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Abstract

Semidefinite optimization problems (SDPs) have a wide range of applications in convex
optimization, combinatorial and nonconvex optimizations and control theory. The com-
putational tractability of SDPs mainly comes from the fact that SDPs can be solved in
polynomial time to any desired precision with interior-point methods. However, their com-
putations become difficult when the size of the SDP becomes large. As an alternative
class of methods to compensate for the weakness of interior-point methods, cutting-plane
methods can obtain tightly approximated solutions of SDPs in a considerable amount of
time. In this thesis, we focus on cutting-plane methods, which generate relaxations of SDPs
and solve them as easily handled optimization problems. In particular, we focus on what
impacts the initial relaxation problem, i.e., the approximations of the semidefinite cone.

We develop techniques to construct a series of sparse polyhedral approximations of
the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and
Yoshise (2018), we propose a simple expansion of SD bases so as to keep the sparsity of the
matrices composing it. We prove that the polyhedral approximation using our expanded SD
bases contains the set of all diagonally dominant matrices, namely DDn, and is contained
in the set of all scaled diagonally dominant matrices, namely SDDn. We also prove that
SDDn can be expressed using an infinite number of expanded SD bases.

We evaluate the dual cone of the set of diagonally dominant matrices (resp., scaled
diagonally dominant matrices), namely DD∗n (resp., SDD∗n), as an approximation of the
semidefinite cone. Using the measure proposed by Blekherman et al. (2020) called the norm
normalized distance, we prove that the norm normalized distance between a set S and the
semidefinite cone has the same value whenever SDD∗n ⊆ S ⊆ DD∗n. This implies that the
norm normalized distance is not a sufficient measure to evaluate these approximations. As
a new measure to compensate for the weakness of that distance, we propose a new measure,
called the trace normalized distance. We prove that the trace normalized distance between
DD∗n and Sn+ has a different value from the one between SDD∗n and Sn+, and give the exact
values of these distances. We also present a new measure that calculates the minimum
distance from some fixed points to a set. Using this measure, we show the tractability of
our proposed approximation using expanded SD bases.

We use our approximation as the initial approximation in the cutting-plane method for
solving doubly nonnegative optimization problems and a semidefinite relaxation of the max-
imum stable set problem. It is found that for large-scale instances, the proposed method
with expanded SD bases is significantly more efficient than methods using other existing
approximations or solving the semidefinite optimization problem directly.

Keywords: Semidefinite optimization problem; Polyhedral approximation; Factor width;
Diagonally dominant matrix; Scaled diagonally dominant matrix; Expanded semidefinite
basis; Norm normalized distance; Trace normalized distance; Cutting-plane method.
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Chapter 1

Introduction

1.1 Linear optimization and semidefinite optimization

An optimization problem is a problem that minimizes or maximizes an objective function

under some constraints. Optimization problems arise in many fields, such as transporta-

tion, economies, control engineering, management science. Based on whether the variables

are continuous or discrete, optimization problems can be classified into two types: discrete

optimization problems and continuous optimization problems. One major subfield in con-

tinuous optimization is convex optimization, which considers when the objective function

and the set of feasible solutions are both convex. A basic and well-known class of con-

vex optimization problems is the class of linear optimization problems, where the objective

function and all constraints are linear.

Linear optimization problems

A linear optimization problem (LP) in standard form is written as

min 〈c, x〉

s.t. 〈aj , x〉 = bj , j = 1, 2, . . . ,m,

x ∈ Rn+,

where c, aj ∈ Rn, bj ∈ R (j = 1, . . . ,m), Rn+ is the set of entrywise nonnegative vectors, and

〈x, y〉 := xT y is the inner product over Rn.

In 1947, Dantzig [33] formulated linear optimization problems and discovered the simplex

method for solving them. Although the simplex method is efficient in practice, the worst-

case complexity of the simplex method with Dantzig’s most-negative-reduced-cost pivot rule

is known to be exponential time through an example by Klee and Minty [69]. Khachiyan [66]

was the first to show that LPs are polynomial-time solvable by using the ellipsoid method,
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CHAPTER 1. INTRODUCTION

though its performance in practice was not promising (e.g., [19]). In 1984, Karmarkar

[64] proposed a new polynomial-time algorithm, called the interior-point method, which is

efficient in practice. Karmarkar’s method encourages a large number of studies on interior-

point methods (for more details, see e.g., [50, 107]). Based on the study of Megiddo [85],

Kojima, Mizuno and Yoshise [71] developed a primal-dual interior point method, which

generates a sequence of primal and dual interior solutions of an LP. As a powerful class of

interior-point methods, primal-dual methods have been studied by many researchers since

1986 (e.g., [87] and [84]). The recent widely used LP solvers (e.g., Gurobi [53] and CPLEX

[32]) often implement simplex methods and primal-dual interior point methods. For a more

detailed survey of algorithms for LPs, we refer interested readers to [109] and [119]. It is

worth noting that in 2015, Chubanov [31] proposed another polynomial-time algorithm for

solving linear feasibility problems, which leads to a new stream of researches (e.g., [100]).

Linear optimization problems can be seen as special cases of semidefinite optimiza-

tion problems, which have gained increasing attention since the 1990s. The tractability

of semidefinite optimization problems comes from the fact that they have a wild range

of applications in convex optimizations, combinatorial and nonconvex optimizations and

control theory. More importantly, semidefinite optimization problems can be solved in

polynomial time to any desired precision with interior-point methods (e.g., [3]). Next, we

look into semidefinite optimization problems and introduce some of their applications and

algorithms.

Semidefinite optimization problems

A semidefinite optimization problem (SDP) is an optimization problem in variables in

the space of real symmetric matrices with a linear objective function and linear constraints

over the semidefinite cone. We denote the space of symmetric matrices as Sn := {X ∈
Rn×n | Xi,j = Xj,i (1 ≤ i < j ≤ n)} and the semidefinite cone as Sn+ := {X ∈ Sn | dTXd ≥
0 for any d ∈ Rn}. Accordingly, we can readily define an SDP in the standard form, as

min 〈C,X〉

s.t. 〈Aj , X〉 = bj , j = 1, 2, . . . ,m, (1.1)

X ∈ Sn+,

where C ∈ Sn, Aj ∈ Sn, bj ∈ R (j = 1, 2, . . . ,m), and 〈A,B〉 := Tr(ATB) =
∑n

i,j=1Ai,jBi,j

is the inner product over Sn.

Semidefinite optimization has wide applications in convex optimization, such as convex

quadratically constrained optimization and eigenvalue optimization (e.g., [36, 56]). As a

2



CHAPTER 1. INTRODUCTION

special class of convex optimization, semidefinite optimization is also a powerful tool that

provides convex relaxations for combinatorial and nonconvex optimizations, such as the

max-cut problem (e.g., [28, 48]) , the k-equipartition problem (e.g., [63, 118]) and the

quadratic knapsack problem (e.g.[57, 58]). Some of these relaxations can even attain the

optimum, as shown in [67] and [77]. There are also many applications of SDPs in control

theory, see e.g., [25, 92]. Interested readers may find more details about SDPs and their

applications in [4, 55, 79, 108, 111, 112, 118]. Here, we briefly introduce two applications

of semidefinite optimization in convex and combinatorial optimizations.

Example 1: Convex quadratically constrained quadratic optimization

First, we present an application of semidefinite optimization in convex optimization.

Consider a quadratically constrained quadratic optimization problem (QCQP) of the form:

(QCQP) : min
x∈Rn

xTQ0x+ dT0 x+ e0

s.t. xTQix+ dTi x+ ei ≤ 0, i = 1, . . . ,m,

where Qi ∈ Sn+, di ∈ Rn and ei ∈ R, i = 0, . . . ,m. This problem is equivalent to

(QCQP) : min
x∈Rn,α∈R

α

s.t. xTQ0x+ dT0 x+ e0 ≤ α

xTQix+ dTi x+ ei ≤ 0, i = 1, . . . ,m.

For each semidefinite matrix Qi ∈ Sn+ where i = 0, . . . ,m, we know that there exists

a positive integer ki and a matrix Mi ∈ Rki×n such that Qi = MT
i Mi. A fundamental

property of semidefinite matrices (see, e.g., Fact 11. [108]) states that with matrices C ∈
Sn2 , B ∈ Rn1×n2 and A ∈ Sn1 positive definite (i.e., ∀d ∈ Rn1 \ {0}, dTAd > 0), we have(

A B

BT C

)
∈ Sn1+n2

+ if and only if C −BTA−1B ∈ Sn2
+ .

As its direct corollary, one can easily see that the problem (QCQP) can be equivalently

3



CHAPTER 1. INTRODUCTION

written as the following SDP:

min
x∈Rn,α∈R

α

s.t.

(
Ik0 M0x

(M0x)T −e0 − dT0 x+ α

)
∈ Sk0+1

+(
Iki Mix

(Mix)T −ei − dTi x

)
∈ Ski+1

+ , i = 1, . . . ,m,

where Iki is the ki × ki identity matrix.

Example 2: The max-cut problem

Next, we introduce an application of semidefinite optimization in combinatorial opti-

mization. Consider an undirected graph with a set of nodes N = {1, . . . , n} and a set of

edges E . Let wi,j = wj,i ≥ 0 be the weight on each edge (i, j) ∈ E . For a subset of nodes

K ⊆ N , let δ(K) := {(i, j) ∈ E | i ∈ K, j /∈ K}, called the cut determined by K. The

max-cut problem is to find a cut of maximum weight, i.e., find a subset of nodes K ⊆ N ,

such that
∑

(i,j)∈δ(K)wi,j attains its maximum. We assume that the graph is complete (i.e.,

each pair of nodes are adjacent) by setting wi,j = 0 for (i, j) /∈ E . We also let wi,i = 0 for

i = 1, . . . , n. Then the max-cut problem can be formulated as

(MAXCUT) max
1

4

n∑
i=1

n∑
j=1

wi,j(1− xixj)

s.t. xi ∈ {1,−1}, i = 1 . . . , n.

Let W be a matrix where Wi,j = −wi,j
4 for i 6= j and Wi,i =

∑n
j=1

wi,j
4 for i = 1, . . . , n. By

setting X = xxT , (MAXCUT) can be equivalently formulated as

(MAXCUT) max 〈W,X〉

s.t. Xi,i = 1, i = 1 . . . , n,

X = xxT .

4



CHAPTER 1. INTRODUCTION

Note that X = xxT if and only if X ∈ Sn+ and rank(X) = 1. Therefore, we can obtain a

relaxed semidefinite optimization problem by removing the rank constraint:

(reSDP) max 〈W,X〉

s.t. Xi,i = 1, i = 1 . . . , n,

X ∈ Sn+.

Let OPT be the optimal value of (MAXCUT). Goemans and Williamson [48] used (reSDP)

to derive a randomized algorithm, which produces a cut whose expected objective value is

at least 0.87856OPT .

1.2 Algorithms for solving SDPs

An important difference between semidefinite optimization and linear optimization is

that there is no straightforward or practical simplex method for SDPs (c.f. [111]). The el-

lipsoid method of Yudin and Nemirovsky [122] and Shor [104] can be used to solve SDPs, but

it is slow in practice. The computational tractability of semidefinite optimization problems

mainly comes from the fact that SDPs can be solved in polynomial time to any desired pre-

cision with interior-point methods. Nesterov and Nemirovski [90] showed that interior-point

methods for linear optimization can be generalized to convex optimization. Independently,

Alizadeh [3] generalized interior-point methods from linear optimization to semidefinite op-

timization. In recent years, state-of-the-art SDP solvers implementing interior-point meth-

ods have been developed, such as SDPA [120], SeDuMi [105], SDPT3 [110], and Mosek [6].

However, their computations become difficult when the size of the SDP becomes large. For

example, Mosek Optimizer 9.0 cannot solve an instance of Problem (1.1) with n = 300

and entry-wise nonnegative constraints within 20000s on a Windows PC with an Intel(R)

Core(TM) i7-6700 CPU running at 3.4 GHz and 16 GB of RAM. This deficiency is mainly

due to the memory requirements of interior-point methods, i.e., their iterations generate

points in the interior feasible set of an SDP and require storage and computations on large

dense matrices.

To compensate for the weakness of interior-point methods, many researchers have de-

veloped techniques and alternative algorithms for solving structured and general large-scale

SDPs.

Many techniques have been developed for SDPs with special structures. For large-scale

SDPs with special symmetric or facial structures, one may use preprocessing techniques

to reduce the size of the SDPs, which leads to facial reduction methods (e.g., [24, 94,

95, 113, 125]) and symmetry reduction methods (e.g., [37, 60, 96, 101]). For SDPs with
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CHAPTER 1. INTRODUCTION

chordal sparsity structures, one can transform a large semidefinite constraint into a set of

lower-dimensional semidefinite constraints with equality constraints [52, 61]. Interior-point

methods (e.g., [46, 5]) and first-order methods (e.g., [82, 123]) for solving SDPs with chordal

sparsity structures are developed. For SDPs in low-rank approximation problems (e.g.,

in matrix completion problems), which expect to find low-rank solutions with reasonable

objective values, one may consider dealing with problems only in lower dimensions and

increase computational efficiency. This idea inspired algorithms for solving SDPs with low-

rank structures such as the Burer-Monteiro method (e.g., [29, 30]) and the Frank-Wolfe

based methods (e.g., [45, 54]).

There are other methods for solving general large-scale SDPs. For example, an alter-

native for solving large-scale SDPs is to use first-order methods, which is simpler than

second-order interior-point methods but may result in less accurate solutions (i.e., small

violations on constraints may occur). This encourages some researches on the alternating

direction method of multipliers (ADMM) for solving SDPs (e.g., [62, 91, 116]).

Another idea is to generate relaxations of SDPs and solve them as easily handled opti-

mization problems, e.g., LPs and second-order cone optimization problems (SOCPs), which

leads to cutting-plane methods (e.g., [1, 2, 72, 73, 75, 114]). Since the relaxed problems,

i.e., LPs and SOCPs, can be solved significantly faster than SDPs by using powerful LP

and SOCP solvers, the cutting-plane methods allow us to sacrifice solution optimality for

computational efficiency.

Note that there are many other alternatives to interior-point methods for SDPs, such as

the accelerated first-order method by Renegar [98] and the generalizations of the Chubanov’s

algorithm (e.g., [80, 93]). We refer interested readers to a recent survey on alternative

methods for solving large-scale SDPs by Majumdar, Hall and Ahmadi [83].

In practice, when considering a semidefinite optimization problem, sometimes we only

need to obtain a lower bound of the optimal value of the SDP instead of solving it to the

optimum. The cutting-plane methods can be used to provide tight bounds on the optimal

value of an SDP within a reasonable time. This merit encourages us to gain insight into

the cutting-plane methods.

Cutting-plane methods for solving SDPs

The cutting-plane method was first used on the traveling salesman problem by Dantzig,

Fulkerson, and Johnson [34, 35] in 1954. It was used in 1958 by Gomory [49] to solve

integer linear programming problems. In 1960, Kelly [65] proposed a cutting-plane method

for solving convex optimization problems. As SDPs became popular, cutting-plane methods

came to be used on them as well; see, for instance, Krishnan and Mitchell [73, 74, 75] and

6



CHAPTER 1. INTRODUCTION

Konno et al. [72]. Kobayashi and Takano [70] applied it to a class of mixed-integer SDPs.

In [1], Ahmadi, Dash, and Hall applied it to nonconvex polynomial optimization problems

and copositive optimization problems.

The cutting-plane method solves an SDP by transforming it into a relaxed optimization

problem (e.g., an LP or an SOCP), adding cutting-planes at each iteration to cut the current

approximate solution out of the feasible region in the subsequent iterations, and get close

to the optimal value. There are two essential questions about the cutting-plane method for

solving SDPs:

Q1 How to add cutting-planes to the relaxed problem?

Q2 How to obtain an initial relaxation problem from a given SDP?

As for the first question, one common strategy for generating cuts at each iteration is to

obtain the eigenvector d ∈ Rn corresponding to the least eigenvalue of the current solution

X̂. Then, ddT either verifies X̂ ∈ Sn+ if 〈ddT , X̂〉 ≥ 0, or generates a separating hyperplane

such that 〈ddT , X̂〉 < 0 and 〈ddT , X〉 ≥ 0 for all X ∈ Sn+. Note that there are other kinds

of cuts. Bertsimas and Cory-Wright [17] proposed the nuclear norm cut, which penalizes

the sum of absolute values of all eigenvalues instead of the least eigenvalue of the current

solution. The eigenvector cuts and the nuclear norm cuts are LP-based cuts because they

involve only linear constraints. Ahmadi et al. [1] introduced an SOCP-based cut, which

ensures that the 2×2 matrix (p1, p2)TX(p1, p2) is semidefinite, where p1, p2 are eigenvectors

corresponding to the 2 least eigenvalues of the current solution.

As in the second question, the choice of the initial relaxation problem, is also an impor-

tant issue. If the initial relaxation problem has a better lower bound on the optimal value,

then we may need less effort to get close to the optimum. If the initial relaxation prob-

lem is easier to handle, then the algorithm may be more computationally efficient. These

observations inspired us to focus on what impacts the initial relaxation problem.

In the above-mentioned cutting-plane methods for SDPs, the semidefinite constraint

X ∈ Sn+ in (1.1) is first relaxed to X ∈ Kout, where Sn+ ⊆ Kout ⊆ Sn. We call such a

set Kout an initial outer approximation of Sn+, and the relaxed problem with constraint

X ∈ Kout is an initial relaxation of the SDP. If Kout is given by linear constraints, then the

initial relaxation gives an LP and can be solved by powerful LP solvers; if Kout is given

by second-order constraints, then the initial relaxation becomes an SOCP. To improve the

performance of these cutting-plane methods, we consider generating initial relaxations for

SDPs that are both tight and computationally efficient and focus on approximations of Sn+.

7
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1.3 Polyhedral approximations of the semidefinite cone

Many approximations of Sn+ have been proposed on the basis of its well-known properties.

Kobayashi and Takano [70] used the fact that the diagonal elements of semidefinite matrices

are nonnegative. Konno et al. [72] imposed an assumption that all diagonal elements of the

variable X in the SDPs appearing in their iterative algorithm are bounded by a constant.

The sets of diagonally dominant matrices, namely DDn, and the set of scaled diagonally

dominant matrices, namely SDDn, are known to be cones contained in Sn+, (see, e.g., [59]

and [1] for details). The inclusive relation among them has been studied in, e.g., [12]

and [18]. Ahmadi et al. [1] used these sets as initial approximations of their cutting-plane

method. Boman et al. [23] defined the factor width of a semidefinite matrix, and Permenter

and Parrilo used it to generate approximations of Sn+, which they applied to facial reduction

methods in [95].

Among these approximations, we focus on those approximations given by the intersection

of a finite number of closed half-spaces, i.e., the polyhedral approximations. Relaxations

with polyhedral approximations can be solved efficiently and accurately by state-of-the-art

LP solvers, e.g., Gurobi [53].

Tanaka and Yoshise defined various bases of Sn, wherein each basis consists of n(n+1)
2

semidefinite matrices, called semidefinite (SD) bases, and used them to devise polyhedral

approximations of Sn+ [106]. They showed that the conical hull of SD bases and its dual

cone give inner and outer polyhedral approximations of Sn+, respectively. In this thesis, we

focus on the fact that SD bases are sometimes sparse, i.e., the number of nonzero elements

in a matrix is relatively small, and hence, it is not so computationally expensive to solve

polyhedrally approximated problems in such SD bases. We call such an approximation a

sparse polyhedral approximation.

The research by Tanaka and Yoshise [106] motivated us to construct tighter and sparse

polyhedral approximations of Sn+ by using SD bases in order to solve complicated large-scale

SDPs, e.g., the doubly nonnegative (DNN) relaxations of copositive optimization problems.

Evaluating the approximations of the semidefinite cone

Although the inclusive relationship of the approximations as mentioned above has been

given (e.g., [2], [17], [114]), theoretical analyses of how well these sets approximate the

semidefinite cone have been limited.

Fawzi [43] evaluated how polytopes can approximate a compact slice of the semidefi-

nite cone by using a measure called extension complexity. Bertsimas and Cory-Wright [17]

evaluated the dual cones of DDn and SDDn as approximations of the semidefinite cone

by comparing lower bounds of the minimum eigenvalues of matrices from these two sets.

8
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Blekherman et al. [20] proposed an evaluation method called the norm normalized dis-

tance. The norm normalized distance between a given approximation S ⊆ Sn and Sn+ is the

maximum distance from a matrix X ∈ S to Sn+, where the Frobenius norm of the matrix

X is assumed to be one. Using this measure, they evaluated the set of matrices whose

2× 2 principal submatrices are positive semidefinite, namely Sn,k, as an approximation of

the semidefinite cone. They obtained several upper bounds and lower bounds of the norm

normalized distance between Sn,k and Sn+.

Motivated by these results, we conduct theoretical analyses and evaluate the approxi-

mations of the semidefinite cone, including DDn, SDDn and the polyhedral approximation

we proposed.

1.4 Contribution and outline

The contributions of this paper are summarized as follows.

• In this thesis, we propose a simple expansion of SD bases without losing the sparsity

of the matrices and prove that one can generate a sparse polyhedral approximation

of Sn+ that contains the set of diagonally dominant matrices and is contained in the

set of scaled diagonally dominant matrices.

