . . .). For k ∈ Z, we define the linear function ζk ∈ (R∞)∗ by ζk(~x) := xk for ~x = (. . . , x2, x1)⊗
tλ ⊗ (x0, x−1, . . .) ∈ R∞, and set

Ξι[λ] ={γ0p0 + γ0ζ0 − ζ1, γ1p1 + ζ0 − γ1ζ1}
∪ {pk − ζk, γkζk − ζk+1, γk+1pk+1 − pk + ζk − γk+1ζk+1 | k ≥ 1}
∪ {pk + ζk, ζk−1 − γkζk, γk−1pk−1 − pk + γk−1ζk−1 − ζk | k ≤ 0},

where the numbers γk ∈ R \Q, k ∈ Z, are defined by (3.3), and the sequence {pm}m∈Z are defined by
(3.1) and (3.2). We set

Σι(λ) := {~x ∈ Zι(λ) | ϕ(~x) ≥ 0 for all ϕ ∈ Ξι[λ]}.
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Theorem 1.5 (=Theorem 3.6). The set Σι(λ) is a subcrystal of Im(Ψλ
ι ).

Theorem 1.6 (=Theorem 3.7). The equality Σι(λ) = {~x ∈ Im(Ψλ
ι ) | ~x∗ is extremal} holds. Therefore,

Σι(λ) is isomorphic, as a crystal, to the crystal basis B(λ) of the extremal weight module V (λ) of
extremal weight λ.

This paper is organized as follows. In §2, we fix our notation, and recall some basic facts about
extremal weight modules and their crystal bases. Also, we recall the definition of LS paths. In §4,
we prove Theorem 1.1. In §5, we prove Theorem 1.2. In §6, we prove Theorems 1.3 and 1.4. In §7,
we prove Theorems 1.5 and 1.6. In Appendix A, we give some formulas of the operators Fk (which is
defined in §7.2) on Ξι[λ].

Acknowledgments.

The author is deeply grateful to Professor Daisuke Sagaki, who is his supervisor, for his helpful advice
and warm encouragement.
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2 Preliminaries.

2.1 Kac-Moody algebras.

Let A = (aij)i,j∈I be a symmetrizable generalized Cartan matrix, and g = g(A) the Kac-Moody
algebra associated to A over C. We denote by h the Cartan subalgebra of g, {αi}i∈I ⊂ h∗ the set of
simple roots, and {α∨

i }i∈I ⊂ h the set of simple coroots. Let si be the simple reflection with respect
to αi for i ∈ I, and let W = 〈si | i ∈ I〉 be the Weyl group of g. Let ∆+

re denote the set of positive
real roots. For a positive real root β ∈ ∆+

re, we denote by β∨ the dual root of β, and by sβ ∈ W the
reflection with respect to β. Let {Λi}i∈I ⊂ h∗ be the fundamental weights for g, i.e., 〈Λi, α∨

j 〉 = δi,j
for i, j ∈ I, where 〈·, ·〉 : h∗ × h→ C is the canonical pairing of h∗ and h. We take an integral weight
lattice P containing αi and Λi for all i ∈ I. We denote by P+ (resp., −P+) the set of dominant
(resp., antidominant) integral weights in P .

Let Uq(g) be the quantized universal enveloping algebra over C(q) associated to g, and let U+
q (g)

(resp., U−
q (g)) be the positive (resp., negative) part of Uq(g), that is, C(q)-subalgebra generated by

the Chevalley generators Ei (resp., Fi) of Uq(g) corresponding to the positive (resp., negative) simple
roots αi (resp., −αi) for i ∈ I.

2.2 Crystal bases and crystals.

For details on crystal bases and crystals, we refer the reader to [7] and [1]. Let B(∞) (resp., B(−∞))
be the crystal basis of U−

q (g) (resp., U+
q (g)), and let u∞ ∈ B(∞) (resp., u−∞ ∈ B(−∞)) be the element

corresponding to 1 ∈ U−
q (g) (resp., 1 ∈ U+

q (g)). Denote by ∗ : B(±∞) → B(±∞) the ∗-operation on
B(±∞); see [5, Theorem 2.1.1] and [7, §8.3]. For µ ∈ P , let Tµ = {tµ} be the crystal consisting of a
single element tµ such that

wt(tµ) = µ, ẽitµ = f̃itµ = 0, εi(tµ) = ϕi(tµ) = −∞ for i ∈ I,

where 0 is an extra element not contained in any crystal.
Let B be a normal crystal in the sense of [6, §1.5]. We know from [6, §7] (see also [7, Theorem

11.1]) that B has the following action of the Weyl group W . For i ∈ I and b ∈ B, we set

Sib :=

f̃
⟨wt(b),α∨

i ⟩
i b if 〈wt(b), α∨

i 〉 ≥ 0,

ẽ
−⟨wt(b),α∨

i ⟩
i b if 〈wt(b), α∨

i 〉 ≤ 0.

Then, for w ∈ W , we set Sw := Si1 · · ·Sik if w = si1 · · · sik . Notice that wt(Swb)= wwt(b) for w ∈ W
and b ∈ B.

Definition 2.1. An element b of a normal crystal B is said to be extremal if for each w ∈ W and
i ∈ I,

ẽi(Swb) = 0 if 〈wt(Swb), α∨
i 〉 ≥ 0,

f̃i(Swb) = 0 if 〈wt(Swb), α∨
i 〉 ≤ 0.

Let B be a normal crystal. For b ∈ B and i ∈ I, we set

ẽmax
i b := ẽ

εi(b)
i b and f̃max

i b := f̃
φi(b)
i b.

2.3 Crystal bases of extremal weight modules.

Let µ ∈ P be an arbitrary integral weight. The extremal weight module V (µ) of extremal weight
µ is, by definition, the integrable Uq(g)-module generated by a single element vµ with the defining
relation that vµ is an extremal weight vector of weight µ in the sense of [6, Definition 8.1.1]. We know
from [6, Proposition 8.2.2] that V (µ) has a crystal basis B(µ). Let uµ denote the element of B(µ)
corresponding to vµ.
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Remark 2.2. We see from [6, Proposition 8.2.2 (iv) and (v)] that V (µ) ∼= V (wµ) as Uq(g)-modules,
and B(µ) ∼= B(wµ) as crystals for all µ ∈ P and w ∈ W . Also, we know from the comment at the
end of [6, §8.2] that if µ ∈ P+ (resp., µ ∈ −P+), then V (µ) is isomorphic, as a Uq(g)-module, to
the integrable highest (resp., lowest) weight module of highest (resp., lowest) weight µ, and B(µ) is
isomorphic, as a crystal, to its crystal basis. So, we focus on those µ ∈ P satisfying the condition that

Wµ ∩ (P+ ∪ −P+) = ∅. (2.1)

The crystal basis B(µ) of V (µ) can be realized (as a crystal) as follows. We set

B :=
⊔
µ∈P
B(∞)⊗ Tµ ⊗ B(−∞);

in fact, B is isomorphic, as a crystal, to the crystal basis B(Ũq(g)) of the modified quantized universal
enveloping algebra Ũq(g) associated to g (see [6, Theorem 3.1.1]). Denote by ∗ : B → B the ∗-operation
on B (see [6, Theorem 4.3.2]); we know from [6, Corollary 4.3.3] that for b1 ∈ B(∞), b2 ∈ B(−∞), and
µ ∈ P ,

(b1 ⊗ tµ ⊗ b2)∗ = b∗1 ⊗ t−µ−wt(b1)−wt(b2) ⊗ b
∗
2. (2.2)

Remark 2.3. The weight of (b1 ⊗ tµ ⊗ b2)∗ is equal to −µ for all b1 ∈ B(∞) and b2 ∈ B(−∞) since
wt(b∗1) = wt(b1) and wt(b∗2) = wt(b2).

Because B is a normal crystal by [6, §2.1 and Theorem 3.1.1], B has the action of the Weyl group
W (see §2.2). We know the following theorem from [6, Proposition 8.2.2 (and Theorem 3.1.1)].

Theorem 2.4. For µ ∈ P , the set {b ∈ B(∞) ⊗ Tµ ⊗ B(−∞) | b∗ is extremal} is a subcrystal of
B(∞)⊗Tµ ⊗B(−∞), and is isomorphic, as a crystal, to the crystal basis B(µ) of the extremal weight
module V (µ) of extremal weight µ. In particular, u∞ ⊗ tµ ⊗ u−∞ ∈ B(∞)⊗Tµ ⊗B(−∞) is contained
in the set above, and corresponds to uµ ∈ B(µ) under this isomorphism.

2.4 Realizations of B(±∞) and B(µ).

Let us recall realizations of B(±∞) from [13]. We fix an infinite sequence ι+ = (. . . , ik, . . . , i2, i1) of
elements of I such that ik 6= ik+1 for k ∈ Z≥1, and #{k ∈ Z≥1 | ik = i} =∞ for each i ∈ I. Similarly,
we fix an infinite sequence ι− = (i0, i−1, . . . , ik, . . .) of elements of I such that ik 6= ik−1 for k ∈ Z≤0,
and #{k ∈ Z≤0 | ik = i} =∞ for each i ∈ I. We set

Z+∞
≥0 := {(. . . , xk, . . . , x2, x1) | xk ∈ Z≥0 and xk = 0 for k � 0},

Z−∞
≤0 := {(x0, x−1, . . . , xk, . . .) | xk ∈ Z≤0 and xk = 0 for k � 0}.

We endow Z+∞
≥0 and Z−∞

≤0 with crystal structures as follows. Let x̂+ = (. . . , xk, . . . , x2, x1) ∈ Z+∞
≥0 and

x̂− = (x0, x−1 . . . , xk . . .) ∈ Z−∞
≤0 . For k ≥ 1, we set

σ+k (x̂
+) = xk +

∑
j>k

〈αij , α∨
ik
〉xj ,

and for k ≤ 0, we set

σ−k (x̂
−) = −xk −

∑
j<k

〈αij , α∨
ik
〉xj ;
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since xj = 0 for |j| � 0, we see that σ±k (x̂
±) is well-defined, and σ±k (x̂

±) = 0 for |k| � 0. For i ∈ I, we
set σ+(i)(x̂

+) := max{σ+k (x̂
+) | k ≥ 1, ik = i} and σ−(i)(x̂

−) := max{σ−k (x̂
−) | k ≤ 0, ik = i}, and define

M+
(i) =M+

(i)(x̂
+) := {k | k ≥ 1, ik = i, σ+k (x̂

+) = σ+(i)(x̂
+)},

M−
(i) =M−

(i)(x̂
−) := {k | k ≤ 0, ik = i, σ−k (x̂

−) = σ−(i)(x̂
−)}.

Note that σ±(i)(x̂
±) ≥ 0, and that M±

(i) =M±
(i)(x̂

±) is a finite set if and only if σ±(i)(x̂
±) > 0. We define

the maps ẽi, f̃i : Z+∞
≥0 → Z+∞

≥0 t {0} and ẽi, f̃i : Z
−∞
≤0 → Z−∞

≤0 t {0} by

ẽix̂
+ :=

(. . . , x′k, . . . , x
′
2, x

′
1) with x

′
k := xk − δk,maxM+

(i)
if σ+(i)(x̂

+) > 0,

0 if σ+(i)(x̂
+) = 0,

f̃ix̂
+ := (. . . , x′k, . . . , x

′
2, x

′
1) with x

′
k := xk + δk,minM+

(i)
,

ẽix̂
− := (x′0, x

′
−1, . . . , x

′
k, . . .) with x

′
k := xk − δk,maxM−

(i)
,

f̃ix̂
− :=

(x′0, x
′
−1, . . . , x

′
k, . . .) with x

′
k := xk + δk,minM−

(i)
if σ−(i)(x̂

−) > 0,

0 if σ−(i)(x̂
−) = 0,

respectively. Moreover, we define

wt(x̂+) := −
∑
j≥1

xjαij , εi(x̂
+) := σ+(i)(x̂

+), ϕi(x̂
+) := εi(x̂

+) + 〈wt(x̂+), α∨
i 〉,

wt(x̂−) := −
∑
j≤0

xjαij , ϕi(x̂
−) := σ−(i)(x̂

−), εi(x̂
−) := ϕi(x̂

−)− 〈wt(x̂−), α∨
i 〉.

These maps make Z+∞
≥0 (resp., Z−∞

≤0 ) into a crystal for g; we denote this crystal by Z+∞
≥0,ι+

(resp., Z−∞
≤0,ι−).

Theorem 2.5 ([13, Theorem 2.5]). There exists an embedding Ψ+
ι+

: B(∞) ↪→ Z+∞
≥0,ι+

of crystals

which sends u∞ ∈ B(∞) to z∞ := (. . . , 0 . . . , 0, 0) ∈ Z+∞
≥0,ι+

. Similarly, there exists an embedding

Ψ−
ι− : B(−∞) ↪→ Z−∞

≤0,ι− of crystals which sends u−∞ ∈ B(−∞) to z−∞ := (0, 0, . . . , 0, . . .) ∈ Z−∞
≤0,ι− .

We define the ∗-operations on Im(Ψ±
ι±) by the following commutative diagram:

B(±∞)
∗−−−−→ B(±∞)

Ψ±
ι±

y yΨ±
ι±

Im(Ψ±
ι±)

∗−−−−→ Im(Ψ±
ι±).

We know the following proposition from [13, Remark in §2.4].

Proposition 2.6. Keep the notation and setting above; recall that ι+ = (. . . , i2, i1) and ι
− = (i0, i−1, . . .).

(1) Let x̂ = (. . . , x2, x1) ∈ Z+∞
≥0,ι+

. Then, x̂ ∈ Im(Ψ+
ι+
) if and only if

0 = εik(f̃
xk+1

ik+1
f̃
xk+2

ik+2
· · · z∞)

for all k ≥ 1. Furthermore, if x̂ ∈ Im(Ψ+
ι+
), then x̂∗ = f̃x1i1 f̃

x2
i2
· · · z∞, and

xk = εik(ẽ
xk−1

ik−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗)

for k ≥ 1.
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(2) Let x̂ = (x0, x−1, . . .) ∈ Z−∞
≤0,ι− . Then, x̂ ∈ Im(Ψ−

ι−) if and only if

0 = ϕik(ẽ
−xk−1

ik−1
ẽ
−xk−2

ik−2
· · · z−∞)

for all k ≤ 0. Furthermore, if x̂ ∈ Im(Ψ−
ι−), then x̂

∗ = ẽ−x0i0
ẽ
−x−1

i−1
· · · z−∞, and

−xk = ϕik(f̃
−xk+1

ik+1
· · · f̃−x−1

i−1
f̃−x0i0

x̂∗)

for k ≤ 0.

We set ι := (ι+, ι−), and Zι(µ) := Z+∞
≥0,ι+

⊗ Tµ ⊗ Z−∞
≤0,ι− for µ ∈ P . By the tensor product rule of

crystals, we can describe the crystal structure of Zι(µ) as follows. Let ~x = x̂+ ⊗ tµ ⊗ x̂− ∈ Zι(µ) with
x̂+ = (. . . , x2, x1) ∈ Z+∞

≥0,ι+
and x̂− = (x0, x−1, . . .) ∈ Z−∞

≤0,ι− . For k ∈ Z, we set

σk(~x) :=

{
σ+k (x̂

+) if k ≥ 1,

σ−k (x̂
−)− 〈wt(~x), α∨

ik
〉 if k ≤ 0.

For i ∈ I, we set σ(i)(~x) := max{σk(~x) | k ∈ Z, ik = i}, and

M(i) =M(i)(~x) := {k | ik = i, σk(~x) = σ(i)(~x)}. (2.3)

Then we see that

wt(~x) = µ−
∑
j∈Z

xjαij ; εi(~x) = σ(i)(~x); ϕi(~x) = εi(~x) + 〈wt(~x), α∨
i 〉;

if εi(~x) = 0, then ẽi~x = 0; if εi(~x) > 0, then

ẽi~x = (. . . , x′2, x
′
1)⊗ tµ ⊗ (x′0, x

′
−1, . . .) with x

′
k := xk − δk,maxM(i)

;

if ϕi(~x) = 0, then f̃i~x = 0; if ϕi(~x) > 0, then

f̃i~x = (. . . , x′2, x
′
1)⊗ tµ ⊗ (x′0, x

′
−1, . . .) with x

′
k := xk + δk,minM(i)

. (2.4)

The next corollary follows immediately from Theorem 2.5.

Corollary 2.7. For each µ ∈ P , there exists an embedding Ψµ
ι := Ψ+

ι+
⊗ id ⊗ Ψ−

ι− : B(∞) ⊗ Tµ ⊗
B(−∞) ↪→ Zι(µ) of crystals which sends u∞⊗tµ⊗u−∞ ∈ B(∞)⊗Tµ⊗B(−∞) to zµ := z∞⊗tµ⊗z−∞ ∈
Zι(µ).

We also define the ∗-operation on Im(Ψµ
ι ) = Im(Ψ+

ι+
)⊗Tµ⊗Im(Ψ−

ι−) by the following commutative
diagram:

B(∞)⊗ Tµ ⊗ B(−∞)
∗−−−−→ B(∞)⊗ Tµ ⊗ B(−∞)

Ψµ
ι

y yΨµ
ι

Im(Ψ+
ι+
)⊗ Tµ ⊗ Im(Ψ−

ι−)
∗−−−−→ Im(Ψ+

ι+
)⊗ Tµ ⊗ Im(Ψ−

ι−).

We see by (2.2) that if z1 ∈ Im(Ψ+
ι+
) and z2 ∈ Im(Ψ−

ι−), then

(z1 ⊗ tµ ⊗ z2)∗ = z∗1 ⊗ t−µ−wt(z1)−wt(z2) ⊗ z
∗
2 . (2.5)

The next corollary is a consequence of Theorem 2.4 and Corollary 2.7.

Corollary 2.8. For µ ∈ P , the set {~x ∈ Im(Ψµ
ι ) | ~x∗ is extremal} is a subcrystal of Im(Ψµ

ι ), and
is isomorphic, as a crystal, to the crystal basis B(µ) of the extremal weight module V (µ) of extremal
weight µ.
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2.5 Lakshmibai-Seshadri paths.

We recall Lakshmibai-Seshadri paths from [10, §2 and §4]. In this subsection, we fix an integral weight
µ ∈ P .

Definition 2.9. For ν, ν ′ ∈ Wµ, we write ν ≥ ν ′ if there exist a sequence ν = ν0, ν1, . . ., νu = ν ′

of elements in Wµ and a sequence β1, β2, . . . , βu of positive real roots such that νk = sβk(νk−1) and
〈νk−1, β

∨
k 〉 < 0 for each k = 1, 2, . . . , u. If ν ≥ ν ′, then we define dist(ν, ν ′) to be the maximal length

u of all possible such sequences ν = ν0, ν1, . . . , νu = ν ′.

Remark 2.10. For ν, ν ′ ∈Wµ such that ν > ν ′ and dist(ν, ν ′) = 1, there exists a unique positive real
root β ∈ ∆+

re such that ν ′ = sβ(ν).

The Hasse diagram ofWµ is, by definition, the ∆+
re-labeled, directed graph with vertex setWµ, and

edges of the following form: ν
β←− ν ′ for ν, ν ′ ∈ Wµ and β ∈ ∆+

re such that ν > ν ′ with dist(ν, ν ′) = 1
and ν ′ = sβ(ν).

Definition 2.11. Let ν, ν ′ ∈ Wµ with ν > ν ′, and let 0 < σ < 1 be a rational number. A σ-
chain for (ν, ν ′) is a sequence ν = ν0, . . . , νu = ν ′ of elements of Wµ such that dist(νk−1, νk) = 1
and σ〈νk−1, β

∨
k 〉 ∈ Z<0 for all k = 1, 2, . . . , u, where βk is the unique positive real root satisfying

νk = sβk(νk−1).

Definition 2.12. Let ν1 > · · · > νu be a finite sequence of elements in Wµ, and let 0 = σ0 < · · · <
σu = 1 be a finite sequence of rational numbers. The pair π = (ν1, . . . , νu;σ0, . . . , σu) is called a
Lakshmibai-Seshadri (LS for short) path of shape ν if there exists a σk-chain for (νk, νk+1) for each
k = 1, . . . , u− 1. We denote by B(µ) the set of LS paths of shape µ.

Let [0, 1] := {t ∈ R | 0 ≤ t ≤ 1}. We identify π = (ν1, . . . , νu;σ0, . . . , σu) ∈ B(µ) with the following
piecewise-linear continuous map π : [0, 1]→ R⊗Z P :

π(t) =

j−1∑
k=1

(σk − σk−1)νk + (t− σj−1)νj for σj−1 ≤ t ≤ σj , 1 ≤ j ≤ u.