• We show that the norm normalized distance between a set S and Sn+ has the same

value whenever SDD∗n ⊆ S ⊆ DD∗n. This implies that the norm normalized distance

is not a sufficient measure to evaluate these approximations. As a new measure to

compensate for the weakness of that distance, we introduce a new distance, called

the trace normalized distance. We prove that the trace normalized distance between

DD∗n and Sn+ has a different value from the one between SDD∗n and Sn+, and give the

exact values of these distances. We also present a new measure that calculates the

minimum distance from some fixed points to a set. Using this measure, we show the

tractability of our proposed approximation using expanded SD bases.

• The expanded SD bases are used by cutting-plane methods for solving random doubly

nonnegative optimization problems and a semidefinite relaxation of the maximum

stable set problem. It is found that the proposed method with expanded SD bases

are significantly more efficient than methods using other approximations or solving

the semidefinite relaxation problem directly.

The organization of this thesis is as follows. Chapter 2 covers some preliminaries on

convex analysis and conic optimization problems. In Chapter 3, various approximations of

Sn+ are introduced, including those based on the factor width by Boman et al. [23], diagonal

9



CHAPTER 1. INTRODUCTION

dominance by Ahmadi et al. [1], and SD bases by Tanaka and Yoshise [106]. An expansion

of SD bases and an analysis of its theoretical properties are also provided. In Chapter

4, the norm normalized distance and the proposed trace normalized distance are used to

measure the above approximations. In Chapter 5, we introduce the cutting-plane method

with different approximations of Sn+ for calculating lower bounds of random DNN problems

and upper bounds of the maximum stable set problem. We also describe the results of

numerical experiments and evaluate the efficiency of our proposed method with expanded

SD bases. Note that the contents in Chapter 3 and 5 are based on the published study [114]

and the contents in Chapter 4 are based on the recent paper [115].

10



Chapter 2

Preliminaries

In this chapter, we will first cover some preliminaries on convex analysis, focusing on

convex cones, especially polyhedral cones and the semidefinite cone. The properties of

cones play a fundamental role in this thesis. We next present some basic results on conic

optimization problems. For more detailed contents, we refer interested readers to some com-

mon reference on convex analysis [16, 26, 99], and on semidefinite and conic optimizations

[22, 118].

2.1 Convex analysis

Let Rn be the n-dimensional real vector space, equipped with the inner product of

two vectors x, y ∈ Rn: 〈x, y〉 = xT y =
∑n

i=1 xiyi. The associated norm on Rn is ‖x‖2 =√
〈x, x〉 =

√∑n
i=1 x

2
i , called the Euclidean norm (or l2-norm). We first give the definition

and some properties of convex cones.

2.1.1 Convex cones

A set C ⊆ Rn is called a convex set if for any pair of points x, y ∈ C and 0 ≤ λ ≤ 1,

(1− λ)x+ λy ∈ C.

It is well-known that if C1 and C2 are convex sets, then C1 ∩ C2 is also convex.

We then give the definition of extreme points of a convex set (see, e.g. [15]). Given a

convex set C ⊆ Rn, a point x ∈ C is called an extreme point of C if there do not exist points

y, z ∈ C where y 6= x and z 6= x, and a scalar α ∈ (0, 1) such that x = αy + (1− α)z.

Let C ⊆ Rn be a convex set. A function f : C → R is a convex function if for any pair

11



CHAPTER 2. PRELIMINARIES

of points x, y ∈ C and 0 ≤ λ ≤ 1,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

The Bauer maximum principle [11] (see also, [76]) states that any continuous convex function

defined on a compact (i.e., closed and bounded) convex set in Rn attains its maximum at

some extreme point of the set.

An essential fact about convex sets is that one can project any point onto a closed

convex set by taking the closest point in the set.

Lemma 2.1.1. (Proposition 2.2.1 (a), (c) [16] ) Let C ⊆ Rn be a nonempty closed convex

set. Let x ∈ Rn \ C be a point outside C. Then there exists a unique point PC(x) in C which

is closest to x:

PC(x) := argminy∈C‖x− y‖2.

PC(x) is called the projection of x on C. Moreover, the map PC : Rn → C is continuous and

nonexpansive, i.e., for any two points x, y ∈ Rn,

‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2.

With the above lemma and Proposition 2.2.1 (d) [16], we know that the following lemma

holds.

Lemma 2.1.2. Let PC(x) be the projection of x ∈ Rn on a closed convex set C ⊆ Rn. Then

the distance function f(x) := ‖x− PC(x)‖2 is continuous and convex on Rn.

Next we introduce the definition of cones. A set K ⊆ Rn is a cone if it is closed under

nonnegative scaling, i.e., for any point x ∈ K and scalar α ≥ 0,

αx ∈ K.

We call a cone K ⊂ Rn proper if it has a nonempty interior and is closed, pointed (i.e.,

K ∩−K = {0}), and convex. For example, the nonnegative orthant Rn+ is a proper cone.

The dual cone of a cone K ⊆ Rn is defined as

K∗ := {x ∈ Rn | ∀y ∈ K, 〈x, y〉 ≥ 0}.

The set K∗ is a closed and convex cone. Also, if two cones satisfy K2 ⊆ K1, then we have

K∗1 ⊆ K∗2. A convex cone K is called self-dual if K = K∗. For example, Rn+ is self-dual.

12
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The conical hull of a set A ⊆ Rn is defined as

cone(A) := {
k∑
i=1

αixi | k ∈ N, α1, . . . , αk ≥ 0, x1, . . . , xk ∈ A},

where N is the set of nonnegative integers. It is straightforward that if A ⊆ B, then

cone(A) ⊆ cone(B).

2.1.2 Polyhedral cones and polyhedra

Polyhedral cones are special cases of convex cones, and are closely related to linear

optimization problems. A convex cone K ⊆ Rn is called polyhedral if

K = {x ∈ Rn | 〈aj , x〉 ≤ 0, j = 1, . . . ,m}

for a positive integer m and some a1, . . . , am ∈ Rn.

A convex cone K ⊆ Rn is called finitely generated if

K = cone(A)

for some finite set A ⊆ Rn. The following fundamental theorem of polyhedral cones follows

from the results of Minkowski [86] and Weyl [117].

Theorem 2.1.3. (Minkowski-Weyl theorem, see Corollary 7.1a in [102]) A convex cone is

polyhedral if and only if it is finitely generated.

A set P ⊆ Rn is called a polyhedron if

P = {x ∈ Rn | 〈aj , x〉 ≤ bj , j = 1, . . . ,m}

for some a1, . . . , am ∈ Rn, b1, . . . , bm ∈ R and a positive integer m. One can see that

polyhedral cones are special cases of polyhedra with b1, . . . , bm = 0. Next we give a well-

known characterization of extreme points of a polyhedron.

Lemma 2.1.4. (see, e.g., Proposition 2.1.4 (a) [15], Theorem 5.7 [103]) Let P be a poly-

hedron in Rn:

P = {x ∈ Rn | 〈aj , x〉 ≤ bj , j = 1, . . . ,m}

for some a1, . . . , am ∈ Rn, b1, . . . , bm ∈ R and a positive integer m. Then x∗ ∈ P is an

13
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extreme point of P if and only if the set

{aj | 〈aj , x∗〉 = bj , j ∈ {1, . . . ,m}}

has n linear independent elements.

2.1.3 The cone of positive semidefinite matrices

In this thesis, we will mainly consider the real symmetric matrices space. Let the space

of n× n real symmetric matrices be defined as

Sn := {X ∈ Rn×n | X = XT },

where XT is the transpose of a matrix X. The inner product over Sn is the trace inner

product: for two matrices X,Y ∈ Rn×n

〈X,Y 〉 := Tr(XTY ) =

n∑
i=1

n∑
j=1

Xi,jYi,j ,

where Tr(X) =
∑n

i=1Xi,i is the trace of a matrix X ∈ Rn×n. Here are some properties of

the trace inner product. For matrices X,Y ∈ Rn×n , we know that Tr(XY ) = Tr(Y X) and

Tr(X) = Tr(XT ). Let I be the identity matrix and

On := {P ∈ Rn×n | P TP = PP T = I}

be the set of orthogonal matrices. It is easy to verify that 〈X,Y 〉 = 〈PXP T , PY P T 〉 holds

for matrices X,Y ∈ Sn and an orthogonal matrix P ∈ On.

The Frobenius norm of a matrix X ∈ Rn×n is defined as:

‖X‖F :=
√

Tr(XTX) =

√√√√ n∑
i=1

n∑
j=1

X2
i,j .

Remark 2.1.5. Sn can be seen as a n(n+1)
2 -dimensional Euclidean space, which is a finite

dimensional real vector space with an inner product. One can identify the Euclidean space

Sn with R
n(n+1)

2 by using the isometry T : Sn → R
n(n+1)

2 defined by:

T (X) = (X1,1,
√

2X1,2, . . . ,
√

2X1,n, X2,2,
√

2X2,3, . . . ,
√

2X2,n, . . . , Xn,n)T .

A matrix X ∈ Sn is called positive semidefinite if

dTXd ≥ 0 for every d ∈ Rn.

14
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There are some other characterizations of positive semidefinite matrices:

Lemma 2.1.6. (see, e.g. Theorem 1.10 [13]) Let X ∈ Sn. Then the following statements

are equivalent:

• X is positive semidefinite.

• All the eigenvalues of X are nonnegative, i.e. the spectral decomposition of X can be

written as X =
∑n

i=1 λipip
T
i with all λi ≥ 0 .

• All principal minors of X are nonnegative.

It is useful to know that

Lemma 2.1.7. (see, e.g. Lemma 1.77 [79]) Let X ∈ Sn and let P ∈ On be an orthogonal

matrix. Then,

X ∈ Sn+ if and only if PXP T ∈ Sn+.

The set of positive semidefinite matrices is denoted as

Sn+ := {X ∈ Sn | dTXd ≥ 0 for any d ∈ Rn}.

Sn+ is a self-dual proper cone, called the semidefinite cone. It follows from Lemma 2.1.6

that the semidefinite cone can also be expressed as the conical hull of all rank-1 matrices:

Sn+ =cone({xxT | x ∈ Rn}).

Example 2.1.8. To give an illustrative explanation of the semidefinite cone, here we con-

sider the specific case:

S2
+ =

{(
a c

c b

)
| a, b, c ∈ R, a, b ≥ 0, ab− c2 ≥ 0

}

and draw a figure in R3 with coordinate a, b and c.
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Figure 2.1: The set of S2
+.

We will illustrate some approximations of the semidefinite cone with Figure 2.1 in Chap-

ter 3.

The semidefinite cone can be used to construct other proper cones. For example, the

Doubly NonNegative (DNN) cone is defined as the intersection of Sn+ and the cone of

nonnegative symmetric matrices N n := {X ∈ Sn | ∀1 ≤ i ≤ j ≤ n,Xi,j ≥ 0}:

Sn+ ∩N n := {X ∈ Sn | X ∈ Sn+, X ∈ N n},

and the Minkowski sum of Sn+ and N n is defined as

Sn+ +N n := {X + Y | X ∈ Sn+, Y ∈ N n}.

It is known that Sn+ ∩ N n and Sn+ + N n are dual cones of each other (see, e.g., Theorem

1.35 [13] and Proposition 4.1 [121]).

Recently, the copositive cone and its dual cone have attracted much attention in conic

optimization. The copositive cone is defined as

Cn := {X ∈ Sn | dTXd ≥ 0 for any d ∈ Rn+}.

Its dual cone, called the completely positive cone, is given by

C∗n := cone({xxT | x ∈ Rn+}).
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From the definition of each cone, we can see the validity of the following inclusions:

C∗n ⊆ Sn+ ∩N n ⊆ Sn+ ⊆ Sn+ +N n ⊆ Cn.

It is known that N n, Sn+, Sn+ ∩ N n and Cn are proper cones (see Section 1.6 [13]). Let

K be a proper cone, we know that K∗ is non-empty and pointed (see Proposition 1.18 [13]),

closed and convex (Theorem 1.35 [13]), thus proper. Then Sn+ +N n and C∗n are also proper

cones. Proper cones are essential to construct conic optimization problems, which will be

introduced in Section 2.2.

2.2 Conic optimization problems

In recent years, conic optimization has become very popular because it contains many

practical classes of problems, such as linear optimization problems, which are computa-

tionally efficient and widely used, and semidefinite and copositive optimization problems,

which are known as valuable tools for solving combinatorial and nonconvex optimization

problems. In this section, we will introduce the general conic optimization problem and its

duality theorem.

Let E be an Euclidean space with an inner product 〈·, ·〉. This inner product defines

a norm on E by ‖x‖ =
√
〈x, x〉. Then the standard conic optimization problem can be

described as the following

min 〈c, x〉

s.t. 〈aj , x〉 = bj , j = 1, 2, . . . ,m, (2.1)

x ∈ K,

where c, aj ∈ E, bj ∈ R (j = 1, . . . ,m) and K ⊆ E is a proper cone. A point x ∈ E is

called a feasible solution (respectively, strictly feasible solution) of (2.1) if X satisfies the

linear constraints in (2.1) and x ∈ K (respectively, x ∈ int(K)). Here, int(K) represents the

interior of K, i.e., the set of points y ∈ K where there exists a positive radius δ > 0 so that

the ball centered at y satisfies {z ∈ E | ‖y − z‖ ≤ δ} ⊆ K.

The dual problem of (2.1) is given by

max bT y

s.t. c−
m∑
j=1

yjaj = s, (2.2)

s ∈ K∗,
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where K∗ is the dual cone of K. We say that (y, s) is a feasible solution of (2.2) if c −∑m
j=1 yjaj = s and s ∈ K∗. It is a strict feasible solution if additionally s ∈ int(K∗).
Conic optimization problems contain many useful classes of problems. When the Eu-

clidean space is Rn with inner product 〈x, y〉 = xT y, for example, an LP is obtained with

K = Rn+. If one lets K be the second-order cone:

K = {x ∈ Rn |
n−1∑
i=1

x2
i ≤ x2

n, xn ≥ 0},

then one has an SOCP.

When the Euclidean space is Sn with the trace inner product, by setting K = Sn+, one has

an SDP. Moreover, a doubly nonnegative (DNN) optimization problem is given by setting

K = Sn+ ∩N n, and a copositive optimization problem is obtained by letting K = Cn.

Copositive optimization problems have been shown capable of providing tight lower

bounds for combinatorial and quadratic optimization problems, as described in the survey

paper by Dür [41] and the recent work of Arima et al. [7, 8, 68], etc. It has been shown that

a copositive relaxation sometimes gives a highly accurate approximate solution for some

combinatorial problems under certain conditions [9, 27]. However, the copositive program

and its dual problem are both NP-hard (see, e.g., [39, 88]). A typical approach in practice

is to relax the copositive cone constraint in (2.1) using DNN cone constraint and solve the

resulting problem with state-of-the-art SDP solvers.

The strong duality theorem of conic optimization problems is given as follows.

Theorem 2.2.1. (see, e.g., Theorem 2.29 [22],Theorem 3.2.6 in [97]) Consider a pair of

primal-dual conic optimization problems (2.1) and (2.2), where both the primal and dual

problems are strictly feasible. Then both problems have non-empty compact sets of optimal

solutions, and there is no duality gap (i.e., the primal and dual objective values are equal).

Remark 2.2.2. It is well-known that for LPs, i.e., by setting K = Rn+ in (2.1) and (2.2), we

have a more attractive duality theorem (see, e.g., Theorem 2.1 [119]): If both the primal and

dual problems are feasible, then both problems have optimal solutions, and the objective

values are equal.
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Chapter 3

Approximations of the semidefinite
cone

A set S is called an outer approximation of Sn+ if Sn+ ⊆ S ⊆ Sn. Similarly, a set S
which satisfies S ⊆ Sn+ is called an inner approximation of Sn+. Several sets have been used

as inner and outer approximations of the semidefinite cone. In this chapter, we introduce

some common approximations of the semidefinite cone, i.e., FWn(k), Sn,k, DDn, SDDn
and cone(Bn+∪Bn−), and their properties. Then we propose a new polyhedral approximation

of the semidefinite cone using a set of parameters, i.e., SDBn(H) where H ⊆ R. We prove

several essential properties of our new polyhedral approximation and show that cone(Bn+ ∪
Bn−) = DDn and SDBn(R) = SDDn. With these results, Corollary 3.2.7 gives the inclusive

relation among all approximations mentioned in this thesis.

The organization of this chapter is as follows. In Section 3.1, we list five different

approximations, including those based on factor width by Boman et al. [23] and Blekherman

et al. [20], diagonal dominance by Ahmadi et al. [1], and SD bases by Tanaka and Yoshise

[106]. In Section 3.2, we propose an expansion of SD bases and construct new polyhedral

approximations using expanded SD bases. We also discuss how to increase the ”volume” of

these new polyhedral approximations. Finally, we conclude our work in Section 3.3. The

contents in this chapter are based on the published study [114].

3.1 Some approximations of the semidefinite cone

In this section, we first introduce the concept of factor width. Then the inner and outer

approximations of Sn+ based on the factor width, specifically FWn(k) and Sn,k, and their

properties are discussed. Then we consider inner and outer approximations of Sn+ using

diagonal dominance, specifically DDn, SDDn and their dual cones. The characterizations

and the inclusive relation of those approximations are also discussed. Finally, we introduce

the SD bases Bn+ and Bn− and shows that cone(Bn+ ∪ Bn−) = DDn.
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3.1.1 Approximations using factor width

Several approximations of the semidefinite cone are constructed using a concept called

factor width, including the set of matrices with a factor width of at most k: FWn(k) by

Boman et al. [23], its dual cone Sn,k by Blekherman et al. [20], and an extension of FWn(k)

using matrix block partition by Zheng et al [124]. In this section, we introduce the concept

of factor width and two approximations using it: FWn(k) and Sn,k.
In [23], Boman et al. defined a concept called factor width.

Definition 3.1.1. (Definition 1 in [23]) The factor width of a real symmetric matrix A ∈ Sn

is the smallest integer k such that there exists a real matrix V ∈ Rn×m where A = V V T

and each column of V contains at most k nonzero elements.

Here is an example of a matrix with a factor width of at most 2 in S3:

Example 3.1.2. If we let

A =


2 −1 −2

−1 5 2

−2 2 6

 , V =


1 1 0 0

0 −1 2 0

−2 0 1 1

 ,

then we can find that A = V V T , and V has at most two nonzero elements in each column.

This implies that A has a factor width of at most two.

Note that the factor width is only defined for semidefinite matrices, because for every

matrix A in Definition 3.1.1, the decomposition A = V V T implies that A ∈ Sn+. Then for

every k ∈ {1, 2, . . . , n}, the set of matrices with a factor width of at most k gives an inner

approximation of Sn+.

Boman et al. [23] also defined the set of matrices with a factor width of at most k.

Definition 3.1.3. ([23]) Let k and n be positive integers where 1 ≤ k ≤ n. The set of

matrices with a factor width of at most k is defined as

FWn(k) := {X ∈ Sn | X has a factor width of at most k}.

It is easy to verify that FWn(k) is a pointed convex cone for any k ∈ {1, 2, . . . , n}. One

can also verify from Definition 3.1.3 that FWn(k1) ⊆ FWn(k2) when 1 ≤ k1 ≤ k2 ≤ n and

FWn(n) = {X ∈ Sn | ∃V ∈ Rn×m, X = V V T } = Sn+. In conclusion, for n ≥ 2 we have

FWn(1) ⊆ FWn(2) ⊆ . . . ⊆ FWn(n) = Sn+.

20



CHAPTER 3. APPROXIMATIONS OF THE SEMIDEFINITE CONE

We give an illustration of FWn(2), FWn(3) and the semidefinite cone when n = 10 to show

the inclusive relation among them explicitly in the following example.

Example 3.1.4. Let I be the identity matrix in S10. We randomly generate two matrices

A,B ∈ S10, whose entries are taken independently from the uniform distribution on the

interval [−0.5, 0.5]. For given scalars α, β ∈ R, we check whether the matrix I + αA+ βB

is in FW10(2), FW10(3) and S10
+ . Let GA,B(S) := {(α, β) ∈ R2 | I+αA+βB ∈ S}. Figure

3.1 shows the region of GA,B(S) where S ∈ {FW10(2),FW10(3),S10
+ }.

Figure 3.1: Figure of GA,B(S) where S ∈ {FW10(2),FW10(3),S10
+ }.

We next give an explicit characterization of FWn(k) and a simple proof for completeness.

Lemma 3.1.5. (Characterization of FWn(k)) Let k and n be positive integers where 1 ≤
k ≤ n. Let ei ∈ Rn denotes the vector with a 1 at the ith coordinate and 0 elsewhere, and

let EI = (ei1 , ei2 , . . . , eik) ∈ Rn×k for any index set I := {i1, . . . , ik} ⊆ {1, . . . , n} where

i1 < · · · < ik. Then we can explicitly characterize FWn(k) as follows:

FWn(k) =


∑

I:={i1,...,ik}⊆{1,...,n}
i1<···<ik

EIXIE
T
I | XI ∈ Sk+

 .

Proof. For any matrix X =
∑
I⊆{1,...,n}
i1<···<ik

EIXIE
T
I where XI ∈ Sk+, we know that there exists
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VI ∈ Rk×m for some m such that XI = VIV
T
I . Then X =

∑
I⊆{1,...,n}
i1<···<ik

(EIVI)(EIVI)
T .

Since EIVI ∈ Rn×m and each column contains at most k nonzero elements, we know that

X ∈ FWn(k).