We endow B(µ) with a crystal structure as follows. First, we define wt(π) := π(1) for π ∈ B(µ);
we know from [10, Lemma 4.5 (a)] that π(1) ∈ P . Next, for π ∈ B(µ) and i ∈ I,

Hπ
i (t) := 〈π(t), α∨

i 〉 for 0 ≤ t ≤ 1,

mπ
i := min{Hπ

i (t) | 0 ≤ t ≤ 1}. (2.6)

From [10, Lemma 4.5 (d)], we know that

all local minimum values of Hπ
i (t) are integers; (2.7)

in particular, mπ
i ∈ Z≤0 and Hπ

i (1) −mπ
i ∈ Z≥0. We define ẽiπ as follows. If mπ

i = 0, then we set
ẽiπ := 0. If mπ

i ≤ −1, then we set

t1 := min{t ∈ [0, 1] | Hπ
i (t) = mπ

i }, (2.8)

t0 := max{t ∈ [0, t1] | Hπ
i (t) = mπ

i + 1}; (2.9)

we see by (2.7) that
Hπ
i (t) is strictly decreasing on [t0, t1]. (2.10)

We define

(ẽiπ)(t) :=


π(t) if 0 ≤ t ≤ t0,
si(π(t)− π(t0)) + π(t0) if t0 ≤ t ≤ t1,
π(t) + αi if t1 ≤ t ≤ 1;
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we know from [10, §4] that ẽiπ ∈ B(µ). Similarly, we define f̃iπ as follows. If Hπ
i (1) −mπ

i = 0, then
we set f̃iπ := 0. If Hπ

i (1)−mπ
i ≥ 1, then we set

t0 := max{t ∈ [0, 1] | Hπ
i (t) = mπ

i }, (2.11)

t1 := min{t ∈ [t0, 1] | Hπ
i (t) = mπ

i + 1}; (2.12)

we see by (2.7) that Hπ
i (t) is strictly increasing on [t0, t1]. We define

(f̃iπ)(t) :=


π(t) if 0 ≤ t ≤ t0,
si(π(t)− π(t0)) + π(t0) if t0 ≤ t ≤ t1,
π(t)− αi if t1 ≤ t ≤ 1;

we know from [10, §4] that f̃iπ ∈ B(µ). We set ẽi0 = f̃i0 := 0 for i ∈ I. Finally, for π ∈ B(µ) and
i ∈ I, we set

εi(π) := max{k ∈ Z≥0 | ẽki π 6= 0}, ϕi(π) := max{k ∈ Z≥0 | f̃ki π 6= 0}.

We know from [10, Lemma 2.1 (c)] that

εi(π) = −mπ
i , ϕi(π) = Hπ

i (1)−mπ
i . (2.13)

Theorem 2.13 ([10, §2, §4]). The set B(µ), together with the maps wt : B(µ) → P , ẽi, f̃i : B(µ) →
B(µ) ∪ {0}, i ∈ I, and εi, ϕi : B(µ)→ Z≥0, i ∈ I, is a crystal.

For π = (ν1, . . . , νu;σ0, . . . , σu) ∈ B(µ), we set ι(π) := ν1 and κ(π) := νu. For π ∈ B(µ) and i ∈ I,
we set ẽmax

i π := ẽ
εi(π)
i π and f̃max

i π := f̃
φi(π)
i π.

Lemma 2.14 ([10, Proposition 4.7]). Let π ∈ B(µ), and i ∈ I. If 〈ι(π), α∨
i 〉 < 0, then ι(ẽmax

i π) =
siι(π). If 〈κ(π), α∨

i 〉 > 0, then κ(f̃max
i π) = siκ(π).
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3 Main results.

In what follows, we assume that the generalized Cartan matrix A is

A =

(
2 −a1
−a2 2

)
, where a1, a2 ∈ Z≥1 with a1a2 > 4.

Let Λ1,Λ2 denote the fundamental weights for g = g(A); note that P = ZΛ1⊕ZΛ2 and α1 = 2Λ1−a2Λ2,
α2 = −a1Λ1 + 2Λ2.

Theorem 3.1 (will be proved in §4). Let O := {Wµ | µ ∈ P} be the set of W -orbits in P .

(1) Assume that a1, a2 ≥ 2. Then, O ∈ O satisfies condition (2.1), that is, O ∩ (P+ ∪ −P+) = ∅ if
and only if O contains an integral weight λ of the form either (i) or (ii):

(i) λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that k2 ≤ k1 < (a1 − 1)k2;

(ii) λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that k1 < k2 ≤ (a2 − 1)k1.

(2) Assume that a1 = 1. Then, O ∈ O satisfies condition (2.1) if and only if O contains an integral
weight λ of the form λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that 2k1 ≤ k2 ≤ (a2 − 2)k1.

(3) Assume that a2 = 1. Then, O ∈ O satisfies condition (2.1) if and only if O contains an integral
weight λ of the form λ = k1Λ1 − k2Λ2 for some k1, k2 ∈ Z>0 such that 2k2 ≤ k1 ≤ (a1 − 2)k2.

Let λ = k1Λ1 − k2Λ2 ∈ P be an integral weight of the form mentioned in Theorem 3.1 above.

Theorem 3.2 (will be proved in §5). The crystal graph of B(λ) is connected if and only if k1 = 1 or
k2 = 1. Otherwise, the crystal graph of B(λ) has infinitely many connected components.

Let B0(λ) (resp., B0(λ)) be the connected component of B(λ) (resp., B(λ)) containing πλ := (λ; 0, 1)
(resp., uλ).

Theorem 3.3 (will be proved in §6.2). There exists an isomorphism B0(λ) → B0(λ) of crystals that
sends πλ to uλ.

Theorem 3.4 (will be proved in §6.3). Assume that k1 = 1 or k2 = 1. For b ∈ B(λ), there exist
i1, . . . , ir ∈ I such that b = f̃ir · · · f̃i1uλ or b = ẽir · · · ẽi1uλ. In particular, the crystal graph of B(λ) is
connected.

If k1 = 1 or k2 = 1, then we see by Theorem 3.4 (resp., Theorem 3.2) that B(λ) = B0(λ) (resp.,
B(λ) = B0(λ)). Therefore, by Theorem 3.3, we obtain the following corollary.

Corollary 3.5. If k1 = 1 or k2 = 1, then there exists an isomorphism B(λ) → B(λ) of crystals that
sends πλ to uλ.

We define the sequence {pm}m∈Z of integers by the following recursive formulas: for m ≥ 0,

p0 := k2, p1 := k1, pm+2 :=

{
a2pm+1 − pm if m is even,

a1pm+1 − pm if m is odd;
(3.1)

for m < 0,

pm =

{
a2pm+1 − pm+2 if m is even,

a1pm+1 − pm+2 if m is odd.
(3.2)

We assume that ι = (ι+, ι−) with ι+ = (. . . , i2, i1) := (. . . , 2, 1, 2, 1) and ι− = (i0, i−1, . . .) :=
(2, 1, 2, 1, . . .). We set

α :=
a1a2 +

√
a21a

2
2 − 4a1a2

2a2
, β :=

a1a2 +
√
a21a

2
2 − 4a1a2

2a1
,
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and

γk :=

{
α if k is even,

β if k is odd
(3.3)

for k ∈ Z; note that α, β ∈ R \Q and α, β > 0. By the definition, we have

1

γk
+ γk+1 = aik . (3.4)

We regard R∞ := {~x = (. . . , x2, x1)⊗ tλ⊗ (x0, x−1, . . .) | xk ∈ R and xk = 0 for |k| � 0} as an infinite
dimensional vector space over R; note that Zι(λ) ⊂ R∞. Let (R∞)∗ := HomR(R∞,R) be its dual
space. For k ∈ Z, we define the linear function ζk ∈ (R∞)∗ by ζk(~x) := xk for ~x = (. . . , x2, x1)⊗ tλ ⊗
(x0, x−1, . . .) ∈ R∞. Set

Σι(λ) := {~x ∈ Zι(λ) | ϕ(~x) ≥ 0 for all ϕ ∈ Ξι[λ]},

where

Ξι[λ] ={γ0p0 + γ0ζ0 − ζ1, γ1p1 + ζ0 − γ1ζ1}
∪ {pk − ζk, γkζk − ζk+1, γk+1pk+1 − pk + ζk − γk+1ζk+1 | k ≥ 1}
∪ {pk + ζk, ζk−1 − γkζk, γk−1pk−1 − pk + γk−1ζk−1 − ζk | k ≤ 0}.

Theorem 3.6 (will be proved in §7.2). The set Σι(λ) is a subcrystal of Im(Ψλ
ι ).

Theorem 3.7 (will be proved in §7.3). The equality Σι(λ) = {~x ∈ Im(Ψλ
ι ) | ~x∗ is extremal} holds.

Therefore, Σι(λ) is isomorphic, as a crystal, to the crystal basis B(λ) of the extremal weight module
V (λ) of extremal weight λ.
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4 Weyl group orbit O satisfying O ∩ (P+ ∪ −P+) = ∅.

4.1 Proof of Theorem 3.1 (1).

Lemma 4.1. An orbit O ∈ O contains λ ∈ P of the form either (i) or (ii) in Theorem 3.1 (1) if and
only if O contains λ′ ∈ P of the form either (a)–(d):

(a) λ′ = kΛ1 − kΛ2 for some k ∈ Z>0;

(b) λ′ = kΛ1 − (a2 − 1)kΛ2 for some k ∈ Z>0;

(c) λ′ = kΛ1 − lΛ2 for some k, l ∈ Z>0 such that l < k < (a1 − 1)l;

(d) λ′ = kΛ1 − lΛ2 for some k, l ∈ Z>0 such that k < l < (a2 − 1)k.

Proof. The “only if” part is obvious. We show the “if” part. If λ′ is of the form (c) (resp., (d)), then
it is obvious that λ′ is of the form (i) (resp., (ii)). Assume that λ′ is of the form (a). If a1 ≥ 3, then
λ′ is of the form (i). If a1 = 2, then we see that a2 ≥ 3 and O contains s1s2λ

′ = s1s2(kΛ1 − kΛ2) =
kΛ1 − (a2 − 1)kΛ2, which is of the form (ii). Assume that λ′ is of the form (b). If a2 ≥ 3, then λ′ is
of the form (ii). If a2 = 2, then we see that a1 ≥ 3 and λ′ = kΛ1 − (a2 − 1)kΛ2 = kΛ1 − kΛ2 is of the
form (i). Thus we have proved the lemma.

For λ ∈ P of the form λ = kΛ1− lΛ2 with k, l ∈ Z, we define the sequence {pm}m∈Z of integers by
the following recursive formulas: For m ≥ 0,

p0 = l, p1 = k, pm+2 =

{
a2pm+1 − pm if m is even,

a1pm+1 − pm if m is odd;
(4.1)

for m < 0,

pm =

{
a2pm+1 − pm+2 if m is even,

a1pm+1 − pm+2 if m is odd.
(4.2)

For m ∈ Z, we set

wm :=


(s2s1)

n if m = 2n with n ∈ Z≥0,

s1(s2s1)
n if m = 2n+ 1 with n ∈ Z≥0,

(s1s2)
−n if m = 2n with n ∈ Z≤0,

s2(s1s2)
−n if m = 2n− 1 with n ∈ Z≤0;

note that W = {wm | m ∈ Z}. By induction on |m|, we can show the following lemma.

Lemma 4.2. For m ∈ Z,

wmλ =

{
pm+1Λ1 − pmΛ2 if m is even,

−pmΛ1 + pm+1Λ2 if m is odd.
(4.3)

Corollary 4.3. Let λ = kΛ1− lΛ2 ∈ P be an integral weight. The Weyl group orbit Wλ ∈ O satisfies
condition (2.1) if and only if pm > 0 for all m ∈ Z or pm < 0 for all m ∈ Z.

Lemma 4.4. Let λ = kΛ1 − lΛ2 ∈ P .

(1) If there exists n′ ∈ Z≥0 such that 0 < pn′ < pn′+1, then 0 < pn < pn+1 for all n ≥ n′.

(2) If there exists n′ ∈ Z≤1 such that 0 < pn′ < pn′−1, then 0 < pn < pn−1 for all n ≤ n′.
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Proof. We give a proof only for part (1); the proof for part (2) is similar. We proceed by induction
on n. The assertion is trivial when n = n′. Assume that n > n′. We set

a′ :=

{
a1 if n is even,

a2 if n is odd;

note that pn+1 = a′pn − pn−1. Then we compute

pn+1 − pn = (a′pn − pn−1)− pn = (a′ − 1)(pn − pn−1) + (a′ − 2)pn−1.

Because a′ ≥ 2, and pn > pn−1 > 0 by the induction hypothesis, we obtain pn+1 > pn as desired.

Proposition 4.5. Let λ = kΛ1 − lΛ2 ∈ P with k, l > 0. If pm 6= pm+1 for any m ∈ Z, then the
following are equivalent.

(1) The Weyl group orbit Wλ satisfies condition (2.1), or equivalently, pm > 0 for all m ∈ Z by
Corollary 4.3 and the assumption that k, l > 0.

(2) There exists an element λ′ = k′Λ1 − l′Λ2 in Wλ satisfying the conditions that k′, l′ ∈ Z>0, and
l′ < k′ < (a1 − 1)l′ or k′ < l′ < (a2 − 1)k′.

Proof. (1) ⇒ (2): Since pm is a positive integer for every m ∈ Z by the assumption in (1), and since
pm 6= pm+1 for any m ∈ Z by the assumption, there exists n ∈ Z such that pn−1 > pn < pn+1. If n
is even, then we have (a1 − 1)pn − pn+1 = pn−1 − pn > 0 by (4.1) and (4.2). Hence, λ′ := wnλ =
pn+1Λ1 − pnΛ2 satisfies the condition pn < pn+1 < (a1 − 1)pn. Similarly, if n is odd, then we have
(a2 − 1)pn − pn−1 = pn+1 − pn > 0 by (4.1) and (4.2). Hence, λ′ := wn−1λ = pnΛ1 − pn−1Λ2 satisfies
the condition pn < pn−1 < (a2 − 1)pn.

(2) ⇒ (1): Assume that Wλ contains an element λ′ of the form λ′ = k′Λ1 − l′Λ2 ∈ Wλ with
k′, l′ ∈ Z>0 such that l′ < k′ < (a1−1)l′ (resp., k′ < l′ < (a2−1)k′). We define the sequence {p′m}m∈Z
for λ′ in the same manner as (4.1) and (4.2):

p′0 = l′, p′1 = k′, p′m+2 =

{
a2p

′
m+1 − p′m if m is even,

a1p
′
m+1 − p′m if m is odd.

Since l′ < k′ < (a1 − 1)l′ (resp., k′ < l′ < (a2 − 1)k′), it is easy to check that p′−1 > p′0 < p′1 (resp.,
p′0 > p′1 < p′2). By Lemma 4.4, we obtain p′m > 0 for all m ∈ Z. Hence, we see from Corollary 4.3 that
Wλ′ =Wλ satisfies condition (2.1). Thus, we have proved the proposition.

Remark 4.6. By Lemma 4.4 and the proof of Proposition 4.5, we see that if λ is of the form (c)
(resp., (d)) in Lemma 4.1, then

· · · > p−1 > p0 = l < p1 = k < p2 < · · ·
(resp., · · · > p−1 > p0 = l > p1 = k < p2 < · · · ),

where the sequence {pm}m∈Z is defined by the recursive formulas (4.1) and (4.2) for λ.

Proof of Theorem 3.1 (1). By Lemma 4.1, it suffices to show that O satisfies condition (2.1) if and
only if O contains λ ∈ P of the form either (a)–(d) in Lemma 4.1.

First, we prove the “if” part. We know from [16, Proposition 3.1.1] that if µ = Λ1 − Λ2, then
Wµ satisfies condition (2.1). Hence, W (kµ) also satisfies condition (2.1) for every k ∈ Z\{0}. Since
s1(kΛ1− (a2− 1)kΛ2) = −kΛ1+ kΛ2 = −kµ, we see that for λ of the form (b), Wλ satisfies condition
(2.1). Also, we see from (2) ⇒ (1) in Proposition 4.5 that for λ of the form (c) or (d), Wλ satisfies
condition (2.1). Thus we have proved the “if” part.

13



Next, we prove the “only if” part. Assume that O ∈ O satisfies condition (2.1). By Lemma 4.2,
we see that O contains λ = kΛ1 − lΛ2 such that k, l > 0. Then we define the sequence {pm}m∈Z by
the recursive formulas (4.1) and (4.2) for this λ. If pm = pm+1 for some m ∈ Z, we see by Lemma
4.2 that O =Wλ contains pmΛ1 − pmΛ2 or −pmΛ1 + pmΛ2 = s1(pmΛ1 − (a2 − 1)pmΛ2). Hence, Wλ
contains an integral weight of the form either (a) or (b). If pm 6= pm+1 for any m ∈ Z, then we see
from (1) ⇒ (2) in Proposition 4.5 that O = Wλ contains an integral weight of the form (c) or (d).
Thus we have proved Theorem 3.1 (1).

4.2 Proofs of Theorem 3.1 (2) and (3).

We give a proof only for part (3); the proof for part (2) is similar. For µ = kΛ1 − lΛ2 ∈ P , we define
the sequence {pµm}m∈Z of integers by the following recursive formulas: for m ≥ 0,

pµ0 := l, pµ1 := k, pµm+2 :=

{
a2p

µ
m+1 − p

µ
m if m is even,

a1p
µ
m+1 − p

µ
m if m is odd;

(4.4)

for m < 0,

pµm =

{
a2p

µ
m+1 − p

µ
m+2 if m is even,

a1p
µ
m+1 − p

µ
m+2 if m is odd;

(4.5)

note that for m ∈ Z,

wmµ =

{
pµm+1Λ1 − pµmΛ2 if m is even,

−pµmΛ1 + pµm+1Λ2 if m is odd.
(4.6)

Lemma 4.7. Assume that a1 ≥ 5 and a2 = 1. Let µ ∈ P .
(1) If there exists n ∈ Z such that 0 < pµ2n ≤ p

µ
2n+2, then 0 < pµ2m ≤ p

µ
2m+2 for all m ≥ n.

(2) If there exists n ∈ Z such that 0 < pµ2n ≤ p
µ
2n−2, then 0 < pµ2m ≤ p

µ
2m−2 for all m ≤ n.

Proof. We give a proof only for part (1); the proof for part (2) is similar. We proceed by induction
on m. If m = n, then the assertion is trivial. Assume that m > n. By (4.4) and (4.5), we have
pµ2m+2 − p

µ
2m = (a1 − 3)(pµ2m − p

µ
2m−2) + (a1 − 4)pµ2m−2. Since p

µ
2m − p

µ
2m−2 ≥ 0 and pµ2m−2 > 0 by the

induction hypothesis, we obtain pµ2m+2 − p
µ
2m > 0.

Proof of Theorem 3.1 (3). Assume that O ∈ O satisfies condition (2.1). We can take µ = kΛ1− lΛ2 ∈
O such that k, l > 0. Then we see by the assumption and (4.6) that pµm > 0 for all m ∈ Z. Hence it
follows from Lemma 4.7 that there exists n ∈ Z such that

· · · ≥ pµ2n−4 ≥ p
µ
2n−2 ≥ p

µ
2n ≤ p

µ
2n+2 ≤ p

µ
2n+4 ≤ · · · . (4.7)

By (4.4) and (4.5), we have pµ2n−2− p
µ
2n = (a1− 2)pµ2n− p

µ
2n+1 and pµ2n+2− p

µ
2n = pµ2n+1− 2pµ2n. Hence

we see by (4.7) that 2pµ2n ≤ pµ2n+1 ≤ (a1 − 2)pµ2n. Then, λ := w2nµ = pµ2n+1Λ1 − pµ2nΛ2 ∈ Wµ = O
satisfies the desired condition.

Let λ = k1Λ1−k2Λ2 for some k1, k2 ∈ Z>0 such that 2k2 ≤ k1 ≤ (a1−2)k2; we show that O :=Wλ
satisfies condition (2.1). By (4.6), it suffices to show that pλm > 0 for all m ∈ Z. By (4.4), (4.5), and
the assumption that 2k2 ≤ k1 ≤ (a1 − 2)k2, we obtain pλ2 − pλ0 = pλ1 − 2pλ0 = k1 − 2k2 ≥ 0 and
pλ−2 − pλ0 = (a1 − 2)pλ0 − pλ1 = (a1 − 2)k2 − k1 ≥ 0. Hence we see by Lemma 4.7 that pλ2m > 0 for all
m ∈ Z. Note that pλ2m−1 = pλ2m+2 + pλ2m by (4.4) and (4.5). Since pλ2m, p

λ
2m+2 > 0 as seen above, we

get pλ2m−1 = pλ2m+2 + pλ2m > 0 for all m ∈ Z. Thus we have proved Theorem 3.1 (3).