For any matrix X ∈ FWn(k), by Definition 3.1.3, we know that X has a decomposition

X =
∑m

i=1 viv
T
i where vi has at most k nonzero element for all i = 1, . . . ,m. Let Ji :=

{j1, . . . , jk} be the set of k indexes including the indexes of nonzero elements of vi where

j1 < . . . < jk. Then for every i = 1, . . . ,m, we have

viv
T
i = EJ


v2
j1

· · · vj1vjk
...

. . .
...

vjkvj1 · · · v2
jk

ETJ .

The k×k matrix on the right-hand side between EJ and ETJ is positive semidefinite, which

implies that

X =
m∑
i=1

viv
T
i ∈


∑

I:={i1,...,ik}⊆{1,...,n}
i1<···<ik

EIXIE
T
I | XI ∈ Sk+

 .

Here is an example of the above characterization of the matrix in Example 3.1.2:

Example 3.1.6. Let ei ∈ Rn denotes the vector with a 1 at the ith coordinate and 0

elsewhere, and define E{i,j} := (ei, ej). Let

A =


2 −1 −2

−1 5 2

−2 2 6

 .

Then A can be characterized as follows:

A = E{1,2}

(
1 −1

−1 1

)
ET{1,2} + E{1,3}

(
1 −2

−2 4

)
ET{1,3} + E{2,3}

(
4 2

2 2

)
ET{2,3},

where all the 2×2 matrices above are positive semidefinite. This implies that A ∈ FW3(2).

Another approximation of the semidefinite cone based on factor width is the k-PSD closure,

whose properties are discussed in [20]. The definition of the k-PSD closure is given as fol-

lows.
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Definition 3.1.7. (Definition 1 in [20]) Given positive integers n and k where 1 ≤ k ≤ n,

the k-PSD closure, denoted as Sn,k, is defined as

Sn,k :={X ∈ Sn | All k × k principal submatrices of X are positive semidefinite}.

Here is an example of the matrix in S3,2.

Example 3.1.8. If we let

A =


4 −2 6

−2 1 3

6 3 9

 ,

then we can see that every 2 × 2 principal submatrix of A is positive semidefinite, which

implies that A ∈ S3,2. One can verify that the determinant of A is negative: |A| < 0,

showing that A /∈ S3
+.

Sn,k is a pointed convex cone for any 1 ≤ k ≤ n. and it is obvious from Definition 3.1.7

that Sn+ = Sn,n ⊆ Sn,k2 ⊆ Sn,k1 when 1 ≤ k1 ≤ k2 ≤ n. Then for every k ∈ {1, 2, . . . , n},
the k-PSD closure gives an outer approximation of the semidefinite cone.

Similar to Lemma 3.1.5, the following characterization of Sn,k using operator EI is

straightforward.

Lemma 3.1.9. (Characterization of Sn,k) Let k and n be positive integers where 1 ≤ k ≤ n.

Let ei ∈ Rn denotes the vector with a 1 at the ith coordinate and 0 elsewhere, and let

EI := (ei1 , ei2 , . . . , eik) ∈ Rn×k for any index set I := {i1, . . . , ik} ⊆ {1, . . . , n} where

i1 < · · · < ik. Then

Sn,k =
{
X ∈ Sn | ∀I := {i1, . . . , ik} ⊆ {1, . . . , n}, i1 < · · · < ik, ETIXEI ∈ Sk+

}
.

It is also easy to see from Lemma 3.1.5 and 3.1.9 that FWn(k) and Sn,k are dual cones

of each other:

Lemma 3.1.10. For any 1 ≤ k ≤ n,

(FWn(k))∗ = Sn,k, (Sn,k)∗ = FWn(k).

By Lemma 3.1.5 and 3.1.9, checking whether a matrix is in FWn(k) or Sn,k requires

to solve a semidefinite optimization problem with Ckn := n!
k!(n−k)! semidefinite constraints of

size k, which seems to be inefficient for k ≥ 3. Thus in practice, FWn(k) and Sn,k are used
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to solve SDPs by setting k ≤ 2. We refer to Zheng et al. [124] for an extension of FWn(k)

using the matrix block partition, which aims to alleviate the deficiency mentioned above.

3.1.2 Approximations using diagonal dominance

In [1] and [2], the authors approximated the cone Sn+ with the set of diagonally dominant

matrices and the set of scaled diagonally dominant matrices. In this section, we introduce

these two sets and their relation to other common sets.

The set of diagonally dominant matrices DDn are defined as follows:

Definition 3.1.11. (Definition 6.1.9 in [59])

DDn := {A ∈ Sn | Ai,i ≥
∑
j 6=i
|Ai,j | (i = 1, 2, . . . , n)}.

Note that the above definition uses weak inequalities, and a matrix satisfying weak

inequalities in the above definition is sometimes called a weak diagonally dominant matrix.

Similarly, a matrix satisfying strict inequalities in Definition 3.1.11 is sometimes called a

strict diagonally dominant matrix. In this paper, we only consider weak inequalities and

call matrices in DDn diagonally dominant matrices.

Ahmadi et al. [1] defined Ūn,k as the set of vectors in Rn with at most k nonzeros, each

equal to 1 or −1. They also defined a set of matrices Un,k := {uuT | u ∈ Ūn,k}. Barker and

Carlson [10] proved the following theorem.

Theorem 3.1.12. (Barker and Carlson [10]) DDn = cone(Un,2).

It is easy to see that DDn is a convex cone, and Theorem 3.1.12 implies that DDn has

n2 extreme rays; thus, it is a finitely generated cone. By Theorem 2.1.3, we know that DDn
is a polyhedral cone.

Here is an example of a matrix in DDn and its characterization.

Example 3.1.13. Let

A =


4 −2 1

−2 3 1

1 1 2

 ,
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and let

u1 =


1

−1

0

 , u2 =


1

0

1

 , u3 =


0

1

1

 .

One can see that

A = 2u1u
T
1 + u2u

T
2 + u3u

T
3 ∈ cone(U3,2) = DD3.

Using the characterization in Theorem 3.1.12, we can give a characterization of the dual

cone of DDn.

Corollary 3.1.14. (Characterization of DD∗n)

DD∗n = {X ∈ Sn | 〈X,Y 〉 ≥ 0,∀Y ∈ Un,2}.

As an extension of the set of diagonally dominant matrix, the set of scaled diagonally

dominant matrices SDDn are defined as follows:

Definition 3.1.15. (Definition 3.3 in [1])

SDDn := {A ∈ Sn | DAD ∈ DDn for some positive diagonal matrix D}.

One can easily see that SDDn is a cone in Sn. Here is an example of a matrix in SDDn.

Example 3.1.16. Let

A =


4 −6 1

−6 27 3

1 3 2

 .

One can verify that

A =


1

3

1




4 −2 1

−2 3 1

1 1 2




1

3

1

 .

By Example 3.1.13, we know that the matrix in the middle of the right-hand side is diago-

nally dominant. Thus we have A ∈ SDDn.

The following lemma is a well-known result, which is a consequence of the Gershgorin
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circle theorem ([47], see also Theorem 6.1.1 in [59]).

Lemma 3.1.17. (Relation among DDn,SDDn, and Sn+, see Ahmadi et al. [1])

DDn ⊆ SDDn ⊆ Sn+.

Example 3.1.18. Let I be the identity matrix in S10. We use the same matrices A,B ∈ S10

generated in Example 3.1.4. For given scalars α, β ∈ R, we check whether the matrix

I+αA+βB is in DD10, SDD10 and S10
+ . Let GA,B(S) := {(α, β) ∈ R2 | I+αA+βB ∈ S}.

Figure 3.2 shows the region of GA,B(S) where S ∈ {DD10,SDD10,S10
+ }.

Figure 3.2: Figure of GA,B(S) where S ∈ {DD10,SDD10,S10
+ }.

Note that Ahmadi et al. [1, 2] showed that the problem of optimizing a linear function

over DDn can be solved as LPs. They also proved that the problem of optimizing a linear

function over SDDn can be solved as SOCPs. They designed a column generation method

using DDn and SDDn to obtain a series of inner approximations of S+
n . As its extension,

Gouveia et al. [51] used SDDn to inner approximate the completely positive cone.

In [23] and in [2], a relation between SDDn and FWn(2) is given:

Lemma 3.1.19. (See [23] and Theorem 8 in [2]) For n ≥ 2,

FWn(2) = SDDn.
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Note that Definition 3.1.3 implies that the set FWn(k) is convex for any k ∈ {1, 2, . . . , n},
and we know that the set SDDn is a convex cone. From Lemma 3.1.19 and Lemma 3.1.10,

we know the equivalence between the dual cone of SDDn and Sn,2:

Corollary 3.1.20. For n ≥ 2,

SDD∗n = Sn,2.

3.1.3 Approximations using SD basis

Unlike the previous approximations of Sn+, the one in this section considers the conical

hull of a basis on Sn. Note that the semidefinite cone can be expressed as the conical hull

of all rank-1 matrices:

Sn+ =cone({xxT | x ∈ Rn}).

The approximation of Sn+ by using SD bases considers the convex cone generated by a

finite number of rank-1 semidefinite matrices. That is, given a subset of rank-1 matrices,

B ⊆ {xxT | x ∈ Rn}, an inner polyhedral approximation of Sn+ can be obtained from

cone(B):

cone(B) ⊆ cone({xxT | x ∈ Rn}) = Sn+.

To obtain the original set Sn+, we would have to add an infinite number of matrices to

the set B, which is not efficient from a computational viewpoint. Instead, to generate a

polyhedral approximation with reasonable accuracy by using limited elements, Tanaka and

Yoshise defined semidefinite (SD) bases [106].

Before introducing SD bases, we first need a fundamental result by Dickinson [40].

Lemma 3.1.21. (Lemma 6.2 in [40]) If {p1, ..., pn} is a set of n linearly independent vec-

tors, then {(pi + pj)(pi + pj)
T | 1 ≤ i ≤ j ≤ n} is a set of n(n+1)

2 linearly independent

symmetric matrices.

Then we introduce the semidefinite (SD) bases defined by Tanaka and Yoshise [106].

Definition 3.1.22. (Definitions 1 and 2 in [106]) Let ei ∈ Rn denotes the vector with a 1
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at the ith coordinate and 0 elsewhere. Then

Bn+ := {(ei + ej)(ei + ej)
T | 1 ≤ i ≤ j ≤ n}

is called an SD basis of Type I, and

Bn− := {(ei + ei)(ei + ei)
T | 1 ≤ i ≤ n} ∪ {(ei − ej)(ei − ej)T | 1 ≤ i < j ≤ n}

is called an SD basis of Type II. Matrices in SD bases Type I and II are defined as

B+
i,j := (ei + ej)(ei + ej)

T , B−i,j := (ei − ej)(ei − ej)T .

Example 3.1.23. As an example in S2, let e1 = (1, 0)T and e2 = (0, 1)T . Then, we can

generate the following SD bases of Types I and II, respectively:

B2
+ =

{(
4 0

0 0

)
,

(
1 1

1 1

)
,

(
0 0

0 4

)}
,

B2
− =

{(
4 0

0 0

)
,

(
1 −1

−1 1

)
,

(
0 0

0 4

)}
.

Figure 3.3 shows how the matrices of these SD bases lie on the boundary of Sn+.

[a] An example of matrices in B2
+ ∪ B2

− [b] Characterization of matrices in B2
+ ∪ B2

−.

Figure 3.3: An example of SD bases in S2

As shown in [106], Bn+ and Bn− are subsets of Sn+ and bases of Sn. The conical hull of

Bn+ ∪ Bn− and its dual cone give an inner and an outer polyhedral approximation of Sn+, as

follows.

Definition 3.1.24. The inner and outer approximations of Sn+ by using SD bases are defined
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as

Snin :=cone(Bn+ ∪ Bn−),

Snout :=(Sin)∗

={X ∈ Sn | 〈X,Y 〉 ≥ 0, ∀Y ∈ Bn+ ∪ Bn−}.

By Definition 3.1.22, we know that Bn+,Bn− ⊆ Sn+. Since Sn+ is a convex cone, we have

Snin ⊆ cone(Sn+) = Sn+. By Lemma 1.7.3 in [79], we know that Sn+ is self-dual; that is,

Sn+ = (Sn+)∗. Accordingly, we can conclude that Snin ⊆ Sn+ ⊆ Snout.

Example 3.1.25. Let B2
+ and B2

− be SD basis of type I and II as in Example 3.1.23.

Figure 3.4 [b] (respectively, [c]) gives an illustration of the intersection between hyperplane

{X ∈ Sn | Tr(X) = 4} and the inner (respectively, outer) approximations S2
in (respectively,

S2
out).

[a] SD bases B2
+ ∪ B2

−. [b] Inner approximation S2
in

using B2
+ ∪ B2

−.
[c] Outer approximation S2

out

using B2
+ ∪ B2

−.

Figure 3.4: An example of polyhedral approximations of S2
+

using SD bases

In [106], Bn+ and Bn− are defined as Bn+(P ) and Bn−(P ) using an orthogonal matrix P . In

fact, for any orthogonal matrix P ,

Bn+(P ) :=PBn+P T = {PB+
i,jP

T | B+
i,j ∈ B

n
+},

Bn−(P ) :=PBn−P T = {PB−i,jP
T | B−i,j ∈ B

n
−}

give generalizations of Bn+ and Bn−, which are bases on Sn as well. Note that Bn+ = Bn+(I) and

Bn− = Bn−(I) hold, where I is the identity matrix. Here is an example of this generalization.

Example 3.1.26. Let Bn+ and Bn− be defined as in Example 3.1.23, and let P = (p1, p2) be
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an orthogonal matrix where

p1 =

 1√
5

2√
5

 , p2 =

 −2√
5

1√
5

 .

Then we have

Bn+(P ) =

{(
4
5

8
5

8
5

16
5

)
,

(
1
5

−3
5

−3
5

9
5

)
,

(
16
5

−8
5

−8
5

4
5

)}
,

Bn−(P ) =

{(
4
5

8
5

8
5

16
5

)
,

(
9
5

3
5

3
5

1
5

)
,

(
16
5

−8
5

−8
5

4
5

)}
.

Figure 3.5 [a] shows the matrices in Bn+(P ) ∪ Bn−(P ) and Figure 3.5 [b] (respectively, [c])

gives an illustration of the intersection between hyperplane {X ∈ Sn | Tr(X) = 4} and the

inner (respectively, outer) approximation using Bn+(P ) ∪ Bn−(P ) in S2.

[a] Generalization of SD
bases Bn+(P ) ∪ Bn−(P ).

[b] Inner approximation using
Bn+(P ) ∪ Bn−(P ).

[c] Outer approximation
using Bn+(P ) ∪ Bn−(P ).

Figure 3.5: An example of polyhedral approximations of S2
+ using the generalization of SD

bases

Next, we give a lemma that provides an expression of Sn+ by using SD bases. The

lemma is a direct result of the fact that any X ∈ Sn+ has nonnegative eigenvalues and a

corresponding orthogonal basis of eigenvectors.

Lemma 3.1.27. Let On be the set of all n× n orthogonal matrices. Then

Sn+ = cone

( ⋃
P∈On

{P TXP | X ∈ Bn+}

)
= cone

( ⋃
P∈On

{P TXP | X ∈ Bn−}

)
.

Lemma 3.1.27 gives a way to approximate Sn+ by changing the matrix P = (p1, .., pn)
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∈ On when creating SD bases. However, a dense matrix P ∈ On may lead to a dense

formulation of the approximation using SD basis, which is unattractive from the standpoint

of computational efficiency.

In fact, if we consider the following relaxed problem using the generalizations PBn+P T :

min 〈C,X〉

s.t. 〈Aj , X〉 = bj , ∀j = 1, . . . ,m,

〈Y,X〉 ≥ 0, ∀Y ∈ PBn+P T ,

where C,Aj ∈ Sn, bj ∈ R (j = 1, . . . ,m). One can see that it is equivalent to the following

problem

min 〈C,X〉

s.t. 〈Aj , X〉 = bj , ∀j = 1, . . . ,m,

〈PY P T , X〉 ≥ 0, ∀Y ∈ Bn+,

By setting X̄ := P TXP , the problem is furthermore equivalent to

min 〈P TCP, X̄〉

s.t. 〈P TAjP, X̄〉 = bj , ∀j = 1, . . . ,m, (3.1)

〈Y, X̄〉 ≥ 0, ∀Y ∈ Bn+.

Therefore, we consider that the generalizations PBn+P T and PBn+P T are not essential

throughout this thesis and omit those descriptions from subsequent sections to simplify the

presentation.

Next, as a corollary of Theorem 3.1.12, we give the relation between DDn and SD bases.

A proof is given here for completeness.

Corollary 3.1.28. (Expression of DDn with SD bases)

cone(Bn+ ∪ Bn−) = DDn.

Proof. Let I = (e1, . . . , en) ∈ Sn be the identity matrix. ∀X ∈ DDn ⊆ Sn, we first define a

matrix X1 ∈ Sn:

X1 :=
∑

1≤i<j≤n
|Xi,j |(ei + sgn(Xi,j)ej)(ei + sgn(Xi,j)ej)

T (3.2)

∈ cone
(
Bn+ ∪ Bn−

)
(because ∀i < j, |Xi,j | ≥ 0),
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where sgn(Xi,j) is the sign function, i.e.,

sgn(Xi,j) :=

{
1 (Xi,j ≥ 0),

−1 (otherwise)

From (3.2), it is obvious that ∀i 6= j,X1
i,j = Xi,j . As for the diagonal entries of X1,

∀i = 1, .., n,

X1
i,i =

∑
i<j

|Xi,j |+
∑
i>j

|Xj,i| (by (3.2))

=
∑
i 6=j
|Xi,j | (because X ∈ DDn ⊆ Sn).

As X ∈ DDn, we know from Definition 3.1.11 that ∀i = 1, .., n,

Xi,i −X1
i,i = Xi,i −

∑
i 6=j
|Xi,j | ≥ 0.

Then, we define another matrix X2 ∈ Sn:

X2 :=
∑

i=1,..,n

Xi,i −
∑

i 6=j |Xi,j |
4

(ei + ei)(ei + ei)
T

∈ cone
(
Bn+ ∪ Bn−

)
(because ∀i = 1, .., n,Xi,i −

∑
i 6=j
|Xi,j | ≥ 0).

Note that X2 is diagonal, and that X = X1 + X2. Because X1, X2 ∈ cone
(
Bn+ ∪ Bn−

)
,

we have X ∈ cone
(
Bn+ ∪ Bn−

)
, and therefore, we get

DDn ⊆ cone(Bn+ ∪ Bn−).

Conversely, ∀X ∈ cone
(
Bn+ ∪ Bn−

)
, ∃λ1

i,j ≥ 0 for 1 ≤ i ≤ j ≤ n and ∃λ2
i,j ≥ 0 for

1 ≤ i < j ≤ n such that

X =
∑

1≤i≤j≤n
λ1
i,j(ei + ej)(ei + ej)

T +
∑

1≤i<j≤n
λ2
i,j(ei − ej)(ei − ej)T

=
∑

1≤i≤n
4λ1

i,ieie
T
i +

∑
1≤i<j≤n

(
λ1
i,j(ei + ej)(ei + ej)

T + λ2
i,j(ei − ej)(ei − ej)T

)
.(3.3)
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Note that X is a symmetric matrix. Then from (3.3), we have

∀i < j, Xi,j = λ1
i,j − λ2

i,j , (3.4)

∀i > j, Xi,j = Xj,i = λ1
j,i − λ2

j,i, (3.5)

∀i = 1, .., n, Xi,i = 4λ1
i,i +

∑
i<j

(λ1
i,j + λ2

i,j) +
∑
i>j

(λ1
j,i + λ2

j,i). (3.6)

Then ∀i = 1, .., n,

Xi,i −
∑
j 6=i
|Xi,j | = Xi,i −

∑
j>i

|Xi,j | −
∑
j<i

|Xi,j |

= Xi,i −
∑
j>i

|λ1
i,j − λ2

i,j | −
∑
j<i

|λ1
j,i − λ2

j,i| (by (3.4), (3.5))

≥ Xi,i −
∑
j>i

(|λ1
i,j |+ |λ2

i,j |)−
∑
j<i

(|λ1
j,i|+ |λ2

j,i|) (because |a− b| ≤ |a|+ |b|)

= Xi,i −
∑
j>i

(λ1
i,j + λ2

i,j)−
∑
j<i

(λ1
j,i + λ2

j,i) (because ∀i < j, λ1
i,j , λ

2
i,j ≥ 0)

= 4λ1
i,i (By (3.6))

≥ 0 (because ∀i = 1, .., n, λ1
i,i ≥ 0).

This implies that X is diagonally dominant, so X ∈ DDn, and we get cone(Bn+ ∪Bn−) ⊆
DDn. Thus,

cone(Bn+ ∪ Bn−) = DDn.

3.2 An expansion of SD bases and the resulting approxima-

tions

When we use SD bases for approximating Sn+, the sparsity of the matrices in those

bases is quite important in terms of computational efficiency. As we mentioned in the last

section, for any orthogonal matrix P , PBn+P T and PBn−P T give generalizations of SD bases.

However, it is hard to choose an appropriate orthogonal matrix P (except for the identity

matrix I) to keep the sparsity of matrices PCP T and PAP T in (3.1). In this section, we

try to extend the definition of SD bases in order to obtain various sparse SD bases, which

will lead us to sparse polyhedral approximations of Sn+.

In Section 3.2.1, we define the expanded SD basis B̄n(α) and the polyhedral approxi-

mation based on expanded SD bases: SDBn(H). Several essential properties of them are
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also given. Then in Section 3.2.2, we prove that SDBn(R) = SDDn, which is the main

result of this chapter, and give the inclusive relation among all approximations which are

considered in this thesis. Finally in Section 3.2.3, we discuss the choice of parameter set

H when creating polyhedral approximation SDBn(H). We give a geometric approach to

generate H that increase the “volume” of SDBn(H).

3.2.1 An expansion of SD bases without losing sparsity

We first introduce the definition of expanded SD bases.

Definition 3.2.1. Let ei ∈ Rn denotes the vector with a 1 at the ith coordinate and 0

elsewhere. Define the expansion of the SD basis with one parameter α ∈ R as

B̄i,j(α) := (ei + αej)(ei + αej)
T ,

B̄n(α) := {B̄i,j(α) | 1 ≤ i ≤ j ≤ n}.

The proposition below ensures that the expansion of SD bases also gives bases of Sn.

Proposition 3.2.2. Let ei ∈ Rn denotes the vector with a 1 at the ith coordinate and 0

elsewhere. For any α ∈ R \ {0,−1}, B̄n(α) is a set of n(n+ 1)/2 independent matrices and

thus a basis of Sn.

Proof. Let α ∈ R \ {0,−1}. Accordingly, for 1 ≤ i < j ≤ n, we have

B̄i,j(α) :=(ei + αej)(ei + αej)
T

=eie
T
i + α(eie

T
j + eje

T
i ) + α2eje

T
j

=α(eie
T
i + eie

T
j + eje

T
i + eje

T
j ) + (1− α)eie

T
i + (α2 − α)eje

T
j

=αB+
i,j +

1− α
4

B+
i,i +

α(α− 1)

4
B+
j,j , (3.7)

and for every 1 ≤ i ≤ n, we also have

B̄i,i(α) :=(ei + αei)(ei + αei)
T

=(1 + α)2eie
T
i =

(1 + α)2

4
B+
i,i. (3.8)

Suppose that there exist γi,j ≥ 0 (1 ≤ i ≤ j ≤ n) such that

∑
1≤i≤j≤n

γi,jB̄i,j(α) = O.
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Then, by (3.7) and (3.8), we see that

O =

n∑
i=1

γi,i(1 + α)2

4
B+
i,i +

∑
1≤i<j≤n

γi,j

[
αB+

i,j +
1− α

4
B+
i,i +

α(α− 1)

4
B+
j,j

]

=
n∑
i=1

(1 + α)2

4
γi,iB

+
i,i +

∑
1≤i<j≤n

αγi,jB
+
i,j +

n−1∑
i=1

1− α
4

(
n∑

j=i+1

γi,j)B
+
i,i

+
n∑
j=2

α(α− 1)

4
(

j−1∑
i=1

γi,j)B
+
j,j

=

γ1,1(1 + α)2

4
+

1− α
4

(
n∑
j=2

γ1,j)

B+
1,1

+
n−1∑
i=2

(1 + α)2

4
γi,i +

1− α
4

(
n∑

j=i+1

γi,j) +
α(α− 1)

4
(
i−1∑
j=1

γj,i)

B+
i,i

+

γn,n(1 + α)2

4
+
α(α− 1)

4
(
n−1∑
j=1

γj,n)

B+
n,n

+
∑

1≤i<j≤n
αγi,jB

+
i,j . (3.9)

Since {B+
i,j} = Bn+ is a set of linearly independent matrices, all the coefficients for Bi,j

in (3.9) should be 0. Thus, we have

0 =
γ1,1(1 + α)2

4
+

1− α
4

(
n∑
j=2

γ1,j), (3.10)

0 =
(1 + α)2

4
γi,i +

1− α
4

(

n∑
j=i+1

γi,j) +
α(α− 1)

4
(

i−1∑
j=1

γj,i) (2 ≤ i ≤ n− 1), (3.11)

0 =
γn,n(1 + α)2

4
+
α(α− 1)

4
(
n−1∑
j=1

γj,n), (3.12)

0 = αγi,j (1 ≤ i < j ≤ n). (3.13)

Since α 6= 0, by (3.13) we have

γi,j = 0 (1 ≤ i < j ≤ n). (3.14)

Since α 6= −1, (3.10)-(3.14) imply that

γi,i = 0 (i = 1, 2, . . . , n).
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The above leads us to conclude that {B̄i,j(α)} = B̄n(α) is a set of n(n + 1)/2 linearly

independent matrices.

If we let α = 1, then it is straightforward that B̄n(1) = Bn+. If we let α be other real

numbers, we may obtain different SD bases. The following proposition gives the condition

for generating different expanded SD bases.

Proposition 3.2.3. Let ei ∈ Rn denotes the vector with a 1 at the ith coordinate and 0

elsewhere. Suppose that α1 ∈ R \ {0,−1} and α2 ∈ R \ {0, α1}. Then, for every 1 ≤ i <

j ≤ n,

(ei + α2ej)(ei + α2ej)
T /∈ cone(B̄n(α1)).

Proof. For 1 ≤ i ≤ j ≤ n, let us define

B̄1
i,j := (ei + α1ej)(ei + α1ej)

T , B̄2
i,j := (ei + α2ej)(ei + α2ej)

T .

Note that if i = j, then

B̄1
i,i := (1 + α1)2eie

T
i , B̄2

i,i := (1 + α2)2eie
T
i . (3.15)

For every i < j, we can write B̄2
i,j as a linear combination of B̄1

i,j :

B̄2
i,j =eie

T
i + α2

2eje
T
j + α2(eie

T
j + eje

T
i )

=eie
T
i + α2

2eje
T
j +

α2

α1
α1(eie

T
j + eje

T
i ) (because α1 6= 0)

=eie
T
i + α2

2eje
T
j −

α2

α1
eie

T
i −

α2α
2
1

α1
eje

T
j

+
α2

α1

[
eie

T
i + α1(eie

T
j + eje

T
i ) + α2

1eje
T
j

]
=
α1 − α2

α1
eie

T
i + α2(α2 − α1)eje

T
j +

α2

α1
B̄1
i,j

=
α1 − α2

α1(1 + α1)2
(1 + α1)2eie

T
i +

α2(α2 − α1)

(1 + α1)2
(1 + α1)2eje

T
j +

α2

α1
B̄1
i,j

(because α1 6= −1)

=
α1 − α2

α1(1 + α1)2
B̄1
i,i +

α2(α2 − α1)

(1 + α1)2
B̄1
j,j +

α2

α1
B̄1
i,j (by (3.15)). (3.16)

Since α1 6∈ {0,−1}, Proposition 3.2.2 ensures that B̄n(α1) is linearly independent, and

hence, the expression (3.16) for B̄2
i,j is unique.

Suppose that B̄2
i,j ∈ cone

(
B̄n(α1)

)
. In this case, all the coefficients in (3.16) should be
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non-negative, which implies that

α1 − α2

α1(1 + α1)2
≥ 0,

α2(α2 − α1)

(1 + α1)2
≥ 0,

α2

α1
> 0. (3.17)

From the last inequality in (3.17), we have either

(i) α1, α2 > 0 or (ii) α1, α2 < 0.

For case (i), from the first and second inequalities of (3.17), we have α2 − α1 ≥ 0 and

α1 − α2 ≥ 0, which implies α2 = α1 and contradicts the assumption α2 6= α1. A similar

contradiction is obtained for case (ii). Thus, we have B̄2
i,j /∈ cone(B̄n(α1)).

Next we define the inner and outer polyhedral approximations of the semidefinite cone

using expanded SD bases.

Definition 3.2.4. Let {1,−1} ⊆ H ⊆ R be the set of parameters. We define the inner

polyhedral approximation of the semidefinite cone using expanded SD bases as

SDBn(H) := cone

(⋃
α∈H
B̄n(α)

)
.

The outer polyhedral approximation of the semidefinite cone is defined as

SDB∗n(H) := {X ∈ Sn | 〈X,Y 〉 ≥ 0, ∀Y ∈ B̄n(α), α ∈ H}.

Example 3.2.5. As an example in S2, let e1 = (1, 0)T and e2 = (0, 1)T . Then, in addition

to the SD bases of Types I and II listed in Example 3.1.23, we can generate the expanded

SD basis with parameter α = 2 as

B̄2(2) =

{(
4 0

0 0

)
,

(
1 2

2 4

)
,

(
0 0

0 9

)}
.

Figure 3.6 [a] shows the intersection between expanded SD basis B̄2(2) and hyperplane

{X ∈ Sn | Tr(X) = 4}. Similarly, [b] (respectively, [c]) shows the intersection between the

same hyperplane and the inner approximation SDB2({2}) (respectively, outer approxima-

tion SDB∗2({2})) .
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[a] B2
+ ∪ B2

− ∪ B̄2(2). [b] Inner approximation
SDB2({2}).

[c] Outer approximation
SDB∗2({2}).

Figure 3.6: An example of expanded SD bases

We can easily see that SDBn({1,−1}) is equivalent to Sin defined in Definition 3.1.24,

which is equivalent to DDn by Proposition 3.1.28. One can see that for two sets of param-

eters H1,H2 where {1,−1} ⊆ H1 ⊆ H2 ⊆ R, we have

DDn ⊆ SDBn(H1) ⊆ SDBn(H2) ⊆ Sn+. (3.18)

3.2.2 An expression of SDDn with expanded SD bases

We next give a theorem which shows that the inner approximation defined in Definition

3.2.4 using R as H coincides with FWn(2) and hence, the set of scaled diagonally dominant

matrices SDDn:

Theorem 3.2.6.

SDBn(R) = SDDn.

Proof. In what follows, we show that

cone

(⋃
α∈R
B̄n(α)

)
= FWn(2),

where FWn(k) is defined in Definition 3.1.3. Then, the assertion of this theorem follows

from Lemma 3.1.19.

Let us show that FWn(2) ⊆ cone

(⋃
α∈R
B̄n(α)

)
. For any X ∈ FWn(2), there exists a

V ∈ Rn×m where X = V V T and each column contains at most 2 non-zero elements. Denote

the columns of V as vi(i = 1, 2, . . . ,m). Here, we can assume that vi(i = 1, 2, . . . ,m) are

non-zero vectors without any loss of generality. Thus, we see that there exist p(i), q(i) ∈
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{1, 2, . . . , n}(i = 1, 2, . . . ,m) and αp(i), αq(i) ∈ R, at least either of which is non-zero for

every i = 1, 2, . . . ,m satisfying

vi = αp(i)ep(i) + αq(i)eq(i).

For every i = 1, 2, . . . ,m, if αp(i) = 0, we have

viv
T
i = α2

q(i)eq(i)e
T
q(i) ∈ cone

(⋃
α∈R
B̄n(α)

)
, (3.19)

and if αp(i) 6= 0, we have

viv
T
i =α2

p(i)(ep(i) +
αq(i)

αp(i)
eq(i))(ep(i) +

αq(i)

αp(i)
eq(i))

T

∈ cone

(⋃
α∈R
B̄n(α)

)
. (3.20)

By (3.19) and (3.20), we conclude that

X = V V T =

m∑
i=1

viv
T
i ∈ cone

(⋃
α∈R
B̄n(α)

)
.

Next, we show that cone

(⋃
α∈R
B̄n(α)

)
⊆ FWn(2).

Suppose that X ∈ cone

(⋃
α∈R
B̄n(α)

)
. Then there exist some positive integer k1 and

λkij ≥ 0, αk ∈ R (1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ k1) such that

X =
∑

1≤i≤j≤n,
k=1,..,k1

λkij(ei + αkej)(ei + αkej)
T .

=
∑

1≤i≤j≤n,
k=1,..,k1

(
√
λkijei + αk

√
λkijej)(

√
λkijei + αk

√
λkijej)

T .

Define a vector v(i, j, k) :=
√
λkijei +αk

√
λkijej for any 1 ≤ i ≤ j ≤ n and k ∈ {1, .., k1}.

Then, v(i, j, k) has at most two nonzero elements, so we can obtain a matrix V ∈ Rn×
k1n(n+1)

2

whose columns are v(i, j, k). Then,

X =
∑

1≤i≤j≤n,
k=1,..,k1

v(i, j, k)v(i, j, k)T = V V T
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and by Definition 3.1.3, X ∈ FWn(2).

By Lemma 3.1.19, we have SDDn = FWn(2) . In addition to the relation between DDn
and SDBn(H) in (3.18), we have the following corollary which shows the inclusive relation

among approximations described in this thesis.

Corollary 3.2.7. For any set of parameters H : {1,−1} ⊆ H ⊆ R, we have

DDn ⊆ SDBn(H) ⊆ SDDn = FWn(2) ⊆ . . . ⊆ FWn(n) = Sn+.

Similarly, for outer approximations, we have

Sn+ = Sn,n ⊆ . . . ⊆ Sn,2 = SDD∗n ⊆ SDB∗n(H) ⊆ DD∗n.

Example 3.2.8. Let I be the identity matrix in S10, and let

H̄ = {±1,±1±
√

2}.

We use the same matrices A,B ∈ S10 generated in Example 3.1.4. For given scalars α, β ∈ R,

we check whether the matrix I + αA + βB is in DD10, SDD10, SDB10(H̄) and S10
+ . Let

GA,B(S) := {(α, β) ∈ R2 | I+αA+βB ∈ S}. Figure 3.7 shows the region of GA,B(S) where

S ∈ {DD10,SDD10,SDB10(H̄),S10
+ }.

Figure 3.7: Figure of GA,B(S) where S ∈ {DD10,SDD10,SDB10(H̄),S10
+ }.
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One can observe that the region of GA,B(SDB10(H̄)) is very close to the region of

GA,B(SDD10).

3.2.3 Notes on choosing the parameter α

Here, we discuss the choice for the parameter α to increase the “volume” of the polyhe-

dral approximation SDBn(H) of the semidefinite cone Sn+. For any α ∈ R and 1 ≤ i < j ≤ n,

by Definition 3.2.1, we can calculate the Frobenius norm of B̄i,j(α):

‖B̄i,j(α)‖F =‖(ei + αej)(ei + αej)
T ‖F

=
√

Tr ((ei + αej)(ei + αej)T (ei + αej)(ei + αej)T )

=‖ei + αej‖22
=1 + α2. (3.21)

According to Proposition 3.2.3, by changing α, one can obtain different polyhedral

approximations. However, we can see that

lim
|α|→∞

B̄i,j(α)

‖B̄i,j(α)‖F
= lim
|α|→∞

1

1 + α2
(ei + αej)(ei + αej)

T (by (3.21)),

= lim
|α|→∞

[
1

1 + α2
eie

T
i +

α

1 + α2
(eie

T
j + eje

T
i ) +

α2

1 + α2
eje

T
j

]
= eje

T
j =

1

4
B+
j,j ,

and by Definitions 3.1.22 and 3.2.1, we have

B̄i,j(0) =
1

4
B+
i,i, B̄i,j(1) = B+

i,j , B̄i,j(−1) = B−i,j .

This shows that, if |α| → ∞ or α ∈ {0, 1,−1}, the new matrix B̄i,j(α) will become close

to the existing matrices, e.g. B+
i,i, B

+
j,j , B

+
i,j and B−i,j , and the “volume” of the polyhedral

approximation cone(B̄n(α) ∪ Bn+ ∪ Bn−) of the semidefinite cone Sn+ will also be close to the

“volume” of the existing inner approximation cone(Bn+ ∪ Bn−) of Sn+.

The red arrow in Fig. 3.8 [a] shows the extreme rays {γB̄i,j(α) | γ ≥ 0} with |α| → ∞
and α ∈ {0, 1,−1}. The conical hull of these extreme rays is cone(Bn+ ∪ Bn−) and its cross

section with {X ∈ S2 | 〈X, I〉 = 1} is illustrated as the blue area. To avoid generating a

new matrix B̄i,j(α) that is close to the existing matrices, we may choose an α such that the

angle between B̄i,j(α) and existing matrices are equal, as illustrated in Fig. 3.8 [b].
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[a] The set of {γB̄i,j(α) | γ ≥ 0} [b] B̄i,j(α) that are not close to the existing
matrices

Figure 3.8: Choice of α to generate B̄i,j(α) ∈ S2 in R3

We expand this idea to the case of generating a matrix B̄i,j(α) ∈ Sn. Given an α ∈ R,

we can define the angles between matrices in the expanded SD bases and SD bases Type I

and II for every 1 ≤ i < j ≤ n, as follows:

θ1(α) := arccos
〈B̄i,j(α), B+

i,i〉
‖B̄i,j(α)‖F ‖B+

i,i‖F
, θ2(α) := arccos

〈B̄i,j(α), B+
j,j〉

‖B̄i,j(α)‖F ‖B+
j,j‖F

,

θ3(α) := arccos
〈B̄i,j(α), B+

i,j〉
‖B̄i,j(α)‖F ‖B+

i,j‖F
, θ4(α) := arccos

〈B̄i,j(α), B−i,j〉
‖B̄i,j(α)‖F ‖B−i,j‖F

.

Thus, we have

cosθ1(α) =
〈B̄i,j(α), B+

i,i〉
‖B̄i,j(α)‖F ‖B+

i,i‖F

=
〈(ei + αej)(ei + αej)

T , (ei + ei)(ei + ei)
T 〉

(1 + α2)‖(ei + ei)(ei + ei)T ‖F
(by (3.21))

=
4‖ei‖42

(1 + α2)4‖ei‖22
(because eTi ej = 0)

=
1

1 + α2
(because ‖ei‖2 = 1).

Similarly, we have

cosθ2(α) =
α2

1 + α2
, cosθ3(α) =

(1 + α)2

2(1 + α2)
, cosθ4(α) =

(1− α)2

2(1 + α2)
.

In general, to obtain a large enough inner approximation with limited parameters, we

prefer an α that makes θ1(α) = θ3(α), which means that the new matrix B̄i,j(α) will be in

the middle of B+
i,i and B+

i,j on the boundary of Sn+. Similarly, we can obtain α by calculating
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θ2(α) = θ3(α), θ1(α) = θ4(α) and θ2(α) = θ4(α). By solving these equalities, we find that

α = ±1±
√

2.

The expansions with these parameters are expected to provide generally large inner approx-

imations for Sn+.

Example 3.2.9. Let I be the identity matrix in S10, and let

H̄ ={±1,±1±
√

2},

H1 ={±1,±100,±0.01},

H2 ={±1,±5,±0.2},

We use the same matrices A,B ∈ S10 generated in Example 3.1.4. For given scalars α, β ∈ R,

we check whether the matrix I+αA+βB is in DD10, S10
+ and SDB10(H) with different sets

of parameters H ∈ {H̄,H1,H2}. Let GA,B(S) := {(α, β) ∈ R2 | I + αA+ βB ∈ S}. Figure

3.9 shows the region of GA,B(S) where S ∈ {SDB10(H̄),SDB10(H1),SDB10(H2),S10
+ }.

Figure 3.9: Figure of GA,B(S) where S ∈ {SDB10(H̄),SDB10(H1),SDB10(H2),S10
+ }.

As can be seen in the above figure, GA,B(SDB10(H̄)) is the largest among GA,B(SDB10(H̄)),

GA,B(SDB10(H1)) and GA,B(SDB10(H2)). Also, one can observe that the region of GA,B(SDB10(H1))

is very close to the region of GA,B(DD10).
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3.3 Conclusion

We developed techniques to construct a series of sparse polyhedral approximations of

the semidefinite cone. We provided a way to approximate the semidefinite cone using SD

bases and proved that the set of diagonally dominant matrices can be expressed with sparse

SD bases. A simple expansion of SD bases was proposed, which keeps the sparsity of

the matrices that compose it. We gave the conditions for generating linearly independent

matrices in expanded SD bases and for generating an expansion different from the existing

one. We showed that the polyhedral approximation using our expanded SD bases contains

the set of diagonally dominant matrices and is contained in the set of scaled diagonally

dominant matrices. The fact that the set of scaled diagonally dominant matrices can be

expressed using an infinite number of expanded SD bases was also proved.

44



Chapter 4

Evaluating approximations of the
semidefinite cone

4.1 Introduction

In this chapter, we analyze how well approximations mentioned in Chapter 3 can ap-

proximate the semidefinite cone. There are two kinds of approximation, i.e., inner approx-

imation and outer approximation, and an inner approximation (an outer approximation)

of Sn+ can be obtained by constructing the dual cone of an outer approximation (an inner

approximation). In practice, the outer approximations are commonly used in cutting-plane

methods for solving SDPs (e.g., [1, 2, 17, 114]), and in partial facial reduction techniques

for simplifying large-scale SDPs (e.g.,[95]). Note that the computational experiments in

Chapter 5 of this thesis use only the outer approximations. Accordingly, we will focus on

the outer approximations of Sn+ and refer to them as approximations of Sn+ throughout this

chapter.