Remark 4.8. By the argument above, we see that if λ = k1Λ1− k2Λ2 satisfies 2k2 ≤ k1 ≤ (a1− 2)k2,
then pλ2m < pλ2m+1 for all m ∈ Z, and

· · · ≥ pλ−2 ≥ pλ0 = k2 ≤ pλ2 ≤ pλ4 ≤ · · · .

In particular, we have pλ0 ≤ pλn for all n ∈ Z.

14



5 Connectedness of the crystals of LS paths.

Throughout this section, we assume that λ = k1Λ1 − k2Λ2 is of the form mentioned in Theorem 3.1.
Theorem 3.2 is a consequence of the following three propositions.

Proposition 5.1 (will be proved in §5.2). If k1 = 1 or k2 = 1, then the crystal graph of B(λ) is
connected.

Proposition 5.2 (will be proved in §5.3). Assume that k1 and k2 are relatively prime. If k1 6= 1 and
k2 6= 1, then the crystal graph of B(λ) has infinitely many connected components.

Proposition 5.3 (will be proved in §5.4). If k1 and k2 are not relatively prime, then the crystal graph
of B(λ) has infinitely many connected components.

5.1 Hasse diagram of Wλ.

We draw the Hasse diagram of Wλ (in the ordering of Definition 2.9). Recall that pm > 0 for all
m ∈ Z (by Corollary 4.3).

Proposition 5.4 (cf. [16, Proposition 3.2.5]). The Hasse diagram of Wλ is

· · · α1←− w2λ
α2←− w1λ

α1←− w0λ
α2←− w−1λ

α1←− w−2λ
α2←− · · · .

Proof. For m ∈ Z, we set

i :=

{
2 if m is even,

1 if m is odd.

Since siwmλ = wm−1λ and 〈wmλ, α∨
i 〉 = −pm < 0 for every m ∈ Z by Lemma 4.2, we have wmλ >

wm−1λ. Hence, we have

· · · > w2λ > w1λ > w0λ > w−1λ > w−2λ > · · · ; (5.1)

it is obvious from (5.1) that dist(wmλ,wm−1λ) = 1. Thus, we have proved the proposition.

For each ν ∈ Wλ, there exists unique m ∈ Z such that ν = wmλ. Then we define z(ν) := m. By
the definition of LS paths and Proposition 5.4, we have z(ν1) > z(ν2) > · · · > z(νu) for

π = (ν1, ν2, . . . , νu;σ0, σ1, . . . , σu) ∈ B(λ).

We define the subset B1(λ) of B(λ) by

B1(λ) := {(ν1, . . . , νu;σ0, . . . , σu) ∈ B(λ) | z(νv)− z(νv+1) = 1 for v = 1, . . . , u− 1}.

Remark 5.5. Let π = (ν1, ν2, . . . , νs;σ0, σ1, . . . , σs) ∈ B1(λ). By Lemma 4.2, we see that the function
Hπ
i (t) for i ∈ I attains its minimal and maximal values at t = σu, u = 0, 1, . . . , s, alternately. Namely,

if Hπ
i (t) for i ∈ I attains a minimal (resp., maximal) value at t = σv, then H

π
i (t) attains a minimal

(resp., maximal) value at t = σu for all u = 0, 1, . . . , s such that u ≡ v mod 2.

Proposition 5.6. Let π ∈ B1(λ), and i ∈ I. If ẽiπ 6= 0, then ẽiπ ∈ B1(λ). If f̃iπ 6= 0, then
f̃iπ ∈ B1(λ). Therefore, B1(λ) is a subcrystal of B(λ).

Proof. Let π = (ν1, . . . , νu;σ0, . . . , σu) ∈ B1(λ) with u ≥ 1. We show that ẽiπ ∈ B1(λ) if ẽiπ 6= 0. Take
t1 and t0 as (2.8) and (2.9), respectively; note that t1 = σn for some 1 ≤ n ≤ u. Since 〈νn, α∨

i 〉 < 0
by the definition of t1, we see from Lemma 4.2 that z(νn) is odd if i = 1 and even if i = 2. Hence we
have

siνn = siwz(νn)λ = wz(νn)−1λ. (5.2)
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If u = 1, then n = 1. By (5.2),

ẽiπ =

{
(ν1, wz(ν1)−1λ; 0, t0, 1) if 0 < t0,

(wz(ν1)−1λ; 0, 1) if 0 = t0,

and hence ẽiπ ∈ B1(λ). Assume that u ≥ 2. If n ≤ u−1, then it follows from the definition if B1(λ) that
νn+1 = wz(νn+1)λ = wz(νn)−1λ. By (5.2), we obtain siνn = νn+1. If n ≥ 2, then we see by Remark 5.5
that Hπ

i (σn−2) attains a minimal value. By the definition of t1, we have Hπ
i (σn−2) > Hπ

i (σn). Since
Hπ
i (σn),H

π
i (σn−2) ∈ Z by (2.7), we obtain Hπ

i (σn−2) ≥ Hπ
i (σn) + 1. Hence we see by Remark 5.5

that σn−1 < t0. Therefore,

ẽiπ =


(ν1, . . . , νu;σ0, t0, σ2, . . . , σu) if n = 1 and 0 < t0,

(ν2, . . . , νu;σ0, σ2, . . . , σu) if n = 1 and 0 = t0,

(ν1, . . . , νu;σ0, . . . , σn−1, t0, σn+1, . . . , σu) if 2 ≤ n ≤ u− 1,

(ν1, . . . , νu, wz(νu)−1λ;σ0, . . . , σu−1, t0, σu) if n = u,

and hence ẽiπ ∈ B1(λ). Similarly, we can show that f̃iπ ∈ B1(λ) if f̃iπ 6= 0. Thus we have proved the
proposition.

Remark 5.7. The element πλ = (λ; 0, 1) is contained in B1(λ). Hence, by Proposition 5.6, it follows
that B0(λ) ⊂ B1(λ).

5.2 Proof of Proposition 5.1.

Lemma 5.8 (cf. [16, Lemma 4.1.1, Theorem 4.1.2]). Assume that λ = k1Λ1 − k2Λ2 ∈ P is as in
Theorem 3.1. In addition, assume that k1 and k2 are relatively prime.

(1) For every m ∈ Z, the numbers pm and pm+1 (defined by (3.1) and (3.2) for λ) are relatively prime.

(2) Let 0 < σ < 1 be a rational number, and let µ, ν ∈ Wλ be such that µ > ν. If µ = µ0 > µ1 >
· · · > µs = ν is a σ-chain for (µ, ν), then s = 1.

(3) An LS path π of shape λ is of the form

(wm+s−1λ, . . . , wm+1λ,wmλ;σ0, σ1, . . . , σs),

where m ∈ Z, s ≥ 0, and 0 = σ0 < σ1 < · · · < σs = 1 satisfy the condition that pm+s−vσv ∈ Z for
1 ≤ v ≤ s− 1.

Proof. Part (1) can be easily shown by induction on |m|.
Let us show part (2). Suppose, for a contradiction, that s ≥ 2. Since dist(µv−1, µv) = 1 for every

v = 1, 2, . . . , s by the definition of a σ-chain, it follows from Proposition 5.4 that there exists m ∈ Z
such that µv = wm−vλ for v = 0, 1, . . . , s. We set

i :=

{
2 if m is even,

1 if m is odd,
j :=

{
1 if m is even,

2 if m is odd.

By Lemma 4.2, we see that 〈wmλ, α∨
i 〉 = −pm, 〈wm−1λ, α

∨
j 〉 = −pm−1. Since −pm and −pm−1 are

relatively prime by part (1), there does not exist 0 < σ < 1 such that σ〈wmλ, α∨
i 〉 = −σpm ∈ Z<0 and

σ〈wm−1λ, α
∨
j 〉 = −σpm−1 ∈ Z<0. This contradicts the assumption that the sequence is a σ-chain.

Part (3) follows immediately from the definition of an LS path and part (2).

Remark 5.9. Assume that k1 and k2 are relatively prime. We see from Lemma 5.8 (3) that B1(λ) =
B(λ). In particular, we see from Remark 5.5 that for π = (ν1, ν2, . . . , νs;σ0, σ1, . . . , σs) ∈ B(λ), the
function Hπ

i (t) for i ∈ I attains its minimal and maximal values at t = σu, u = 0, 1, . . . , s, alternately.
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In the remainder of this subsection, we give a proof of Proposition 5.1 for the case that k2 = 1; the
proof for the case that k1 = 1 is similar. Our proof is essentially the same as [16, Proof of Theorem
3.2.1].

Proposition 5.10. Let π ∈ B(λ), and write it as (see Lemma 5.8 (3)):

π = (wmλ,wm−1λ, . . . , wn+1λ,wnλ;σ0, . . . , σm−n+1) (5.3)

for some n ≤ m and 0 = σ0 < · · · < σm−n+1 = 1. Then, either 0 ≤ n ≤ m or n ≤ m ≤ −1 holds.

Proof. Suppose, for a contradiction, that m ≥ 0 and n ≤ −1. By the definition of an LS path,
there exists a σm+1-chain for (λ,w−1λ). It follows from Proposition 5.4 that dist(λ,w−1λ) = 1
and s2λ = w−1λ. Thus, we obtain 〈λ, α∨

2 〉 = −k2 = −1 and 0 < σm+1 < 1, which contradicts
σm+1〈λ, α∨

2 〉 ∈ Z.

Theorem 5.11. For each π ∈ B(λ), π = f̃ir · · · f̃i1πλ or π = ẽir · · · ẽi1πλ for some i1, . . . , ir ∈ I, where
πλ := (λ; 0, 1). In particular, the crystal graph of B(λ) is connected (which proves Proposition 5.1).

Proof. Write π ∈ B(λ) as (5.3). By Proposition 5.10, either 0 ≤ n ≤ m or n ≤ m ≤ −1 holds. We
show by induction on m that if 0 ≤ n ≤ m, then π = f̃ir · · · f̃i1πλ for some i1, . . . , ir ∈ I. If m = 0,
then n = 0, and hence π = πλ. Thus the claim is obvious. Assume that m > 0. We set

i :=

{
2 if m is even,

1 if m is odd;

note that 〈wmλ, α∨
i 〉 < 0 and siwmλ = wm−1λ by Proposition 5.4. By Lemma 2.14, we see that

ẽmax
i π ∈ B(λ) satisfies ι(ẽmax

i π) = siι(π) = siwmλ = wm−1λ. Hence, by the induction hypothesis,

ẽmax
i π = f̃ir · · · f̃i1πλ for some i1, . . . , ir ∈ I. Hence, we obtain π = f̃

εi(π)
i f̃ir · · · f̃i1πλ, as desired.

Similarly, we can show that if n ≤ m ≤ −1, then π = ẽir · · · ẽi1πλ for some i1, . . . , ir ∈ I. Thus we
have proved Theorem 5.11.

5.3 Proof of Proposition 5.2.

We give a proof of Proposition 5.2 only for the case that k2 ≤ k1; the proof for the case that k1 ≤ k2 is
similar. It follows from Theorem 3.1 and the assumption of Proposition 5.2 that either (5.4) or (5.5)
holds:

a1, a2 ≥ 2 and 1 < k2 < k1 < (a1 − 1)k2; (5.4)

a1 ≥ 5, a2 = 1 and 2 < 2k2 < k1 < (a1 − 2)k2. (5.5)

There exists a (unique) integer c ∈ {1, 2, . . . , k1 − 1} such that

c

k1
<

1

k2
<
c+ 1

k1
. (5.6)

Then we define the sequence {qm}m∈Z of integers by the following recursive formula:

q0 = 1, q1 = c, qm+2 =

{
a2qm+1 − qm if m is even,

a1qm+1 − qm if m is odd.
(5.7)

Recall that {pm}m∈Z is defined by the recursive formulas (3.1) and (3.2).

Lemma 5.12. It hold that 0 < qm < pm and qmpm+1 − qm+1pm = k1 − k2c for all m ∈ Z. In
particular, we have 0 < qm+1/pm+1 < qm/pm < 1 for all m ∈ Z.
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Proof. Recall that either (5.4) or (5.5) holds.

Case 1. Assume that (5.4) holds. First, let us show that qm > 0 for all m ∈ Z. Since q1 = c ≥
1 = q0, we see by the same argument as Lemma 4.4 (1) that qm+1 ≥ qm for all m ≥ 0; in particular,
qm > 0 for all m ≥ 0. Since k1/k2 < a1 − 1 by (5.4), and c < k1/k2 by (5.6), we see that

q−1 − q0 = (a1 − c)− 1 = (a1 − 1)− c ≥ k1
k2
− k1
k2

= 0,

and hence q−1 ≥ q0. By the same argument as Lemma 4.4 (2), we see that qm−1 ≥ qm for all m ≤ −1;
in particular, qm > 0 for all m ≤ −1.

Next, let us show that qm < pm for all m ∈ Z. If we set dm := pm − qm for m ∈ Z, then we have

d0 = p0 − q0, d1 = p1 − q1, dm+2 =

{
a2dm+1 − dm if m is even,

a1dm+1 − dm if m is odd.

By the same argument as above, it suffices to show that d1 ≥ d0 and d0 ≤ d−1. First, we show that
d1 − d0 = (k1 − c)− (k2 − 1) ≥ 0. Since c < k1/k2 by (5.6), and k2 < k1 by (5.4), we have

(k1 − c)− (k2 − 1) > k1 −
k1
k2
− k2 + 1 = k1

(
1− 1

k2

)
− k2 + 1 > k2

(
1− 1

k2

)
− k2 + 1 = 0.

Next, we show that d−1−d0 = (a1k2−k1−a1+c)−(k2−1) ≥ 0. Note that (5.4) implies (k1+k2)/k2 < a1,
and (5.6) implies (k1 − k2)/k2 < c. Then we compute

(a1k2 − k1 − a1 + c)− (k2 − 1) = a1(k2 − 1)− k1 + c− k2 + 1

>
k1 + k2
k2

(k2 − 1)− k1 +
k1 − k2
k2

− k2 + 1 = −1.

Because d−1 − d0 is an integer, it follows that d−1 ≥ d0.
Finally, the equality qmpm+1 − qm+1pm = k1 − k2c for m ∈ Z can be easily shown by induction on

|m|.

Case 2. Assume that (5.5) holds. First, let us show that qm > 0 for all m ∈ Z. By the
same argument as for pλm in the proof of Theorem 3.1 (3), we see that the assertion follows from
q−2 ≥ q0 ≤ q2. Since k1/k2 > 2 by (5.5), and c > k1/k2 − 1 by (5.6), we see that

q2 − q0 = (c− 1)− 1 = c− 2 >

(
k1
k2
− 1

)
− 2 > 2− 1− 2 = −1.

Because q2− q0 is an integer, we have q2 ≥ q0. Similarly, since k1/k2 < a1− 2 by (5.5), and c < k1/k2
by (5.6), we see that

q−2 − q0 = (a1 − 2)− c > k1
k2
− k1
k2

= 0,

and hence q−2 ≥ q0.
Next, let us show that qm < pm for all m ∈ Z. If we set dm := pm − qm for m ∈ Z, then we have

d0 = p0 − q0, d1 = p1 − q1, dm+2 =

{
a2dm+1 − dm if m is even,

a1dm+1 − dm if m is odd.

By the same argument as above, it suffices to show that d2 ≥ d0 ≤ d−2. We first show that d2 − d0 =
k1 − 2k2 − c+ 2 ≥ 0. Since c < k1/k2 by (5.6), and 2k2 < k1 by (5.5), we have

k1 − 2k2 − c+ 2 > k1 − 2k2 −
k1
k2

+ 2 = k1

(
1− 1

k2

)
− 2k2 + 2 > 2k2

(
1− 1

k2

)
− 2k2 + 2 = 0.
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Hence we obtain d2 ≥ d0. We next show that d−2 − d0 ≥ 0. Since (k1 + 2k2)/k2 < a1 by (5.5), and
(k1 − k2)/k2 < c by (5.6), we have

d−2 − d0 = (a1 − 2)k2 − k1 − a1 + 2 + c

= a1(k2 − 1)− 2k2 − k1 + 2 + c

>
k1 + 2k2

k2
(k2 − 1)− 2k2 − k1 + 2 +

k1 − k2
k2

= −1.

Because d−2 − d0 is an integer, it follows that d−2 ≥ d0.
Finally, the equality qmpm+1 − qm+1pm = k1 − k2c for m ∈ Z can be easily shown by induction on

|m|.

For m ∈ Z and n ∈ Z≥1, we say that π = (ν1, ν2, . . . νu;σ0, σ1, . . . , σu) ∈ B(λ) satisfies the
condition C(m,n) if u ≥ 2n+ 1, and there exists v ∈ Z such that n < v < u− n+ 1, νv = wmλ, and
σv+s = qm−s/pm−s for s = −n,−n+1, . . . , n− 1; in this case, we see from Lemma 5.8 (3), along with
νv = wmλ, that

νv+s = wm−sλ for v + s = 1, 2, . . . , u. (5.8)

Thus, π is of the form

π =

(
wm+v−1λ,wm+v−2λ, . . . , wm+v−uλ;

σ0, σ1, . . . ,σv−n−1,
qm+n

pm+n
,
qm+n−1

pm+n−1
, . . . ,

qm−n+1

pm−n+1
, σv+n, . . . , σu

)
.

We set

j :=

{
2 if m is even,

1 if m is odd,
j′ :=

{
1 if m is even,

2 if m is odd;
(5.9)

note that

〈wm+v−hλ, α
∨
j 〉 =

{
−pm+v−h if h ≡ v mod 2,

pm+v−h+1 if h 6≡ v mod 2
(5.10)

by (5.8) and Lemma 4.2.

Lemma 5.13. If π = (wm+v−1λ,wm+v−2λ, . . . , wm+v−uλ;σ0, σ1, . . . , σu) ∈ B(λ) satisfies the condition
C(m,n), then for each r = v − n, v − n+ 1, . . . , v + n− 1,

(1) Hπ
j (σr) = Hπ

j (σv) ∈ Z if r ≡ v mod 2,

(2) Hπ
j (σv) < Hπ

j (σr) < Hπ
j (σv) + 1 if r 6≡ v mod 2;

in particular, {Hπ
j (t) | σv−n ≤ t ≤ σv+n−1} ⊂ [Hπ

j (σv),H
π
j (σv)+1), where [a, b) := {t ∈ R | a ≤ t < b}

for a, b ∈ R.

Proof. Assume that π = (wm+v−1λ,wm+v−2λ, . . . , wm+v−uλ;σ0, σ1, . . . , σu) ∈ B(λ) satisfies the con-
dition C(m,n). For h = v − n+ 1, v − n+ 2, . . . , v + n− 1, we see that

a(h) := Hπ
j (σh)−Hπ

j (σh−1)

=
(
Hπ
j (σh−1) + 〈wm+v−hλ, α

∨
j 〉(σh − σh−1)

)
−Hπ

j (σh−1)

= 〈wm+v−hλ, α
∨
j 〉(σh − σh−1).
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By (5.10) and the assumption that π satisfies the condition C(m,n), we obtain

a(h) =


−pm+v−h

(
qm+v−h
pm+v−h

− qm+v−h+1

pm+v−h+1

)
if h ≡ v mod 2,

pm+v−h+1

(
qm+v−h
pm+v−h

− qm+v−h+1

pm+v−h+1

)
if h 6≡ v mod 2.

(5.11)

We see from Lemma 5.12 that

pz

(
qz
pz
− qz+1

pz+1

)
=
k1 − k2c
pz+1

and pz+1

(
qz
pz
− qz+1

pz+1

)
=
k1 − k2c

pz
(5.12)

for each z ∈ Z. Here we recall form Remark 4.6 that pz ≥ p0 = k2 (see also Remark 4.8). By (5.6),
we have

k1 − k2c
pz

≤ k1 − k2c
p0

< 1 (5.13)

for all z ∈ Z. Combining (5.11)–(5.13), we deduce that

0 < a(h) < 1 if h 6≡ v mod 2, and − 1 < a(h) < 0 if h ≡ v mod 2. (5.14)

Let M := {x ∈ Z | v − n ≤ x ≤ v + n − 1}; note that {v − 1, v} ⊂ M for all n ∈ Z≥1. Let
r ∈M be such that r ≡ v mod 2. We see from Remark 5.9 and (2.7) that Hπ

j (σr) ∈ Z. If r + 2 ∈M
(resp., r − 2 ∈ M), then we see by (5.14) that |Hπ

j (σr+2) − Hπ
j (σr)| = |a(r + 1) + a(r + 2)| < 1

(resp., |Hπ
j (σr)−Hπ

j (σr−2)| = |a(r− 1)+ a(r)| < 1). We see by (2.7) that Hπ
j (σr) = Hπ

j (σr+2) (resp.,
Hπ
j (σr) = Hπ

j (σr−2)). Hence, we obtain H
π
j (σr) = Hπ

j (σv) for all r ∈M such that r ≡ v mod 2. Thus
we have shown part (1).