We consider approximations of the semidefinite cone introduced in Chapter 3, including

the k-PSD closure, namely Sn,k ([20]) and the dual cone of the set of diagonally dominant

matrices (resp., scaled diagonally dominant matrices), namely DD∗n (resp., SDD∗n) ([2]),

and the outer approximation using expanded SD bases, namely SDB∗n(H) ([114]). Let

k and n be positive integers satisfying 2 ≤ k ≤ n, let H be a set of parameters where

{1,−1} ⊆ H ⊆ R, and let

Sn,k :={X ∈ Sn | All k × k principal submatrices of X are positive semidefinite}.
(4.1)

DD∗n :={X ∈ Sn | Xi,i +Xj,j ± 2Xi,j ≥ 0 (1 ≤ i ≤ j ≤ n)}. (4.2)

SDD∗n :={X ∈ Sn | Xi,iXj,j ≥ X2
i,j (1 ≤ i < j ≤ n), Xi,i ≥ 0 (i = 1, . . . , n)}. (4.3)

SDB∗n(H) :={X ∈ Sn | Xi,i + α2Xj,j + 2αXi,j ≥ 0 (1 ≤ i ≤ j ≤ n, α ∈ H)} (4.4)
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In this chapter, we first show that the norm normalized distance between a set S and

Sn+ (i.e., the maximum distance from a matrix X ∈ S to Sn+, where the Frobenius norm of

the matrix X is assumed to be one) has the same value whenever SDD∗n ⊆ S ⊆ DD∗n. This

implies that the Frobenius norm constraint may be too strong for the evaluation, and we

need a new measure to evaluate these sets. We propose a new measure, the trace normalized

distance. We then give the exact values of the trace normalized distance between DD∗n and

Sn+ and the distance between SDD∗n and Sn+.

Then, we propose a new measure that evaluates an approximation S : Sn+ ⊆ S ⊆ DD∗n
by calculating the the minimum distance from any extreme point of DD∗n ∩ {X ∈ Sn |
Tr(X) = 1} to the set S, namely the minimum extreme point distance: EdistT (DD∗n,S).

For each n ≥ 2, We described how to calculate EdistT (DD∗n, ·) for approximations SDB∗n(H)

and SDD∗n, and give numerical results of these values.

The organization of this chapter is as follows. In Section 4.2, the norm normalized

distance proposed by Blekherman et al. [20] is used to evaluate DD∗n and SDD∗n. In Section

4.3, the trace normalized distance is proposed and used to evaluate DD∗n and SDD∗n. In

Section 4.4, the minimum extreme point distance EdistT (DD∗n, ·) is proposed and used to

evaluate SDD∗n and SDB∗n(H) for several different H. We conclude our work in Section 4.5.

The contents in Section 4.2 and 4.3 are covered in [115].

4.2 Evaluating approximations of the semidefinite cone with

the Frobenius norm normalized distance

Blekherman et al. [20] proposed a method of evaluating approximations of the semidefi-

nite cone, which is based on the maximum distance from a matrix in a given approximation

Sn+ ⊆ S ⊆ Sn to Sn+. A feature of their method is that the distance is evaluated under the

constraint that the value of the Frobenius norm is one, and the norm normalized distance

between a set S and Sn+ is defined as

distF (S,Sn+) := sup
X∈S,‖X‖F=1

‖X − PSn+(X)‖F , (4.5)

where PSn+(X) := argminY ∈Sn+‖X − Y ‖F is the metric projection of X on Sn+.

In [20], the authors showed that distF (Sn,k,Sn+) ≤ n−k
n+k−2 . Through a similar discussion,

we can prove the following theorem:

Theorem 4.2.1. For n ≥ 4,

distF (DD∗n,Sn+) = distF (SDD∗n,Sn+) =
n− 2

n
.
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Proof. We prove the following inequalities:

n− 2

n
≤ distF (SDD∗n,Sn+) ≤ distF (DD∗n,Sn+) ≤ n− 2

n
. (4.6)

The relation Sn,2 = SDD∗n in Corollary 3.1.20 implies that

distF (SDD∗n,Sn+) = distF (Sn,2,Sn+).

By Theorem 3 in [20], we know that distF (Sn,k,Sn+) ≥ n−k√
(k−1)2n+n(n−1)

and hence,

distF (SDD∗n,Sn+) = distF (Sn,2,Sn+) ≥ n− 2√
(2− 1)2n+ n(n− 1)

=
n− 2

n
. (4.7)

The relation SDD∗n ⊆ DD∗n in Corollary 3.1.20 ensures that

distF (SDD∗n,Sn+) ≤ distF (DD∗n,Sn+). (4.8)

Next, we prove that distF (DD∗n,Sn+) ≤ n−2
n with the following idea. If a scalar U satisfies

‖X − PSn+(X)‖F ≤ U for every X ∈ DD∗n with ‖X‖F = 1, then U is an upper bound on

distF (DD∗n,Sn+). We can find such a scalar U by constructing a matrix X̃ ∈ Sn+ and a scalar

α̃ ≥ 0 for every X ∈ DD∗n with ‖X‖F = 1 so that ‖X − PSn+(X)‖F ≤ ‖X − α̃X̃‖F .

Let X be a matrix in DD∗n satisfying ‖X‖F = 1. Define a matrix X(i,j) ∈ Sn for every

1 ≤ i < j ≤ n :

X(i,j)
p,q :=


Xi,i+Xj,j

2 (if p = q ∈ {i, j}),

Xi,j (if (p, q) ∈ {(i, j), (j, i)}),

0 (otherwise).

(4.9)

Let Ckn := n!
(n−k)!k! and let X̄ := 1

C2
n

∑
1≤i<j≤nX

(i,j). By definitions (4.2) and (4.9), one can

verify that X(i,j) ∈ Sn+ for all 1 ≤ i < j ≤ n, and hence X̄ ∈ Sn+. Let α be a scalar satisfying

α ≥ 2n(n−1)
3n−4 > 0. For all 1 ≤ i < j ≤ n, we can obtain from (4.9) that X̄i,j = X̄j,i = 1

C2
n
Xi,j

and hence,

∑
i 6=j

(Xi,j − αX̄i,j)
2 =

∑
i 6=j

(1− α

C2
n

)2X2
i,j . (4.10)
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For all i = 1, . . . , n, (4.9) implies that X̄i,i = 1
C2
n

(
n−2

2 Xi,i + 1
2Tr(X)

)
and hence,

n∑
i=1

(Xi,i − αX̄i,i)
2 =

n∑
i=1

((1− α(n− 2)

2C2
n

)Xi,i −
α

2C2
n

Tr(X))2

=

n∑
i=1

((1− α(n− 2)

2C2
n

)2X2
i,i − 2(1− α(n− 2)

2C2
n

)Xi,i
α

2C2
n

Tr(X)

+
α2

4(C2
n)2

Tr(X)2)

=(1− α(n− 2)

2C2
n

)2
n∑
i=1

X2
i,i − (

α

C2
n

− α2(n− 2)

2(C2
n)2

)Tr(X)
n∑
i=1

Xi,i

+
α2n

4(C2
n)2

Tr(X)2

=(1− α(n− 2)

2C2
n

)2
n∑
i=1

X2
i,i + (

α2(3n− 4)

4(C2
n)2

− α

C2
n

)Tr(X)2. (4.11)

The assumption α ≥ 2n(n−1)
3n−4 ensures that α2(3n−4)

4(C2
n)2
− α

C2
n
≥ 0. One can verify that Tr(X)2 ≤

n
∑n

i=1X
2
i,i by using Cauchy-Schwarz inequality. Then, it follows from (4.11) that

n∑
i=1

(Xi,i − αX̄i,i)
2 ≤(1− α(n− 2)

2C2
n

)2
n∑
i=1

X2
i,i + (

α2(3n− 4)

4(C2
n)2

− α

C2
n

)n
n∑
i=1

X2
i,i

=

(
(1− α(n− 2)

2C2
n

)2 +
α2n(3n− 4)

4(C2
n)2

− αn

C2
n

) n∑
i=1

X2
i,i

=

(
1− 2α(n− 2)

2C2
n

+
α2(n− 2)2

4(C2
n)2

+
α2n(3n− 4)

4(C2
n)2

− αn

C2
n

) n∑
i=1

X2
i,i

=

(
1− α(n− 2 + n)

C2
n

+
α2(n2 − 4n+ 4 + 3n2 − 4n)

4(C2
n)2

) n∑
i=1

X2
i,i

=

(
1− 2α(n− 1)

C2
n

+
4α2(n− 1)2

4(C2
n)2

) n∑
i=1

X2
i,i

=

(
1− α(n− 1)

C2
n

)2 n∑
i=1

X2
i,i. (4.12)

Combining (4.10) and (4.12) gives

‖X − αX̄‖F ≤

√√√√∑
i 6=j

(1− α

C2
n

)2X2
i,j +

(
1− α(n− 1)

C2
n

)2 n∑
i=1

X2
i,i. (4.13)

48



CHAPTER 4. EVALUATING APPROXIMATIONS OF THE SEMIDEFINITE CONE

Note that ᾱ := n− 1 satisfies ᾱ ≥ 2n(n−1)
3n−4 when n ≥ 4, and the coefficients in (4.13) satisfy

1− ᾱ

C2
n

= −(1− ᾱ(n− 1)

C2
n

) =
n− 2

n
.

Since ‖X‖F = 1, by substituting ᾱ into (4.13), we have

‖X − ᾱX̄‖F ≤

√√√√(n− 2

n

)2∑
i 6=j

X2
i,j +

(
n− 2

n

)2 n∑
i=1

X2
i,i

=
n− 2

n
‖X‖2F

=
n− 2

n
.

Because X̄ ∈ Sn+ and ᾱ ≥ 0, by letting U = n−2
n , we have

‖X − PSn+(X)‖F ≤ ‖X − ᾱX̄‖F ≤ U =
n− 2

n

and hence,

distF (DD∗n,Sn+) = sup
X∈DD∗

n,‖X‖F=1
‖X − PSn+(X)‖F ≤ U =

n− 2

n
. (4.14)

(4.7), (4.8) and (4.14) imply that (4.6) holds, which proves this theorem.

Theorem 4.2.1 shows unfortunately that the norm normalized distance (4.5) gives the

same value distF (S,Sn+) = n−2
n for any approximation S ⊆ Sn whenever it satisfies SDD∗n ⊆

S ⊆ DD∗n. In the next section, we introduce a new distance, called the trace normalized

distance. We show that the new distance between SDD∗n and Sn+ has a different value from

the one between DD∗n and Sn+.

4.3 Evaluating approximations of the semidefinite cone with

the trace normalized distance

The Frobenius norm normalized distance can be generalized by expanding the normal-

ization method and the distance function. For example, let f : Sn → R be a normalization

function, and let p ∈ [1,∞). One can define the (f(·), p) distance from S to Sn+ as:

dist(f(·),p)(S,Sn+) := sup
X∈S,f(X)=1

‖X − PSn+(X)‖p, (4.15)
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where ‖X‖p := p
√∑n

i=1 |λi|p, where λ1, . . . , λn are the eigenvalues of X, denotes the Schat-

ten p-norm of X ∈ Sn. In this notation, the Frobenius norm normalized distance (4.5) can

be rewritten as an (‖ · ‖F , 2) distance (4.15).

Recently, Blekherman et al. [21] studied a hyperbolic relaxation of Sn,k and provided

an upper bound on the (f(·),∞) distance from Sn,k to Sn+, where f can be any unitarily

invariant matrix norm or the trace function. In this section, instead of evaluating the most

negative eigenvalue of the matrices in the approximation S, we try to figure out how S
approximates Sn+ from a geometric point of view; i.e., we set p = 2 and stick with the

Euclidean norm ‖ · ‖F of Sn.

One reason why the Frobenius normalized distance (4.5) fails to distinguish DD∗n and

SDD∗n might be that the constraint ‖X‖F = 1 is restrictive and makes the set {X ∈ Sn |
‖X‖F = 1} bounded. The required properties for normalization methods (e.g., f(·)) here

are only to make {X ∈ DD∗n | f(X) = 1} and {X ∈ SDD∗n | f(X) = 1} bounded.

There are some choices of the normalization method. For example, one may consider

bounding another norm (i.e., ‖X‖ = 1), the determinant (i.e., |X| = 1), or the trace (i.e.,

Tr(X) :=
∑n

i=1Xi,i = 1) of all matrices X ∈ Sn.

In the case of using other norms, we know from the equivalence of norms (e.g., Corollary

5.4.5 [59]) that for any norm ‖ · ‖ on Sn, there exists finite positive constants Cm and CM

such that for all X ∈ Sn,

Cm‖X‖ ≤ ‖X‖F ≤ CM‖X‖.

This implies that for any given norm ‖ · ‖ on Sn, the set {X ∈ Sn | ‖X‖ = 1} itself is also

compact (e.g., Corollary 5.4.8 [59]).

As for the choice of determinant, although {X ∈ Sn | |X| = 1} is unbounded, one may

notice from a simple example that DD∗n ∩ {X ∈ Sn | |X| = 1} is unbounded. This implies

that the determinant is not adequate to be used for normalizing DD∗n.

Example 4.3.1. Consider a matrix X ∈ DD∗n ∩ {X ∈ Sn | |X| = 1}, defined by

X :=


I
√
x2 + 1 x

x
√
x2 + 1

 ,

where I is the (n− 2)× (n− 2) identity matrix, and x ∈ R \ {0}. It is easy to verify that

|X| = 1 and X ∈ DD∗n, while ‖X‖F can take an arbitrarily large value.

Similarly, {X ∈ Sn | Tr(X) = 1} is unbounded but one can show that {X ∈ DD∗n |
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Tr(X) = 1} and {X ∈ SDD∗n | Tr(X) = 1} are both bounded. Note as well that since

Tr(X) = 1 is a linear constraint, the subset of the polyhedral cone DD∗n with trace equal to

1, i.e., {X ∈ DD∗n | Tr(X) = 1}, is still polyhedral. In fact, we used this fact to derive the

trace normalized distance between DD∗n and Sn+. From the above discussion, we consider

that a distance using the trace is effective for identifying the sets DD∗n and SDD∗n.

Remark 4.3.2. There actually is a very interesting norm which can be seen as a normaliza-

tion method equivalent to Tr(·) onDD∗n and SDD∗n. LetK be a regular cone (i.e., K is convex

closed pointed with nonempty interior) where I ∈ intK∗, and ‖X‖I := min{Tr(X1 +X2) |
X1 − X2 = X, X1, X2 ∈ K} be the norm induced by I, which was introduced in [44].

Proposition 1 of [44] implies that ‖X‖I = Tr(X) if X ∈ K. By letting K = DD∗n, it

is straightforward that {X ∈ DD∗n | ‖X‖I = 1} = {X ∈ DD∗n | Tr(X) = 1}. Since

SDD∗n ⊆ DD∗n, ‖ · ‖I and Tr(·) are also equivalent on SDD∗n.

We are now ready to use the Frobenius norm as the distance function and the trace

function as the normalization method in (4.15). To simplify the notation, we will rewrite

the (Tr(·), 2) distance (4.15) into the following trace normalized distance from a set S and

Sn+:

distT (S,Sn+) := sup
X∈S,Tr(X)=1

‖X − PSn+(X)‖F . (4.16)

As shown in the sections below, distT (SDD∗n,Sn+) and distT (DD∗n,Sn+) are different, i.e.,

distT (SDD∗n,Sn+) = n−2
n (Theorem 4.3.3) and distT (DD∗n,Sn+) =

√
n−1
2 (Theorem 4.3.6).

Figure 4.1 shows the trace normalized distances distT (DD∗n,Sn+) and distT (SDD∗n,Sn+)

with n = 2, . . . , 50.
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Figure 4.1: The trace normalized distances distT (DD∗n,Sn+) and distT (SDD∗n,Sn+).

4.3.1 The trace normalized distance between SDD∗n and Sn+

Theorem 4.3.3. For all n ≥ 2,

distT (SDD∗n,Sn+) =
n− 2

n
.

To prove this theorem, we introduce Lemmas 4.3.4 and 4.3.5. Lemma 4.3.4 gives a lower

bound on distT (SDD∗n,Sn+) and Lemma 4.3.5 gives an upper bound on distT (SDD∗n,Sn+).

In these lemmas, we assume that n ≥ 3. If n = 2, we can easily see that distT (SDD∗2,S2
+) =

distT (S2
+,S2

+) = n−2
n = 0.

Lemmas 4.3.4 and 4.3.5 are based on the results shown in the proofs of Theorems 3 and

1 in [20].

Lemma 4.3.4. For all n ≥ 3,

distT (SDD∗n,Sn+) ≥ n− 2

n
.

Proof. Let I ∈ Sn be the identity matrix and e := (1, . . . , 1)T ∈ Rn. Given scalars a, b ≥ 0,

we define a matrix,

G(a, b, n) := (a+ b)I − aeeT . (4.17)
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If G(a, b, n) ∈ SDD∗n \Sn+ and Tr(G(a, b, n)) = 1, then by definition (4.16), ‖G(a, b, n)−
PSn+(G(a, b, n))‖F gives a lower bound on distT (SDD∗n,Sn+). To find a tighter lower bound,

we consider the following problem (4.18) on the parameters a and b:

maxa,b≥0 ‖G(a, b, n)− PSn+(G(a, b, n))‖F (4.18a)

s.t. G(a, b, n) /∈ Sn+, (4.18b)

G(a, b, n) ∈ SDD∗n, (4.18c)

Tr(G(a, b, n)) = 1. (4.18d)

Problem (4.18) can be equivalently written as problem (4.19):

maxa,b≥0 (n− 1)a− b (4.19a)

s.t. b < (n− 1)a, (4.19b)

b ≥ a, (4.19c)

nb = 1. (4.19d)

To prove the equivalence between (4.18) and (4.19), we first show that the constraints

(4.18b) and (4.19b) are equivalent. Proposition 4 in [20] ensures that the eigenvalues of

G(a, b, n) are a+ b with multiplicity n− 1 and b− (n− 1)a with multiplicity 1. Note that

a, b ≥ 0; hence,

G(a, b, n) /∈ Sn+ if and only if b < (n− 1)a. (4.20)

Next, we verify that (4.18c) and (4.19c) are equivalent. It follows from definition (4.3)

that G(a, b, n) ∈ SDD∗n if and only if all the 2 × 2 submatrices of G(a, b, n) are positive

semidefinite. It is obvious from (4.17) that any 2 × 2 submatrix of G(a, b, n) is G(a, b, 2).

(4.20) ensures that G(a, b, 2) ∈ S2
+ if and only if b ≥ a and we can conclude that

G(a, b, n) ∈ SDD∗n if and only if b ≥ a. (4.21)

The equivalence between (4.18d) and (4.19d) comes from the fact that the definition

(4.17) implies that

Tr(G(a, b, n)) = nb. (4.22)

We finally show that the objective functions (4.18a) and (4.19a) are equivalent. Since

(4.18b) implies that G(a, b, n) /∈ Sn+, it is apparent from (4.20) that b− (n− 1)a < 0. Then,
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b− (n− 1)a is the only negative eigenvalue of G(a, b, n), and hence,

‖G(a, b, n)− PSn+(G(a, b, n))‖F = (n− 1)a− b. (4.23)

By (4.20), (4.21), (4.22) and (4.23), one can see that problems (4.18) and (4.19) are

equivalent. The optimal solution of problem (4.19) is ā = b̄ = 1
n ; hence, we have

distT (SDD∗n,Sn+) ≥ ‖G(ā, b̄, n)− PSn+(G(ā, b̄, n))‖F =
n− 2

n
.

Lemma 4.3.5. For all n ≥ 3,

distT (SDD∗n,Sn+) ≤ n− 2

n
.

Proof. If a scalar U satisfies ‖X − PSn+(X)‖F ≤ U for every X ∈ SDD∗n with Tr(X) = 1,

then U is an upper bound on distT (SDD∗n,Sn+). Below, we find such a scalar U .

Let X be a matrix in SDD∗n satisfying Tr(X) = 1. We construct a matrix X̃ ∈ Sn+ and

a scalar α̃ ≥ 0 so that ‖X − PSn+(X)‖F ≤ ‖X − α̃X̃‖F .

Define a matrix X(i,j) ∈ Sn for every 1 ≤ i < j ≤ n:

X(i,j)
p,q :=



Xi,i (if p = q = i),

Xj,j (if p = q = j),

Xi,j (if (p, q) ∈ {(i, j), (j, i)}),

0 (otherwise).

(4.24)

Let X̃ = 1
C2
n

∑
1≤i<j≤nX

(i,j). Then (4.24) implies that

X̃i,i =
C2
n − C2

n−1

C2
n

Xi,i =
2

n
Xi,i (i = 1, . . . , n),

X̃i,j =
1

C2
n

Xi,j =
2

n(n− 1)
Xi,j (1 ≤ i < j ≤ n).

By (4.3), we know that X(i,j) ∈ Sn+ for all 1 ≤ i < j ≤ n and hence X̃ ∈ Sn+.
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Let α be a scalar satisfying α ≥ 0. Then,

‖X − αX̃‖ =

√√√√ n∑
i=1

(X − αX̃)2
i,i +

∑
i 6=j

(X − αX̃)2
i,j

=

√√√√ n∑
i=1

(1− 2α

n
)2X2

i,i +
∑
i 6=j

(1− 2α

n(n− 1)
)2X2

i,j

≤

√√√√(1− 2α

n
)2

n∑
i=1

X2
i,i + (1− 2α

n(n− 1)
)2
∑
i 6=j

Xi,iXj,j

=

√√√√(1− 2α

n
)2

n∑
i=1

X2
i,i + (1− 2α

n(n− 1)
)2(Tr(X)2 −

n∑
i=1

X2
i,i)

=

√√√√((1− 2α

n
)2 − (1− 2α

n(n− 1)
)2

) n∑
i=1

X2
i,i + (1− 2α

n(n− 1)
)2Tr(X)2

=

√√√√(1− 4α

n
+

4α2

n2
− (1− 4α

n(n− 1)
+

4α2

n2(n− 1)2
)

) n∑
i=1

X2
i,i + (1− 2α

n(n− 1)
)2Tr(X)2

=

√√√√(4α2(n− 2)

n(n− 1)2
− 4α(n− 2)

n(n− 1)

) n∑
i=1

X2
i,i + (1− 2α

n(n− 1)
)2Tr(X)2. (4.25)

Note that Tr(X) = 1 and α̃ := n − 1 ≥ 0 satisfies that 4α̃2(n−2)
n(n−1)2

− 4α̃(n−2)
n(n−1) = 0. By

substituting α̃ into (4.25), we have

‖X − α̃X̃‖F ≤

√
(1− 2α̃

n(n− 1)
)2 =

n− 2

n
.

Since α̃ ≥ 0 and X̃ ∈ Sn+, by letting U = n−2
n , we can see that

‖X − PSn+(X)‖F ≤ ‖X − α̃X̃‖F ≤ U =
n− 2

n
,

and hence,

distT (SDD∗n,Sn+) = sup
X∈SDD∗

n,Tr(X)=1
‖X − PSn+(X)‖F ≤ U =

n− 2

n
.

4.3.2 The trace normalized distance between DD∗n and Sn+

In this section, we prove the following theorem:
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Theorem 4.3.6. For all n ≥ 2,

distT (DD∗n,Sn+) =

√
n− 1

2
.

As a corollary of Theorems 4.3.3 and 4.3.6, we obtain an upper bound and a lower bound

for distT (SDB∗n(H),Sn+), where {1,−1} ⊆ H ⊆ R.

Corollary 4.3.7. For n ≥ 2 and for any set of parameters H ⊆ R where {1,−1} ⊆ H, we

have

n− 2

n
≤ distT (SDB∗n(H),Sn+) ≤

√
n− 1

2
.

The idea for proving Theorem 4.3.6 is as follows. Define

DDT ∗n := DD∗n ∩ {X ∈ Sn | Tr(X) = 1}. (4.26)

Definition (4.16) ensures that

distT (DD∗n,Sn+) = max
X∈DDT ∗

n

‖X − PSn+(X)‖F .

Note that ‖X −PSn+(X)‖F is continuous and convex on Sn, and DDT ∗n is closed, bounded,

and convex. Recall that the Bauer maximum principle [11] states that any continuous convex

function defined on a compact convex set in Rn attains its maximum at some extreme point

of the set. As its corollary, we have the following result:

Corollary 4.3.8. maxX∈DDT ∗
n
‖X−PSn+(X)‖F attains its maximum at some extreme point

of DDT ∗n.

In Proposition 4.3.9, we show that every extreme point of DDT ∗n has a special structure.

By using this special structure, Lemma 4.3.10 shows that for each extreme point of DDT ∗n,

the distance from it to Sn+ is the same. The exact value of this distance is also given in

Lemma 4.3.10. Theorem 4.3.6 can be obtained as a direct result of Corollary 4.3.8 and

Lemma 4.3.10.

Proposition 4.3.9. For n ≥ 2, let X be an extreme point of DDT ∗n. There exists an
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integer q satisfying 1 ≤ q ≤ n such that

Xi,j =


1 ( if i = j = q),

1
2 or − 1

2 ( if either i = q or j = q),

0 ( otherwise).

(4.27)

Proof. Let X ∈ DDT ∗n. By (4.2) and (4.26), we see that for every i = 1, . . . , n,

Xi,i ≥ 0,

and for every 1 ≤ i < j ≤ n,

Xi,i +Xj,j + 2Xi,j ≥ 0, (4.28)

Xi,i +Xj,j − 2Xi,j ≥ 0. (4.29)

Thus, the set DDT ∗n can be written as

DDT ∗n = {X ∈ Sn |Tr(X) = 1,

Xi,i ≥ 0 (i = 1, . . . , n), (4.30)

Xi,i +Xj,j + 2Xi,j ≥ 0 (1 ≤ i < j ≤ n), (4.31)

Xi,i +Xj,j − 2Xi,j ≥ 0 (1 ≤ i < j ≤ n)}. (4.32)

Let X̄ be an extreme point ofDDT ∗n and letN(X) be the number of linearly independent

inequalities in (4.30), (4.31) and (4.32) that are active (i.e., the equalities hold) at X ∈
DDT ∗n. By the characterization of extreme points of a polyhedron (see Lemma 2.1.4), we

know that

N(X̄) =
n(n+ 1)

2
− 1. (4.33)

We prove that X̄ satisfies (4.27) by observing the active inequalities at X̄.

It follows from Tr(X̄) = 1 that X̄ has at least one non-zero diagonal element. This

implies that the number of active inequalities in (4.30) at X̄ is at most n− 1. Suppose that

n − k inequalities in (4.30) are active at X̄, where k is an integer and 1 ≤ k ≤ n. Below,

we show that k 6= n by contradiction.

Assume that k = n. Then we have X̄i,i > 0 for each 1 ≤ i ≤ n. At most one of (4.28)

and (4.29) can be active at X̄ for each 1 ≤ i < j ≤ n. In fact, suppose that (4.28) and
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(4.29) are active simultaneously for some 1 ≤ i < j ≤ n:

X̄i,i + X̄j,j + 2X̄i,j = 0, X̄i,i + X̄j,j − 2X̄i,j = 0.

Then X̄i,j = X̄i,i + X̄j,j = 0 and since X̄i,i, X̄j,j ≥ 0, we obtain X̄i,i = X̄j,j = 0, which is a

contradiction to the assumption X̄i,i, X̄j,j > 0. This implies that N(X̄) is at most n(n−1)
2 ,

that is strictly less than the number n(n+1)
2 − 1 in (4.33). This contradiction implies that

k 6= n.

Since we have shown that 1 ≤ k ≤ n− 1, there exists a permutation matrix P ∈ Rn×n

such that the matrix X∗ := PX̄P T satisfies

X∗i,i = 0 (1 ≤ i ≤ n− k), (4.34)

X∗i,i > 0 (n− k + 1 ≤ i ≤ n).

Note that X∗ ∈ DDT ∗n and N(X∗) = n(n+1)
2 − 1. Below, we show that X∗ satisfies (4.27)

by observing the active inequalities at X∗ instead of X̄.

Next, we show that k = 1; i.e., exactly n− 1 inequalities in (4.30) are active at X∗. It

follows from (4.31), (4.32) and (4.34) that X∗i,j = 0 for each 1 ≤ i < j ≤ n−k. This implies

that all inequalities (4.28) and (4.29) with 1 ≤ i < j ≤ n − k at X∗ are active. For each

pair of (i, j) where Xj,j > 0 and 1 ≤ i < j, one can show again by contradiction that at

most one of (4.28) and (4.29) can be active at X∗. Consider the case when the number of

active inequalities at X∗ attains its maximum; i.e., exactly one of (4.28) and (4.29) is active

at X∗ for each pair of (i, j) where n− k + 1 ≤ j ≤ n and 1 ≤ i < j. The following system,

0 = X∗i,i (1 ≤ i ≤ n− k),

0 = X∗i,i +X∗j,j + 2X∗i,j (1 ≤ i < j ≤ n− k),

0 = X∗i,i +X∗j,j − 2X∗i,j (1 ≤ i < j ≤ n− k),

either (4.28) or (4.29) is active at X∗ (n− k + 1 ≤ j ≤ n, 1 ≤ i < j)

includes exactly (n−k) + n(n−1)
2 = n(n+1)

2 −k linearly independent active inequalities. This

implies that N(X∗) ≤ n(n+1)
2 −k. By (4.33), we know that k = 1 and the number n(n+1)

2 −1

in (4.33) is attained only if the number of active inequalities in (4.31) and (4.32) attains its

maximum.

The fact k = 1 implies that X∗n,n = 1 and X∗i,i = 0 for each 1 ≤ i ≤ n − 1; and hence

X∗i,j = 0 for each 1 ≤ i < j ≤ n − 1. Since the number of active inequalities in (4.31) and

(4.32) attains its maximum, we know that either (4.28) or (4.29) is active at X∗ for each

(i, j) satisfying j = n and 1 ≤ i < j, which implies that X∗i,n ∈ {1
2 ,−

1
2} for each 1 ≤ i < n.
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Finally, by applying the permutation X̄ = P TX∗P , we know that there exists an integer

q satisfying 1 ≤ q ≤ n for which X̄ satisfies (4.27).

Lemma 4.3.10. For n ≥ 2, let X be an extreme point of DDT ∗n. There exist scalars

α1, . . . , αn−1 ∈ {1
2 ,−

1
2} such that the following matrix,

X∗ :=


0 a1

. . .
...

0 an−1

a1 . . . an−1 1

 (4.35)

satisfies

‖X − PSn+(X)‖F = ‖X∗ − PSn+(X∗)‖F =

√
n− 1

2
.

Proof. Let X be an extreme point of DDT ∗n. By Proposition 4.3.9, there exists an integer q

such that 1 ≤ q ≤ n for which X satisfies (4.27). Note that X only has one nonzero diagonal

element Xq,q = 1. Let P ∈ Rn×n be a permutation matrix such that (PXP T )n,n = 1. It is

easy to see that there exist scalars α1, . . . , αn−1 ∈ {1
2 ,−

1
2} such that the matrix X∗ defined

in (4.35) satisfies X∗ = PXP T . Since the permutation matrix P is orthogonal, Lemma

2.1.7 implies that Y ∈ Sn+ if and only if PY P T ∈ Sn+ for any Y ∈ Sn. This fact ensures that

‖X − PSn+(X)‖F = inf
Y ∈Sn+

‖X − Y ‖F

= inf
Y ∈Sn+

‖PXP T − PY P T ‖F

= inf
PY PT∈Sn+

‖X∗ − PY P T ‖F

=‖X∗ − PSn+(X∗)‖F . (4.36)

By solving the eigenvalue equation 0 = |λI−X∗| with respect to the scalar λ, we obtain

that:

1. If n = 2, the eigenvalues of X∗ are 1+
√
n

2 with multiplicity 1 and 1−
√
n

2 with multiplicity

1.

2. If n ≥ 3, the eigenvalues of X∗ are 1+
√
n

2 with multiplicity 1, 1−
√
n

2 with multiplicity 1

and 0 with multiplicity n− 2.

From these observations, for every n ≥ 2, X∗ has only one negative eigenvalue λmin := 1−
√
n

2 ;
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hence,

‖X∗ − PSn+(X∗)‖F =
√
λ2

min =

√
n− 1

2
. (4.37)

We can conclude from (4.36) and (4.37) that

‖X − PSn+(X)‖F = ‖X∗ − PSn+(X∗)‖F =

√
n− 1

2
.

4.4 Evaluating approximations of the semidefinite cone by

using DD∗n as a reference

In the previous section, we evaluated approximations DD∗n and SDD∗n with the trace

normalized distance (4.16), where Sn+ is used as a reference. Note that we find it a chal-

lenging issue to analyze the structures of all extreme points of SDB∗n(H) for any fixed set of

parameters {±1} ⊆ H ⊆ R. Thus, obtaining the analytical solution of distT (SDB∗n(H),Sn+)

for {±1} ⊆ H ⊆ R using the same idea as in Theorem 4.3.6 remains to be a challenging

issue.

In this section, we evaluate approximations SDD∗n and SDB∗n(H) for some different H
by using DD∗n as a reference. Let DDT ∗n := DD∗n ∩ {X ∈ Sn | Tr(X) = 1} be defined

as in (4.26), and let E(DDT ∗n) be the set of the extreme points of DDT ∗n. We define the

minimum extreme point distance from DD∗n to a set S : Sn+ ⊆ S ⊆ DD∗n as

EdistT (DD∗n,S) := inf
X∈E(DDT ∗

n)
‖X − PS(X)‖F , (4.38)

where PS(X) := argminY ∈S‖X − Y ‖F is the metric projection of X on S.

For any approximation S where Sn+ ⊆ S ⊆ DD∗n, the measure EdistT (DD∗n,S) shows

the minimum distance from any extreme point of DDT ∗n to the set S. One can observe that

for any two sets S1,S2 where Sn+ ⊆ S1 ⊆ S2 ⊆ DD∗n, we have

EdistT (DD∗n,Sn+) ≥ EdistT (DD∗n,S1) ≥ EdistT (DD∗n,S2) ≥ 0.

We already know from Corollary 4.3.8 that distT (DD∗n,Sn+) attains its maximum at some

point in E(DDT ∗n). Thus the measure EdistT (DD∗n,S) implies how far S is away from the

farthest point from DDT ∗n to Sn+.

In what follows, we calculate EdistT (DD∗n,SDD∗n) and EdistT (DD∗n,SDB∗n(H)) for sev-
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eral different H, including the one calculated in Section 3.2.3 and random generated others.

Specifically, we firstly describe how to calculate these values for a given n, and then show

the numerical results.

We know from (4.38) that for any set S : Sn+ ⊆ S ⊆ DD∗n, we have

EdistT (DD∗n,S) = inf
X∈E(DDT ∗

n)
Y ∈S

‖X − Y ‖F .

Define a matrix

X̄ :=


0 1

2
. . .

...

0 1
2

1
2 . . . 1

2 1

 . (4.39)

We will use this matrix to show how to calculate the minimum extreme point distances.

Similar to Lemma 4.3.10, we can prove the following lemma:

Lemma 4.4.1. Let n ≥ 2, X̄ be the matrix defined in (4.39), and H be a set of parameters

where {±1} ⊆ H ⊆ R. Suppose that

(1) 0 /∈ H,

(2) α ∈ H if and only if −α ∈ H,

(3) α ∈ H if and only if 1
α ∈ H.

Then for any extreme point X of DDT ∗n, i.e., X ∈ E(DDT ∗n), we have

inf
Y ∈SDB∗n(H)

‖X − Y ‖F = inf
Y ∈SDB∗n(H)

‖X̄ − Y ‖F .

Proof. Let I = (e1, . . . , en) ∈ Sn be the identity matrix. For any extreme point X of DDT ∗n,

by Proposition 4.3.9, we know that there exists an integer q satisfying 1 ≤ q ≤ n such that

Xi,j =


1 ( if i = j = q),

1
2 or − 1

2 ( if either i = q or j = q),

0 ( otherwise).

Similar to the proof of Lemma 4.3.10, let(
1 2 . . . n

π(1) π(2) . . . π(n)

)
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be a permutation of {1, . . . , n} with permutation matrix Pπ :=
(
eπ(1), . . . , eπ(n)

)T
such that

(PπXP
T
π )n,n = 1. Then there exist scalars α1, . . . , αn−1 ∈ {1

2 ,−
1
2} such that the matrix X∗

defined in (4.35) satisfies X∗ = PπXP
T
π :

X∗ :=


0 a1

. . .
...

0 an−1

a1 . . . an−1 1

 = PπXP
T
π .

Since Pπ is orthogonal, we have

inf
Y ∈SDB∗n(H)

‖X − Y ‖F = inf
Y ∈SDB∗n(H)

‖PπXP Tπ − PπY P Tπ ‖F

= inf
Y ∈SDB∗n(H)

‖X∗ − PπY P Tπ ‖F (4.40)

Next we show that

Y ∈ SDB∗n(H)⇔ PπY P
T
π ∈ SDB∗n(H). (4.41)

We only prove the if part because the only if part can be proved similarly. For any Y ∈
SDB∗n(H), by the definition (4.4), we see that for any 1 ≤ i ≤ j ≤ n and α ∈ H, Y satisfies

〈Y, (ei + αej)(ei + αej)
T 〉 ≥ 0.

For any 1 ≤ i ≤ j ≤ n and α ∈ H, we see that

〈PπY P Tπ , (ei + αej)(ei + αej)
T 〉

=〈Y, P Tπ (ei + αej)(ei + αej)
TPπ〉

=〈Y, (eπ(i) + αeπ(j))(eπ(i) + αeπ(j))
T 〉. (4.42)

If π(i) ≤ π(j), one can easily observe that (eπ(i) + αeπ(j))(eπ(i) + αeπ(j))
T ∈ SDBn(H). If

π(i) > π(j), since Assumption 3 ensures that α ∈ H if and only if 1
α ∈ H, we have

(eπ(i) + αeπ(j))(eπ(i) + αeπ(j))
T = α2(eπ(j) +

1

α
eπ(i))(eπ(j) +

1

α
eπ(i))

T ∈ SDBn(H).

Therefore, (eπ(i) +αeπ(j))(eπ(i) +αeπ(j))
T ∈ SDBn(H) holds. Since Y ∈ SDB∗n(H), we know

that

〈Y, (eπ(i) + αeπ(j))(eπ(i) + αeπ(j))
T 〉 ≥ 0.
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Then by (4.42), we have PπY P
T
π ∈ SDB∗n(H).

Now that (4.41) is proved, with (4.40), we have

inf
Y ∈SDB∗n(H)

‖X − Y ‖F = inf
Y ∈SDB∗n(H)

‖X∗ − PπY P Tπ ‖F

= inf
PπY PTπ ∈SDB∗n(H)

‖X∗ − PπY P Tπ ‖F (∵ (4.41))

= inf
Y ∈SDB∗n(H)

‖X∗ − Y ‖F (4.43)

Furthermore, we know that there exists a diagonal matrix Q ∈ Sn where

Qi,i =

−1 ( if ai = −1
2),

1 ( otherwise),

such that QX∗QT = X̄. It is obvious that Q is orthogonal, and one can show without too

much effort that

Y ∈ SDB∗n(H)⇔ QY QT ∈ SDB∗n(H). (4.44)

Then we have

inf
Y ∈SDB∗n(H)

‖X∗ − Y ‖F = inf
Y ∈SDB∗n(H)

‖X̄ −QY QT ‖F

= inf
Y ∈SDB∗n(H)

‖X̄ − Y ‖F . (∵ (4.41)) (4.45)

With (4.43) and (4.45), we can conclude that for any extreme point X of DDT ∗n,

inf
Y ∈SDB∗n(H)

‖X − Y ‖F = inf
Y ∈SDB∗n(H)

‖X̄ − Y ‖F .

Similar to Lemma 4.4.1, we can prove Lemma 4.4.2. In fact, the only difference between

the proof of Lemma 4.4.1 and Lemma 4.4.2 is that, instead of using (4.41) and (4.44), we

need the facts Y ∈ SDD∗n ⇔ PπY P
T
π ∈ SDD∗n and Y ∈ SDD∗n ⇔ QY QT ∈ SDD∗n to show

Lemma 4.4.2, which are not hard to see.

Lemma 4.4.2. Let n ≥ 2, X̄ be the matrix defined in (4.39). Then for any extreme point

X of DDT ∗n, i.e., X ∈ E(DDT ∗n), we have

inf
Y ∈SDD∗

n

‖X − Y ‖F = inf
Y ∈SDD∗

n

‖X̄ − Y ‖F .
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Let H be a set of parameters satisfying Assumptions (1-3) in Lemma 4.4.1. Lemma

4.4.1 and Lemma 4.4.2 shows that

EdistT (DD∗n,SDB∗n(H)) = inf
Y ∈SDB∗n(H)

‖X̄ − Y ‖F ,

EdistT (DD∗n,SDD∗n) = inf
Y ∈SDD∗

n

‖X̄ − Y ‖F .

This gives us a way to numerically calculate EdistT (DD∗n,SDB∗n(H)) and EdistT (DD∗n,SDD∗n)

by solving the following second order cone programs (SOCP) for any given n ≥ 2:

EdistT (DD∗n,SDB∗n(H)) = min ‖X̄ − Y ‖F

s.t. Yi,i + α2Yj,j + 2αYi,j ≥ 0 (1 ≤ i ≤ j ≤ n, α ∈ H),

Y ∈ Sn.

EdistT (DD∗n,SDD∗n) = min ‖X̄ − Y ‖F

s.t.

(
Yi,i Yi,j

Yi,j Yj,j

)
∈ S2

+ (1 ≤ i < j ≤ n),

Y ∈ Sn.

Note that Definition (4.4) gives the characterization of SDB∗n(H), and we refer to Corollary

3.1.20 and Lemma 3.1.9 for the characterization of SDD∗n in the SOCP formulations above.

In our numerical experiment, the above SOCPs are solved by using the Gurobi Optimizer

9.0.0 [53]. The following table shows the numerical result of the minimum extreme point

distances from DD∗n to Sn+, SDD∗n, and SDB∗n(H) with different H, including the one

calculated in Section 3.2.3 and random generated others:

H̄ ={±1,±1±
√

2},

H1 ={±1,±10,±0.1},

H2 ={±1,±1.25,±0.8}.

Note that these sets of parameters satisfy Assumptions (1)-(3) in Lemma 4.4.1. Also, we

would like to notice that Proposition 4.3.9 and Lemma 4.3.10 ensures that

EdistT (DD∗n,Sn+) =distT (DD∗n,Sn+),

=

√
n− 1

2
.

Thus EdistT (DD∗n,Sn+) in Table 4.4 is calculated directly as above.
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Table 4.1: The minimum extreme point distance from DD∗n to Sn+ and other sets for n =
2 . . . , 50.

n 2 10 20 30 40 50

EdistT (DD∗n,Sn+) 0.207 1.081 1.736 2.239 2.662 3.036
EdistT (DD∗n,SDD∗n) 0.207 0.582 0.803 0.954 1.072 1.171
EdistT (DD∗n,SDB∗n(H̄)) 0.207 0.574 0.767 0.882 0.960 1.018
EdistT (DD∗n,SDB∗n(H1)) 0.089 0.267 0.388 0.479 0.555 0.622
EdistT (DD∗n,SDB∗n(H2)) 0.098 0.197 0.220 0.229 0.234 0.237

We also give a figure that illustrates the minimum extreme point distances from DD∗n
to Sn+ and other sets for different n.