Let r ∈ M be such that r 6≡ v mod 2. If r + 1 ∈ M (resp., r − 1 ∈ M), then we see that
Hπ
j (σr) = Hπ

j (σr+1)− a(r + 1) (resp., Hπ
j (σr) = Hπ

j (σr−1) + a(r)). By part (1), we obtain Hπ
j (σr) =

Hπ
j (σv) − a(r + 1) (resp., Hπ

j (σr) = Hπ
j (σv) + a(r)). We see by (5.14) that Hπ

j (σv) < Hπ
j (σr) <

Hπ
j (σv) + 1 for all r ∈ M such that r 6≡ v mod 2. Thus we have shown part (2), thereby completing

the proof of Lemma 5.13.

Proposition 5.14. Fix n ≥ 1. Assume that π ∈ B(λ) satisfies the condition C(m,n) for some m ∈ Z.
Let i ∈ I. If ẽiπ 6= 0, then ẽiπ satisfies the condition C(m,n) or C(m − 1, n). If f̃iπ 6= 0, then f̃iπ
satisfies the condition C(m,n) or C(m+ 1, n).

Proof. For simplicity, we prove the assertion only for the case of n = 2. Define j and j′ as (5.9).
Now, assume that f̃jπ 6= 0; we show that f̃jπ satisfies the condition C(m, 2). For this, it suffices

to show that (f̃jπ)(t) = π(t) or (f̃jπ)(t) = π(t)− αj for t ∈ (σv−3, σv+2) = {t ∈ R | σv−3 < t < σv+2}.
By Lemma 5.13, we have Hπ

j (σv−2) = Hπ
j (σv), H

π
j (σv−2) < Hπ

j (σv−1) < Hπ
j (σv−2)+1, and Hπ

j (σv) <
Hπ
j (σv+1) < Hπ

j (σv) + 1. Note that there exists σv+1 < t′ ≤ σv+2 such that Hπ
j (σv−2) = Hπ

j (σv) =
Hπ
j (t

′) since 〈νv+2, α
∨
j 〉 < 0 and Hπ

j (σv+2) ∈ Z by Remark 5.9 and (2.7); see Figure 1. Let t0 and t1
be as (2.11) and (2.12), respectively; note that t0 = σs′ for some 0 ≤ s′ ≤ u. By Lemma 5.13 and the
definition of t0, we obtain t0 < σv−3 or σv+2 ≤ t0. Let mπ

j be as (2.6). If u = 5, then we obtain v = 3
since 2 = n < v < u− n+1 = 4. Hence, we see that mπ

j = Hπ
j (σ5), which contradicts the assumption

that f̃jπ 6= 0. Therefore we obtain u ≥ 6. If σv+2 ≤ t0, then it is obvious from the definition of f̃j
that (f̃jπ)(t) = π(t) for t ∈ (σv−3, σv+2). If t0 < σv−3, then Hπ

j (σv−2) > Hπ
j (t0) = mπ

j ∈ Z by the
definition of t0. Note thatH

π
j (σv−2) ∈ Z by (2.7), and henceHπ

j (σv−2) ≥ Hπ
j (t0)+1 = mπ

j +1. Because

Hπ
j (σv−3) > Hπ

j (σv−2) ≥ mπ
j + 1, we see that t1 < σv−3. Therefore we obtain (f̃jπ)(t) = π(t)− αj for

t ∈ (σv−3, σv+2) by the definition of f̃j .
Assume that ẽjπ 6= 0; we show that ẽjπ satisfies the condition C(m, 2) or C(m − 1, 2). Take t1

and t0 as (2.8) and (2.9), respectively; note that t1 = σs′ for some 0 ≤ s′ ≤ u. By the definition
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∨
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⟨νv−1, α
∨
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∨
j ⟩

t′

Figure 1.

of t1 and Lemma 5.13, we obtain t1 < σv−3, σv+2 ≤ t1, or t1 = σv−2. If t1 < σv−3, then it is
obvious by the definition of ẽj that (ẽjπ)(t) = π(t) + αj for t ∈ (σv−3, σv+2), and hence ẽjπ satisfies
the condition C(m, 2). If σv+2 < t1, then Hπ

j (σv+2) > Hπ
j (t1) = mπ

j ∈ Z by the definition of
t1. Note that Hπ

j (σv+2) ∈ Z by (2.7), and hence Hπ
j (σv+2) ≥ Hπ

j (t1) + 1 = mπ
j + 1. Because

Hπ
j (σv+3) > Hπ

j (σv+2) ≥ mπ
j + 1, we see that σv+3 < t0. Therefore we obtain (ẽjπ)(t) = π(t)

for t ∈ (σv−3, σv+2), and hence ẽjπ satisfies the condition C(m, 2). Assume that t1 = σv+2. Since
Hπ
j (σv) = Hπ

j (t
′) > Hπ

j (t1) = mπ
j ∈ Z by the definition of t1, we see that H

π
j (t

′) ≥ Hπ
j (t1)+ 1. Hence,

we obtain t′ ≤ t0. Therefore, we have

ẽjπ =

{
(ν1, . . . , νu, wm−3λ;σ0, . . . , σv+1, t0, 1) if v = u− 2,

(ν1, . . . , νu;σ0, . . . , σv+1, t0, σv+3, . . . , σu) if v < u− 2,

which satisfies the condition C(m, 2). Assume that t1 = σv−2. If v = 3, then it is obvious that
σ0 = σv−3 ≤ t0; note that σv−3 = t0 if and only if Hπ

j (σ1) = −1. If v > 3, then Hπ
j (σv−4) > Hπ

j (t1) =
mπ
j ∈ Z by the definition of t1. Note that H

π
j (σv−4) ∈ Z by (2.7), and hence Hπ

j (σv−4) ≥ Hπ
j (t1)+1 =

mπ
j + 1. Because Hπ

j (σv−3) > Hπ
j (σv−4) ≥ mπ

j + 1, we see that σv−3 < t0. Therefore we see that

ẽjπ =

{
(ν2, ν3, . . . , νu;σ0, σ2, σ3, . . . , σu) if v = 3 and Hπ

j (σ1) = −1,
(ν1, . . . , νu;σ0, . . . , σv−3, t0, σv−1, . . . , σu) otherwise.

Also, we see by Hπ
j (σv−2) = Hπ

j (t
′) and the definition of t1 that t′ = σv+2. Since H

π
j (σv) = Hπ

j (σv+2),
we have

a(v + 1) = Hπ
j (σv+1)−Hπ

j (σv+2). (5.15)

Here we can rewrite (5.15) as

pm

(
qm−1

pm−1
− qm
pm

)
= pm−2

(
σv+2 −

qm−1

pm−1

)
.

By (3.1), (3.2), and (5.7), we see that

σv+2 =
1

pm−2

(
(pm + pm−2)qm−1

pm−1
− qm

)
=
qm−2

pm−2
.

Since σv+2 = qm−2/pm−2 < 1 by Lemma 5.12, we obtain v + 2 < u. Write ẽjπ as:

ẽjπ = (ν ′1, . . . , ν
′
u′ ;σ

′
0, . . . , σ

′
u′).
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If v = 3 and Hπ
j (σ1) = −1, then u′ = u − 1, ν ′s = νs+1 for s = 1, . . . u′, and σ′0 = 0, σ′s = σs+1

for s = 1, . . . u′. We set v′ := v. Then we obtain 2 < v′ < u′ − 1, ν ′v′ = wm−1λ, and σ′v′+s =
q(m−1)−s/p(m−1)−s for s = −2,−1, 0, 1. Hence we see that ẽjπ satisfies the condition C(m − 1, 2). If
v > 3, or v = 3 and Hπ

j (σ1) 6= −1, then u′ = u, ν ′s = νs for s = 1, . . . u′, and σ′v−2 = t0, σ
′
s = σs for

s = 1, . . . , v−3, v−1, . . . , u′. Hence, we see that ẽjπ satisfies the condition C(m−1, 2) with v′ := v+1.
Similarly, we can show that if ẽj′π 6= 0 (resp., f̃j′π 6= 0), then it satisfies the condition C(m, 2)

(resp., C(m, 2) or C(m+ 1, 2)). Thus we have proved Proposition 5.14.

Now, for each n ∈ Z≥1, we define

ν(n) : wnλ, . . . , w1λ,w0λ,w−1λ, . . . , w−nλ,

σ(n) : 0 <
qn
pn

< · · · < q1
p1

<
q0
p0

<
q−1

p−1
< · · · < q−n+1

p−n+1
< 1;

the inequalities in σ(n) follow from Lemma 5.12. We see that π(n) := (ν(n), σ(n)) is an LS path of
shape λ satisfying the condition C(0, n). We denote by B(λ;π(n)) the connected component of B(λ)
containing π(n); note that an element of B(λ;π(n)) satisfies the condition C(m,n) for some m ∈ Z by
Proposition 5.14.

Corollary 5.15. If n 6= n′, then B(λ;π(n)) ∩ B(λ;π(n′)) = ∅. In particular, the crystal graph of B(λ)
has infinitely many connected components (which proves Proposition 5.2).

Proof. We may assume that n′ < n. Suppose, for a contradiction, that B(λ;π(n)) = B(λ;π(n′)).
For π = (ν1, . . . , νu;σ0, . . . , σu) ∈ B(λ), we define `(π) := u. By Proposition 5.14, we see that if
π ∈ B(λ;π(n)), then `(π) ≥ 2n+1. Hence, we have `(π(n

′)) ≥ 2n+1 since π(n
′) ∈ B(λ;π(n)). However,

we have `(π(n
′)) = 2n′ + 1 < 2n + 1 by the definition of π(n

′) and n′ < n, which is a contradiction.
Thus we have proved Corollary 5.15.

5.4 Proof of Proposition 5.3.

Assume that k1 and k2 are not relatively prime. Let d ≥ 2 be the greatest common divisor of k1 and
k2. We set k′1 := k1/d, k

′
2 := k2/d, and λ

′ := (1/d)λ = k′1Λ1−k′2Λ2 ∈ P . Define the sequence {pm}m∈Z
by (3.1) and (3.2) for λ′:

p0 = k′2, p1 = k′1, pm+2 =

{
a2pm+1 − pm if m is even,

a1pm+1 − pm if m is odd.

Then we see from Lemma 5.8 (1) that pm and pm+1 are relatively prime for all m ∈ Z. Note that

wmλ =

{
dpm+1Λ1 − dpmΛ2 if m is even,

−dpmΛ1 + dpm+1Λ2 if m is odd,
(5.16)

for m ∈ Z.
We first show that the proof of Proposition 5.3 is reduced to the case that d = 2, i.e., λ = 2λ′. For

this purpose, we recall the concatenation of LS paths (in a general setting). Let µ ∈ P be an arbitrary
integral weight, and m ∈ Z≥1. For π1, π2, . . . , πm ∈ B(µ), we define a concatenation π1 ∗ π2 ∗ · · · ∗ πm
of them by:

(π1 ∗ π2 ∗ · · · ∗ πm)(t) =
k−1∑
l=1

πl(1) + πk(mt− k + 1)

for
k − 1

m
≤ t ≤ k

m
, 1 ≤ k ≤ m,
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and set
B(µ)∗m = B(µ) ∗ · · · ∗ B(µ)︸ ︷︷ ︸

m times

:= {π1 ∗ · · · ∗ πm | πk ∈ B(µ), 1 ≤ k ≤ m}.

We endow B(µ)∗m with a crystal structure as follows. Let π = π1 ∗ · · · ∗ πm ∈ B(µ)∗m. First, we
define wt(π) := π(1) = π1(1) + · · · + πm(1); notice that π(1) ∈ P since πk(1) ∈ P for all 1 ≤ k ≤ m.
Next, for i ∈ I, we define ẽiπ and f̃iπ in exactly the same way as for elements in B(µ) (see §2.5);
notice that the condition (2.7) holds for every element in B(µ)∗m. We deduce that if ẽiπ 6= 0,
then ẽiπ = π1 ∗ · · · ∗ ẽiπk ∗ · · · ∗ πm for some 1 ≤ k ≤ m; the same holds also for f̃i. Therefore
the set B(µ)∗m ∪ {0} is stable under the action of ẽi and f̃i for i ∈ I. Finally, for i ∈ I, we set
εi(π) := max{n ≥ 0 | ẽni π 6= 0} and ϕi(π) := max{n ≥ 0 | f̃ni π 6= 0}. We know the following
proposition from [10, §2].

Proposition 5.16. Let µ ∈ P be an arbitrary integral weight, and m ∈ Z≥1. The set B(µ)∗m together
with the maps wt : B(µ)∗m → P , ẽi, f̃i : B(µ)∗m → B(µ)∗m ∪ {0}, i ∈ I, and εi, ϕi : B(µ)∗m → Z≥0,
i ∈ I, is a crystal. Moreover, the map

B(µ)∗m → B(µ)⊗m, π1 ∗ · · · ∗ πm 7→ π1 ⊗ · · · ⊗ πm,

is an isomorphism of crystals.

Let π = (ν1, ν2, . . . , νu;σ0, σ1, . . . , σu) ∈ B(mµ). For each 1 ≤ k ≤ m, let s, s′ be such that
σs−1 ≤ (k − 1)/m < σs and σs′−1 < k/m ≤ σs′ , respectively. We set

πk :=

(
1

m
νs,

1

m
νs+1, . . . ,

1

m
νs′ ; 0,mσs − k + 1,mσs+1 − k + 1, . . . ,mσs′−1 − k + 1, 1

)
.

By the definition of LS paths and the assumption that π ∈ B(mµ), we deduce that πk ∈ B(µ).
Moreover, it is easy to check that π = π1 ∗ · · · ∗ πm since

πk(t) = π

(
1

m
t+

k − 1

m

)
− π

(
k − 1

m

)
for t ∈ [0, 1].

Therefore, it follows that B(mµ) is contained in B(µ)∗m, and hence is a subcrystal of B(µ)∗m ∼= B(µ)⊗m
consisting of the elements π1 ⊗ π2 ⊗ · · · ⊗ πm such that κ(πp) ≥ ι(πp+1) for all 1 ≤ p ≤ m− 1.

Now, we return to the proof of Proposition 5.3. The map

B(λ′)⊗d → B(λ′)⊗2, π1 ⊗ π2 ⊗ · · · ⊗ πd 7→ π1 ⊗ π2,

induces a surjective map Φ from B(dλ′) ⊂ B(λ′)∗d ∼= B(λ′)⊗d to B(2λ′) ⊂ B(λ′)∗2 ∼= B(λ′)⊗2; note that
Φ is not necessarily a morphism of crystals. It follows that the inverse image Φ−1(C) ⊂ B(dλ′) of a
connected component C of B(2λ′) is a subcrystal of B(dλ′). This shows that if B(2λ′) has infinitely
many connected components, then so does B(dλ′). Therefore our proof of Proposition 5.3 is reduced
to the case that d = 2, i.e., λ = 2λ′. We can prove Proposition 5.3 with d = 2 in exactly the same way
as the main result in [14], which proved that the crystal graph of B(2Λ1 − 2Λ2) has infinitely many
connected components. However, since [14] is written in Japanese, we write the proof also here for
completion.

Lemma 5.17. Assume that d = 2. Let m,n ∈ Z be such that m − n ≥ 2, and let 0 < σ < 1 be a
rational number. There exists a σ-chain for (wmλ,wnλ) if and only if σ = 1/2.

Proof. Assume that there exists a σ-chain wmλ = ν0 > ν1 > · · · > νu = wnλ for (wmλ,wnλ). We see
from Proposition 5.4 that νv = wm−vλ for v = 0, 1, . . . ,m− n. We set

i :=

{
2 if m is even,

1 if m is odd,
j :=

{
1 if m is even,

2 if m is odd.
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By (5.16), it follows that σ〈wmλ, α∨
i 〉 = −2σpm and σ〈wm−1λ, α

∨
j 〉 = −2σpm−1. By the definition of

a σ-chain and the assumption that m− n ≥ 2, both −2σpm and −2σpm−1 are integers. Since pm and
pm−1 are relatively prime, we obtain σ = 1/2.

Conversely, we assume that σ = 1/2. By Proposition 5.4 and (5.16), it is obvious that the sequence
wmλ,wm−1λ, . . . , wn+1λ,wnλ becomes a σ-chain for (wmλ,wnλ).

Lemma 5.18. Assume that d = 2. Then π(1/2) ∈ P for every π ∈ B(λ).

Proof. Let π = (ν1, . . . , νs−1, νs, . . . , νu;σ0, . . . , σs−1, σs, . . . , σu) ∈ B(λ), and assume that σs−1 <
1/2 ≤ σs. Then we compute

π

(
1

2

)
=

s−1∑
v=1

(σv − σv−1)νv +

(
1

2
− σs−1

)
νs

=
s−1∑
v=1

σv(νv − νv+1) +
1

2
νs.

Since there exists a σv-chain for (νv, νv+1) for each 1 ≤ v ≤ s−1, we deduce that
∑s−1

v=1 σv(νv−νv+1) ∈
P (see [10, §4]). Moreover, (5.16) implies (1/2)νs ∈ P . Thus we obtain π(1/2) ∈ P , as desired.

For r ≥ 2, we set

Br(λ) := {π = (ν1, . . . , νu;σ0, . . . , σu) ∈ B(λ) | π satisfies the condition (I) or (II)},

where

(I) : There exists 1 ≤ s ≤ u− 1 such that z(νs)− z(νs+1) = 2r − 2;

(II) : There exists 1 ≤ s ≤ u− 1 such that z(νs)− z(νs+1) = 2r − 1.

Remark 5.19. Assume that d = 2. Let (ν1, . . . , νu;σ0, . . . , σu) ∈ B(λ). Assume that there exists 1 ≤
s ≤ u−1 such that z(νs)−z(νs+1) ≥ 2. We see by Lemma 5.17 that σs = 1/2 and z(νv)−z(νv+1) = 1
for each v = 1, 2, . . . , s− 1, s+ 1, . . . , u− 1. Hence, we obtain B(λ) =

⊔
r∈Z≥1

Br(λ).

Proposition 5.3 with d = 2 is a corollary of the following theorem and Remark 5.19.

Theorem 5.20. Assume that d = 2. Let r ∈ Z≥1, π ∈ Br(λ), and i ∈ I. If ẽiπ 6= 0, then ẽiπ ∈ Br(λ).
If f̃iπ 6= 0, then f̃iπ ∈ Br(λ). Therefore, Br(λ) is a subcrystal of B(λ) for each r ∈ Z≥1.

Proof. The proof is divided into three cases.

Case 1. Assume that r = 1. We have shown the assertion in Proposition 5.6.

Case 2. Assume that r ≥ 2, and π = (ν1, . . . , νu;σ0, . . . , σu) ∈ Br(λ) satisfies the condition (I).
We set z(νs) = m, z(νs+1) = n; note that m− n = 2r − 2. We set

j :=

{
2 if m is even,

1 if m is odd,
j′ :=

{
1 if m is even,

2 if m is odd.

Then we see by (5.16) that 〈νs, α∨
j 〉 < 0 and 〈νs, α∨

j′〉 > 0. Moreover, we see that 〈νs+1, α
∨
j 〉 < 0 and

〈νs+1, α
∨
j′〉 > 0 because m− n ∈ 2Z.

First, let us show that ẽjπ ∈ Br(λ) if ẽjπ 6= 0. Take t1 and t0 as (2.8) and (2.9), respectively
(with i replaced by j); note that t1 = σv for some 0 ≤ v ≤ u. Since 〈νs, α∨

j 〉 < 0 and 〈νs+1, α
∨
j 〉 < 0

as seen above, the function Hπ
j (t) does not attain its minimum value at t = σs−1, σs (see the left

figure in Figure 2). Thus we obtain t1 6= σs−1, σs. If t1 < σs−1, then the assertion is obvious by the
definition of ẽj and Remark 5.19. Assume that t1 ≥ σs+1. Since Hπ

j (σs) > Hπ
j (t1) = mπ

j ∈ Z by
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j ⟩
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Figure 2.

the definition of t1, and since Hπ
j (σs) = Hπ

j (1/2) ∈ Z by Lemma 5.18 and Remark 5.19, we see that
Hπ
j (σs) ≥ Hπ

j (t1) + 1. Therefore, we have t0 ≥ σs by the definition of t0. If t0 > σs, then it is obvious
by the definition of ẽj and Remark 5.19 that ẽjπ ∈ Br(λ). If t0 = σs, then we deduce by the definition
of ẽj that ẽjπ is of the form

ẽjπ =

{
(ν1, . . . , νs, sjνs+1;σ0, . . . , σs, σu) if s = u− 1 or u− 2,

(ν1, . . . , νs, sjνs+1, . . . , νu;σ0, . . . , σs, σs+2, . . . , σu) if s ≤ u− 3.