Figure 4.2: The minimum extreme point distance from DD∗n to Sn+, SDD∗n and SDB∗n(H̄)
with different H for n = 2, . . . , 50.

As can be seen in Table 4.4 and Figure 4.2, when n = 2, EdistT (DD∗n,Sn+), EdistT (DD∗n,SDD∗n)

and EdistT (DD∗n,SDB∗n(H̄)) are the same, while EdistT (DD∗n,SDB∗n(H1)) and EdistT (DD∗n,SDB∗n(H2))

are closer to 0. When n becomes larger, we can observe that EdistT (DD∗n,SDB∗n(H̄)) is

smaller than EdistT (DD∗n,SDD∗n) but stays very close to the latter for each n. For all

n = 2, . . . , 50, SDB∗n(H1) and SDB∗n(H2) are the closest to the extreme points of DD∗n.
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4.5 Conclusion

In this Chapter, we first showed that the norm normalized distance distF (S,Sn+) has

the same value whenever SDD∗n ⊆ S ⊆ DD∗n, since distF (DD∗n,Sn+) = distF (SDD∗n,Sn+)

holds. This implies that the norm normalized distance is not a sufficient measure to eval-

uate these approximations. As a new measure to compensate for the weakness of that

distance, we proposed a new distance, the trace normalized distance distT (S,Sn+). Using

this new measure, we proved that distT (DD∗n,Sn+) and distT (SDD∗n,Sn+) are different, i.e.,

distT (DD∗n,Sn+) =
√
n−1
2 and distT (SDD∗n,Sn+) = n−2

n .

Table 4.2 compares the proof techniques used by Blekherman et al. [20] and those in

Sections 4.2 and 4.3 of this chapter.

Table 4.2: Comparison of proof techniques in [20] and those in this chapter.
Proof techniques
of each theorem

Blekherman et al. 2020 [20]

Object Sn,k

distF (·,Sn+)

Upper bound
(Theorem 1) Averaging technique
(Theorem 2) Bound the most negative eigenvalue

Lower bound
(Theorem 3) Construct a matrix far from Sn+
(Theorem 4) Restricted Isometry Property

Proof techniques
of each theorem

This paper

Object SDD∗n DD∗n

distF (·,Sn+)

Upper bound
(Theorem 4.2.1)

distF (SDD∗n,Sn+) ≤ distF (DD∗n,Sn+)

(Theorem 4.2.1)
Averaging technique

Lower bound
(Theorem 4.2.1)
Corollary of Theorem 3 [20]

(Theorem 4.2.1)

distF (DD∗n,Sn+) ≥ distF (SDD∗n,Sn+)

distT (·,Sn+)
Upper bound

(Lemma 4.3.5)
Averaging technique

(Theorem 4.3.6)
Analyze extreme points of DDT ∗n
and use the Bauer maximum principleLower bound

(Lemma 4.3.4)
Construct a matrix far from Sn+

Then, we proposed a new measure that evaluate an approximation S : Sn+ ⊆ S ⊆
DD∗n by calculating the minimum distance from any extreme point of DDT ∗n to the set S,

namely EdistT (DD∗n,S). We described how to calculate EdistT (DD∗n, ·) for approximations

SDB∗n(H) and SDD∗n for any given n ≥ 2. One can observe from the numerical results that

EdistT (DD∗n,SDB∗n(H̄)) stays very close to EdistT (DD∗n,SDD∗n) for each n.
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Chapter 5

Cutting-plane methods for solving
semidefinite optimization problems

In this chapter, we first introduce the cutting-plane method for solving SDPs, referring to

Ahmadi et al. [1], and focus on the approximations of the semidefinite cone in this method.

Then we conduct numerical experiments to show the result of the cutting-plane methods

using different initial relaxations on random Doubly Non-Negative (DNN) problems and

Maximum stable set problem. The contents in Section 5.2.2 are based on the recent paper

[114].

5.1 A cutting-plane plane method for solving SDPs

We consider the standard SDP of the form:

min 〈C,X〉

s.t. 〈Aj , X〉 = bj , j = 1, 2, . . . ,m, (5.1)

X ∈ Sn+,

where C,Aj ∈ Sn, bj ∈ R (j = 1, . . . ,m).

To introduce the cutting-plane method for solving (5.1), we assume that

Assumption 5.1.1. All feasible solution X to Problem (5.1) satisfies Tr(X) ≤ T for some

positive scalar T .

If the feasible region of Problem (5.1) is empty, then the problem is infeasible. Otherwise,

Assumption 5.1.1 ensures that the feasible region of Problem (5.1) is nonempty and compact

(i.e., bounded and closed). Then Weierstrass’s Theorem (e.g., Prop.A.2.7 [15]) implies that

Problem (5.1) has a bounded optimal value. Note that Assumption 5.1.1 is often naturally
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satisfied, e.g., the SDP relaxations of the maximum stable set problem and the max-cut

problem. Also, one may notice that this assumption can be approximately satisfied by

adding a big-M constraint Tr(X) ≤M in Problem (5.1) for a large positive scalar M .

We briefly introduce the cutting-plane method by Ahmadi et al. [1] on the SDP (5.1).

Let Pn be an outer approximation of Sn+, i.e., Sn+ ⊆ Pn ⊆ Sn, and replace X ∈ Sn+ by

X ∈ Pn in (5.1). Then, we obtain a relaxation of (5.1):

min 〈C,X〉

s.t. 〈Aj , X〉 = bj , j = 1, 2, . . . ,m, (5.2)

X ∈ Pn,

The relaxed problem (5.2) is expected to be easier to solve and to give us a finite lower

bound of problem (5.1). Specifically, we assume that Pn is chosen such that

Assumption 5.1.2. The feasible region of the relaxed problem (5.2) is bounded under

Assumption 5.1.1.

By solving the initial relaxed problem (5.2), we can obtain its optimal solution X∗. To

get a better lower bound, we select some eigenvectors with negative eigenvalues of X∗, say

d1, .., dk. By adding cutting-planes

〈didTi , X〉 ≥ 0 (i = 1, .., k)

to problem (5.2), we can obtain a new optimization problem

min 〈C,X〉

s.t. 〈Aj , X〉 = bj , j = 1, 2, . . . ,m, (5.3)

〈didTi , X〉 ≥ 0, i = 1, .., k,

X ∈ Pn.

Notice that the optimal solution X∗ of problem (5.2) is cut from the feasible region of

problem (5.3) since 〈didTi , X∗〉 < 0 (i = 1, .., k). On the other hand, since

Sn+ = {X ∈ Sn | ∀d ∈ Rn, 〈ddT , X〉 ≥ 0}

⊆ Pn ∩ {X ∈ Sn | 〈didTi , X〉 ≥ 0 (i = 1, .., k)},

every feasible solution of (5.1) is feasible for (5.3), and hence problem (5.3) is a relaxation

of problem (5.1). These facts ensure that problem (5.3) is a tighter relaxation of problem
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(5.1) than problem (5.2). By repeating this procedure, we are able to obtain a series of non-

decreasing lower bounds of (5.1). If we obtain an optimal solution of Problem (5.3), denoted

as X̄, whose smallest eigenvalue: λmin(X̄) satisfies λmin(X̄) > −ε for a given tolerance ε > 0,

then we call X̄ an ε-optimal solution of Problem (5.1). Note that since the eigenvectors are

usually dense, we only have to add eigenvectors corresponding to up to the second smallest

eigenvalues to {di} at every iteration, which increases computational efficiency. The above

mentioned cutting-plane method for solving Problem (5.1) is summarized in Algorithm 1.

Algorithm 1 Cutting-plane method for solving SDPs

Step 0 (Initialization) Let ε > 0 be a tolerance for feasibility, and let Pn0 be an initial
outer approximation of Sn+ satisfying Assumption 5.1.2. Set k ← 0

Step 1 (Optimization) Solve the relaxed problem:

min 〈C,X〉
s.t. 〈Aj , X〉 = bj , j = 1, 2, . . . ,m, (5.4)

X ∈ Pnk ,

and obtain its optimal solution X∗k .
Step 2 (Termination check)

(1) If the relaxed problem (5.4) is infeasible, then Problem (5.1) is infeasible.
(2) If the smallest eigenvalue of X∗k : λmin(X∗k) satisfies λmin(X∗k) > −ε, then X∗k is

an ε-optimal solution of Problem (5.1).
Step 3 (Cut generation) Let d1

k and d2
k be the eigenvectors corresponding to up to the

second smallest eigenvalues of X∗k . Set

Pnk+1 ← Pnk ∩ {X ∈ Sn | 〈d1
k(d

1
k)
T , X〉 ≥ 0, 〈d2

k(d
2
k)
T , X〉 ≥ 0}.

Step 4 Set k ← k + 1 and return to Step 1.

Since the work of Kelly [65], several authors have given the proof of convergence of

general cutting-plane methods [14, 17, 81, 89]. We refer to Theorem 1 of Bertsimas and

Cory-Wright [17] for a proof of convergence of Algorithm 1 with SDD∗n as its initial approx-

imation. The convergence of Algorithm 1 with DD∗n or SDB∗n as its initial approximation

can be proved similarly. Based on Theorem 1 of Bertsimas and Cory-Wright [17], we give

a proof of convergence of Algorithm 1 here for completeness.

Theorem 5.1.3. Suppose that (5.1) is feasible and Assumption 5.1.1 holds. Also assume

that the initial approximation Pn0 in Algorithm 1 is chosen such that Assumption 5.1.2

holds, i.e., all feasible point X of the initial relaxed problem (5.4) is bounded by a positive

scalar R: ‖X‖F ≤ R. Then for any tolerance ε > 0, Algorithm 1 terminates within finite

iterations.

Proof. Let X∗k be a feasible solution returned by the kth iteration of Algorithm 1 and let
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dk be the eigenvector corresponding to the smallest eigenvalues of X∗k . Let ε > 0 be a given

tolerance. Suppose that at some iteration k > 1, Algorithm 1 has not converged. Then we

know that for all i < k,

λmin(X∗i ) = 〈X∗i , didTi 〉 < −ε.

Since X∗k is a feasible solution to (5.4), we have that for all i < k,

〈X∗k , didTi 〉 ≥ 0.

Then for each i < k, we have

‖X∗k −X∗i ‖F = ‖X∗k −X∗i ‖F ‖didTi ‖F (∵ ‖di‖2 = 1)

≥ |〈X∗k −X∗i , didTi 〉| (∵ Cauchy-Schwarz inequality)

= |〈X∗k , didTi 〉 − 〈X∗i , didTi 〉|

> ε.

This implies that for each i < k, the hyperplane {Y ∈ Sn | 〈Y, didTi 〉 = − ε
2} strictly

separates X∗k and X∗i . Thus for each i < k, the Euclidean ball of radius ε
2 centered at X∗i

(i.e., {Y ∈ Sn | ‖X∗i −Y ‖F ≤ ε
2}) has an empty intersection with the ball of the same radius

centered at X∗k . This also implies that any two of these balls will not overlap. The volume

of a ball of radius r in Rn is π
n
2

Γ(n
2

+1)r
n, where Γ(·) is the Gamma function (e.g., [78]). Then

for i ≤ k, the combined volume of balls of radius ε
2 centered at X∗i in Rn×n is

Vol1 := k
π
n2

2

Γ(n
2

2 + 1)
(
ε

2
)n

2
.

By the assumption of this theorem, we have that every feasible point X of the initial

relaxed problem (e.g., X∗1 , . . . , X
∗
k) is bounded by a positive scalar R: ‖X‖F ≤ R. Then,

the balls of radius ε
2 centered at X∗1 , . . . , X

∗
k are contained in a ball of radius R+ ε

2 centered

at the origin, which has volume

Vol2 :=
π
n2

2

Γ(n
2

2 + 1)
(R+

ε

2
)n

2
.

Hence, if Algorithm 1 has not converged at iteration k, then Vol1 < Vol2 will imply that

k < (
2R

ε
+ 1)n

2
.
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This shows that for any ε > 0, Algorithm 1 will converge to an ε-optimal solution after

(2R
ε + 1)n

2
iterations.

As for the selection of the initial relaxation Pn, we are ready to use our proposed

approximation of Sn+ based on the expanded SD bases. Let H̄ := {±1,±1±
√

2} be the set

of parameters calculated in Section 3.2.3, and simply let SDBn denote the conical hull of

expanded SD bases using H̄:

SDBn := cone

⋃
α∈H̄

B̄n(α)

 .

Then, as has been described in the Corollary 3.2.7, we have

Sn+ ⊆ SDD∗n ⊆ SDB∗n ⊆ DD∗n. (5.5)

Bertsimas and Cory-Wright [17] proved that if DD∗n is selected to be the initial outer

approximation Pn in Problem (5.2), with Assumption 5.1.1, Assumption 5.1.2 is satisfied.

Since SDD∗n and SDB∗n are subsets of DD∗n, we know that if SDD∗n or SDB∗n is selected to

be the initial outer approximation Pn, Assumption 5.1.2 will also be satisfied. Thus, DD∗n,

SDD∗n and SDB∗n are suitable candidates for the choice of Pn.

If SDB∗n or DD∗n is selected to be Pn, the corresponding relaxed problem in the cutting-

plane procedure becomes an LP, which allows us to use powerful state-of-the-art LP solvers,

such as Gurobi [53]. Ahmadi et al. [1] showed that when SDD∗n is selected, the relaxations

turn out to be SOCPs. Although SDD∗n provides a tighter relaxation than either DDn
or SDBn, the latter two relaxations are expected to have a lower computational cost. In

addition, in [1], Ahmadi et al. also proposed an SOCP-based cutting-plane approach,

named SDSOS. Instead of adding 2 linear cuts, SDSOS adds an SOCP cut at every itera-

tion. Specifically, they used the eigenvector corresponding to 2 smallest eigenvalues, namely

d1, d2 ∈ Rn, of a relaxed solution X∗ at each iteration, and construct the following cut :

(d1, d2)TX∗(d1, d2) ∈ S2
+.

This cut can be equivalently transformed into 2 linear cuts and 1 SOCP cut.

We conducted experiments to compare the efficiencies of Algorithm 1 using different ap-

proximations and SDSOS. The specifications of the experimental methods are summarized

in Table 5.1.
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Table 5.1: Specifications of the experimental methods

Method Pn Number of cuts added at each iteration
Solver

LP cut SOCP cut

CPDD DD∗n 2 0 Gurobi
CPSDB SDB∗n 2 0 Gurobi
CPSDD SDD∗n 2 0 Mosek
SDSOS SDD∗n 2 1 Mosek

5.2 Numerical experiments

5.2.1 Random instances of DNN problems

In this section, we apply Algorithm 1 with different initial approximations to random

generated Doubly Non-Negative (DNN) problem of the form:

min 〈C,X〉

s.t. 〈Aj , X〉 = bj , j = 1, 2, . . . ,m, (5.6)

X ∈ Sn+ ∩N n,

where C,Aj ∈ Sn, bj ∈ R (j = 1 . . . ,m) and N n is the set of n× n nonnegative symmetric

matrices. The dual of this problem is given by

min bT y

s.t. C −
m∑
j=1

yjAj = S,

S ∈ Sn+ +N n.

Following Yamashita et al. [120], we generated random instances of Problem (5.6) as

follows. First, we generated V ∈ Rn×k1 and W ∈ Rn×k2 with random integers 1 ≤ k1, k2 ≤
n, where each element of V,W was drawn from a uniform distribution in [0.1, 1]. Let I be the

identity matrix, and let X0 := V V T +0.1I to be a primal interior feasible solution and S0 :=

WW T + 0.1I to be a slack variable. Let B ∈ N n be a symmetric matrix whose elements

were drawn from a uniform distribution in [0, 1], and let A1 := 0.1I + B. Each element of

the dual feasible solution y0 ∈ Rm and Aj ∈ Sn (j = 2, 3, . . . ,m) was chosen from a uniform

distribution in [−1, 1]. Here, let C = S0 +
∑m

j=1 yjAj and bj = 〈Aj , X0〉 (j = 1, 2, . . . ,m).

Then (y0, X0, S0) is a primal-dual interior feasible solution of the DNN problem (5.6). By

the strong duality theorem of conic optimization problems (Theorem 2.2.1), we know that
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the resulting DNN problem has no duality gap. Note that for any feasible solution X of

this problem, since 〈B,X〉 ≥ 0, we have

Tr(X) = 〈I,X〉 ≤ 〈I,X〉+ 10〈B,X〉 = 10〈A1, X〉 = 10b1.

This implies that the above generated instances of (5.6) satisfies Assumption 5.1.1.

We apply cutting-plane methods listed in Table 5.1 to (5.6) with n = 100, 150, 200 and

m = 10, 50. The stopping criteria is set to be ε := 10−6. All experiments were performed

with MATLAB 2018b on a Windows PC with an Intel(R) Core(TM) i7-6700 CPU running

at 3.4 GHz and 16 GB of RAM. The LPs were solved using Gurobi Optimizer 9.0.0 [53]

and the SOCPs and SDPs are solved using Mosek Optimizer 9.0 [6].

We evaluate the efficiency of each method by using the gap between the lower bounds

of this method and the optimal value of (5.8). Let f∗ be the optimal value of (5.6). For

any method listed in Table 5.1, at iteration k, we denoted the lower bound of (5.6) as fk.

We used the value
∣∣∣f∗−fkf∗

∣∣∣ × 100% to evaluate the accuracy of each iteration and called it

the Gap. Note that when solving SOCPs in our experiments, Mosek cannot obtain useful

solution sometimes due to numerical errors. In this case, e.g., when Mosek outputs error

code ’10006’ at iteration k, we set fk := fk−1. The numerical results are shown in Figure

5.1, Figure 5.2 and Table 5.2.

Figure 5.1: Relation between the number of iterations and the
gap for a random instance of DNN problem
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Figure 5.2: Relation between the computational time and the
gap for the same random instance of DNN problem

Figure 5.1 shows the result for an instance with n = 100 and m = 10. The x-axis

is the number of iterations, and the y-axis is the gap between the lower bounds of each

method and the SDP bound obtained by (5.6). As can be seen in this figure, the gap

obtained by CPSDB is much better than the gap generated by CPDD at each iteration.

Although SDSOS adds an extra SOCP cut at every iteration and takes longer to solve, the

gap obtained by SDSOS is only slightly better than CPSDD at each iteration.

Figure 5.2 shows the efficiency of each method for the same instance with n = 100 and

m = 10. The x-axis is the computational time, and the y-axis is the gap. As can be seen in

this figure, the most efficient method is CPSDB. CPSDB attained a lower bound with gap

around 2.7% within 1 s, while CPDD attained a lower bound with gap around 4% after the

same amount of time. Note that the first iteration took 1.58 s for CPSDD and SDSOS to

solve and the initial gap attained is 4.45%.

Table 5.2 gives numerical results for all instances, where k is the instance number and

’Ite’ represents the number of iteration. The gaps obtained at the first and fifth iterations

for each method and their computational time are given. We also present the gap achieved

by each method after a fixed time of computation.

As can be seen in this table, for every random instance, CPSDB has a better gap than

CPDD at every iteration. Although methods using SOCPs (CPSDD, SDSOS) obtain better

lower bounds than methods using LPs (CPDD, CPSDB) at every iteration, it takes them

much longer than those LP methods to solve each iteration.
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For all instances with m = 50, CPSDB achieved the best lower bounds within the

same amount of time. For example, for the problem with (n,m, k) = (150, 50, 1), after

60 s of computation, CPSDB obtained a lower bound whose gap is 2.93%, while CPDD,

CPSDD, and SDSOS got gaps greater than 3.44%. This indicates that the method with

our approximation SDB∗n may be efficient for solving DNN problems with a large number

of constraints. For instances with n = 100 and m = 10, CPSDB gave the best lower

bounds within the same amount of time. CPDD showed the best result after a fixed time of

computation for most instances with n = 150, 200 and m = 10, while CPSDB again showed

its efficiency for the instance with (n,m, k) = (150, 50, 1).