Since sjνs+1 = sjwnλ = wn−1λ and m− (n− 1) = 2r − 1, we obtain ẽjπ ∈ Br(λ).
Next, let us show that ẽj′π ∈ Br(λ) if ẽj′π 6= 0. Take t1 and t0 as (2.8) and (2.9), respectively

(with i replaced by j′). Since 〈νs, α∨
j′〉 > 0 and 〈νs+1, α

∨
j′〉 > 0 as seen above, the function Hπ

j′(t)
does not attain its minimum value at t = σs, σs+1 (see the right figure in Figure 2). Thus we obtain
t1 6= σs, σs+1. If t1 ≤ σs−1, then the assertion is obvious by the definition of ẽj′ and Remark 5.19. If
t1 ≥ σs+2, then H

π
j′(σs−1) > Hπ

j′(t1) = mπ
j′ ∈ Z by the definition of t1. Notice that Hπ

j′(σs−1) ∈ Z by
(2.7), and hence Hπ

j′(σs−1) ≥ Hπ
j′(t1) + 1 = mπ

j′ +1. Because Hπ
j′(σs+1) > Hπ

j′(σs−1) ≥ mπ
j′ +1, we see

that σs+1 < t0. Therefore, ẽj′π ∈ Br(λ) by the definition of ẽj′ and Remark 5.19.
Similarly, we can show (in Case 2) that if f̃iπ 6= 0 for i ∈ I, then f̃iπ ∈ Br(λ).

Case 3. Assume that r ≥ 2, and π = (ν1, . . . , νu;σ0, . . . , σu) ∈ Br(λ) satisfies the condition (II).
We set z(νs) = m, z(νs+1) = n; note that m− n = 2r − 1. We set

j :=

{
2 if m is even,

1 if m is odd,
j′ :=

{
1 if m is even,

2 if m is odd.

Then we see by (5.16) that 〈νs, α∨
j 〉 < 0 and 〈νs, α∨

j′〉 > 0. Moreover, we see that 〈νs+1, α
∨
j 〉 > 0 and

〈νs+1, α
∨
j′〉 < 0 because m− n ∈ 2Z+ 1.

First, let us show that ẽjπ ∈ Br(λ) if ẽjπ 6= 0. Take t1 and t0 as (2.8) and (2.9), respectively (with i
replaced by j). Since 〈νs, α∨

j 〉 < 0 and 〈νs+1, α
∨
j 〉 > 0 as seen above, the function Hπ

j (t) does not attain
its minimum value at t = σs−1, σs+1 (see the left figure in Figure 3). Thus we obtain t1 6= σs−1, σs+1.
If t1 < σs−1, then the assertion is obvious by the definition of ẽj and Remark 5.19. If t1 > σs+1, then
Hπ
j (σs) > Hπ

j (t1) = mπ
j ∈ Z by the definition of t1. Notice that Hπ

j (σs) ∈ Z by (2.7), and hence
Hπ
j (σs) ≥ Hπ

j (t1) + 1 = mπ
j + 1. Because Hπ

j (σs+1) > Hπ
j (σs) ≥ mπ

j + 1, we see that σs+1 < t0.
Therefore, ẽjπ ∈ Br(λ) by the definition of ẽj and Remark 5.19. Assume that t1 = σs. If s = 1, i.e.,
σs−1 = 0, then it is obvious that t0 ≥ σs−1. If s > 1, then we see that Hπ

j (σs−2) > Hπ
j (t1) ∈ Z by

the definition of t1. Notice that Hπ
j (σs−2) ∈ Z by (2.7) and hence Hπ

j (σs−2) ≥ Hπ
j (t1) + 1 = mπ

j + 1.
Since Hπ

j (σs−1) > Hπ
j (σs−2) ≥ mπ

j + 1 by 〈νs−1, α
∨
j 〉 > 0 (see (5.16) and Remark 5.19), we see that

σs−1 < t0 by the definition of t0. Then we deduce by the definition of ẽj that ẽjπ is of the form

ẽjπ =

{
(sjνs, νs+1, . . . , νu;σ0, . . . , σu) if t0 = σs−1,

(ν1, . . . , νs, sjνs, νs+1, . . . , νu;σ0, . . . , σs−1, t0, σs+1, . . . σu) if t0 > σs−1.
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Hπ
j (t) Hπ

j′(t)

t = σs

t = σs−1

t = σs+1

t = σs+1

t = σs

t = σs−1

⟨νs, α∨
j ⟩

⟨νs+1, α
∨
j ⟩

⟨νs+1, α
∨
j′ ⟩

⟨νs, α∨
j′ ⟩

Figure 3.

Since sjνs = sjwmλ = wm−1λ and (m− 1)− n = 2r − 2, we obtain ẽjπ ∈ Br(λ).
Next, let us show that ẽj′π ∈ Br(λ) if ẽj′π 6= 0. Take t1 and t0 as (2.8) and (2.9), respectively

(with i replaced by j′). Since 〈νs, α∨
j′〉 > 0 and 〈νs+1, α

∨
j′〉 < 0 as seen above, the function Hπ

j′(t) does
not attain its minimum value at t = σs (see the right figure in Figure 3). Thus we see that t1 6= σs.
If t1 ≤ σs−1, the assertion is obvious by the definition of ẽj′ and Remark 5.19. If σs+1 ≤ t1, then
Hπ
j′(σs−1) > Hπ

j′(t1) = mπ
j′ ∈ Z by the definition of t1. Notice that Hπ

j′(σs−1) ∈ Z by (2.7), and hence
Hπ
j′(σs−1) ≥ Hπ

j′(t1)+1 = mπ
j′ +1. Because Hπ

j′(σs) > Hπ
j′(σs−1) ≥ mπ

j′ +1, we see that σs < t0. Then
ẽj′π ∈ Br(λ) by the definition of ẽj′ and Remark 5.19.

Similarly, we can show (in Case 3) that if f̃iπ 6= 0 for i ∈ I, then f̃iπ ∈ Br(λ).
Thus we have proved Theorem 5.20.
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6 Relationship between the crystal of LS paths and the crystal basis
of extremal weight modules.

Throughout this section, let ι = (ι+, ι−) be as in §3, and λ = k1Λ1 − k2Λ2 ∈ P as in Theorem 3.1.

6.1 Polyhedral realization of B(±∞) in the rank 2 case.

We define the sequences {cj}j≥0 and {c′j}j≥0 of integers by the following recursive formulas: for j ≥ 0,

c0 := 0, c1 := 1, cj+2 :=

{
a1cj+1 − cj if j is even,

a2cj+1 − cj if j is odd;

c′0 := 0, c′1 := 1, c′j+2 :=

{
a2c

′
j+1 − c′j if j is even,

a1c
′
j+1 − c′j if j is odd;

we can show by the same argument as Lemmas 4.4 and 4.7 that cj > 0 and c′j > 0 for all j ≥ 1. By [2,

Corollary 4.7] and the fact that 1/β = (a1a2 −
√
a21a

2
2 − 4a1a2)/2a2, we obtain the following lemma.

Lemma 6.1. The following sequences are strictly decreasing, and converge to α and β, respectively:

c2
c1
>
c′3
c′2
>
c4
c3
>
c′5
c′4
> · · · → α,

c′2
c′1
>
c3
c2
>
c′4
c′3
>
c5
c4
> · · · → β.

Applying [13, Theorem 4.1] to our rank 2 case, we obtain the following explicit descriptions of the
images of the maps Ψ+

ι+
: B(∞)→ Z+∞

≥0,ι+
and Ψ−

ι− : B(−∞)→ Z−∞
≤0,ι− .

Proposition 6.2. It hold that

Im(Ψ+
ι+
) = {(. . . , x2, x1) ∈ Z+∞

≥0 | cjxj − cj−1xj+1 ≥ 0 for j ≥ 1},
Im(Ψ−

ι−) = {(x0, x−1, . . .) ∈ Z−∞
≤0 | c

′
−j+1xj − c′−jxj−1 ≤ 0 for j ≤ 0}.

Recall that the sequence {pm}m∈Z is defined by the recursive formulas (3.1) and (3.2). The
following lemma will be needed in §6.2.

Lemma 6.3. Let m,n ∈ Z be such that n < m, and let qn+1, qn+2, . . . , qm ∈ Z be such that 0 < qj < pj
for n+ 1 ≤ j ≤ m, and qj+1/pj+1 < qj/pj for n+ 1 ≤ j ≤ m− 1.

(1) If 0 < m, then (. . . , 0, pm, . . . , p2, p1) ∈ Im(Ψ+
ι+
).

(2) If 0 < n < m, then (. . . , 0, qm, . . . , qn+2, qn+1, pn, . . . , p2, p1) ∈ Im(Ψ+
ι+
).

(3) If n = 0 < m, then (. . . , 0, qm, . . . , q2, q1) ∈ Im(Ψ+
ι−).

(4) If n < 0 = m, then (q0 − p0, q−1 − p−1, . . . , qn+1 − pn+1, 0, . . . ) ∈ Im(Ψ−
ι−).

(5) If n < m < 0, then (−p0,−p−1, . . . ,−pm+1, qm − pm, . . . , qn+1 − pn+1, 0, . . . ) ∈ Im(Ψ−
ι−).

(6) If n < 0, then (−p0,−p−1, . . . ,−pn+1, 0, . . . ) ∈ Im(Ψ−
ι−).

Proof. We give proofs only for parts (2) and (5); the proofs for the other cases are easier than these
cases.

First, we show part (2). By Proposition 6.2, it suffices to show that

cjpj − cj−1pj+1 ≥ 0 for 1 ≤ j ≤ n− 1, (6.1)

cjpj − cj−1qj+1 ≥ 0 for j = n, (6.2)

cjqj − cj−1qj+1 ≥ 0 for n+ 1 ≤ j ≤ m− 1. (6.3)
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We can easily see by induction on j that

cjpj − cj−1pj+1 ≥ 0 for j ≥ 1. (6.4)

Thus we get (6.1). Since qn+1/pn+1 < 1, we see that cnpn − cn−1qn+1 > cnpn − cn−1pn+1. Combining
this inequality and (6.4), we obtain (6.2). For n + 1 ≤ j ≤ m − 1, we see that cjqj − cj−1qj+1 >
cj(qj+1pj/pj+1) − cj−1qj+1 = (qj+1/pj+1)(cjpj − cj−1pj+1) since qj+1/pj+1 < qj/pj . Combining this
inequality and (6.4), we obtain (6.3). Thus we have proved part (2).

Next, we show part (5). It suffices to show that

c′−j(−pj+1)− c′−j−1(−pj) ≤ 0 for m+ 1 ≤ j ≤ −1, (6.5)

c′−j(−pj+1)− c′−j−1(qj − pj) ≤ 0 for j = m, (6.6)

c′−j(qj+1 − pj+1)− c′−j−1(qj − pj) ≤ 0 for n+ 1 ≤ j ≤ m− 1. (6.7)

We can easily see by induction on j that

c′−j(−pj+1)− c′−j−1(−pj) ≤ 0 for j ≤ −1. (6.8)

Thus we get (6.5). We see that c′−m(−pm+1) − c′−m−1(qm − pm) = c′−m(−pm+1) − c′−m−1(−pm) −
c′−m−1qm. Combining this equality and (6.8), we obtain (6.6). For n+ 1 ≤ j ≤ m− 1, we see that

c′−j(qj+1 − pj+1)− c′−j−1(qj − pj) = c′−jqj+1 − c′−j−1qj − c′−jpj+1 + c′−j−1pj

< c′−j

(
qjpj+1

pj

)
− c′−j−1qj + (−c′−jpj+1 + c′−j−1pj)

=

(
1− qj

pj

)
(−c′−jpj+1 + c′−j−1pj)

since qj+1/pj+1 < qj/pj . Combining this inequality and (6.8), we obtain (6.7). Thus we have proved
part (5).

6.2 Proof of Theorem 3.3.

We see by (4.3) (and the fact that pm > 0 for all m ∈ Z) that an element π ∈ B1(λ) is of the form

π =

(
wmλ,wm−1λ, . . . , wnλ; 0,

qm
pm

,
qm−1

pm−1
, . . . ,

qn+1

pn+1
, 1

)
,

where n ≤ m, and qm, qm−1, . . . , qn+1 are integers satisfying

0 < qj < pj for n+ 1 ≤ j ≤ m, and qj+1

pj+1
<
qj
pj

for n+ 1 ≤ j ≤ m− 1.

We define a map Φλι from B1(λ) ∪ {0} to Im(Ψλ
ι ) ∪ {0} as follows. First, we set Φλι (0) := 0. Let

π =

(
wmλ,wm−1λ, . . . , wnλ; 0,

qm
pm

,
qm−1

pm−1
, . . . ,

qn+1

pn+1
, 1

)
∈ B1(λ), (6.9)

where n ≤ m, and qm, qm−1, . . . , qn+1 are integers satisfying 0 < qj < pj for n + 1 ≤ j ≤ m and
qj+1/pj+1 < qj/pj for n+ 1 ≤ j ≤ m− 1. We set

zk = zk(π) :=



qk if 1 ≤ k and n+ 1 ≤ k ≤ m,
pk if 1 ≤ k and k ≤ n,
qk − pk if k ≤ 0 and n+ 1 ≤ k ≤ m,
−pk if k ≤ 0 and m+ 1 ≤ k,
0 otherwise

(6.10)

for k ∈ Z, and then define Φλι (π) := (. . . , z2, z1)⊗ tλ ⊗ (z0, z−1, . . .) ∈ Zι(λ).
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Remark 6.4. More explicitly, we can describe Φλι (π) as follows:

(i) if n = m = 0, that is, π = πλ, then Φλι (π) = (. . . , 0, 0)⊗ tλ ⊗ (0, 0, . . .);

(ii) if 0 < n = m, then Φλι (π) = (. . . , 0, pm, . . . , p2, p1)⊗ tλ ⊗ (0, 0, . . .);

(iii) if 0 < n < m, then Φλι (π) = (. . . , 0, qm, . . . , qn+2, qn+1, pn, . . . , p2, p1)⊗ tλ ⊗ (0, 0, . . .);

(iv) if n = 0 < m, then Φλι (π) = (. . . , 0, qm, . . . , q2, q1)⊗ tλ ⊗ (0, 0, . . .);

(v) if n < 0 < m, then Φλι (π) = (. . . , 0, qm, . . . , q2, q1)⊗tλ⊗(q0−p0, q−1−p−1, . . . , qn+1−pn+1, 0, . . . );

(vi) if n < m = 0, then Φλι (π) = (. . . , 0, 0)⊗ tλ ⊗ (q0 − p0, q−1 − p−1, . . . , qn+1 − pn+1, 0, . . . );

(vii) if n < m < 0, then Φλι (π) = (. . . , 0, 0)⊗tλ⊗(−p0,−p−1, . . . ,−pm+1, qm−pm, qm−1−pm−1, . . . , qn+1−
pn+1, 0, . . . );

(viii) if n = m < 0, then Φλι (π) = (. . . , 0, 0)⊗ tλ ⊗ (−p0,−p−1, . . . ,−pn+1, 0, . . . ).

Therefore, by Lemma 6.3, we deduce that Φλι (π) ∈ Im(Ψλ
ι ) for π ∈ B1(λ).

Theorem 6.5. The map Φλι : B1(λ)→ Im(Ψλ
ι ) is an embedding of crystals.

Assuming that Theorem 6.5 is true, we give a proof of Theorem 3.3.

Proof of Theorem 3.3 . Let Z(λ) := {~x ∈ Im(Ψλ
ι ) | ~x∗ is extremal}. We know from Corollary 2.8 that

there exists an isomorphism Σ : Z(λ)→ B(λ) of crystals which sends zλ := (. . . , 0, 0)⊗ tλ ⊗ (0, 0, . . .)
to uλ. Recall from Remark 5.7 that B0(λ) ⊂ B1(λ). Because Φλι (πλ) = zλ ∈ Z(λ), we see that
Φλι (B0(λ)) ⊂ Z(λ). Therefore it follows from Theorem 6.5 that Σ ◦ Φλι

∣∣
B0(λ)

is an isomorphism of

crystals from B0(λ) onto B0(λ). Thus we have proved Theorem 3.3.

The rest of this subsection is devoted to a proof of Theorem 6.5.

Lemma 6.6. For k ≤ l, it holds that

wkλ− wlλ =
l∑

j=k+1

pjαij .

Proof. We proceed by induction on l; recall that l ≥ k. If l = k, then the assertion is obvious. Assume
that l > k. By the induction hypothesis, we have wkλ−wl−1λ =

∑l−1
j=k+1 pjαij . We see by (4.3) that

wlλ = wl−1λ− plαil . Therefore, we obtain

wkλ− wlλ = wkλ− wl−1λ+ plαil =

l−1∑
j=k+1

pjαij + plαil =

l∑
j=k+1

pjαij ,

as desired.

Proposition 6.7. Let π ∈ B1(λ) be as (6.9). Then,

wt(π) = wt(Φλι (π)) = wnλ−
m∑

j=n+1

qjαij .
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Proof. First, we show by induction on m that wt(π) = wnλ −
∑m

j=n+1 qjαij ; recall that m ≥ n. If
m = n, then wt(π) = wnλ since π = (wnλ; 0, 1). Hence the assertion is obvious. Assume that m > n.
We see that

π′ :=

(
wm−1λ,wm−2λ, . . . , wnλ; 0,

qm−1

pm−1
,
qm−2

pm−2
, . . . ,

qn+1

pn+1
, 1

)
is also an element of B1(λ). By the induction hypothesis, we obtain wt(π′) = wnλ −

∑m−1
j=n+1 qjαij .

We see by the definition of wt that

wt(π) = wt(π′)− qm−1

pm−1
wm−1λ+

qm
pm

wmλ+

(
qm−1

pm−1
− qm
pm

)
wm−1λ

= wt(π′) +
qm
pm

(wmλ− wm−1λ).

By Lemma 6.6, we have wmλ − wm−1λ = −pmαim . Therefore we deduce that wt(π) = wnλ −∑m−1
j=n+1 qjαij + (qm/pm)(−pmαim) = wnλ−

∑m
j=n+1 qjαij .

Next, we show that wt(Φλι (π)) = wnλ−
∑m

j=n+1 qjαij . By the definition of wt, if 0 ≤ n ≤ m, then

wt(Φλι (π)) = λ−
m∑

j=n+1

qjαij −
n∑
j=1

pjαij ;

if n < 0 < m, then

wt(Φλι (π)) = λ−
m∑
j=1

qjαij −
0∑

j=n+1

(qj − pj)αij = λ−
m∑

j=n+1

qjαij +

0∑
j=n+1

pjαij ;

if n ≤ m ≤ 0, then

wt(Φλι (π)) = λ−
0∑

j=m+1

(−pj)αij −
m∑

j=n+1

(qj − pj)αij = λ+
0∑

j=n+1

pjαij −
m∑

j=n+1

qjαij .

It follows from Lemma 6.6 that

wnλ =

{
λ−

∑n
j=1 pjαij if n ≥ 0,

λ+
∑0

j=n+1 pjαij if n ≤ 0.

Therefore we obtain wt(Φλι (π)) = wnλ −
∑m

j=n+1 qjαij for n,m ∈ Z such that n ≤ m. Thus we have
proved the proposition.

Lemma 6.8. Let π ∈ B1(λ) be as (6.9). Then, for k ∈ Z,

σk(Φ
λ
ι (π)) =


0 if m+ 1 ≤ k,
qk +

∑m
j=k+1〈αij , α∨

ik
〉qj if n+ 1 ≤ k ≤ m,

−〈wt(Φλι (π)), α∨
ik
〉 if k ≤ n.

Proof. First, we assume that 0 ≤ n ≤ m. Then, Φλι (π) ∈ Im(Ψλ
ι ) is of the form Φλι (π) = b1 ⊗ tλ ⊗

(0, 0, . . .) with
b1 = (. . . , 0, qm, . . . , qn+2, qn+1, pn, . . . , p2, p1),

where we understand b1 = (. . . , 0, pm, . . . , p2, p1) (resp., (. . . , 0, qm, . . . , q2, q1)) if 0 < n = m (resp., n =
0 < m). If n + 1 ≤ k, then we have σk(Φ

λ
ι (π)) = σ+k (b1). Hence the assertion is obvious by the
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definition of σ+k . Assume that 1 ≤ k ≤ n. By Proposition 6.7, it suffices to show that σk(Φ
λ
ι (π)) =

−〈wnλ, α∨
ik
〉+

∑m
j=n+1〈αij , α∨

ik
〉qj . We see by the definition of σk that

σk(Φ
λ
ι (π)) = σ+k (b1) = pk +

n∑
j=k+1

〈αij , α∨
ik
〉pj +

m∑
j=n+1

〈αij , α∨
ik
〉qj . (6.11)

It follows from Lemma 6.6 that wkλ− wnλ =
∑n

j=k+1 pjαij . Therefore,

−〈wnλ, α∨
ik
〉 = −〈wkλ, α∨

ik
〉+

n∑
j=k+1

〈αij , α∨
ik
〉pj = pk +

n∑
j=k+1

〈αij , α∨
ik
〉pj (6.12)

since 〈wkλ, α∨
ik
〉 = −pk by (4.3). Combining (6.11) and (6.12), we obtain the desired equality. If k ≤ 0,

then we have σk(Φ
λ
ι (π)) = σ−k ((0, 0, . . .))− 〈wt(Φ

λ
ι (π)), α

∨
ik
〉 = −〈wt(Φλι (π)), α∨

ik
〉.

Next, we assume that n < 0 < m. Then, Φλι (π) ∈ Im(Ψλ
ι ) is of the form Φλι (π) = b1 ⊗ tλ ⊗ b2

with b1 = (. . . , 0, qm, . . . , q2, q1) and b2 = (q0 − p0, q−1 − p−1, . . . , qn+1 − pn+1, 0, . . .). If 1 ≤ k, then
σk(Φ

λ
ι (π)) = σ+k (b1). Hence the assertion is obvious by the definition of σ+k . Assume that n+1 ≤ k ≤ 0.

We see by the definition of σ−k that

σ−k (b2) = −(qk − pk)−
k−1∑
j=n+1

〈αij , α∨
ik
〉(qj − pj)

= −qk + pk −
k−1∑
j=n+1

〈αij , α∨
ik
〉qj +

k−1∑
j=n+1

〈αij , α∨
ik
〉pj .

By Proposition 6.7, we have 〈wt(Φλι (π)), α∨
ik
〉 = 〈wnλ, α∨

ik
〉 −

∑m
j=n+1〈αij , α∨

ik
〉qj . Hence,

σk(Φ
λ
ι (π)) = σ−k (b2)− 〈wt(Φ

λ
ι (π)), α

∨
ik
〉

= −qk +
m∑
j=k

〈αij , α∨
ik
〉qj + pk +

k−1∑
j=n+1

〈αij , α∨
ik
〉pj − 〈wnλ, α∨

ik
〉. (6.13)

Because 〈αik , α∨
ik
〉 = 2, we obtain

−qk +
m∑
j=k

〈αij , α∨
ik
〉qj = −qk + 〈αik , α

∨
ik
〉qk +

m∑
j=k+1

〈αij , α∨
ik
〉qj = qk +

m∑
j=k+1

〈αij , α∨
ik
〉qj . (6.14)

It follows from Lemma 6.6 that −wnλ+ wkλ+
∑k

j=n+1 pjαij = 0, and hence,

0 = −〈wnλ, α∨
ik
〉+ 〈wkλ, α∨

ik
〉+

k∑
j=n+1

〈αij , α∨
ik
〉pj

= −〈wnλ, α∨
ik
〉+ pk +

k−1∑
j=n+1

〈αij , α∨
ik
〉pj (6.15)

since 〈wkλ, α∨
ik
〉 = −pk and 〈αik , α∨

ik
〉 = 2. By (6.13)–(6.15), we obtain σk(Φ

λ
ι (π)) = qk+

∑m
j=k+1〈αij , α∨

ik
〉qj ,

as desired. If k ≤ n, then σ−k (b2) = 0, which implies that σk(Φ
λ
ι (π)) = σ−k (b2) − 〈wt(Φ

λ
ι (π)), α

∨
ik
〉 =

−〈wt(Φλι (π)), α∨
ik
〉.

Finally, we assume that n ≤ m ≤ 0. Then, Φλι (π) ∈ Im(Ψλ
ι ) is of the form Φλι (π) = (. . . , 0, 0) ⊗

tλ ⊗ b2 with
b2 = (−p0,−p−1, . . . ,−pm+1, qm − pm, . . . , qn+1 − pn+1, 0, . . .),
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where we understand b2 = (q0−p0, q−1−p−1, . . . , qn+1−pn+1, 0, . . .) (resp., b2 = (−p0, . . . ,−pn+1, 0, . . .))
if n < m = 0 (resp., n = m < 0). If 1 ≤ k, then it is obvious that σk(Φ

λ
ι (π)) = σ+k (b1) = 0. Assume

that m+ 1 ≤ k ≤ 0. We see that

σ−k (b2) = −(−pk)−
k−1∑

j=m+1

〈αij , α∨
ik
〉(−pj)−

m∑
j=n+1

〈αij , α∨
ik
〉(qj − pj)

= pk +
k−1∑
j=n+1

〈αij , α∨
ik
〉pj −

m∑
j=n+1

〈αij , α∨
ik
〉qj .

By Proposition 6.7, we have 〈wt(Φλι (π)), α∨
ik
〉 = 〈wnλ, α∨

ik
〉 −

∑m
j=n+1〈αij , α∨

ik
〉qj . Hence,

σk(Φ
λ
ι (π)) = σ−k (b2)− 〈wt(Φ

λ
ι (π)), α

∨
ik
〉 = pk +

k−1∑
j=n+1

〈αij , α∨
ik
〉pj − 〈wnλ, α∨

ik
〉. (6.16)

It follows from Lemma 6.6 that −wnλ+ wkλ+
∑k

j=n+1 pjαij = 0, and hence,

0 = −〈wnλ, α∨
ik
〉+ 〈wkλ, α∨

ik
〉+

k∑
j=n+1

〈αij , α∨
ik
〉pj

= −〈wnλ, α∨
ik
〉+ pk +

k−1∑
j=n+1

〈αij , α∨
ik
〉pj (6.17)

since 〈wkλ, α∨
ik
〉 = −pk and 〈αik , α∨

ik
〉 = 2. By (6.16) and (6.17), we obtain σk(Φ

λ
ι (π)) = σ−k (b2) −

〈wt(Φλι (π)), α∨
ik
〉 = 0, as desired. If k ≤ m, then we can show the equality by the same argument as

in the case that n < 0 < m. Thus we have proved the lemma.

Now, we set

i(k) := ik =

{
2 if k is even,

1 if k is odd,
i′(k) :=

{
1 if k is even,

2 if k is odd

for k ∈ Z; note that

〈wkλ, α∨
i(k)〉 = −pk < 0, 〈wkλ, α∨

i′(k)〉 = pk+1 > 0 (6.18)

by (4.3). Let us write π ∈ B1(λ) as (6.9). We see by (6.18) that

Hπ
i(m)

(
qm
pm

)
< 0 = Hπ

i(m)(0). (6.19)

Moreover, if m+ n is odd, then we see that 〈wnλ, α∨
i(m)〉 > 0, and hence

Hπ
i(m)

(
qn+1

pn+1

)
< 〈wt(π), α∨

i(m)〉 = Hπ
i(m)(1). (6.20)

If m+ n is even, then we see that 〈wnλ, α∨
i′(m)〉 > 0, and hence

Hπ
i′(m)

(
qn+1

pn+1

)
< 〈wt(π), α∨

i′(m)〉 = Hπ
i′(m)(1). (6.21)
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Lemma 6.9. Let π ∈ B1(λ) be as (6.9). If n+ 1 ≤ k ≤ m, then

−qk −
m∑

j=k+1

〈αij , α∨
ik
〉qj =

{
Hπ
i(m)(qk/pk) if k −m ∈ 2Z,

Hπ
i′(m)(qk/pk) if k −m+ 1 ∈ 2Z.

Proof. We set qm+1 := 0 and qn := pn by convention. Assume that k −m ∈ 2Z. Then we obtain

Hπ
i(m)

(
qk
pk

)
=

m∑
j=k

(
qj
pj
− qj+1

pj+1

)
〈wjλ, α∨

i(m)〉

=
∑

j=k,k+2,...,m−2

((
qj
pj
− qj+1

pj+1

)
(−pj) +

(
qj+1

pj+1
− qj+2

pj+2

)
pj+2

)
+
qm
pm

(−pm)

=
∑

j=k,k+2,...,m−2

(−qj + ai(m)qj+1 − qj+2)− qm by (3.1) and (3.2)

= −qk +
∑

j=k,k+2,...,m−2

(ai(m)qj+1 − 2qj+2)

= −qk −
m∑

j=k+1

〈αij , α∨
i(m)〉qj ,

as desired.
Assume that k −m+ 1 ∈ 2Z. Then we obtain

Hπ
i′(m)

(
qk
pk

)
=

m∑
j=k

(
qj
pj
− qj+1

pj+1

)
〈wjλ, α∨

i′(m)〉

=
∑

j=k,k+2,...,m−1

((
qj
pj
− qj+1

pj+1

)
(−pj) +

(
qj+1

pj+1
− qj+2

pj+2

)
pj+2

)
=

∑
j=k,k+2,...,m−1

(−qj + ai′(m)qj+1 − qj+2) by (3.1) and (3.2)

= −qk +
∑

j=k,k+2,...,m−3

(ai′(m)qj+1 − 2qj+2) + ai′(m)qm − qm+1

= −qk −
m∑

j=k+1

〈αij , α∨
i′(m)〉qj ,

as desired.

By Lemmas 6.8 and 6.9, we obtain the following proposition.

Proposition 6.10. Let π ∈ B1(λ) be as (6.9). Then,

−σk(Φλι (π)) =



Hπ
i(m)(0) if k −m ∈ 2Z and m+ 1 ≤ k,

Hπ
i(m)(qk/pk) if k −m ∈ 2Z and n+ 1 ≤ k ≤ m,

Hπ
i(m)(1) if k −m ∈ 2Z and k ≤ n,

Hπ
i′(m)(0) if k −m+ 1 ∈ 2Z and m+ 1 ≤ k,

Hπ
i′(m)(qk/pk) if k −m+ 1 ∈ 2Z and n+ 1 ≤ k ≤ m,

Hπ
i′(m)(1) if k −m+ 1 ∈ 2Z and k ≤ n.
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Proof of Theorem 6.5. By Remark 6.4, it is easy to check that the map Φλι is injective. We show that
Φλι is a morphism of crystals. Let π ∈ B1(λ). We have wt(π) = wt(Φλι (π)) by Proposition 6.7. We
show that εi(π) = εi(Φ

λ
ι (π)) and Φλι (ẽiπ) = ẽiΦ

λ
ι (π) for i ∈ I. Let us write π as (6.9).

Case 1. Assume that i = i(m) and m+n is odd. Note that the function Hπ
i (t) attains a minimal

value at t = qk/pk, k = m,m− 2, . . . , n+ 1 (see Remark 5.5 and (6.18)). By (2.13),

εi(π) = −min

{
Hπ
i (t)

∣∣∣∣ t ∈ { qmpm , qm−2

pm−2
, . . . ,

qn+1

pn+1

}}
= max

{
−Hπ

i (t)

∣∣∣∣ t ∈ { qmpm , qm−2

pm−2
, . . . ,

qn+1

pn+1

}}
. (6.22)

By the definition of εi(Φ
λ
ι (π)), we have

εi(Φ
λ
ι (π)) = max

k:ik=i
σk(Φ

λ
ι (π)) = max

k−m∈2Z
σk(Φ

λ
ι (π)). (6.23)

We see from Proposition 6.10 that

max
k−m∈2Z

σk(Φ
λ
ι (π)) = max

{
−Hπ

i (t)

∣∣∣∣ t ∈ {0, qmpm , qm−2

pm−2
, . . . ,

qn+1

pn+1
, 1

}}
= max

{
−Hπ

i (t)

∣∣∣∣ t ∈ { qmpm , qm−2

pm−2
, . . . ,

qn+1

pn+1

}}
, (6.24)

where the second equality follows from (6.19) and (6.20). By (6.22)–(6.24), we obtain εi(π) =
εi(Φ

λ
ι (π)), as desired. Next, we show that Φλι (ẽiπ) = ẽiΦ

λ
ι (π). Since both B1(λ) and Im(Ψλ

ι ) are
normal crystals, the equality εi(π) = εi(Φ

λ
ι (π)) and the injectivity of Φλι imply that

Φλι (ẽiπ) = 0 ⇐⇒ ẽiπ = 0 ⇐⇒ εi(π) = 0 ⇐⇒ εi(Φ
λ
ι (π)) = 0 ⇐⇒ ẽiΦ

λ
ι (π) = 0.

Assume that ẽiπ 6= 0, or equivalently, ẽiΦ
λ
ι (π) 6= 0. By the definition of Φλι , we have Φλι (π) =

(. . . , y2, y1) ⊗ tλ ⊗ (y0, y−1, . . .), where yk = zk(π) (see (6.10)). Let M(i) be as (2.3), and set k′ :=

maxM(i). Namely, k′ is the largest integer k such that σ(i)(Φ
λ
ι (π)) = σk(Φ

λ
ι (π)) and k−m ∈ 2Z. Then

we see by the definition of ẽi that ẽiΦ
λ
ι (π) = (. . . , y′2, y

′
1) ⊗ tλ ⊗ (y′0, y

′
−1, . . .), where y

′
k := yk − δk,k′ .

Let t1 and t0 be as (2.8) and (2.9), respectively. By (6.22)–(6.24), we obtain t1 = qk′/pk′ . By (2.10)
and Remark 5.5, we have t0 = t1 − 1/(−〈wk′λ, α∨

i 〉) = (qk′ − 1)/pk′ . Assume that k′ < m. By (2.10)
and Remark 5.5, we have qk′+1/pk′+1 ≤ t0. Suppose, for a contradiction, that qk′+1/pk′+1 = t0, that
is,

Hπ
i

(
qk′+1

pk′+1

)
= Hπ

i

(
qk′

pk′

)
+ 1. (6.25)

Then it follows from Remark 5.5 that Hπ
i (t) attains a minimal value at t = qk′+2/pk′+2, and hence

Hπ
i (qk′+2/pk′+2) ∈ Z by (2.7). By (6.25), we obtain Hπ

i (qk′+2/pk′+2) ≤ Hπ
i (qk′/pk′), which contradicts

the definition of t1. Therefore we obtain qk′+1/pk′+1 < t0 and

ẽiπ =

(
wmλ, . . . , wk′λ . . . , wnλ; 0,

qm
pm

. . . ,
qk′+1

pk′+1
,
qk′ − 1

pk′
,
qk′−1

pk′−1
, . . . ,

qn+1

pn+1
, 1

)
.

If k′ = m, then

ẽiπ =


(
wmλ, . . . , wnλ; 0,

qm − 1

pm
,
qm−1

pm−1
, . . . ,

qn+1

pn+1
, 1

)
if qm > 1,(

wm−1λ, . . . , wnλ; 0,
qm−1

pm−1
, . . . ,

qn+1

pn+1
, 1

)
if qm = 1.
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Hence we see that

zk(ẽiπ) =



qk′ − 1 if 1 ≤ k = k′,

(qk′ − 1)− pk′ if k = k′ ≤ 0,

qk if k 6= k′, 1 ≤ k, and n+ 1 ≤ k ≤ m,
pk if k 6= k′, 1 ≤ k, and k ≤ n,
qk − pk if k 6= k′, k ≤ 0, and n+ 1 ≤ k ≤ m,
−pk if k 6= k′, k ≤ 0, and m+ 1 ≤ k,
0 otherwise,

= zk(π)− δk,k′ ,

which implies that Φλι (ẽiπ) = ẽiΦ
λ
ι (π).

Case 2. Assume that i = i′(m) and m+n is even. Note that the function Hπ
i (t) attains a minimal

value at t = 0 and t = qk/pk, k = m − 1,m − 3, . . . , n + 1. As in Case 1, we deduce by Proposition
6.10 and (6.21) that

εi(π) = −min

{
Hπ
i (t)

∣∣∣∣ t ∈ {0, qm−1

pm−1
,
qm−3

pm−3
, . . . ,

qn+1

pn+1

}}
= max

{
−Hπ

i (t)

∣∣∣∣ t ∈ {0, qm−1

pm−1
,
qm−3

pm−3
, . . . ,

qn+1

pn+1

}}
= max

k−m+1∈2Z
σk(Φ

λ
ι (π)) = εi(Φ

λ
ι (π)).

We can show that Φλι (ẽiπ) = ẽiΦ
λ
ι (π) in exactly the same way as Case 1.

Case 3. Assume that i = i(m) and m+n is even. Note that the function Hπ
i (t) attains a minimal

value at t = qk/pk, k = m,m − 2, . . . , n + 2 and t = 1. As in Case 1, we deduce by Proposition 6.10
and (6.19) that

εi(π) = −min

{
Hπ
i (t)

∣∣∣∣ t ∈ { qmpm , qm−2

pm−2
, . . . ,

qn+2

pn+2
, 1

}}
= max

{
−Hπ

i (t)

∣∣∣∣ t ∈ { qmpm , qm−2

pm−2
, . . . ,

qn+2

pn+2
, 1

}}
= max

k−m∈2Z
σk(Φ

λ
ι (π)) = εi(Φ

λ
ι (π)). (6.26)

We show that Φλι (ẽiπ) = ẽiΦ
λ
ι (π). If m = n, then π = (wnλ; 0, 1). We see by definition of Φλι that

Φλι (π) =


(. . . , 0, pn, . . . , p2, p1)⊗ tλ ⊗ (0, 0, . . .) if n > 0,

(. . . , 0, 0)⊗ tλ ⊗ (0, 0, . . .) if n = 0,

(. . . , 0, 0)⊗ tλ ⊗ (−p0,−p−1, . . . ,−pn+1, 0, . . . ) if n < 0.

Also, we see that

ẽiπ =

{
(wnλ,wn−1λ; 0, (pn − 1)/pn, 1) if pn > 1,

(wn−1λ; 0, 1) if pn = 1.

Thus it is easy to verify that Φλι (ẽiπ) = ẽiΦ
λ
ι (π) in this case. Assume that m > n; by the assumption

that m+ n is even, we have m ≥ n+ 2. Let M(i) be as (2.3), and set k′ := maxM(i). If k
′ ∈ {m,m−

2, . . . , n+2}, then we can show in exactly the same way as Case 1 that Φλι (ẽi(π)) = ẽiΦ
λ
ι (π). Otherwise,

we see by Proposition 6.10 and (6.26) that k′ = n. Let Φλι (π) = (. . . , y2, y1)⊗ tλ⊗ (y0, y−1, . . .), where
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yk = zk(π). Then we see by the definition of ẽi that ẽiΦ
λ
ι (π) = (. . . , y′2, y

′
1) ⊗ tλ ⊗ (y′0, y

′
−1, . . .),

where y′k = yk − δk,n. Let t1 and t0 be as (2.8) and (2.9), respectively. We see that t1 = 1 and
t0 = 1− 1/(−〈wnλ, α∨

i 〉) = 1− 1/pn−1. By (2.10) and Remark 5.5, we have qn+1/pn+1 ≤ t0. Suppose,
for a contradiction, that qn+1/pn+1 = t0; note that Hπ

i (qn+1/pn+1) = Hπ
i (1) + 1. It follows from

Remark 5.5 that Hπ
i (t) attains a minimal value at t = qn+2/pn+2, and hence Hπ

i (qn+2/pn+2) ∈ Z by
(2.7). Therefore, we obtain Hπ

i (qn+2/pn+2) ≤ Hπ
i (1), which contradicts the definition of t1. Therefore

we obtain qn+1/pn+1 < t0, which implies that

ẽiπ =

(
wmλ, . . . , wnλ,wn−1λ; 0,

qm
pm

. . . , . . . ,
qn+1

pn+1
,
pn − 1

pn
, 1

)
.

Therefore we see that

zk(ẽiπ) =



pn − 1 if 1 ≤ k = n,

(pn − 1)− pn if k = n ≤ 0,

qk if k 6= n, 1 ≤ k, and n+ 1 ≤ k ≤ m,
pk if k 6= n, 1 ≤ k, and k ≤ n,
qk − pk if k 6= n, k ≤ 0, and n+ 1 ≤ k ≤ m,
−pk if k 6= n, k ≤ 0, and m+ 1 ≤ k,
0 otherwise,

= zk(π)− δk,n.

Hence we obtain ẽi(π) = ẽiΦ
λ
ι (π), as desired.

Case 4. Assume that i = i′(m) and m+n is odd. Note that the function Hπ
i (t) attains a minimal

value at t = 0, t = 1, and t = qk/pk, k = m− 1,m− 3, . . . , n+ 2. By Proposition 6.10, we get

εi(π) = −min

{
Hπ
i (t)

∣∣∣∣ t ∈ {0, qm−1

pm−1
,
qm−3

pm−3
, . . . ,

qn+2

pn+2
, 1

}}
= max

{
−Hπ

i (t)

∣∣∣∣ t ∈ {0, qm−1

pm−1
,
qm−3

pm−3
, . . . ,

qn+2

pn+2
, 1

}}
= εi(Φ

λ
ι (π)).