Mosek efficiently solved instances with n = 100 directly, but as shown in the table,

instances with n = 150, 200 required a significant amount of time for Mosek to solve. One

may consider using the cutting-plane method CPSDB with our polyhedral approximation

SDBn to obtain efficient lower bounds of large-scale SDPs in a reasonable time.
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Table 5.2: Numerical results for solving random DNN problems

(n,m,k)
Mosek

ite
CPDD CPSDB CPSDD SDSOS

Time (s) Gap (%)Time (s)Gap (%)Time (s)Gap (%)Time (s)Gap (%)Time (s)

(100,10,1) 13.26

1 4.04 0.12 2.15 0.16 0.72 1.63 0.72 1.63

5 2.04 0.51 1.00 0.89 0.14 8.56 0.14 8.82

0.04 10 0.01 10 0.14 10 0.14 10

(100,10,2) 12.52

1 9.44 0.12 6.13 0.17 4.45 1.58 4.45 1.59

5 4.69 0.56 2.77 1.00 1.17 8.29 0.91 8.44

1.64 10 0.62 10 1.17 10 0.91 10

(100,50,1) 28.05

1 14.7 0.71 11.15 0.81 9.98 2.03 9.98 2.06

5 9.30 3.62 7.88 3.94 6.54 11.45 6.41 11.65

6.24 20 4.74 20 5.74 20 5.48 20

(100,50,2) 34.66

1 10.12 0.65 7.48 0.77 6.69 2.11 6.69 2.13

5 6.25 3.46 4.28 4.02 3.66 11.97 3.54 12.70

3.87 20 2.92 20 3.17 20 3.13 20

(150,10,1) 124.98

1 6.04 0.12 4.01 0.33 3.02 4.61 3.02 4.68

5 2.33 0.65 1.17 2.02 0.42 24.03 0.31 24.18

3e-4 30 0.02 30 0.31 30 0.25 30

(150,10,2) 132.19

1 7.12 0.13 4.45 0.43 2.54 4.63 2.54 4.65

5 3.35 0.73 2.07 2.44 0.87 23.67 0.70 23.76

0.04 30 0.23 30 0.72 30 0.54 30

(150,50,1) 255.01

1 8.44 1.79 6.76 2.32 6.07 6.57 6.07 6.69

5 6.35 8.71 4.67 11.37 4.05 35.73 4.37 24.93

3.45 60 2.93 60 3.44 60 3.67 60

(150,50,2) 237.34

1 10.00 1.77 7.80 2.60 6.83 7.07 6.83 7.09

5 7.40 8.76 5.63 12.83 5.88 20.48 5.12 24.89

4.57 60 3.99 60 4.36 60 4.39 60

(200,10,1) 588.96

1 14.29 0.24 10.01 0.71 6.87 9.31 6.87 9.46

5 8.57 1.27 4.39 4.87 2.45 49.46 2.42 50.37

0.14 90 0.82 90 1.94 90 1.63 90

(200,10,2) 871.41

1 17.41 0.71 14.37 0.54 8.57 8.91 8.57 8.97

5 9.24 3.63 5.18 3.04 3.16 48.06 2.66 47.14

0.91 90 0.59 90 2.06 90 1.46 90

(200,50,1) 1176.10

1 11.71 3.24 8.87 4.38 7.38 15.48 7.38 15.48

5 7.95 16.12 5.94 28.12 6.29 46.95 5.26 71.48

4.56 180 4.37 180 5.66 180 5.26 180

(200,50,2) 967.41

1 17.64 4.52 14.14 4.54 11.96 15.07 11.96 15.14

5 10.62 23.00 8.01 23.45 8.63 46.84 8.59 46.24

5.56 180 4.80 180 6.14 180 5.37 180
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5.2.2 Maximum stable set problem

Conic optimization problems, including SDPs and copositive programs, have been shown

to provide tight bounds for NP-hard combinatorial and nonconvex optimization problems.

Here, we consider applying approximations of Sn+ to one of those NP-hard problems, the

maximum stable set problem. A stable set of a graph G(V,E) is a set of vertices in V , such

that there is no edge connecting any pair of vertices in the set. The maximum stable set

problem aims to find the stability number, i.e., the number of vertices of the largest stable

set of G, namely α(G).

De Klerk and Pasechnik [38] proposed a copositive programming formulation to obtain

the exact stability number of a graph G with n vertices:

α(G) = max 〈eeT , X〉

s.t. 〈A+ I,X〉 = 1, (5.7)

X ∈ C∗n,

where e := (1, . . . , 1)T and A is the adjacency matrix of graph G, and C∗n is the dual cone

of the copositive cone Cn := {X ∈ Sn | dTXd ≥ 0 for any d ∈ Rn+}.
Although problem (5.7) is a conic optimization problem, it is still difficult since deter-

mining whether X ∈ C∗n or not is NP-hard [39]. A natural approach is to relax this problem

to a more tractable optimization problem. Recall that the following inclusions hold:

C∗n ⊆ Sn+ ∩N n ⊆ Sn+ ⊆ Sn+ +N n ⊆ Cn.

By replacing C∗n with Sn+ ∩N n, one can obtain an SDP relaxation of (5.7):

max 〈eeT , X〉

s.t. 〈A+ I,X〉 = 1, (5.8)

X ∈ Sn+ ∩N n.

Solving this SDP is not as easy as it seems to be; in fact, we could not obtain a useful

result of (5.8) after 6 hours of calculation using the state-of-the-art SDP solver Mosek for

a random generalized problem when n = 300. We apply cutting-plane methods listed in

Table 5.1 to (5.8). Note that since the adjacency matrix is entry-wise non-negative, i.e.,

A ∈ N n, we know that every feasible solution X of (5.8) satisfies Tr(X) = 1− 〈A,X〉 ≤ 1.

This shows that Problem (5.8) naturally satisfies Assumption 5.1.1.

We tested methods in Table 5.1 on the Erdös-Rényi graphs ER(n, p), randomly gener-
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ated by Ahmadi et al. in [1], where n is the number of vertices and every pair of vertices

has an edge with probability p. All experiments were performed with MATLAB 2018b on

a Windows PC with an Intel(R) Core(TM) i7-6700 CPU running at 3.4 GHz and 16 GB of

RAM. The LPs were solved using Gurobi Optimizer 8.0.0 [53] and the SOCPs and SDPs are

solved using Mosek Optimizer 9.0 [6]. Similar to Section 5.2, we use the gap between the

upper bounds of each method and the SDP bound obtained by (5.8),i.e.,
∣∣∣f∗−fkf∗

∣∣∣ × 100%,

to evaluate methods in Table 5.1.

Figure 5.3 shows the result for an instance with n = 250 and p = 0.8. The x-axis

is the number of iterations, and the y-axis is the gap between the upper bounds of each

method and the SDP bound obtained by (5.8). As can be seen in this figure, the accuracy

of CPDD is the worst among the four methods at each iteration. CPSDB achieves almost

the same upper bounds as CPSDD and SDSOS, which shows that the proposed polyhedral

approximation SDBn is promising for obtaining a solution close to the non-polyhedral

approximation SDDn of Sn+. Although SDSOS adds an extra SOCP cut at every iteration

and takes longer to solve, the accuracy of SDSOS does not seem to be affected and is not

so different from the accuracy of CPSDD at each iteration.

Figure 5.3: Relation between the number of iterations and the
gap for a maximum stable set problem

Figure 5.4 shows the relation between the computation time and the gap of each method

for the same instance. Although its accuracy is not necessarily the best at every iteration,

it seems that CPSDB is the most efficient method. CPSDB attains an upper bound whose
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gap is 2 within 30 s, while CPSDD and SDSOS attain upper bounds whose gap is 4 after

the same amount of time. The difference might come from that the subproblems of CPSDB

are sparse LPs at earlier iterations and the computations are relatively cheaper than those

of CPSDD and SDSOS whose subproblems are SOCPs.

Figure 5.4: Relation between the computational time and the
gap for the same maximum stable set problem

Table 5.3 and 5.4 give the bounds of iterative methods and the SDP bound for all the

instances. In Table 5.3, the CPSDD0/SDSOS0 column shows the first upper bound obtained

by CPSDD and SDSOS, i.e., the upper bound obtained by solving the same SOCP before

adding any cutting-plane. The (5 min) and (10 min) columns of CPSDD (SDSOS) show

the upper bounds obtained after 5 minutes and after 10 minutes of the CPSDD (SDSOS)

computation, respectively. The SDP column shows the SDP bound obtained by solving

(5.8).

Similarly, in Table 5.4, the CPDD0 and CPSDB0 columns show the first upper bounds

obtained by CPDD and CPSDB, respectively, before adding any cutting-plane. The (5 min)

and (10 min) columns of CPDD (CPSDB) show the upper bounds obtained after 5 minutes

and after 10 minutes of the CPDD (CPSDB) computation, respectively.

Note that we failed to solve SDPs (5.8) for instances having n = 300 nodes within our

time limit 20000s. In Table 5.3, the Value and Time (s) columns of SDP with n = 300 show

the results obtained in [1] for these two instances, as a reference.

As can be seen in Table 5.3 and 5.4, for all instances, the values of CPSDD0/SDSOS0 are
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better than the values of CPSDB0 and CPDD0. These results correspond to the inclusion

relationship of initial approximations (5.5). We can also see that the values of CPSDB0

are almost the same as those of CPSDD0/SDSOS0 for all instances, while the values of

CPDD0 are much worse than others. For all instances, CPSDB seems to be significantly

more efficient than all other methods. For example, for instance with n = 250 and p = 0.3,

after 10 min of calculation, CPSDB obtained an upper bound of 73.24, while CPSDD and

SDSOS got upper bounds greater than 90 and CPDD got a bound of more than 146.

At present, solving a large SDP, e.g., one with more than n = 300 nodes requires a

significant amount of computational time. The cutting-plane method CPSDB with our

polyhedral approximation SDBn is a promising way of obtaining efficient upper bounds of

such large SDPs in a moderate time.

Table 5.3: Upper bounds obtained by SDP and SOCP methods on ER(n, p) graphs

n p
CPSDD0/SDSOS0 CPSDD SDSOS SDP

Value Time (s) (5 min) (10 min) (5 min) (10 min) Value Time (s)

150 0.3 105.70 0.95 38.91 37.02 40.97 37.38 20.44 105.46

150 0.8 31.78 1.00 10.07 9.66 9.70 9.31 6.00 110.63

200 0.3 140.47 3.14 70.48 55.52 75.46 61.31 23.73 549.63

200 0.8 40.92 3.14 12.10 11.29 12.17 11.38 6.45 497.55

250 0.3 176.25 6.60 115.41 93.81 119.67 99.99 26.78 1562.52

250 0.8 51.87 6.79 17.36 15.30 17.43 15.39 7.18 1553.63

300 0.3 210.32 13.05 160.42 138.60 162.77 143.12 (29.13) (32300.60)

300 0.8 60.97 13.31 21.71 17.77 22.66 18.50 (7.65) (20586.02)

Table 5.4: Upper bounds obtained by LP methods on the same ER(n, p) graphs

n p
CPDD0 CPDD CPSDB0 CPSDB

Value Time (s) (5 min) (10 min) Value Time (s) (5 min) (10 min)

150 0.3 117 0.06 76.76 67.51 107.29 0.24 36.80 35.12

150 0.8 46 0.05 13.70 12.71 32.76 0.28 9.51 9.06

200 0.3 157 0.1 113.28 104.07 142.25 0.52 55.07 48.18

200 0.8 54 0.11 17.39 16.07 42.14 0.57 11.58 11.00

250 0.3 194 0.17 154.75 146.20 178.30 0.84 91.88 73.24

250 0.8 68 0.17 28.02 22.26 53.22 1.00 14.76 13.57

300 0.3 230 0.26 183.89 174.02 212.97 1.29 133.83 110.95

300 0.8 78 0.24 47.87 32.28 62.47 1.36 18.11 16.05
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CHAPTER 5. CUTTING-PLANE METHODS FOR SOLVING SEMIDEFINITE
OPTIMIZATION PROBLEMS

5.3 Conclusion

In this chapter, we introduced a cutting-plane method for solving semidefinite opti-

mization problems and described the vital role of approximations of Sn+ in this method.

Approximations introduced in Chapter 3, including DD∗n, SDD∗n and our approximation

SDB∗n, were applied to the cutting-plane method for solving randomly generated instances

of DNN problems and a semidefinite relaxation of the maximum stable set problem. The

results of the numerical experiments showed that the cutting-plane method with our ap-

proximation SDB∗n is more efficient than other methods (see Figure 5.2 and Figure 5.4);

improving the efficiency of our method remains an important study issue.
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Chapter 6

Conclusion and implications

6.1 Summary

Semidefinite optimization has wide applications in convex optimizations, combinatorial

and nonconvex optimizations and control theory. The computational tractability of SDPs

mainly comes from the fact that SDPs can be solved in polynomial time to any desired

precision with interior-point methods. However, their computations become difficult when

the size of the SDP becomes large. As an alternative class of methods to compensate for

the weakness of interior-point methods, cutting-plane methods are able to obtain tightly

approximated solutions of SDPs in a considerable amount of time. In this thesis, we focused

on cutting-plane methods, which generate relaxations of SDPs and solve them as easily

handled optimization problems, e.g., LPs and SOCPs. In particular, we focused on what

impacts the initial relaxation problem, i.e., the approximations of the semidefinite cone. We

constructed a series of tight and sparse polyhedral approximations of the semidefinite cone

based on SD bases proposed by Tanaka and Yoshise [106]. Then we conducted theoretical

analyses and evaluate some of the approximations of the semidefinite cone. Finally, we

applied our proposed approximation of the semidefinite cone to a cutting plane method and

performed numerical experiments on random DNN instances as well as maximum stable set

problems. The numerical results showed the efficiency of the cutting plane method using

our proposed approximation.

In Chapter 3, we explored the inclusive relation of several existing approximations of the

semidefinite cone, including the set of matrices with factor width at most k, i.e., FWn(k),

the set of (resp., scaled) diagonally dominant matrices, i.e., DDn (resp., SDDn), and their

dual cones. Based on the concept of the SD basis, we proposed an expansion of SD bases

with a parameter in Section 3.2, which gives an orthogonal basis of Sn on the boundary of

Sn+. The conditions for generating an expansion different from the existing one are given

in Proposition 3.2.3. Using the expanded SD bases, we proposed a new sparse polyhedral
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approximation SDBn(H), which is controlled by a parameter set H. As concluded in

Corollary 3.2.7, we showed that the polyhedral approximation using our expanded SD bases

contains the set of diagonally dominant matrices and is contained in the set of scaled

diagonally dominant matrices, i.e., DDn ⊆ SDBn(H) ⊆ SDDn whenever {1,−1} ⊆ H ⊆ R.

Moreover, it is proved in Theorem 3.2.6 that the set of scaled diagonally dominant matrices

can be expressed using an infinite number of expanded SD bases, i.e., SDBn(R) = SDDn.

A practical method for calculating parameters for our proposed approximation SDBn(H)

is also presented in Section 3.2.3.

In Chapter 4, we evaluated the above approximations using the norm normalized dis-

tance, which calculates the maximum distance from a matrix in a given approximation to

the semidefinite cone under the constraint that the value of the Frobenius norm is one.

Unfortunately, we proved in Theorem 4.2.1 that the norm normalized distance from a set to

the semidefinite cone, i.e., distF (S,Sn+), has the same value whenever SDD∗n ⊆ S ⊆ DD∗n.

This result implies that the norm normalized distance is not sufficient to evaluate these

approximations, possibly because the normalization using Frobenius norm is too strict that

evens out some differences among these sets.

In Section 4.3, as a new measure to compensate for the weakness of that distance, we

proposed the trace normalized distance ,i.e., distT (·,Sn+), which has a weaker normalization

constraint that the trace of a matrix is one. By using this measure, we showed that the trace

normalized distance from DD∗n to the semidefinite cone differs from the trace normalized

distance from SDD∗n to the semidefinite cone, i.e., distT (DD∗n,Sn+) =
√
n−1
2 (Theorem 4.3.6)

and distT (SDD∗n,Sn+) = n−2
n (Theorem 4.3.3).

Note that the trace normalized distance from the polyhedral cone DD∗n to the semidef-

inite cone is calculated by finding the structures of the extreme points of DD∗n ∩ {X ∈ Sn |
Tr(X) = 1}. Although our proposed approximation SDB∗n(H) with a parameter set H is

also a polyhedral cone, it is hard to explore all its extreme points. Then we tried another

way to evaluate our proposed approximation in Section 4.4. We proposed a measure called

the extreme point distance, i.e., EdistT (DD∗n,S), which calculates the minimum distance

between a set S and the extreme points of DD∗n ∩ {X ∈ Sn | Tr(X) = 1}. We numerically

calculated this measure for SDD∗n and SDB∗n(H) with several H, and showed that with a

specific parameter set H̄, EdistT (DD∗n,SDB∗n(H̄)) stays very close to EdistT (DD∗n,SDD∗n)

for each n.

In Chapter 5, we introduced a cutting plane method for solving SDPs and conducted

numerical experiments with different initial approximations of the semidefinite cone, includ-

ing DD∗n, SDD∗n and our proposed approximation SDB∗n(H̄) with a specific parameter set

H̄. Experimental results indicated that the cutting plane method using our approximation
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SDB∗n(H̄) is promising not only for random DNN problems but also for the maximum stable

set problem.

6.2 Future direction

On expanded SD bases

One future direction is to utilize sparse patterns to generate specific approximations of

the semidefinite cone using SD bases. For example, consider checking the positive semidefi-

niteness of a matrix that has elements only in certain rows/columns (e.g., with index set I)

and diagonal positions. Then we can reduce the number of bases in SD bases and only use

matrices (ei+ej)(ei+ej)
T with i, j ∈ I to construct specific inner and outer approximations

of the semidefinite cone. The relation between sparsity patterns and SD bases is an exciting

issue to be considered in the future.

As for the parameter α, which is used to generate matrices in expanded SD bases:

(ei + αej)(ei + αej)
T , we developed a practical technique to calculate parameters that

provide generally large inner approximations for the semidefinite cone. However, in practice,

the parameter α is often problem-dependent. For example, in the cutting plane method

for solving SDPs, a problem-dependent choice of the parameter set may lead to a specific

initial approximation of the semidefinite cone, and give us a tighter initial bound for the

optimal value. Accordingly, it is an attractive issue to explore the choice of parameters

problem-dependently.

We may also consider increasing the number of vectors in the definition of the SD bases.

The current SD bases are defined as a set of matrices (ei + ej)(ei + ej)
T . If we use three

vectors, as in (ei + ej + ek)(ei + ej + ek)
T , we might obtain another inner approximation

that remains relatively sparse when the dimension n is large. To construct an inner ap-

proximation, we need to generate C3
n base matrices like (ei + ej + ek)(ei + ej + ek)

T . One

may investigate how to efficiently reduce the number of bases matrices while keeping the

approximation tight. In the same manner as we expand the SD basis, we may expand

(ei + ej + ek)(ei + ej + ek)
T by using parameters α, β: (ei + αej + βek)(ei + αej + βek)

T .

However, this expansion may be hard to control since there are two parameters. These

issues may be interesting to discover in the future.

More applications of our proposed approximation should be explored in the future. For

example, the proposed approximation SDB∗n can be considered to be applied to the partial

facial reduction technique [95]. In recent years, Tanaka and Yoshise [106] proposed an

LP-based method to test copositivity of a matrix using SD bases. Gouveia et al. [51]

developed an SOCP-based approximation scheme for completely positive and copositive
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optimization problems using the set of nonnegative scaled diagonally dominant matrices.

We may investigate more applications of our proposed SD bases on copositive optimization.

On the evaluation of approximations using expanded SD bases

As for the evaluation of approximations, we also have some future directions. Note that

the trace normalized distance from the polyhedral cone DD∗n to the semidefinite cone is

calculated by finding the structures of the extreme points of DD∗n ∩ {X ∈ Sn | Tr(X) = 1}.
Since our proposed approximation SDB∗n(H) with a parameter set H is also a polyhedral

cone, it will be an interesting but also challenging issue to explore all extreme points of

SDB∗n(H). By obtaining these extreme points, we can directly analyze the trace normalized

distance from SDB∗n(H) to the semidefinite cone: distT (SDB∗n(H),Sn+).

One may notice that in the proof of convergence of the cutting plane method in Section

5, i.e., the proof of Theorem 5.1.3, we used an argument which states that the Euclidean

balls of radius ε
2 centered at the points returned by the algorithm are contained in a ball of

radius R + ε
2 centered at the origin. Then we showed that the volume of non-overlapping

balls centered at these points is smaller than the volume of the ball of radius R+ ε
2 . Using

this relation, the convergence rate of the algorithm is derived. In fact, for a given initial

approximation Pn0 of the semidefinite cone, the balls centered at the points returned by

the algorithm should lie in the set Pn0 \ Sn+. By replacing the volume of the ball of radius

R + ε
2 using the volume of the Minkowski sum of Pn0 \ Sn+ and a ball of radius ε

2 centered

at the origin, we may obtain a significantly tighter convergence rate. Hence, it would be

very interesting to look into the relationship between the volume of Pn0 \ Sn+ and the trace

normalized distances distT (Pn0 ,Sn+) in the future.

On generalizations of factor width

Also, there is a future direction to focus on the factor width k of a matrix. The cone

of matrices with factor width at most k, i.e., FWn(k), provides an approximation of the

semidefinite cone. As has been illustrated in Figure 3.1, by considering a larger width k > 2,

we may obtain a more considerable inner approximation of the semidefinite cone, although

it would not be polyhedral or even characterized by using SOCP constraints. In fact, Fawzi

[42] showed that 3 × 3 positive semidefinite cone does not admit any second-order cone

representation. Checking whether a matrix is in FWn(k) or its dual cone Sn,k requires to

solve a semidefinite optimization problem with Ckn semidefinite constraints of size k, which

seems to be not efficient for k ≥ 3. Thus in practice, FWn(k) and Sn,k are used to solve

SDPs by setting k ≤ 2. Finding efficient ways to solve optimization problems over FWn(k)

with k ≥ 3 might be an exciting challenge.
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In a recent paper, Zheng et al. [124] proposed an extension of the factor width 2 matri-

ces, i.e., the block factor-width-two matrices, using the matrix block partition, which aims

to alleviate the deficiency mentioned above. By using a matrix partition α = {k1, . . . , kp},
a matrix A ∈ Rn×n can be partitioned into small block matrices Ai,j ∈ Rki×kj . Checking

whether a matrix is in the set of block factor-width-two matrices with partition α requires

only p(p−1)
2 semidefinite constraints with size k1, . . . , kp. It is an interesting issue to investi-

gate more on the relation between matrix partition and the set of factor width k matrices.
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