We can show in exactly the same way as Case 3 that Φλι (ẽiπ) = ẽiΦ
λ
ι (π).

Let π ∈ B1(λ), and i ∈ I. Because wt(π) = wt(Φλι (π)) and εi(π) = εi(Φ
λ
ι (π)), we have ϕi(π) =

ϕi(Φ
λ
ι (π)). Also, since both B1(λ) and Im(Ψλ

ι ) are normal crystals, and since Φλι (ẽiπ) = ẽiΦ
λ
ι (π), we

see that Φλι (f̃iπ) = f̃iΦ
λ
ι (π). This completes the proof of Theorem 6.5.

6.3 Proof of Theorem 3.4.

We can prove Theorem 3.4 in exactly the same way as [15, Theorem 3.2]; we give only a sketch of the
proof. In the following, we assume that k2 = 1; the proof for the case that k1 = 1 is similar. Let us
identify B(λ) with {b ∈ B(∞)⊗ Tµ ⊗ B(−∞) | b∗ is extremal} by Theorem 2.4.

Lemma 6.11 (cf. [15, Lemmas 3.7 and 3.8]).

(1) Let i ∈ I and b ∈ B(λ) be such that ẽib 6= 0. If b is of the form b = b1 ⊗ tλ ⊗ u−∞ with b1 6= u∞,
then ẽib = ẽib1 ⊗ tλ ⊗ u−∞.

(2) Let i ∈ I and b ∈ B(λ) be such that f̃ib 6= 0. If b is of the form b = u∞ ⊗ tλ ⊗ b2 with b2 6= u−∞,
then f̃ib = u∞ ⊗ tλ ⊗ f̃ib2.
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Proof. We give a proof only for part (1). Suppose, for a contradiction, that ẽib = b1 ⊗ tλ ⊗ ẽiu−∞.
We see by (2.2) that (ẽib)

∗ = b∗1 ⊗ t−λ−wt(b1)−αi
⊗ ẽiu−∞. Since ϕi((ẽib)

∗) ≥ ϕi(ẽiu−∞) = 1, it

follows from the tensor product rule of crystals that f̃i(ẽib)
∗ 6= 0. Because ẽib ∈ B(λ), we see that

(ẽib)
∗ is an extremal element of weight −λ. Since 〈wt(Sid(ẽib)∗), α∨

1 〉 = 〈−λ, α∨
1 〉 = −k1 ≤ 0, we

obtain f̃1(ẽib)
∗ = 0. Therefore we have i = 2 and (ẽ2b)

∗ = b∗1 ⊗ t−λ−wt(b1)−α2
⊗ ẽ2u−∞. Because

〈wt(Sid(ẽ2b)∗), α∨
2 〉 = 〈−λ, α∨

2 〉 = 1 ≥ 0, and (ẽ2b)
∗ is an extremal element of extremal weight −λ, we

see that ẽ2(ẽ2b)
∗ = 0, and hence ε2((ẽ2b)

∗) = 0. Since ε2((ẽ2b)
∗) ≥ ε2(b

∗
1), we have ε2(b

∗
1) = 0, which

implies ε1(b
∗
1) ≥ 1 because b1 6= u∞. Hence,

ϕ2(b
∗
1 ⊗ t−λ−wt(b1)−α2

) = ϕ2(b
∗
1) + 〈−λ− wt(b1)− α2, α

∨
2 〉

= (ε2(b
∗
1) + 〈wt(b∗1), α∨

2 〉) + 〈−λ− wt(b1)− α2, α
∨
2 〉

= ε2(b
∗
1) + 〈−λ− α2, α

∨
2 〉 = −1.

By this equality and ε2(ẽ2u−∞) = ϕ2(ẽ2u−∞) − 〈wt(ẽ2u−∞), α∨
2 〉 = −1, it follows from the tensor

product rule of crystals that S2(ẽ2b)
∗ = f̃2(ẽ2b)

∗ = b∗1 ⊗ t−λ−wt(b1)−α2
⊗ u−∞. Since ε1(b

∗
1) ≥ 1, we

obtain ẽ1b
∗
1 6= 0. Therefore it follows from the tensor product rule of crystals that ε1(S2(ẽ2b)

∗) ≥
ε1(b

∗
1) ≥ 1, that is, ẽ1S2(ẽ2b)

∗ 6= 0. However, since (ẽ2b)
∗ is an extremal element of weight −λ and

〈wt(S2(ẽ2b)∗), α∨
1 〉 = 〈s2(−λ), α∨

1 〉 ≥ 0, we see that ẽ1S2(ẽ2b)
∗ = 0, which is a contradiction.

Lemma 6.11 implies the following proposition (see [15, Proposition 3.9]).

Proposition 6.12. It holds that B(λ) ⊂ (B(∞)⊗ tλ ⊗ u−∞) ∪ (u∞ ⊗ tλ ⊗ B(−∞)).

Here, we set |α| :=
∑

i∈I |ci| for α =
∑

i∈I ciαi ∈
⊕

i∈I Zαi. By Proposition 6.12, we see that
b ∈ B(λ) is of the form either b = b1 ⊗ tλ ⊗ u−∞ with some b1 ∈ B(∞) or b = u∞ ⊗ tλ ⊗ b2 with some
b2 ∈ B(−∞). We deduce by induction on |wt(b1)| (resp., |wt(b2)|) that if b is of the form b1⊗ tλ⊗u−∞
(resp., b = u∞ ⊗ tλ ⊗ b2), then b = f̃ir · · · f̃i1uλ (resp., b = ẽir · · · ẽi1uλ) for some i1, . . . , ir (see [15,
Proof of Theorem 3.2]). Thus we have proved Theorem 3.4.
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7 Polyhedral realization of B(λ).
Throughout this section, let ι = (ι+, ι−) be as in §3, and λ = k1Λ1 − k2Λ2 ∈ P as in Theorem 3.1.

7.1 Some propositions and corollary.

Let x̂ = (. . . , x2, x1) ∈ Im(Ψ+
ι+
) be such that xm ≤ pm for all m ∈ Z≥1. For l ≥ 1, we set

z1(x̂, l) := (. . . , x2, x1, p0, p−1, . . . , p−2l+2, p−2l+1) ∈ Z+∞
≥0,ι+

,

z2(x̂, l) := (x2l − p2l, . . . , x2 − p2, x1 − p1, 0, 0 . . .) ∈ Z−∞
≤0,ι− .

Proposition 7.1. Let x̂ = (. . . , x2, x1) ∈ Im(Ψ+
ι+
) be such that xm ≤ pm for all m ∈ Z≥1, and let

l ≥ 1. The following are equivalent:

(1) z1(x̂, l) ∈ Im(Ψ+
ι+
);

(2) cjxj−2l − cj−1xj−2l+1 ≥ 0 for j ≥ 2l + 1;

(3) 0 = εij (f̃
pj+1

ij+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗) for −2l + 1 ≤ j ≤ 0.

Proof. (1) ⇔ (2): By Proposition 6.2, we see that z1(x̂, l) ∈ Im(Ψ+
ι+
) if and only if

cjpj−2l − cj−1pj−2l+1 ≥ 0 for 1 ≤ j ≤ 2l − 1, (7.1)

cjpj−2l − cj−1xj−2l+1 ≥ 0 for j = 2l, (7.2)

cjxj−2l − cj−1xj−2l+1 ≥ 0 for 2l + 1 ≤ j.

Therefore it is obvious that (1) implies (2). Assume that (2) holds; we need to show that (7.1) and
(7.2). We can easily see by induction on j that

cjpj−2l − cj−1pj−2l+1 ≥ 0 for j ≥ 1. (7.3)

In particular, we get (7.1). Since x1 ≤ p1, we see that c2lp0 − c2l−1x1 ≥ c2lp0 − c2l−1p1. Combining
this inequality and (7.3), we obtain (7.2).

(1) ⇔ (3): By Proposition 2.6, together with the fact that is = it if s ≡ t mod 2, we see that
z1(x̂, l) ∈ Im(Ψ+

ι+
) if and only if

0 = εij (f̃
pj+1

ij+1
f̃
pj+2

ij+2
· · · f̃p−1

i−1
f̃p0i0 f̃

x1
i1
f̃x2i2 · · · z∞) for − 2l + 1 ≤ j ≤ 0,

0 = εij (f̃
xj+1

ij+1
f̃
xj+2

ij+2
· · · z∞) for j ≥ 1.

Since x̂ ∈ Im(Ψ+
ι+
), we have x̂∗ = f̃x1i1 f̃

x2
i2
· · · z∞ and 0 = εij (f̃

xj+1

ij+1
f̃
xj+2

ij+2
· · · z∞) for j ≥ 1. Therefore

(1) is equivalent to (3).
Thus we have proved the proposition.

By using Propositions 2.6 and 6.2, together with the fact that is = it if s ≡ t mod 2, we can prove
the following proposition in exactly the same way as Proposition 7.1.

Proposition 7.2. Let x̂ = (. . . , x2, x1) ∈ Im(Ψ+
ι+
) be such that xm ≤ pm for all m ∈ Z≥1, and let

l ≥ 1. The following are equivalent:

(1) z2(x̂, l) ∈ Im(Ψ−
ι−);

(2) c′−j+1(xj+2l − pj+2l)− c′−j(xj+2l−1 − pj+2l−1) ≤ 0 for −2l + 2 ≤ j ≤ −1;

(3) 0 = ϕij (ẽ
pj−1−xj−1

ij−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞) for 1 ≤ j ≤ 2l.
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Proposition 7.3. Let x̂ = (. . . , x2, x1) ∈ Im(Ψ+
ι+
) be such that xm ≤ pm for all m ∈ Z≥1, and let

k ≥ 1. The following are equivalent:

(1) ck+2lxk − ck+2l−1xk+1 ≥ 0 for l ≥ 1;

(2) γkxk − xk+1 ≥ 0.

Proof. Assume that (2) holds. By Lemma 6.1, together with (3.3), we have ck+2l > γkck+2l−1 for
l ≥ 1. Hence, ck+2lxk − ck+2l−1xk+1 ≥ ck+2l−1(γkxk − xk+1). By the assumption, we obtain (1).

Assume that (1) holds; note that xk ≥ 0. If xk = 0, then we have −ck+2l−1xk+1 ≥ 0. Since
ck+2l−1 > 0, we see that xk+1 = 0, which gives γkxk − xk+1 = 0. Assume that xk > 0. By the
assumption, we obtain ck+2l/ck+2l−1 ≥ xk+1/xk for l ≥ 1. Since the sequence {ck+l/ck+2l−1}l≥1 is
strictly decreasing, and converges to γk by Lemma 6.1, we see that xk+1/xk ≤ γk, which is equivalent
to (2).

Proposition 7.4. Let x̂ = (. . . , x2, x1) ∈ Im(Ψ+
ι+
) be such that xm ≤ pm for all m ∈ Z≥1, and let

k ≥ 1. The following are equivalent:

(1) c′2l+ik(xk+1 − pk+1)− c′2l+ik−1(xk − pk) ≤ 0 for l ≥ 1;

(2) γk+1pk+1 − pk + xk − γk+1xk+1 ≥ 0.

Proof. Assume that (2) holds. By Lemma 6.1, we have c′2l+ik > γk+1c
′
2l+ik−1 for l ≥ 1. Since

xk+1 − pk+1 ≤ 0, we see that

c′2l+ik(xk+1 − pk+1)− c′2l+ik−1(xk − pk) ≤ c′2l+ik−1︸ ︷︷ ︸
>0

(γk+1xk+1 − γk+1pk+1 − xk + pk︸ ︷︷ ︸
≤0 by assumption

) ≤ 0.

Assume that (1) holds; note that (0 ≤) xk+1 ≤ pk+1. If xk+1 = pk+1, then we have −c′2l+ik−1(xk −
pk) ≤ 0. Since c′2l+ik−1 > 0, we obtain xk = pk, which gives γk+1pk+1 − pk + xk − γk+1xk+1 = 0.
Assume that xk+1 < pk+1. By the assumption, we obtain c′2l+ik/c

′
2l+ik−1 ≥ (xk − pk)/(xk+1 − pk+1).

Since the sequence {c′2l+ik/c
′
2l+ik−1}l≥1 is decreasing and converges to γk+1 by Lemma 6.1, we obtain

(xk − pk)/(xk+1 − pk+1) ≤ γk+1, which is equivalent to (2).

By Propositions 7.1 – 7.4, we obtain the following corollary.

Corollary 7.5. Let x̂ = (. . . , x2, x1) ∈ Im(Ψ+
ι+
) be such that xm ≤ pm for all m ∈ Z≥1.

(1) γkxk − xk+1 ≥ 0 for all k ≥ 1 if and only if

εij (f̃
pj+1

ij+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗) = 0

for all j ≤ 0.

(2) γk+1pk+1 − pk + xk − γk+1xk+1 ≥ 0 for all k ≥ 1 if and only if

ϕij (ẽ
pj−1−xj−1

ij−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞) = 0

for all j ≥ 1.
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7.2 Proof of Theorem 3.6.

Lemma 7.6. It holds that Σι(λ) ⊂ Im(Ψλ
ι ).

Proof. Let ~x = (. . . , x2, x1)⊗ tλ ⊗ (x0, x−1, . . .) ∈ Σι(λ). By Proposition 6.2, it suffices to show that

cjxj − cj−1xj+1 ≥ 0 for j ≥ 1, (7.4)

c′−j+1xj − c′−jxj−1 ≤ 0 for j ≤ 0. (7.5)

First, we verify (7.4). If j = 1, then the assertion is obvious because cj = 1 and cj−1 = 0.
Assume that j > 1; note that cj−1 > 0. It follows from Lemma 6.1 that γj < cj/cj−1. Also, we have
(γjζj − ζj+1)(~x) = γjxj − xj+1 ≥ 0 by the definition of Σι(λ). Hence,

cjxj − cj−1xj+1 = cj−1

(
cj
cj−1

xj − xj+1

)
≥ cj−1(γjxj − xj+1) ≥ 0.

Next, we verify (7.5). If j = 0, then the assertion is obvious because c′−j+1 = 1 and c′−j = 0.
Assume that j < 0; note that c′−j > 0. It follows from Lemma 6.1 that γj < c′−j+1/c

′
−j . Also, we have

(ζj−1 − γjζj)(~x) = xj−1 − γjxj ≥ 0 by the definition of Σι(λ). Hence,

c′−j+1xj − c′−jxj−1 = c′−j

(
c′−j+1

c′−j
xj − xj−1

)
≤ c′−j(γjxj − xj−1) ≤ 0.

Thus we have proved the lemma.

For k ∈ Z, we set k(+) := k + 2 and k(−) := k − 2. Also, we define the function β̄k : R∞ → R by

β̄k =

{
−〈λ, α∨

ik
〉+ ζk − aikζk+1 + ζk+2 if k = −1, 0,

ζk − aikζk+1 + ζk+2 otherwise;

note that β̄k(~x) = σk(~x)−σk(+)(~x). Moreover, for k ∈ Z, we define the operator Fk on {c+
∑

l∈Z φlζl |
c, φl ∈ R} as follows: for φ = c+

∑
l∈Z φlζl with c, φl ∈ R, we set

Fk(φ) :=

{
φ− φkβ̄k(+) if φk ≥ 0,

φ− φkβ̄k(−) if φk < 0;

note that Fk(φ) = φ if φk = 0.

Lemma 7.7. Let Ξ be a subset of {c+
∑

l∈Z φlζl | c, φl ∈ R}. Assume that

Fk(φ) ∈
∑
j≥1

R≥0ζj +
∑
j≤0

R≥0(−ζj) +
∑
ψ∈Ξ

R≥0ψ (7.6)

for all φ ∈ Ξ and k ∈ Z. Then, Σ = {~x ∈ Zι(λ) | φ(~x) ≥ 0 for all φ ∈ Ξ} is a subcrystal of Zι(λ).

Proof. This lemma can be shown similarly to [3, Lemma 4.3]. Let ~x ∈ Σ. We show that if f̃i~x 6= 0,
then f̃i~x ∈ Σ, that is, φ(f̃i~x) ≥ 0 for all φ ∈ Ξ. Let us write φ = c+

∑
l∈Z φlζl with c, φl ∈ R. Define

M(i) = M(i)(~x) as (2.3), and set k := minM(i). We see by (2.4) that φ(f̃i~x) = φ(~x) + φk. If φk ≥ 0,

then the assertion is obvious because φ(f̃i~x) = φ(~x) + φk ≥ φ(~x) ≥ 0. Assume that φk < 0. By the
definition of M(i) and the fact that ik = im if k ≡ m mod 2, we have σk(~x) > σk−2n(~x) for all n ∈ Z≥1.
In particular, σk(~x) > σk(−)(~x). Since β̄k(−)(~x) = σk(−)(~x)−σk(~x) ∈ Z, we deduce that β̄k(−)(~x) ≤ −1.
It follows that

φ(f̃i~x) = φ(~x) + φk ≥ φ(~x)− φkβ̄k(−)(~x) = (Fk(φ))(~x).
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By assumption (7.6), we see that Fk(φ) is of the form Fk(φ) =
∑

j≥1 tjζj +
∑

j≤0 tj(−ζj)+
∑

ψ∈Ξ tψψ,
where tj , tψ ∈ R≥0. Since ~x ∈ Σ, we have ψ(~x) ≥ 0 for any ψ ∈ Ξ. Therefore we see that

φ(f̃i~x) ≥ (Fk(φ))(~x) =
∑
j≥1

tj xj︸︷︷︸
≥0

+
∑
j≤0

tj(−xj︸︷︷︸
≥0

) +
∑
ψ∈Ξ

tψ ψ(~x)︸︷︷︸
≥0

≥ 0,

and hence f̃i~x ∈ Σ. Similarly, we can show that ẽi~x ∈ Σ if ẽi~x 6= 0. Thus we have proved the
lemma.

Proof of Theorem 3.6. By Lemmas 7.6 and 7.7, it suffices to show that

Fk(φ) ∈
∑
j≥1

R≥0ζj +
∑
j≤0

R≥0(−ζj) +
∑

ψ∈Ξι[λ]

R≥0ψ (7.7)

for all k ∈ Z and φ ∈ Ξι[λ]. Here we verify (7.7) for the case that φ = γ0p0 + γ0ζ0 − ζ1; for the other
cases, see Appendix A. If k 6= 0, 1, then the assertion is trivial since Fk(φ) = φ. Assume that k = 0.
We compute

F0(φ) = (γ0p0 + γ0ζ0 − ζ1)− γ0β̄0
= (γ0p0 + γ0ζ0 − ζ1)− γ0(p0 + ζ0 − a2ζ1 + ζ2)

= γ0

((
ai0 −

1

γ0

)
ζ1 − ζ2

)
= γ0(γ1ζ1 − ζ2︸ ︷︷ ︸

∈Ξι[λ]

) by (3.4).

Assume that k = 1. We compute

F1(φ) = (γ0p0 + γ0ζ0 − ζ1)− (−1)β̄−1

= (γ0p0 + γ0ζ0 − ζ1) + (−p1 + ζ−1 − a−1ζ0 + ζ1)

= γ0p0 − p1 + ζ−1 + (γ0 − a−1)ζ0

= γ0p0 − p1 + ζ−1 −
1

γ−1
ζ0 by (3.4)

= −p−1 +

(
γ0 +

1

γ1

)
p0 − p1 +

1

γ−1
(γ−1p−1 − p0 + γ−1ζ−1 − ζ0)

(note that γ−1 = γ1)

= −p−1 + a1p0 − p1 +
1

γ−1
(γ−1p−1 − p0 + γ−1ζ−1 − ζ0) by (3.4)

= 0 +
1

γ−1
(γ−1p−1 − p0 + γ−1ζ−1 − ζ0︸ ︷︷ ︸

∈Ξι[λ]

) by (3.2).

Thus we have proved Theorem 3.6.

7.3 Proof of Theorem 3.7.

Let Σι(λ)
′ be the subset of Σι(λ) consisting of the elements of the form x̂⊗tλ⊗z−∞ with x̂ ∈ Im(Ψ+

ι+
).

Proposition 7.8. For ~x ∈ Σι(λ)
′, the element ~x∗ is extremal.

Proposition 7.9. Let ~y ∈ Im(Ψλ
ι ). If ~y∗ is extremal, then there exist i1, . . . , il ∈ I and ~x ∈ Σι(λ)

′

such that ~x = f̃il · · · f̃i1~y.
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Assuming that Propositions 7.8 and 7.9 are true, we give a proof of Theorem 3.7.

Proof of Theorem 3.7. Set B := {~x ∈ Im(Ψλ
ι ) | ~x∗ is extremal}. First, we show that Σι(λ) ⊂ B. Let

~x = x̂1 ⊗ tλ ⊗ x̂2 ∈ Σι(λ) with x̂1 ∈ Z+∞
≥0,ι+

and x̂2 ∈ Z−∞
≤0,ι− . By Theorem 3.6, we have x̂2 ∈ Im(Ψ−

ι−).

Since Im(Ψ−
ι−)
∼= B(−∞) as crystals, there exist i1, . . . , il such that f̃max

il
· · · f̃max

i1
x̂2 = z−∞. Then

we see by the tensor product rule of crystals that ~y := f̃max
il
· · · f̃max

i1
~x is an element of Σι(λ)

′. Since

~x ∈ Σι(λ) ⊂ Im(Ψλ
ι ), we see that ~y ∈ Im(Ψλ

ι ). Also, it follows from Proposition 7.8 that ~y∗ is extremal.
Thus we obtain ~y ∈ B. Since B is a subcrystal by Corollary 2.8, we obtain ~x ∈ B.

Next, we show that Σι(λ) ⊃ B. Let ~y ∈ Im(Ψλ
ι ) be such that ~y∗ is extremal. By Proposition 7.9,

there exist i1, . . . , il ∈ I such that f̃il · · · f̃i1~y ∈ Σι(λ)
′ ⊂ Σι(λ). Therefore, by Theorem 3.6, we obtain

~y ∈ Σι(λ). This completes the proof of Theorem 3.7.

First, we prove Proposition 7.8. Let ~z = z1 ⊗ tλ ⊗ z2 ∈ Im(Ψλ
ι ). By the tensor product rule of

crystals (see also [8, Appendix B]), we see that

εi(~z) = max{εi(z1), ϕi(z2)− 〈wt(~z), α∨
i 〉}, (7.8)

ϕi(~z) = max{εi(z1) + 〈wt(~z), α∨
i 〉, ϕi(z2)}. (7.9)

Moreover,

ẽ
εi(z⃗)
i ~z = ẽ

εi(z1)
i z1 ⊗ tλ ⊗ ẽciz2, (7.10)

where c = max{−εi(z1) + ϕi(z2)− 〈wt(~z), α∨
i 〉, 0}. Since wt(Swk

~z∗) = wkwt(~z
∗) = −wkλ, we see that

〈wt(Swk
~z∗), α∨

i 〉 =

{
pk if i = ik,

−pk+1 if i = ik+1,
(7.11)

and hence
Swk

~z∗ = ẽpkik Swk−1
~z∗ = f̃

pk+1

ik+1
Swk+1

~z∗. (7.12)

Proposition 7.10. Let ~x = x̂⊗ tλ ⊗ z−∞ ∈ Σι(λ)
′ with x̂ = (. . . , x2, x1). Then,

Swk
~x∗ =

{
ẽxkik · · · ẽ

x2
i2
ẽx1i1 x̂

∗ ⊗ tµ ⊗ ẽpk−xkik
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞ if k ≥ 0,

f̃
pk+1

ik+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗ ⊗ tµ ⊗ z−∞ if k ≤ 0,

where µ := −λ− wt(x̂).

Proof. Since x̂ ∈ Im(Ψ+
ι+
) by Lemma 7.6, it follows from Proposition 2.6 that

xj = εij (ẽ
xj−1

ij−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗) for j ≥ 1. (7.13)

By the definition of Σι(λ)
′, we have pk−xk ≥ 0, γkxk−xk+1 ≥ 0, and γk+1pk+1−pk+xk−γk+1xk+1 ≥ 0

for all k ≥ 1. By Corollary 7.5, we see that

εij (f̃
pj+1

ij+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗) = 0 for j ≤ 0, (7.14)

ϕij (ẽ
pj−1−xj−1

ij−1
· · · ẽp2−x22 ẽp1−x11 z−∞) = 0 for j ≥ 1. (7.15)

Now, we show the assertion by induction on |k|. If k = 0, then the assertion is obvious by (2.5).
Assume that k ≥ 1. By the induction hypothesis, we obtain

Swk−1
~x∗ = ẽ

xk−1

ik−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗ ⊗ tµ ⊗ ẽ

pk−1−xk−1

ik−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞.

We have 〈wt(Swk−1
~x∗), α∨

ik
〉 = −pk ≤ 0 by (7.11), εik(ẽ

xk−1

ik−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗) = xk by (7.13), and

ϕik(ẽ
pk−1−xk−1

ik−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞) = 0
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by (7.15). Since xk ≤ pk as seen above, we see by (7.10) and (7.12) that

Swk
~x∗ = ẽpkik (ẽ

xk−1

ik−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗ ⊗ tµ ⊗ ẽ

pk−1−xk−1

ik−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞)

= ẽxkik ẽ
xk−1

ik−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗ ⊗ tµ ⊗ ẽpk−xkik

ẽ
pk−1−xk−1

ik−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞.

Assume that k ≤ −1. By the induction hypothesis, we obtain

Swk+1
~x∗ = f̃

pk+2

ik+2
· · · f̃p−1

i−1
f̃p0i0 x̂

∗ ⊗ tµ ⊗ z−∞.

Since Swk
~x∗ 6= 0, we see by (7.12) that

Swk
~x∗ = f̃

pk+1

ik+1
(f̃
pk+2

ik+2
· · · f̃p−1

i−1
f̃p0i0 x̂

∗ ⊗ tµ ⊗ z−∞) = f̃
pk+1

ik+1
f̃
pk+2

ik+2
· · · f̃p−1

i−1
f̃p0i0 x̂

∗ ⊗ tµ ⊗ z−∞.

Thus we have proved the proposition.

Proof of Proposition 7.8. Keep the notation and setting in Proposition 7.10. We show that ~x∗ is
extremal; by (7.11), it suffices to show that εik(Swk

~x∗) = 0 and ϕik+1
(Swk

~x∗) = 0 for all k ∈ Z.

Step 1. Assume that k ≥ 0. We show that ϕik+1
(Swk

~x∗) = 0. We know from Proposition 7.10
that

Swk
~x∗ = ẽxkik · · · ẽ

x2
i2
ẽx1i1 x̂

∗ ⊗ tµ ⊗ ẽpk−xkik
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞.

By the same argument as in the proof of Proposition 7.10, we see that 〈wt(Swk
~x∗), α∨

ik+1
〉 = −pk+1 ≤ 0,

εik+1
(ẽxkik · · · ẽ

x2
i2
ẽx1i1 x̂

∗) = xk+1, ϕik+1
(ẽpk−xkik

· · · ẽp2−x2i2
ẽp1−x1i1

z−∞) = 0, and xk+1 ≤ pk+1. Thus, by
(7.9), ϕik+1

(Swk
~x∗) = max{xk+1 + (−pk+1), 0} = 0.

Step 2. Assume that k > 0. We show that εik(Swk
~x∗) = 0. We have

εik(Swk
~x∗) = εik(ẽ

pk
ik
Swk−1

~x∗) = εik(Swk−1
~x∗)− pk

= ϕik(Swk−1
~x∗)− 〈wt(Swk−1

~x∗), α∨
ik
〉︸ ︷︷ ︸

=−pk by (7.11)

−pk = ϕik(Swk−1
~x∗).

Since ϕik(Swk−1
~x∗) = 0 by Step 1, we obtain εik(Swk

~x∗) = 0.

Step 3. Assume that k ≤ 0. We show that εik(Swk
~x∗) = 0. We know from Proposition 7.10 that

Swk
~x∗ = f̃

pk+1

ik+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗ ⊗ tµ ⊗ z−∞.

We have 〈wt(Swk
~x∗), α∨

ik
〉 = pk by (7.11) and εik(f̃

pk+1

ik+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗) = 0 by (7.14). Since ϕik(z−∞) =

0, we see by (7.8) that εik(Swk
~x∗) = max{0, 0− pk} = 0.

Step 4. Assume that k < 0. We show that ϕik+1
(Swk

~x∗) = 0. We have

ϕik+1
(Swk

~x∗) = ϕik+1
(f̃
pk+1

ik+1
Swk+1

~x∗) = ϕik+1
(Swk+1

~x∗)− pk+1

= εik+1
(Swk+1

~x∗) + 〈wt(Swk+1
~x∗), α∨

ik+1
〉︸ ︷︷ ︸

=pk+1 by (7.11)

−pk+1 = εik+1
(Swk+1

~x∗).

Since εik+1
(Swk+1

~x∗) = 0 by Step 3, we obtain ϕik+1
(Swk

~x∗) = 0.

This completes the proof of Proposition 7.8.

Next, we prove Proposition 7.9. Let ~y = ŷ1⊗tλ⊗ŷ2 ∈ Im(Ψλ
ι ) with ŷ1 ∈ Im(Ψ+

ι+
) and ŷ2 ∈ Im(Ψ−

ι−),
and assume that ~y∗ is extremal. Since Im(Ψ−

ι−)
∼= B(−∞) as crystals, there exist i1, . . . , il such that

f̃max
il
· · · f̃max

i1
ŷ2 = z−∞. By the tensor product rule of crystals, if we set ~x := f̃max

il
· · · f̃max

i1
~y, then

~x is of the form ~x = x̂ ⊗ tλ ⊗ z−∞ with x̂ ∈ Im(Ψ+
ι+
); in order to prove Proposition 7.9, it suffices
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to show that ~x ∈ Σι(λ). Let us write x̂ = (. . . , x2, x1). By the definition of Σι(λ), we deduce that
~x = (. . . , x2, x1)⊗ tλ ⊗ z−∞ ∈ Σι(λ) if and only if

pk − xk ≥ 0 for k ≥ 1; (7.16)

γkxk − xk+1 ≥ 0 for k ≥ 1; (7.17)

γk+1pk+1 − pk + xk − γk+1xk+1 ≥ 0 for k ≥ 1; (7.18)

γ0p0 + γ0 · 0− x1 ≥ 0; (7.19)

γ1p1 + 0− γ1x1 ≥ 0. (7.20)

Assume that (7.16) holds. Then it is obvious that (7.20) holds. Moreover, we obtain γ0p0+γ0 ·0−x1 ≥
γ0p0 − p1. Recall that a1a2 > 4. Thus we obtain

√
a21a

2
2 − 4a1a2 > a1a2 − 3, and hence

γ0 = α =
a1a2 +

√
a21a

2
2 − 4a1a2

2a2
>

2a1a2 − 3

2a2
= a1 −

3

2a2
.

Assume that a1, a2 ≥ 2. Then a1−3/2a2 > a1−1 > 0. By the definition of λ, either p0 ≤ p1 < (a1−1)p0
or p1 < p0 ≤ (a2 − 1)p1 holds. In both cases, we deduce that γ0p0 − p1 ≥ 0. Assume that a1 = 1
(resp., a2 = 1). Then a1 − 3/2a2 > 1/2 (resp., a1 − 3/2a2 > a1 − 2). By the definition of λ, we have
2p1 ≤ p0 ≤ (a2 − 2)p1 (resp., 2p0 ≤ p1 ≤ (a1 − 2)p0). Hence we deduce that γ0p0 − p1 ≥ 0. Thus we
get (7.19). Therefore, it remains to show that (7.16), (7.17), and (7.18).

Now, since {~z ∈ Im(Ψλ
ι ) | ~z∗ is extremal} is a subcrystal of Im(Ψλ

ι ), it follows that ~x ∈ {~z ∈
Im(Ψλ

ι ) | ~z∗ is extremal}. Also, by Proposition 2.6, we have

xj = εij (ẽ
xj−1

ij−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗) for j ≥ 1. (7.21)

Proposition 7.11 (proof of (7.16)). Let ~x = x̂⊗ tλ ⊗ z−∞ ∈ Im(Ψλ
ι ), and write x̂ = (. . . , x2, x1). If

~x∗ is extremal, then pk − xk ≥ 0, and

Swk
~x∗ = ẽxkik · · · ẽ

x2
i2
ẽx1i1 x̂

∗ ⊗ tµ ⊗ ẽpk−xkik
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞

for k ≥ 1, where µ := −λ− wt(x̂).

Proof. We proceed by induction on k. Assume that k = 1. Since ~x∗ = x̂∗ ⊗ tµ ⊗ z−∞, and
〈wt(~x∗), α∨

i1
〉 = 〈−λ, α∨

i1
〉 = −p1, we see by (7.8) and (7.21) that

ε1(~x
∗) = max{x1, 0− (−p1)} = max{x1, p1}. (7.22)

Because ~x∗ is extremal, the inequality 〈wt(~x∗), α∨
i1
〉 = −p1 ≤ 0 implies that ε1(~x

∗) = p1. By (7.22),
we obtain p1 = max{x1, p1}, and hence x1 ≤ p1. Also we see by (7.10) that Sw1~x

∗ = ẽp1i1 ~x
∗ =

ẽx1i1 x̂
∗ ⊗ tµ ⊗ ẽp1−x1i1

z−∞.
Let k ≥ 2. By the induction hypothesis, we have

Swk−1
~x∗ = ẽ

xk−1

ik−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗ ⊗ tµ ⊗ ẽ

pk−1−xk−1

ik−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞.

Hence we see by (7.21) that

εik(Swk−1
~x∗) = max{εik(ẽ

xk−1

ik−1
· · · ẽx1i1 x̂

∗), ϕik(ẽ
pk−1−xk−1

ik−1
· · · ẽp1−x1i1

z−∞)− 〈wt(Swk−1
~x∗), α∨

ik
〉︸ ︷︷ ︸

=: mk

}

= max{xk,mk}.
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By (7.11), we have 〈wt(Swk−1
~x∗), α∨

ik
〉 = −pk. Since ~x∗ is extremal, the inequality 〈wt(Swk−1

~x∗), α∨
ik
〉 =

−pk ≤ 0 implies that εik(Swk−1
~x∗) = pk. Hence we obtain pk = max{xk,mk}, which implies xk ≤ pk.

Therefore we see by (7.10) and (7.12) that

Swk
~x∗ = ẽpkik Swk−1

~x∗

= ẽpkik ẽ
xk−1

ik−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗ ⊗ tµ ⊗ ẽ

pk−1−xk−1

ik−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞

= ẽxkik · · · ẽ
x2
i2
ẽx1i1 x̂

∗ ⊗ tµ ⊗ ẽpk−xkik
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞.

Thus we have proved the proposition.

Proposition 7.12 (proof of (7.18)). Let ~x = x̂⊗ tλ ⊗ z−∞ ∈ Im(Ψλ
ι ), and write x̂ = (. . . , x2, x1). If

~x∗ is extremal, then γk+1pk+1 − pk + xk − γk+1xk+1 ≥ 0 for k ≥ 1.

Proof. By Corollary 7.5, it suffices to show that ϕij (ẽ
pj−1−xj−1

ij−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞) = 0 for all j ≥ 1.

Let j ≥ 1. Since ~x∗ is extremal, and since 〈wt(Swj−1~x
∗), α∨

ij
〉 = −pj ≤ 0 by (7.11), we see that

ϕij (Swj−1~x
∗) = 0. We know from Proposition 7.11 that

Swj−1~x
∗ = ẽ

xj−1

ij−1
· · · ẽx2i2 ẽ

x1
i1
x̂∗ ⊗ tµ ⊗ ẽ

pj−1−xj−1

ij−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞.

We see by (7.9) that

0 = ϕij (Swj−1~x
∗)

= max{εij (e
xj−1

ij−1
· · · ẽx1i1 x̂

∗) + 〈wt(Swj−1~x
∗), α∨

ij 〉, ϕij−1(ẽ
pj−1−xj−1

ij−1
· · · ẽp1−x1i1

z−∞)}.

Hence we obtain 0 ≥ ϕij (ẽ
pj−1−xj−1

ij−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞). Because ϕi(ẑ) ≥ 0 for all i ∈ I and

ẑ ∈ Z−∞
≤0,ι− , we conclude that 0 = ϕij (ẽ

pj−1−xj−1

ij−1
· · · ẽp2−x2i2

ẽp1−x1i1
z−∞). Thus we have proved the

proposition.

Proposition 7.13 (proof of (7.17)). Let ~x = x̂⊗ tλ ⊗ z−∞ ∈ Im(Ψλ
ι ), and write x̂ = (. . . , x2, x1). If

~x∗ is extremal, then γkxk − xk+1 ≥ 0 for k ≥ 1.

Proof. By Corollary 7.5, it suffices to show that εij (f̃
pj+1

ij+1
f̃
pj+2

ij+2
· · · f̃p0i0 x̂

∗) = 0 for all j ≤ 0. Let j ≤ 0.

Since ~x∗ is extremal, and since 〈wt(Swj~x
∗), α∨

ij
〉 = pj ≥ 0 by (7.11), we see that εij (Swj~x

∗) = 0. We

see by (7.12) that

Swj~x
∗ = f̃

pj+1

ij+1
· · · f̃p−1

i−1
f̃p0i0 Sw0~x

∗ = f̃
pj+1

ij+1
· · · f̃p−1

i−1
f̃p0i0 (x̂

∗ ⊗ tµ ⊗ z−∞).

Since Swj~x
∗ 6= 0, and since f̃iz−∞ = 0 for all i ∈ I, we see that

Swj~x
∗ = f̃

pj+1

ij+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗ ⊗ tµ ⊗ z−∞.

It follows from (7.8) that 0 = εij (Swj~x
∗) = max{εij (f̃

pj+1

ij+1
· · · f̃p−1

i−1
f̃p0i0 x̂

∗), 0− pj}. Since −pj < 0, and

since εi(ẑ) ≥ 0 for all i ∈ I and ẑ ∈ Z+∞
≥0,ι+

, we obtain

εik(f̃
pj+1

ij+1
f̃
pj+2

ij+2
· · · f̃p−1

i−1
x̂∗) = 0.

Thus we have proved the proposition.

45



Appendix.

A Action of Fk on Ξι[λ].

In this appendix, we compute Fk(φ), k ∈ Z, for φ = c +
∑

l∈Z φlζl ∈ Ξι[λ]; recall that Fk(φ) = φ for
k ∈ Z such that φk = 0.

F0(γ0p0 + γ0ζ0 − ζ1) = α(γ1ζ1 − ζ2).

F1(γ0p0 + γ0ζ0 − ζ1) =
1

β
(γ−1p−1 − p0 + γ−1ζ−1 − ζ0).

F0(γ1p1 + ζ0 − γ1ζ1) =
1

α
(γ2p2 − p1 + ζ1 − γ2ζ2).

F1(γ1p1 + ζ0 − γ1ζ1) = β(ζ−1 − γ0ζ0).

For k ≥ 1,

Fk(pk − ζk) =



(ζ−1 − γ0ζ0) +
1

β
(−ζ0) if k = 1,

1

α
(p1 − ζ1) + (γ1p1 + ζ0 − γ1ζ1) if k = 2,

1

γk
(pk−1 − ζk−1) + (γk−1pk−1 − pk−2 + ζk−2 − γk−1ζk−1) if k ≥ 3.

Fk(γkζk − ζk+1) = γk(γk+1ζk+1 − ζk+2).

Fk+1(γkζk − ζk+1) =


1

α
(γ0p0 + γ0ζ0 − ζ1) if k = 1,

1

γk−1
(γk−1pk−1 − ζk) if k ≥ 2.

Fk(γk+1pk+1 − pk + ζk − γk+1ζk+1) =
1

γk+2
(γk+2pk+2 − pk+1 + ζk+1 − γk+2ζk+2).

Fk+1(γk+1pk+1 − pk + ζk − γk+1ζk+1) =

{
α(γ1p1 + ζ0 − γ1ζ1) if k = 1,

γk+1(γkpk − pk−1 + ζk+1 − γkζk) if k ≥ 2.

For k ≤ 0,

Fk(pk + ζk) =



1

α
(−ζ1) + (γ1ζ1 − ζ2) if k = 0,

1

β
(p0 + ζ0) + (γ0p0 + γ0ζ0 − ζ1) if k = −1,

1

γk
(pk+1 + ζk+1) + (γk+1pk+1 − pk+2 + γk+1ζk+1 − ζk+2) if k ≤ −2.

Fk−1(ζk−1 − γkζk) =


1

β
(γ1p1 + ζ0 − γ1ζ1) if k = 0,

1

γk+1
(ζk − γk+1ζk+1) if k ≤ −1.

Fk(ζk−1 − γkζk) = γk(ζk−2 − γk−1ζk−1).

Fk−1(γk−1pk−1 + γk−1ζk−1 − pk + ζk) =

{
β(γ0p0 + γ0ζ0 − ζ1) if k = 0,

γk−1(γkpk − pk+1 + γkζk − ζk+1) if k ≤ −1.

Fk(γk−1pk−1 + γk−1ζk−1 − pk + ζk) =
1

γk−2
(γk−2pk−2 − pk−1 + γk−2ζk−2 − ζk−1).
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